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Instruction Scheduling with Less Power
Consumption for Nested Loop on DSP
Architecture

Student: Ming-Chih Chen Advisor: Prof. Cheng Chen
Institute of Computer Science and Information Engineering National Chiao

Tung University

Abstract

Because portable devices become popular, digital signal processing on images and
real-time data are more and more iImpertant.-How to process data correctly in real-time is one
of the most interesting topics to be investigated. ‘The instruction scheduling is an important
step through the whole process. Under resources constraints, we use retiming technique to
design a method named Bottom Retiming Scheduling Method. It overcomes the shortcoming
of Relax Push-Up Scheduling Method which is a bigger maximum retiming depth. Besides
data throughout, low power consumption is another important issue for portable devices.
Based on Bottom Retiming Scheduling Method, we integrate the operand sharing technique
which can reduce switching activities to design another method named Bottom Retiming with
Operand Sharing Method for low power scheduling. The experimental results show the

effectiveness of these methods.
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Chapter 1. Introduction

In embedded system, high performance Digital Signal Processing ( DSP) used in image

processing, multimedia, wireless security, etc., needs to be processed not only with high data
throughout but also with low power consumption [14]. These applications usually contain
time-critical sections consisting of nested loops of instructions. The optimization of such
loops, considering processing resource constraints, is required in order to improve their
computational time [6].

Push-Up Scheduling Method (PUSM) [4] and Relax Push-Up Scheduling Method
(RPUSM) [6] are retiming-based methods used to schedule instructions of nested loops under
resources constraint. They can fully utilize functional units to achieve the minimum static
schedule length, and RPUSM can further'select.a better schedule vector to reduce the entire
execution time. However, they usually result:in.a'bigger maximum retiming depth, which will
longer prologue and epilogue and increase the entire €xecution time. Hence, in this thesis, we
propose a method named Bottom+Retiming Scheduling Method (BRSM) to overcome this
shortcoming. In our BRSM, it can result in a smaller maximum retiming depth. From the
experimental results, it shows that BRSM gives an improvement from 20.98% to 41.13% over
the RPUSM in Floyd-Steimberg problem with various loop indexes [7].

As for low power scheduling, many techniques used for nested loops have been studied
[2-6, 10-16, 19]. Based on operand sharing approach, a loop pipelining methodology to
reduce both latency and power is first proposed in [13]. After that, a list-based loop pipelining
technique is proposed to first minimize power and then maximize throughout [12]. Since list
scheduling only considers the node with highest priority in ready list, it can’t get an optimal
solution when the number of functional units is more than one in every scheduling step. In
order to fully utilize functional units and reduce power consumption, we integrate the operand

sharing technique into BRSM to design another method, Bottom Retiming with Operand
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Sharing method (BROS). It can bind operations with a common operand into the same
functional unit and result in a smaller maximum retiming depth. BROS has advantages of
BRSM and the operand sharing technique. From the experimental results, we can find that the
performance of BROS is very close BRSM, and operand reutilizations are very high.

This thesis is organized as follows. In chapter 2, we will introduce the fundamental
background and the related work. In chapter 3, BRSM is presented in detail, and the
experimental results are shown. BROS is finely presented in chapter 4, and the corresponding
experimental results are shown. Finally, we conclude our thesis in chapter 5, and list the

future work of our research.



Chapter 2. Fundamental Background &
Related Work

In this chapter, we will introduce the Multidimensional Data Flow Graph (MDFG) to
model the nested loop to be scheduled. Then, the retiming technique will be presented. Finally,
we will go through some related work, including Push-up Scheduling Method [4], Relax

Push-up Scheduling Method [6], and List Scheduling for Low Power Method [2].

2.1 Modeling the Problem [4-5]

Multidimensional data flow graph (MDFG) is used to model the nested loop to be

scheduled [4, 6, 24-26]. Definition 2.1 defines what an MDFG is.

Definition 2.1. A Multidimensional Data: Flow Graph (MDFG) G =(V,E,d,t) is a

node-weighted and edge-weighted directed graph, where V is the set of computation nodes, E
is the set of dependence edges, d is‘a function from'E to Z", representing the multidimensional
delays between two nodes, where n is the number of dimensions, and t is the computation

time of each node.

Fig. 2.1 shows the high-level language code of a DSP program. We use d(e) = (d.x,d.y)

to represent any delay edge e in a two-dimensional data flow graph. The equivalent
two-dimensional data flow graph is shown in Fig. 2.2. In this thesis, we assume that execution
time of any operation is one time unit.

An iteration is equivalent to the execution of each node in V of an MDFG G exactly
once, i.e., the execution of one instance of the loop body [4]. An iteration is associated with a

static ~ schedule, that is repeatedly executed for the loop. Iterations are identified by a vector



fori=1tom
forj=1ton / N
{
D:d(i,j)=b(i-1,j+1)*c(i-1,j-1); @ @
A: a(i,j)=d(i,j)*0.5;

B: b(i.j)=a(ij)+1;
C: c(ij)=a(ij)+2;

»
>
D
N

Fig. 2.1 High-level language code Fig. 2.2 An equivalent two-dimensional
of a DSP program data flow graph

I, equivalent to a multidimensional index, starting from (L1,...,1). Inter-iteration dependencies

are represented by vector-weightet edgestinian.MDFG. For any iteration j, in an MDFG an

edge from node u to node v with- delay vector d(e) means that the computation of node v at
iteration j depends on the execution of node u.at iteration j—d(e). An edge with delay
(0,0,...,0) in an MDFG represents a data dependence within the same iteration. A legal

MDFG must have no zero-delay cycle, i.e., the summation of the delay vectors along any

cycle can’t be (0,0,...,0).

Definition 2.2. A cell dependence graph (DG) of the MDFG G is the directed acyclic graph,

showing the dependences between copies of nodes representing an MDFG G.

The cell dependence graph is bounded by the dimensions of the problem which it
represents [5]. A computational cell is the DG node that represents a copy of the MDFG,

excluded the edges with delay vectors different from (0,0,...,0) . The computational cell is

considered as an atomic execution unit. Fig. 2.3(a) shows the DG based on the replication of
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Fig 2.3 DG represented by

Fig 2.304) DG based on the replication of )
compntational cells

the MDFGinFig 21

the MDFG in Fig. 2.1, and Fig. 2.3(b) shows its DG represented by computational cells.

2.2 Retiming a Multidimensional Data Flow Graph [3-5]

A multidimensional retiming r'is a function from V to Z" that redistributes the nodes in
the original dependence graph created by the-replication of an MDFGG = (V,E,d,t) [27]. A
new MDFG G, =(V,E,d,,t) is created after applying retiming function r, and each

iteration still has one execution of each node in G. The purpose of using retiming technique is
to construct a new MDFG with better instruction level parallelism (ILP). The retiming vector

r(u) of anode ueV represents the offset between the original iteration and the one after

retiming. The delay vectors change accordingly to preserve dependencies. The retiming vector

r(u) of a node u represents delay components pushed into the edgesu — v, and subtracted
from the edgesw — u, whereu,v,weV . The execution of node u in iteration i which is
represented by a multidimensional vector is moved to the iterationi—r(u). Here we give

some definitions and properties of the retiming technique as follows.



o 12
Retiming Functionr:

el ed
r(A)=(10,0)
r(B)=(0,0
el ) (=00,
&
i «©)=(0.1)
€3 ({0.1)

Fig 2.4 The retimed MDFG by retiming function »

Definition 2.3. For any MDFG G =(V,E,d,t), retiming function r, and retimed MDFG
G, =(V,E,d,,t), we define the retimed delay vector for every edge e in E, the retimed delay

vector for every path in G, and the retimed delay vector for every cycle in G, denoted as d,(e),

dr(p), di(l) respectively by the following formulas:
(@ d,(e)=d(e)+r(u)—r(v).«forevery edge u——v, u,veV and ecE;
(b) d,(p)=d(p)+r(u)—r(v) foranypath u—=">v, uveV and peG;

(c) d,(I)=d(l) foranycycle I"'eG.

For example, Fig. 2.4 shows the retimed MDFG G; after applying retiming function r on
G. We can use the definition to obtain the retimed delay vector for every edge e in E.

In Fig. 2.5(a), we show the retimed DG based on the replication of the MDFG in Fig. 2.4
and the retimed DG represented by computational cells is shown in Fig. 2.5(b). The retiming
function applied to an MDFG may create prologue and epilogue. Prologue is the set of
instructions that must be executed to provide the necessary data for the beginning of the
iterative process. Epilogue is the set of instructions that must be executed to complete the
process. These two sets of instructions are complementary. For example, in Fig. 2.5(a) the
instruction D becomes the prologue, and the instruction A, B and C become epilogue for this

problem. If the retiming function of node D of the MDFG in Fig. 2.2 is equal to (0,2) and the

-6-
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Fig 2.5(a) DG based on the replication of the MDFG, after retiming, (b DG

tepreserted by commpitational cells

retiming function of other nodes ‘is equal to (0,0), we can find that the instructions of the

prologue and epilogue become more. So, the size of prologue and epilogue varies with the

retiming function on the MDFGs.

A schedule vector s is the normal vector for a set of parallel equitemporal hyperplanes

that define the sequence of execution of the cell dependence graph. To get a schedule vector s,

we can solve the inequalities d(e)-s>0 for every ec E [5]. For example, (1,0) is a

schedule vector of the MDFG in Fig. 2.2.

Definition 2.6. A legal MDFG G =(V,E,d,t) that must have no zero-delay cycle is

realizable if there exits a schedule vector s for the cell dependence graph with respect to G,

i.e, s-d>0 foranyd eG.



Definition 2.7. Given a realizable MDFG G, a legal multidimensional retiming for G is the

multidimensional retiming function r that transforms G into G,, such that G is still realizable.

A legal multidimensional retiming on an MDFG G =(V,E,d,t) requires that the
execution sequence of the corresponding retimed DG does not contain any cycle. This
constraint is enforced through the use of a schedule vector that supports the realization of the
retimed graph.

The selection of retiming function may result in illegal retiming. Fig. 2.6(a) shows an
illegal retiming function applied to the MDFG in Fig. 2.2. By simple inspection of the cell
dependence graph in Fig. 2.6(b), we can find that there exists a cycle created by the
dependencies (0,1) and (0,-1).

To get a legal multidimensional-retiming.r, we need to find a schedule vector s, such that
s-d >0 foranyd € G. For a two-dimensionalsproblem, we choose s=(s.x,s.y) such that
s.X+s.y is minimum. Then, a legal multidimensional retiming r of node u is any vector
orthogonal to s [5]. So, we can find that (0,1) is a legal retiming function on the MDFG in Fig.
2.2, and (1,0) is an illegal retiming function on the MDFG in Fig. 2.2. Further, we can have

the corollary 2.1 [5].

Corollary 2.1. If r is a multidimensional retiming function orthogonal to a schedule vector s

that realizes an MDFGG = (V,E,d,t), and then (kxr) is also a legal multidimensional

retiming on that MDFG.

From the corollary 2.1, we know that the retiming function of every node in the retimed

MDFG can be in the form(k xr). Here, r is called retiming base, and k is called retiming

-8-
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Fig 2.6 (a) Example of dllegal retitming, () the corresponding DG

depth [6].

2.3 Related Work [1-2, 4, 6]

In this section, we’ll show how Push-Up Seheduling Method (PUSM) works, and then
Relax Push-up Scheduling Method (RPUSM). will-also be introduced. Finally, we will
introduce the operand sharing technique and a.scheduling method, List Scheduling for Low
Power method (LPLS), using list scheduling method combined with operand sharing

technique [2].

2.3.1 Push-up Scheduling Method [4]

In order to make the schedule length shorter, PUSM uses retiming technique to change
the dependence in the MDFGs. PUSM will first analyze that if a node could be scheduled, and
then use retiming technique to make the node schedulable as early as possible. Now, we

define what a schedulable node as follows.

Definition 2.8. (Scheduling Conditions): Given an MDFG G =(V,E,d,t) andanodeueV,



u is a schedulable node at a control step cs, if it satisfies one of the following conditions:
(@) u has no incoming edges;
(b) all incoming edges of u have a nonzero multidimensional delay;
(c) all predecessors of u, connected to u by a zero-delay edge, have been scheduled to

earlier control steps.

When scheduling an MDFG G by PUSM, it traverses G using BFS algorithm and checks
that if the current traversing node satisfies the scheduling conditions or not. If the current
traversing node satisfies the scheduling conditions, it will be scheduled in that control step.
Otherwise, retiming technique will be used to make the node satisfy the scheduling conditions
and be scheduled in that control step. During traversing G, every traversed node will record

the multidimensional delay counting functionMC(u),u eV . MC(u) represents the upper

bound on the number of extra nonzero delays required:-by any path from roots of G to node wu.
Before traversing the MDFG G, a:schedulesvector s realizing G and a legal retiming r on
G will be found. After traversing G,"PUSM-uses multidimensional delay counting function
MC to calculate the retiming function of every node by the following formula:
vueV,r(u)=(Max{MC(v),vveV}-MC(u))xr
PUSM can promise to get schedule with a minimum static schedule length. But PUSM
ignores the effect of the schedule vector and the retiming depth. Both of them affect the
execution time of a scheduled nested loop. Following, RPUSM provides a method to select a

better schedule vector to reduce the execution time.

2.3.2 Relax Push-up Scheduling Method [6]

One of the main shortcomings of PUSM is that it doesn’t consider the effect of the
schedule vector on the execution time. RPUSM finds that if the schedule vector could be kept

as (1,0), the execution time is minimum as compared with other schedule vector different with
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(1,0). The author also proposed a method to check if (1,0) could be a schedule vector, as

shown in theorem 2.1.

Theorem 2.1. For an MDFGG = (V, E,d,t), the retiming depth of any node u in V is rd(u).
We can use schedule vector s=(1,0) and retiming base r=(01) under one of the

following two conditions which make the MDFG realizable:

(@) If there doesn’t exist any delay vector (0,a) for a >0 in the original MDFG,;
(b) If there exists the delay vectors (0,a) for a>0, and after finding out the

retiming depth of every node in V we must make sure that rd(u)+a>rd(v) for

all u—22 v in the original MDFG;

Relax Push-up scheduling method (RPUSM) uses theorem 2.1 to modify PUSM to select
a better schedule vector. The main difference is that RPUSM find the schedule vector and the
retiming base after traversing an MDFG. Thus, RPUSM can use the multidimensional delay
counting function MC obtained after traversing an MDFG to get the retiming depth of every
node. RPUSM uses the retiming depth of every node to check if the conditions in theorem 2.1
are satisfied or not. If not, the same method of finding a schedule vector and a retiming base
as PUSM will be performed.

Although RPUSM provides a method to select (1,0) as a schedule vector, RPUSM, like

PUSM, doesn’t consider the effect of the retiming depth of nodes. We’ll discuss this issue in

chapter 3.

2.3.3 List Scheduling for Low Power Method [2]

There have been a few research results about power reduction using the operand sharing

technique [1-2]. Here, we will briefly explain the operand sharing technique and then go
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through the key feature of list scheduling for low power method (LPLYS).

A functional unit in a data-path consumes both useful and useless power. It consumes
useful power when it executes an operation and consumes useless power when there is an
input operand transition while the functional unit is idle. The power consumption of a
functional unit depends on the operand variability of its inputs. So, the operand sharing
technique will try to bind operations with a common operand to the same functional unit such
that the input activity of the shared functional unit decreases. In an MDFG, if a node has more
than one outgoing edge, it reveals that the children of that node share the same data generated
by that node. So, these children can be bind to the same functional unit in continuous cycles
or non-continuous cycles without breaking by other operations. If two adjacent instructions
executed on the same functional units have one common operand, it is called that one operand
reutilization exists, or operand transition is reduced. One operand transition can reduce input
activity of functional units.

LPLS uses a list scheduling rapproach.. The priorities of the operations of the
ready-operation queue are set in suchra. way that operations sharing the same operand are
scheduled in control steps as close as possible. So, the scheduling of the operations sharing
the same operand is guided by giving more priority to the operations in the operand-ready
queue. Because operations with common operands may be scheduled in non-continuous
cycles without breaking by other operations, some nodes may be delayed. Thus, the schedule
length becomes longer, and the utilization of functional units is decreased. Although LPLS
can result in a schedule with well operand reutilization, the schedule length may be very long.

In the chapter 3, we will present the bottom retiming scheduling method aiming at
decreasing the retiming depth. In chapter 4, we will combine operand sharing technique with
bottom retiming scheduling method to get a schedule with well operand reutilization and

performance for reducing the power.

-12-



Chapter 3. Bottom Retiming Scheduling
Method

In this chapter, we will finely introduce Bottom Retiming Scheduling Method (BRSM).
First, we will explain our motivation to propose a method reducing the execution time of a
nested loop. Then, we will describe the main concept and principle of BRSM. Finally, we will
give some basic experimental results. From the results, we can find that BRSM produces the

schedule of a nested loop with less execution time compared with RPUSM.

3.1 Motivation

From the related work, we know that in order to schedule nodes as early as possible,
PUSM first analyzes the scheduling:conditions. (definition 2.8). If necessary, it uses the
retiming technique to make instructions-satisfying.the scheduling conditions to be schedulable
earlier. Although PUSM can achieve minimum static schedule length, effects of the schedule
vector and retiming depth did not e considered. Both of them affect the execution time of
applications. In [6], the author proposed a method, RPUSM, to get a better schedule vector to
reduce the execution time. Different from PRUSM, we focus on effects of the retiming depth.

From Fig. 2.5, we find that some instructions become prologue and epilogue after
retiming function is applied to an MDFG. Further, the prologue and epilogue will be longer
while the retiming base is fixed and the maximum retiming depth, the maximum value of the
retiming depth of all the nodes in a retimed MDFG, becomes bigger. That is to say, the
optimized portion of the nested loop, the loop body, is decreased, and the un-optimized
portion, prologue and epilogue, is increased. In order to reduce the execution time of nested
loops, we have to increase the optimized portion of a nested loop. Thus, we need to decrease
the maximum retiming depth.

By observing RPUSM, we find that in order to make nodes schedulable as early as

-13 -



possible, many zero-delay edges will be changed to nonzero-delay edges. Thus, RPUSM will
result in a static schedule with a bigger maximum retiming depth. In the following, we will
introduce our BRSM to produce a static schedule with a smaller maximum retiming depth to

reduce the execution time.

3.2 Basic Concept

In this section, basic concepts will be presented to explain how we decrease the
maximum retiming depth under the minimum static schedule length with limited resources
constraints. We describe how RPUSM works first. If m adders and n multipliers are available,
RPUSM will schedule the first m add operations and the first n multiply operations in control
step 1, the next m add operations and the next n multiply operations in control step 2,...until
all operations are scheduled. If some nodecan’t be.scheduled in that control step, RPUSM
uses the retiming technique to change the delay dependences to make it schedulable earlier.
Although RPUSM can fully utilize functional units to achieve minimum static schedule length,
it will produce a static schedule with abigger maximum retiming depth. A bigger maximum
retiming depth will result in a longer prologue and epilogue to increase the execution time.
We will propose a new method which not only fully utilizes functional units to achieve
minimum static schedule length but also has a smaller maximum retiming depth.

In order to fully utilize functional units, base on some information of architecture and
applications, we can calculate the minimum static schedule length before scheduling. In a
DSP application, it is usually composed of additions, multiplications, and assignments.
Additions and multiplications are executed by adders and multipliers respectively.
Assignments can be executed by adders or multipliers. To calculate the minimum static
schedule length of some MDFG, denoted by ML(G), some information is needed, the total

number of adders(A), multipliers(M), additions(ADD), multiplications(MUL), and
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1. f=Max{ADD{AMUL/ M}

2. ML=Max {t, [ ADDH MU LAAS-t% A+ R A+ )
3 AA=Aflx A-AD

4. Al = ML x 3 - MO

t: a temporary data

ML: mirdmn static schedule length

& the total mamber of adders

M the total moamber of moultipliers

AT the total mamber of additions

MUL: the total muenber of multiplicati ons

&5 the total mamber of assigumerts

& the mavimum munber of assignments executed by adders
AN the mavunwn munber of assigrenents exected by multipliers

Fig. 3.1 Formula of ML(G)

assignments(AS). It costs ADD/A. and MUL/M cycles to execute all additions and
multiplications respectively. If n@ assignments-exist; the bigger one of ADD/A and MUL/M s
ML(G). If assignments exist, we need to-calculate that how many cycles it costs to execute
them. The formula for calculating ML(G) is shown in line 1 and line 2 of Fig. 3.1. Because
assignments can be executed by adders or multipliers, we can calculate the maximum number
of assignments executed by adders and multipliers, as shown in line 3 and line 4 of Fig. 3.1.
Generally speaking, in order to get a schedule with a smaller maximum retiming depth,
we need to reduce the number of edges requiring additional multidimensional delays after
scheduling. In other words, if there are fewer edges changing delay dependences of the
MDFG after retiming, there are fewer edges requiring additional multidimensional delays
after scheduling. Thus, we know we need to make fewer edges changing delay dependences.
In order to reduce such edges, we retain the delay dependences to schedule as many nodes as

possible. And in order to fully utilize functional units, nodes have to be scheduled before
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Al

minimum static schedule length. Under minimum static schedule length and resources

constraints, when a node u is schedulable in control step cs, there are three conditions as

follows:

(1) cs is smaller than minimum stati¢'schedule length, and there is an available functional
units between control step-cs and minimum static schedule length;

(2) cs is smaller than minimum static schedule length, and no functional units is available

Fig 3 .2(a) An MDFG; (b)) scheduling sequences

between control step cs and:minimum static.schedule length;

(3) cs is bigger than minimum static schedule length.
We give an example to explain these three conditions. In Fig. 3.2(a), we assume that one
adder and multiplier are available. The minimum static schedule is two. In control step 1,
node Al is schedulable and one adder is available in that control step which is satisfying
condition 1. We schedule Al in control step 1, as shown in Fig. 3.2(b). Then, node M1 and M2
are schedulable in control step 2 and one multiplier is available. Assume that M1 are
scheduled first, as shown in Fig. 3.2(c). We can find that M2 is schedulable in control step 2
but no available functional units in that control step which is satisfying condition 2. Node A2
Is schedulable in control step 3 and the minimum static schedule length equals to 2 which is
satisfying condition 3. From these three conditions and under minimum static schedule length

constraints, we can know which conditions will result in additional multidimensional delays.
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In condition 1, node u can be scheduled in some control step from cs to minimum static
schedule length to retain the delay dependence. In other conditions, all incoming edges of
node u require additional multidimensional delays to make u schedulable earlier. Based on

above concepts, we will introduce Bottom Retiming Scheduling Algorithm in the next section.

3.3 Bottom Retiming Scheduling Algorithm

In this section, we will finely explain BRSM. Based on the above three conditions, we
can use two functions, ES(u) and Assign(u), to decide when a multidimensional delay is

needed. Given an MDFG G =(V,E,d,t) and a nodeu €V , the earliest starting time for the
execution of node u, ES(u), is the first control step following the end of the execution of all
predecessors of u by a zero-delay edge. lt;¢an be represented as:
ES(u) = Max{L, ES(V, }+t(v,)}
for all v; preceding u by:an edge gjsuch that d(e;) =(0,0,...,0).

From the definition of ES(u), we can know ES(u)-is:the earliest time that node u can start to be
scheduled. For example, in Fig. 3.3, ES(M1) = ES(M2) = 1, and ES(A1) = 2. Thus, ES(A2) =
3.

In the following, we will introduce the function Assign(u) to record which control step
node u assign to. Under minimum static schedule length and resources constraints, we would
like to schedule node u in some control step to make incoming edges of u retaining their delay
dependences. If that control step is smaller than minimum static schedule length and a
functional unit is available in that control step, u will be scheduled in that control step. Thus,
Assign(u) will equal to that control step. Or incoming edges of u will require additional
multidimensional delays to make u schedulable earlier. Thus, Assign(u) will equal to an earlier
control step in which a functional unit is available. Assign(u) can be determined as follows:

(@) When node u is schedulable and one functional unit is available between control step,
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&1 i 0 2

&7 al 0 2
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&5 2 | 1

(0.1) A 1 1 1
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AE 0 | 1
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&10 0 1 1

&11 0 | 1

&12 0 | 1

A13 0 2 0

Ll 8 0 2

@ caddition M2 ! . 2
K f 0 2

n | multiplicati on s 2 J 2
Fig 3.3 An MDFG modeling Fig 3.4 3cheduding inform ation

Floyd-Steimberg pr oblemn

ES(u) and minimum static schedule length, Assign(u) equals to Min { cs, such that
ES(u) < cs <minimum static schedule length, and a functional unit is available in cs};
(b) When node u is schedulable and no function unit is available between control step ES(u)
and minimum static schedule length, Assign(u) equals to Min{ cs, such that
1<c¢s < ES(u) -1, and a functional unit is available in cs};

(c) When node u is schedulable and ES(u) is bigger than minimum static schedule length,
Assign(u) equals to Min{ cs, such that 1<cs < ES(u)-1 , and a functional unit is
available in cs}.

From those, we know that if possible, Assign(u) will record an control step which can retain
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For 1= RS0 to MLIG
if 22 15 an assigrment
if AA>0 and an adder i3 available in cortrol stepi
A
Returni
elseif Al > 0 and an adder 15 awvailable in control step s
Al
Returni
etuchif
glseif  the functional urit used by is avalable in control step i
Eeturn
et f
endfor
for i=1 toRs0RH-1
if 2215 anassigrment
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Returni
elgeif Al > 0 and an adder 1z awvailable in control step s
Al
Eeturn i
eruchif
elseif  the functonal vt used by 15 avalable in control step i
Returni
eruchf

erndfor

the delay dependences for node u, or Assign(u) will record an earlier control step to make u
schedulable earlier. The algorithm of Assign is shown in Fig. 3.5. According to the definitions
of ES(u) and Assign(u), we can determine when a multidimensional delay is needed by the

following. If ES(u) > Assign(u) for node u, all incoming edges of u require additional

multidimensional delays, because u is assigned to the control step earlier than ES(u).

Inspecting from the function Assign, we find that the second and third condition result in

Fig 3.5 The algonthm of & ssign function
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some edges requiring multidimensional delays. In order to avoid the second condition, more
resources are required. In order to avoid the third condition, we have to avoid the earliest
starting time of nodes being delayed. For example, in Fig. 3.3, node M1, M2, and M3 are
schedulable in control step 1, and are scheduled in control step 3, 2, and 1 respectively. Thus,
ES(A3) = 6. If M1, M2, and M3 are scheduled in control step 1, 2, and 3 respectively, ES(A3)
= 4. In order to avoid ES(u) being delayed, we need to schedule nodes on critical path, the
longest path, earlier. We will give every node a priority, and nodes on critical path are given
higher priorities to be scheduled earlier. A BFS-like algorithm is used to assign priorities. The
traversal direction is from leaves to roots. We can find that if the height of leaves is zero and
the height of roots is highest, the nodes on longer path are at higher height. Thus, we prioritize
nodes by their height. Priorities of all leaves equals to zero, and the priority of node u, P(u), is
assigned by the following formula:
P(u) = Max{P(u),P(v;) +1}
for all v; succeeding u by an-edge gj'suchthat d(e,)=(0,0,...,0).

For example, after prioritizing nodes in Fig. 3.3, priorities are shown in Fig. 3.4.

We use two functions, ES(u) and Assign(u), to find which edges need for additional
multidimensional delays. From the information, the retiming depth of every node can be
found. The multidimensional delay counting function MC(u) is the upper bound on the
number of extra nonzero delays required by any path from roots of G to node u. We can use it
to compute the retiming depth of every node. If w precedes u by an edge requiring a
multidimensional delay MC(u) = Max{MC(u),MC(w)+1}. Otherwise, MC(u) = Max{MC(u),
MC(w)}. Fig. 3.6 is an example of computing the multidimensional delay counting function.
Assume that edges A—B, D—>E, C — F, andG — H require multidimensional delays.
After the function MC(u) is calculated, the retiming depth of every node u equals

to MC max— MC(u) , where MCmax is the maximum retiming depth of the retimed MDFG.

-20 -



MC(Ay0  MoEe1 T

e e ° MC(G)=2
M=2 o M=3

MC(D=0 MC(E)=1

Fig 3.6 Anexample of the multidimensi onal delay counting function

We use similar method proposed in [6] which uses the retiming depth of every nodes to
check if (1,0) can be the schedule vector. It is shown in line 24 to line 33 of Fig. 3.6. From

these lines, we know that if the condition Vu—%2 v rd(u)+a > rd(v) is satisfied, (1,0)

can be the schedule vector. For BRSM .and RPUSM, rd(u) equals to the maximum retiming
depth. BRSM usually results in a:smaller- maximum retiming depth, so it has more chances to
satisfy the condition and then select (1,0) as-the schedule vector.

The algorithm of BRSM is shownin Fig. 3.7..Now, we give an example of the MDFG in
Fig. 3.3 to show how BRSM works. We "assume that three adders and a multiplier are
available. The priority of every node is shown in Fig. 3.4, and the minimum static schedule
length equals to five. We start to schedule nodes. In control step 1, M1, M2 and M3 are
schedulable nodes and scheduled in control step 1, 2, and 3 respectively, as shown in Fig.
3.9(b). In control step 2, Al is schedulable. Although there is an available adder in control
step 1, we don’t schedule Al in that control step. Because we want to retain the delay
dependences to schedule as many nodes as possible, Al is scheduled in control step 2, as
shown in Fig. 3.9(c). Then, A2, A3, and M4 are schedulable in control step 3, 4, and 5
respectively and scheduled in those control steps. A4 is schedulable in control step 6, but
ML(G), equals to five. We need to make edge M4 — A4 having a multidimensional delay to

schedule A4 earlier. Since edge M4 — A4 has a multidimensional delay, A4 can be
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Fig. 3.8 The retirung function

scheduled in control step 1 and then A5 is schedulable in control step 2. The final schedule is

shown in Fig. 3.9(d). From the final schedule we know that besides edge M4 — A4,

edges A6 — Al3 and A9 — Al3 also need a multidimensional delay. The multidimensional

delay counting function is shown in Fig. 3.4. Then, we find the schedule vector (2,1), and the

retiming base (1,-2). Finally, the retiming depth and the retiming function are calculated, as

shown in Fig. 3.4 and Fig. 3.8 respectively. The retimed MDFG is in Fig. 3.9(a). The

maximum retiming depth equals to two. If this MDFG is scheduled by RPUSM or PUSM, the
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maximum retiming depth equals to six. In the next section, we use eight benchmarks to

compare the performance of BROS and RPUSM.

3.4 Experimental Results

In this section, we will show some performance evaluations of the DSP benchmark. At
first, we will introduce the formula of evaluating the execution time for nested loops and then
compare the performance of RPUSH and BRSM. At the end, we will give an analysis of the

comparison and conclude the advantage of BRSM.
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3.4.1 Evaluating the Execution Time

In DSP applications, most nested loops are 2-dimensional loops. Thus, we use eight
benchmarks to evaluate the performance of BRSM and they are all 2-dimensional DFG. In the
following, we introduce the formula to execute the execution time of 2-dimensional loops
whose indexes are m and n. Before applying the retiming technique to a 2-dimensional loop,
its execution time can be represented bymx nx D, where D is the static schedule length. After
applying the retiming technique, the execution time of a 2-dimensional loop can be divided
into three parts, the loop body, the prologue and epilogue inside the first level loop, and the
prologue and epilogue out of the nested loop. The formula of evaluating execution time of a
2-dimensional loop is shown as follows [6]:

A(m—s, xd)(n—s, xd) +(B+C)(spxm+s,XN=8, xS, —2xd xs, xs,)+Dxs, xs, xd(d +1)

, Where (s1,8) is the schedule vector;*d 1s the maximum retiming depth, A is the static
schedule length after applying some algorithm for optimization, D is the static schedule length
of an iteration after applying “List Scheduling”, B is the length of prologue inside the first
level loop, and C is the length of epilogue inside the first level loop. Following, we use the

formula to compare the performance of BRSM and RPUSM.

3.4.2 Performance Evaluation

Here, we have used eight benchmarks, shown in Appendix A, to evaluate the effect
between BRSM and RPUSM. Loop indexes vary from 10 to 50 with various combinations for
each benchmark. The available number of functional units for each benchmark is shown in
Table 3.1. The principle of determining the number of functional units is to balance the

execution time of total additions and multiplications in an iteration. After scheduled by BRSM
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Table 3.1 The available nwober of functional units of everybenchraark

Floyd- IIR Transmission . . Forward THC

Steimberg Section Line IIR Filter DFT 2-D Filter Substitution Solver
Adder 3 2 2 2 2 2 1 1
Multiplier 1 2 1 2 1 2 1 1

Table 3.2 The schedule vector and maximum retiring depth of everyhenchmark

Floyd IR Transmission IR DET 2-D Forward THC
Steimberg | Section Line Filter Filter Substitution Solver

Schedulevector | (2,1) | (1,1) (1,0) @y | @y | @ (1,1) (0,1)

Maximum 6

RPUSM retiming depth 2 2 2 2 3 2 1
Static schedule 5 4 4 A 3 o 5 )

length

Schedule vector 2,1 (1,2 (1,0 1 | (1,1) | (10 (1,0 0,1)

BRSM Maximum
retiming depth 2 1 2 1 1 0 1 1
Static schedule
length 5 4 4 4 3 9 3 2

and RPUSM, the schedule vector and maximum retiming depth are shown in Table 3.2. The
execution time of each benchmark:is shown'in Fig. 3.10.

From the Table 3.2, we find that after Floyd-Steimberg is scheduled by BRSM and
RPUSM, they select the same schedule vector, but BRSM results in a smaller maximum
retiming depth. Thus, the execution time of Floyd-Steimberg scheduled by BRSM is smaller
than that scheduled by RPUSM, as shown in Fig. 3.10(a), and some other benchmarks have
the similar results. When the number of iterations of Floyd-Steimberg equals t010x10,
RPUSM can’t apply to this benchmark, because RPUSM results in the maximum retiming
depth equal to six and schedule vector equal to (2,1). Thus, the minimal index of the first level
loop is 12. For 2-D Filter [8], after scheduled by BRSM and RPUSM, BRSM selects (1, 0) as
the schedule vector but RPUSM can’t. And BRSM results in a smaller maximum retiming
depth. Thus, the execution time of 2-D Filter scheduled by BRSM is smaller than that
scheduled by RPUSM , as shown in Fig. 3.10 (f) , and this circumstance also happens to the

benchmark, Forward-Substitution [9], as shown in Fig. 3.10(g). After Transmission Line [4] is
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scheduled by BRSM and RPUSM, they result in the same schedule vector and maximum
retiming depth. From Fig.3.10(c), we find that the execution time of Transmission Line
scheduled by RPUSM is smaller than that scheduled by BRSM. This is because that the
schedule length of prologue and epilogue inside the first level loop scheduled by RPUSM is
smaller than that scheduled by BRSM. The benchmark, THC Solver [4], is just the opposite.
From Fig. 3.10, if we inspect carefully, we find that the difference of the execution time of
each benchmark is getting bigger while the number of iterations increases. This is because the
prologue and epilogue inside the first level loop increase along with the number of iterations.
This phenomenon can be observed by the formula (1).

In 2-Dimensional Filter, BRSM can achieve the minimum schedule length without using
the retiming technique. This is because that BRSM gives nodes on the longest path higher
priority. Thus, these nodes can be scheduled as early as possible. As mentioned earlier, BRSM
has more chances to select (1,0)-as a schedule vector. 2-D Filter and Forward Substitution are
two instances.

From the evaluation results listed above;we find that BRSM is better than RPUSM.
BRSM can result in a schedule with the smaller maximum retiming depth and have more
chances to select (1,0) as the schedule vector. The smaller maximum retiming depth and (1,0)
as the schedule vector can reduce the execution time of a nested loop. Thus, the execution
time of a nested loop scheduled by BRSM is usually less than that scheduled by RPUSM.

Next chapter, we’ll integrate operand sharing technique into BRSM for low power scheduling.
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Chapter 4. Bottom Retiming with Operand
Sharing Method

In this chapter, we will introduce our second method named Bottom Retiming with
Operand Sharing method (BROS). First, we’ll show how to group nodes with common
operands. Then, BROS will be finely explained. Finally, some basic experimental results will

also be shown.

4.1 Motivation

Low power becomes the critical design issue due to wide use of the portable devices,
especially those powered by batteries [14]. Reducing switching activities is one of most
important power optimization methods when. the hardware is built up. Based on the energy

model proposed by [14], the energy:Es for a schedule S can be computed by

£y =Y PY, = Lx Py +ZL: > P 3 TSP, j)
k=1

k=1 st (¥ k=1 Inst{®)
where Peyce is the power consumption of one control step in which several instructions can be

executed, Ppase IS the base power needed to execute one control step, P, is the basic power

Inst;
to execute an instruction Inst; on a functional unit, SP(i,j) is the switching power caused by

switching activities between Inst; (current sub-instruction) and Instj (last sub-instruction)

L
executed on the same functional unit, and L is the schedule length of S. > > P _, isthe
k=1 Inst{¥) I

summation of basic power consumptions for all instructions of an application. It doesn’t

L
change with different schedules. L and > > SP®(i, j) will change with different

k=1 Inst*)

schedules length. Therefore, in order to minimize the energy consumption of an application,
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schedule length of applications and switching activities between instructions both need to be
considered in scheduling. In the following, we will show how we consider both issues in

scheduling.

4.2 Grouping Nodes

BRSM can produce a schedule with a smaller maximum retiming depth and smaller
execution time of nested loops. And the operand sharing technique can reduce the input
activities of functional units. Thus, in order to reduce the schedule length and switching
activities, we intend to integrate the operand sharing technique into BRSM.

Operand sharing technique tries to bind operations with a common operand to the same
functional unit such that the input activity.of the shared functional unit decreases. In the
MDFG of Fig. 3.4, A6, A7, A8 and"A9 sharethe'same.operand produced by A5. When we bind
these four nodes in continuous cycles, three.operand transitions in an iteration can be reduced.
That is to say, there are three operand reutilizations.ify an iteration.

In order to have as many as possible operand reutilizations in an iteration, we must make
sure that operations with a common operand are scheduled in continuous cycles. Thus, we
have to find out those operations first. We can use BFS-like method to traverse MDFGs. If the
number of outgoing edges of the current traversing node is bigger than one, there is more than
one operation sharing a common operand. Thus, by checking the number of outgoing edges of
the current traversing node, we can determine if its children have to be grouped in an operand
sharing set (SS).

In some cases, we group node u into some SS, but after scheduling, node u has different
operands from other nodes in the same SS. For example, in Fig. 4.1(a), we assume that two
adders are available, and the minimum static schedule length equals to two. From that MDFG

we know A2 and A3 share the same operand produced by Al. In order to bind A2 and A3 in
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t
he same functional unit, one of the possible schedules is shown in Fig. 4.2(a) and the retimed
MDFG is shown in Fig. 4.2(b). Even though A2 and A3 are bound in the same functional unit
and in continuous control steps, A2 and A3 share different operands, and no operand
transition is reduced. We call such®node, A2;asan unnecessary node of the SS. We can define
an unnecessary node more formally-as follows. If node u and v belong to the same SS sharing
the data produced by w and a zero-delay path-exists-from some child of node v to u, u is an
unnecessary node of the SS and will be‘deleted from the SS. Why a node is unnecessary is
that in order to bind u and v in continuous cycles, we need to schedule u before schedule those
nodes on the path from v to u. Some edges on that path usually require multidimensional
delays to make u being scheduled earlier. The side effect is that edge w—u has a
multidimensional delay but edge w — v doesn’t. The algorithm in Fig. 4.3 is used to find all
the SSs of an MDFG and delete unnecessary nodes from SSs. For example, in Fig. 3.4, after
we traverse the MDFG, we group A6, A7, A8 and A9 in one SS, and group A10, All, A12 and
Al13 in another SS.

After finding out all the SSs of an MDFG, we’ll pre-schedule all the SSs in order to make
sure that nodes in an SS are bound in the same functional unit in continuous cycles. Because

one big SS will have more operand reutilizations than several small SSs, the SS with bigger
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Al gorithm Group (G= (7, B, 4 )
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ifn<AA4
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else
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35, delete evetry edge w— v
36, if INDEGREE(v)=10

a7, Chiewe = Cuaee 2 (v}
38, etudif

39, if | Sef A=1

4an. Sa = B st A
41, etudif

42 if | St M=1

43, AE = B Sed M
44 erudif

45, endwhile

46,  RetuwnSS

Fig 4.3 The algorithm of Groug )

Fig 4.4 Example for available continuous cycles

size will be scheduled first. For example, one SS with eight elements has seven possible
operand reutilizations, but two SSs with four elements have six possible operand reutilizations.
Before we schedule an SS in continuous cycles, we have to check if any one functional unit is
available in any |SS| continuous cycles, where |SS| means the size of an SS. The available
continuous cycles is the maximum number of continuous cycles in which a functional unit is
available. For example, in Fig. 4.4, two adders are available and two nodes have been
scheduled and the minimum static schedule length is four. The available continuous cycles of
the two adders are two and three respectively. The maximum continuous cycles is the
maximum number of the available continuous cycles of every functional unit of the same kind.

For example, in Fig. 4.4 the maximum continuous cycles of adders is three. BRSM is under
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&l gorithen Allocati o 557

1. While |Groego| = 0 and (maximum available contiraos control steps of adders > |
of maximun avalable continaous control steps of multipliers = 1)

2. LG = latrgest set 1 33

3. TS = maximwn available contitmous cottrol steps of FU s used by nodes in LG

4. if | LG| <= MOS

3. assignnodes in L& to MCOS

. delete LG from S5

T eleeif |L O3 » MOY

B. if MO =1

a. SLG = Bubset of LG with it size equal to IO

10. assign nodes in AL G to WMCS

11. LG=LG-5LG

12. else

13. delete LG from S5

14. eruchf

15. etudif

16, endwhile

Fig 4.5 The algorithm of Allocation ()

the minimum static schedule length”with limited resources constraint, thus the maximum
value of the maximum continuous cycles equals to the minimum static schedule length. If |SS|
IS bigger than the maximum continuous cycles, we have to subtract a subset with its size equal
to the maximum continuous cycles from the SS, and this subset is pre-scheduled immediately.
The remainder becomes a new SS. The algorithm in Fig. 4.5 is shown how to pre-schedule the
SSs. For example, in Fig. 3.4, after applying the function Group, two SSs are found, {A6, A7,
A8, A9} and {A10, Al1, A12, A13}. After we pre-schedule these two SSs, the result is shown
in Fig. 4.8(a).

In some cases, after applying BRSM to MDFGs, the maximum operand reutilizations
would be decreased. For example, there are at most nine operand reutilizations in an iteration

in Fig. 3.4. Three operand reutilizations are due to A6, A7, A8 and A9 sharing the data
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f* get a schedle vector by the method of RETTEM */
31, Wue Vo rdi) — MO ma— MO

32, if 1H(e)=(0,a) for any e B

33, Choose 5=(101 suchthat 5 -d>0 foratyy ec B

34, elseif e =(0,a) for atyy e B

335, if Wau—2l sy pdind) +a > rd(V)

36, Choose 5=(1,01 sachthat 5 4(g)>0 forany ec B
37, else

38, Choose 5=105,5,) suchtha 5-d(g) >0 forary ec F
39, etuckf

40, endf

41, Chooser suchthat » 15
420 Wu e Ve (MO max— MO0 =r

Fig 4.6 The algontlim of BROS

produced by A5. And six operand reutilizations are.due to A10, All, A12 and A13 sharing the
data produced by A6 and A9. After.applying BRSM to that MDFG, from the retimed MDFG
in Fig. 3.9(a) we find that the maximum-eperand reutilizations in an iteration are seven. It is
because that both operands of A13 are different from operands of A10, All, and A12.

In order to have as many as possible operand reutilizations in an iteration, we have to
make sure that not only operations with a common operand are scheduled in continuous clock
cycles, but also the maximum operand reutilizations in an iteration aren’t decreased. By using
the two functions Group and Allocation, we can achieve the former one. In order to achieve
the later one, we only need to make sure that for every node v such that v belongs to some SS
and shares the data produced by node w, edgew — v has the same multidimensional delay.
Thus, if some such edge requires an additional multidimensional delay, we make all the other
edges having the same multidimensional delays. We call this behavior as adjusting. By
adjusting, we can make sure that the maximum operand reutilizations in an iteration aren’t

decreased. In the following, we’ll introduce BROS.
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4.3 Bottom Retiming with Operand Sharing Algorithm

In order to integrate the operand sharing technique into BRSM, we have to modify the
function Assign, used in BRSM. Assign(u) records the control step in which node u is
scheduled. If node u belongs to some SS, u must have been scheduled. Thus, Assign(u) equals
to the control step which u is scheduled in. If node u doesn’t belong to any SS, the data of
Assign(u) is determined by the original definition as in chapter 3.

The algorithm shown in Fig. 4.6 is Bottom Retiming with Operand Sharing method
(BROS). The adjusting behavior is from line 17 to line 19 in the algorithm. We give an
example in Fig. 3.4 to show how BROS works. Assume that three adders and a multiplier are
available. After prioritizing nodes, the priority of every node is shown in Fig. 4.7. The
minimum static schedule length.‘equals ito~five. Then, we find out two operand sharing
sets,{A6, A7, A8, A9} and {A10, All, A12, Al13}, and then these sets are pre-scheduled, as
shown in Fig. 4.8(a). The final schedule:is shown in Fig. 4.8(b). Before applying the adjusting
behavior, edges requiring multidimensional ‘delays are M4 — A4, A5 — A6, A5 —» A7,
A5 — A8,A5— A9, A6 —» A10, A6 — All, A9 — AlOand A9 — All. The data sharing by
Al10 and A1l is different from the data sharing by A12 and A13. But when the adjusting
behavior is applied, A10, Al11, A12, and A13 share the same data produced by A6 and A9. The
multidimensional delay counting function and the retiming depth of every node are shown in
Fig. 4.7. The schedule vector (2,1) and the retiming base (1,-2) are calculated. Finally, the
retiming function and the retimed MDFG is shown in Fig. 4.9. The maximum retiming depth
equals to three, and the operand reutilizations in an iteration equal to nine, the maximum
operand reutilizations in an iteration.

Actually, BROS sacrifices some performance, increased maximum retiming depth, to

produce a schedule with well operand reutilizations. In the following, we give experimental
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Mode] Prorty | MW | Retiming Depth]

#1 ¥ 0 3 C3 | Adder| Adder| Adder | Mult.
A4 6 0 3 1| ad | alo

£3 2 0 3 2| &40 | all

£ 3 1 4 3| ar | alz

#A5 2 1 2 41 &z | Al3

A6 1 2 1 5

AT 0 2 1 =

AR 0 2 1

45 1 4 1 C3 | Adder| Adder| Adder | Mult.
A10 0 3 0 1| a8 | alo A4 |
All 0 3 0 2 an | Al Al | Mz
Al2 0 3 0 3| a7 | alz A7 | M3
13 0 3 0 4| Az | A3 A3

Il & 0 3 5 A5 M4
M2 7 0 3

3 é 0 3 (H)

T4 4 1] 3 Fig 4.2 a) the schedule after allocation,

_ _ _ _ (h) the final schedule
Fig 4.7 The information of scheduling nodes

(ML= 1M 2)=e (M) =r MAH=3 (1, -2)
(A= (AT = A3 3x(1,-2)

o A=A S=2 x(1,-2)
b= AT = A=A =1 =(1,-Z)
AL =1( Al )=1( A1 D=r( A1 3)=0 x(1,-2)

(k)

Fig. 49(a) The retimed MDFG; () the retiming fonction
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results to show that BROS can produce a schedule with the performance near BRSM and

operand reutilizations near LPLS.

4.4 Experimental Results

In this section, we first introduce the formula of executing the number of operand
reutilizations, and then compare the execution time and number of operand reutilizations of
five benchmarks scheduled by BROS, BRSM, RPUSM, and LPLS. We will give basic

analysis of the comparison and conclude the advantage of BROS.

4.4.1 Evaluating Operand Reutilizations

The same as the formula (1); the total-operand reutilizations can also be divided into
three parts. For 2-dimensional doop, the three parts:are the loop body, the prologue and
epilogue inside the first level loop, and the prologue and epilogue out of the nested loop. Thus,
based on similar concept, we can modify: formula (1) to produce a formula of evaluating
operand reutilizations as follows:

OR,(Mm—s,xd)(n—s, xd)+(OR; +OR.)(S; xm+5S,xn—5, xS, —2xd xS, xS,)+O0OR, x5, x5, xd(d +1)

where (s1,S,) is the schedule vector, d is the maximum retiming depth, OR, is the number of
operand reutilizations in an iteration after optimization, OR, is the number of operand
reutilizations in an iteration after applying “List Scheduling”, OR;,OR. are the number of

operand reutilizations of prologue and epilogue inside the first level loop, and m, n are the

bounds of loop index. The equation A(m-s, xd)(n—s, xd) represents total operand

reutilizations in the loop body . The equation (B +C)(s, xm+s,xn—s, xs, —2xd xS, x8,)
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Table 4.1 The schedule vector and maximum retiming depth

Floyd IR Transmission .
Steimberg | Section Line DFT | 2-D Filter
Schedule vector (2,1) (1,2 (1,0 (1,1) (1,2)
Maximum
BROS retiming depth 3 2 2 1 1
Static schedule
length 5 4 4 3 9

represents total operand reutilizations in the prologue and epilogue inside the first level loop.

The equationD x s, xs, xd(d +1) represents total operand reutilizations in the prologue and

epilogue out of the nested loop. Following, we will compare operand reutilizations and

execution time of five benchmarks after schedule by BROS, BRSM, RPUSM, and LPLS.

4.4.2 Preliminary Performance Evaluations

We use five benchmarks to:evaluate the effect of BROS. Operand reutilizations of five
benchmarks after scheduled by LEPLS"is a reference to see the effect of BROS on operand
reutilizations. Execution time of benchmarks after scheduled by BRSM and RPUSM is
another reference to see the effect of BROS on performance.

The five benchmarks are the Floyd-Steimberg, IIR Section, Transmission Line, a
Discrete Fourier Transform (DFT) , and a 2-D Filter , as shown in Appendix A . These
benchmarks contain operations with common operands and are all 2-dimensional loops.
Loop indexes vary from 10 to 50 with various combinations for each benchmark. The
available number of functional units for each benchmark is shown in Table 3.1. After
scheduled by BROS, the schedule vector and the maximum retiming depth are shown in
Table 4.1. The operand reutilizations and execution time of these five benchmarks scheduled
by these four methods are shown in Fig. 4.10 to Fig. 4.14.

In the Fig. 4.10, BROS produces a schedule with operand reutilizations near LPLS and
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the performance better than that of LPLS and PRUSM. The difference of operand
reutilizations between LPLS and BROS is a constant value. This is because BROS can’t bind
those nodes outside the nested loop and the number of those nodes won’t change while
number of iterations changes. In Fig. 4.11, it’s a similar result.

In Fig. 4.12, BROS produces a schedule with operand reutilizations more than that of
BRSM and RPUSM, and the performance similar. The difference of number of operand
reutilizations between LPLS and BROS is getting bigger and bigger. Besides nodes outside
the nested loop can’t be bound by BROS. Another reason is that for this benchmark, an
operand sharing set with eight nodes exists, but the maximum continuous cycles equals to
minimum static schedule length, four. It has to be split into two subsets. One possible operand
reutilization in an iteration is decreased. Thus, while number of iterations gets bigger , the
difference also becomes bigger.

In Fig. 4.13, BROS produces.a schedule with eperand reutilizations more than that of
RPUSM and the performance is-the same-as-BRSM: The difference of number of operand
reutilizations between BROS and LPLS.is because two unnecessary nodes exist. Thus, two
possible operand reutilizations in an iteration are decreased. In this benchmark, (1,0) is the
schedule vector. Thus, there is no node outside the nested loop.

In Fig. 4.14, the performance of BROS is better than that of RPUSM and operand
reutilizations are more than that of BRSM and RPUSM. The difference of number of operand
reutilizations between BROS and LPLS is because nodes outside the nested loop can’t be
bound by BROS. Besides, there is one node belonging to two SSs, and they can be merged
into one big SS. But BROS doesn’t. Thus, one possible operand reutilization in an iteration is
decreased.

From the five benchmarks, we find that, BROS is a good scheduling method for

performance and power consumption. It has the advantage of BRSM , good performance, and
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the advantage of the operand sharing-technique, well operand reutilization. Although the
effect of BROS on operand reutilizations-is'not.as good as LPLS, BROS can achieve similar
effect if no necessary nodes exist and operand sharing sets isn’t split. Performance is the main
shortcoming of LPLS. Although BROS sacrifices some performance to get better operand
reutilizations than that of BRSM and RPUSM, BROS still achieves the performance very
close to them, in some cases even better than RPUSM. Thus, BROS is a good scheduling

method to find a good performance and high operand reutilizations schedule.
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Chapter 5. Conclusion and Future Work

In this thesis, we have designed a retiming based scheduling method BRSM to reduce
the execution time of nested loops. Then, we integrate the operand sharing technique into
BRSM to produce another method BROS which reduces the execution time and increases
operand reutilizations of nested loops. The experimental results have shown the effectiveness
of the two methods. Finally, we will conclude our thesis and propose some future work for

our research.

5.1 Conclusion

Because portable devices become popular, high performance DSP used in such devices
needs to be processed with not only high data throeughout but also low power consumption.
For these two issues, we have proposed two.methaods. In summary, we give the following
conclusions:

(a) We first proposed a method, Bottom.Retiming Scheduling Method (BRSM), to reduce the
execution time of nested loops. BRSM uses retiming technique to increase the
Instruction Level Parallelism (ILP). Under minimum static schedule length and
resources constraints, it will retain delay dependences to schedule as many nodes as
possible. Thus, fewer edges require additional multidimensional delays, and a smaller
maximum retiming depth is resulted from. Because the smaller maximum retiming depth,
BRSM has more chances to select (1,0) as schedule vector.

(b) In order to reduce power consumption, schedule length of applications and switching
activities between instructions both must be considered in scheduling. Thus, we integrate
the operand sharing technique into BRSM to design another method, Bottom Retiming

with Operand Sharing method (BROS). BROS preserves the advantage of BRSM and
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the operand sharing technique, such as a smaller maximum retiming depth and high
operand reutilizations.

(¢) In order to evaluate the effectiveness of BRSM and BROS, we use two formulas to
calculate the execution time and total operand reutilizations for several benchmarks.
From the results, we find that BRSM is a good scheduling method which makes those
benchmarks having shorter execution time compared with RPUSM and PUSM. We also
find that BROS is suitable for low power and high performance scheduling. BROS can

produce similar execution time and much more operand reutilizations than BRSM.

5.2 Future Work

In addition to our present research_on.BROS, there are still some issues in the research
that can be improved in the future;

(@) There are some tools for estimating pewer consumption, such as SPA [22] and SLS [23].
In our experiments, we use the number-of‘operand reutilizations to compare the effect on
reducing switching activities. In order to precisely evaluate the effect of BROS on power
consumption, we can try to modify these tools to evaluate the effect of BROS.

(b) After scheduling, if node u belonging to some SS has different operands from other
nodes in the same SS, u is an unnecessary node. Unnecessary nodes will decrease
operand reutilizations. If inter-iteration operand reutilizations are considered, the
decreased operand reutilizations may possibly be regained. Thus, inter-iteration operand

reutilizations can improve the number of operand reutilizations of BROS.
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