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摘要 
 

隨著嵌入式處理器快速發展，省電考慮也日益重要。由於 off-chip 匯流排

耗電佔了整體系統的耗電蠻大部分，許多研究已經著重在如何減少 off-chip 匯

流排的電耗。因為匯流排上的電耗大約成正比於其上傳送的資料位元變化量，所

以減少匯流排上的位元變化量是降低匯流排電耗的一個有效的方法。 

目前已經有許多減少位址匯流排電耗的研究被提出，然而減少資料匯流排電

耗的方法卻很少。因此針對目前嵌入式處理器在程式記憶體的資料匯流排上電

耗，我們提出 BIBITS 匯流排編碼方法來減少程式記憶體的資料匯流排上電耗。

我們也提出 modified register relabeling 結合 BIBITS 匯流排編碼方法，使編

碼過後的程式，在程式記憶體的資料匯流排上傳送時的位元變化量更小。 

根據實驗數據結果顯示，我們提出的方法比完全都沒做過編碼的情況平均減

少了64% 的bit transition，比起單純只有register relabeling 多出約57% 的 

bit transition 減少量，比起 Petrov 提出的方法多出約 16% 的 bit transition

減少量。而且我們的方法在針對全部基本區塊(basic-block)編碼所需要儲存的

資料約只要 Petrov 提出的方法的一半。並且我們的方法在解碼電路的實作比他

的方法簡單。整體而言，這項研究成果在嵌入式處理器上能有更進一步的省電效

果。 
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Abstract 
 
Reducing the power consumption of embedded processor has gained a lot of 

attention recently. Many research works have focused on reducing power 
consumption in the off-chip buses as they consume a significant amount of total 
power. Reducing the bus switching is an effective way to reduce bus power since the 
bus power consumption is about proportional to the switching activity. While 
numerous techniques exist for reducing bus power in address buses, only a handful of 
techniques have been proposed for data-bus power reduction. 

For the low power requirement on the program-memory data bus of current 
embedded processors, we proposed a BIBITS bus encoding scheme to reduce power 
consumption on program memory bus. A modified register relabeling algorithm is 
also proposed to be combined with BIBITS bus encoding scheme to further reduce bit 
transitions. These techniques aim at reducing more switching activity and hence, more 
power consumption.  

The simulation results showed that the overall average switching reduction is 
64% over original data and 57% more than original register relabeling scheme only 
and 16% more than Petrov’s bus encoding scheme only. Contrary to Petrov’s bus 
encoding scheme, our proposed scheme need only a half transformation table size to 
encode all basic blocks. Moreover, our decoder implementation is simpler than theirs. 
Therefore, the extra hardware overhead of our proposed is lower than Petrov’s bus 
encoding scheme. We can conclude with certainly that our research results may have 
more power saving opportunities. 
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Chapter 1  Introduction 

 

First, an overview of saving power consumption on embedded systems is given in 

this chapter. The research motivation and goal are then introduced. The organization 

of this thesis is described at last. 

 

1.1  Power Constraint of Embedded Systems 

 

The requirement in reducing the power of a processor has grown dramatically 

over the past few years. This requirement has changed the evaluation metrics of 

processors. Performance was the single most important feature of a microprocessor 

until recently. However, designers are more concerned with the power dissipation 

today. In some cases, especially in portable and mobile applications low power 

becomes the key design goal. Power optimization for embedded systems produces an 

active area of research that has received considerable attention with the growing 

market for portable and mobile applications in recent times.  

Low-power consumption is an important design goal for battery-powered potable 

embedded systems such as cellular phone and PDA (Personal Digital Assistants). It 

has been shown that the majority of the area and power cost is not as a result of the 

datapath or the controllers, but the global communication and memory interaction [1] 

in such systems that involve multidimensional streams of signals such as images, 

video or voice sequences. The ever-growing improvements in process technology 

have made SoC (System on Chip) design approaches attractive. 

A typical SoC (System on Chip) design has several embedded processor cores, 
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which are responsible for various parts of the total system functionality. Each 

processor accesses an on-chip or off-chip instruction memory containing the 

application code. The processor typically accesses this memory to fetch the next 

instruction every cycle. However, transferring addresses and data along long 

interconnect buses consumes a significant amount of power because of the bus line’s 

high capacitance. Therefore, the interaction between a processor and its instruction 

memory significantly contributes to total power consumption. Having the instruction 

memory off-chip (for example, external flash memory) further aggravates this effect, 

because of the significantly higher capacitance of the bus lines going through the 

system I/O pins.    

 

1.2  Research Motivations 

 

As mentioned in Section 1.1, the major power consumption comes from the 

buses. In fact, 50% to 80% of the power cost in application-specific integrated circuits 

(ASIC) for real-time signal processing is dissipated as a consequence of memory 

traffic caused by the ASIC and the off-chip memories [1]. A considerable amount of 

power is required at the I/O pins of the microprocessor when data have to be 

transmitted over the bus as a result of the intrinsic capacitances of the bus lines. More 

specifically, it has been estimated that the capacitance driven by the I/O nodes is 

usually much larger (up to three orders of magnitude [1]) than the one seen by the 

internal nodes of the microprocessor. This implies that design techniques leading to 

decrease in power dissipation in this part will make a significant impact on the overall 

power dissipation of the application. As a consequence, dramatic optimizations of the 

average power consumption can be achieved by minimizing the number of transitions 

 2



(i.e., the switching activity) on system-level buses. 

Instruction streams could be encoded at static time. Moreover, contents on bus 

transactions reflect program execution behaviors. Execution flow is composed of 

many simple blocks by analyzing the execution flow of programs. These simple 

blocks are well known as basic blocks [3]. Basic block is an instruction sequence that 

begins with a branch target instruction and ends with a branch instruction and most 

import of all, contains no other branch target or branch instruction at all. It means that 

basic block is the execution unit of program. Processor executes the whole basic block 

except interrupting by exceptions. Executing program loops also reflects this fact that 

one loop might contain one or more entire basic blocks. During loops execution, these 

basic blocks transmit on bus repeatedly and thus cause unnecessary power 

consumption. If these frequently executed basic blocks can be transmitted with lower 

bit transitions, power can be efficiently saved. 

Pervious low-power bus encoding techniques either need a complicated encoder 

or a large transformation table. Moreover, these techniques are not considered to be 

combined with compiler techniques such as to further reduce power consumption. 

 

1.3  Research Goal 

 

An instruction encoding method combined with post-compilation techniques is 

proposed to further reduce the runtime power dissipated on the system-level buses in 

this thesis. We focus on the instruction bus to exploit the repetitions of instructions for 

reducing power dissipations on buses. A pre-selected transformation table is applied 

for the sake of reducing the bit transitions of the repeated instructions from 

transmitting on the buses. This transformation table is working as internal memory 
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nearby the processor core. These techniques need extra hardware support includes a 

decoder, a basic-block identification table and a transformation table. 

 

1.4  Organization of This Thesis 

 

This thesis is divided as follows. Chapter 2 shows the background of embedded 

system, power consumption model, and discusses previous relative researches on bus 

power reduction. In Chapter 3, bus power reduction techniques for instruction bus are 

introduced. The experimental environment, simulation results and relative analysis are 

presented in Chapter 4. Finally, we summarize our conclusions and future works in 

Chapter 5. 
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Chapter 2  Backgrounds 

The main purpose of this chapter is to provide the necessary background for the 

concepts and methods presented in the following chapters. First, we will give an 

overview of the embedded systems. The main sources of power consumption in VLSI 

circuits based on static CMOS technology are then introduced. More specifically, we 

highlight how the dominant fraction of the average power dissipation in CMOS 

circuits is due to the switching power caused by the transition activity of the gate 

outputs. The main parameters affecting the switching power, namely the clock 

frequency, the supply voltage, the capacitive load, and the switching activity are 

briefly analyzed. Finally, the chapter provides a non-comprehensive review of the 

related approaches for bus power optimization and estimation appeared in the 

literature in the last few years. 

 

2.1  Overview of Embedded Systems 

 

Embedded systems abound in everyday life today. Examples include the modern 

cellular phone, PDA, the engine control unit of an automobile and the aircraft 

autopilot. These systems are also found in process monitoring and control, signal 

processing, home appliances, industrial robots, and laser printers. Typical metrics that 

impact the design of embedded systems include reliability, performance, cost, and 

form factors, which include size, weight, and power constraints.  

Embedded systems can be divided into two broad classes based on performance. 

Low to moderate performance systems have severe cost and form factor requirements. 

Examples include controllers for home appliances. For these applications, 
 5



microcontrollers are typically sufficient. High performance systems are required more 

powerful microprocessors. Examples include cellular phone, PDA and aircraft 

autopilot.  

 

2.2  Source of Power Consumption 

 

It has shown that 50% to 80% of power cost is due to memory traffic in Chapter 

1. Our target system is a typical memory-intensive embedded system. According to 

the Amdahl’s law, we tend to reduce the power consumption on buses. 

Power dissipation in CMOS circuits can be considered as composed of a static 

and a dynamic component. Static power is due to the leakage current. However, in 

“well-designed” CMOS devices, static power dissipation can be considered 

insignificant in most designs [5]. Dynamic power is the main source dissipation for 

most CMOS designs. Leakage power will become a significant problem as process 

feature sizes decrease, but one that we will not discuss [6]. The dominant part of the 

power dissipation in CMOS circuits is thus the dynamic component, which is in turn 

composed of two terms. The first term, indicated as the switching power, is due to the 

charge and discharge of the circuit node capacitances at the output of each logic gate. 

The second term, indicated as short-circuit power, represents the short-circuit current 

from the supply to the ground voltage during output transitions. 

There are three most contributions of average power consumption in digital 

CMOS circuits which are summarized in the following equation: [4] 

leakagecircuitshortswitchingavg PPPP ++= −  

    . (1) ddleakageddscclkvddL VIVIfVC ⋅+⋅+⋅⋅= →
2

10α

The first represents the switching power, where CL is the load capacitance, Vdd is the 
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supply voltage, fclk is the clock frequency and α0→1 is the node switching activity 

factor (the average number of times the node makes a power consuming transition in 

one clock period).  

Let us analyze each contribution in detail, considering a simple static CMOS gate, 

an inverter, as a motivating example. Other combinational and sequential gates show 

a similar behavior. Figure 2-1 shows the structure of the generic static CMOS inverter. 

The pull-up network is built with PMOS transistors (T1 for the selected inverter) and 

it connects the output node Vout to the power supply Vdd. Conversely, the pull-down 

network is composed of NMOS transistors (T2 for the selected inverter) and it 

connects the output node to the ground node Vss. In CMOS gates, the structure of the 

pull-up and pull-down network is such that when the circuit is stable (i.e. after the 

output rise or fall transients are exhausted) the output node is never connected to both 

Vdd and Vss at the same time. 

 

Figure 2-1: The structure of a CMOS inverter 

When an input transition causes a change in the conductive state of the pull-up 

and the pull-down network, the electric charge is transferred from the power supply to 

the output capacitance CL or from the output capacitance to ground. The transition 

causes power dissipation on the resistive pull-up and pull-down networks. Let us 
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consider a rising output transition (see Figure 6-a). Power is by definition Psw (t) = d 

E(t) / dt = id (t) v (t), where id (t) is the current drawn from the supply and v (t) is the 

supply voltage Vdd. The total energy provided by the supply is [13]: 

∫ ∫ ===
r ddT V

ddoutoutLdddr VCdVCVdttvtiE
0 0

2)()(  

 

where Tr is the time interval long enough for the transient exhaustion. Notice that 

we implicitly assume that all current provided by Vdd is used to charge the output 

capacitance. We also assume the output capacitance to be a constant. 

At the end of the transition, the output capacitance is charged to Vdd, and the 

energy stored in it is given by: . Hence, the total energy dissipated by T1 

during the 0→1 output transition is: . 

22/1 ddLs VCE =

222 2/12/1 ddLddLddLd VCVCVCE =−=

 

  

(a)                                 (b) 

Figure 2-2: (a) The 0→1 and (b) 1→0 

If we consider the falling output transition (see Figure 6-b), no energy is stored in 

the output capacitance. For the conservation of the energy, the total energy dissipated 
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by T2 during a falling output transition is given by . This derivation 

leads us to the fundamental expression of the switching power consumption [13]: 

22/1 ddLs VCE =

fVCP ddLsw
2α=  

where CL is the load capacitance, Vdd is the supply voltage, f is the clock frequency 

and α is the node switching activity factor. 

Factor CL is decided once the manufacture process has been chosen. Decreasing 

the Vdd factor has a quadratic effect and can be an effective way. However, the supply 

voltage is usually determined by the system and technology consideration, and 

decreasing Vdd will accordingly increase the propagation delay. The computing time 

will be definitely extended by reducing the factor f, clock speed. It is an unacceptable 

defect to trade performance of embedded system that usually has real-time demands. 

Moreover, the power of other idle modules cannot be omitted since execution time 

increases. Therefore, the most important factor that distinguishes power is its 

dependence on the switching activity.  

There are two ways to cut-down the switching activity on buses in execution 

time, 

1. Reducing transaction counts:  

Reducing requests of memory access is a direct approach to 

reduce bit transitions on buses. Buses can keep idle and eliminate 

power consumption since requests are saved. To increase the 

reusability of transmitted values is a common example of this idea. 

2. Reducing numbers of switch activities per transaction: 

Reducing numbers of switch activities per transaction that make 

the current transmitted bits near previous ones can reduce number of 

capacitances needed to be driven. Bus masking is a general technique 
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to eliminate variability between two sequential accesses. 

 

2.3  Baseline System  

 

Our baseline architecture model is as Figure 2-3. The processor sends address 

request and receives instructions from main memory directly at this baseline system. 

We find that repeatedly executed instructions will continuously drive the same bus 

transactions and consume power. Therefore, power consumption of instruction bus is 

reduced by reducing memory transactions. 

Data Memory

Program
Memory

DAddr

Data

Data

IAddr
CPU core

Data Memory

Program
Memory

DAddr

Data

Data

IAddr
CPU core

 

Figure 2-3: Architecture model of baseline system 

The power consumption on instruction and address buses all follows the follows 

the formula for that of CMOS circuit. The power consumption model on buses of the 

baseline system is  
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The average power consumption also concludes the leakage power and the 

short-circuit power, which are not in our discussion. The static power dissipated by 

CMOS VLSI gate is in the nanowatt range [1], which is ignored. Using this evaluation 

metric, we can calculate the power consumption during programs executing. We 

mention above that the capacitances and supply voltage should remain unchanged. 

Our design goal is reducing numbers of bit transitions on bus with less power 

consumption. 

 

2.4  Previous Research of Power Reduction on Buses  

 

 Four previous researches in reducing the switching activities on buses are 

introduced in the following sections: bus invert encoding scheme [7], BITS (Bus 

Invert Transition Signaling) encoding scheme [8], Petrov’s bus encoding scheme [10], 

and register relabeling [9]. As described in Chapter 1, there are two ways to reduce 

the numbers of switching activities. All belong to reducing numbers of switching 

activities per transaction. According to the characteristics of buses, bus invert and 
 11



BITS perform well on instruction and data buses. Petrov’s bus encoding scheme and 

register relabeling can only reduce transactions on instruction buses. 

 

2.4.1  Bus Invert Power Saving Technique 

 

This method [7] first computes the hamming distance between the present value 

and the data value on a bus. If the number of transitions between the current pattern 

on the bus, denoted by Xi, and the previous pattern, denoted by Zi-1, exceeds half the 

width, the current pattern is transferred with each bit inverted. Otherwise, the current 

pattern keeps unchanged. An extra bus line, denoted by I, is used to signal the 

inversion. It is set as 0 or 1 according as the data pattern is inverted or not. At the 

receiver side, the contents of bus can be restored according to the invert bus line. An 

encoder and decoder are shown in Figure 2-4(a) and (b), respectively. 

 

I

Zi-1
0
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7

Xi
0

Xi
7

voter I
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0
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0
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7

voter

I

Zi
0
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7
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0
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7

I
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0
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7
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0

Xi
7

Figure 2-4: Schematic diagrams of bus-invert (a) encoder (b) decoder 
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 Bus-Invert method presents a trade-off between performance and power 

dissipation. The performance decreases because the comparator and majority voting 

circuits increase the area and delay of the data-path. Another trade-off is that an extra 

I/O pin (invert line) is needed.  

 

2.4.2  Bus Invert Transition Signaling Power Saving Technique 

 

This method [8] first computes the 1s in present value Xi on a bus. If the number 

of 1s in Xi is larger than half the bus width, then each bit of Xi is inverted (with line I 

set to 1) and then transition-encoded. Otherwise, each bit of Xi is transition-encoded 

without alteration. At the same time, an extra line, called as invert line, is set as 0 or 1 

according to the data value is inverted or not. At the receiver side, the contents of bus 

can be restoring according to the invert line. An encoder and decoder are shown in 

Figure 2-5(a) and (b), respectively. 

 

I
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0
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0
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0
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Figure 2-5 : Schematic diagrams of BITS (a) encoder (b) decoder 

Bus-Invert Transition Signaling method presents a trade-off between 
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performance and power dissipation. The performance decreases because the 

comparator and majority voting circuits increase the area and delay of the data-path. 

Another trade-off is that an extra I/O pin (invert line) is needed.  

 

2.4.3  Petrov’s Bus Encoding Power Saving Technique 

 

Petrov’s bus encoding scheme [10] minimizes the total number of transitions on 

each bit line of data bus from the instruction memory. Therefore, it can reduce the 

significant power overhead in processor memory communication. This technique is an 

application-specific dynamic customization for power minimization in the instruction 

memory’s data bus. Fundamentally, it uses application-specific information to identify 

optimal power encoding. The encoded instructions reside in memory, and the 

processor core receives information about the transformation, either when loading the 

program or when running the software. The processor’s fetch module uses this 

information to efficiently restore the original bit sequence on each bus line. Figure 2-6 

is design flow of this bus encoding method. 
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Figure 2-6: Design flow of Petrov’s bus encoding scheme 

 

 An application typically spends most of its execution time on a few tight loops. 

Data bus transfers form instruction storage causes many transitions on each bus line. 

Vertical bit sequences are targeted for this encoding method that independently 

considers the bit streams associated with each bus. Consider arbitrary bit sequence X 

= {…, xn+3, xn+2,…, xn-3,….}. They want to find alternative bit sequence Y = {…, yn+3, 

yn+2,…, yn-3,….} and transformation τ such that the total number of bit flips in Y is 

less than in X. and X =τ(Y). The bit sequence length can be arbitrarily long. 

Identifying a single transformation that maps Y to X and providing the necessary 

hardware support would permit restoration of the original bit sequence. 

Given block size k, identifying the optimal subset of transformations requires finding 

transformationτ(xi-1 , yi) for every block word, such that X =τ(Y) and the number 

of bit transitions in Y is minimal. Therefore, this transformation must satisfy the 

following system of equations: 

ki ),y , (x; i1-i00 ≤== τixyx  

This system of equation must be solved with variable τ for all 2k block words 

 15



for the sake of finding optimal transformation τ of each block word. Figure 2-7 

illustrates the basic concept of Petrov’s encoding scheme. Figure 2-8 and Figure 2-9 

are encoding and decoding examples for 3-bit block word. 

x0 =   y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

y0 =   x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

For 3-bit block word

Inst1   1 1 . . . 0

Inst2   0 1 . . . 1

Inst3   1 0 . . . 1 

Inst4   0 0 . . . 0

Inst5   0 0 . . . 1

.      0 0 . . . 1

.      0 1 . . . 0

Inst1   1 1 . . . 0

Inst2   0 1 . . . 1

Inst3   1 0 . . . 1 

Inst4   0 0 . . . 0

Inst5   0 0 . . . 1

.      0 0 . . . 1

.      0 1 . . . 0

x0 =   y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0 =   y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

y0 =   x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

y0 =   x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

For 3-bit block word

Inst1   1 1 . . . 0

Inst2   0 1 . . . 1

Inst3   1 0 . . . 1 

Inst4   0 0 . . . 0

Inst5   0 0 . . . 1

.      0 0 . . . 1

.      0 1 . . . 0

Inst1   1 1 . . . 0

Inst2   0 1 . . . 1

Inst3   1 0 . . . 1 

Inst4   0 0 . . . 0

Inst5   0 0 . . . 1

.      0 0 . . . 1

.      0 1 . . . 0

 

Figure 2-7: Basic concept 
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Figure 2-8: 3-bit block word encoding example 

According to Figure 2-8, we can construct Table 2-1 that shows the 

transformation mapping for 3-bit block word. It uses three transformation functions. 

Therefore, transformation data per block word is 2 bits. 
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Table 2-1: 3-bit block word transformation 
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Figure 2-9: 3-bit block word decoding example 

 Table 2-2 shows the transformation mapping for 4-bit block word. It uses five 

transformation functions. Therefore, transformation data per block word is 3 bits. 
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Table 2-2: 4-bit block word transformation 

 
 

The hardware support of this implementation is presented in Figure 2-10. The 

Basic Block Identification Table (BBIT), shown in Figure 2-10(a), contains the 

program counter of the starting instruction together with an index into Transformation 

Table. The Transformation Table, as shown in Figure 2-10(b), contains the control bits 

for selecting the transformations data associated to each bit sequence.  
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.
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τ1τ2τ3..τn E CT

.

.

.

.

τ1τ2τ3..τn E CT
τ1τ2τ3..τn E CT

Index to TT

BBIT

TT  

Figure 2-10: Hardware support 

Suppose that there are N instructions in a basic block, and each instruction is 32 

bits. When the block size is four bits, the number of transformation data for a basic 

block is ⎡ ⎤ 323/)1( ×−N . 
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Figure 2-11: 4-bit and 5-bit block words example 

We let TTsize denote transformation table size. According to Figure 2-11, we can 

compute the TTsize as follows: 

    ⎡ ⎤ bitsNTTsize 3323/)1( ××−=  

 [ ] [ ] bitsNTTsizebitsN 33213/)1(3323/)1( ××+−≤≤××−  

 bitsNTTsizebitsN )2(32)1(32 +≤≤−  

When the block size is five bits, the transformation data for a basic block 

is ⎡ ⎤ . 324/)1( ×−N

⎡ ⎤ bitsNTTsize 3324/)1( ××−=  

 [ ] [ ] bitsNTTsizebitsN 33214/)1(3324/)1( ××+−≤≤××−  

 bitsNTTsizebitsN )3(24)1(24 +≤≤−  

The bit transition reduction is higher for codes with shorter block size. However, 

having shorter block words leads to higher hardware overhead. Selecting the 

appropriate block size is a tradeoff between hardware overhead and the solution’s 

efficacy.  
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Figure 2-12: Comparison of transformation table size 

When the block size is four bits, the transformation table size is about equal to the 

size of total instructions in the basic block. Therefore, block sizes of 5 and 6 bits 

should receive primary consideration to be compared with our proposed method later. 

 

2.4.4  Register Relabeling Power Saving Technique 

 

In a typical RISC ISA, register fields are in fixed positions within the instruction 

encoding and occupy a significant part of the instruction word. Figure 2-13 shows 

MIPS instruction format. These general-purpose registers are interchangeable.  
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Figure 2-13: MIPS instruction format 

The basic concept of register relabeling [9] is to minimize the bit changes of the 

register fields during instruction fetches by re-assigning register numbers. Naïve 

register labeling can incur significant bit transitions in consecutive register fields of 

the instruction word. Since general-purpose registers are interchangeable, this 

technique reassigns registers so that the bit transitions within the register index 

streams are minimized. Figure 2-14 shows an example code fragment. It could 

achieve reduction in bit transition with no performance penalties.  
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Figure 2-14: Example code fragment 
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Figure 2-15: (a) Frequency distribution of register pairs (b) Register Histogram 

Graph 

 

Register Histogram Graph (RHG) is introduced for capturing the utilization 

frequency and relation between register pairs. RHG nodes correspond to registers and 

literals. Each RHG edge annotated with the frequency of occurrence. Figure 2-15 (a) 

shows all pairs of registers and literal-register pairs, which appear in the code and the 

quantity of each pair. Figure 2-15 (b) is one RHG example. The following algorithm 

utilizes the RHG to reassign the register name.  

Algorithm
Iterate through the edges starting from the most frequent ones
Rename the registers yet unassigned so that hamming distance to
all their assigned neighbors in the graph is minimized

 

Figure 2-16 shows the RHG after register relabeling. 
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Figure 2-16: RHG after register relabeling 

The register fields that occupy the instruction set encoding are small than 50%. 

Moreover, the best assignment can only be one hamming distance for each register 

pair with different registers. Therefore, when the distribution of all register pairs is 

very skew, or the numbers of some register pairs are very large, there is some 

improvement space to further reduce bit transitions. 

 

2.4.5  Summary of Previous Researches 

 

This section gives a brief summary of previous researches mentioned above.  

The bus-invert method performs well when patterns to be transmitted are 

randomly distributed in time and no information about pattern correlation is available. 

Therefore, the method seems to be appropriate for encoding the information traveling 

on data buses. Major drawbacks of this approach are related to the required redundant 

bus line and the overhead due to the logic to implement the voter to decide whether 

the Hamming distance exceeds N / 2. Also, an additional bus line is required to mark 

if the buses are inverted or not. Moreover, it appropriates for narrow bus.  

BITS method can efficiently reduce bit transitions when the transition signaling is 

biased. Moreover, it appropriates for narrow bus. But it also needs a complicated 
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encoder and a redundant control line. 

Petrov’s bus encoding scheme is efficient for programs include frequently 

executed loops and no encoder requirement, but it need large transformation table that 

stores transformation data and a complicated decoder. 

Register relabeling can only reduce bit transitions on register fields. It’s not very 

efficient method because register fields that occupy the instruction set encoding are 

small than 50%. Moreover, the best assignment can be only one hamming distance for 

each register pair with different registers. We observe that the distribution of various 

register pairs is highly skewed, or the numbers of some register pairs is very large. 

Taking advantage of this skew, there is some improvement space so as to further 

reduce bit transitions. And it has an advantage that does not need extra hardware 

overhead. 

These four techniques are compared in Table 2-3. The symbol “—” means that 

there is not this kind of extra hardware requirement. We also list our design here to 

compare with these methods. The detail description of our design will be discussed in 

the next chapter. 

Table 2-3: Extra hardware comparison of the power saving techniques 

 BI BITS Petrov’s 

method 

Register 

relabeling 

Our design, 

BIBITS 

Encoder complexity  High High — — — 

Decoder complexity Low Low High — Medium 

Table size — — Large — Small 

 

 From the next chapter, a new power reduction scheme that provides the abilities 

of low power and real-time execution will be proposed. The proposed method is 
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designed for reducing the power consumption on instruction buses. It divides the 

power-saving scheme into two phases so that process the complicated phase is able to 

be processed in the software offline. 
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Chapter 3  Design of BIBITS Bus Encoding  

The design of reducing the switching activity on system-level buses through the 

application of dedicated encoding schemes is discussed in this chapter. The aim is to 

propose innovative encoding techniques combined with register relabeling to 

minimize the total number of bit transitions on each bit line on the data bus from the 

instruction memory.  

Figure 3-1 shows the static-time design flow of BIBITS bus encoding scheme 

with modified register relabeling. We add modified register relabeling step before 

BIBITS bus encoding scheme.  
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Transformation data

Transformed code

Program

code
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Code

Source 
Code

Traditional Compiler/
Register Allocator

Traditional Compiler/
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Code
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LinkerBIBITS 
Encoding
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Transformation data

Transformed code

Program

code  

Figure 3-1 Static-time design flow of BIBITS bus encoding scheme with 

modified register relabeling 

 

BIBITS encoding scheme for power saving is discussed in Section 3.1. Based on 

the design of BIBITS encoding scheme, a further technique, BIBITS encoding 

scheme with register relabeling, is introduced so as to further reduce power 

consumption in Section 3.2. A basic block selection algorithm used in our design is 

proposed in Section 3.3. 
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3.1  BIBITS Bus Encoding Scheme 

 

Our design, BIBITS bus encoding scheme, is applied only for the major 

application loop. This method is divided as three phase: BIBITS encoding method 

algorithm, hardware mechanism, and basic-block selection algorithm. The part of 

BIBITS encoding method algorithm introduces how to encoding instruction at static 

time .The hardware mechanism of our design includes decoding-control logic, basic 

block identification table and transformation table. The part of basic-block selection 

algorithm is responsible to choose the most important basic-blocks to lower numbers 

of bit transitions on bus. 

 

3.1.1  BIBITS Encoding Method Algorithm 

 

 First, all basic blocks of the original program are encoded. Because we intend to 

combine an encoding method with register relabeling, we let the partition size equal to 

register field size. In other words, the partition size is five bits. Bit 6 and bit 30 are not 

encoded because bit 30 has less bit transitions by statically analysis. An instruction 

format is partitioned like Figure 3-2 so as to let one register field exactly be one 

partition. Each partition of current instruction is compared with the corresponding 

partition of previous instruction, and then the best encoding function that can reduce 

the most bit transitions for each partition is chosen.  
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Figure 3-2: BIBITS encoding method 

Let HDn,p be the Hamming distance between partition Bn,p and Bn-1,p given by HDn,p = 

# 1s of (Bn,p  B♁ n-1,p) 

The objective function then is to minimize ∑ ∑= =

N

n pnp
HD

1 ,
6

1
 

xi: Original current pattern

yi: Encoded current pattern

yi-1: Encoded previous pattern
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yi xi = yi op yi-1 xi

yi-1

xi

encoder decoder

yi = xi op yi-1
yi xi = yi op yi-1 xi

yi-1

 

Figure 3-3: BIBITS encoding basic concept 

Table 3-1 shows us sixteen functions of two Boolean variables. 

Table 3-1: The 16 functions of two Boolean variables 
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According to Table 3-1, only four functions that can be used to decode the encoded 

partition by using the same function which is used in the encoding step is chosen, as 

illustrated in Figure 3-3. In other words, the relation between encoder and decoder 

must satisfy the following equation. 

((xi op yi-1) op yi-1) = xi 

Only four functions satisfy the Boolean expression from table of 16 binary operators, 

and also that none of the other 12 functions in the table has this property. Therefore, 

four selected functions are identify, invert, XOR, and XNOR. 

Since it is an NP-complete problem to find an optimal assignment function, we 

propose a heuristics algorithm that can be applied to find better encodings.  

 

BIBITS encoding method algorithm is 

–Sequentially choose the best encoding function for each partition 

–With the contribution ratio of each basic block , we can apply the greedy 

algorithm to help us select which basic block should be encoded. 
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Figure 3-4: BIBITS encoding example 

 

 

 29



3.1.2  Hardware Support for BIBITS Encoding  

 

The hardware mechanism consists of three main modules: basic-block 

identification table, transformation table and decoding hardware. 

 The block diagram of the proposed method is shown in Figure 3-5. The blocks 

inside the dotted line are our designed circuits, the decoding-control logic, that 

contain four elements: instruction fetcher, basic block identification table, 

transformation table, and decoder. This hardware mechanism may be combined with 

processor core into a single chip. 

 

Figure 3-5: System architecture with BIBITS encoding 

 

3.1.3  Decoding-Control Logic 

 

The decoding-control logic is responsible for sending instructions to processor 

from memory. It first fetches instructions from memory and then determines if the 

fetched instruction is an encoded instruction. If the fetched instruction is an encoded 
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instruction, the original instructions will be gathered from the decoder. The 

decoding-control logic consists of four elements: instruction fetcher, basic block 

identification table, transformation table, and decoder. 

 

 1. Instruction Fetcher: 

The instruction fetcher receives the program-counter address request 

from processor. 

 2. Basic Block Identification Table (BBIT): 

The basic block identification table stores the program counter value of 

the starting instruction and an index that points to the first entry in the 

transformation table for this basic block. The number of entries in this table 

corresponds to the number of encoded basic blocks for the particular 

application loop. 

 

Figure 3-6: BBIT and Transformation Table 

 

 3. Transformation Table (TT): 

The transformation table stores transformation data τn associated with 

each encoded partition from the instruction memory. A TT entry contains 
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the control bits for selecting the transformation associated with each 

partition. The hardware structure asserts the end bit field (E) in the TT entry 

for entries corresponding to the last partition word in a given basic block. 

 4. Decoder: 

The decoder receives the control bitsτn from TT , and selects decoder 

function to restore each partition of encoded instructions. The circuit 

diagram of the decoder is shown in Figure 3-7. 

 

Figure 3-7: Decoder circuit 

Decoding Procedure 

The decoding procedure of this architecture is as follows. 

1. CPU sends program counter value to decoding controller. 

2. Instruction fetcher access memory for reading instruction. 

3. Search basic block identification table to see if there is an entry that is equal 

to the program counter value.  

I. Yes; the fetched instruction is an encoded instruction. Send the value 

of the found entry to the transformation table. Go to Step 4. 

II. No; the fetched instruction is directly passed to CPU core. Go to Step 

1. 

4. Use transformation index to read transformation data in transformation table 

and send to decoder and check if entry boundary bit it true. 
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I. Yes; this transformation table entry is finished, and thus the next 

instruction should be a non-encoded instruction. Go to Step 1. 

II. No; next instruction is still an encoded instruction. 

5. Go to Step 4. 

 

3.2  Modified Register Relabeling for BIBITS Bus Encoding 

Scheme 

 

Based on the design of the BIBITS encoding scheme, there is still a chance to 

reduce power consumption in advance. A further technique, modified register 

relabeling, is introduced to further reduce power consumption in this section. The idea 

of this is come from the observation of program-execution trace. When program is 

executed, processor often executes sequence of instructions repeatedly. This sequence 

of instructions is known as loop. A loop contains either one or more basic blocks. 

Therefore, the distribution of register pairs is very skew.   

According to Figure 3-8, we find that the best assignment can only be one 

Hamming distance for each register pair with different registers. However, there are 

still a lot of bit transitions when frequency of the register pair is very large. If he 

Hamming distance of the register pair can further be reduced from one to zero, a lot of 

bit transitions will be reduced. Therefore, modify original register relabeling method 

is proposed to resolve this problem. The difference between our proposed register 

relabeling algorithm and original register relabeling algorithm is that we consider that 

register relabeling is able to be combined with BIBITS bus encoding scheme, such 

that the best assignment of register relabeling will be one register pair that is zero 

Hamming distance. We see the following Figure 3-8, for example, R2 and R5 are 
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assigned as R2 and R3 that is one Hamming distance. And it is a best assignment case 

in original register relabeling method. But our modified register relabeling method 

assigns one inverse register pair that is R26 and R5. After applying BIBITS bus 

encoding step, this register pair will become R5 and R5, and the Hamming distance of 

this register pair becomes zero. 

Original Register Relabeling Modified Register Relabeling

Bit transition = 1 Bit transition = 0

R2 (00010) R5 (00101)

R2 (00010) R3 (00011)

Relabeling

R2 (00010) R5 (00101)

R26 (11010) R5 (00101)

R5 (00101) R5 (00101)

BIBITS 
encoding

Y = X′

Modified 
Relabeling

Original Register Relabeling Modified Register Relabeling

Bit transition = 1 Bit transition = 0

R2 (00010) R5 (00101)

R2 (00010) R3 (00011)

Relabeling

R2 (00010) R5 (00101)

R26 (11010) R5 (00101)

R5 (00101) R5 (00101)

BIBITS 
encoding

Y = X′

Modified 
Relabeling

 

Figure 3-8: Comparison of original register relabeling and modified register 

relabeling for BIBITS bus encoding 

 

Figure 3-9(a) shows us register pairs frequency of some program. RHG captures 

the utilization frequency and relation between register pairs. Nodes of the RHG 

correspond to registers and literals, and edge weight corresponds to frequency. Iterate 

through the edges starting from the most frequent ones. The following Figure 3-9 (b) 

is an example of RHG. 
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Figure 3-9: (a) Register pairs frequencies of some program (b) An example of 

register histogram graph  

 

The detailed modified register relabeling for BIBITS bus encoding algorithm is  

–Iterate through the edges starting from the highest weight edgei 

‧If two nodes of edgei have not been assigned a new register name, 

then assign one inverted register pair Rx and R31-x, such that 

H.D.(BIBITS(Rx,R31-x))=0. 

 If one inverted register pair is not found, then assign one register 

pair Rx and Ry, such that H.D.(BIBITS(Rx, Ry)) is minimized. 

‧If one node of edgei has been assigned Rx, then assign Ry to another 

node, such that H.D.(BIBITS(Rx, Ry)) is minimized.  

‧If all nodes of edgei have been assigned new register names, then 

process the next edge. 
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3.3  Basic Block Selection Algorithm 

 

Our selection algorithm is applied to analyze programs-execution behavior. We 

analyze and calculate the numbers of bit toggles and execution counts of each basic 

block. 

The task of determining an optimal basic blocks for a given programs is known 

to be NP-complete in the size of the programs. However, many heuristics have sprung 

up that find near optimal solutions to the problem, and most are quite similar. The key 

idea of the encoded basic-block selection algorithm is to select the most frequent 

basic blocks to be encoded. We analyze the program-execution trace with this 

algorithm. First, we identify every basic block, and then we calculate the occurrence 

frequency and numbers of bit transitions of each basic block occurs on bus. After the 

trace analyzing, each basic block has three parameters: numbers of instruction of this 

basic block (length of this basic block), numbers of execution counts, and numbers of 

bit transitions.  

Each basic block has a contribution value measured as the product of numbers 

of execution counts and numbers of bit transitions. We can compute the contribution 

as the contribution value divided by the length of this basic block.  

 The greedy algorithm with the contribution ratio of each basic block is applied to 

help us select which basic block should be encoded. The selection algorithm is shown 

as follows. Suppose that there is a set { }nBB ,...2,1=  of n basic blocks in the 

program. Each basic block has a contribution value: 

Length
BitTogglesountsExecutionConContributi ⋅

= . (EQ1) 

Assumption that transformation table size is S. The greedy-basic-block selector 
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algorithm is  

 

TT : Transformation Table 

BB : Basic Block 

TD(BB{i}): Transformation data of basic block 

 

TTreturn     6.
TD(BB{i})  TT  TT    then           .5

S ) TD(BB{i})  Sizeof(TT if do    .4
order in  BB[n]  ifor  .3

block basiceach  of  ratio(CR)on contributiby  BBset Sort  .2
empty   as TTLet  .1

),(

∪←
≤∪

↓∈

↓

−−− CRnSelectorBlockBasicGreedy

 

 

 For example, the algorithm can be illustrated as Figure 3-10 

 

Figure 3-10: An example of greedy-basic -block selector algorithm 
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Table 3-2: Computing contribution ratio of each basic block 

 Frequency Bit Toggles Length Contribution CR 
 BB1 3 43 4 129 32.25 
BB2    2 55 4 110 27.5 
BB3 2 30 3 60 20 

 

 After analyze the trace of program execution, the set BB has three elements: 

Basic-Block 1, Basic-Block 2, and Basic-Block 3. The parameters of these three basic 

blocks are shown as Table 3-2. The selection priority is first BB 1, then BB 2, and BB 

3 is the last one. 

 

 38



Chapter 4  Simulation and Analysis 

Benchmark programs are first discussed in this chapter. Simulation methods are 

then introduced in this thesis, including the toolsets, simulation flow, simulation 

parameters and evaluating factors. 

 

4.1  Experimental Benchmarks 

     

We perform experiments for the following benchmarks for evaluating the 

efficiency of encoding in bus transition reduction. These six DSP or 

numerical-computation kernels that represent code frequently encountered in many 

embedded system products. Table 4-1 gives a summary of our choice of benchmarks. 

Table 4-1: Benchmark 

Function Name Description 

Mmul A matrix multiplication of 100 × 100 element matrices. 
SOR Successive over-relaxation on a 256 × 256 element 

matrix.  
EJ Extrapolated Jacobi-iterative method on a 128 × 128 

entry grid.  
FFT Fast Fourier transform with a 256-bit sample block size. 
Tri Tri-diagonal system solver on a 128 × 128 element 

matrix. 
LU Lower/upper triangular matrix decomposition algorithm 

on a 128 × 128 element matrix. 

 

The size and basic block number of each benchmark program is presented in 

Table 4-2.  
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Table 4-2: Benchmark program size and numbers of each basic block 

Program Program size (Bytes) Number of Basic Block 
Mmul 304 13 
Sor 1300 14 
Ej 1500 22 
FFT 1152 65 
Tri 1252 9 
LU 3376 34 

 

4.2  Experimental Methods 

 

   The experimental toolset we used in this simulation are described in this section. 

These tools are either MIPS® SDE Lite, a free subset of the MIPS Software Toolkit 

[11][12], or created by us. We wrote a simulation tool so that we could do basic block 

selection, modified register relabeling and BIBITS encoding scheme. And we also 

could evaluate the number of bit transitions on all the lines of the instruction bus. We 

also list the experimental flow, the experiments we planned to do, and simulation 

parameters we referred. 

 

4.2.1  Experimental Toolset 

 

Experimental environment is divided into three sub-environments: 

 Code Generation phase: The purpose of this sub-environment is to 

compile the executable machine codes for the benchmark programs. We 

adopt MIPS® SDE Lite version 5.03.06.[12] to build the MIPS ELF 

(Executable and Linkable Format) image format for each benchmark 

program. 
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 Transformation Table Building phase: This sub-environment includes a 

transformation table builder and a code-rebuilder. The transformation table 

builder scans the program execution trace running under the GNU MIPS 

CPU Simulator and builds the transformation table for each benchmark 

program. The code-rebuilder rebuilds selected basic-blocks of programs by 

BIBITS encoding. 

 Result Calculation phase: The final sub-environment includes the 

modified simulator and a bit transition calculator. 

 

We have adopted and developed the complete experimental toolset consisting of 

individual tools that accomplish specific tasks respectively for constructing the 

experimental environment. 

 Table 4-3 lists all tools composing the experimental toolset. 

Table 4-3: Experimental toolset descriptions 

Tool Name Description 

sde-gcc 

SDE’s version of the Free Software Foundation’s
ANSI-compatible GNU C Compiler compiling C source code.
This version incorporates superb optimization for RISC
processors, such as MIPS architecture processors. 

sde-ld 
SDE’s version of the GNU linker and loader links the object
files necessary for building MIPS ELF files of the components
in the benchmark suite. 

sde-run 
The GNU MIPS CPU simulator executes the MIPS ELF image
files. It could trace the execution behaviors of the benchmark
programs.   

BB-sel 
The Basic Block Selector that builds the recovery dictionary
with dictionary building rules by scanning the MIPS program
execution trace. 

code-rebuild 
The code-rebuilder rebuilds the program with the
transformation table provided from the transformation table
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builder.  

modsde-run 
The modified GNU MIPS CPU simulator to execute the
encoded programs and calculate the power needed for this
architecture.   

 

4.2.2  Experimental Flow 

     

The experimental flow, the experimental toolset and intermediate files, such as 

object files, MIPS ELF files, etc., are shown in Figure 4-1. By a horizontal dotted line, 

this figure is divided into three sub-figures representing the three experimental 

sub-environments representing the three experimental sub-environments.  

 42



TT Files
(.tt)

C Compiler
(sde-gcc)

Benchmarks (.c)

Assembly code
( .S )

Reg. relabeler
(reg-relabel)

GNU Tracer
(sde-run)

Execution 
Trace

BB-Selector
( BB-Sel)

Input Data

ELF

Encoded Files
(.coded)

Modified-Tracer
(Mod-run)

Input Data
TT Files

(.tt)

Bit transition

Assembly code
( .S )

Linker

(sde-ld) ELF

Code Generation

Build 
Transformation 
Table

Result Calculator

Code-Rebuilder
(Code-rebuild)

TT Files
(.tt)

TT Files
(.tt)

C Compiler
(sde-gcc)

C Compiler
(sde-gcc)

Benchmarks (.c)Benchmarks (.c)

Assembly code
( .S )

Reg. relabeler
(reg-relabel)

Reg. relabeler
(reg-relabel)

GNU Tracer
(sde-run)

GNU Tracer
(sde-run)

Execution 
Trace

BB-Selector
( BB-Sel)

BB-Selector
( BB-Sel)

Input Data

ELFELF

Encoded Files
(.coded)

Modified-Tracer
(Mod-run)

Input Data
TT Files

(.tt)
TT Files

(.tt)

Bit transitionBit transition

Assembly code
( .S )

Linker

(sde-ld)
Linker

(sde-ld) ELFELF

Code Generation

Build 
Transformation 
Table

Result Calculator

Code-Rebuilder
(Code-rebuild)
Code-Rebuilder
(Code-rebuild)

 

 

Figure 4-1: Experimental flow by using our experimental toolset 
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 The complete experimental flow is described as follows: 

1. The MIPS C compiler (sde-gcc) compiles the source files (.c) of the 

benchmark programs into its corresponding object files (.o). 

2. The register relabeler (reg-relabel) adjusts register name to reduce the bit 

transitions of the instruction register fields. 

3. The MIPS C linker (sde-ld) links the object files necessary for building 

MIPS ELF files of the components in the benchmark suite. 

4. The GNU MIPS CPU Simulator (sde-run) traces the ELF files with input 

data and then output the execution instructions and the corresponding 

program counters (PC value).  

5. The Basic Block Selector (BB-sel) scans execution trace and produces the 

transformation table that contains selected basic block and encoding 

information. 

6. According the transformation table files, the code-rebuilder build the MIPS 

machine code files. 

7. The modified GNU MIPS CPU Simulator (modsde-run) executes the coded 

programs with transformation tables and input data. It also calculates the bit 

transitions for executing these programs.  

 

4.2.3  Designing Experiments 

 

The transformation table builder (TTbuild) and the modified tracer (modsde-run) 

are the core tools in the entire experimental toolset because they are the tools actually 

analyzing the execution trace and we can evaluate the power consumption of each 

benchmark. In our simulation, we evaluate the bit transitions of these conditions: 
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 Base system architecture. This is the simply architecture with only the 

processor and instruction memory. The instructions are always fetched from 

the instruction memory. 

 Bus-invert encoding scheme. This is the power reduction technique 

mentioned in Chapter 2. We implement this architecture to compare the 

results between this approach and ours.  

 BITS bus encoding scheme. This is the power reduction technique 

mentioned in Chapter 2. We implement this architecture to compare the 

results between this approach and ours.  

 Register Relabeling. This is the power reduction technique we mentioned in 

tChapter 2. We implement this to compare the results between this approach 

and ours.  

 Petrov’s bus encoding scheme. This is also the power reduction technique 

we mentioned in Chapter 2. We implement this architecture to compare the 

results between this approach and ours. 

 BIBITS bus encoding scheme. This is our design that we execute the coded 

program with the recovery dictionary.  

 BIBITS bus encoding scheme with original register relabeling. This is our 

design that we apply original register relabeling before BIBITS bus 

encoding scheme stage. 

 BIBITS bus encoding scheme with modified register relabeling. This is our 

design that we apply modified register relabeling before BIBITS bus 

encoding scheme stage. 

The bit transitions effects are evaluated with different transformation table sizes 
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in Petrov’s bus encoding scheme and our proposed BIBITS bus encoding scheme. 

 

4.3  Simulation Results and Analyses 

 

Experimental results obtained from evaluating power consumed by the 

benchmark programs as described above are presented in this chapter. The bit 

transitions reduction by various techniques for each benchmark programs is first 

evaluated. The bit transitions reduction of our proposed BIBITS and Petrov’s bus 

encoding scheme are then evaluated in different transformation table sizes. Notice that 

the results of bit transition are all normalized to those of the base system. 

 

4.3.1  Bit Transition Reduction of Different Techniques 

 

Our approach’s effectiveness is measured by observing the reduction of 

transition on the data bus to the instruction memory. We ran simulation using a typical 

embedded processor as the baseline system architecture. We used six DSP or 

numerical-computation benchmarks that represent code frequently encountered in 

many embedded products. 

 Figure 4-2 displays the bit transition reduction by applying different techniques 

in six different benchmark programs. There are seven techniques applied in this figure: 

Bus-invert, BITS, register relabeling, Petrov’s bus encoding scheme, BIBITS bus 

encoding scheme, BIBITS with original register relabeling (ORR+BIBITS), and 

BIBITS with modified register relabeling (MRR+BIBITS). Petrov’s bus encoding 

scheme and relative BIBITS bus encoding schemes need use transformation tables. 

This experiment selected all basic blocks of each program to be encoded. In other 
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words, the transformation table size is unlimited.  

 

Figure 4-2: Transition reduction of different techniques 

  

Experimental results indicate that reductions in bit transition of Bus-invert 

method are not very good. It also shows that reductions in bit transition of our 

proposed BIBITS encoding scheme range around 56% to 61% except for the fft 

program.  

Assume that there are N instructions in some basic block. What about actual 

transformation table size use by Petrov’s bus encoding scheme and BIBITS bus 

encoding scheme when all basic blocks are encoded? Results of these are presented in 

Table 4-4. Obviously, the table size of BIBITS bus encoding scheme is only a half of 

Petrov’s bus encoding scheme. 

Table 4-4: Comparison with transformation table size 

Method Transformation data 
 number 

Transformation  
table size (bits) 

Petrov’s bus encoding 
(4-bit block word) 

⎡ ⎤ 323/)1( ×−N  ⎡ ⎤
bitsN

bitsN
3232

3323/)1(
−≅

××−  
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Petrov’s bus encoding 
(5-bit block word) 

⎡ ⎤ 324/)1( ×−N  ⎡ ⎤
bitsN

bitsN
2424

3324/)1(
−≅

××−  

Petrov’s bus encoding 
(6-bit block word) 

⎡ ⎤ 325/)1( ×−N  ⎡ ⎤
bitsN

bitsN
2.192.19

3325/)1(
−≅

××−  

BIBITS bus encoding (N-1)×6=6N-6 (6N-6)×2=12N-12bits 

 

BIBITS bus encoding scheme is combined with register relabeling technique so 

as to further reduce bit transitions. First, original register relabeling is applied before 

doing BIBITS bus encoding scheme. However, total bit transitions of some programs 

applied BIBITS bus encoding scheme with original register relabeling are bigger than 

these applied only BIBITS bus encoding scheme. Resolving this problem requires 

proposing a modified register relabeling method applied before doing BIBITS bus 

encoding scheme. According to the result of this experiment, this method can 

efficiently resolve this problem. Applying register relabeling before BIBITS bus 

encoding scheme could further reduce bit transitions without increasing extra 

hardware overhead.  

While all basic blocks are encoded, transformation table size of “MRR+BIBITS” 

bus encoding scheme is about a half of Petrov’s bus encoding scheme (5-bit block 

word). Achieve 64% average bit transition reduction as compared with base-line 

system. Further reduce 31% average bit transitions as compared with total bit 

transitions of Petrov’s method (5-bit block word). Moreover, the decoder hardware is 

more uncomplicated than Petrov’s. In Section 5.2, experiment results of BIBITS bus 

encoding scheme and Petrov’s bus encoding scheme (5-bit block word) will be 

presented with different transformation table sizes in detail. 
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4.3.2  Bit Transition Reduction of Techniques with Different 

Transformation Table Sizes 

 

In the Petrov’s bus encoding scheme (5-bit block word) and our proposed 

BIBITS bus encoding scheme, we will evaluate the bit transitions effects with 

different transformation table sizes. 

Figure 4-3 shows the bit transition reduction of mmul program with different 

transformation table sizes. BIBITS method has higher bit transition reduction than 

Petrov’s method. Furthermore, when the transformation table size increases to 0.3 

Kbytes, BIBITS method reaches about 51% bit transition reduction. However, 

Petrov’s method can only reaches 0.6% bit transition reduction. These following 

figures are experiment result of each benchmark program. 

 

 

Figure 4-3: mmul - Bit transition reduction with different transformation table 

sizes 
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Figure 4-4: sor - Bit transition reduction with different transformation table sizes 

 

Figure 4-5: ej - Bit transition reduction with different transformation table sizes 
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Figure 4-6: fft - Bit transition reduction with different transformation table sizes 

 

Figure 4-7: tri - Bit transition reduction with different transformation table sizes 
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Figure 4-8: lu - Bit transition reduction with different transformation table sizes 

We observe that our method has higher bit transitions reduction than Petrov’s bus 

encoding scheme. Figure 4-9 displays BIBITS detailed experiment results that are 

average bit transitions reductions for full benchmarks with different transformation 

table sizes. 

 

Figure 4-9: Average bit transition reduction for full benchmarks with different 
transformation table sizes 
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Chapter 5  Conclusion and Future Works 

BIBITS bus encoding scheme is proposed to reduce power consumption on 

program memory bus in this thesis. Moreover, a modified register relabeling 

algorithm is also proposed to be combined with BIBITS bus encoding scheme so as to 

further reduce bit transitions. The key idea of our method is to apply a transformation 

table which stores frequently execution basic block transformation data to make use 

of repetitions of basic blocks at program execution time so as to reduce bit transitions 

on program memory data bus. 

The simulation results show that the overall average switching reduction is 64% 

over original data and 57% more than original register relabeling scheme only and 

more than Petrov’s bus encoding scheme about 13~ 20% except for FFT program. 

Problems arising form FFT program is almost small basic blocks that has only two or 

three instructions. Petrov’s bus encoding scheme is more suitable for this kind of basic 

block size. The suitable size of transformation table varies with different programs. 

Contrary to Petrov’s bus encoding scheme, our proposed scheme need only a half 

transformation table size to encode all basic blocks. Moreover, our decoder 

implementation is more uncomplicated than theirs. Therefore, the extra hardware 

overhead of our proposed is lower than Petrov’s bus encoding scheme.  

There are still several researches could be further studied. For example, find 

compiler techniques that can be combined with bus encoding methods to further 

reduce bit transitions. For example, BIBITS is combined operand swapping with and 

instruction scheduling. 

A large number of instructions, such as addition, multiplication, and logic 

operations, are insensitive to the order of their operands. Consequently, the 

commutability of certain instructions provides a degree of freedom. In the same way, 
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instruction scheduling that changes instruction sequences could also provide a degree 

of freedom. But these pervious compilation techniques did not consider to be 

combined with bus encoding schemes. However, applying directly these compilation 

techniques combined with BIBITS encoding scheme maybe result in worse reduction 

than only applying BIBITS. 

Therefore, we must think deeply how to integrate and modify these techniques 

perfectly, such that the closed integrated scheme is able to further reduce total bit 

transitions. 
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