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CHAPTER 2  

MATERIAL PROPERTIES 

PSOI and 6H-SiC substrate materials are used to make high temperature 

piezoresistive sensors in this study. In comparison with polysilicon, the properties of 

6H-SiC have not been well documented. Therefore, in this chapter, elasticity and 

piezoresistivity of 6H-SiC will be reviewed and summarized. The isotropic material 

properties on the (0001) surface of 6H-SiC will be presented at the end of this chapter. 

2.1 Crystal Structure of 6H-SiC 

The crystal class of 6H-SiC is 6mm, which belongs to the hexagonal crystal 

system. It has four indices in the Milller Index system as illustrated in Fig. 2.1. The 

representation of this system is [a1, a2, a3, c]. To determine a space in the hexagonal 

crystal system, the three non-coplanar axes, a1, a2, c, are sufficient. So a3 is a 

redundant variable in the hexagonal system representation and the following equation 

needs to be satisfied: 

 3 1 2a a a= + . (2.1) 
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(a) 

 

(b) 

Figure 2.1. Miller Index system for a hexagonal system. 

 

The crystallographic structure of the hexagonal polytype 6H can be described by 

a series of one hexagonal and two cubic stacking layers (symbol hcc) with a 

hexagonal c axis for the hexagonal stacking layers and cubic [111] direction for the 

cubic ones. The atom stacking sequence of 6H-SiC is illustrated in Fig. 2.2. 
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Figure 2.2. Atom structure of 6H-SiC. Green (smaller) and blue (bigger) balls 

represent for carbon and silicon atoms, respectively. 

 

2.2 Elasticity and Piezoresistivity of 6H-SiC 

The resistance of a material can be expressed by its geometry, 

                           
A

l
R ρ=   (2.2) 

where l  is the length, A  is the area and ρ  is the characteristic resistivity of the 

material. The derivation of the resistance can be expressed by 

 
ρ
ρ∆+∆−∆=∆

A

A

l

l

R

R
  (2.3) 

In this equation, if a stress is applied to the material, its geometry, resistivity and 

thus, resistance will be changed. Therefore, the expression in Eq. (2.3) can be written 

as 
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ρ
ρµε ∆++=∆

)21(
R

R
  (2.4) 

where ε  is the strain which equals 
l

l∆
 and µ  is the Poisson’s ratio. 

The above derivation is based on an isotropic material, which means that the 

material’s properties such as resistivity, Young’s modulus, and Poisson’s ratio are 

independent of the material’s crystal orientation. For single crystalline semiconductor 

materials such as 6H-SiC, these properties depend on the crystal orientation and are 

anisotropic. The tensor expressions of the stiffness c , compliance s , and 

piezoresistance π , of a semiconductor with hexagonal crystal structure have five 

independent variables which are connected by the following expressions. 

 εcσ ⋅=   (2.5) 

 σsε ⋅=   (2.6) 

 σπ
ρ ⋅=∆

ρ
  (2.7) 

where σ  and ε  are the tensor expressions of stress and strain, respectively. Because 

of the symmetry operation, the elastic stiffness coefficients, ijc , the elastic 

compliance coefficients, ijs , and the piezoresistance coefficients, ijπ , of the 

hexagonal crystal system can be written as 
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and 
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respectively[25]. 

In order to perform the design and simulation of the proposed sensors, the 

Young’s Modulus, E , Poisson’s ratio, ν , and the longitudinal and transverse 

piezoresistance coefficients, lπ  and tπ , in the direction of an arbitrary unit vector l
�

 

with the direction cosines, ),,( iii nml , in the hexagonal crystal system have to be 

known. They are defined as:  
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In Eqs. (2.11)-(2.14), the transformation from the crystal axes to an arbitrary unit 

vector, l
�

, is given by direction cosines between two axes, which can be expressed in 

terms of Euler’s angles as described in Eq. (2.15) and depicted in Fig. 2.3. 
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Figure 2.3. Euler’s angles. 
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By Eqs. (2.11)-(2.14), the Young’s Modulus, Poisson’s ratio, and the longitudinal 

and transverse piezoresistance coefficient of a material with hexagonal crystal structure at 

any crystal orientation can be obtained if the elastic compliance and piezoresistance 

coefficients are known. For a (0001) on-axial 6H-SiC wafer, which is commercially available, 

the Young’s Modulus, Poisson’s ratio, longitudinal and transverse piezoresistance 

coefficient on the surface can be expressed as  

 11/1 sE =  (2.16) 

 1112 / ss−=ν  (2.17) 

 11ππ =l  (2.18) 

 12ππ =t  (2.19) 

Thus, they are independent of the crystal orientation on the (0001) surface of 6H-SiC wafers. 

The four elastic constants 11c , 33c , 44c  and 12c  of 6H-SiC were first 

measured by Arlt and Schodder[26] by a resonance method and a double-pulse 

method. However, the complete set of elastic constants of 6H-SiC was published in 

1997 by Kamitani and his co-workers[27] using the Brillouin-scattering method. The 

values of the elastic compliance and stiffness coefficients of 6H-SiC are rewritten in 

Table 2.1 and 2.2 according to Kamitani’s results[27].  
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Table 2.1. 6H-SiC elastic stiffness (unit: G Pa) 

11c  12c  13c  33c  44c  66c  

501 111 52 553 163 195 

 

Table 2.2. 6H-SiC elastic compliance (unit: 10-11 Pa-1) 

11s  12s  13s  33s  44s  66s  

0.209 -0.036 -0.017 0.181 0.595 0.49 

 

The reports of the piezoresistance coefficients of 6H-SiC can be traced back as 

early as 1968 by Rapatskaya[19]. Then, between 1974 and 1976, the Russian 

scientists Guk[28][29], Azimov[30] and Lomakina[31] also reported the 

piezoresistance coefficients of 6H-SiC with respect to different impurity 

concentrations and temperatures. Table 2.3 and 2.4 summarize the published results of 

n- and p-type 6H-SiC piezoresistance coefficients, respectively. In the tables, the 

gauge factors of 6H-SiC, which are derived by multiplying 11π  and 11c , vary 

significantly from each other due to different impurity concentrations and the varying 

quality of the SiC material, used by the authors. Because of the advance in 6H-SiC 

crystal growth technology, purer 6H-SiC wafers with larger size and fewer defects 
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became commercially available. Shor and Okojie characterized the 6H-SiC 

piezoresistance coefficients with the doping concentration distributed between 10-17 

and 10-19 cm-3[20][32] and found that the magnitude of the gauge factor is about 30 at 

room temperature.  
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Table 2.3. Published n-type 6H-SiC piezoresistive coefficients. (N.M.: No 

Mention) 

Year Authors Doping 

Level cm-3 

Resistivity 

Ω-cm 

Piezoresistance 

Coefficients 

ijπ  (10-11 Pa-1) 

Gauge 

Factor 

Reference 

N.M. 0.2 11
7.8π = −  

12
23.7π = −  

13
32π =  

31
0.4π = −  

33
0.8π =  

-37 

N.M. 2.5 11
61.9π = −  

12
1.08π = −  

13
64.0π =  

31
26.9π = −  

33
54.8π =  

-295 

1968 

 

I.V. Rapatskaya,et al. 

N.M. 23 11
142.03π = −  

12
26.0π =  

13
116π =  

31
26.9π = −  

33
128.6π =  

-676 

[19] 

1.7·1017 0.45 11
3.8π = −  -18 

1.6·1018 0.12 11
5.2π = −  -25 

1974 G.N. Guk, et al. 

3·1019 0.02 11
2.7π = −  -13 

[28] 

3.0·1017 1.1 11
2.12π = −  -10 

2.9·1017 0.63 11
3.1π = −  -15 

6.6·1017 0.084 11
6.0π = −  -29 

8.3·1017 0.18 11
5.38π = −  -27 

1975 S.A. Azimov, et al. 

1.6·1018 0.047 11
8.33π = −  -40 

[30] 

1.8·1017 0.12 11
7.2π = −  -34 1994 J.S. Shor, et al. 

3.0·1018 0.03 11
6.02π = −  -29 

[20] 

1998 R.S. Okojie, et al. 2·1019 N.M. 11
5.3π =  25 [32] 
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Table 2.4. Published p-type 6H-SiC piezoresistive coefficients. (N.M.: No 

Mention) 

Year Authors Doping 
Level 
cm-3 

Resistivity 
Ω-cm 

Piezoresistance 

Coefficients 

ijπ  (10-11 Pa-1) 

Gauge 

Factor 

Reference 

1976 G.A. Lomakina 5·1020 N.M. 11
10.5π =  

12
4.7π = −  

13
8π = −  

31
7.3π = −  

33
23π =  

44
35π =  

16
2.5π =  

50 [31] 

1998 R.S. Okojie, et al. 2·1019 N.M. 11
6.55π =  31 [32] 

 

Because on-axial (0001) 6H-SiC wafers will be used in this study, the isotropic 

model is used for the analytic model. The Young’s modulus 478=E  GPa, the 

Poisson’s ratio 172.0=ν  and the longitudinal piezoresistance coefficient 

11 6.55lπ π= = ×10-11 Pa-1 is used for the design of the piezoresistive pressure and 

tactile sensor. Due to the limited reference data, 500 MPa is used as the yield stress of 

6H-SiC in order to obtain the working range of the piezoresistive sensors. 

 


