Power Minimization in the Program Memory Data Bus

for Embedded Processors

N A L T

BEEEE 2 g4

Power Minimization in the Program Memory Data Bus

for Embedded Processors

Student : Chin-Tzung Cheng

iy

'SR AR LI N

th¥xryxH & % L Advisor : Dr. Jean, Jyh-Juin Shann

Bz 2 < 7
Px}%lﬁigﬂ‘(

A Thesis
Submitted to Department of
Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in Partial Fulfillment of the Requirements
for the Degree of
Master
In
Computer Science and Information Engineering
July 2004
Hsinchu, Taiwan, Republic of China

g Ee B

31428 KA T

LFR NI FLEFE 4T gy P EER o d 2 off-chip ®in#
AT B ANET RN F LT EFE bRt off-chip ®
RN AL e FIL B DT E S R P B opd e gt g o 9y
uﬁ*%J#ﬂfﬁ:i%wgiﬁﬁ%ﬁﬁﬁﬁhn—%ﬁ&m%éo

e 5 F SRS a R A

PRI A A S TR R
#**%NR5°W#&%BW$%*@ﬂ R U R SR

#20 A de 0 BIBITS %in £ 5m8 = 2 Ko 2 Se Rt enffl e in gt + 3 45 o
Ay 3 d modified register relabeling. s & BIBITS %ot g = 2 » @ %

FBE (S At 0 AN R REII R @ g A gt 2)
15 R dchy e % B om o A P RIERSTE T R 2 3L B S kg DT 9
7 64% ¢obit transitions b A= ¥ ¥ ¥ 5 register relabeling

bit transition & " 2 5 1% 16% s bit transition

FUE oM E AP E g 230 A R s (basic-block) g AT g & #5050

TALYE & Petrov #2163 2 eh— L o ¥ AP R 4 R T DR (T4

134
G R o A T o RIAAT AR A NAEITE G (- H g Rk
2

Z

5 M 5T%
¥ o 4z Petrov 3 450 2 5

IE 3
o,

Power Minimization in the Program Memory Data Bus

for Embedded Processors

Student : Chin-Tzung Cheng Advisor : Jean, J.J Shann

Institute of Computer Science and Information Engineering

National Chiao-Tung University

Abstract

Reducing the power consumption of embedded processor has gained a lot of
attention recently. Many research works have focused on reducing power
consumption in the off-chip buses as they consume a significant amount of total
power. Reducing the bus switching is anéffective way to reduce bus power since the
bus power consumption is about ptoportional to thé.switching activity. While
numerous techniques exist for reducing bus power in-address buses, only a handful of
techniques have been proposedfor data-bus power reduction.

For the low power requirement on the program-memory data bus of current
embedded processors, we proposed a BIBITS bus encoding scheme to reduce power
consumption on program memory bus. A modified register relabeling algorithm is
also proposed to be combined with BIBITS bus encoding scheme to further reduce bit
transitions. These techniques aim at reducing more switching activity and hence, more
power consumption.

The simulation results showed that the overall average switching reduction is
64% over original data and 57% more than original register relabeling scheme only
and 16% more than Petrov’s bus encoding scheme only. Contrary to Petrov’s bus
encoding scheme, our proposed scheme need only a half transformation table size to
encode all basic blocks. Moreover, our decoder implementation is simpler than theirs.
Therefore, the extra hardware overhead of our proposed is lower than Petrov’s bus
encoding scheme. We can conclude with certainly that our research results may have

more power saving opportunities.

il

ot

AL g e H AT R ot AR T BAPEE o R RE
KF-EEI T o AT AR AL G SR ELEC R F
PR PR SR T - R AR SRR R T L

CBGE RERMTEAR MIRIE S RAMEE AU REREF ST O

RA - REERHY L afdid TFs .

R SRR R LT PR R HA S LR
RAEE 25 2k o B 0 R HTRZ OB LE R8I 2F 5 Hph

ERRENE U N RTE SR £ -

Boil o BRI RA S A BB BT AL PR RAT T R

S Bl hd EOUAL A B N FENE KT LY o

Ao g LA S R R R SR R BGE R ORAR o ST

BR 4T 7

2004.7.21

iii

Table of Contents

B B e i
ADSITACT ...ttt s i
e iii
Table Of CONENESveeieiiiiiieeiieeeeee e v
LSt Of FIGUIES ..eeenevieeiiieeeee ettt e vi
LSt Of TaBIES...ceivieiiieeiie et viil
Chapter 1 INtroductionccceeeueeeeiieeiieenieeeieeere e 1
1.1 Power Constraint of Embedded Systems.........c.ccoceeverviniinennicnnenne. 1

1.2 Research Motivations. o il o 2

1.3 Research Goalii. ..o i e 3

1.4 Organization Of This TRESIScccviiriiiiieriieieeee e 4
Chapter 2 Backgrounds.i........coooociiiil i 5
2.1 Overview of Embedded Systemsccccoeeveerieeiiienieeciienieeieeeeeee, 5

2.2 Source of Power Consumptionccceeeevverieneenenieneenieneeneeeenn 6

2.3 Baseline SyStemccocuiiiiiiiiiiieeiieeeeeeeee e 10

2.4 Previous Research of Power Reduction on Busescccccuee. 11
2.4.1 Bus Invert Power Saving Technique...........cccceevveviierieenieennnnnne. 12

2.4.2 Bus Invert Transition Signaling Power Saving Technique 13

2.4.3 Petrov’s Bus Encoding Power Saving Technique..................... 14

2.4.4 Register Relabeling Power Saving Technique............cccccoeeeee. 20

2.4.5 Summary of Previous Researches...........c.cceoevveeviieniieenieennen. 23

Chapter 3 Design of BIBITS Bus Encoding..........ccccccvvvevvieeennneen. 26
3.1 BIBITS Bus Encoding Scheme...........ccccoeevieviiiiniiiinieeiieeiee e, 27

v

3.1.1 BIBITS Encoding Method Algorithm..........c.ccccccevieveniencnnnenn 27
3.1.2 Hardware Support for BIBITS Encodingcc.ccocceveriineennens 30
3.1.3 Decoding-Control LOZIC........cccveruiieiierieeiieieeieeeee e 30

3.2 Modified Register Relabeling for BIBITS Bus Encoding Scheme .33

33 Basic Block Selection Algorithm............cccccveviiiiienieniiicieeieeene 36
Chapter 4 Simulation and Analysis........ccccceeeveeeeeveeesciee e, 39
4.1 Experimental Benchmarks............cccooovveiiiiiiiniiiiiieniccieceeeeeee 39

4.2 Experimental Methods..........ccoociiiiiiiiiiiiiieeeeee 40
4.2.1 Experimental TOOISEtcceevviiriieriiiriieiiecie e 40

4.2.2 Experimental FIOW..........ccccoiiiiiiiiiiiiiieee e, 42

4.2.3 Designing EXperiments..........cceccveerueenieeniieniieenieenieenieesveeeeens 44

4.3 Simulation Results and AnalySesi..........coceveevierieniiniinicneeieneene. 46
4.3.1 Bit Transition.Reduction of Different Techniques.................... 46

4.3.2 Bit Transition.“Reduction ‘of Techniques with Different

Transformation Table SiZeS. i it i, 49
Chapter 5 Conclusion and Future Workscccceeevcviiinineennen. 53
RETEIEICE .o 55

List of Figures

Figure 2-1: The structure of @ CMOS INVEIter........cccveevuiervieriieeieeieeeveeeeans 7
Figure 2-2: (a) The 0—=1 and (b) 1->0.....coooiiiiiiiiiiieeeeeeeeeee 8
Figure 2-3: Architecture model of baseline systemcccceevveevienennnne. 10
Figure 2-4: Schematic diagrams of bus-invert (a) encoder (b) decoder 12
Figure 2-5 : Schematic diagrams of BITS (a) encoder (b) decoder............. 13
Figure 2-6: Design flow of Petrov’s bus encoding scheme 15
Figure 2-7: BaSiC CONCEPL ..vveeruiieeiiieeiiieeiiee et 16
Figure 2-8: 3-bit block word encoding example...........ccccceeriienieniinnennnn. 16
Figure 2-9: 3-bit block word decoding example...........cccocveeveerieriieneennnn. 17
Figure 2-10: Hardware SUPPOIT csussmusevveveervermeenuerieneenieeienieenieseesieeeesieenees 18
Figure 2-11: 4-bit and 5=bit blockiwords example...........ccceevvvevveerienneennnn. 19
Figure 2-12: Comparison of transformation table sizeccccceceevuennnne. 20
Figure 2-13: MIPS instruction format.......c....cooevvieriieiiieieeieeieceeeeeee, 21
Figure 2-14: Example code fragmentccoccooviiiiiiniiiiiineieeeeee, 21

Figure 2-15: (a) Frequency distribution of register pairs (b) Register
Histogram Graph..........cccoceeiiiiiniiniiiceceeceee e 22
Figure 2-16: RHG after register relabeling............cccceeevievieeiienienieeneennn. 23

Figure 3-1 Static-time design flow of BIBITS bus encoding scheme with

modified register relabelingcccooeveevieeiieiieniieiecie e, 26
Figure 3-2: BIBITS encoding methodcccceoviiviininiiniiniiicnccicee, 28
Figure 3-3: BIBITS encoding basic CONCePt........ccevvrerierieereenieereereennne. 28
Figure 3-4: BIBITS encoding example..........cccceooerieneriiineenenicnecieneee 29
Figure 3-5: System architecture with BIBITS encoding...........ccccceevueeneenee. 30
Figure 3-6: BBIT and Transformation Table............ccocceeriiniiininniineee. 31

vi

Figure 3-7: DeCOder CIICUIL....ccuuvieriieeiiieeiiieciee et 32
Figure 3-8: Comparison of original register relabeling and modified register
relabeling for BIBITS bus encoding.........ccccoeeveviievienieeniieeieeieeene. 34

Figure 3-9: (a) Register pairs frequencies of some program (b) An example

of register histogram graph..........cceeveeeiieriiiiiienieeieeeeeee e 35
Figure 3-10: An example of greedy-basic -block selector algorithm 37
Figure 4-1: Experimental flow by using our experimental toolset 43
Figure 4-2: Transition reduction of different techniques...........ccccceeueenee. 47

Figure 4-3: mmul - Bit transition reduction with different transformation
EADIE S1ZES ...niiiuiieeiiieiie et e 49

Figure 4-4: sor - Bit transition reduction with different transformation table

Figure 4-9: Average bit transition reduction for full benchmarks with

different transformation table SIZES........eeeveueumueeeeeeeeeeeeeeeeeee e 52

vii

Table 2-1:

Table 2-2:

Table 2-3:

Table 3-1:

Table 3-2:

Table 4-1:

Table 4-2:

Table 4-3:

Table 4-4:

List of Tables

3-bit block word transformation.............ccceeeveeviiercieeniencieeieenen. 17
4-bit block word transformation...........c.cceeeveeeeieeeiieeeiee e, 18
Extra hardware comparison of the power saving techniques24

The 16 functions of two Boolean variables............cccceecueenenee. 28
Computing contribution ratio of each basic block...................... 38
Benchmark........cocooiiiiii e 39
Benchmark program size and numbers of each basic block.......40

Experimental toolset desCriptions.........ccccueecueereenieeneenieenieenne. 41

Comparison with transformation table Size...........cccevervencenens 47

viii

Chapter 1 Introduction

First, an overview of saving power consumption on embedded systems is given in
this chapter. The research motivation and goal are then introduced. The organization

of this thesis is described at last.

1.1 Power Constraint of Embedded Systems

The requirement in reducing the power of a processor has grown dramatically
over the past few years. This requirement, has changed the evaluation metrics of
processors. Performance was the'single most important feature of a microprocessor
until recently. However, designers are mote concerned with the power dissipation
today. In some cases, especially in'portable and* mobile applications low power
becomes the key design goal. Power optimization for embedded systems produces an
active area of research that has received considerable attention with the growing
market for portable and mobile applications in recent times.

Low-power consumption is an important design goal for battery-powered potable
embedded systems such as cellular phone and PDA (Personal Digital Assistants). It
has been shown that the majority of the area and power cost is not as a result of the
datapath or the controllers, but the global communication and memory interaction [1]
in such systems that involve multidimensional streams of signals such as images,
video or voice sequences. The ever-growing improvements in process technology
have made SoC (System on Chip) design approaches attractive.

A typical SoC (System on Chip) design has several embedded processor cores,

which are responsible for various parts of the total system functionality. Each
processor accesses an on-chip or off-chip instruction memory containing the
application code. The processor typically accesses this memory to fetch the next
instruction every cycle. However, transferring addresses and data along long
interconnect buses consumes a significant amount of power because of the bus line’s
high capacitance. Therefore, the interaction between a processor and its instruction
memory significantly contributes to total power consumption. Having the instruction
memory off-chip (for example, external flash memory) further aggravates this effect,
because of the significantly higher capacitance of the bus lines going through the

system I/O pins.

1.2 Research Motivations

As mentioned in Section 1.1, the major-pewer consumption comes from the
buses. In fact, 50% to 80% of the powericostin application-specific integrated circuits
(ASIC) for real-time signal processing is dissipated as a consequence of memory
traffic caused by the ASIC and the off-chip memories [1]. A considerable amount of
power is required at the I/O pins of the microprocessor when data have to be
transmitted over the bus as a result of the intrinsic capacitances of the bus lines. More
specifically, it has been estimated that the capacitance driven by the I/O nodes is
usually much larger (up to three orders of magnitude [1]) than the one seen by the
internal nodes of the microprocessor. This implies that design techniques leading to
decrease in power dissipation in this part will make a significant impact on the overall
power dissipation of the application. As a consequence, dramatic optimizations of the

average power consumption can be achieved by minimizing the number of transitions

(i.e., the switching activity) on system-level buses.

Instruction streams could be encoded at static time. Moreover, contents on bus
transactions reflect program execution behaviors. Execution flow is composed of
many simple blocks by analyzing the execution flow of programs. These simple
blocks are well known as basic blocks [3]. Basic block is an instruction sequence that
begins with a branch target instruction and ends with a branch instruction and most
import of all, contains no other branch target or branch instruction at all. It means that
basic block is the execution unit of program. Processor executes the whole basic block
except interrupting by exceptions. Executing program loops also reflects this fact that
one loop might contain one or more entire basic blocks. During loops execution, these
basic blocks transmit on bus repeatedly and thus cause unnecessary power
consumption. If these frequently executed basic blocks can be transmitted with lower
bit transitions, power can be efficiently saved.

Pervious low-power bus encoding techniques either need a complicated encoder
or a large transformation table. Moreover, these ‘techniques are not considered to be

combined with compiler techniques such as to further reduce power consumption.

1.3 Research Goal

An instruction encoding method combined with post-compilation techniques is
proposed to further reduce the runtime power dissipated on the system-level buses in
this thesis. We focus on the instruction bus to exploit the repetitions of instructions for
reducing power dissipations on buses. A pre-selected transformation table is applied
for the sake of reducing the bit transitions of the repeated instructions from

transmitting on the buses. This transformation table is working as internal memory

nearby the processor core. These techniques need extra hardware support includes a

decoder, a basic-block identification table and a transformation table.

1.4 Organization of This Thesis

This thesis is divided as follows. Chapter 2 shows the background of embedded
system, power consumption model, and discusses previous relative researches on bus
power reduction. In Chapter 3, bus power reduction techniques for instruction bus are
introduced. The experimental environment, simulation results and relative analysis are
presented in Chapter 4. Finally, we summarize our conclusions and future works in

Chapter 5.

Chapter 2 Backgrounds

The main purpose of this chapter is to provide the necessary background for the
concepts and methods presented in the following chapters. First, we will give an
overview of the embedded systems. The main sources of power consumption in VLSI
circuits based on static CMOS technology are then introduced. More specifically, we
highlight how the dominant fraction of the average power dissipation in CMOS
circuits is due to the switching power caused by the transition activity of the gate
outputs. The main parameters affecting the switching power, namely the clock
frequency, the supply voltage, the capacitive load, and the switching activity are
briefly analyzed. Finally, the chapter provides a non-comprehensive review of the
related approaches for bus power optimization-and estimation appeared in the

literature in the last few years.

2.1 Overview of Embedded Systems

Embedded systems abound in everyday life today. Examples include the modern
cellular phone, PDA, the engine control unit of an automobile and the aircraft
autopilot. These systems are also found in process monitoring and control, signal
processing, home appliances, industrial robots, and laser printers. Typical metrics that
impact the design of embedded systems include reliability, performance, cost, and

form factors, which include size, weight, and power constraints.

Embedded systems can be divided into two broad classes based on performance.
Low to moderate performance systems have severe cost and form factor requirements.

Examples include controllers for home appliances. For these applications,
5

microcontrollers are typically sufficient. High performance systems are required more
powerful microprocessors. Examples include cellular phone, PDA and aircraft

autopilot.

2.2 Source of Power Consumption

It has shown that 50% to 80% of power cost is due to memory traffic in Chapter
1. Our target system is a typical memory-intensive embedded system. According to
the Amdahl’s law, we tend to reduce the power consumption on buses.

Power dissipation in CMOS circuits can be considered as composed of a static
and a dynamic component. Static power is due to the leakage current. However, in
“well-designed” CMOS devices,.Static power.dissipation can be considered
insignificant in most designs [5]. Dynamic power is the main source dissipation for
most CMOS designs. Leakage powerwill become a significant problem as process
feature sizes decrease, but one that we willnot discuss [6]. The dominant part of the
power dissipation in CMOS circuits is thus the dynamic component, which is in turn
composed of two terms. The first term, indicated as the switching power, is due to the
charge and discharge of the circuit node capacitances at the output of each logic gate.
The second term, indicated as short-circuit power, represents the short-circuit current
from the supply to the ground voltage during output transitions.

There are three most contributions of average power consumption in digital

CMOS circuits which are summarized in the following equation: [4]

P, =P

avg switching

+P,

short—circuit

+R

leakage
_ 2
=5, CL Viao o + e Vg + Dieakage Ve - (1)

The first represents the switching power, where Cy, is the load capacitance, Vqqis the
6

supply voltage, f.i is the clock frequency and oy, is the node switching activity
factor (the average number of times the node makes a power consuming transition in
one clock period).

Let us analyze each contribution in detail, considering a simple static CMOS gate,
an inverter, as a motivating example. Other combinational and sequential gates show
a similar behavior. Figure 2-1 shows the structure of the generic static CMOS inverter.
The pull-up network is built with PMOS transistors (T, for the selected inverter) and
it connects the output node V. to the power supply Vyq. Conversely, the pull-down
network is composed of NMOS transistors (T, for the selected inverter) and it
connects the output node to the ground node V. In CMOS gates, the structure of the
pull-up and pull-down network is such that when the circuit is stable (i.e. after the
output rise or fall transients are exhausted) the output node is never connected to both

Vaaand Vg at the same time.

vdd

Vout

I ol
H

<
o |
0
<
0
0

Figure 2-1: The structure of a CMOS inverter

When an input transition causes a change in the conductive state of the pull-up
and the pull-down network, the electric charge is transferred from the power supply to
the output capacitance Cp or from the output capacitance to ground. The transition

causes power dissipation on the resistive pull-up and pull-down networks. Let us

7

consider a rising output transition (see Figure 6-a). Power is by definition Py, (t) = d
E(t) / dt =14 (t) v (t), where id (t) is the current drawn from the supply and v (t) is the

supply voltage V4. The total energy provided by the supply is [13]:

Vg

E, =i (Ov(t)dt =V, ICLdVout =C Vd%i
0

out

Y —

where T, is the time interval long enough for the transient exhaustion. Notice that
we implicitly assume that all current provided by Vg4 is used to charge the output
capacitance. We also assume the output capacitance to be a constant.

At the end of the transition, the output capacitance is charged to V44, and the

energy stored in it is given by: E, =1/2C V,, . Hence, the total energy dissipated by T1

during the 0—1 output transition‘s: Eg=C V3 ~1/2C V2 =1/2C V.

Vdd Vdd

0, I

T1 T1
Vin Vout Vin Vout
—— —{ 1 1% }——l:

T2] T2 \ —_

1 40 1 1

Vss Vss Vss Vss

(a) (b)

Figure 2-2: (a) The 0—1 and (b) 1—0

If we consider the falling output transition (see Figure 6-b), no energy is stored in
the output capacitance. For the conservation of the energy, the total energy dissipated

8

by T2 during a falling output transition is given by E, =1/2C V. This derivation
leads us to the fundamental expression of the switching power consumption [13]:
Psw = aCLVdfj f

where Cy, is the load capacitance, Vqq1is the supply voltage, f is the clock frequency
and a is the node switching activity factor.

Factor Cy, is decided once the manufacture process has been chosen. Decreasing
the Vyq factor has a quadratic effect and can be an effective way. However, the supply
voltage is usually determined by the system and technology consideration, and
decreasing V49 will accordingly increase the propagation delay. The computing time
will be definitely extended by reducing the factor f, clock speed. It is an unacceptable
defect to trade performance of embedded system that usually has real-time demands.
Moreover, the power of other idle modules cannot be omitted since execution time
increases. Therefore, the most important factor that distinguishes power is its
dependence on the switching activity.

There are two ways to cut-down the switching activity on buses in execution
time,

1. Reducing transaction counts:

Reducing requests of memory access is a direct approach to
reduce bit transitions on buses. Buses can keep idle and eliminate
power consumption since requests are saved. To increase the
reusability of transmitted values is a common example of this idea.

2. Reducing numbers of switch activities per transaction:

Reducing numbers of switch activities per transaction that make
the current transmitted bits near previous ones can reduce number of
capacitances needed to be driven. Bus masking is a general technique

9

to eliminate variability between two sequential accesses.

2.3 Baseline System

Our baseline architecture model is as Figure 2-3. The processor sends address
request and receives instructions from main memory directly at this baseline system.
We find that repeatedly executed instructions will continuously drive the same bus
transactions and consume power. Therefore, power consumption of instruction bus is

reduced by reducing memory transactions.

DAddr
Data Memory
Data
CPU core
IAddr Program

Memory
=D

Figure 2-3: Architecture model of baseline system

The power consumption on instruction and address buses all follows the follows
the formula for that of CMOS circuit. The power consumption model on buses of the

baseline system is

10

PowerBase”ne = I:)BUSDynamic + PBUSStatic

2
oC IqtogglesCLvdd 1:BUS
oC Ir]toggles

where

F)BusStatic , static power dissipation can be ignored

n numbers of bit toggles on bus

toggles °

C,, load capacitances of bus line
V., supply voltage

feus, bus frequency

The average power consumption also concludes the leakage power and the
short-circuit power, which are not in‘our discussion. The static power dissipated by
CMOS VLSI gate is in the nanowatt range [1], which is ignored. Using this evaluation
metric, we can calculate the power consumption during programs executing. We
mention above that the capacitances and supply voltage should remain unchanged.
Our design goal is reducing numbers of bit transitions on bus with less power

consumption.

2.4 Previous Research of Power Reduction on Buses

Four previous researches in reducing the switching activities on buses are
introduced in the following sections: bus invert encoding scheme [7], BITS (Bus
Invert Transition Signaling) encoding scheme [8], Petrov’s bus encoding scheme [10],
and register relabeling [9]. As described in Chapter 1, there are two ways to reduce
the numbers of switching activities. All belong to reducing numbers of switching

activities per transaction. According to the characteristics of buses, bus invert and

11

BITS perform well on instruction and data buses. Petrov’s bus encoding scheme and

register relabeling can only reduce transactions on instruction buses.

2.4.1 Bus Invert Power Saving Technique

This method [7] first computes the hamming distance between the present value
and the data value on a bus. If the number of transitions between the current pattern
on the bus, denoted by X, and the previous pattern, denoted by Z.;, exceeds half the
width, the current pattern is transferred with each bit inverted. Otherwise, the current
pattern keeps unchanged. An extra bus line, denoted by I, is used to signal the
inversion. It is set as 0 or 1 according as the data pattern is inverted or not. At the
receiver side, the contents of bus«¢an berestored according to the invert bus line. An

encoder and decoder are shown:in Figure 2-4(a) and (b), respectively.

. e

..

Z \
i Xi7
o Ll o —>—

Figure 2-4: Schematic diagrams of bus-invert (a) encoder (b) decoder

12

Bus-Invert method presents a trade-off between performance and power
dissipation. The performance decreases because the comparator and majority voting
circuits increase the area and delay of the data-path. Another trade-off is that an extra

I/O pin (invert line) is needed.

2.4.2 Bus Invert Transition Signaling Power Saving Technique

This method [8] first computes the Is in present value X; on a bus. If the number
of 1s in X; is larger than half the bus width, then each bit of X is inverted (with line I
set to 1) and then transition-encoded. Otherwise, each bit of X is transition-encoded
without alteration. At the same time, an extra line, called as invert line, is set as 0 or 1
according to the data value is inverted or not. At the receiver side, the contents of bus
can be restoring according to the invert line.~An.encoder and decoder are shown in

Figure 2-5(a) and (b), respectively.

] [
E voter {:J‘—[>‘ I
Z ‘WI}
X0 ﬁD@‘D’ Z'

X

X —_‘)Dg—[}tv wo T{JT_)D:’I} i

Figure 2-5 : Schematic diagrams of BITS (a) encoder (b) decoder
Bus-Invert Transition Signaling method presents a trade-off between

13

performance and power dissipation. The performance decreases because the
comparator and majority voting circuits increase the area and delay of the data-path.

Another trade-off is that an extra I/O pin (invert line) is needed.

2.4.3 Petrov’s Bus Encoding Power Saving Technique

Petrov’s bus encoding scheme [10] minimizes the total number of transitions on
each bit line of data bus from the instruction memory. Therefore, it can reduce the
significant power overhead in processor memory communication. This technique is an
application-specific dynamic customization for power minimization in the instruction
memory’s data bus. Fundamentally, it uses application-specific information to identify
optimal power encoding. The encoded instructions reside in memory, and the
processor core receives information.about the-transformation, either when loading the
program or when running the- software.Ihe, processor’s fetch module uses this
information to efficiently restore the original bit sequence on each bus line. Figure 2-6

is design flow of this bus encoding method.

14

I 3 Static-time : Dynamic-time
: Source | Instruction
| Code : memory
: Transformed | Decod
| code : ecoder
|
. I L
| Compiler | Processor
: and linker |
| |
! |
: Petrov’s Ejl
I encoding L
I Transfoymation
|___Programecode __ ddta

—

Figure 2-6: Design flow of Petrov’s bus encoding scheme

An application typically spends most of .its execution time on a few tight loops.
Data bus transfers form instruction storage causes many transitions on each bus line.
Vertical bit sequences are targeted for this encoding method that independently
considers the bit streams associated with each bus. Consider arbitrary bit sequence X
={..., Xn+3, Xnt2,--» Xn-3,....}. They want to find alternative bit sequence Y = {..., yn:3,
Vni2s---> Yn3,-...; and transformation 7 such that the total number of bit flips in Y is
less than in X. and X =7 (Y). The bit sequence length can be arbitrarily long.
Identifying a single transformation that maps Y to X and providing the necessary
hardware support would permit restoration of the original bit sequence.

Given block size k, identifying the optimal subset of transformations requires finding
transformation 7 (xi.;, y;) for every block word, such that X =7 (Y) and the number
of bit transitions in Y is minimal. Therefore, this transformation must satisfy the

following system of equations:
Xo = Yos X, =7(X;;, y;), 15Kk

This system of equation must be solved with variable 7 for all 2* block words

15

for the sake of finding optimal transformation 7 of each block word. Figure 2-7

illustrates the basic concept of Petrov’s encoding scheme. Figure 2-8 and Figure 2-9

are encoding and decoding examples for 3-bit block word.

For 3-bit block word

Xo Yo Xo
Instl . X, Y, X,
Inst2 . X,) Y, . X,
Inst3 o'@ o X > encodlng > decodmg‘—> X
1. T
Inst4 ,
Yo~ Xo X0~ Yo

9

9 T (X05 Y1) = X

T (X1, Y2 =X

Inst5 @ ‘é .

Figure 2-7: Basic concept

X, = T (X, Y1)

X, = T (X1, Y2)

Encoded bit
sequence Y
s T T T T TS E T 1
N 7 (X, ¥) =7 (0,0)=1 1 \
0] Yo ! 7= X
Encode o "7 (x,y) =7 (1,0=0 |
i Y2 Tk RERMRESCI T TTTTTTTTTTTTTTT
X =Y/ © e
Original bit 0l L TCoW ST @01
g 0 ' T X
sequence X N ey 7T 4,070
X, | 0 E T (X Y1) =Xy
X 1 1 = | |
X; 0\ oy, ° (X1, ¥2) =%, 1 TGy =T 0, D=1 =y
HE RICHERIAGURL
@
0]y, TGy =7 0, D=1 i = ¥
HE RGOS
M

Figure 2-8: 3-bit block word encoding example

According to Figure 2-8, we can construct Table 2-1 that shows the

transformation mapping for 3-bit block word. It uses three transformation functions.

Therefore, transformation data per block word is 2 bits.

16

Table 2-1: 3-bit block word transformation

Origmal bit Xo| O O(1{0]1|0]1
sequence X (0[O0 1]1T|10]0O01]1
X2 o101 |1 1]1
(No. of transitions m X) OO |22 (1] (0)
Encoded bt Vol O|1]|O|1[0O[1]O0]1
sequence Y vi|O]1[O[1]|]O|1]O]1
ve|O|1[OfO[1[1l]O]]1
(No. of transitions n Y) ()OO (DD O) [(0)] (0)
Transformation ¢ vivIX|y |y |x'|¥]Yy
Decode
X0=Yo
Xy F1T(X95 Y1)
Encoded bit Xy = T (Xl ’ y2) Original bit
sequence Y ,———————————————-IsequenceX
I X, =y, =0
Yo O I 7856, : 0] Xo
| — — —
Y110 1 X1ET Xgo YD) =%'=1 | L%
Y2101 =X : 0f %,
|

Figure 2-9: 3-bit block word decoding example

Table 2-2 shows the transformation mapping for 4-bit block word. It uses five

transformation functions. Therefore, transformation data per block word is 3 bits.

17

Table 2-2: 4-bit block word transformation

Original bit volO[Ll|[Of1|[O |1]O]1]|O]|1]O 1 0j1|0f1
sequence Y vifOjoOfLfLl| O |JOfL|1]|O]O]IL 1 0j0f1f1
v2/0]0[0|0| 1 [1|1]1]0]0]O 0 1{1|1]1
(No. of transitions nY) y3|0 [0 |0 |0| O [OJO|O[L1]|1]1 1 1(1|1]1
O MM @) [G)@M DB) |(1)](2)|(1)[0)
Encoded bit X{0]1|0]1 0 (|1]0]1 110 1 0(110]1
sequence X (011011 0 |1]0]1 1[0 1 01011
X011]j0 1 [1[{0]1 1[0 0 11001
(No. of transitionsinX) x3|0 (1|1 /0| 1 [1]1]0 010 0 1{0[0]1
O)[(O[M)|(M)| (1) [O)D)|M)[M[M)O) (1) |(1)[(1)[(0)|(0)
Transformation ¢ X[xX[x|x[xBy|y X[x[x|x]|V|[EBY| x| x|xX]|X

The hardware support of this implementation is presented in Figure 2-10. The

Basic Block Identification Table (BBIT) shown in Figure 2-10(a), contains the

program counter of the starting 1nstruct10n together w1th an index into Transformation

Table. The Transformation Table,i as showm lh Flgure 2 10(b), contains the control bits

for selecting the transformatlons data assQQ_aLe_d_to each bit sequence.

PC]. = T172T3..THE CT
PC2 Index to TT | ¢, 7,7 5.7 ,ECT
PC3
BBIT

TT

Figure 2-10: Hardware support

Suppose that there are N instructions in a basic block, and each instruction is 32

bits. When the block size is four bits, the number of transformation data for a basic

block is[(N —1)/3x32.

18

5-bit block word

4-bit block word 31 0
31 0
Instl JO
Inst2 1
Inst3 1
Inst4 0
Inst5
Inst6 1
1
1
Inst9 Al

Figure 2-11: 4-bit and 5-bit block words example

We let TTsize denote transformation table size. According to Figure 2-11, we can

compute the TTsize as follows:

TTsize =[(N —1)/3]x 32 3bits

[(N =1)/3]x 32 x 3bits <TTsize <[(N'—1)/3 +1]x 32 x 3bits
32(N —bits < TTsize < 32(N:+2)bits

When the block size is five bits, the transformation data for a basic block

is[(N —1)/4]x32.

TTsize =[(N —1)/4]x 32 x 3bits

[(N —1)/4]x 32 x 3bits < TTsize <[(N —1)/4 +1]x 32 x 3bits

24(N —1)bits <TTsize < 24(N + 3)bits
The bit transition reduction is higher for codes with shorter block size. However,
having shorter block words leads to higher hardware overhead. Selecting the

appropriate block size is a tradeoff between hardware overhead and the solution’s

efficacy.

19

Comparison of Transformation Table Size

—&— Petrov's method

Transformation Table Size (N-1)bits

2 3 4 5 6 7
Block word size (bits)

Figure 2-12: Compariso of transformation table size

When the block size is four bits; ' (ion table size is about equal to the
size of total instructions in the ba erefore, block sizes of 5 and 6 bits

should receive primary consideration red with our proposed method later.

2.4.4 Register Relabeling Power Saving Technique
In a typical RISC ISA, register fields are in fixed positions within the instruction

encoding and occupy a significant part of the instruction word. Figure 2-13 shows

MIPS instruction format. These general-purpose registers are interchangeable.

20

R-type

I-type

J-type

31 26 21 16 11 6 0

| op | s | | rd | shamt | funct |

31 6 bits 26 5 blts2 1 5 bits 16 5 bits 5 bits 6 bits 0

| op | s | ot | immediate |

31 6 bits 26 5 bits 5 bits 16 bits 0

| op | target address |
6 bits 26 bits

Figure 2-13: MIPS instruction format

The basic concept of register relabeling [9] is to minimize the bit changes of the

register fields during instruction fetches by re-assigning register numbers. Naive

register labeling can incur significant bit transitions in consecutive register fields of

the instruction word. Since general-purpose registers are interchangeable, this

technique reassigns registers so that the bit transitions within the register index

streams are minimized. Figure 2-14 shows .an example code fragment. It could

achieve reduction in bit transition with no performance penalties.

Bit transitions on
Register fields:

7 add r3, r2, r4 r3 —»ré6 add
Esub ré, r3, r5 ré —-r7 sub

4 sub r3, r2, ré6 - sub
+) 5 <mul r4, r4, r5 mul

ré,
r7,
ré,
r4,

r2,
ré,
r2,
r4,

r4
r5
r7
r5

\WAVAV;
W B~ W

16

Figure 2-14: Example code fragment

21

-

Bit
Reg pair transition frequency

RHG
(r5,r2) | 3 3
(r8,r5) | 3 2
(r5,r3) | 2 1
(8,r1) | 2 1
(r8,r3) | 3 1
(r2,r1) | 2 1
(r5,r5) | O 1
(r3,0) 2 1
(r5,0) 2 1

Figure 2-15: (a) Frequency distribution of register pairs (b) Register Histogram

Graph

Register Histogram Graph (RHG) is introduced for capturing the utilization
frequency and relation between register pairs, RHG.nodes correspond to registers and
literals. Each RHG edge annotated;with the fréquency. of occurrence. Figure 2-15 (a)
shows all pairs of registers and literal=registerjpairs; which appear in the code and the
quantity of each pair. Figure 2-15 (b)1s one. RHG example. The following algorithm

utilizes the RHG to reassign the register name.

Algorithm
= Jterate through the edges starting from the most frequent ones
= Rename the registers yet unassigned so that hamming distance to
all their assigned neighbors in the graph is minimized

Figure 2-16 shows the RHG after register relabeling.

22

Unassigned Register Names
1
R

) 1

@ @

| |

® o ®
R7

Number of transitions reduced from 28 to 12!
Figure 2-16: RHG after register relabeling

The register fields that occupy the instruction set encoding are small than 50%.
Moreover, the best assignment can only be one hamming distance for each register
pair with different registers. Therefore, when the distribution of all register pairs is
very skew, or the numbers of someqregister pairs are very large, there is some

improvement space to further reduce;bit;transitions.

2.4.5 Summary of Previous Researches

This section gives a brief summary of previous researches mentioned above.

The bus-invert method performs well when patterns to be transmitted are
randomly distributed in time and no information about pattern correlation is available.
Therefore, the method seems to be appropriate for encoding the information traveling
on data buses. Major drawbacks of this approach are related to the required redundant
bus line and the overhead due to the logic to implement the voter to decide whether
the Hamming distance exceeds N / 2. Also, an additional bus line is required to mark

if the buses are inverted or not. Moreover, it appropriates for narrow bus.

BITS method can efficiently reduce bit transitions when the transition signaling is
biased. Moreover, it appropriates for narrow bus. But it also needs a complicated

23

encoder and a redundant control line.

Petrov’s bus encoding scheme is efficient for programs include frequently
executed loops and no encoder requirement, but it need large transformation table that
stores transformation data and a complicated decoder.

Register relabeling can only reduce bit transitions on register fields. It’s not very
efficient method because register fields that occupy the instruction set encoding are
small than 50%. Moreover, the best assignment can be only one hamming distance for
each register pair with different registers. We observe that the distribution of various
register pairs is highly skewed, or the numbers of some register pairs is very large.
Taking advantage of this skew, there is some improvement space so as to further
reduce bit transitions. And it has an advantage that does not need extra hardware
overhead.

These four techniques are -compared in-Table 2-3. The symbol “—” means that
there is not this kind of extra hardware requirement. We also list our design here to
compare with these methods. The detail deseription of our design will be discussed in

the next chapter.

Table 2-3: Extra hardware comparison of the power saving techniques

BI BITS Petrov’s Register | Our design,

method relabeling BIBITS

Encoder complexity | High High — — —

Decoder complexity Low Low High — Medium

Table size — — Large — Small

From the next chapter, a new power reduction scheme that provides the abilities

of low power and real-time execution will be proposed. The proposed method is

24

designed for reducing the power consumption on instruction buses. It divides the
power-saving scheme into two phases so that process the complicated phase is able to

be processed in the software offline.

25

Chapter 3 Design of BIBITS Bus Encoding

The design of reducing the switching activity on system-level buses through the
application of dedicated encoding schemes is discussed in this chapter. The aim is to
propose innovative encoding techniques combined with register relabeling to
minimize the total number of bit transitions on each bit line on the data bus from the
instruction memory.

Figure 3-1 shows the static-time design flow of BIBITS bus encoding scheme
with modified register relabeling. We add modified register relabeling step before

BIBITS bus encoding scheme.

a
Source Traditional Compiler
Code Register Allgcator

Transformed code Ej BIBITS

| Encoding
Transformation data Ej

Modified
Register Relabeling

Code
Generation

Ej‘— Linker

Program
code
Figure 3-1 Static-time design flow of BIBITS bus encoding scheme with

modified register relabeling

BIBITS encoding scheme for power saving is discussed in Section 3.1. Based on
the design of BIBITS encoding scheme, a further technique, BIBITS encoding
scheme with register relabeling, is introduced so as to further reduce power
consumption in Section 3.2. A basic block selection algorithm used in our design is

proposed in Section 3.3.

26

3.1 BIBITS Bus Encoding Scheme

Our design, BIBITS bus encoding scheme, is applied only for the major
application loop. This method is divided as three phase: BIBITS encoding method
algorithm, hardware mechanism, and basic-block selection algorithm. The part of
BIBITS encoding method algorithm introduces how to encoding instruction at static
time .The hardware mechanism of our design includes decoding-control logic, basic
block identification table and transformation table. The part of basic-block selection
algorithm is responsible to choose the most important basic-blocks to lower numbers

of bit transitions on bus.

3.1.1 BIBITS Encoding Method Algorithm

First, all basic blocks of the original program are encoded. Because we intend to
combine an encoding method with register relabeling, we let the partition size equal to
register field size. In other words, the partition size is five bits. Bit 6 and bit 30 are not
encoded because bit 30 has less bit transitions by statically analysis. An instruction
format is partitioned like Figure 3-2 so as to let one register field exactly be one
partition. Each partition of current instruction is compared with the corresponding
partition of previous instruction, and then the best encoding function that can reduce

the most bit transitions for each partition is chosen.

27

+ Formats:

[s 5 s 5 6
. R | op rs rt rd shamt | funct |
Basic Block 1 [ep rs rt 16 Hit addréss]
F) | op 26 biit addrdss |

/\@

1010 | 00001f| 00100)| 00101 | 00101 | 1 | 11000
\/ 0| 1| 0101 | 00011 00111 | 00000 [0 | 11011
B4 1] 0] 0001 | 0oo10(Nagure| 00101 | 00001 |1 {11111
0| o 1001 | 00001 Kao19M 00100 | 00000 | 1 [00111
1] 0 1001 | 0011100011/ 00101 [00001 | 1| 11011
31 NN 0

| 5 bits partition

Figure 3-2: BIBITS encoding method

Let HD,, be the Hamming distance between partition B, and B,.1, given by HD, ;=

1s of (Bnp @ Bno1p)

The objective function then is to minimize ZL Zéf

-
r.x;: Original current pattern
I

: y;: Encoded current pattern

: y;.;: Encoded previous pattern

encoder Yia decoder

Yi —
X; C—1+— vi=xi0opyy, X=Yiopy, ——[1 x

Figure 3-3: BIBITS encoding basic concept
Table 3-1 shows us sixteen functions of two Boolean variables.

Table 3-1: The 16 functions of two Boolean variables

0 (Y= yy @ =Xy (X®Y) (xUFy T X+ (xNry
X via | t I f I f t f
x Y I FoO F1 F2 F3 F4 FsS Fo 7 F8 F92 F10 F11 F12 F13 F14 F15
0 0 0 (e} o] [0} 8] (o] (0] o] 1 1 1 1 1 1 1 1
0 1 0 O] (o] 1 1 1 1 0] 0 O) 1 1 1 1
1 o] 0 (o] 1 1 0 0 1 1 0 0 1 1 0 O 1 1
1 1 0 1 O 1 8] 1) 1 8] 1 O 1 0 1 0 1
(X N1 X y @UN (X SYY (r— x) (X == 1) 1
= (X'EY)

28

According to Table 3-1, only four functions that can be used to decode the encoded

partition by using the same function which is used in the encoding step is chosen, as

illustrated in Figure 3-3. In other words, the relation between encoder and decoder

must satisfy the following equation.

((X; Op ¥i-1) OP Vi1) = X;

Only four functions satisfy the Boolean expression from table of 16 binary operators,

and also that none of the other 12 functions in the table has this property. Therefore,

four selected functions are identify, invert, XOR, and XNOR.

Since it is an NP-complete problem to find an optimal assignment function, we

propose a heuristics algorithm that can be applied to find better encodings.

BIBITS encoding method algotithm is

- Sequentially choose the best encoding function for each partition

- With the contribution ratio ofi.each.-basic block , we can apply the greedy

algorithm to help us select which:basic block should be encoded.

-
I X;: Original current pattern
I'y.: Encoded current pattern
I 1

: y;.;: Encoded previous pattern

y;.; 01101 y;.; 01101 y; 101101 y;; 01101 yi; 01101
x; 11110 y; 11110 y; 00001 y; 11011 y; 01100
Bit
transition 3 3 2 3 1

29

Figure 3-4: BIBITS encoding example

3.1.2 Hardware Support for BIBITS Encoding

The hardware mechanism consists of three main modules: basic-block
identification table, transformation table and decoding hardware.

The block diagram of the proposed method is shown in Figure 3-5. The blocks
inside the dotted line are our designed circuits, the decoding-control logic, that
contain four elements: instruction fetcher, basic block identification table,
transformation table, and decoder. This hardware mechanism may be combined with

processor core into a single chip.

o Instruction Fetcher i
|

: g Inst.
PC1 Instruction Bus
PC2 Index IT T | : Memory
+—PC3 > ¥ i

|
|
|
|
|
|
: Transformation :
| PC el i
: Address it :
: |
T e = 0 :
PC !

CPU Core

i
; Original i
i___ _Instructions _ _ _ _ __

Figure 3-5: System architecture with BIBITS encoding

3.1.3 Decoding-Control Logic

The decoding-control logic is responsible for sending instructions to processor
from memory. It first fetches instructions from memory and then determines if the

fetched instruction is an encoded instruction. If the fetched instruction is an encoded

30

instruction, the original instructions will be gathered from the decoder. The
decoding-control logic consists of four elements: instruction fetcher, basic block

identification table, transformation table, and decoder.

1. Instruction Fetcher:

The instruction fetcher receives the program-counter address request
from processor.

2. Basic Block Identification Table (BBIT):

The basic block identification table stores the program counter value of
the starting instruction and an index that points to the first entry in the
transformation table for this basic block. The number of entries in this table
corresponds to the number of encoded basic blocks for the particular

application loop.

PCl1 T1T2T5-T,E
PC2 Index to TT T,T.,T5-T4,E
PC3
BBIT

TT

Figure 3-6: BBIT and Transformation Table

3. Transformation Table (TT):

The transformation table stores transformation data 7 , associated with

each encoded partition from the instruction memory. A TT entry contains

31

the control bits for selecting the transformation associated with each
partition. The hardware structure asserts the end bit field (E) in the TT entry
for entries corresponding to the last partition word in a given basic block.
4. Decoder:
The decoder receives the control bits 7 , from TT , and selects decoder
function to restore each partition of encoded instructions. The circuit
diagram of the decoder is shown in Figure 3-7.

/:—"q_

i —

10

o]

0l

.—G(—.—C’

oo

Figure 3-7: Decoder circuit

Decoding Procedure
The decoding procedure of this architecture is as follows.
1. CPU sends program counter value to decoding controller.
2. Instruction fetcher access memory for reading instruction.
3. Search basic block identification table to see if there is an entry that is equal
to the program counter value.
I. Yes; the fetched instruction is an encoded instruction. Send the value
of the found entry to the transformation table. Go to Step 4.
II. No; the fetched instruction is directly passed to CPU core. Go to Step
1.
4. Use transformation index to read transformation data in transformation table

and send to decoder and check if entry boundary bit it true.

32

I. Yes; this transformation table entry is finished, and thus the next
instruction should be a non-encoded instruction. Go to Step 1.
II. No; next instruction is still an encoded instruction.

5. Goto Step 4.

3.2 Modified Register Relabeling for BIBITS Bus Encoding

Scheme

Based on the design of the BIBITS encoding scheme, there is still a chance to
reduce power consumption in advance. A further technique, modified register
relabeling, is introduced to further reduce power consumption in this section. The idea
of this is come from the obseryation of program-execution trace. When program is
executed, processor often executes sequence of instructions repeatedly. This sequence
of instructions is known as loop.s A loop containis either one or more basic blocks.
Therefore, the distribution of register pairs is very skew.

According to Figure 3-8, we find that the best assignment can only be one
Hamming distance for each register pair with different registers. However, there are
still a lot of bit transitions when frequency of the register pair is very large. If he
Hamming distance of the register pair can further be reduced from one to zero, a lot of
bit transitions will be reduced. Therefore, modify original register relabeling method
is proposed to resolve this problem. The difference between our proposed register
relabeling algorithm and original register relabeling algorithm is that we consider that
register relabeling is able to be combined with BIBITS bus encoding scheme, such
that the best assignment of register relabeling will be one register pair that is zero
Hamming distance. We see the following Figure 3-8, for example, R2 and RS are

33

assigned as R2 and R3 that is one Hamming distance. And it is a best assignment case
in original register relabeling method. But our modified register relabeling method
assigns one inverse register pair that is R26 and RS5. After applying BIBITS bus
encoding step, this register pair will become RS and RS, and the Hamming distance of

this register pair becomes zero.

Original Register Relabeling Modified Register Relabeling
R2 (00010) RS (00101) R2 (00010) R5 (00101)
Modified
Relabeling ! Relabeling
R26 (11010) RS (00101)
BIBITS
encoding \
v v v Y = X'
R2 (00010) R3 (00011) R5 (00101) R5 (00101)
Bit transition = 1 Bit transition = 0

Figure 3-8: Comparison of origmal register relabeling and modified register

relabeling for BIBITS 'bus encoding

Figure 3-9(a) shows us register pairs frequency of some program. RHG captures
the utilization frequency and relation between register pairs. Nodes of the RHG
correspond to registers and literals, and edge weight corresponds to frequency. Iterate
through the edges starting from the most frequent ones. The following Figure 3-9 (b)

is an example of RHG.

34

Bit
Reg pair transition frequency

RHG
(r5,r2) | 3 6
(r8,r5) | 3 4
(r5,r3) | 2 2
(r8,rl) | 2 2
(r8,r3) | 3 2
(r2,rl) | 2 2
(r5,r5) | O 2
(r3,0) 2 2
(r5,0) 2 2

Figure 3-9: (a) Register pairs frequencies of some program (b) An example of

register histogram graph

The detailed modified register relabeling fot BIBITS bus encoding algorithm is
- Iterate through the edges starting from the highest weight edgei
« If two nodes-of edgejhave not been assigned a new register name,
then assign one inverted register pair R, and R;, ., such that
H.D.(BIBITS(R,,R311))=0.
If one inverted register pair is not found, then assign one register
pair Ry and Ry, such that H.D.(BIBITS(R,, R)) is minimized.
« If one node of edgei has been assigned Rx, then assign R, to another
node, such that H.D.(BIBITS(R,, Ry)) is minimized.
« If all nodes of edgej have been assigned new register names, then

process the next edge.

35

3.3 Basic Block Selection Algorithm

Our selection algorithm is applied to analyze programs-execution behavior. We
analyze and calculate the numbers of bit toggles and execution counts of each basic
block.

The task of determining an optimal basic blocks for a given programs is known
to be NP-complete in the size of the programs. However, many heuristics have sprung
up that find near optimal solutions to the problem, and most are quite similar. The key
idea of the encoded basic-block selection algorithm is to select the most frequent
basic blocks to be encoded. We analyze the program-execution trace with this
algorithm. First, we identify every basic block, and then we calculate the occurrence
frequency and numbers of bit trafsitionsiof each basic block occurs on bus. After the
trace analyzing, each basic block has three parameters: numbers of instruction of this
basic block (length of this basic block); numbers of execution counts, and numbers of
bit transitions.

Each basic block has a contribution value measured as the product of numbers
of execution counts and numbers of bit transitions. We can compute the contribution
as the contribution value divided by the length of this basic block.

The greedy algorithm with the contribution ratio of each basic block is applied to
help us select which basic block should be encoded. The selection algorithm is shown
as follows. Suppose that there is a set BB = {1,2,...n} of n basic blocks in the

program. Each basic block has a contribution value:

ExecutionCounts - BitToggles
Length '

Contribution =

(EQD)

Assumption that transformation table size is S. The greedy-basic-block selector

36

algorithm is

TT : Transformation Table

BB : Basic Block

TD(BB{i}): Transformation data of basic block

Greedy — Basic — Block — Selector(n,CR)
1.Let TT as empty
2.Sort set BB by contribution ratio(CR) ¥ of each basic block
3.forie BB[n]in ¥ order
4. doif Sizeof(TT U TD(BB{i})) <S

5.

6. returnTT

then TT <~ TT U TD(BB{i})

For example, the algorithm’can be illustrated as‘Figure 3-10

‘Dr&ginal Prugram| | Instruction Fetch Trace

BB1

BB2

BB3

(LDR 10, [r5 451
ADD 10, 15,10
ADD 10,10, 4
EEQ 0xa000

MOV 4.0
ADD rd, o, #1
CMP), #0k10
ELT (2000

((LDR 13, |5, #81]
ADD 13,05, B

| BEQ 0xB056

Figure 3-10: An example of greedy-basic -block selector algorithm

LDE 1, 5 481]
ADD 0,15, 40
ADD 1,0, 4
BEQ 0000

LDR 0, 5 451]
ADD 10, 15,10
ADD 10,20, #
EEQ 0xA000

MOV 1,40
ADD rd, i, #1
CMP 1, #0100
ELT (3000

LDR 4, 5 451]
ADD 10, 15,20
ADD 10,10, #
EEQ 0x2000

MOV #.40
ADD v, o, #1
CMP s, #kel00
BLT (200

LDR 5, [451
ADD 13, 15, 15
EEQ 0x3lG8

LDR &, 5451
ADD 13, 15, 8
BEQ DxzAGE

Bit: toggles
43

Bit koggles
43

Bit koggles
a5

Bit: toggles
43

Bit koggles
55

Bit toggles
30

Bit toggles
30

Y J Ty | [

N

A,

37

Basie Bloclk 1

Basic Block 1

Basiz Block 2

Basiz Block 1

Basic Blodk 2

Basic Block 3

Basic Blbck 3

LDR 0, 5 451)]

LDD 10, 5,40 3443
BBl | 4op mo4 S =2
BEC 028000
MOT 440
ADD o, o, 41 ie55
2 CMP), #k10 a4 S
BLT w0
LDR =&, 5 &1]
BE3 | ADD 152,53 230 o
BEQ 00156 3

Table 3-2: Computing contribution ratio of each basic block

Frequency|Bit Toggles| Length| Contribution CR
BB1 3 43 4 129 32.25
BB2 2 55 4 110 27.5
BB3 2 30 3 60 20

After analyze the trace of program execution, the set BB has three elements:
Basic-Block 1, Basic-Block 2, and Basic-Block 3. The parameters of these three basic
blocks are shown as Table 3-2. The selection priority is first BB 1, then BB 2, and BB

3 is the last one.

38

Chapter 4 Simulation and Analysis

Benchmark programs are first discussed in this chapter. Simulation methods are
then introduced in this thesis, including the toolsets, simulation flow, simulation

parameters and evaluating factors.

4.1 Experimental Benchmarks

We perform experiments for the following benchmarks for evaluating the
efficiency of encoding in bus transition reduction. These six DSP or
numerical-computation kernels that represent code frequently encountered in many

embedded system products. Table 4-1 givesia summary of our choice of benchmarks.

Table 4=1: Benchmark

Function Name Description

Mmul A matrix multiplication of 100 % 100 element matrices.

SOR Successive over-relaxation on a 256 X 256 element
matrix.

EJ Extrapolated Jacobi-iterative method on a 128 x 128
entry grid.

FFT Fast Fourier transform with a 256-bit sample block size.

Tri Tri-diagonal system solver on a 128 x 128 element
matrix.

LU Lower/upper triangular matrix decomposition algorithm

on a 128 x 128 element matrix.

The size and basic block number of each benchmark program is presented in

Table 4-2.

39

Table 4-2: Benchmark program size and numbers of each basic block

Program Program size (Bytes) Number of Basic Block
Mmul 304 13
Sor 1300 14
Ej 1500 22
FFT 1152 65
Tri 1252 9
LU 3376 34

4.2 Experimental Methods

The experimental toolset we used in this simulation are described in this section.
These tools are either MIPS® SDE Lite, a-free subset of the MIPS Software Toolkit
[11][12], or created by us. We wrote a simiilation tool so that we could do basic block
selection, modified register relabeling and BIBITS encoding scheme. And we also
could evaluate the number of bit-transitions-on-all the lines of the instruction bus. We
also list the experimental flow, the experiments we planned to do, and simulation

parameters we referred.

4.2.1 Experimental Toolset

Experimental environment is divided into three sub-environments:

® Code Generation phase: The purpose of this sub-environment is to
compile the executable machine codes for the benchmark programs. We
adopt MIPS® SDE Lite version 5.03.06.[12] to build the MIPS ELF
(Executable and Linkable Format) image format for each benchmark

program.

40

® Transformation Table Building phase: This sub-environment includes a

transformation table builder and a code-rebuilder. The transformation table

builder scans the program execution trace running under the GNU MIPS

CPU Simulator and builds the transformation table for each benchmark

program. The code-rebuilder rebuilds selected basic-blocks of programs by

BIBITS encoding.

® Result Calculation phase: The final sub-environment includes the

modified simulator and a bit transition calculator.

We have adopted and developed the complete experimental toolset consisting of

individual tools that accomplish specific tasks respectively for constructing the

experimental environment.

Table 4-3 lists all tools composing the experimental toolset.

Table 4-3:. Experimental toolset descriptions

Tool Name

Description I

sde-gcc

SDE’s version of the Free Software Foundation’s|
ANSI-compatible GNU C Compiler compiling C source code.
This version incorporates superb optimization for RISC

processors, such as MIPS architecture processors.

sde-1d

SDE’s version of the GNU linker and loader links the object
files necessary for building MIPS ELF files of the componentsj
in the benchmark suite.

sde-run

The GNU MIPS CPU simulator executes the MIPS ELF image
files. It could trace the execution behaviors of the benchmark

programs.

BB-sel

The Basic Block Selector that builds the recovery dictionary
with dictionary building rules by scanning the MIPS programj

execution trace.

code-rebuild

The code-rebuilder rebuilds the program with the

transformation table provided from the transformation table

41

builder. I

The modified GNU MIPS CPU simulator to execute th
modsde-run |encoded programs and calculate the power needed for thi

architecture.

4.2.2 Experimental Flow

The experimental flow, the experimental toolset and intermediate files, such as
object files, MIPS ELF files, etc., are shown in Figure 4-1. By a horizontal dotted line,
this figure is divided into three sub-figures representing the three experimental

sub-environments representing the three experimental sub-environments.

42

Ve

Code Generation — Benchmarks (.c)

C Compiler
(sde-gcc)

Assembly code
(.S)

Reg. relabeler

Assembly code

(reg-relabel)
reg-relabe (S)

Linker
(sde-1d)

ELF

Input Data

GNU Tracer

(sde-run)

Execution
Trace

Build
Transformation
Table BB-Selector
(BB-Sel) TT Files
—_ (.tt)

Code-Rebuilder
(Code-rebuild)

Encoded Files
(.coded)

/ (TT Files

(-.tt)

Modified-Tracer
(Mod-run)

Input Data

Result Calculator l

Bit transition I

Figure 4-1: Experimental flow by using our experimental toolset

43

The complete experimental flow is described as follows:

1. The MIPS C compiler (sde-gcc) compiles the source files (.c) of the
benchmark programs into its corresponding object files (.0).

2. The register relabeler (reg-relabel) adjusts register name to reduce the bit
transitions of the instruction register fields.

3. The MIPS C linker (sde-ld) links the object files necessary for building
MIPS ELF files of the components in the benchmark suite.

4. The GNU MIPS CPU Simulator (sde-run) traces the ELF files with input
data and then output the execution instructions and the corresponding
program counters (PC value).

5. The Basic Block Selector (BB-sel) scans execution trace and produces the
transformation table that containss selected basic block and encoding
information.

6. According the transformation table files, the code-rebuilder build the MIPS
machine code files.

7. The modified GNU MIPS CPU Simulator (modsde-run) executes the coded
programs with transformation tables and input data. It also calculates the bit

transitions for executing these programs.

4.2.3 Designing Experiments

The transformation table builder (TTbuild) and the modified tracer (modsde-run)
are the core tools in the entire experimental toolset because they are the tools actually
analyzing the execution trace and we can evaluate the power consumption of each

benchmark. In our simulation, we evaluate the bit transitions of these conditions:

44

® Base system architecture. This is the simply architecture with only the
processor and instruction memory. The instructions are always fetched from
the instruction memory.

® Bus-invert encoding scheme. This is the power reduction technique
mentioned in Chapter 2. We implement this architecture to compare the
results between this approach and ours.

® BITS bus encoding scheme. This is the power reduction technique
mentioned in Chapter 2. We implement this architecture to compare the
results between this approach and ours.

® Register Relabeling. This is the power reduction technique we mentioned in
tChapter 2. We implement this te.compate the results between this approach
and ours.

® Petrov’s bus encoding scheme. This is also the power reduction technique
we mentioned in Chapter 2. We implement this architecture to compare the
results between this approach and ours.

® BIBITS bus encoding scheme. This is our design that we execute the coded
program with the recovery dictionary.

® BIBITS bus encoding scheme with original register relabeling. This is our
design that we apply original register relabeling before BIBITS bus
encoding scheme stage.

® BIBITS bus encoding scheme with modified register relabeling. This is our
design that we apply modified register relabeling before BIBITS bus
encoding scheme stage.

The bit transitions effects are evaluated with different transformation table sizes

45

in Petrov’s bus encoding scheme and our proposed BIBITS bus encoding scheme.

4.3 Simulation Results and Analyses

Experimental results obtained from evaluating power consumed by the
benchmark programs as described above are presented in this chapter. The bit
transitions reduction by various techniques for each benchmark programs is first
evaluated. The bit transitions reduction of our proposed BIBITS and Petrov’s bus
encoding scheme are then evaluated in different transformation table sizes. Notice that

the results of bit transition are all normalized to those of the base system.

4.3.1 Bit Transition Reduction of Different Techniques

Our approach’s effectiveness is..measured by observing the reduction of
transition on the data bus to the instruction memory. We ran simulation using a typical
embedded processor as the baseline system architecture. We used six DSP or
numerical-computation benchmarks that represent code frequently encountered in
many embedded products.

Figure 4-2 displays the bit transition reduction by applying different techniques
in six different benchmark programs. There are seven techniques applied in this figure:
Bus-invert, BITS, register relabeling, Petrov’s bus encoding scheme, BIBITS bus
encoding scheme, BIBITS with original register relabeling (ORR+BIBITS), and
BIBITS with modified register relabeling (MRR+BIBITS). Petrov’s bus encoding
scheme and relative BIBITS bus encoding schemes need use transformation tables.

This experiment selected all basic blocks of each program to be encoded. In other
46

words, the transformation table size is unlimited.

Bit transition reduction
I Bus-Invert
70 A I eITs
| I Reg. Relabeling
0 - 1 Petrov(5-bit block
| I Petrov(6-bit block
% [__IBIBITS
[ORR + BIBITS
% Il VRR + BIBITS

30+

Reduction (%)

20 4

mmul sor ej fit tri] Average

Benchmark

Figure 4-2: Transition reduction of different techniques

Experimental results indic;;te thatilje;iué;ltion.s .1‘in bit transition of Bus-invert
method are not very good. It.‘l_g;lso“éh(;\‘zv‘sjhat r,ed{ilctions in bit transition of our
proposed BIBITS encoding schérﬁé“ range Harouﬁ(.‘i 56% to 61% except for the fit
program.

Assume that there are N instructions in some basic block. What about actual
transformation table size use by Petrov’s bus encoding scheme and BIBITS bus
encoding scheme when all basic blocks are encoded? Results of these are presented in

Table 4-4. Obviously, the table size of BIBITS bus encoding scheme is only a half of

Petrov’s bus encoding scheme.

Table 4-4: Comparison with transformation table size

Method Transformation data | Transformation

number table size (bits)
Petrov’s bus encoding [(N-1)/31]x32 [(N =1)/31x32x3bits
(4-bit block word) =~ 32N —32bits

47

Petrov’s bus encoding [(N-1)/4]x32 [(N—1)/4]x32x3bits
(5-bit block word) =~ 24N —24bits
Petrov’s bus encoding [(N-1)/5]x32 [(N =1)/5 |x32x3bits
(6-bit block word) ~19.2N —19.2bits
BIBITS bus encoding (N-1)x6=6N-6 (6N-6)x2=12N-12bits

BIBITS bus encoding scheme is combined with register relabeling technique so
as to further reduce bit transitions. First, original register relabeling is applied before
doing BIBITS bus encoding scheme. However, total bit transitions of some programs
applied BIBITS bus encoding scheme with original register relabeling are bigger than
these applied only BIBITS bus encoding scheme. Resolving this problem requires
proposing a modified register relabeling method applied before doing BIBITS bus
encoding scheme. According to the ,sesult.of this experiment, this method can
efficiently resolve this problem.’ Applying tegister relabeling before BIBITS bus
encoding scheme could further ‘reduce -bit transitions without increasing extra
hardware overhead.

While all basic blocks are encoded, transformation table size of “MRR+BIBITS”
bus encoding scheme is about a half of Petrov’s bus encoding scheme (5-bit block
word). Achieve 64% average bit transition reduction as compared with base-line
system. Further reduce 31% average bit transitions as compared with total bit
transitions of Petrov’s method (5-bit block word). Moreover, the decoder hardware is
more uncomplicated than Petrov’s. In Section 5.2, experiment results of BIBITS bus
encoding scheme and Petrov’s bus encoding scheme (5-bit block word) will be

presented with different transformation table sizes in detail.

48

4.3.2 Bit Transition Reduction of Techniques with Different

Transformation Table Sizes

In the Petrov’s bus encoding scheme (5-bit block word) and our proposed
BIBITS bus encoding scheme, we will evaluate the bit transitions effects with

different transformation table sizes.

Figure 4-3 shows the bit transition reduction of mmul program with different
transformation table sizes. BIBITS method has higher bit transition reduction than
Petrov’s method. Furthermore, when the transformation table size increases to 0.3
Kbytes, BIBITS method reaches about 51% bit transition reduction. However,
Petrov’s method can only reaches 0.6%_bit transition reduction. These following

figures are experiment result of each benehmark program.

Bit transition reduction —m— Petrov's method

60 ® BIBITS method
> 346 71113
50 o o @ 0 0 0o @
™ n L] L] L] n]
o 4 3 5 7 8 1 13
g 304 # of encoded basic block
=
2
°
=
T 204
@
(14
10 4
1270
04 e a=%—n]
1 4 5
T T LI

- -)
00 02 04 06 08 10 12 14 18 18
Transforamtion table size (Kbyte)

Figure 4-3: mmul - Bit transition reduction with different transformation table

sizes

49

Bit transition reduction

e BIBITS method
70 - = — Petrov's method

% 5795 5101213 14
[B B B]

B0 LA Sl B B]
50 4 [] "— = % —5 —§ —5 —§—0~n
2 7 7 5 7 10 11 13 14
X 40
= o ‘
2 # of encoded basic block
S 304
i=
@
14
20 +
104 4 |
* /5
L]
0

LIS W S e i i st e e i e e e e e
0005101520253035404550556065?0?580

Transformation table size(Kbyte)

Figure 4-4: sor - Bit transition reduction with different transformation table sizes

Bit transition reduction ® BIBITS method
= — Petrov's method
57 610111521 o
60 4
2—0—0—0—0—0—0—0 °
50
™ e e B ! | " -m | B -m
f 22
o] _4 6 7 7 9 14 17 21
*
=
2 30 ' # of encoded basic block
Q
=
=]
=)
T 2
104 5
L]
s 6
o+ T T T T
0 1 2 3 4 5 6 7 8 9

Transformation table size (Kbits)

Figure 4-5: ej - Bit transition reduction with different transformation table sizes

50

Bit transition reduction

= BIBITS method

45 - e Petrov's method
> 54 65
#of encoded basic blodk~. 43 45 e —°
40 36 .
j L]
35 36 ¢
Kyl °
30 18 .
:_6'_?‘, i o L] .48.65
g ..l3440
g S 16 /u” 29
= o 26
[7] L
& 204 s 19
10/ 17
154 &y
10 a0
LN IO UL UL TN NN LA LU S (LU OGN N NN IR I
00 05 10 15 20 25 30 35 40 45 50 55 60 65 7.0

Transformation table size(Kbyte)

Figure 4-6: fft - Bit transition reduction with different transformation table sizes

Bit transition reduction

60

Reduction(%)
] 5 3
1 1 L
L

8]
o
1
w

s
o
1

/i

0 " g

e BIBITS method
= Petrov's method

of encoded basic block

4 7

LIS S PO R A S DL DR LA BV [LAY RS ENL SR R
0.0 05 10 1.5 20 25 3.0 35 4.0 45 50 55 6.0 65 7.0 75 80

Transformation table size (Kbyte)

Figure 4-7: tri - Bit transition reduction with different transformation table sizes

51

Bit transition reduction

Reduction(%)

60

50

40

30 4

20

10 4

e BIBITS method
g 88 14 182023 2634 = Petrov's method

13 19 21 23 29 34

7 11 8

of encoded basic block

T
2 4 6 8 10 12 14 16 18

Transformation table size (Kbyte)

20 22

Figure 4-8: lu - Bit transition reduction with different transformation table sizes

We observe that our method has*higher bit transitions reduction than Petrov’s bus

encoding scheme. Figure 4-9 displays BIBITS detailed experiment results that are

average bit transitions reductions for/full'benchmarks with different transformation

table sizes.

Bit transition reduction -

Reduction(%)

60 -

50 4

40

30

20 4

10 4

Petrov's method
e BIBITS method

Transformation table size(Kbyte)

Figure 4-9: Average bit transition reduction for full benchmarks with different

transformation table sizes

52

Chapter S Conclusion and Future Works

BIBITS bus encoding scheme is proposed to reduce power consumption on
program memory bus in this thesis. Moreover, a modified register relabeling
algorithm is also proposed to be combined with BIBITS bus encoding scheme so as to
further reduce bit transitions. The key idea of our method is to apply a transformation
table which stores frequently execution basic block transformation data to make use
of repetitions of basic blocks at program execution time so as to reduce bit transitions
on program memory data bus.

The simulation results show that the overall average switching reduction is 64%
over original data and 57% more than original register relabeling scheme only and
more than Petrov’s bus encoding scheme about .13~ 20% except for FFT program.
Problems arising form FFT program is-almost small basic blocks that has only two or
three instructions. Petrov’s bus encoding'scheme is more suitable for this kind of basic
block size. The suitable size of tfansformation-table varies with different programs.
Contrary to Petrov’s bus encoding scheme, our proposed scheme need only a half
transformation table size to encode all basic blocks. Moreover, our decoder
implementation is more uncomplicated than theirs. Therefore, the extra hardware
overhead of our proposed is lower than Petrov’s bus encoding scheme.

There are still several researches could be further studied. For example, find
compiler techniques that can be combined with bus encoding methods to further
reduce bit transitions. For example, BIBITS is combined operand swapping with and
instruction scheduling.

A large number of instructions, such as addition, multiplication, and logic
operations, are insensitive to the order of their operands. Consequently, the

commutability of certain instructions provides a degree of freedom. In the same way,

53

instruction scheduling that changes instruction sequences could also provide a degree
of freedom. But these pervious compilation techniques did not consider to be
combined with bus encoding schemes. However, applying directly these compilation
techniques combined with BIBITS encoding scheme maybe result in worse reduction
than only applying BIBITS.

Therefore, we must think deeply how to integrate and modify these techniques
perfectly, such that the closed integrated scheme is able to further reduce total bit

transitions.

54

Reference

[1] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, “Global communication
and memory optimizing transformations for low power signal processing systems,”
IWLPD-94: ACM/IEEE International Workshop on Low Power Design, pp. 203-208,

April 1994.

[2] P.R. Panda and N. D. Dutt, “Reducing Address Bus Transitions for Low Power
Memory Mapping,” EDTC-96: IEEE European Design and test Conference, pp.
63-67, Paris, France, March 1996.

[3] A. Aho, R. Sethi and J. Ullman, Compilers Principles, Techniques and Tools,

Addison-Wesley Publishing Company, 1986

[4] N. Weste, K. Enshraghian, Principles .of <CMOS VLSI Design, a System

Perspective. Reading: Addison-Wesley Publishing'Company, 1988

[5] A.P. Chandrakasan, S. Sheng, and-R.W Brodersen, “Low-Power CMOS Digital

Design,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-483, Apr.1992.

[6] A. Chandrakasan, R. Brodersen, “Minimizing Power Consumption in Digital

CMOS Circuits,” Vol. 83, No. 4, pp. 498-523, Proceedings of the IEEE, April 1995

[7] M.R. Stan, W.P. Burleson, “Bus-invert coding for low-power 1/0,” IEEE Trans. on

VLSI Systems, Vol. 3, No. 1, pp. 49-58, Mar. 1995

[8] Youngsoo Shin, Kiyoung Choi, Young-Hoon Chang, “Narrow Bus Encoding for
Low-Power DSP systems,” IEEE Trans. On VLSI systems, Vol. 9, No. 5, pp. 656-660,

Oct. 2001

[9] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen, Debashree

Ghosh, “Techniques for Low Energy Software,” Low Power Electronics and Design,

55

1997. Proceedings.,International Symposium on , Aug. 1997 Pages:72 — 75

[10] P. Petrov, A. Orailoglu, “Application-Specific Instruction Memory
Customizations for Power-Efficient Embedded Processors,” IEEE Design and Test of

Computers magazine, Jan 2003 pages : 18-25

[11] Dominic Sweetman, “See MIPS run,” Morgan Kaufmann Publishers Inc., San

Francisco, CA, 1999
[12] MIPS Technologies, Inc., “MIPS SDE 5.03 Programmers’ Guide,” Jan 2004

[13] L. Benini, “Automatic Synthesis of Sequential Circuits for Low Power
Dissipation,” Ph.D. Thesis, Dept. of Electrical Engineering Stanford University,

CSL-TR-97-717, Feb. 1997.

56

	Introduction
	Power Constraint of Embedded Systems
	Research Motivations
	Research Goal
	Organization of This Thesis

	Backgrounds
	Overview of Embedded Systems
	Source of Power Consumption
	Baseline System
	Previous Research of Power Reduction on Buses
	Bus Invert Power Saving Technique
	Bus Invert Transition Signaling Power Saving Technique
	Petrov’s Bus Encoding Power Saving Technique
	Register Relabeling Power Saving Technique
	Summary of Previous Researches

	Design of BIBITS Bus Encoding
	BIBITS Bus Encoding Scheme
	BIBITS Encoding Method Algorithm
	Hardware Support for BIBITS Encoding
	Decoding-Control Logic

	Modified Register Relabeling for BIBITS Bus Encoding Scheme
	Basic Block Selection Algorithm

	Simulation and Analysis
	Experimental Benchmarks
	Experimental Methods
	Experimental Toolset
	Experimental Flow
	Designing Experiments

	Simulation Results and Analyses
	Bit Transition Reduction of Different Techniques
	Bit Transition Reduction of Techniques with Different Transf

	Conclusion and Future Works
	Reference

