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CHAPTER 3  

DESIGN AND SIMULATION OF THE SENSOR 

In this chapter, the design of piezoresistive pressure and tactile sensors based on 

a circular membrane with center boss structure is described respectively. According to 

the geometry of the sensor, the analytic solutions are developed in order to determine 

the sensitivity of the sensor. Then, some guidelines to design highly sensitive 

piezoresistive sensors are suggested from these derived equations. Finally, FEM 

(Finite Element Method) is used to verify the derived solutions. 

3.1 Design of Piezoresistive Pressure Sensors Based on 

Circular Membrane with Center Boss Structure 

3.1.1 Introduction 

For regular silicon piezoresistive pressure sensors, p-type single crystal 

piezoresistors are used and placed at the edge of a rectangular membrane because 

their longitudinal piezoresistive effect is comparable with their transverse one but 

with an opposite numerical sign. Therefore, a Wheatstone bridge with differential 

signal can be realized, which can maximize the sensitivity of the sensor. However, 

poly-Si and 6H-SiC have a longitudinal piezoresistive effect that is much larger than 

its transverse one. With such sensing elements, a structure which can provide 
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longitudinal stresses with different numerical signs is required if a half or full 

Wheatstone bridge is to be used for the measurements. Conventionally, a mechanical 

structure with a circular membrane and an inner circular center boss provides such a 

function. It is known that this kind of sensors has longitudinal stresses with different 

signs at the outer edge and inner edge of the membrane when a pressure is applied to 

the membrane. Such a structure was first used in the micro silicon pressure sensor by 

Shimazoe and his co-workers[33]. They showed that a silicon diaphragm with a 

center boss could solve the problem of large pressure-induced deflection of the 

diaphragm, which occurs when using membranes without center boss. Then, 

Schäfer[9] and Yasukawa[34] used the same structure to fabricate pressure sensors 

with polysilicon piezoresistors and diffused silicon piezoresistors, respectively. 

Recently, the pressure sensor with a circular center boss was widely used in 

Microsensor and Actuator Technology Center at TU-Berlin[18][35-37] because it 

provides high sensitivity and over-range protection after the center boss touches the 

bottom plate. In contrast with its well-known applications, the analytic solution and 

the working principle of such kind of sensors have not been discussed in detail. 

Therefore, a hand-calculation prior to the FEM simulation is not possible. In this 

section, the analytic solution of this kind of sensors will be derived in order to obtain 

the design concept. 
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3.1.2 Analysis 

The center boss pressure sensors (CBPS) based on silicon was analyzed by 

Yasukawa[34] using the beam theory. Here, we start from the plate theory[38] and 

consider only the effect of small deflections. As illustrated in Fig. 3.1, three working 

conditions of a CBPS are considered: (a) the outer edge of the membrane is fixed 

while the center boss is free, (b) the outer edge of the membrane and the center boss 

are fixed and (c) the outer edge of the membrane is fixed and the center boss has a 

distance from the bottom plate. This will be discussed in the following sections. 
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Figure 3.1. Three working conditions of a center boss pressure sensor: (a) the 

outer edge of the membrane is fixed and the center boss is free. (b) 

both the outer edge of the membrane and the center boss are fixed. 

(c) the outer edge of the membrane is fixed and the center boss has a 

distance from the bottom. 
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Case (A) The outer edge of the membrane is fixed while the center 

boss is free 

The general equation of uniformly loaded circular plates can be expressed as 

follows: 

 

1 ( )1

2

dw rd d qr
r

dr r dr dr D

⎡ ⎤⎛ ⎞ =⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

  (3.1) 

where w  is the deflection due to the applied intensity load q  and r  is the radial 

distance. D  is called the flexural rigidity of the plate and is defined as 

 
)1(12 2

3

ν−
= Eh

D   (3.2) 

where E  is the Young’s modulus, ν  is the Poisson’s ratio and h  is the thickness 

of the plate. 

The general solution of this differential equation can be represented by  
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1
1 2 3( ) ln

64 4

C rqr r
w r C C

D a
= + + +  (3.3) 

where the three unknown constants, 1C , 2C  and 3C , will be determined by three 

suitable boundary conditions. For a circular membrane with a center boss, the 

deflection and the slope of the membrane at the circumference and at the edge of the 

center boss are zero if the center boss is assumed as a rigid body. So the following 

boundary conditions are used to find the analytic solution: 



 

 22 

 1 ( ) 0w a = , 1 ( ) 0w a′ =  and 1 ( ) 0w b′ =   (3.4) 

After solving the differential equation, Eq. (3.1), the deflection of the membrane 

can be expressed as 
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 (3.5) 

The normalization is made by the substitution of b  to na  and r  to ax , so 

the above equation can be rewritten as 
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which agrees to the result by Engl[39]. The correspondent longitudinal and transverse 

stress at the top surface of the annular membrane where the piezoresistors are placed 

can be obtained by the following equations,  
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and 
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Therefore, the longitudinal and transverse stresses, caused by the deflection are 
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respectively. If 0n = is substituted in Eq. (3.9) and (3.10), which means a circular 

membrane without a center boss structure, the solutions for the deflection and the 

longitudinal and transverse stress are coincident to a pressure sensor with a circular 

membrane that has a radius a  
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From Eqs. (3.9), (3.10), (3.12) and (3.13), we can see that both the stresses of 

these two structures are proportional to the square of the ratio of the membrane’s 

radius to the membrane’s thickness. Table 3.1 summarizes some properties of a 

circular membrane with and without a center boss. To make a high sensitivity 

piezoresistive sensor, the piezoresistors are placed at the positions where the 

maximum values of the longitudinal and transverse stress occur. As we can see from 

Table 3.1, these positions are at the center ( 0x = ) of the circular membrane pressure 

sensor (CMPS) and at the inner ( x n= ) and outer ( 1r = ) edge of the CBPS. For a 

CBPS, the magnitudes of the longitudinal stresses at the inner and outer edge of the 
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annular membrane are the same but have the opposite sign. Therefore, the CBPS 

needs only the longitudinal stress to form a full Wheatstone bridge. 

 

Table 3.1 Properties of circular membranes with and without center boss 

structure. 
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Figure 3.2. Arrangement of the piezoresistors on the center boss pressure sensor 

(a) top view of the sensor chip (b) the schematic view of the sensor. 

 

Fig. 3.2 shows the position of the piezoresistors on the CBPS. This schematic 

will be used to design and calculate the sensitivity of the sensor. The sensitivity of the 

CBPS is 
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  (3.14) 

where 0R  is the piezoresistor’s resistance without stress, oR∆  and iR∆  are the 

changes in the resistance at the outer and inner circumference of the annular 

membrane, respectively. For the CMPS structure, we get 
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where 1 ( )r c nσ  is the longitudinal stress of CMPS at the outer edge of the circular 

membrane. Comparing Eq. (3.14) and (3.15), we find that the sensitivity of CBPS is 

two times larger than that of CMPS if a full Wheatstone bridge is used. 

 

Case (B) The outer edge of the membrane and the center boss is 

fixed 

This condition can be modeled by an annular membrane with a built-in inner and 

outer fixture as illustrated in Fig. 3.3. To solve this problem, the differential equation 

for a circular membrane with an intensity q  of the load distributed over the plate is 

used and expressed as 

 21 1 ( )d d d dw r q
r r

r dr dr r dr dr D

⎧ ⎫⎡ ⎤⎛ ⎞ =⎨ ⎬⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦⎩ ⎭

 (3.16) 

With the following boundary conditions, 
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 2 ( ) 0w a = , 2 ( ) 0w b = , 2 ( ) 0w a′ =  and 2 ( ) 0w b′ =  (3.17) 

which are the same conditions as for a clamped-clamped beam, Eq. (3.16) can be 

solved and normalized as 
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  (3.18) 

So the distribution of the longitudinal and transverse stresses can be obtained 

according to Eq. (3.7) and (3.8), 

{
( )

( )

2
2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3( ) 4 1 3 ( 1 ) ln
8 (1 ) 4 ln

( 1 )ln 1 5 1 ( 1 ) 4(1 ) ln

(1 ) (2 3 ) 1 2 ( 1 ) (1 )(1 ) ln

r
a qx n x x v x n

h x n n n

n n n x x n x x x x

n x x x n x x n x x

σ

ν ν ν ν

ν ν ν ν

⎡ ⎤
⎢ ⎥⎣ ⎦⎡ ⎤

⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

⎫⎡ ⎤
⎬⎢ ⎥⎣ ⎦⎭

= − − + + − +
− −

+ − + − + + + + + − + + +

− − + − − + + + − + + + +

  (3.19) 

 and 

 

{
( )

( ) }

2
2 2 2 2 2

2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3
( ) 4 1 ( 1 3 ) ln

8 (1 ) 4 ln

( 1 ) ln 1 5 1 (1 ) 4(1 ) ln

(1 ) ( 1 2 ) 1 ( 2 3 ) (1 )(1 ) ln

t

a q
x n x x x n

h x n n n

n n n x x n x x x x

n n x x x x x n x x

σ ν

ν ν ν ν

ν ν ν ν

⎡ ⎤= − − + + − + +⎣ ⎦⎡ ⎤− −⎣ ⎦

⎡ ⎤− + − + + + + − + + + + +⎣ ⎦

⎡ ⎤− − − + + + − − + + − + + + +⎣ ⎦

  (3.20) 



 

 28 

The longitudinal stresses at the outer and inner edges of the membrane are taken 

into consideration: 
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If this structure is used as a pressure sensor and the piezoresistors are placed at 

the outer and inner edge of the membrane as in Case (A), the sensitivity of the sensor 

is 
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Figure 3.3. Model used to analysis the deflection and stress distribution when 

both the outer edge of the membrane and the center boss are fixed. 

 

Case (C) The outer edge of the membrane is fixed and the center 

boss has a distance from the bottom plate 

In this case, the center boss of the CBPS will touch the bottom plate when the 
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deflection of the membrane is larger than the distance between the center boss and the 

bottom plate d . This design is usually adapted for an over-range protection. Before 

the center boss touches the bottom plate, the solutions of Case (A) can be used. The 

solutions after the center boss touches the bottom can be obtained by a superposition 

of the solutions from Case (A) and (B) and expressed as 

 3 1 2( ) ( ) ( )
th thq q q q q

w r w r w r
= = −

= +  (3.24) 

 3 1 2( ) ( ) ( )
th th

r r rq q q q q
r r rσ σ σ

= = −
= +  (3.25) 

 3 1 2( ) ( ) ( )
th th

t t tq q q q q
r r rσ σ σ

= = −
= +  (3.26) 

where the threshold pressure thq , is the pressure when the deflection of the membrane 

equal to d . thq  can be obtained by considering the maximum stress, which is 

defined as the longitudinal stress at the inner edge, 1( )r nσ , multiplied by a safety 

factor η , so it doesn’t become larger than the yield stress of the material ysσ . From 

Table 3.1, the following equation can be obtained. 
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After substituting this equation into Eqs. (3.24), (3.25) and (3.26), the 

distribution of the deflection and the stresses can be obtained. If Eq. (3.27) is 

substituted into 1( )w n , the maximum allowable deflection of the membrane is 
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Therefore, the distance between the center boss and the bottom plate can be calculated 

in order to have an over-range protection for the sensor. 

3.1.3 Simulation and Discussion 

Numerical figures are calculated and pesented in order to obtain a concrete 

concept for the distribution of the membrane’s deflection and stress under different 

conditions. The calculation is made, using the following parameters. For a membrane 

based on (100) silicon, the Youngs’ modulus and Poisson’s ratio along <001> 

orientations are 130 GPa and 0.28, respectively[40]. The radius and the thickness of 

the membrane are 1 mm and 50 µm respectively, which can be achieved by a normal 

MEMS (Micro Electro-Mechanical System) process. The load for the simulation is a 

1 bar pressure. 

FEM based on ANSYS® software[41] is used to verify these approximate 

solutions. An element called SHELL51 is used for the simulation of Case (A) and (B). 

For the simulation of Case (C), another two elements called TARGE169 and 

CONTA174 are introduced to perform the simulation after the center boss touches the 

bottom. The simulated results are illustrated beside the corresponding analytic 

solution. 

First, the distributions of the deflection, longitudinal and transverse stress along 

the radial distance with respect to different ratios of Case (A) are illustrated in Fig. 3.4. 
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From this figure, the absolute maximal values of the deflection and the longitudinal 

and transverse stress occur as n  approaches 0, which is a circular membrane. So if 

only one piezoresistor or a fourth Wheatstone bridge is needed, a circular membrane 

will yield the maximum output signal since it provides the maximum stress at the 

same intensity of the loading pressure. However, a full Wheatstone bridge is usually 

adapted for a pressure sensor because it provides not only the maximum sensitivity 

but also eliminates the non-differential noise in comparison to the quarter and half 

bridges. Four piezoresistors with 2 pairs having the same sensitivity but opposite 

signs must exist in a piezoresistive pressure sensor. Here, the circular membrane 

would not be a suitable choice. But for a circular membrane with a center boss, the 

same longitudinal stress with opposite signs can be found at the inner and outer edge 

of the circular membrane, thus it has a larger sensitivity than a circular membrane if a 

full Wheatstone bridge is used. 
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Figure 3.4. Analytic solutions of Case (A) in comparison with FEM results for: (a) 

the distribution of the deflection and (b) longitudinal and transverse 

stresses along the radial distance with respective to different ratios, 

n .  
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Attention should be paid on Eq. (3.9), since it contains the information about the 

design of a CBPS. As we can see, the longitudinal stress is a fourth order function of 

r . Even the magnitudes of the stresses at the inner and outer edge of the membrane 

are the same, but the distribution of the stress is nonlinear along the radius. Moreover, 

the position, where rσ  is zero, is not at the middle of the annular membrane. This 

property will cause a pair of non-balanced longitudinal stresses if the piezoresistors 

are not precisely situated at the inner and outer edge of the circular membrane. To see 

the changes of the stress resulting from a small displacement from the edge (in other 

words, the sensitivity of the sensor due to the misplacement of the piezoresistors), the 

slopes of the stresses at the outer and inner membrane are  

 2
1 2

3
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qa
n
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σ ν ν′ = − + +  (3.29) 

and 

 1
1 2

3
( ) [(1 ) (3 ) ]
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n n n

h
σ ν ν−′ = − + + , (3.30) 

respectively. As n  approaches 1, the slope of these two stresses becomes the same. 

Thus, the distribution of the longitudinal stress along the radius becomes linear and 

the zero stress will be in the middle of the annular membrane. However, as the radius 

of the center boss becomes larger, the longitudinal stress will become smaller. When 

the longitudinal stress is smaller than the maximum transverse stress of the CMPS, the 

CBPS has no more advantage over the high sensitivity. Therefore, a criterion to limit 
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n  is derived: 
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The ratio n  should satisfy the following inequality,  

 
1

0
2

n
ν−< <  (3.32) 

in order to achieve a higher sensitivity for the CBPS. The curve of this inequality is 

illustrated in Fig. 3.5 with a distribution of Poisson’s ratio from 0 to 0.5. This range of 

Poisson’s ratio is chosen for the application of most materials. As we can see in this 

figure, a choice of 0.5n <  yields a highly sensitive CBPS with all kinds of materials. 
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Figure 3.5. Determination of the ratio of the radius of center boss to the radius of 

circular membrane at a given Poisson’s ratio. 
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Fig. 3.6 shows the distribution of the deflection and the stresses in Case (B) 

when n  is 0.25, 0.5 and 0.75, respectively. In comparison to Case (A), the stresses 

are evidently smaller and do not have the same magnitude with opposite numeric 

signs at the edge of the annular structure. 

Fig. 3.7 shows the dependence of these stresses on the ratio n . Both Case (A) 

and (B) are drawn together, so the longitudinal stresses at 1 bar can be compared. As 

we can see, when the ratio n  is smaller than 0.13, the longitudinal stress at the inner 

edge is larger than the one of Case (A) at the same applied pressure because the stress 

is concentrated at the edge of the center boss as it is getting smaller. 

If this structure is used as a pressure sensor and the piezoresistors are placed at 

the outer and inner edge of the membrane as in Case (A), the sensitivity of the sensor 

is 
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 (3.33) 

To compare the sensitivities of Case (A) and (B), Fig. 3.8 is drawn with a Gauge 

Factor (GF) of 30. As we can see, the sign of the sensitivity in Case (B) is negative 

since the longitudinal stress at the outer edge of the membrane is smaller than at the 

inner edge. Moreover, the sensitivity goes down sharply as n  approaches 0 because 

the longitudinal stress at the inner edge increases sharply as we have seen in Fig. 3.7. 
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Figure 3.6. Analytic solutions of Case (B) in comparison with FEM results for (a) 

the distribution of the deflection and (b) longitudinal and transverse 

stresses along the radial distance with respect to different ratios, n . 
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Figure 3.7. Longitudinal stresses with respect to the ratio of the radius of the 

center boss to the radius of the circular membrane. 
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Figure 3.8. Sensitivity of Case (A) and Case (B) with respect to n . 

 

Fig. 3.9 is drawn in order to examine Case (C). The distribution of the deflection 

and stresses of a CBPS is shown in that figure when the applied pressure is larger than 

the threshold pressure. In this case, the threshold pressure is set to 10 bar. According 

to Table 3.1, it will cause about 6.9 µm deflection of the membrane. Therefore, d  is 

set to this value. Since n  is 0.25, the change of the stresses is larger when the 

applied pressure is smaller than the threshold pressure which is coincident to Fig. 3.7. 
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Figure 3.9. Analytic solutions of Case (C) in comparison with FEM results for: (a) 

the distribution of the deflection, (b) longitudinal and (c) transverse 

stresses along the radial distance with respect to different pressures. 

 

3.2 Design of Piezoresistive Tactile Sensors Based on 

Circular Membrane with Center Boss Structure 

3.2.1 Introduction 

When a robotic hand tries to grasp an object, sensors are needed to help the hand 

to determine the magnitude, the position and the direction of the force or the torque it 

applies on the object. Only then can the robotic hand take the object stable and safely. 
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The so-called fingertip sensors are used to accomplish these tasks. Fingertip sensors 

have been categorized into intrinsic force/torque sensors and extrinsic tactile sensor 

[42][43]. Unlike the intrinsic force/torque sensor, which detects more than one degree 

of the force and torque at one device, the extrinsic tactile sensor detects the contact 

force only at a single point and in normal direction. By collecting data of many 

extrinsic tactile sensors in a 2-dimensional space, the tactile sensor array is formed 

and thus, a force image of the contacted object can be obtained. In recent years, many 

tactile sensors were proposed based on different materials, structures and fabrication 

methods[44-50]. Despite their good performance, none of them dominates the market, 

due to the costs[51] caused by either using a special material to sense the force or a 

complex packages to introduce the force to the sensor. These problems were solved by 

introducing a MEMS (Micro Electro-Mechanical System) based piezoresistive 

pressure sensor[52], which can be used as a piezoresistive tactile sensor[53-56], 

therefore becoming the most successful product for this application. Having the same 

advantages as piezoresistive pressure sensors, piezoresistive tactile sensors provide 

high sensitivity, good linearity, low hysteresis, an easy sensing circuit and the 

possibility of batch processing. However, those proposed tactile sensors still require 

additional packaging to introduce the force to the sensor because there is no 

force-conducting structure on the membrane. Moreover, in these previous researches, 



 

 42 

the distribution of the stress in the membrane of the sensor has not been analyzed in 

detail when a contact “force” instead of a “pressure” is applied to the sensor since the 

behavior of a force on a sensor is different from a pressure on a sensor. Therefore, a 

piezoresistive tactile sensor with a circular membrane and a center boss is proposed 

and analyzed in order to give a design concept. It is known that a piezoresistive 

pressure sensor with a circular membrane and center boss has higher sensitivity and 

better linearity than one without center boss[57]. Moreover, the center boss on the 

membrane can provide a structure to conduct force and thus, could reduce the 

complexity of manufacturing and the costs.  

3.2.2 Analysis 

The proposed tactile sensor is illustrated in Fig. 3.10. It contains 3 parts: a center 

boss which serves as a force-conducting structure, a circular membrane which serves 

as a force-sensing structure and a frame which is used to support the center boss and 

the circular membrane. When a force is applied to the sensor, the force-conducting 

structure introduces the applied force to the sensing structure. The sensing elements 

on the sensing structure, which are piezoresistors in Fig. 3.10, convert mechanical 

signals to electrical signals. Therefore, the contact force can be obtained through a 

calibration process. In our design, a center boss that is a little higher than the 

surrounding frame is used to conduct the applied force. This structure will limit the 
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movement of the contacting object as illustrated in Fig. 3.11. If the deflection of the 

membrane is larger than the distance between the sensor and the bottom plate, which 

may be a glass or a ceramic, the plate will also constrain the further movement of the 

sensor and, therefore, avoid the further deflection of the circular membrane. As a 

result, the sensor will not be destroyed if an over-range contact force occurs. This 

distance can be determined once the deflection function of the membrane is known. 

 

force-
conducting
structure

force-
sensing

structure
frame

piezoresistors
 

Figure 3.10. Cross section view of the proposed tactile sensor. 
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Figure 3.11. Deflection of the tactile sensor while an object contacts. 

 

Because the tactile sensor is based on a circular membrane with center boss 

structure, the differential function based on symmetrical bending of circular plates 

will be used to derive the solution. First, the distribution function of the deflection of 

the circular membrane with center boss structure due to the contact force will be 

derived. Then, this function will be used to obtain the distribution function of the 

longitudinal and transverse stress. After obtaining these stress functions, the 

sensitivity of the tactile sensor with a specified geometry can be evaluated. 

The model of the tactile sensor is illustrated in Fig. 3.12. The circular membrane 

has a radius a  and a thickness h  and the center boss has a radius b . The 

deflection, ( )w r , of a circular membrane along the radial distance r  due to a shear 
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force Q , which is defined by per unit length of the cylindrical section of radius r , 

can be expressed as 

 
1d d dw Q

r
dr r dr dr D

⎡ ⎤⎛ ⎞ =⎜ ⎟⎢ ⎥
⎝ ⎠⎣ ⎦

, (3.34) 

where D  is the flexural rigidity of the plate and is equal to  

 
3

212(1 )

Eh
D

ν
=

−
, (3.35) 

where E  is the Young’s modulus and ν  is Poisson’s ratio. 

As a contact force P  is applied to the center boss of the tactile sensor, the shear 

force per unit length of a circumference with a radius r  can be expressed as 

 
2

P
Q

rπ
= . (3.36) 

Substituting this equation in Eq. (3.34) and integrating, we can obtain the 

following expression: 

 
22

1
2 3( ) ln 1 ln

8 4

C rr r r
w r P C C

D a aπ
⎛ ⎞= − − − +⎜ ⎟
⎝ ⎠

. (3.37) 

The three constants in Eq. (3.37) will be further determined by three boundary 

conditions. We assume that there is no deflection at the outer edge of the membrane 

and the slopes of the deflection are zero at both the outer and inner edge: 

( ) 0w a = , '( ) 0w a =  and '( ) 0w b = . 

So the deflection of the membrane can be solved and expressed as 
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( )
2

2 2 2 2 2

2
( ) 2( ) ln 1 ( ) 2ln( ) (1 ( ) ) 1 ( ) 2( ) ln

16 1 ( / )

Pa b b r r b r r r
w r

a a a a a a a aD b aπ
⎧ ⎫⎡ ⎤ ⎡ ⎤= − − + + − − +⎨ ⎬⎢ ⎥ ⎢ ⎥− ⎣ ⎦ ⎣ ⎦⎩ ⎭

  (3.38) 

After a normalization of this equation by substituting b na=  ( 0 1n< < ) and r xa=  

( 0 1x< < ), this equation can be rewritten as 

 
2

2 2 2 2 2
2( ) 2 ln ( 1 2 ln ) (1 )(1 2 ln )

16 (1 )

Pa
w x n n x x n x x x

D nπ
⎡ ⎤= − + − + − − +⎣ ⎦−

. 

  (3.39) 

The corresponding longitudinal and transverse stress can be obtained by the following 

equations, 

 
2

2 2 2

6 ( ) 6 ( ) ( )
( ) r

r

M r D d w r dw r
r

h h dr r dr

νσ
⎛ ⎞

= = − +⎜ ⎟
⎝ ⎠

 (3.40) 

and 

 
2

2 2 2

6 ( ) 6 1 ( ) ( )
( ) t

t

M r D dw r d w r
r

h h r dr dr
σ ν

⎛ ⎞
= = − +⎜ ⎟

⎝ ⎠
. (3.41) 

Therefore, the longitudinal and transverse stress due to the applied force P  can be 

expressed as 

 
2 2

2 2 2 2

3 1
( ) 1 (1 ) ln (1 ) ln (1 ) ln

2 1 1r

P n n
x n n x

h n n x
σ ν ν ν

π
⎡ ⎤

= − − + − − − +⎢ ⎥− −⎣ ⎦
 

  (3.42) 

and  
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2 2

2 2 2 2

3 1
( ) (1 ) ln (1 ) ln (1 ) ln

2 1 1t

P n n
x n n x

h n n x
σ ν ν ν ν

π
⎡ ⎤

= − − + + − − +⎢ ⎥− −⎣ ⎦
 

  (3.43) 

As we can see from Eqs. (3.42) and (3.43), the distributions of the stresses 

depend only on the thickness of the membrane and the aspect ratio of the inner to 

outer radius of the annular structure. 

The solutions at the inner and outer edge of the annular structure can be obtained 

by substituting x  with n  and 1 in Eqs. (3.39), (3.42) and (3.43).  
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2 2
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3 1 2 ln
(1)

2 1t

P n n n

h n

νσ
π

− += −
−

 (3.48) 

Eq. (3.44) describes the maximum deflection of the sensor when a contact force 

is applied. The maximum force that can be applied to the sensor is reached when the 

maximum stress of the membrane exceed the yield stress, ysσ  of the sensor’s 

material. Therefore, from Eq. (3.45), the magnitude of the maximum applicable force 

is 

 
2 2

max 2

2 1 2ln

3 1
ysh n n

P
n

π σ − += −
−

. (3.49) 

Substituting this equation in Eq. (3.44), the maximum deflection due to this force is 
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2 2 2 2 2 2

max 2

(1 ) 4 (ln )

24 1 2 ln
ysa h n n n

w
D n n

σ − −= −
− +

. (3.50) 

This deflection is used to determine the height between the center boss and the 

supporting frame of the sensor and also the distance between the center boss and the 

bottom plate to form an over-range protection. 

 

P

a
b

h

 

(a) 

Q

 

(b) 

Figure 3.12. Model of the proposed tactile sensor (a) a circular membrane with 

center boss structure when the force, P , is applied to the center (b) 

an annular structure with the fixed inner and outer edge when the 

shear force, Q , is distributed along the inner edge uniformly. 



 

 49 

From Eqs. (3.45), (3.46) and Eqs. (3.47), (3.48), we can find that the longitudinal 

stress is larger than the transverse stress since the transverse stress has the same 

magnitude but is smaller by a factor of ν . In order to obtain a tactile sensor with a 

high sensitivity, the longitudinal piezoresistive effect is taken into consideration. 

However, as we can see from Eqs. (3.45) and (3.46), the magnitudes of the 

longitudinal stresses at the inner and outer edges are not the same as for the CBPS. 

 

3.2.3 Simulation and Discussion 

According to the equations derived above, some numeric figures are presented to 

illustrate the performance of the sensor. The tactile sensor in the following simulation 

has the same geometry as the CBPS: The thickness is 50 µm and the radius of the 

membrane is 1 mm. A Young’s modulus of 130 GPa and a Poisson ratio of 0.28 of 

(100) single crystal silicon is used. Fig. 3.13 shows the typical distribution of the 

deflection and the stresses of a silicon-based tactile sensor along the radial distance, 

with n  equals 0.25, 0.5 and 0.75, respectively. First of all, we can find that the 

magnitudes of the deflection and the stresses decrease as n  becomes larger. 

Secondly, the longitudinal stress is larger than the transverse one. Therefore, the 

longitudinal piezoresistive effect is preferred in the design of the sensor. Thirdly, the 

magnitudes of the stresses at the inner and outer edge of the annular structure are not 
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the same. But we can find a pair of longitudinal stresses that have the same 

magnitudes with opposite numerical signs on the annular membrane according to 

Eq.(3.42) by a numerical method in order to design a balanced full Wheatstone bridge. 

But a significant loss of sensitivity results when using this setup. In a different 

advance, we consider the case when the piezoresistors are placed at the inner and 

outer edge of the annular membrane and examine if the linearity will be degraded. 

Fig. 3.14 illustrates the longitudinal and transverse stress at the inner and outer 

edge as a function of n . As we can see, the longitudinal stress at the inner edge is 

larger than the other components. When n  approaches 1, the magnitude of the 

stresses at the inner and the outer edge will approach the same value but the 

corresponding longitudinal stress decreases significantly. Especially when n  is 

smaller than 0.1, the longitudinal stress increases dramatically because the component 

ln n  in Eq. (3.45) begins to govern. 



 

 51 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

0.0

1.0

2.0

3.0

4.0

5.0

6.0 a=1mm
h=50µm
E=130GPa
ν=0.28
P=1N

 

 

analytic
 n=0.25
 n=0.5
 n=0.75

FEM
 n=0.25
 n=0.5
 n=0.75

de
fle

ct
io

n 
(µ

m
)

radial distance (r/a)

 

(a) 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
-200M

-100M

0

100M

200M

300M

400M
a=1mm
h=50µm
E=130GPa
ν=0.28
P=1N

 

 

analytic
   σr

 n=0.25
 n=0.5
 n=0.75

FEM
   σ

r

 n=0.25
 n=0.5
 n=0.75

st
re

ss
 (

P
a)

radial distance (r/a)

 

(b) 



 

 52 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3
-200M

-100M

0

100M

200M

300M

400M

a=1mm
h=50µm
E=130GPa
ν=0.28
P=1N

 

 

analytic
   σ

t

 n=0.25
 n=0.5
 n=0.75

FEM
   σ

t

 n=0.25
 n=0.5
 n=0.75

st
re

ss
 (

P
a)

radial distance (r/a)

 

(c) 

Figure 3.13. Distribution of (a) the deflection and (b) longitudinal and (c) 

transverse stress with different n . 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

-200M

-100M

0

100M

200M

300M

400M

500M

600M

700M

800M
 

 

h=50µm
E=130GPa
ν=0.28
P=1N

 σ
r
(n)

 σ
r
(1)

 σ
t
(n)

 σ
t
(1)

st
re

ss
 (

P
a)

n

 

Figure 3.14. Longitudinal and transverse stresses at the inner and outer edge of 

the annular structure with respect to n . 
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The arrangement of the piezoresistors on the tactile sensor is the same as on the 

CBPS as illustrated in Fig. 3.2. The piezoresistors, the applied voltage and current are 

all situated along the radial direction so only the longitudinal piezoresistive effect will 

be considered. If the change in resistance R∆ , between the inner and outer edge of 

the annular structure is assumed as a factor d , the sensitivity of the tactile sensor 

based on a Wheatstone bridge can be expressed as  

 

(1) ( )
(1 )(1 ) ( ) 22

(1) ( )
1 (1 ) 1 (1 )

2 ( ) 2

r r r

r

r r r

r

nR
d nV R

R nV d
R n

σ π σ
σ

σ π σ
σ

∆ ++∆ = =∆+ − + −
. (3.51) 

As we can see from the above equation, the term, 1 (1) / ( )r r nσ σ− , in the 

denominator will result in a nonlinearity of the output signal. But if we consider the 

piezoresistive effect of silicon, the term ( )r r nπ σ  is 3 orders smaller than 1. 

Therefore, the denominator in Eq. (3.51) can be approximated as 1. As a result, the 

above equation can be further expressed as 

 
(1 (1) / ( ))

( )
2

r r
r r

nV
n

V

σ σ π σ+∆
∼ , (3.52) 

which has a linear relationship between the output voltage and input stress . Thus, 

even though a non-balance Wheatstone bridge is used in the proposed tactile sensor, a 

high sensitivity with little loss of linearity can be obtained.  

Usually, the gauge factor instead of the piezoresistance coefficient is used to 

design piezoresistive sensors. With the introduction of the longitudinal gauge factor, 
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rK , and the longitudinal strain, rε , Eq. (3.52) can be rewritten as 

 
(1 (1) / ( ))

2
r r

r r

nV
K

V

ε ε ε+∆
∼ . (3.53) 

An FEM as described before is used to verify these analytic solutions. An 

element of an axis-symmetric structural shell, SHELL51, is used for simple and 

efficient computing. The geometry of the sensor is the same as the one used in the 

analytic solution. The thickness of the center boss is 525 µm. The simulated results 

are accompanied with the analytic solution in Fig. 3.13 and agree with the derived 

analytic solutions.


