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運用具有變化關聯性之 FR 向量以分析訊號變化活動 

研究生：夏文忠            指導教授：陳昌居 

 國立交通大學 資訊工程學系 

摘要 

 為達到低耗能電路設計之目的，估算在閘層時的能量消耗是主要的關鍵之

一。在互補金屬氧化物導體之組合電路中，估算能量消耗可以藉由量測訊號變換

的次數來達成。在本論文中，我們提出結合 FR-Vector 和“布林逼近法＂的新

方法。這個方法使用機率的觀念，以時間分割加入時間關聯性的考量，甚至更進

一步用泰勒展開式的逼近法以處理電路間的空間關聯性，然後用少量的資料就可

以模擬出危障、延遲以及重聚合電路的影響。我們將我們的方法、FR-Vector 及

Cadence NC-VHD 對十八個 MCNC 的標竿電路做模擬，並比較所得的結果。得到的

結果顯示我們的方法遠比原 FR-Vector 減低了每一個邏輯閘上的平均加權誤差

值，可從 6.09 個百分點降到 2.77 個百分點。同時，更大幅降低了誤差的尖峰值

－由 23.74 個百分點降到 13.24 個百分點。最後，我們的方法不僅改進了原使用

FR-Vector 時會產生的誤差，執行時間也幾乎與原 FR-Vector 相近。比起使用

NC-VHDL 模擬電路所花費的時間，差距更可到達三十多倍。實際上，相對於對我

們的方法而言，因為電路大小對 NC-VHDL 的影響更為明顯，所以在實際的電路

中，增加的速度更將不止於三十倍(實際電路通常會比我們所測的標竿電路為

大)。 



 II

Switching activity analysis with FR-vector  

considering transition correlation 

 
Student : Wen-Chung Shia Advisor : Dr. Chang-Jiu Chen 

Department of Computer Science and Information Engineering 

National Chiao-Tung University 

Abstract 
In the research of the low-power circuit design, one of the key issues is to 

estimate the power dissipation in a gate-level implementation. In CMOS 

combinational circuit, the switching activity measurement is an approach to the power 

dissipation estimation. In this thesis, we propose a new method to combine the 

FR-Vector model and the concept of Boolean approximation method. We use 

probabilistic method that time to divide a clock into several time units, and exploit 

Taylor expansion, then glitches and reconvergent circuit effect can be handled easily. 

For performance evaluation, we make comparisons among the proposed method, the 

FR-Vector, and Cadence NC-VHDL in 18 MCNC benchmark circuits. The 

comparison results show that our method decreasing the weight error percentage (the 

error percentage in each gate) very much－ from 6.09% to 2.77%. Meanwhile, it by 

far decreases the peak value of error percentage － from 23.74% to 13.24%. Finally, 

our method not only improves the error caused by the FR-Vector, but also the time it 

spends is closed to the FR-Vector. Comparing to the simulation of NC-VHDL in the 

time spending, out method could speed up to 33 times. Moreover, in real circuits, the 

speed-up would be more than 33 times. It is because the variable “gate count” affects 

time complexity in NC-VHDL much than the time complexity in our method, and in 

real circuits, there is usually a larger gate count than our benchmark. 
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Chapter 1 Introduction 

In circuit design, the decreasing of the feature size leads to the increasing of chip 

density. While the operating frequency growing rapidly and the feature size getting 

smaller, these factors make the power consumption to be taken into account seriously. 

Especially, with the rapid, strong demand development in market sectors such as 

wireless application, laptop and portable medical devices, it makes the power 

consumption to be one of the most critical topics in digital system design [1]. 

Time-to-Market requirement could be achieved by low power design techniques and 

power estimation methodology. With the aid of power estimation function of CAD 

tools, it can help designers to meet the power specification earlier in designing phase, 

and further reduce redesign cost at the same time. 

Power consumption in a CMOS circuit can be classified into following three 

categories: 

1. Static leakage power; 

2. Short-circuit power; 

3. Dynamic power. 

In a well-designed circuit, if we don’t consider the special case such as the power lost 

when portable device is in a dormant state, the total power dissipation cost by the 

dynamic power consumption of the nodes, which arises due to the charging and 

discharging of the parasitic capacitance during switching, will by far exceed the first 

two factors. In [2], the average power consumption at a gate is given 

by 2( ) 0.5 ( )dd clk loadP x V f C sw x= , where ddV  is the supply voltage, clkf  is the clock 

frequency, loadC is load capacitance, and ( )sw x  is the switching activity of the 
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output node x [2], so we could know ( )sw x  is a very important factor in power 

estimation. 

 In power estimation, both speed and accuracy are the most important factors, but 

obviously, they conflict with each other. The easiest and most direct method of how to 

estimating power consumption is to simulate the operation of the whole circuit. 

However, though this method has the most accurate outcome, it also takes too much 

time. Today, the techniques of power estimation could be divided into two categories: 

dynamic (statistic) and static (probabilistic) [1] [2]. Dynamic techniques explicitly 

simulate the circuit under a “typical” input stream. These techniques provide a high 

level of accuracy but it also takes a very high run time which is because the required 

number of simulation vectors is usually large. Static techniques would calculate the 

input patterns first, and use a probability to represent a signal state, and then it 

propagates or calculates these probabilities from the primary inputs to the output of 

the whole circuit. In final, it uses these probabilities to get the number of switching. 

These techniques could provide fast measurement without losing accuracy too much. 

Gate delay is an important factor about the accuracy in estimations, but it’s very 

hard to consider the delays in a circuit. For this reason, many papers tried to ignore 

the impact caused by gate delays [1] [3] [6][9][10][15].  

 Zero delay models: all the gate delays of the circuit are taken as zero. 

 Non-zero delay model: each gate delay of the circuit is a positive number 

or zero. We suppose that non-zero delay model with inertial mode in this 

paper. 

The most important drawback to activities analysis when without considering 

gate delay is glitch ignoring. However, in non-zero delay model, glitches could 

happen from the difference of arrival time between two (or more) input signals, and 

these glitches would cause additional 20% power estimation in average. In some 
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special cases, like specific adder, the additional consuming power could be up to 70% 

[3]. 

In additional to glitches, another important factor to power estimation techniques 

is correlations between signals. There might be two kinds of correlations between 

signals: temporal dependence and spatial dependence.  

 Temporal dependency: Signals may be temporally dependent; in other 

words, the next value of a signal may depend on its current or previous 

values. 

 Spatial dependency: Spatial dependency comes from two aspects: 

 Structure dependency is due to reconvergent fanout in the circuit; 

 Input dependency is that spatial and/or temporal correlations among 

the input signals which result from the actual input sequence applied to 

the target circuit. 

The input of a counter is an example of dependencies between inputs; Table 1-1 

shows the transition of a two-bit counter. In input 2C , the next state is depended on the 

current state, this is a kind of temporal dependency, and in input 1C , its next state is 

not just depended on the current state, it would also depend on 2C , this is a kind of 

spatial dependency. 

Figure 1-1shows another kind of spatial dependency. In this circuit, the logic 

value of node m and n are not dependent due to they are diverge node from node b. m 

and n convergent at node z for a while. For this reason, we should process the 

correlation between node m and node n to analyze the switching activities in node z 

precisely. 

The aim of this thesis is to propose a modified FR-vector [5]. FR-vector is a 

model for power consumption which uses probability technique. It could operate 

under multiple input switching, non-zero gate delay and even glitches happen in a 
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combinational circuit. We combine the advantages of FR-vector  

Current state Next state 

1C  2C  1C  2C  

1 1 0 0 

0 0 0 1 

0 1 1 0 

1 0 1 1 

Table 1-1: The switching state of a 2-bit counter. 

 
Figure 1-1: A simple reconvergent circuit. 

and the Boolean Approximation Method (BAM) [6], which is a data structure to 

process signal correlation ,then propose a new modified FR-vector － FR-vector 

with BAM. 

 The rest of this thesis is organized as follows. Chapter 2 introduces some 

estimation methods and reviews FR-vector and BAM. Chapter 3 describes new 

modified FR-model. Chapter 4 shows some experimental results. Chapter 5 gives our 

conclusions and the directions for future development. 
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Chapter 2 Related Work 

Low power circuit is a more and more important research today. As mentioned in 

the first chapter, the switching activity is a very important factor in power estimation, 

and we will pay attention to it in the thesis. In this chapter, a picture about some 

researches of switching activity analysis will be given; we will also introduce some 

techniques and definitions needed later. Section 2.1   gives some basic definitions 

used in switching activity analysis. Then we will give short review of representative 

researches in section 2.2  . Section 2.3  introduces FR-vector. Section 2.4   

describes Boolean approximation Method (BAM). Finally, the Real Delay Boolean 

Function (RDBF) is introduced in section 2.5  . 

2.1  Basic Definition in Switching Activities Estimation 

Before discussing the techniques of switching activity estimation, we will 

introduce some terms or some basic definitions which would be frequently used in 

this thesis. It is the most basic term in switching activity analysis and all calculations 

in these techniques is based on the physical signal of circuits. 

 Physical signal is an electrical signal that appears in an input line.  

Then, we could get signal probability immediately: 

Definition 2.1 (Signal probability): For any signal line x of the circuit, the probability 

of x is logic high is denoted as ( )P x , and called signal probability. 

Though signal probabilities could show the states of circuits, we need to get the 

information about how signal changes in additional. Thus we use switching 

probabilities to replace signal probabilities. 

 Signal switching (an alternate name is switching activity) is the sequence 
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of continuous signal states: “ ab ”, where , (0,1)a b∈ , a andb represent the 

current and the latter state of continuous states respectively. 

Definition 2.2 (Switching probability): For any signal line x of the circuit, the 

switching probability of x is defined as 1[( )]t tP x j x i−= ∩ = , and is denoted 

by ( )i jP x → , , (0,1)i j∈ .  

As we have mentioned in chapter 1, glitches will cause additional power 

consumption. Actually, the technique that doesn’t consider glitches is unrealistic in 

usual.  

Definition 2.3  (Glitch): The glitch is (an) unexpected transition(s) which occur(s) 

when the signal switches at the time that is not required. A static hazard exists if a 

signal remains constant after twice (or more) switches during a clock cycle, so 

there are static 0 hazards, and static 1 hazard. In opposite side, a dynamic hazard 

exists if a signal changes is not the same at the start and the end of a clock cycle： 

there are dynamic 1 hazard (start with logic low and end with logic high) and 

dynamic 0 hazard (start with logic high and end with logic low). 

2.2  Previous Research of Switching Activities Estimation  

The simplest and the most intuitive method to estimate the switching activity is 

logic simulation [7] [8]. Logic simulation is the most accurate method but it is also the 

slowest one. However, most of the actual combinational circuits are so complicated 

that it is not practical to simulate them immediately.  

It has been mentioned by many papers about how to use probability to analyze 

switching activity. However, their accuracy is not all the same due to the detail about 

how they implemented. We could classify the key factors which affect the accuracy 

into if they process the correlation inside the circuit and if they process the glitch 
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power. The transitions between circuits are often correlated to each others, for 

example, the reconvergent circuits will complex the switching activity. Further more, 

the input patterns might hide some correlation inside itself. In another aspect, if we 

consider for the gate delay in circuits, there are always some unanticipated transition 

happens, and cause to additional power consumed. 

Farid N. Najm [2] has introduced the techniques about switching activity 

analysis in detail. He notes two statistic methods, and categorizes probabilistic 

techniques into following five classes: A) Signal probability, B) Probabilistic 

Simulation CREST, C) Transition Density DENSIM, D) using Binary Decision 

Diagram BDD, and E) Correlation coefficient. In final, he discussed how to extend 

from combinational circuits to sequential circuits. 

We could say that correlation coefficient is the most accurate probabilistic 

method today. In early years, [4] introduces this concept to take care of the signal 

correlation between circuit nodes. It uses the correlation coefficient to represent the 

correlation between the probability two signal probabilities multiplied immediately 

and the probabilities of two signal are logic high in real, that is: 

,( ) ( ) ( ) A BP AB P A P B C= , where ( )P AB is the probability of ( )A B∩ is true (signal A 

and signal B both are logic high), and ,A BC  is correlation coefficient between node A 

and node B. Hence, we could get ,
( )

( ) ( )A B
P ABC

P A P B
= .  This technique will passes this 

coefficient through the whole circuit to calculate signal probabilities under correlated 

effect. Someone extended this concept to the transition of signals[1]: 

,

( )
( ) ( )

i k j lxy
ij kl

i k j l

p x y
TC

p x p y
→ →

→ →

∩
= ,  where ( )i k j lp x y→ →∩ is the probability of signal A 

changed from i  to k  and signal B changed from j  to l  at the same time, and 
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,
xy
ij klTC  is transition correlation coefficient between A changed from i  to k  and 

signal B changed from j  to l  at the same time, this technique also uses OBDD to 

transmit transition correlation coefficient and switching probability through circuits. 

To pass correlation coefficient through the whole circuit would cost a lot of time, 

so “Limited depth” and “Limited nodes” was proposed in [9] [10]. They told that if 

the reconvergent circuit in a circuit exceeds a constant number of gate levels, the 

signals between circuits could be taken as independent without considering 

correlation. Because the larger the gate level is, the weaker the correlation between 

circuits. We should not sacrifice too much time to a negligible correlation. 

Another disadvantage of correlation coefficient is when the circuit grows lager 

and lager; it is unrealistic to build OBDD of the whole circuit. This is because it 

would consume too much memory. There is another technique called Boolean 

approximation method (BAM) [6] [11], it uses BAM which is a data structure to 

process correlation between circuit. BAM could be propagated through circuit by 

logic characteristic without using OBDD. In this way, BAM could save memory to 

process larger circuit and make the speed up. BAM uses Taylor expansion to calculate 

the difference between probability two probabilities multiplied immediately and 

probabilities in real. 

Most probabilistic methods could not be very accurate for they do not process 

glitch. In 1999, G-vector was proposed in [12]. Though this model doesn’t discuss 

switching activity, it gives a way to process about the generation, transmit and 

elimination of glitch. FR-vector comes from G-vector. It also uses probability to 

estimate switching activity, and it further discusses the situation about non-zero delay, 

multiple-input change. There is another similar method called “tagged probabilistic 

simulation” [13]. Though FR-vector could process glitches, it ignores signal 
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correlations. 

2.3  FR-Vector 

Though FR-vector does not process signal correlations, it is useful to analyze 

glitching activity. Most papers which talks about how to process glitches would 

become very complex for the reason that there would be a lot of complex mathematic 

equations. FR-vector makes glitch processing become easier by taking the calculation 

of switching probabilities as the calculation of signal probabilities. 

2.3.1 Signal Modeling with FR-vector 

There are some basic terms used in FR-vector. 

 0/1 sampling: is the method that samples a physical signal node N times in 

a clock cycle. By 0/1 sampling, we can get a sequence of length N consist 

of 0 and 1, which is a representation of the waveform of the physical signal. 

 0/1 sampled signal is the 0/1 sequence representation of a physical signal. 

 Each internal that we sample one time is called a frame. There is an 

assumption that the sampling rate is so fast that there is at most one or one 

glitch in a frame. 

 A frame value of 0/1 sample signal is named state. 

And in FR-vector, signal switch is: 

 Signal switching (an alternate name is Switching activity) is the sequence 

“01” or “10” part of a 0/1 sampled signal. 

FR-vector keeps the information of glitches before and after the gate in circuits, 

and simulates the glitch propagation, elimination, and generation very well. It models 

the switching activities as falling and rising, and marked as “F” and “R” for the signal 

rising and falling. 



 10

Definition 2.4 (FR-vector): An FR-vector is a set of 1{ | [0 |1][0 |1| | ] }Nx x F R −∈ ; 0 is 

the non-glitch 0 state, 1 is the non-glitch 1 state, F is the falling signal state, R is 

the rising signal state, and N is the number of frames in a input vector. 

It assumes the first frame is the earliest frame, and it is a non-zero delay model in 

inertial mode. By these assumptions, there will be at most one switching in a frame 

(In inertial mode, if a glitch appears shorter than a gate delay, it would be elimination, 

and in FR-vector, a frame is the smallest gate delay of the circuit.). 

The rule of obtaining a FR-vector from a 0/1 sampled signal is as follows: 

Extract FR-vector v  from a 0/1 sampled signal S  

 Base case: The state of the initial frame in v is equal to the initial state of S . 

 General case: 

 If the state of iS  = the state of 1iS −  then i iv S= ; 

 If the state of iS  = 1 and the state of 1iS −  =0, then iv R= ; 

 If the state of iS  = 0 and the state of 1iS −  =1, then iv F= . 

The rule of getting a FR-vector from a 0/1-sampled signal mentioned above means 

that the frame value of FR-vector is represented by the state change from the last 

frame to current one. Assuming that the initial frame is stable from the final frame in 

the preceding input vector, than the base case of the rule is obtained. 

2.3.2 FR-Vector Logic Composition 

FR-vector could be used in logic composition according to the corresponding 

logic composition table. A logic composition table is a table shows what a FR-vector 

would be given if two FR-vectors of different inputs propagate through a specific 

logic gate. Table 2-1 shows the logic composition table in FR-vector. 
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Table 2-1:  the logic composition tables for basic logic function in FR-vector 

The item in these tables is get from the meaning of the corresponding input 

frame values. For example, the meaning of R and 0 is “01” AND “00”, and it will get 

0 at the output, for 0 represents “00”. 

2.3.3 FR-Matrix 

It is unrealistic to calculate all input pattern in a circuit. For this FR-vector must 

be transformed into another form, called FR-matrix.   

Definition 2.5 (FR-matrix): A FR-matrix is a 4 N× matrix. Each column in the matrix 

represents a frame with the same index, and the entries in the 4 rows will be used to 

represent the occurrence probability of 0, 1, R, and F in that frame, respectively. 

To obtain an input represented by FR-matrix, first, we should sample the input 

signal line over multiple clock cycles and obtain an FR-vector for each cycle. Second, 

counts the number of instances of each distinct FR-vector in the input line. Third, for 



 12

each frame, compute the occurrence probabilities of each 0, 1, F and R. Then we get a 

FR-matrix. There is an example about how to get FR-matrix from input sampling. 

 

Table 2-2:  (a) Signal sampling. (b) Its FR-matrix 

Example 2.1 First, we sample the signals that appear in an input line over one 

hundred cycles, and obtain 100 corresponding FR-vectors. In Table 2-2(a) 

suppose we get six distinct FR-vectors with the number of instances of the state 

for each vector. Then we can determine the corresponding FR-matrix by 

computing the probability of the state in each frame from this table. In this 

example, there are 80 instances that the first frame is in 0-state (30 in the first 

FR-vector, 20 in the second FR-vector, and so on). And the total number of 

instances is 100, so the occurrence probability of 0-state in the first frame is 0.8. 

Table 2-2(b) shows the corresponding FR-matrix. 

Theorem 2.1: The expected number of signal switching activities in a FR-matrix for a 

signal line is simplified to the value in the rows of R and F, called the weight of a 

FR-matrix. When a FR-matrix is obtained from the set of FR-vectors which appeared 

in a signal line, the weight of the FR-matrix is exactly the average weight of each 
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FR-vector in the signal line. 

From Theorem 2.1, we could know the expected number of signal switching 

activities from a FR-matrix is considered as the total number of signal switching 

activities over the total number of FR-vectors. From Table 2-2(a), the average 

estimated number of signal switching activities from FR-vectors is (0 + 1 + 1 + 0 + 

1)*0.3 + (0 + 1 + 0 + 1 + 0)*0.2 + (0 + 0 + 1 + 1 + 1)*0.25 + (0 + 0 + 1 + 1 + 0)*0.1 + 

(0 + 1 + 1 + 1 + 0)*0.1 + (0 + 0 + 0 + 1 + 0)*0.05 = 2.6, and the weight of the 

corresponding FR-matrix (Table 2-2(b) ) is 0.5 + 0.35 + 0.15 + 0.55 + 0.1 + 0.4 + 

0.55 = 2.6. 

 FR-matrix also could be used in composition according logic composition table. 

Table 2-3 is an example of two input FRMs and the corresponding outputs FRM of a 

OR gate. 

 
Table 2-3:  An example of FRM composition: Input FRM 1, (b) Input FRM 2, and (c) Output 

FRM. 
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2.3.4 Non-Zero Delay FR-matrix 

FR-matrix can group the frame states according to the evaluation dependencies for a 

given combinational circuit. And we could get the following Theorem: 

Theorem 2.2 : Let N be the frame size, δ  be the logic gate delay. Let δ
outFRM  

( 1inRFM , 2inRFM ) be the output FRM derived from a logic composition with two 

input FRMs, 1inFRM and 2inFRM , for a logic gate with delay δ . Let 

0
outRFM ( 1inRFM , 2inRFM ) be the output FRM derived from a logic operation with 

two input FRMs, 1inRFM  and 2inRFM , for a zero delay gate. Then 

δδ ][ 0
outout RFMRFM = , 

where [ ]RFM δ  denotes the right-shifted FRM for δ times. In other words, the 

thi ( δ−≤ Ni ) frame in 0
outRFM  appears in ( )thi δ+  frame in δ

outRFM . And the thj  

frame ( δ≤≤ j1 ) in δ
outRFM  will be filled with the first frame in 0

outRFM . 

 And an FRM is also a statistical average of the signal states over multiple clock 

cycles. We also can apply the following theorem only when the multi-cycle operations 

are allowed. 

Theorem 2.3 : Let N be the frame size, r be the gate delay. Let r
outRFM  

( 1inRFM , 2inRFM ) be the output FRM from a logic composition of two input 

FRMs, 1inRFM  and 2inRFM  for a gate with delay r. Let 

0
outRFM ( 1inRFM , 2inRFM ) be the output FRM from a logic operation with two 

input FRMs, 1inRFM  and 2inRFM , for the same gate with a zero delay. Then 
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r
out

r
out RFMRFM ][ 0= , 

where rRFM ][  denotes the rotated FRM for r times. In other words, the thi state 

in 0
outRFM  appears in ((( 1)% ) 1)thi r N+ − +  state in r

outRFM . 

 In this thesis, we will take FR-vector as basic model for its ability to process 

glitches. In additional, it simplifies the calculation in switching activities. The most 

obvious disadvantage of FR-vector is that it doesn’t consider correlations between 

signals in circuits. In next section, we describe a technique that takes care of 

correlations. 

2.4  Boolean Approximation Method (BAM) 

BAM is proposed by Taku Uchino [6]. It is an incremental approach taking into 

account the first order signal correlation effects by using the Tayler expansion 

technique to ensure the accuracy. Cofactor probabilities with respect to the primary 

inputs play a role of the differential coefficients in the Tayler expansion. These 

cofactor probabilities are calculated incrementally as well as the signal probabilities 

and switching activities at each circuit node. BAM is able to handle large circuits 

since the probabilities are calculated incrementally without constructing global BDDs. 

2.4.1 Basic Assumptions 

There are two assumptions should be set before BAM is used: 

 Mutual independence of the primary inputs. 

 Invariance of probabilities under time translation 

The first assumption implies that the probability of the product of primary inputs 

can be decomposed into the product of the probabilities at each primary input, that is: 
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1 1( ( ) ( )) ( ( )) ( ( ))j ji i
i k j k i k j kP x t x t P x t P x tδ δδ δ

+ += , where (1,0)xδ ∈ is the transition at node x , 

and ( ( ))i
i kP x tδ denotes the probability of the transition of node ix  is iδ  at time kt . 

The second assumption implies that the probability does not depend on the 

position of the origin of the time axis, that is: 

1 1( ( ) ( )) ( ( )) ( ( ))j ji i
i k j k i k j kP x t x t P x t t P x t tδ δδ δ

+ += + +  for arbitrary t . 

Theorem 2.4 : In the zero delay model, the switching activity of a logic signal ( )x t , 

to be denoted by ( )swP x , is given by:  

( ) 2( ( ) (1 ( ))swP x P x P x= × − , 

Proof: Let 0 1( )P x → is the probability of signal x(t) transition from 0 to 1, 1 0( )P x → is 

the probability of signal x(t) transition from 1 to 0. ( ( ) (0))P x xτ is the probability 

that x is 0 at time 0 and is 1 at timeτ , ( ( ) (0))P x xτ is the probability that x is 1 at time 

0  and is 0 at timeτ .(i.e. the probability of x(t) switching from one state to another). 

The 1 and 0 mean steady state ONE and state ZERO respectively. Then: 

0 1 1 0( ) ( ) ( )

          2 ( ( ) (0))

          2 ( ( ) (0))

swP x P x P x

P x x

P x x

τ

τ

→ →= +

=

=

 

From the assumption “Invariance of probabilities under time translation”, we get 

( ( ) (0))P x xτ = ( ( ) (0))P x xτ = ( ) (1 ( ))P x P x× − .  

Thus, ( ) 2( ( ) (1 ( ))swP x P x P x= × − . 

2.4.2 Signal probability 

We will describe how BAM is used with signal probabilities calculation. There are 

following some definitions in BAM. 

Definition 2.6 (Cofactor): If 1 2( , , , )nY f x x x= … is Boolean function, the cofactor of 
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the gateY is defined as: [ ]iY xα   ( 1,2, , ; 0,1)i n α= =… , 

where [ ]iY xα is derived in the following Shannon expansion: 0 0 1 1[ ] [ ]i i i iY x Y x x Y x= + . 

Definition 2.7 (Cofactor Probability): If 1 2( , , , )nY f x x x= … is Boolean function, the 

cofactor probability of the gate Y is defined as : ( [ ])iP Y xα  ( 1,2, , ; 0,1)i n α= =… . 

Definition 2.8 (BAM data structure): For any node in a circuit, the BAM data 

structure of this node is its signal probability and cofactor probabilities . 

By BAM data structure, we could use the first order of Taylor expansion to get 

the difference between ( )P A B∩ and ( ) ( )P A P B . 

2.4.2.1 2-Input AND Gate Case 

We take a 2-input AND gate for example to explain how they are implemented. 

Suppose A and B are the inputs and Z is the output of a 2-input AND gate in Figure 

2-1, thus we have Z AB= . The difference between ( )P AB and ( ) ( )P A P B represents 

the signal correlation effects. We can get  

( ) ( )0 1 0 1

1
( ) ( ) ( ) ( ) ( ) ( ) ( [ ]) ( [ ]) ( [ ]) ( [ ])

n

i i i i i i
i

P AB P Z P A P B P x P x P A x P A x P B x P B x
=

= ≈ + × − × −∑

and ( [ ]) ( [ ]) ( [ ]) ( [ ])i i i iP AB x P Z x P A x P B xα α α α= ≈ .     (Equation 2-1 and Equation 2-2) 

 
Figure 2-1: 2-input AND gate with n primary inputs. 

In the equation  

( ) ( )0 1 0 1

1
( ) ( ) ( ) ( ) ( ) ( [ ]) ( [ ]) ( [ ]) ( [ ])

n

i i i i i i
i

P AB P A P B P x P x P A x P A x P B x P B x
=

= + × − × −∑ , 
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the first term of right-hand side of the equation is obtained by considering A  

and B are mutually independent. The second term is considered as a sum of the 

correction terms to the first term. These correction term pull-back real number 

calculation to Boolean algebraic calculation. In fact, for example, these correction 

terms replace ( ) ( )i iP x P x contained in ( ) ( )P A P B by 0 in accordance with the 

fact 0i ix x = in the Boolean algebra. These operations correct the difference of the 

multiplication law between Boolean algebra and real number, e.g. i i ix x x= ( 0i ix x = ) 

and ( )( ) ( ) ( ) ( ) ( ) 0i i i i iP x P x P x P x P x≠ ≠ . 

To proof the equation mentioned above, suppose A and B are logic functions of 

mutually independent Boolean variables 1 2, , , nx x x… .The can be expressed formally in 

the form of sum of product, for example 

1

1

1 1

1
0 0

[ ]n

n

nA x x A xαα α

α α= =

= ∑ ∑
JK

" " , 

where BAM have defined 1( , , )nα α α≡
JK

… and [ ]A xα
JK

is either 0 or 1 for eachα
JK

. The 

similar equation also holds for B as 

1

1

1 1

1
0 0

[ ]n

n

nB x x B xββ β

β β= =

= ∑ ∑
JK

" " , 

The probability that the logic value of A equals to 1 and B equals to 1 are obtained 

as follows: 

1

1

1 1

1
0 0

( ) ( ) ( ) [ ]n

n

nP A P x P x A xαα α

α α= =

= ∑ ∑
JK

" " , 

1

1

1 1

1
0 0

( ) ( ) ( ) [ ]n

n

nP B P x P x B xββ β

β β= =

= ∑ ∑
JK

" " . 

The product of ( )P A and ( )P B can be expressed as follows:  ( ) ( ) ( )P A P B F η=  

where ( ) ( )i i iP x P xαβ α βη ≡  ( 1, , ; , 0,1)i n α β= =… , 
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1 1( ) [ ] [ ]n nF A x B xα βα β α β

α β

ξ ξ ξ≡∑∑
JK JK

JK JK
"  

On the other hands, since the form of sum of products for the Boolean product of 

A and B is such that  

1 1
1 1 [ ] [ ]n n

n nAB x x x x A x B xα βα β α β

α β

≡∑∑
JK JK

JK JK
"  

The probability that the logic value of AB equals to 1 can be expressed as follows: 

( ) ( )P AB F χ=         

where ( )i i iP x xαβ α βχ ≡    ( 1, , ; , 0,1)i n α β= =…   

Note that ( )P AB and ( ) ( )P A P B have been expressed by a single equation F .Therefore, 

( ) ( ) ( )P AB P A P B− can be approximated by the first-order terms of the Taylor 

expansion of F : 

1 1

1 0 0

( )( ) ( ) ( ) ( ) ( ) ( )
n

i i
i i

FP AB P A P B F F αβ αβ
αβ

α β

ηχ η χ η
ξ= = =

∂
− = − ≈ −

∂∑∑∑  

It’s easy to show that  

( 1) ( ) ( )i i i iP x P xαβ αβ α βχ η +− = −  ( 1, , ; , 0,1)i n α β= =…  

and ( ) ( [ ]) ( [ ])i i
i

F P A x P B xα β
αβ

η
ξ

∂
=

∂
, where [ ]ixα and[ ]ixβ are the cofactors of the 

Shannon expansions of A and B around ix respectively.  

As a result, we obtain the first equation of BAM: 

( ) ( )0 1 0 1

1

( ) ( ) ( ) ( ) ( ) ( [ ]) ( [ ]) ( [ ]) ( [ ])
n

i i i i i i
i

P AB P A P B P x P x P A x P A x P B x P B x
=

= + × − × −∑  

By taking the 0th-order Taylor expansion of the difference 

between ( [ ])iP AB xε and ( [ ]) ( [ ])i iP A x P B xα α , then we could obtain: 

( [ ]) ( [ ]) ( [ ])i i iP AB x P A x P B xα α α≈   ( 1, , ; 0,1)i n α= =… . 



 20

According to the first equation of BAM, the necessary information at the input 

node, for example A, is a set of signal probability ( )P A and cofactor 

probabilities ( [ ])( 0,1, ; 0,1)iP A x i nα α= =… which is BAM data structure in definition 

2.8. 

2.4.2.2  General Case 

This subsection will present the application of BAM to a general logic gate such 

as OR, XOR, or more complicated functions. 

Suppose the gate under consideration has m inputs, 1, , mA A" , and Z is one of the 

outputs of the gate. Figure 2-2 is the illustration of such gate. 

 

Figure 2-2: General case in the circuit 

Shannon expansion of Z around 1A :    

1 1 1 1[ ] [ ]Z A Z A A Z A= +   

gives the relation between Z and 1A . Since 1 1 1 1[ ]( [ ])A Z A A Z A is the product of two logic 

functions 1A and 1[ ]Z A ( 1A and 1[ ]Z A ), Equation 2-1 can be applied to approximate 

the signal probability of Z such that 

1 1 1 1( ) ( )* ( [ ]) ( )* ( [ ])P Z P A P Z A P A P Z A+�   

The Cofactor probabilities at node Z are obtained in the same manner as follows: 
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1 1 1 1( [ ]) ( [ ])* ( [ ][ ]) ( [ ])* ( [ ][ ])i i i i iP Z x P A x P Z A x P A x P Z A xα α α α α+�  ( 1, , ; 0,1)i n α= ="  

According to equation 2-13 and 2-14, the BAM data structure at node Z is obtain 

from those for 1A , 1A , 1[ ]Z A , and 1[ ]Z A . The BAM data structure for 1A is easily 

obtained from that for 1A , while those for 1[ ]Z A and 1[ ]Z A are obtained by recursive 

Shannon expansion around 2 , nA A" . 

Equations 2-1 and 2-2 imply that the approximate signal and cofactor 

probabilities for the gate output Z are obtained from those for the gate inputs 

immediately without knowledge about the previous circuit. 

2.4.3  Algorithm of BAM 

The signal probabilities at all circuit nodes can be calculated by means of the 

following algorithm: 

I. Set BAM data structures for the primary inputs. 

II. Extract a gate such that BAM data structures for its inputs are already 

calculated but those for its outputs are nod yet calculated. If such gate does 

not exist, then exit. 

III. Calculate the BAM data structures for the gate outputs from those for the 

gate inputs by using Equations 2-1 and 2-2 

IV. Go to II. 

2.4.4 Switching Activities 

BAM also could be used to the switching activity calculation. But it is more 

complicated than to the signal the temporal correlation of the identical primary input. 

Assume A , B ,C and D  are logic function of primary inputs. The first fundamental 
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equation is as follows: 

( )

1 ( ) ( )

( ) (0) ( ) (0)

( ( ) (0)) ( ( ) (0)) ( ) ( )
n

i i i i i i
i

P A B C D

P A B P C D p p X X Y Yαα ββ αα ββ αα ββ

αα ββ

τ τ

τ τ ′ ′ ′ ′ ′ ′

′ ′= <

+ × − × −∑ ∑

�
 

(Equation 2-3) 

where (00) 0, (01) 1, (10) 2, (11) 3,
def def def def

= = = =   

and   

( ( ) (0)),

( [ ]( ) [ ](0)),

( [ ]( ) [ ](0)),

def

i i i

def

i i i

def

i i i

p P x x

X P A x B x

Y P C x D x

αβ α β

αβ α β

αβ α β

τ

τ

τ

=

=

=

 for and , 0,1α β = . 

The Second fundamental equations are as follows: 

( )[ ]( ) [ ](0) ( [ ]( )) ( [ ](0)) ( [ ]( )) ( [ ](0))i i i i i iP AC x BD x P A x P B x P C x P D xα β α β α βτ τ τ×� ,

( 1, , ; , 0,1)i n α β= ="                                          (Equation 2-4) 

2.4.5  Example 

In this section, we take the circuit in Figure 2-3 for an example to see how BAM 

is implemented to calculate switching activities at each node level by level: 

Example 2.2  

 

Figure 2-3: A test circuit. 

There are some basic values of the circuit in Figure 2-3: 

1 2 3( ) 0.5; ( ) 0.5; ( ) 0.5.P x P x P x= = =  1 2 3( ) 0.1; ( ) 0.2; ( ) 0.1.sw sw swP x P x P x= = =   

Then we could use this information to do calculation. 

Level 0: The BAM data structures for the primary inputs are set as follows: 
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i. If i j=  then 

( )[ ]( ) [ ](0) 1i j i jP x x x xα βτ = , forα andβ =1. 

( )[ ]( ) [ ](0) 0i j i jP x x x xα βτ = ,else. 

ii. If i j≠ then 

( ) ( )[ ]( ) [ ](0) ( ) (0) ( ) 0.5 ( )i j i j i i i sw iP x x x x P x x P x P xα βτ τ= = − ×  

(because ix and jx are mutually independent) ( 1, , ; , 0,1)i n α β= ="  

e.g. 
( ) ( )
( ) ( )

0 0 1 1
1 1 1 1 1 1 1 1

0 0
1 2 1 2 1 1

[ ]( ) [ ](0) 0, [ ]( ) [ ](0) 1,

[ ]( ) [ ](0) ( ) (0) 0.5 0.5 0.1 0.45

P x x x x P x x x x

P x x x x P x x

τ τ

τ τ

= =

= = − ⋅ =
 

 

Level 1: The BAM data structure for node y is obtained from those at level 0 as 

2( ) ( ) 0.2sw swP y P x= =  

( ) ( )2 2[ ]( ) [ ](0) [ ]( ) [ ](0)i i i iP y x y x P x x x xα β α βτ τ= , ( 1, , ; , 0,1)i n α β= =" . 

e.g. ( ) ( )0 0 0 0
2 2 2 2 2 2[ ]( ) [ ](0) [ ]( ) [ ](0) 0P y x y x P x x x xτ τ= =  

 

Level 2: The BAM data structure for node 1y is obtained from those at level 0 and 

level 1 as follows: 

( ) ( ) ( )( )1 1 1 1 1 1 1( ) 2 ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) 0.14swP y P x x y y P x x y y P x x y yτ τ τ τ τ τ= ⋅ + + =

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 1

3

1 1
1 ( ) ( )

1 1 1 1

( ) (0) ( ) (0)

( ) (0) ( ) (0) ( ) (0) ( ) (0)

[ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0)

i i i i
i

i i i i i i i i

P x x y y

P x x P y y P x x P x x

P x x x x P x x x x P y x y x P y x y x

α α β β

αα ββ

α α β β α α β β

τ τ

τ τ τ τ

τ τ τ τ

′ ′

′ ′= <

′ ′ ′ ′

= +

× − × −

∑ ∑

The calculation of ( ) ( )1 1 1 1( ) (0) ( ) (0) , ( ) (0) ( ) (0)P x x y y P x x y yτ τ τ τ is similarly. 

( ) ( ) ( )1 1 1 1[ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0)i i i i i iP y x y x P x x x x P y x y xα β α β α βτ τ τ≈ ⋅
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( 1, , ; , 0,1)i n α β= ="  

and BAM data structure for node 2y is obtained similarly. 

Level 3: The BAM data structure for node 3y is obtained from those at level 2 as 

follows: 

( ) ( ) ( )( )3 1 1 2 2 1 1 2 2 1 1 2 2( ) 2 ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) ( ) (0) 0.088swP y P y y y y P y y y y P y y y yτ τ τ τ τ τ= ⋅ + + =

( )
( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )( )

1 1 2 2

3

1 1 2 2
1 ( ) ( )

1 1 1 1 2 2 2 2

( ) (0) ( ) (0)

( ) (0) ( ) (0) ( ) (0) ( ) (0)

[ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0)

i i i i
i

i i i i i i i i

P y y y y

P y y P y y P x x P x x

P y x y x P y x y x P y x y x P y x y x

α α β β

αα ββ

α α β β α α β β

τ τ

τ τ τ τ

τ τ τ τ

′ ′

′ ′= <

′ ′ ′ ′

= +

× − × −

∑ ∑

The calculation of ( ) ( )1 1 2 2 1 1 2 2( ) (0) ( ) (0) , ( ) (0) ( ) (0)P y y y y P y y y yτ τ τ τ is similarly. 

( ) ( ) ( )3 3 1 1 2 2[ ]( ) [ ](0) [ ]( ) [ ](0) [ ]( ) [ ](0)i i i i i iP y x y x P y x y x P y x y xα β α β α βτ τ τ≈ ⋅

( 1, , ; , 0,1)i n α β= ="  

In this example BAM gives the exact signal probability for node 3y . The exact signal 

probability at node 3y can be derived by: 

( )3 1 2 2 3 1 2 2 3( ) ( )( ) ( ) 0.088sw sw swP y P x x x x P x x x x= = =  

 BAM could estimate the switching activities at all nodes in a combinational logic 

circuit with relative accuracy and without constructing global BDDs. It uses the 

concept of Taylor expansion to get the first order signal dependence effects due to 

reconvergent fan-out nodes are taken into account. Further more, it take the temporal 

correlation among the primary input in estimating switching activities, but ignore 

spatial correlation. 

2.5  Real-Delay Boolean Function (RDBF) 

Considering for glitches generation again, a glitch is generated at the output of a gate, 

if the following conditions are met: 
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i. The necessary condition, which requires the difference of the arrival times 

of the input signals to be greater than the inertial delay of the gate.  

ii. The sufficient condition, which requires the appropriate transitions of the 

input signals(s) to switch the gate output. 

Consequently, the timer parameter plays a critical role in the power consumption 

estimation. Hence, the exact description of a logic circuit should include not only its 

logic signals. Furthermore, since the glitch generation is strongly dependent on time, a 

modified Boolean function — real delay Boolean function (RDBF), which describes 

the logic and timing behavior of each signal, is needed. 

Example 2.3 We assume the logic circuit of Figure 2-4, where the gate delays are 

multiples of reference delay unit d . 

 

Figure 2-4: A logic circuit with non-zero delay gates. 

The logic behavior of the node f can be described in time domain by the 

following RDBF: 

1 2( , , )f F x x t=  

    1 2 2( 5 ) ( 5 ) ( 3 )x t d x t d x t d= − − −  (Equation 2-1) 

The signal f may switch at two time instances, i.e. 1 3ft d= and 2 5ft d= . More 

specifically, the transition of the signal f at 1t , 1 3ft d= , depends on the transitions of 

the primary inputs 1x and 2x at time points 1 2
1 12 , 2 ,x xt d t d= − = − and 2

1 0xt = . The 

corresponding Boolean function is 

1 1 2 2( 2 ) ( 2 ) (0)f x d x d x= − − . 
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The transition of f at 2 5ft d= depends on the transition of the signal 1x and 2x at 

1
2 0xt = and 2

2 0xt = , while the corresponding Boolean function is  

2 1 2 2(0) (0) (2 )f x x x d= .  

Thus, the behavior of the signal f is described in time domain by the 

corresponding RDBF. Moreover, the RDBF of f is reduced to ordinary Boolean 

function 1f and 2f , whose variables are the logic values of the input signals at specific 

time instances. Also, since node f may perform transitions at 1 3ft d= and 2 5ft d= , 

evaluation the transition activity of function 1 2,f f the transition activity of the RBDF 

is also evaluated. 

For us, we take FR-Vector to process glitches, and combine it with BAM to 

consider the correlations. In original BAM, it must be operated in a zero-delay 

model. .For this, we need to add the delay information into BAM by real delay 

Boolean function. We would discuss it in detail in next chapter. 
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Chapter 3 FR-Vector with BAM 

3.1  Review and Integration  

The goal of this paper is to propose a new technique which could analyze 

switching activity, and further more, signal correlations and glitches processing are 

included. In section 2.3  , we introduce FR-vector. It could be used in a non-zero 

delay model and it could also process glitch activity. In additional, while most papers 

use complex equations to calculate switching probability, FR-vector simplifies the 

calculations of switching probability as the calculations signal probability. As we can 

see, though there are many advantages in FR-vector, the signal correlations are not 

included in FR-vector. 

The other techniques we talked in section 2.4  is Boolean approximation 

method, it uses Taylor expansion to approximate the difference between two 

probabilities ( )P A and ( )P B multiplied immediately and the real probabilities as they 

intersected－ ( )P A B∩ . BAM indeed is a data structure, which could be used to 

calculate the difference mentioned above. BAMs are used to pass through the circuit 

and calculate the signal (or switching) probability of nodes in the whole circuit. In 

BAM, it solves the correlations due to reconvergent circuit by the concept of Taylor 

expansion. Another advantage of BAM is it doesn’t need to construct OBDD of the 

circuit, so it is faster than many other techniques which processing reconvergent 

circuits. Unfortunately, the delay model use in BAM is zero-delay model. Without 

delay information of the circuit, the activity of glitches would be ignored too. 

The ability of glitch processing in FR-Vector, and the ability of signal 

correlations processing in BAM both are what we want. So, in this thesis, we try to 
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combine these two techniques as a new model, and call it as FR-Vector with BAM. 

3.2  Basic Definition and assumption 

FR-Vector wit BAM is a non-zero delay model in inertial mode. It has an 

assumption: 

 Mutual independency of the primary inputs. 

This assumption is gotten from the original first assumption in BAM, and we 

eliminate the second assumption to fit with FR-Vector. The inertial model is the basic 

condition in FR-Vector. 

 As in FR-Vector, we will sample a signal line S n times in a clock cycle, then 

divide a clock cycle into n  states (state 0,1= ). Then, using the sampled rule to get 

FR-Vector ( n frames a vector, each frame 0, , ,1F R= ). From FR-Vector, we could get 

FR-Matrix ( 4 N× matrix. Each column in the matrix represents a frame with the same 

index, and the entries in the 4 rows will be used to represent the occurrence 

probability of 0, 1, R, and F in that frame, respectively.). Following is the explanation 

of the meaning of FR-Matrix in FR-Vector with BAM: 

Definition 3.1 (Switching signal):In FR-Vector with BAM, the ith frame, t ix = , in 

FR-Vector is called the switching signal in timei . (0 1)i n< < −  

Definition 3.2 (Switching probability): In FR-Vector with BAM, the ith frame in 

FR-Matrix is called the switching probability in time i , and denoted as ( )t iP x = , 

( 0, , ,1x F R=  ;  0 1)i n< < − . 

In FR-Vector with BAM, we also used a data structure to carry the information of 

correlation among the circuit. Recall the cofactor probability used in section 2-4, we 

also have cofactor transition relation in FR-Vector with BAM. The differences are:  

I. We add the concept of “frame” as a basic time unit in place of “clock”. 

II. The BAM data structures in FR-Vector only exist in nodes which are in 
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reconvergent part of the circuit.   

Definition 3.3 (Cofactor Transition Relation): If 1, 2, ,( )nY f x x x= … is Boolean function, 

and we having m frames in a clock cycle. The cofactor transition relation of it 

are defined as: 

( )
( )
( )
( )

0

1

( [ ]) [ ]( ) [ ]( 1)

( [ ]) [ ]( ) [ ]( 1)

( [ ]) [ ]( ) [ ]( 1)

( [ ]) [ ]( ) [ ]( 1)

f i f i f i

F
f i f i f i

R
f i f i f i

f i f i f i

P Y x P Y x t Y x t

P Y x P Y x t Y x t

P Y x P Y x t Y x t

P Y x P Y x t Y x t

αβ α β

αβ α β

αβ α β

αβ α β

= −

= −

= −

= −

 ( 1,2, ,i n= … ; , 0,1α β = ; 0 1f m< < − ) 

which means the probabilities of cofactors remains 0, transition from1 to 0, 

transition from 1 to 0, and remains 1 at frames f respectively.  

Definition 3.3 (Reconvergent circuit): A reconvergent circuit is a circuit which 

convergent in a specific node and some signal lines in this circuit has forked before its 

convergent node. 

Definition 3.4 (Supply set of the reconvergent circuit): A supply set XS  of a 

reconvergent circuit X is a set of nodes 1 2{ , , , }ns s s… , which is  is the input of 

reconvergent circuit X. 

There is an example of supply set: 

Example 3.1 There is a circuit likes Figure 3-1: 
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Figure 3-1: An example of supply set of the reconvergent circuit: In reconvergent circuit X , the 

supply set of X is{ }4, 7 2, ,x w x y . 

In figure 3-1, there is a reconvergent circuit 4 7 2 3{ , , , , , }X w x x y y y= in circuit S , 

and the supply set of X is{ }4, 7 2, ,x w x y . 

Definition 3.5 (Cofactor Transition Relation Matrix): A cofactor transition relation 

matrix is a three dimension matrix of nodeY . (A 4 f n× × matrix, n is the 

number of nodes of the reconvergent circuit which node A is belonged to, and f is 

the number of frames.) Each item in the matrix denotes the cofactor transition 

relation ( [ ])
t iP Y xγ δ of nodeY  where , 0, , ,1F Rδ γ = ; 0 1t f< ≤ − ; and 0 i n< ≤ . 

Definition 3.6 (The BAM data structure of FR-Vector): For any node belonged to a 

reconvergent in a circuit, the FR-Matrix and the cofactor transition matrix of this 

node is called its BAM data structure of FR-Vector.  

Because of the assumption － “ Mutual independency among primary input”, 

each pair of nodes which are not in the reconvergent circuit or they are in the supply 

set of a reconvergent circuit, would be taken as independent. By this, we could get: 

Theorem 3.1 : The BAM data structures of a node ix , ix S∈ and 1 2{ , , , }nS x x x= … is 

a supply set of the reconvergent circuit, could be gotten as: 

(i) If i j= , ( [ ]) 1
i j

P x xδ γ = , when δ γ= , 

           ( [ ]) 0
i j

P x xδ γ = , when δ γ≠ . 

(ii) If i j≠ , ( [ ]) ( )
i j i

P x x P xδ γ δ= . 

(  0 1i n< ≤ −  ; , 0, , ,1F Rδ γ =  )  

Now, we know how to sample the signal as FR-Vector and get FR-Matrix of 

primary inputs. In further more, we can use theorem 3.1 to get their BAM data 

structures if it is in reconvergent circuit. In next section, we talk about how to 
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propagate these information gate by gate, and from primary inputs to the output of the 

circuit. 

3.3  Probabilities Propagation 

In convenient to introduce FR-Vector with BAM, we start in zero-delay model, 

we will extend FR-Vector with BAM to non-zero delay model in section 3.6. 

 In order to analyze the probabilities at each node in the circuit, we divide the 

circuit into two parts: 

 General circuit, and 

 Reconvergent circuit. 

In general circuit, we do not use BAM data structure. Because of the assumption 

“Mutual independence among the primary input”, if there is no reconvergent circuit, 

there is no correlation among circuit too. For this reason, it is redundant to calculate 

and propagate the BAM data structure in these circuits. Indeed, in non-reconvergent 

circuit, even if we still use the BAM data structure in it, it would do nothing. We leave 

the explanation of this later in section 3.3.2. Without BAM data structures, our model 

is simplify to original FR-Vector, so we could propagate FR-Matrix as it propagates in 

original FR-Vector. 

In the other case, reconvergent circuit, we will set up BAM data structure using 

theorem 3.1 in the supply set of the reconvergent circuit. Then we need to propagate 

these BAM data structure to calculate the other nodes which is not in supply set in the 

reconvergent circuit, including cofactor transition relation and FR-Matrix.   

3.3.1  Propagation of the Cofactor Transition Relation 

Before talking about the propagation of the cofactor transition relation, we 

should discuss the real significance in it. The cofactor comes from Shannon expansion. 

Suppose the gate under consideration has m inputs, 1, ,mA A" and Z is one of the 

outputs of the gate. Shannon expansion of Z around 1A is  

1 1 1 1[ ] [ ]Z A Z A A Z A= + , 
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and thus  

 1 1 1 1( ) ( ) ( [ ]) ( ) ( [ ])P Z P A P Z A P A P Z A= + . 

We could say that a cofactor ( [ ])iP Z x is the probability of Z is logic high when ix is 

logic high. As the same concept, we could get: 

Lemma 3.1 If there is a gate whose inputs are 1 2( , , , )nx x x… and one of its output 

is Z , we take the cofactor transition relation ( [ ])
i

P Z xαδ as the probability of 

transitionδ  ( 0, , ,1)F Rδ = happens at output Z when the transition of its input ix  

isα  ( 0, , ,1)F Rα = . 

Theorem 3.2 : If there is a gate whose inputs are A and B , the circuit it belonged to 

has the primary input set 1 2{ , , , }nx x x… , and a clock cycle is divided 

into m frames, then we have: 

( )0

0 0

( [ ] [ ])

[ ]( ) [ ](0)

( [ ]( ) [ ](0)) ( [ ]( ) [ ](0))

( [ ]) ( [ ])

f i f i

f f i f f i

f i f i f i f i

f i f i

P A x B x

P A B x A B x

P A x A x P B x B x

P A x P B x

τ

τ τ

α δ β δ

δ δ

δ δ δ δ

α δ β δ

τ

τ τ

=

×

=

∩

�
,               (Equation 3-1) 

0( 1, , ;  0, , ,1;  , 0,1;  1, , )i n F R f mτδ δ δ= = = =" "  

Proof: 
 The proof of this theorem is similar to equation 2-4 in section 2.4, we get the 
equation 3-1 in the same way as how we get equation 2-4. The difference is 
we add the concept of “frame”. 

By lemma 3.1, we could use the logic composition table (Table 3-1) as FR-Vector 

used to propagate FR-matrix to propagate the cofactor transition relation. 

To explain how to use these tables, we take an example as below: 

Example 3.2 There is an AND gate whose inputs are ,a b and output is c ,the primary 

inputs is 1 2( , , , )nx x x… , and there are m frames in a clock cycle. Thus, according to 

table 3.1(a) we could get  
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0 0 0 0 0

0 1 1 0 0

0

( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

( [ ]) ( [ ]) ( [ ]) ( [

F R
f i f i f i f i f i f i f i

F
f i f i f i f i f i f i

R R F
f i f i f i f i

P c x P a x P b x P a x P b x P a x P b x

P a x P b x P a x P b x P a x P b x

P a x P b x P a x P b x

α α α α α α α

α α α α α α

α α α

= × + × + × +

× + × + ×

+ × + × ]) ( [ ]) ( [ ])F R
f i f iP a x P b xα α α+ ×

 

1 1( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])F F F F
f i f i f i F i f i f i f iP c x P a x P b x P a x P b x P a x P b xα α α α α α α= × + × + ×  

\  

Table 3-1:  The composition table for cofactor transition relation. 

1 1( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])R R R R R
f i f i f i f i f i f i f iP c x P a x P b x P a x P b x P a x P b xα α α α α α α= × + × + ×  

and 1 1 1( [ ]) ( [ ]) ( [ ])f i f i f iP c x P a x P b xα α α= × . 

(0 1;i n< < −  0, , ,1;F Rα =  1 1)f m< < −  

For example, if we want to get the probability of transition F happens at output c when 

the transition of node ix isα , that is ( [ ])F
f iP c xα .We should know [ ]F

f ic xα will happen at 

time 1 [ ] [ ]F
f i f ia x b xα α∩ , [ ] [ ]F F

f i f ia x b xα α∩ , and 1[ ] [ ]F
f i f ia x b xα α∩ ( where [ ]f iA xδ α  means 

node transitionδ happens at node A at the time the transition of ix isα in time frame 
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f ). So we could get 

1 1

( [ ]) ( [ ])

( [ ] [ ]) ( [ ] [ ]) ( [ ] [ ])

R
F i f i

R R R R
f i f i f i f i f i f i

P c x P c x

P a x b x P a x b x P a x b x

α α

α α α α α α

=

= + +∩ ∩ ∩
 

3.3.2  Propagation of the FR-Matrix 

In FR-Vector with BAM, we also use logic composition table to propagate the 

FR-Matrix, but the difference is when the node is in a reconvergent part of the circuit. 

That is, in the original FR-Vector, we get the FR-Matrix of an output from its 

immediate inputs. It comes from two items in each matrix of the input multiplied 

immediately, and without considering signal correlation due to reconvergent circuit. 

Though there may be distance between two probabilities multiplied immediately and 

the real probability it will be, the original FR-Vector ignores this. Take a simple 

example to see how the reconvergent circuit affects the transition probability:  

 

Example 3.3 Figure 3-2is a simple reconvergent with input node x , and output 

node z . The right table is the FR-Matrix of node x . 

 

Figure 3-2: A reconvergent circuit and the FR-Matrix of its input node x. 

In this circuit, the signal will diverge from node x , and reconvergent at node z . If 

we use the original FR-Vector to calculate the transition probability of node z as its 

transition is 1, it will be 1 1 1( ) ( ) ( ) 0.5 0.5 0.25P z P x P x= × = × = . Indeed, the real 

probability is 1 1( ) ( ) 0.5P z P x= = . 

As mentioned before, considering for the correlation due to reconvergent, we use 
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BAM to handle it. Replace the calculation－ ( ) ( ) ( )P A B P A P Bα β α β=∩ in the 

original FR-Vector (that is, multiplying two items in different FR-Matrices), we have: 

Theorem 3.3 : At the convergent node of a reconvergent circuit, if there is a gate 

whose inputs are A and B , the circuit it belonged to has the primary input set 

1 2{ , , , }nx x x… , and a clock cycle is divided into m frames, then we have: 

( )0 0

1

( ) ( ) (0) ( ) (0)

( ) ( ) ( ) ( )

ff f f f f

n

f f i i i i i if f f f f f
i

P A B P A B A B

P A P B p p X X Y Y

τ τδ γ δ γδ γ

α β α β α βδ γ

α β

τ τ

= <

=

+ × − × −∑∑

∩

�
 ,         (Equation 3-2)   

 where (0) 0, ( ) 1, ( ) 2, (1) 3,
def def def def

F R= = = =    and

( )

( [ ]),

( [ ])

def

i if f

def

i f if f

def

i f if f

p P x

X P A x

Y P B x

α α

α αδ

α αγ

=

=

=

 

( , , , 0, , ,1;F Rδ γ α β = 0, ;f m= " 0 0, , , 0,1;τ τδ δ γ γ = 1, ,i n= " .)   

Proof: 
 The proof of this theorem is similar to equation 2-3 in section 2.4, we get the 
equation 3-2 in the same way as how we get equation 2-3. The difference is 
we add the concept of “frame”. 

 

In equation 3.2, the second item of right-hand side 

1
( ) ( )

n

i i i i i if f f f f f
i

p p X X Y Yα β α β α β

α β= <

× − × −∑∑  is the difference we used to modify the 

original equation in FR-Vector.  

Recall the example 3.3, if we used FR-Vector with BAM to calculate 1( )P z , it 

would be  

1

1 1 1

1 1

1 2 1 1 1 1

1 2 1 1

( ) ( )

         ( ) ( ) ( ) ( )

         ( ( )) ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))

         ( ( )) ( ) ( ) ( ( [ ]) ( [ ])) ( (

i i i i i i
x

P Z P x x

P x P x p p X X Y Y

P x P x P x P x x P x x P x x P x x

P x P x P x P x x P x x P

α β α β α β

α β

α β α β α β

α β

α β α β

<

<

=

+ × − × −

= + × − × −

= + × − ×

∑∑

∑

∩

�

1 1

( , ) (0,1),(1,2),(1,3)

[ ]) ( [ ]))x x P x xα β

α β =

−∑
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1 2 0 1 1 0 1 1 1 0 1 1

1 2 1 1 1 2 1 1 1 2

1 3 1 1 1 3 1 1 1 3

         ( ( )) ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))
         ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))
         ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ])

P x P x P x P x x P x x P x x P x x
P x P x P x x P x x P x x P x x
P x P x P x x P x x P x x P x x

= + × − × −

+ × − × −

+ × − × −
1 2 0 1 1 2 1 3

)
         ( ( )) ( ) ( ) ( ) ( ) ( ) ( )
         0.25 0.03 0.03 0.05 0.36

P x P x P x P x P x P x P x= + + +
= + + + =

 

In the beginning of this section, we have mentioned:  

Theorem 3.4 : The process of BAM data structures in non-reconvergent will do 

nothing in the propagation of switching probability. 

Proof:   

For each gate in non-reconvergent circuit, we divide them into two cases: 

(i) The inputs of the gate is primary input: 

 

( ) ( )

( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))
i i i if f f f

f i f i f i f if f f f

X X Y Y

P A x P A x P B x P B x

α β α β

α β α βδ δ γ γ

− × −

= − × − , where this equation is 

extract form equation 3.2. 

From theorem 3.1 and A B≠ , there must be one of 

{ }( ), ( )i i i if f f fX X Y Yα β α β− − would be 0, 

 (for there must be iA x≠ or iB x≠ ) 

Thus, the difference equation
1

( ) ( )
n

i i i i i if f f f f f
i

p p X X Y Yα β α β α β

α β= <

× − × −∑∑ will be 0. 

(ii) The input of the gate is not primary input: 

Because the gate is in a non-reconvergent circuit, the transition of a 

node X would be independent of the primary input ix .  

Thus we can get ( [ ]) ( [ ])f i f if fP A x P A xα βδ δ= , and [ ]) ( [ ])f i f if fB x P B xα βγ γ= , 

Then,     

( ) ( )

( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))

(0) (0)
0

i i i if f f f

f i f i f i f if f f f

X X Y Y

P A x P A x P B x P B x

α β α β

α β α βδ δ γ γ

− × −

= − × −

= ×
=
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Thus, the difference equation
1

( ) ( )
n

i i i i i if f f f f f
i

p p X X Y Yα β α β α β

α β= <

× − × −∑∑ will be 0. 

From (i) and (ii), we could get the conclusion that, BAM data structures in 

non-reconvergent will do nothing in the propagation of switching probability  

Beside we do not propagate the switching probability in non-reconvergent; we 

only calculate the switching probability at the node where reconvergent circuit is 

converged for there is only this node would be affected by reconvergent correlation. 

Thus, we use FR-Vector among the whole circuit, and use BAM data structures in the 

reconvergent part of the circuit and propagate them gate by gate until the convergent 

node, but  

Lemma 3.2 We only use BAM data structure to calculate the switching probability 

at convergent node of a reconvergent circuit. 

Again, we discuss how these BAM data structures solve the correlations caused 

by reconvergent circuit. Let’s survey the proof of equation 3-2 firstly.  

A part of proof of equation 3-2: 

 If ( )fP xδ  is the probability of the transition δ happens in the f th frame of x, 

then let 

( ) ( ) ( )f fP A P B Fδ γ η× = , 

where  

( ) ( ) 

( 1, , ;  , , , 0,1, 2,3;  0 00,1 01, 2 10,3 11)

def

i i if fP x P x

i n

αβ α βη

α β γ β

=

= = ≡ ≡ ≡ ≡"
 

and 

1 1
1( ) [ ] [ ]n n

def

f fnF A x B xα βα β α β

α β

ξ ξ ξ= ∑∑
JK JK

JK JK
"  

( 1( , , ) , and [ ] is either 0 or 1 for each 
def

n if f fA xαα α α α=
JKJK JK

" ). 

The Boolean product of   f fA and Bδ γ  is such that  
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1 1
1 [ ] [ ]n n f ff f nf fA B x x A x B xα βα βδ γ α β

α β

= ∑∑
JK JK

JK JK
" , 

the probability that the logic value of f fA Bδ γ  equals to 1 can be expressed as follows: 

( ) ( )f fP A B Fδ γ χ=  

where ( )  ( 1, ;  , 0,1, 2,3)
def

i i if fP x x i nαβ α βχ α β= = ="  . 

Note that ( )f fP A Bδ γ  and ( ) ( )f fP A P Bδ γ  have been expressed by a single function F . 

Therefore, ( ) ( ) ( )f f f fP A B P A P Bδ γ δ γ− can be approximated by the first-order terms of 

the Taylor expansion of F : 

3 3

1 0 0

( ) ( ) ( ) ( ) ( )

                                       ( ) ( )

f f f f

n

i i
i i

P A B P A P B F F

F

δ γ δ γ

αβ αβ
αβ

α β

χ η

χ η η
ξ= = =

− = −

∂
−

∂∑∑∑�
, 

where ( ) ( [ ]) ( [ ]),i if f
i

F P A x P B xα β
αβ η

ξ
∂

=
∂

 and [ ] and [ ]i if fA x B xα β  are the cofactor 

translation relation of the Shannon expansions of and  around iA B x  respectively. 

Thus, 

( )( ) ( ) ( ) ( ) ( ) ( [ ]) ( [ ])i i f f f f i if f
i

F P A B P A P B P A x P B xαβ αβ δ γ δ γ α β
αβχ η η

ξ
∂

− = − ×
∂

. 

(Equation 3-3) 

From the right-hand side of (Equation 3-3, we could get the physical meaning of 

equation 3-2. For the equation 3-3 means the effect do to transition at node A  and 

node B  caused by input variables i fxα and i fxβ . We could see 

3 3

0 0
( ) ( )i i

i

Fαβ αβ
αβ

α β

χ η η
ξ= =

∂
−

∂∑∑  is the summation of the effect caused by all transition at 

node i fx , and 
3 3

1 0 0
( ) ( )

n

i i
i i

Fαβ αβ
αβ

α β

χ η η
ξ= = =

∂
−

∂∑∑∑  is the summation of all effect caused by 

input variables. Thus equation 3-2 means the equation ( )f fP A Bδ γ is approximating to 

( ) ( )f fP A P Bδ γ  add the effect caused by input variables. Further more, for the cofactor 
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is generated by the characteristic of circuit and its structure. The effect calculated by 

equation 3-2 could catch the effect due to different types of circuit structure, thus the 

reconvergent circuit. 

  A node’s cofactor transition relation represents the meaning of how each primary 

input affect the transition in node itself. Thus, in reconvergent circuits, we propagate 

this information to the immediate inputs of the convergent node, and use equation 3-2 

to correct the switching probability in convergent node. Why this equation could do 

correction. It’s because when we use the logic composition table and FR-Matrices of 

inputs to compute the FR-Matrix of output node, equation 3.2 could correct the 

differences between the probability of two event happened in the same time (what we 

need) and the probability of two probabilities of event multiplied immediately(two 

terms in logic composition table multiplied immediately). The correction is gotten 

from the effect due to primary inputs which has been recorded in cofactor transition 

relation as we have explained above.      

3.4  An Example of FR-Vector with BAM 

In previous section, we have a tiny attempt in FR-Vector in BAM. In this section, 

we try to use a simple and more complete example to show the propagation of the 

FR-Vector with BAM in reconvergent circuit. 

Example 3.4 There is a simple reconvergent circuit, and Table 3-2is its switching 

probabilities in each input nodes. 
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Table 3-2:  The transition probabilities of primary inputs of the circuit in example 3.4 

We calculate the BAM data structure at each node level by level as follows: 

Level 0 The BAM data structure for the primary inputs are set as follows: 

( )P X δ is the information we sampled. 

If ( )X Y= , 
1, ( )

( [ ])
0, ( )

P X Yδ γ δ γ
δ γ
=

=
≠

,       ( , , , ;X Y A B C=  0, , ,1)F Rδ =  

else ( [ ]) ( )P X Y P Xδ γ δ= .        

e.g. 1 1( [ ]) 1P A A = , 1 0( [ ])P A A =0, 

 ( [ ]) ( ) 0.3F R FP A B P A= =  

 

Level 1 The BAM data structure for the node D  and node E are set as follows: 

 According to the logic composition table, we could get the FR-Matrix of 

node D from FR-Matrices of node A and node B . 
0 0 0 0 0 0 1

1 0 0 0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0.1 (1) 0.2 (1 0.1) 0.5 0.4 0.3 0.1
0.51

F R

F R R F F R

P D P A P B P A P B P A P B P A P B
P A P B P A P B P A P B P A P B P A P B

= × + × + × + ×

+ × + × + × + × + ×
= × + × − + × + ×
=

 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
0.1 0.4 0.3 0.4 0.3 0.3
0.25

F F F F FP D P A P B P A P B P A P B= × + × + ×
= × + × + ×
=

 

1 1( ) ( ) ( ) ( ) ( ) ( ) ( )
0.1 0.1 0.5 0.1 0.5 0.3
0.21

R R R R RP D P A P B P A P B P A P B= × + × + ×
= × + × + ×
=
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1 1 1( ) ( ) ( ) 0.1 0.3 0.03P D P A P B= × = × =  

The cofactor transition relation of D could be gotten from logic composition table too. 

e.g.  

1 1 1 1 1 1( [ ]) ( [ ]]) ( [ ]]) 1 0.3 0.3P D A P A A P B A= × = × =  
1 1 1 1 1 1 1 1 1( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ]) ( [ ])

1 0.1 0 0.1 0 0.3
0.1

R R R R RP D A P A A P B A P A A P B A P A A P B A= × + × + ×
= × + × + ×
=

 

We could get others cofactor transition relation by the same way. 

BAM data structure for node E is obtained similarly. 

Level 2 In the last level of the reconvergent, we do not propagate the whole BAM 

data structure again, in place of, we only calculate the switching propagate of the 

convergent node F using BAM data structure of node in the former level. 

 We also use logic composition table in the calculation of switching propagation, 

but without multiplying two switching immediately we use equation 3.6 to calculate. 

e.g. 

1

1 1 1 1 1 1

, ,

1 1 1 1

( )
( ) ( ) ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))

0.03 0.06 ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))

0.0018 0.0012
0.003

X A B C

P F
P D P E P X P X P D X P D X P E X P E X

P X P X P D B P D B P E B P E B

α β α β α β

α β

α β α β α β

α β

= <

<

× + × − × −

= × + × − × −

= +
=

∑ ∑

∑

�

Others switching probabilities of node F could be obtained similarly. 

 

3.5  Reconvergent Circuit in Limit Depth 

It has been discussed ([1], [9], and [11]) that the correlation among the circuit 

would become weaker as the depth of the reconvergent circuit becomes deeper. Let’s 



 42

survey the equation 3.6
1

( ) ( ) ( ) ( )
n

i i i i i i
i

P A P B p p X X Y Yα β α β α βδ γ

α β= <

+ × − × −∑∑ . 

Terms ( ) ( [ ]) ( [ ])i i i iX X P A x P A xα β α βδ α− = −  represent the distance between the 

probability of the transition at node A when the transition of its primary 

input ix isα and the probability of the transition at node A when the transition of its 

primary input ix isβ . Thus, when the depth of the reconvergent circuit is getting 

deeper, the correlation among the circuit becomes weaker too. When the correlation 

among the circuit becomes weaker, the distance ( )i iX Xα β− will become smaller too, 

so dose ( )i iY Yα β− . Then the second item of equation 3.6 will becomes smaller and 

smaller. We get: 

Lemma 3.3 Let A be the depth of the reconvergent circuit, when →∞A ,then 

1
( ) ( ) ( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))

n

i i i i i i
i

P A P B P x P x P A x P A x P B x P B xα β α β α βδ γ δ δ γ γ

α β= <

+ × − × −∑∑

will be approach to ( ) ( )P A P Bδ γ .In actual, when the depth of the reconvergent 

circuit is larger enough, even if it is not approach to∞ , the equation above will 

degrade to two probabilities multiplied immediately.  

By lemma 3.3, we could set a limit depth limA as we needed, and we only process 

the reconvergent circuit when its depth is less than the limit depth limA . 

3.6  Non-Zero Delay Model 

Extending FR-Vector with BAM to the non-zero delay model, we divide the 

whole model into three parts: 

 The propagation of switching probabilities in general case; 

 The propagation of cofactor transition relation in reconvergent circuit 

without including the node it convergent; 
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 And the calculation of switching probability of the convergent node of the 

reconvergent circuit. 

In first part, the propagation of switching probabilities in general case, it has already 

been defined in original FR-Vector. We could extend it into non-zero delay model 

with theorem 2.2 and theorem 2.3. Further more, we use the same concept to extend 

the second part, the propagation of cofactor transition relation in reconvergent circuit, 

into non-zero delay model. That is: 

Theorem 3.5 : Let N be the frame size, δ  be the logic gate delay in terms of frames. 

Let outCTRδ  ( 1inCTR , 2inCTR ) be the output correlation transition relation derived 

from a logic composition with two input correlation transition relations, 

1inCTR and 2inCTR , for a logic gate with delayδ . Let 0
outCTR ( 1inCTR , 2inCTR ) be 

the output correlation transition relation derived from a logic operation with two 

input correlation transition relations, 1inCTR  and 2inCTR , for a zero delay gate. 

Then 

0[ ]out outCTR CTRδ δ= , 

where [ ]sCTR  denotes the right-shifted correlation transition relation for s frames. 

In other words, the thi ( δ−≤ Ni ) state in 0
outCTR  appears in ( )thi δ+  state 

in outCTRδ . And the thj  frame ( δ≤≤ j1 ) in outCTRδ  will be filled with the first state 

in 0
outCTR . 

 The following theorem applied only when the multi-cycle operations are 

allowed. 

Theorem 3.6 : Let N be the frame size, r be the gate delay. Let r
outCTR  

( 1inCTR , 2inCTR ) be the output correlation transition relation from a logic 
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composition of two input output correlation transition relation s, 1inCTR  and 

2inRFM  for a gate with delay r. Let 0
outCTR ( 1inCTR , 2inCTR ) be the output 

correlation transition relation from a logic operation with two input correlation 

transition relations, 1inCTR  and 2inCTR , for the same gate with a zero delay. Then 

0[ ]r r
out outCTR CTR= , 

where[ ]rCTR  denotes the rotated correlation transition relation for r frames. In 

other words, the thi state in 0
outCTR  appears in ((( 1)% ) 1)thi r N+ − +  state 

in r
outCTR . 

As considering for the calculation of switching probability in a convergent node 

of the reconvergent circuit, we need to add the concept of real-delay Boolean function 

we discuss in section 2.5  . In equation 3.2           

1
( ) ( ) ( ) ( )

n

i i i i i i
i

P A P B p p X X Y Yα β α β α βδ γ

α β= <

+ × − × −∑∑ ,  

the scope of the first∑ , (1 )i n< ≤ , means that assumes the convergent node we are 

computing is Z , and 1 2( ) ( , , , )nf Z x x x= … where ix is the node in the supply set of this 

reconvergent circuit. Above equation considers the effect causes by each ix will do to 

the transition at node Z . In zero-delay model, we could use this equation immediately 

as 1 2( ) ( , , , )f nf f ff Z x x x= … for fX denote the Boolean function of the output node 

Z in the fth frame, but in non-zero delay model, for the reason of switching 

probabilities of each ix would be divide into a number of frames, and so do the 

switching probabilities of output node Z , the Boolean function would be rewrite as 

real-delay Boolean function, and the equation will become as below:  

Theorem 3.7 : In non-zero delay model, if we divide a clock cycle into m frames, and 

there is a convergent node Z whose input is A and B , then 
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( )

( )

( ) ( )

( ) ( ) ( ( [ ]) ( [ ])) ( ( [ ]) ( [ ]))
f

f f

f f

X rdbf Z

P A B

P A P B

P X P X P A X P A X P B X P B X

δ γ

δ γ

α β δ α δ β γ α γ β

α β∈ <

+

× − × −∑ ∑

∩

�  

(Equation 3-4) 

where ( )trdbf Z is the real-delay Boolean function of the convergent node Z in 

time f , and (0) 0, ( ) 1, ( ) 2, (1) 3,
def def def def

F R= = = =  ( , , , 0, , ,1;F Rδ γ α β = 0,f m= " .).   

Indeed, the RDBF we use there is modified RDBF for there is only m frames in a 

clock cycle, but if multi-cycle operation is allowed, RDBF could not be the 

representation of supply set. Thus,  

Definition 3.7 (Modified RDBF): In FR-Vector with BAM, if a clock cycle is divided 

into m frames, and there is a convergent node Z and a support set 1 2{ , , , }nx x x… , 

then the Modified RDBF of convergent node Z  is a RDBF whose scope of the 

time t is1 t m< ≤ , and the variable in Modified RDBF is ;i fx , where 

1 i n< ≤ and 0 1f m< ≤ − . If it exists a variable ;i fx whose f m>  ,the 

variable ;i fx would be reduce to ;i fx ′ ,where modf f m′ = . 

Example 3.5 If we divide a clock cycle into 4 frames, then: 

 

Figure 3-3: A reconvergent circuit with non-unit delay gate 

The original RDBF of node 3y  in Figure 3-3 should be 

3 1 2 3 1 2 3( ) ( , , , ) ( 5 ) ( 6 ) ( 5 )f y F x x x d x t d x t d x t d= = − − −  

In modified RDBF 
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1( 5 )x t d− will reduce as 1;5 mod 4 1;1dx x= , 

2 ( 6 )x t d− will reduce as 2;6 mod 4 1;2dx x= , 

3( 5 )x t d− will reduce as 3;5 mod 4 3;1dx x= . 

Thus, in our FR-Vector with BAM, for 4 frames a clock cycle, the modified RDBF of 

node 3y  is: 

3 1 2 3

1;1 2;2 3;1

( ) ( ( 5 ) ( 6 ) ( 5 ))m mf y f x t d x t d x t d
x x x

= − − −
=

 

With theorem 3.7 and definition 3.7, we have: 

Theorem 3.8 : If there is a reconvergent circuit whose convergent node is Z . Through 

logic composition table, we can use BAM data structures of the immediate input 

nodes of Z and assisted with modified real-delay Boolean function (RDBF) and 

the concept of Taylor Expansion to calculate the switching probabilities of the 

convergent node Z . 

From Theorem 2.2, 2.3, and Theorem 3.8, 3.5, and 3.6, we could expand the 

FR-Vector with BAM as non-zero delay model. 
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3.7  Implementation  

 

Figure 3-4: The pseudo-code of this paper 

First, we use the circuit with pairwise-inputs gates to build a logic tree of the 

circuit, involving linking each node together and setting reconvergent circuits. Then 

we parse the input pattern file whose data is produced in random. In final, we use 

FR-vector with BAM to propagate and calculate the switching probabilities in each 

node of the circuit. Figure 3-4 is the pseudo code of the implementation. 

The time complexity of ()LinkTree will be ( )nΟ , where n is the number of nodes 
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in the circuit, and the time complexity of _ _ ()Set reconvergent circuit will be by far 

smaller than _ _ _ ()FR Vector with BAM because of the limit depth Depth would limit 

it calculation. Thus, the time complexity of the whole program would be determined 

by _ ()Parse file and _ _ _ ()FR Vetcor wit BAM , and  

( )_ () ( )T Parse file I f clk= Ο × × ,   (Equation 3-5) 

where I is the number of the input nodes, f is the number of frames in a clock 

 cycle, and clk is the number of clock cycles. 

In _ _ _ ()FR Vector with BAM , each _ _ ()Initial FR Matrix needs 4 4 f× × times 

calculations, where 4 4×  is the state of composition of transition in node and it’s 

input node (that is, the 4 state of δ multiply the 4 state of γ  in [ ]X Yδ γ ), and 

_ _ ()Initial FR Matrix  will be calculate at each input node, so 

( )All _ _ () (4 4 ) ( )T Initial FR Matrix f I f I= Ο × × × = Ο ×    (Equation 3-6)  

And as considering for _ ()Initial BAM , for every reconvergent circuit, we should 

initial the BAM of every supply node in the reconvergent circuit. For each 

initialization, it needs 4 4 i
conf I× × ×  times calculation, where i

conI  is the inputs 

number of the i th− reconvergent circuits, so  

( ) 2

1 1

All _ () ( 4 4 ) ( )
c c

i i i
con con con

i i

T Initial BAM I f I O f I
= =

= Ο × × × × = ×∑ ∑ ,  

where c is the number of reconvergent circuit in the circuits. 

The input number of each reconvergent circuit will be bounded in 1m× −A , where m  

is the maximum input number of gates, and A is the depth we set( Awill be usually 

small, usually 3 to 5), so 

( ) 2 2 2

1

All _ () ( ) ( )
c

i
con

i

T Initial BAM f I f c m
=

= × = Ο × × ×∑ A .  (Equation 3-7) 

To _ ()Calculate BAM , for every reconvergent circuit, we should calculate the 
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cofactor transition relation of every node in the reconvergent circuit, beside supply 

and convergent node. For each of these nodes, it needs 4 4 i
conf I× × ×  times 

calculation, so 

( )
1 1

All _ () ( 4 4 ) ( )
con con

c c
i i i i

con con
i i

T Calculate BAM n f I f n I
= =

= Ο × × × = Ο × ×∑ ∑ , 

con

in is the number of nodes in the i th− reconvergent circuits beside supply and 

convergent nodes.  

For 
con

in will be bounded in ( )mΟ ×A , so 

( ) 2 2

1

All _ () ( ) ( )
con

c
i i

con
i

T Calculate BAM f n I f c m
=

= Ο × × = Ο × × ×∑ A ,  

(Equation 3-8) 

_ _ ()Calculate FR Matrix  in non-convergent node needs 4 4 f× × times calculation, 

and it will be calculated in all node of the circuit beside convergent node:  

(All _ _ () in non-convergent node)
(4 4 )
( )

T Calculate FR Matrix
f n

f n
= Ο × × ×
= Ο ×

, (Equation 3-9) 

By equation 3.7, it takes 7i
rdbff I× ×  times calculations in 

_ _ ()Calculate FR Matrix  of the convergent node, where i
rdbfI is the variable number 

in the RDBF of the i th−  reconvergent circuit, and 7 for 
α β<
∑ in equation 3.7. Thus, 

1 1

(All _ _ () in convergent node) = ( 7) ( )
c c

i i
rdbf rdbf

i i

T Calculate FR Matrix f I f I
= =

Ο × × = Ο ×∑ ∑

For the reason that each node in supply set of a reconvergent circuit, it could 

produceA variables in the RBDF it belonged, so i
rdbfI will be bounded in i

conI ×A , so 

1 1 1
2

(All _ _ () in convergent node) 

= ( ) ( ) ( )

( )

c c c
i i i
rdbf con con

i i i

T Calculate FR Matrix

f I f I f I

f c
= = =

Ο × = Ο × × = Ο × ×

= Ο × ×

∑ ∑ ∑A A

A

 (Equation 3-10) 



 50

From equation 3.9-3.12, we get the time complexity of _ _ _ ()FR Vector with BAM is  

2 2 2 2( ) ( )f I f c m f n f n f c mΟ × + × × × + × = Ο × + × × ×A A  

From above, we could get: 

Lemma 3.4 Using FR-Vector with BAM to analyze switching activities, the time 

complexity would be 2 2( )f n f c mΟ × + × × ×A . Further more, if we take the time 

which used to sampling signals into account, the time complexity will be 

2 2( )f n f c m I f clkΟ × + × × × + × ×A , where f represent a clock is divided into f 

frames, n is the number of nodes in the circuits, c is the number of reconvergent 

circuits, m is the maximum input number of gates in the circuit, A is the limit 

depth we set, I is the input number of the circuit, and clk is the number of clock 

we sampling signals. 

This time complexity shows when the gate counts grows larger, f n× will become 

larger and larger too, then we’ll get 2( ) ( )f n f c f nΟ × + × × = Ο ×A . However if we 

take the time of sampling signals into account, as the number of sampling clock grows 

lager (maybe ten of thousands or more ), this time complexity will become 

( )I f clkΟ × × .   
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Chapter 4 Experimental Results 

The proposed switching activities analyzing method is implemented by JAVA 

language, for its flexibility to various environment. To prove the accuracy of the 

proposed method, we compare our method with simulation results and FR-Vector. The 

former one could tell us the real switching number which would be gotten according 

to the given input pattern and benchmark, and the latter shows how much we could 

improve the accuracy than the original FR-Vector. We get the simulation results from 

the commercial tool, Cadence NC-VHDL 5.0, as a counterpart. All of these 

experiments are executed in a Linux-x86 computer. We simulate experiments based 

on 18 combinational circuits from MCNC [14]. 

In the first experiment, we tested on 18 MCNC benchmark circuits shown in the 

first column of Table 4.1. We generate 1000 random vectors for all inputs in each 

benchmark circuits, the frame number of a clock cycle is 20, and every gate delay is 1 

frame. The second column in Table 4-1 is the simulated result gotten by NCVHDL , 

the third to the fourth column is the analysis result from the FR-Vector and FR-Vector 

with BAM, where the estimated numbers of switching activities in FR-Vector are 

shown in the third column; the forth column is defined as the error percentage of 

FR-Vector over NC-VHDL; the estimated numbers of switching activities in our 

method are shown in the fifth column, and the last column is defined as the error 

percentage of our method over NC-VHDL . The row “avg” represent the average of 

the error percentage, and “W-avg” is weighted average which is gotten by 

equation
1

/
n

i i
i

E G n
=

⎛ ⎞×⎜ ⎟
⎝ ⎠
∑ , where iE is the error percentage of circuit i  in experiment, 

and iG  is the gate count of circuit i , and n is the number of circuits in experiment. 

“W-avg” shows the average error percentage in gate. Because in normal circuit there 
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would be no glitch input, thus we control the input generator and make every input 

pattern to have at most one switching in a clock cycle. 

circuit 

#switching 

(logic sim.) 

#switching

(FR) 

FRM 

error(%) 

#switching

(F-B) 

F-B 

error(%) 

b1 11509 10783 6.31  10504  8.73 

C17 3768 3718 1.33 3656 2.97 

c8 151074 158345 4.81  151838  0.51 

cht 75046 82600 10.07  76205  1.54 

cm138a 7676 7441 3.06 7441 3.06 

cm150a 55311 61587 11.35  56395  1.96 

cm152a 14287 14452 1.15  14597  2.17 

cm162a 29718 30385 2.24  29947  0.77 

cm163a 30432 30378 0.18  29505  3.04 

cm42a 8723 8743 0.23  7829  10.23 

cm82a 15801 14541 7.97  14021  11.23 

cm85a 25555 26558 3.92  24953  2.36 

cmb 17230 21321 23.74  19511  13.24 

count 53781       51343 4.53  51321 4.57 

cu 31490 31532 0.13  31033  1.45 

pm1 32168 34464 7.14  33206  3.23 

sct 98575 103872 5.37  100568  2.02 

tcon 27165 28830 6.13  27461  1.09 

avg   5.54  4.12 

W-avg  6.09 2.78  

Table 4-1:   Switching activity comparisons between NC-VHDL logic simulator, FRM model 

and FR-Vector with BAM based on MCNC benchmark circuits with no glitch input. 
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 In first experiment, we could see that FR-vector improve the accuracy of most 

circuits. Additionally, in original FR-Vector, the maximum percentage of error 

happens in “cmb”, which could up to 23.74%. In the same circuit, FR-Vector with 

BAM improves the accuracy greatly to 13.24 %, and it is the highest  one in 

FR-Vector with BAM too. As for averages of error percentage, it also decreases from 

5.54 to 4.17. Further more, if we consider the “weight-averages” which shows the 

average error percentage in each gate, they further decrease from 6.09 to 2.78.   

Lemma 5.1 The error percentage of FR-Vector over the real simulation is  

FR BAM real

real

sw C swerror
sw

+ −
= , 

where FRsw  and realsw  represent the switching number estimated by FR-Vector 

and the real switching number, BAMC is the value that BAM correct.  

Indeed, considering for signal correlation, we should have: 

Lemma 5.2 FR FR BAM BAM realsw d C d sw− + − = , where FRd and BAMd is the distance 

causes by signal correlation. 

In FR-Vector with BAM, we wish we could get closer to FR BAMd C= . Thus, if we 

could ignore BAMd , we could get FR FR BAM realsw d C sw− + = . However, 

in FR con inputd d d= + where cond is the distance caused by convergent and inputd is the 

distance caused by input spatial correlation, BAM could only solve cond , and 

ignore inputd . Even in BAM itself, BAMd would arise for input spatial correlation too. In 

some case, as small circuit for it low distance from input to output, the effect of inputd  

would be more serious. We could see this phenomenon happens in circuit － 

“b1”,”cm42a”, and “cm82a”. Moreover, FR realsw sw≅  might happen as cond  

approach to inputd occasionally. Thus, by lemma 5.2 we could know as FR realsw sw≅ , the 
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switching number analyzed by FR-Vector with BAM will 

be FR BAM real BAM realsw C sw C sw+ = + ≠ . We could see this phenomenon happens in 

circuit －”c17”,“cm152”,”cm163a”,”cm42a”, and “cu”.   

In the third experiment, we examine the most four complex circuits with 100000 

input vectors. The derived CPU time for NC-VHDL simulation, FR-Vector and our 

methods are listed in Table 4-2 to Table 4-4, respectively. Table 4-5 shows the 

speed-ups of our estimation method against the NC-VHDL simulation. We could see 

that the time cost by FR-Vector with BAM is close to FR-Vector but it is by far faster 

than the simulate result gotten from NC-VHDL. 

NC-VHDL(seconds) 
  1 2 3 4 5 average 

c8 62.50 58.30 55.50 56.80 60.40 58.70 
cht 30.50 30.30 30.40 30.00 29.90 30.22 

count 23.10 23.90 23.60 23.50 22.90 23.40 
sct 33.00 32.10 32.60 32.20 32.00 32.38 

Table 4-2:  The CPU Time for NC-VHDL simulation 

 
FR-Vector(seconds) 

  1 2 3 4 5 average 
c8 1.515 1.437 1.480 1.533 1.521 1.497 
cht 1.763 1.703 1.699 1.736 1.740 1.728 

count 1.701 1.667 1.724 1.652 1.687 1.686 
sct 1.142 1.166 1.162 1.193 1.113 1.155 

Table 4-3:  The CPU Time for FR-Vector simulation 

 

FR-Vector with BAM(seconds) 
  1 2 3 4 5 average 

c8 1.783 1.750 1.708 1.687 1.773 1.740 
cht 1.935 1.955 1.925 1.912 1.947 1.935 

count 1.873 1.806 1.865 1.822 1.781 1.829 
sct 1.328 1.349 1.341 1.347 1.347 1.342 

Table 4-4:  The CPU Time for FR-Vector with BAM simulation 
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 Inputs Outputs Gates FR 
FR- 

BAM
NC- 

VHDL

Speed-up 
(NC-VHDL/ 

FR-BAM) 

c8 28 18 316 1.50 1.740 58.70 33.736 
cht 31 23 163 1.73 1.935 30.22 15.618 

count 31 16 112 1.69 1.829 23.40 12.794 
sct 19 15 199 1.16 1.342 32.38 24.128 

Table 4-5:  The comparison with FR-Vector and with NC-VHDL. 

Finally, we compare FR-Vector and FR-Vector with BAM with other techniques. 

These techniques include the most basic and earliest technique, “signal probability” 

[16], and the other technique is “transition density” [17]. However, these two 

techniques doesn’t process unexpected transition, glitch. To recover glitches, we use 

G-Vector [12] to find these unexpected transitions in circuit, and add these glitches 

with switch number computed by “signal probability” or “transition density” to 

represent the estimate value. The result is listed in Table 4-6, the experimental result 

of “signal probability” is in the 7th and the 8th column, and the last two columns is the 

result of “transition density”. From this experiment, we could see the switch number 

gotten from “signal probability” and “transition density” is very unaccurat comparing 

to FR-Vector and our method. This is because “signal probability” try to use signal 

probability to compute switching numbers in circuit, however the switching activity in 

circuit could be very different in the same signal probability. “Transition density” 

adds the information about how many transition in a time unit to each gate in the 

circuit, and this information is gotten from the signal probability and transition 

density of the immediate input of the gate itself. Though it indeed improves the error 

percentage, it still based on signal probability. In FR-Vector and our method, we use 

switching probability to analyze switching activity. This conforms to real situation 

substantially, and this is one of the reasons why we take FR-Vector as out basic 

model.     
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#switching #switching error #switching error #switching error #switching error 
circuit 

(logic sim.) (FRM) (FRM)% (F.B) (F.B)% (Sig.+G) (Sig.+G)% (T.D+G) (T.D+G)%

b1 11509 10783 6.31 10504 8.73 8095 29.78 11611 0.89

C17 3768 3718 1.33 3656 2.97 1212 67.83 1887 49.92

c8 151074 158345 4.81 151838 0.51 103180 31.7 177586 17.55

cht 75046 82600 10.07 76205 1.54 52521 30.01 85200 13.53

cm138a 7676 7441 3.06 7441 3.06 5161 32.76 7917 3.14

cm150a 55311 61587 11.35 56395 1.96 32426 41.38 66267 19.81

cm152a 14287 14452 1.15 14597 2.17 10250 28.26 16190 13.32

cm162a 29718 30385 2.24 29947 0.77 19848 33.21 38668 30.12

cm163a 30432 30378 0.18 29505 3.04 15716 48.36 28186 7.38

cm42a 8723 8743 0.23 7829 10.23 8493 2.64 12044 38.07

cm82a 15801 14541 7.97 14021 11.23 9475 40.04 15392 2.59

cm85a 25555 26558 3.92 24953 2.36 18192 28.81 31554 23.47

cmb 17230 21321 23.74 19511 13.24 22019 27.79 35722 107.32

count 53781 51343 4.53 51321 4.57 44798 16.7 72563 34.92

cu 31490 31532 0.13 31033 1.45 30055 4.2 44133 40.15

pm1 32168 34464 7.14 33206 3.23 28665 10.89 41735 29.74

sct 98575 103872 5.37 100568 2.02 70435 28.55 108871 10.44

tcon 27165 28830 6.13 27461 1.09 24979 8.05 33446 23.12

avg   5.54   4.12 28.39   25.86

w-avg   6.09   2.77 27.21  23.94

Table 4-6: Comparison among different technique. 
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Chapter 5 Conclusions and Future Works 

In this research, we propose modified FR-Vector model, named FR-Vector with 

BAM which combined the advantage of FR-Vector － glitch processing in non-zero 

delay model, and the advantage of Boolean approximation method － the ability of 

processing correlation among convergent circuit. This model could analyze the 

switching activities in combinational circuit in probabilistic way with few data.  

We have solved the correlation due to temporal dependence (using switching 

probability) and spatial correlation due to internal spatial dependence (using BAM to 

solve reconvergent circuit). Though it still has input spatial correlations, we have 

successively improved the error percentage in each gate from 5.05 to 2.27 and from 

6.09 to 2.78 which represents input pattern with glitches and without glitches 

respectively. The peak value of error percentage also decreases from 23.74 to 13.24 %. 

In time issue, for we use the concept of Taylor expansion to approximate the spatial 

correlation, we do not need to build OBDD of the whole circuit which adopted in 

most techniques. Thus, the time spend by FR-Vector with BAM is closed to the 

original FR-Vector, and compare to the simulation time of NC-VHDL, it could up to 

33.73 times faster. Indeed, the larger the circuit is or the more input patterns there is, 

we will get the more speed-up for the time is depend on the size of circuits.  

 As mentioned before, there is still something which could be improved in 

FR-Vector with BAM, that is, the spatial dependency among inputs. Thought in larger 

circuit (may be long depth or a big number of gates), the input correlations could only 

do little affect. But in special case, such as small circuits or circuits with specific input 

patterns, it still would be a serious problem. For circuits without specific input 

patterns, we could simulate them in various input patterns to eliminate the error 
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caused by input spatial correlations, but for circuits with specific input patterns, we 

could only find out some way to process the dependency for controlling the error.  

 Another point could be improved is the way represent signal transition or the 

way we propagate the BAM data structure. In probabilistic calculation, the most 

correct consequence would appear when the probabilities in each state are balance. 

However, in FR-Vector, the probability of transition F and R would be by far smaller 

than the probability of transition 1 and 0 in no doubt, and result in an inaccuracy. So 

we should find a new way to represent the transition probabilities, or we should find a 

method that could calculate diverge values of probabilities without losing accuracy.       



 59

  

Reference: 

[1] Radu Marculescu, Diana Marculescu, and Massoud Pedram, “Probabilistic 
Model of Dependencies During Switching Activity Analysis”, Computer-Aided 
Design of Integrated Circuits and Systems, IEEE Transactions on, Volume: 
17, Issue: 2, Feb. 1998 Pages:73 – 83. 

[2] Farid N. Najm, Member, IEEE,“A survey of Power Estimation Techniques in 
VLSI Circuit,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions 
on , Volume: 2, Issue: 4, Dec. 1994 Pages:446 – 455. 

[3] A. Shen, A. Ghosh, S. Devadas, and K. Keutzer, “On average power dissipation 
and random pattern testability of CMOS combinational logic networks,” 
Computer-Aided Design, 1992. ICCAD-92. Digest of Technical Papers, 1992 
IEEE/ACM International Conference on, 8-12 Nov. 1992 Pages: 402 – 407. 

[4] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco, “Testability 
Measures in Pseudorandom Testing,” Computer-Aided Design of Integrated 
Circuits and Systems, IEEE Transactions on, Volume: 11 , Issue: 6, June 1992  
Pages:794 – 800. 

[5] Landy Huang, Zheng-Lun Lin, Chan-Shian Huang, and Chang-Jin Chen, 
“FR-vector A new Model for Switching Activity Analysis”, The 14th VLSI 
Design/ CAD Symposium, Session P2-14. 

[6] T. Uchino, F. Minami, T. Mitsuhashi, and N. Goto, “Switching Activity Analysis 
using Boolean Approximation Method,” Computer-Aided Design, 1995. 
ICCAD-95. Digest of Technical Papers, 1995 IEEE/ACM International 
Conference on, 5-9 Nov. 1995 Pages: 20 – 25. 

[7] S. M. Kang, “Accurate Simulation of Power Dissipation in VLSI Circuits”, 
Solid-State Circuits, IEEE Journal of, Volume: 21, Issue: 5 , Oct 1986 
Pages:889 – 891. 

[8] Ashok K. Murugavel and N. Ranganathan, “Petri Net Modeling of Gate and 
Interconnect Delays for Power Estimation”, Very Large Scale Integration (VLSI) 
Systems, IEEE Transactions on, Volume: 11, Issue: 5 , Oct. 2003 Pages:921 – 
927. 

[9] Jose C. Costa, Jose C. Monteiro, and Srinivas Devadas, “Switching Activity 
Estimation using Limited Depth Reconvergent Path Analysis”, Low Power 
Electronics and Design, 1997. Proceedings, 1997 International Symposium 
on, 18-20 Aug. 1997 Pages:184 – 189. 



 60

[10] S. Theoharis , G. Theodoridis , D. Soudris, and C. Goutis, A. Thanailakis “A fast 
and  accurate delay dependent method for switching estimation of large 
combinational circuits,” Computers and Digital Techniques, IEE 
Proceedings-, Volume: 147, Issue: 6, Nov. 2000 Pages:444 – 450. 

[11] Jer Min Jou, Shung-Chih Chen, and Chih-Liang Wang, “Fast delay-dependent 
power   estimation of large combinational circuits” Circuits and Systems, 1998. 
ISCAS '98. Proceedings of the 1998 IEEE International Symposium on, Volume: 
6, 31 May-3 June 1998 Pages: 53 - 56 vol.6. 

[12] Ki-Seok Chung, Tae-Whah Kim, and C.L Lin, “G-vector: a new model for glitch 
analysis,” ASIC/SOC Conference, 1999. Proceedings. Twelfth Annual IEEE 
International, 15-18 Sept. 1999 Pages:159 – 162 

[13] C. Ding, C. Tsui, and M. Pedram, “Gate-level power estimation using tagged 
probabilistic simulation”, Computer-Aided Design of Integrated Circuits and 
Systems, IEEE Transactions on, Volume: 17 , Issue: 11 , Nov. 1998 Pages:1099 – 
1107. 

[14] MCNC, http://www.cbl.ncsu.edu 
[15] Tan-Li Chou and Roy. K, “Estimation of Circuit Activity Considering Signal 

Correlations and Simultaneous Switching”, Computer-Aided Design of 
Integrated Circuits and Systems, IEEE Transactions on, Volume: 15, Issue: 
10 , Oct. 1996 Pages:1257 - 1265. 

[16] K. P. Parker and E. J. McCluskey, “Probabilistic treatment of general 
combinational networks,” IEEE Transactions Comput. on, Volume: C-24, June 
1975 Pages: 668-670.  

[17] F. Najm, “Transition density, a stochastic measure of activity in digital circuits,” 
in 28th ACM/IEEE Design Automation Conference, San Francisco, CA , June 
17-21, 1991 Pages:644-649. 


