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摘要 

隨著個人攜帶式應用產品的普及，對於影音資料與即時性資料的需求日

益增加，因此，數位訊號處理器扮演的角色也日趨重要。如何能使資料即

時且正確的展現在使用者面前成了一個重要的課題，而指令的排程在整個

過程中是一個很關鍵的步驟。我們利用 Retiming 的觀念，設計了一個在有

限資源情況下的排程方法，名為 Bottom Retiming Scheduling Method，改善

了 Relax Push-Up Scheduling Method 會造成較大 maximum retiming depth 的

缺點。另外，由於可攜帶式的產品大都由電池供電，如何降低消耗功率以

延長使用時間，亦是一個重要的課題；我們以 Bottom Retiming Scheduling 

Method 為基礎，加入了 operand sharing 可以減少 switching activities 的觀

念，設計了一個降低功率消耗的指令排程方法 Bottom Retiming with Operand 

Sharing Method。由實驗結果可以看出，這兩個方法都可以達到不錯的效果。 
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Abstract 
 

Because portable devices become popular, digital signal processing on images and 

real-time data are more and more important. How to process data correctly in real-time is one 

of the most interesting topics to be investigated. The instruction scheduling is an important 

step through the whole process. Under resources constraints, we use retiming technique to 

design a method named Bottom Retiming Scheduling Method. It overcomes the shortcoming 

of Relax Push-Up Scheduling Method which is a bigger maximum retiming depth. Besides 

data throughout, low power consumption is another important issue for portable devices. 

Based on Bottom Retiming Scheduling Method, we integrate the operand sharing technique 

which can reduce switching activities to design another method named Bottom Retiming with 

Operand Sharing Method for low power scheduling. The experimental results show the 

effectiveness of these methods. 
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Chapter 1. Introduction 
 

In embedded system, high performance Digital Signal Processing（DSP）used in image 

processing, multimedia, wireless security, etc., needs to be processed not only with high data 

throughout but also with low power consumption [14]. These applications usually contain 

time-critical sections consisting of nested loops of instructions. The optimization of such 

loops, considering processing resource constraints, is required in order to improve their 

computational time [6]. 

Push-Up Scheduling Method (PUSM) [4] and Relax Push-Up Scheduling Method 

(RPUSM) [6] are retiming-based methods used to schedule instructions of nested loops under 

resources constraint. They can fully utilize functional units to achieve the minimum static 

schedule length, and RPUSM can further select a better schedule vector to reduce the entire 

execution time. However, they usually result in a bigger maximum retiming depth, which will 

longer prologue and epilogue and increase the entire execution time. Hence, in this thesis, we 

propose a method named Bottom Retiming Scheduling Method (BRSM) to overcome this 

shortcoming. In our BRSM, it can result in a smaller maximum retiming depth. From the 

experimental results, it shows that BRSM gives an improvement from 20.98% to 41.13% over 

the RPUSM in Floyd-Steimberg problem with various loop indexes [7].  

As for low power scheduling, many techniques used for nested loops have been studied 

[2-6, 10-16, 19]. Based on operand sharing approach, a loop pipelining methodology to 

reduce both latency and power is first proposed in [13]. After that, a list-based loop pipelining 

technique is proposed to first minimize power and then maximize throughout [12]. Since list 

scheduling only considers the node with highest priority in ready list, it can’t get an optimal 

solution when the number of functional units is more than one in every scheduling step. In 

order to fully utilize functional units and reduce power consumption, we integrate the operand 

sharing technique into BRSM to design another method, Bottom Retiming with Operand 
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Sharing method (BROS). It can bind operations with a common operand into the same 

functional unit and result in a smaller maximum retiming depth. BROS has advantages of 

BRSM and the operand sharing technique. From the experimental results, we can find that the 

performance of BROS is very close BRSM, and operand reutilizations are very high. 

This thesis is organized as follows. In chapter 2, we will introduce the fundamental 

background and the related work. In chapter 3, BRSM is presented in detail, and the 

experimental results are shown. BROS is finely presented in chapter 4, and the corresponding 

experimental results are shown. Finally, we conclude our thesis in chapter 5, and list the 

future work of our research. 
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Chapter 2. Fundamental Background &  
Related Work 

 
    In this chapter, we will introduce the Multidimensional Data Flow Graph (MDFG) to 

model the nested loop to be scheduled. Then, the retiming technique will be presented. Finally, 

we will go through some related work, including Push-up Scheduling Method [4], Relax 

Push-up Scheduling Method [6], and List Scheduling for Low Power Method [2]. 

 
2.1 Modeling the Problem [4-5] 
 
    Multidimensional data flow graph (MDFG) is used to model the nested loop to be 

scheduled [4, 6, 24-26]. Definition 2.1 defines what an MDFG is. 

 

Definition 2.1. A Multidimensional Data Flow Graph (MDFG)  is a 

node-weighted and edge-weighted directed graph, where V is the set of computation nodes, E 

is the set of dependence edges, d is a function from E to Z

),,,( tdEVG =

n, representing the multidimensional 

delays between two nodes, where n is the number of dimensions, and t is the computation 

time of each node. 

 

Fig. 2.1 shows the high-level language code of a DSP program. We use  

to represent any delay edge e in a two-dimensional data flow graph. The equivalent 

two-dimensional data flow graph is shown in Fig. 2.2. In this thesis, we assume that execution 

time of any operation is one time unit. 

).,.()( ydxded =

An iteration is equivalent to the execution of each node in V of an MDFG G exactly 

once, i.e., the execution of one instance of the loop body [4]. An iteration is associated with a 

static   schedule, that is repeatedly executed for the loop. Iterations are identified by a vector 

 - 3 -



 

 

I, equivalent to a multidimensional index, starting from . Inter-iteration dependencies      

are represented by vector-weighted edges in an MDFG. For any iteration j, in an MDFG an 

edge from node u to node v with delay vector  means that the computation of node v at 

iteration j depends on the execution of node u at iteration

)1,...,1,1(

)(ed

)(edj − . An edge with delay 

 in an MDFG represents a data dependence within the same iteration. A legal 

MDFG must have no zero-delay cycle, i.e., the summation of the delay vectors along any 

cycle can’t be  

)0,...,0,0(

)0,...,0,0( .

 

Definition 2.2. A cell dependence graph (DG) of the MDFG G is the directed acyclic graph, 

showing the dependences between copies of nodes representing an MDFG G. 

 

The cell dependence graph is bounded by the dimensions of the problem which it 

represents [5]. A computational cell is the DG node that represents a copy of the MDFG, 

excluded the edges with delay vectors different from . The computational cell is )0,...,0,0(

considered as an atomic execution unit. Fig. 2.3(a) shows the DG based on the replication of          

for i = 1 to m 
for j = 1 to n 

    { 
D:d(i,j)=b(i-1,j+1)*c(i-1,j-1); 
A: a(i,j)=d(i,j)*0.5; 
B: b(i,j)=a(i,j)+1; 
C: c(i,j)=a(i,j)+2; 

} 

Fig. 2.1 High-level language code 
of a DSP program 

(1,1) 

(1,-1) 

e5 e2

e4 

B 

e1

A D

C 
e3

Fig. 2.2 An equivalent two-dimensional 
data flow graph 
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the MDFG in Fig. 2.1, and Fig. 2.3(b) shows its DG represented by computational cells. 

.2 Retiming a Multidimensional Data Flow Graph [3-5] 

es in 

the o

, and each 

 
2
 

A multidimensional retiming r is a function from V to Zn that redistributes the nod

riginal dependence graph created by the replication of an MDFG ),,,( tdEVG = [27]. A 

new MDFG ),,,( tdEVG rr =  is created after applying retiming f

iteration still has one execution of each node in G. The purpose of using retiming technique is 

to construct a new MDFG with better instruction level parallelism (ILP). The retiming vector 

)(ur  of a node Vu

unction r

∈  represents the offset between the original iteration and the one after 

ing. The delay vectors change accordingly to preserve dependencies. The retiming vector 

)(ur  of a node u represents delay components pushed into the edges vu → , and subtracted 

 the edges uw → , where Vwvu

retim

from ∈,, . The execution of node u i tion i which is 

represented by dimensional vector is moved to the iteration )(uri − . Here we give 

some definitions and properties of the retiming technique as follows. 

n itera

a multi
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Definition 2.3. For any MDFG ),,,( tdEVG = , retiming function r, and retimed MDFG 

, we define the retimed delay vector for every edge e in E, the retimed delay 

vector for every path in G, and the retimed delay vector for every cycle in G, denoted as d

),,,( tdEVG rr =

r(e), 

dr(p), dr(l) respectively by the following formulas: 

    (a)  for every edge , )()()()( vrurededr −+= vu e⎯→⎯ Vvu ∈,  and ; Ee∈

    (b)  for any path , )()()()( vrurpdpdr −+= vu p⎯→⎯ Vvu ∈,  and ; Gp∈

    (c)  for any cycle )()( ldldr = Gl ∈ . 

 

For example, Fig. 2.4 shows the retimed MDFG Gr after applying retiming function r on 

G. We can use the definition to obtain the retimed delay vector for every edge e in E. 

    In Fig. 2.5(a), we show the retimed DG based on the replication of the MDFG in Fig. 2.4 

and the retimed DG represented by computational cells is shown in Fig. 2.5(b). The retiming 

function applied to an MDFG may create prologue and epilogue. Prologue is the set of 

instructions that must be executed to provide the necessary data for the beginning of the 

iterative process. Epilogue is the set of instructions that must be executed to complete the 

process. These two sets of instructions are complementary. For example, in Fig. 2.5(a) the 

instruction D becomes the prologue, and the instruction A, B and C become epilogue for this 

problem. If the retiming function of node D of the MDFG in Fig. 2.2 is equal to (0,2) and the 
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retiming function of other nodes is equal to (0,0), we can find that the instructions of the 

prologue and epilogue become more. So, the size of prologue and epilogue varies with the 

retiming function on the MDFGs. 

A schedule vector s is the normal vector for a set of parallel equitemporal hyperplanes 

that define the sequence of execution of the cell dependence graph. To get a schedule vector s, 

we can solve the inequalities 0)( ≥⋅ sed  for every Ee∈  [5]. For example, (1,0) is a 

schedule vector of the MDFG in Fig. 2.2.  

 

Definition 2.6. A legal MDFG ),,,( tdEVG =   that must have no zero-delay cycle is 

realizable if there exits a schedule vector s for the cell dependence graph with respect to G, 

i.e.,  for any . 0≥⋅ ds Gd ∈
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Definition 2.7. Given a realizable MDFG G, a legal multidimensional retiming for G is the 

multidimensional retiming function r that transforms G into Gr, such that Gr is still realizable. 

 

    A legal multidimensional retiming on an MDFG ),,,( tdEVG =  requires that the 

execution sequence of the corresponding retimed DG does not contain any cycle. This 

constraint is enforced through the use of a schedule vector that supports the realization of the 

retimed graph. 

The selection of retiming function may result in illegal retiming. Fig. 2.6(a) shows an 

illegal retiming function applied to the MDFG in Fig. 2.2. By simple inspection of the cell 

dependence graph in Fig. 2.6(b), we can find that there exists a cycle created by the 

dependencies (0,1) and (0,-1). 

To get a legal multidimensional retiming r, we need to find a schedule vector s, such that 

 for any0>⋅ ds Gd ∈ . For a two-dimensional problem, we choose  such that ).,.( ysxss =

ysxs .. +  is minimum. Then, a legal multidimensional retiming r of node u is any vector 

orthogonal to s [5]. So, we can find that (0,1) is a legal retiming function on the MDFG in Fig. 

2.2, and (1,0) is an illegal retiming function on the MDFG in Fig. 2.2. Further, we can have 

the corollary 2.1 [5]. 

 

Corollary 2.1. If r is a multidimensional retiming function orthogonal to a schedule vector s 

that realizes an MDFG , and then ),,,( tdEVG = )( rk ×  is also a legal multidimensional 

retiming on that MDFG. 

 

From the corollary 2.1, we know that the retiming function of every node in the retimed 

MDFG can be in the form . Here, r is called retiming base, and k is called retiming       )( rk ×
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depth [6]. 

 

2.3 Related Work [1-2, 4, 6] 
 
    In this section, we’ll show how Push-Up Scheduling Method (PUSM) works, and then 

Relax Push-up Scheduling Method (RPUSM) will also be introduced. Finally, we will 

introduce the operand sharing technique and a scheduling method, List Scheduling for Low 

Power method (LPLS), using list scheduling method combined with operand sharing 

technique [2]. 

 
2.3.1 Push-up Scheduling Method [4] 
 
    In order to make the schedule length shorter, PUSM uses retiming technique to change 

the dependence in the MDFGs. PUSM will first analyze that if a node could be scheduled, and 

then use retiming technique to make the node schedulable as early as possible. Now, we 

define what a schedulable node as follows. 

 

Definition 2.8. (Scheduling Conditions): Given an MDFG ),,,( tdEVG =  and a node Vu∈ , 

 - 9 -



u is a schedulable node at a control step cs, if it satisfies one of the following conditions: 

(a) u has no incoming edges; 

(b) all incoming edges of u have a nonzero multidimensional delay; 

(c) all predecessors of u, connected to u by a zero-delay edge, have been scheduled to 

earlier control steps. 

 

    When scheduling an MDFG G by PUSM, it traverses G using BFS algorithm and checks 

that if the current traversing node satisfies the scheduling conditions or not. If the current 

traversing node satisfies the scheduling conditions, it will be scheduled in that control step. 

Otherwise, retiming technique will be used to make the node satisfy the scheduling conditions 

and be scheduled in that control step. During traversing G, every traversed node will record 

the multidimensional delay counting function VuuMC ∈),( . MC(u) represents the upper 

bound on the number of extra nonzero delays required by any path from roots of G to node u. 

    Before traversing the MDFG G, a schedule vector s realizing G and a legal retiming r on 

G will be found. After traversing G, PUSM uses multidimensional delay counting function 

MC to calculate the retiming function of every node by the following formula: 

ruMCVvvMCMaxurVu ×−∈∀=∈∀ ))(}),({()(,  

    PUSM can promise to get schedule with a minimum static schedule length. But PUSM 

ignores the effect of the schedule vector and the retiming depth. Both of them affect the 

execution time of a scheduled nested loop. Following, RPUSM provides a method to select a 

better schedule vector to reduce the execution time. 

2.3.2 Relax Push-up Scheduling Method [6] 
 
    One of the main shortcomings of PUSM is that it doesn’t consider the effect of the 

schedule vector on the execution time. RPUSM finds that if the schedule vector could be kept 

as (1,0), the execution time is minimum as compared with other schedule vector different with 
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(1,0). The author also proposed a method to check if (1,0) could be a schedule vector, as 

shown in theorem 2.1. 

 

Theorem 2.1. For an MDFG , the retiming depth of any node u in V is rd(u). 

We can use schedule vector 

),,,( tdEVG =

)0,1(=s  and retiming base )1,0(=r  under one of the 

following two conditions which make the MDFG realizable: 

    (a)  If there doesn’t exist any delay vector  for  in the original MDFG; ),0( a 0>a

    (b)  If there exists the delay vectors  for , and after finding out the 

retiming depth of every node in V we must make sure that  for 

all  in the original MDFG; 

),0( a 0>a

)()( vrdaurd >+

vu a⎯⎯→⎯ ),0(

 

    Relax Push-up scheduling method (RPUSM) uses theorem 2.1 to modify PUSM to select 

a better schedule vector. The main difference is that RPUSM find the schedule vector and the 

retiming base after traversing an MDFG. Thus, RPUSM can use the multidimensional delay 

counting function MC obtained after traversing an MDFG to get the retiming depth of every 

node. RPUSM uses the retiming depth of every node to check if the conditions in theorem 2.1 

are satisfied or not. If not, the same method of finding a schedule vector and a retiming base 

as PUSM will be performed. 

    Although RPUSM provides a method to select (1,0) as a schedule vector, RPUSM, like 

PUSM, doesn’t consider the effect of the retiming depth of nodes. We’ll discuss this issue in 

chapter 3. 

 

2.3.3 List Scheduling for Low Power Method [2] 
 
    There have been a few research results about power reduction using the operand sharing 

technique [1-2]. Here, we will briefly explain the operand sharing technique and then go 
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through the key feature of list scheduling for low power method (LPLS). 

    A functional unit in a data-path consumes both useful and useless power. It consumes 

useful power when it executes an operation and consumes useless power when there is an 

input operand transition while the functional unit is idle. The power consumption of a 

functional unit depends on the operand variability of its inputs. So, the operand sharing 

technique will try to bind operations with a common operand to the same functional unit such 

that the input activity of the shared functional unit decreases. In an MDFG, if a node has more 

than one outgoing edge, it reveals that the children of that node share the same data generated 

by that node. So, these children can be bind to the same functional unit in continuous cycles 

or non-continuous cycles without breaking by other operations. If two adjacent instructions 

executed on the same functional units have one common operand, it is called that one operand 

reutilization exists, or operand transition is reduced. One operand transition can reduce input 

activity of functional units. 

    LPLS uses a list scheduling approach. The priorities of the operations of the 

ready-operation queue are set in such a way that operations sharing the same operand are 

scheduled in control steps as close as possible. So, the scheduling of the operations sharing 

the same operand is guided by giving more priority to the operations in the operand-ready 

queue. Because operations with common operands may be scheduled in non-continuous 

cycles without breaking by other operations, some nodes may be delayed. Thus, the schedule 

length becomes longer, and the utilization of functional units is decreased. Although LPLS 

can result in a schedule with well operand reutilization, the schedule length may be very long. 

    In the chapter 3, we will present the bottom retiming scheduling method aiming at 

decreasing the retiming depth. In chapter 4, we will combine operand sharing technique with 

bottom retiming scheduling method to get a schedule with well operand reutilization and 

performance for reducing the power. 
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Chapter 3. Bottom Retiming Scheduling 
Method 

 
In this chapter, we will finely introduce Bottom Retiming Scheduling Method (BRSM). 

First, we will explain our motivation to propose a method reducing the execution time of a 

nested loop. Then, we will describe the main concept and principle of BRSM. Finally, we will 

give some basic experimental results. From the results, we can find that BRSM produces the 

schedule of a nested loop with less execution time compared with RPUSM. 

 
3.1 Motivation 
 

From the related work, we know that in order to schedule nodes as early as possible, 

PUSM first analyzes the scheduling conditions (definition 2.8). If necessary, it uses the 

retiming technique to make instructions satisfying the scheduling conditions to be schedulable 

earlier. Although PUSM can achieve minimum static schedule length, effects of the schedule 

vector and retiming depth did not be considered. Both of them affect the execution time of 

applications. In [6], the author proposed a method, RPUSM, to get a better schedule vector to 

reduce the execution time. Different from PRUSM, we focus on effects of the retiming depth. 

From Fig. 2.5, we find that some instructions become prologue and epilogue after 

retiming function is applied to an MDFG. Further, the prologue and epilogue will be longer 

while the retiming base is fixed and the maximum retiming depth, the maximum value of the 

retiming depth of all the nodes in a retimed MDFG, becomes bigger. That is to say, the 

optimized portion of the nested loop, the loop body, is decreased, and the un-optimized 

portion, prologue and epilogue, is increased. In order to reduce the execution time of nested 

loops, we have to increase the optimized portion of a nested loop. Thus, we need to decrease 

the maximum retiming depth. 

By observing RPUSM, we find that in order to make nodes schedulable as early as 
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possible, many zero-delay edges will be changed to nonzero-delay edges. Thus, RPUSM will 

result in a static schedule with a bigger maximum retiming depth. In the following, we will 

introduce our BRSM to produce a static schedule with a smaller maximum retiming depth to 

reduce the execution time. 

 

3.2 Basic Concept 
 
    In this section, basic concepts will be presented to explain how we decrease the 

maximum retiming depth under the minimum static schedule length with limited resources 

constraints. We describe how RPUSM works first. If m adders and n multipliers are available, 

RPUSM will schedule the first m add operations and the first n multiply operations in control 

step 1, the next m add operations and the next n multiply operations in control step 2,…until 

all operations are scheduled. If some node can’t be scheduled in that control step, RPUSM 

uses the retiming technique to change the delay dependences to make it schedulable earlier. 

Although RPUSM can fully utilize functional units to achieve minimum static schedule length, 

it will produce a static schedule with a bigger maximum retiming depth. A bigger maximum 

retiming depth will result in a longer prologue and epilogue to increase the execution time. 

We will propose a new method which not only fully utilizes functional units to achieve 

minimum static schedule length but also has a smaller maximum retiming depth. 

    In order to fully utilize functional units, base on some information of architecture and 

applications, we can calculate the minimum static schedule length before scheduling. In a 

DSP application, it is usually composed of additions, multiplications, and assignments. 

Additions and multiplications are executed by adders and multipliers respectively. 

Assignments can be executed by adders or multipliers. To calculate the minimum static 

schedule length of some MDFG, denoted by ML(G), some information is needed, the total 

number of adders(A), multipliers(M), additions(ADD), multiplications(MUL), and 
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assignments(AS). It costs ADD/A and MUL/M cycles to execute all additions and 

multiplications respectively. If no assignments exist, the bigger one of ADD/A and MUL/M is 

ML(G). If assignments exist, we need to calculate that how many cycles it costs to execute 

them. The formula for calculating ML(G) is shown in line 1 and line 2 of Fig. 3.1. Because 

assignments can be executed by adders or multipliers, we can calculate the maximum number 

of assignments executed by adders and multipliers, as shown in line 3 and line 4 of Fig. 3.1. 

    Generally speaking, in order to get a schedule with a smaller maximum retiming depth, 

we need to reduce the number of edges requiring additional multidimensional delays after 

scheduling. In other words, if there are fewer edges changing delay dependences of the 

MDFG after retiming, there are fewer edges requiring additional multidimensional delays 

after scheduling. Thus, we know we need to make fewer edges changing delay dependences. 

In order to reduce such edges, we retain the delay dependences to schedule as many nodes as 

possible. And in order to fully utilize functional units, nodes have to be scheduled before 
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minimum static schedule length. Under minimum static schedule length and resources 

constraints, when a node u is schedulable in control step cs, there are three conditions as 

follows: 

(1) cs is smaller than minimum static schedule length, and there is an available functional 

units between control step cs and minimum static schedule length; 

(2) cs is smaller than minimum static schedule length, and no functional units is available 

between control step cs and minimum static schedule length; 

(3) cs is bigger than minimum static schedule length. 

We give an example to explain these three conditions. In Fig. 3.2(a), we assume that one 

adder and multiplier are available. The minimum static schedule is two. In control step 1, 

node A1 is schedulable and one adder is available in that control step which is satisfying 

condition 1. We schedule A1 in control step 1, as shown in Fig. 3.2(b). Then, node M1 and M2 

are schedulable in control step 2 and one multiplier is available. Assume that M1 are 

scheduled first, as shown in Fig. 3.2(c). We can find that M2 is schedulable in control step 2 

but no available functional units in that control step which is satisfying condition 2. Node A2 

is schedulable in control step 3 and the minimum static schedule length equals to 2 which is 

satisfying condition 3. From these three conditions and under minimum static schedule length 

constraints, we can know which conditions will result in additional multidimensional delays. 
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In condition 1, node u can be scheduled in some control step from cs to minimum static 

schedule length to retain the delay dependence. In other conditions, all incoming edges of 

node u require additional multidimensional delays to make u schedulable earlier. Based on 

above concepts, we will introduce Bottom Retiming Scheduling Algorithm in the next section. 

 
3.3 Bottom Retiming Scheduling Algorithm 
 

In this section, we will finely explain BRSM. Based on the above three conditions, we 

can use two functions, ES(u) and Assign(u), to decide when a multidimensional delay is 

needed. Given an MDFG  and a node),,,( tdEVG = Vu∈ , the earliest starting time for the 

execution of node u, ES(u), is the first control step following the end of the execution of all 

predecessors of u by a zero-delay edge. It can be represented as: 

)}(}(,1{)( ii vtvESMaxuES +=  

for all vi preceding u by an edge ei such that )0,...,0,0()( =ied .  

From the definition of ES(u), we can know ES(u) is the earliest time that node u can start to be 

scheduled. For example, in Fig. 3.3, ES(M1) = ES(M2) = 1, and ES(A1) = 2. Thus, ES(A2) = 

3. 

In the following, we will introduce the function Assign(u) to record which control step 

node u assign to. Under minimum static schedule length and resources constraints, we would 

like to schedule node u in some control step to make incoming edges of u retaining their delay 

dependences. If that control step is smaller than minimum static schedule length and a 

functional unit is available in that control step, u will be scheduled in that control step. Thus, 

Assign(u) will equal to that control step. Or incoming edges of u will require additional 

multidimensional delays to make u schedulable earlier. Thus, Assign(u) will equal to an earlier 

control step in which a functional unit is available. Assign(u) can be determined as follows: 

   (a) When node u is schedulable and one functional unit is available between control step,  
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ES(u) and minimum static schedule length, Assign(u) equals to Min { cs , such that 

     minimum static schedule length, and a functional unit is available in cs}; ≤≤ csuES )(

  (b) When node u is schedulable and no function unit is available between control step ES(u) 

 and minimum static schedule length, Assign(u) equals to Min{ cs, such that 

, and a functional unit is available in cs}; 1)(1 −≤≤ uEScs

   (c) When node u is schedulable and ES(u) is bigger than minimum static schedule length,   

Assign(u) equals to Min{ cs, such that 1)(1 −≤≤ uEScs  , and a functional unit is  

available in cs}. 

From those, we know that if possible, Assign(u) will record an control step which can retain 
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the delay dependences for node u, or Assign(u) will record an earlier control step to make u 

schedulable earlier. The algorithm of Assign is shown in Fig. 3.5. According to the definitions 

of ES(u) and Assign(u), we can determine when a multidimensional delay is needed by the 

following. If  for node u, all incoming edges of u require additional 

multidimensional delays, because u is assigned to the control step earlier than ES(u). 

)()( uAssignuES >

Inspecting from the function Assign, we find that the second and third condition result in 

 - 19 -



some edges requiring multidimensional delays. In order to avoid the second condition, more 

resources are required. In order to avoid the third condition, we have to avoid the earliest 

starting time of nodes being delayed. For example, in Fig. 3.3, node M1, M2, and M3 are 

schedulable in control step 1, and are scheduled in control step 3, 2, and 1 respectively. Thus, 

ES(A3) = 6. If M1, M2, and M3 are scheduled in control step 1, 2, and 3 respectively, ES(A3) 

= 4. In order to avoid ES(u) being delayed, we need to schedule nodes on critical path, the 

longest path, earlier. We will give every node a priority, and nodes on critical path are given 

higher priorities to be scheduled earlier. A BFS-like algorithm is used to assign priorities. The 

traversal direction is from leaves to roots. We can find that if the height of leaves is zero and 

the height of roots is highest, the nodes on longer path are at higher height. Thus, we prioritize 

nodes by their height. Priorities of all leaves equals to zero, and the priority of node u, P(u), is 

assigned by the following formula: 

}1)(),({)( += ivPuPMaxuP  

for all vi succeeding u by an edge ei such that )0,...,0,0()( =ied . 

For example, after prioritizing nodes in Fig. 3.3, priorities are shown in Fig. 3.4. 

    We use two functions, ES(u) and Assign(u), to find which edges need for additional 

multidimensional delays. From the information, the retiming depth of every node can be 

found. The multidimensional delay counting function MC(u) is the upper bound on the 

number of extra nonzero delays required by any path from roots of G to node u. We can use it 

to compute the retiming depth of every node. If w precedes u by an edge requiring a 

multidimensional delay MC(u) = Max{MC(u),MC(w)+1}. Otherwise, MC(u) = Max{MC(u), 

MC(w)}. Fig. 3.6 is an example of computing the multidimensional delay counting function. 

Assume that edges , , , and require multidimensional delays. 

After the function MC(u) is calculated, the retiming depth of every node u equals 

to  , where MCmax is the maximum retiming depth of the retimed MDFG. 

BA → ED → FC → HG →

)(max uMCMC −
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We use similar method proposed in [6] which uses the retiming depth of every nodes to 

check if (1,0) can be the schedule vector. It is shown in line 24 to line 33 of Fig. 3.6. From 

these lines, we know that if the condition  is satisfied, (1,0) 

can be the schedule vector. For BRSM and RPUSM, rd(u) equals to the maximum retiming 

depth. BRSM usually results in a smaller maximum retiming depth, so it has more chances to 

satisfy the condition and then select (1,0) as the schedule vector. 

)()(,),0( vrdaurdvu a >+⎯⎯→⎯∀

    The algorithm of BRSM is shown in Fig. 3.7. Now, we give an example of the MDFG in 

Fig. 3.3 to show how BRSM works. We assume that three adders and a multiplier are 

available. The priority of every node is shown in Fig. 3.4, and the minimum static schedule 

length equals to five. We start to schedule nodes. In control step 1, M1, M2 and M3 are 

schedulable nodes and scheduled in control step 1, 2, and 3 respectively, as shown in Fig. 

3.9(b). In control step 2, A1 is schedulable. Although there is an available adder in control 

step 1, we don’t schedule A1 in that control step. Because we want to retain the delay 

dependences to schedule as many nodes as possible, A1 is scheduled in control step 2, as 

shown in Fig. 3.9(c). Then, A2, A3, and M4 are schedulable in control step 3, 4, and 5 

respectively and scheduled in those control steps. A4 is schedulable in control step 6, but 

ML(G), equals to five. We need to make edge  having a multidimensional delay to 

schedule A4 earlier. Since edge  has a multidimensional delay, A4 can be 

44 AM →

44 AM →
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scheduled in control step 1 and then A5 is schedulable in control step 2. The final schedule is 

shown in Fig. 3.9(d). From the final schedule we know that besides edge , 

edges  and  also need a multidimensional delay. The multidimensional 

delay counting function is shown in Fig. 3.4. Then, we find the schedule vector (2,1), and the 

retiming base (1,-2). Finally, the retiming depth and the retiming function are calculated, as 

shown in Fig. 3.4 and Fig. 3.8 respectively. The retimed MDFG is in Fig. 3.9(a). The 

maximum retiming depth equals to two. If this MDFG is scheduled by RPUSM or PUSM, the 

44 AM →

136 AA → 139 AA →
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maximum retiming depth equals to six. In the next section, we use eight benchmarks to 

compare the performance of BROS and RPUSM. 

 
3.4 Experimental Results 
 
    In this section, we will show some performance evaluations of the DSP benchmark. At 

first, we will introduce the formula of evaluating the execution time for nested loops and then 

compare the performance of RPUSH and BRSM. At the end, we will give an analysis of the 

comparison and conclude the advantage of BRSM. 
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3.4.1 Evaluating the Execution Time 
 
    In DSP applications, most nested loops are 2-dimensional loops. Thus, we use eight 

benchmarks to evaluate the performance of BRSM and they are all 2-dimensional DFG. In the 

following, we introduce the formula to execute the execution time of 2-dimensional loops 

whose indexes are m and n. Before applying the retiming technique to a 2-dimensional loop, 

its execution time can be represented by Dnm ×× , where D is the static schedule length. After 

applying the retiming technique, the execution time of a 2-dimensional loop can be divided 

into three parts, the loop body, the prologue and epilogue inside the first level loop, and the 

prologue and epilogue out of the nested loop. The formula of evaluating execution time of a 

2-dimensional loop is shown as follows [6]: 

)1()2)(())(( 2121212112 +×××+×××−×−×+×++×−×− ddssDssdssnsmsCBdsndsmA   

                                                                ------ (1) 

, where (s1,s2) is the schedule vector, d is the maximum retiming depth, A is the static 

schedule length after applying some algorithm for optimization, D is the static schedule length 

of an iteration after applying “List Scheduling”, B is the length of prologue inside the first 

level loop, and C is the length of epilogue inside the first level loop. Following, we use the 

formula to compare the performance of BRSM and RPUSM. 

 
3.4.2 Performance Evaluation 
 

Here, we have used eight benchmarks, shown in Appendix A, to evaluate the effect 

between BRSM and RPUSM. Loop indexes vary from 10 to 50 with various combinations for 

each benchmark. The available number of functional units for each benchmark is shown in 

Table 3.1. The principle of determining the number of functional units is to balance the 

execution time of total additions and multiplications in an iteration. After scheduled by BRSM  
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 Floyd- 

Steimberg 
IIR 

Section 
Transmission 

Line IIR Filter DFT 2-D Filter Forward 
Substitution 

THC 
Solver

Adder 3 2 2 2 2 2 1 1 

Multiplier 1 2 1 2 1 2 1 1 

 
 

 Floyd 
Steimberg 

IIR 
Section

Transmission 
Line 

IIR 
Filter DFT 2-D 

Filter 
Forward 

Substitution 
THC 

Solver
Schedule vector (2,1) (1,1) (1,0) (1,1) (1,1) (1,1) (1,1) (0,1)

Maximum 
retiming depth 6 2 2 2 2 3 2 1 RPUSM 

Static schedule 
length 5 4 4 4 3 9 3 2 

Schedule vector (2,1) (1,1) (1,0) (1,1) (1,1) (1,0) (1,0) (0,1)

Maximum 
retiming depth 2 1 2 1 1 0 1 1 BRSM 

Static schedule 
length 5 4 4 4 3 9 3 2 

 
and RPUSM, the schedule vector and maximum retiming depth are shown in Table 3.2. The 

execution time of each benchmark is shown in Fig. 3.10. 

From the Table 3.2, we find that after Floyd-Steimberg is scheduled by BRSM and 

RPUSM, they select the same schedule vector, but BRSM results in a smaller maximum 

retiming depth. Thus, the execution time of Floyd-Steimberg scheduled by BRSM is smaller 

than that scheduled by RPUSM, as shown in Fig. 3.10(a), and some other benchmarks have 

the similar results. When the number of iterations of Floyd-Steimberg equals to 1010 × , 

RPUSM can’t apply to this benchmark, because RPUSM results in the maximum retiming 

depth equal to six and schedule vector equal to (2,1). Thus, the minimal index of the first level 

loop is 12. For 2-D Filter [8], after scheduled by BRSM and RPUSM, BRSM selects (1, 0) as 

the schedule vector but RPUSM can’t. And BRSM results in a smaller maximum retiming 

depth. Thus, the execution time of 2-D Filter scheduled by BRSM is smaller than that   

scheduled by RPUSM , as shown in Fig. 3.10 (f) , and this circumstance also happens to the 

benchmark, Forward-Substitution [9], as shown in Fig. 3.10(g). After Transmission Line [4] is  
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scheduled by BRSM and RPUSM, they result in the same schedule vector and maximum 

retiming depth. From Fig.3.10(c), we find that the execution time of Transmission Line 

scheduled by RPUSM is smaller than that scheduled by BRSM. This is because that the 

schedule length of prologue and epilogue inside the first level loop scheduled by RPUSM is 

smaller than that scheduled by BRSM. The benchmark, THC Solver [4], is just the opposite. 

From Fig. 3.10, if we inspect carefully, we find that the difference of the execution time of 

each benchmark is getting bigger while the number of iterations increases. This is because the 

prologue and epilogue inside the first level loop increase along with the number of iterations. 

This phenomenon can be observed by the formula (1). 

In 2-Dimensional Filter, BRSM can achieve the minimum schedule length without using 

the retiming technique. This is because that BRSM gives nodes on the longest path higher 

priority. Thus, these nodes can be scheduled as early as possible. As mentioned earlier, BRSM 

has more chances to select (1,0) as a schedule vector. 2-D Filter and Forward Substitution are 

two instances. 

From the evaluation results listed above, we find that BRSM is better than RPUSM. 

BRSM can result in a schedule with the smaller maximum retiming depth and have more 

chances to select (1,0) as the schedule vector. The smaller maximum retiming depth and (1,0) 

as the schedule vector can reduce the execution time of a nested loop. Thus, the execution 

time of a nested loop scheduled by BRSM is usually less than that scheduled by RPUSM. 

Next chapter, we’ll integrate operand sharing technique into BRSM for low power scheduling. 
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Chapter 4. Bottom Retiming with Operand 
Sharing Method 

 

    In this chapter, we will introduce our second method named Bottom Retiming with 

Operand Sharing method (BROS). First, we’ll show how to group nodes with common 

operands. Then, BROS will be finely explained. Finally, some basic experimental results will 

also be shown. 

 
4.1 Motivation 
 

    Low power becomes the critical design issue due to wide use of the portable devices, 

especially those powered by batteries [14]. Reducing switching activities is one of most 

important power optimization methods when the hardware is built up. Based on the energy 

model proposed by [14], the energy ES for a schedule S can be computed by 
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where Pcycle is the power consumption of one control step in which several instructions can be 

executed, Pbase is the base power needed to execute one control step,  is the basic power 

to execute an instruction Inst

iInstP

i on a functional unit, SP(i,j) is the switching power caused by 

switching activities between Insti (current sub-instruction) and Instj (last sub-instruction) 

executed on the same functional unit, and L is the schedule length of S.  is the 

summation of basic power consumptions for all instructions of an application. It doesn’t 

change with different schedules. L and  will change with different 

schedules length. Therefore, in order to minimize the energy consumption of an application, 
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schedule length of applications and switching activities between instructions both need to be 

considered in scheduling. In the following, we will show how we consider both issues in 

scheduling. 

 
4.2 Grouping Nodes 
 
    BRSM can produce a schedule with a smaller maximum retiming depth and smaller 

execution time of nested loops. And the operand sharing technique can reduce the input 

activities of functional units. Thus, in order to reduce the schedule length and switching 

activities, we intend to integrate the operand sharing technique into BRSM.  

Operand sharing technique tries to bind operations with a common operand to the same 

functional unit such that the input activity of the shared functional unit decreases. In the 

MDFG of Fig. 3.4, A6, A7, A8 and A9 share the same operand produced by A5. When we bind 

these four nodes in continuous cycles, three operand transitions in an iteration can be reduced. 

That is to say, there are three operand reutilizations in an iteration. 

In order to have as many as possible operand reutilizations in an iteration, we must make 

sure that operations with a common operand are scheduled in continuous cycles. Thus, we 

have to find out those operations first. We can use BFS-like method to traverse MDFGs. If the 

number of outgoing edges of the current traversing node is bigger than one, there is more than 

one operation sharing a common operand. Thus, by checking the number of outgoing edges of 

the current traversing node, we can determine if its children have to be grouped in an operand 

sharing set (SS). 

In some cases, we group node u into some SS, but after scheduling, node u has different 

operands from other nodes in the same SS. For example, in Fig. 4.1(a), we assume that two 

adders are available, and the minimum static schedule length equals to two. From that MDFG 

we know A2 and A3 share the same operand produced by A1. In order to bind A2 and A3 in 
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t

he same functional unit, one of the possible schedules is shown in Fig. 4.2(a) and the retimed 

MDFG is shown in Fig. 4.2(b). Even though A2 and A3 are bound in the same functional unit 

and in continuous control steps, A2 and A3 share different operands, and no operand 

transition is reduced. We call such node, A2, as an unnecessary node of the SS. We can define 

an unnecessary node more formally as follows. If node u and v belong to the same SS sharing 

the data produced by w and a zero-delay path exists from some child of node v to u, u is an 

unnecessary node of the SS and will be deleted from the SS. Why a node is unnecessary is 

that in order to bind u and v in continuous cycles, we need to schedule u before schedule those 

nodes on the path from v to u. Some edges on that path usually require multidimensional 

delays to make u being scheduled earlier. The side effect is that edge  has a 

multidimensional delay but edge  doesn’t. The algorithm in Fig. 4.3 is used to find all 

the SSs of an MDFG and delete unnecessary nodes from SSs. For example, in Fig. 3.4, after 

we traverse the MDFG, we group A6, A7, A8 and A9 in one SS, and group A10, A11, A12 and 

A13 in another SS. 

uw →

vw →

After finding out all the SSs of an MDFG, we’ll pre-schedule all the SSs in order to make 

sure that nodes in an SS are bound in the same functional unit in continuous cycles. Because 

one big SS will have more operand reutilizations than several small SSs, the SS with bigger 
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size will be scheduled first. For example, one SS with eight elements has seven possible 

operand reutilizations, but two SSs with four elements have six possible operand reutilizations. 

Before we schedule an SS in continuous cycles, we have to check if any one functional unit is 

available in any |SS| continuous cycles, where |SS| means the size of an SS. The available 

continuous cycles is the maximum number of continuous cycles in which a functional unit is 

available. For example, in Fig. 4.4, two adders are available and two nodes have been 

scheduled and the minimum static schedule length is four. The available continuous cycles of 

the two adders are two and three respectively. The maximum continuous cycles is the 

maximum number of the available continuous cycles of every functional unit of the same kind. 

For example, in Fig. 4.4 the maximum continuous cycles of adders is three. BRSM is under 
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the minimum static schedule length with limited resources constraint, thus the maximum 

value of the maximum continuous cycles equals to the minimum static schedule length. If |SS| 

is bigger than the maximum continuous cycles, we have to subtract a subset with its size equal 

to the maximum continuous cycles from the SS, and this subset is pre-scheduled immediately. 

The remainder becomes a new SS. The algorithm in Fig. 4.5 is shown how to pre-schedule the 

SSs. For example, in Fig. 3.4, after applying the function Group, two SSs are found, {A6, A7, 

A8, A9} and {A10, A11, A12, A13}. After we pre-schedule these two SSs, the result is shown 

in Fig. 4.8(a). 

In some cases, after applying BRSM to MDFGs, the maximum operand reutilizations 

would be decreased. For example, there are at most nine operand reutilizations in an iteration 

in Fig. 3.4. Three operand reutilizations are due to A6, A7, A8 and A9 sharing the data 
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produced by A5. And six operand reutilizations are due to A10, A11, A12 and A13 sharing the 

data produced by A6 and A9. After applying BRSM to that MDFG, from the retimed MDFG 

in Fig. 3.9(a) we find that the maximum operand reutilizations in an iteration are seven. It is 

because that both operands of A13 are different from operands of A10, A11, and A12. 

vw →

In order to have as many as possible operand reutilizations in an iteration, we have to 

make sure that not only operations with a common operand are scheduled in continuous clock 

cycles, but also the maximum operand reutilizations in an iteration aren’t decreased. By using 

the two functions Group and Allocation, we can achieve the former one. In order to achieve 

the later one, we only need to make sure that for every node v such that v belongs to some SS 

and shares the data produced by node w, edge has the same multidimensional delay. 

Thus, if some such edge requires an additional multidimensional delay, we make all the other 

edges having the same multidimensional delays. We call this behavior as adjusting. By 

adjusting, we can make sure that the maximum operand reutilizations in an iteration aren’t 

decreased. In the following, we’ll introduce BROS. 
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4.3 Bottom Retiming with Operand Sharing Algorithm 
 
    In order to integrate the operand sharing technique into BRSM, we have to modify the 

function Assign, used in BRSM. Assign(u) records the control step in which node u is 

scheduled. If node u belongs to some SS, u must have been scheduled. Thus, Assign(u) equals 

to the control step which u is scheduled in. If node u doesn’t belong to any SS, the data of 

Assign(u) is determined by the original definition as in chapter 3. 

    The algorithm shown in Fig. 4.6 is Bottom Retiming with Operand Sharing method 

(BROS). The adjusting behavior is from line 17 to line 19 in the algorithm. We give an 

example in Fig. 3.4 to show how BROS works. Assume that three adders and a multiplier are 

available. After prioritizing nodes, the priority of every node is shown in Fig. 4.7. The 

minimum static schedule length equals to five. Then, we find out two operand sharing 

sets,{A6, A7, A8, A9} and {A10, A11, A12, A13}, and then these sets are pre-scheduled, as 

shown in Fig. 4.8(a). The final schedule is shown in Fig. 4.8(b). Before applying the adjusting 

behavior, edges requiring multidimensional delays are , , , 

, , , , and . The data sharing by 

A10 and A11 is different from the data sharing by A12 and A13. But when the adjusting 

behavior is applied, A10, A11, A12, and A13 share the same data produced by A6 and A9. The 

multidimensional delay counting function and the retiming depth of every node are shown in 

Fig. 4.7. The schedule vector (2,1) and the retiming base (1,-2) are calculated. Finally, the 

retiming function and the retimed MDFG is shown in Fig. 4.9. The maximum retiming depth 

equals to three, and the operand reutilizations in an iteration equal to nine, the maximum 

operand reutilizations in an iteration. 

44 AM → 65 AA → 75 AA →

85 AA → 95 AA → 106 AA → 116 AA → 109 AA → 119 AA →

Actually, BROS sacrifices some performance, increased maximum retiming depth, to 

produce a schedule with well operand reutilizations. In the following, we give experimental 
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results to show that BROS can produce a schedule with the performance near BRSM and 

operand reutilizations near LPLS. 

)1()2)(())(( 2121212112 +×××+×××−×−×+×++×−×− ddssORssdssnsmsORORdsndsmOR DCBA

 
4.4 Experimental Results 
 

    In this section, we first introduce the formula of executing the number of operand 

reutilizations, and then compare the execution time and number of operand reutilizations of 

five benchmarks scheduled by BROS, BRSM, RPUSM, and LPLS. We will give basic 

analysis of the comparison and conclude the advantage of BROS. 

 
4.4.1 Evaluating Operand Reutilizations 
 
    The same as the formula (1), the total operand reutilizations can also be divided into 

three parts. For 2-dimensional loop, the three parts are the loop body, the prologue and 

epilogue inside the first level loop, and the prologue and epilogue out of the nested loop. Thus, 

based on similar concept, we can modify formula (1) to produce a formula of evaluating 

operand reutilizations as follows: 

 

                                                                    ------ (2) 

where (s1,s2) is the schedule vector, d is the maximum retiming depth,  is the number of 

operand reutilizations in an iteration after optimization,  is the number of operand 

reutilizations in an iteration after applying “List Scheduling”, ,  are the number of 

operand reutilizations of prologue and epilogue inside the first level loop, and m, n are the 

bounds of loop index. The equation

AOR

DOR

BOR COR

))(( 12 dsndsmA ×−×−  represents total operand 

reutilizations in the loop body . The equation )2)(( 212121 ssdssnsmsCB ×××−×−×+×+   
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 Floyd 
Steimberg

IIR 
Section

Transmission 
Line DFT 2-D Filter

Schedule vector (2,1) (1,1) (1,0) (1,1) (1,1) 
Maximum 

retiming depth 3 2 2 1 1 BROS 

Static schedule 
length 5 4 4 3 9 

 
represents total operand reutilizations in the prologue and epilogue inside the first level loop. 

The equation )1(21 +××× ddssD  represents total operand reutilizations in the prologue and 

epilogue out of the nested loop. Following, we will compare operand reutilizations and 

execution time of five benchmarks after schedule by BROS, BRSM, RPUSM, and LPLS. 

 

4.4.2 Preliminary Performance Evaluations 

 
    We use five benchmarks to evaluate the effect of BROS. Operand reutilizations of five 

benchmarks after scheduled by LPLS is a reference to see the effect of BROS on operand 

reutilizations. Execution time of benchmarks after scheduled by BRSM and RPUSM is 

another reference to see the effect of BROS on performance. 

The five benchmarks are the Floyd-Steimberg, IIR Section, Transmission Line, a 

Discrete Fourier Transform (DFT) , and a 2-D Filter , as shown in Appendix A . These 

benchmarks contain operations with common operands and are all 2-dimensional loops. 

Loop indexes vary from 10 to 50 with various combinations for each benchmark. The 

available number of functional units for each benchmark is shown in Table 3.1. After 

scheduled by BROS, the schedule vector and the maximum retiming depth are shown in 

Table 4.1. The operand reutilizations and execution time of these five benchmarks scheduled 

by these four methods are shown in Fig. 4.10 to Fig. 4.14. 

    In the Fig. 4.10, BROS produces a schedule with operand reutilizations near LPLS and 
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the performance better than that of LPLS and PRUSM. The difference of operand 

reutilizations between LPLS and BROS is a constant value. This is because BROS can’t bind 

those nodes outside the nested loop and the number of those nodes won’t change while 

number of iterations changes. In Fig. 4.11, it’s a similar result. 

In Fig. 4.12, BROS produces a schedule with operand reutilizations more than that of 

BRSM and RPUSM, and the performance similar. The difference of number of operand 

reutilizations between LPLS and BROS is getting bigger and bigger. Besides nodes outside 

the nested loop can’t be bound by BROS. Another reason is that for this benchmark, an 

operand sharing set with eight nodes exists, but the maximum continuous cycles equals to 

minimum static schedule length, four. It has to be split into two subsets. One possible operand 

reutilization in an iteration is decreased. Thus, while number of iterations gets bigger , the 

difference also becomes bigger. 

     In Fig. 4.13, BROS produces a schedule with operand reutilizations more than that of 

RPUSM and the performance is the same as BRSM. The difference of number of operand 

reutilizations between BROS and LPLS is because two unnecessary nodes exist. Thus, two 

possible operand reutilizations in an iteration are decreased. In this benchmark, (1,0) is the 

schedule vector. Thus, there is no node outside the nested loop. 

In Fig. 4.14, the performance of BROS is better than that of RPUSM and operand 

reutilizations are more than that of BRSM and RPUSM. The difference of number of operand 

reutilizations between BROS and LPLS is because nodes outside the nested loop can’t be 

bound by BROS. Besides, there is one node belonging to two SSs, and they can be merged 

into one big SS. But BROS doesn’t. Thus, one possible operand reutilization in an iteration is 

decreased. 

From the five benchmarks, we find that, BROS is a good scheduling method for 

performance and power consumption. It has the advantage of BRSM , good performance, and 
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the advantage of the operand sharing technique, well operand reutilization. Although the 

effect of BROS on operand reutilizations is not as good as LPLS, BROS can achieve similar 

effect if no necessary nodes exist and operand sharing sets isn’t split. Performance is the main 

shortcoming of LPLS. Although BROS sacrifices some performance to get better operand 

reutilizations than that of BRSM and RPUSM, BROS still achieves the performance very 

close to them, in some cases even better than RPUSM. Thus, BROS is a good scheduling 

method to find a good performance and high operand reutilizations schedule. 
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Chapter 5. Conclusion and Future Work 
 

In this thesis, we have designed a retiming based scheduling method BRSM to reduce 

the execution time of nested loops. Then, we integrate the operand sharing technique into 

BRSM to produce another method BROS which reduces the execution time and increases 

operand reutilizations of nested loops. The experimental results have shown the effectiveness 

of the two methods. Finally, we will conclude our thesis and propose some future work for 

our research. 

 
5.1 Conclusion 
 
    Because portable devices become popular, high performance DSP used in such devices 

needs to be processed with not only high data throughout but also low power consumption. 

For these two issues, we have proposed two methods. In summary, we give the following 

conclusions: 

(a) We first proposed a method, Bottom Retiming Scheduling Method (BRSM), to reduce the 

execution time of nested loops. BRSM uses retiming technique to increase the 

Instruction Level Parallelism (ILP). Under minimum static schedule length and 

resources constraints, it will retain delay dependences to schedule as many nodes as 

possible. Thus, fewer edges require additional multidimensional delays, and a smaller 

maximum retiming depth is resulted from. Because the smaller maximum retiming depth, 

BRSM has more chances to select (1,0) as schedule vector. 

(b) In order to reduce power consumption, schedule length of applications and switching 

activities between instructions both must be considered in scheduling. Thus, we integrate 

the operand sharing technique into BRSM to design another method, Bottom Retiming 

with Operand Sharing method (BROS). BROS preserves the advantage of BRSM and 
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the operand sharing technique, such as a smaller maximum retiming depth and high 

operand reutilizations. 

(c) In order to evaluate the effectiveness of BRSM and BROS, we use two formulas to 

calculate the execution time and total operand reutilizations for several benchmarks. 

From the results, we find that BRSM is a good scheduling method which makes those 

benchmarks having shorter execution time compared with RPUSM and PUSM. We also 

find that BROS is suitable for low power and high performance scheduling. BROS can 

produce similar execution time and much more operand reutilizations than BRSM. 

 
5.2 Future Work 
 
    In addition to our present research on BROS, there are still some issues in the research 

that can be improved in the future. 

(a) There are some tools for estimating power consumption, such as SPA [22] and SLS [23]. 

In our experiments, we use the number of operand reutilizations to compare the effect on 

reducing switching activities. In order to precisely evaluate the effect of BROS on power 

consumption, we can try to modify these tools to evaluate the effect of BROS. 

(b) After scheduling, if node u belonging to some SS has different operands from other 

nodes in the same SS, u is an unnecessary node. Unnecessary nodes will decrease 

operand reutilizations. If inter-iteration operand reutilizations are considered, the 

decreased operand reutilizations may possibly be regained. Thus, inter-iteration operand 

reutilizations can improve the number of operand reutilizations of BROS. 
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