

國 立 交 通 大 學

資訊工程系

碩 士 論 文

減少嵌入式處理器之程式記憶體的資料匯流排

耗電

Power Minimization in the Program Memory Data Bus

for Embedded Processors

研 究 生：鄭 欽 宗

指導教授：單 智 君 博士

中 華 民 國 九 十 三 年 七 月

減少嵌入式處理器之程式記憶體的資料匯流排

耗電

Power Minimization in the Program Memory Data Bus

for Embedded Processors

研 究 生：鄭 欽 宗 Student：Chin-Tzung Cheng

指導教授：單 智 君 博士 Advisor：Dr. Jean, Jyh-Juin Shann

國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

A Thesis
Submitted to Department of

Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
in Partial Fulfillment of the Requirements

for the Degree of
Master

In
Computer Science and Information Engineering

July 2004
Hsinchu, Taiwan, Republic of China

中華民國 九十三 年 七 月

減少嵌入式處理器之程式記憶體的資料匯流排

耗電
學生：鄭欽宗 指導教授：單智君 博士

國立交通大學資訊工程學系碩士班

摘要

隨著嵌入式處理器快速發展，省電考慮也日益重要。由於 off-chip 匯流排

耗電佔了整體系統的耗電蠻大部分，許多研究已經著重在如何減少 off-chip 匯

流排的電耗。因為匯流排上的電耗大約成正比於其上傳送的資料位元變化量，所

以減少匯流排上的位元變化量是降低匯流排電耗的一個有效的方法。

目前已經有許多減少位址匯流排電耗的研究被提出，然而減少資料匯流排電

耗的方法卻很少。因此針對目前嵌入式處理器在程式記憶體的資料匯流排上電

耗，我們提出 BIBITS 匯流排編碼方法來減少程式記憶體的資料匯流排上電耗。

我們也提出 modified register relabeling 結合 BIBITS 匯流排編碼方法，使編

碼過後的程式，在程式記憶體的資料匯流排上傳送時的位元變化量更小。

根據實驗數據結果顯示，我們提出的方法比完全都沒做過編碼的情況平均減

少了64% 的bit transition，比起單純只有register relabeling 多出約57% 的

bit transition 減少量，比起 Petrov 提出的方法多出約 16% 的 bit transition

減少量。而且我們的方法在針對全部基本區塊(basic-block)編碼所需要儲存的

資料約只要 Petrov 提出的方法的一半。並且我們的方法在解碼電路的實作比他

的方法簡單。整體而言，這項研究成果在嵌入式處理器上能有更進一步的省電效

果。

 i

Power Minimization in the Program Memory Data Bus

for Embedded Processors

Student：Chin-Tzung Cheng Advisor：Jean, J.J Shann

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Reducing the power consumption of embedded processor has gained a lot of

attention recently. Many research works have focused on reducing power
consumption in the off-chip buses as they consume a significant amount of total
power. Reducing the bus switching is an effective way to reduce bus power since the
bus power consumption is about proportional to the switching activity. While
numerous techniques exist for reducing bus power in address buses, only a handful of
techniques have been proposed for data-bus power reduction.

For the low power requirement on the program-memory data bus of current
embedded processors, we proposed a BIBITS bus encoding scheme to reduce power
consumption on program memory bus. A modified register relabeling algorithm is
also proposed to be combined with BIBITS bus encoding scheme to further reduce bit
transitions. These techniques aim at reducing more switching activity and hence, more
power consumption.

The simulation results showed that the overall average switching reduction is
64% over original data and 57% more than original register relabeling scheme only
and 16% more than Petrov’s bus encoding scheme only. Contrary to Petrov’s bus
encoding scheme, our proposed scheme need only a half transformation table size to
encode all basic blocks. Moreover, our decoder implementation is simpler than theirs.
Therefore, the extra hardware overhead of our proposed is lower than Petrov’s bus
encoding scheme. We can conclude with certainly that our research results may have
more power saving opportunities.

 ii

誌謝

首先必須向我的指導老師 單智君教授，獻上我最真摯的謝意。在老師諄諄

教誨、每週辛勤的指導下，我得以完成此碩士論文，並且順利通過畢業口試。同

時感謝實驗室的另一位大家長 鍾崇彬教授，多次提出批評與指正，使得論文更

加嚴謹。再者感謝口試委員 陳正教授、盧能彬教授，在口試時提供許多寶貴的

意見，使得這篇論文更加完整，而我本人也受益良多。

除此之外，我也很感謝實驗室的博士班謝萬雲、喬偉豪學長對我的研究提出

問題並給予建議。還有，感謝實驗室的全體學長姊、同學、以及學弟們，你們的

陪伴使我的研究生活更加充實與豐富。

最後，感謝我的家人與好友默默地給予我支持與鼓勵，讓我可以堅持追求自

己的理想，在兩年的碩士生涯裡投入課業以及論文研究之中。

謹向所有支持過我、勉勵我的師長與親友，奉上最誠摯的祝福。謝謝你們。

 鄭欽宗

 2004.7.21

 iii

Table of Contents

摘要 .. i

Abstract .. ii

誌謝 .. iii

Table of Contents .. iv

List of Figures... vi

List of Tables... viii

Chapter 1 Introduction ...1

1.1 Power Constraint of Embedded Systems...1

1.2 Research Motivations...2

1.3 Research Goal ..3

1.4 Organization of This Thesis ...4

Chapter 2 Backgrounds..5

2.1 Overview of Embedded Systems ...5

2.2 Source of Power Consumption ..6

2.3 Baseline System...10

2.4 Previous Research of Power Reduction on Buses11

2.4.1 Bus Invert Power Saving Technique...12

2.4.2 Bus Invert Transition Signaling Power Saving Technique13

2.4.3 Petrov’s Bus Encoding Power Saving Technique.....................14

2.4.4 Register Relabeling Power Saving Technique..........................20

2.4.5 Summary of Previous Researches...23

Chapter 3 Design of BIBITS Bus Encoding..................................26

3.1 BIBITS Bus Encoding Scheme..27

 iv

3.1.1 BIBITS Encoding Method Algorithm.......................................27

3.1.2 Hardware Support for BIBITS Encoding30

3.1.3 Decoding-Control Logic ...30

3.2 Modified Register Relabeling for BIBITS Bus Encoding Scheme .33

3.3 Basic Block Selection Algorithm...36

Chapter 4 Simulation and Analysis..39

4.1 Experimental Benchmarks ...39

4.2 Experimental Methods ...40

4.2.1 Experimental Toolset ..40

4.2.2 Experimental Flow..42

4.2.3 Designing Experiments...44

4.3 Simulation Results and Analyses ...46

4.3.1 Bit Transition Reduction of Different Techniques....................46

4.3.2 Bit Transition Reduction of Techniques with Different

Transformation Table Sizes..49

Chapter 5 Conclusion and Future Works53

Reference ..55

 v

List of Figures

Figure 2-1: The structure of a CMOS inverter...7

Figure 2-2: (a) The 0→1 and (b) 1→0...8

Figure 2-3: Architecture model of baseline system10

Figure 2-4: Schematic diagrams of bus-invert (a) encoder (b) decoder12

Figure 2-5 : Schematic diagrams of BITS (a) encoder (b) decoder.............13

Figure 2-6: Design flow of Petrov’s bus encoding scheme15

Figure 2-7: Basic concept ..16

Figure 2-8: 3-bit block word encoding example..16

Figure 2-9: 3-bit block word decoding example..17

Figure 2-10: Hardware support..18

Figure 2-11: 4-bit and 5-bit block words example.......................................19

Figure 2-12: Comparison of transformation table size20

Figure 2-13: MIPS instruction format..21

Figure 2-14: Example code fragment ..21

Figure 2-15: (a) Frequency distribution of register pairs (b) Register

Histogram Graph..22

Figure 2-16: RHG after register relabeling..23

Figure 3-1 Static-time design flow of BIBITS bus encoding scheme with

modified register relabeling ...26

Figure 3-2: BIBITS encoding method ...28

Figure 3-3: BIBITS encoding basic concept..28

Figure 3-4: BIBITS encoding example..29

Figure 3-5: System architecture with BIBITS encoding..............................30

Figure 3-6: BBIT and Transformation Table...31

 vi

Figure 3-7: Decoder circuit ..32

Figure 3-8: Comparison of original register relabeling and modified register

relabeling for BIBITS bus encoding..34

Figure 3-9: (a) Register pairs frequencies of some program (b) An example

of register histogram graph ..35

Figure 3-10: An example of greedy-basic -block selector algorithm37

Figure 4-1: Experimental flow by using our experimental toolset43

Figure 4-2: Transition reduction of different techniques47

Figure 4-3: mmul - Bit transition reduction with different transformation

table sizes ...49

Figure 4-4: sor - Bit transition reduction with different transformation table

sizes..50

Figure 4-5: ej - Bit transition reduction with different transformation table

sizes..50

Figure 4-6: fft - Bit transition reduction with different transformation table

sizes..51

Figure 4-7: tri - Bit transition reduction with different transformation table

sizes..51

Figure 4-8: lu - Bit transition reduction with different transformation table

sizes..52

Figure 4-9: Average bit transition reduction for full benchmarks with

different transformation table sizes..52

 vii

List of Tables

Table 2-1: 3-bit block word transformation ...17

Table 2-2: 4-bit block word transformation ...18

Table 2-3: Extra hardware comparison of the power saving techniques24

Table 3-1: The 16 functions of two Boolean variables28

Table 3-2: Computing contribution ratio of each basic block......................38

Table 4-1: Benchmark..39

Table 4-2: Benchmark program size and numbers of each basic block.......40

Table 4-3: Experimental toolset descriptions...41

Table 4-4: Comparison with transformation table size47

 viii

Chapter 1 Introduction

First, an overview of saving power consumption on embedded systems is given in

this chapter. The research motivation and goal are then introduced. The organization

of this thesis is described at last.

1.1 Power Constraint of Embedded Systems

The requirement in reducing the power of a processor has grown dramatically

over the past few years. This requirement has changed the evaluation metrics of

processors. Performance was the single most important feature of a microprocessor

until recently. However, designers are more concerned with the power dissipation

today. In some cases, especially in portable and mobile applications low power

becomes the key design goal. Power optimization for embedded systems produces an

active area of research that has received considerable attention with the growing

market for portable and mobile applications in recent times.

Low-power consumption is an important design goal for battery-powered potable

embedded systems such as cellular phone and PDA (Personal Digital Assistants). It

has been shown that the majority of the area and power cost is not as a result of the

datapath or the controllers, but the global communication and memory interaction [1]

in such systems that involve multidimensional streams of signals such as images,

video or voice sequences. The ever-growing improvements in process technology

have made SoC (System on Chip) design approaches attractive.

A typical SoC (System on Chip) design has several embedded processor cores,

 1

which are responsible for various parts of the total system functionality. Each

processor accesses an on-chip or off-chip instruction memory containing the

application code. The processor typically accesses this memory to fetch the next

instruction every cycle. However, transferring addresses and data along long

interconnect buses consumes a significant amount of power because of the bus line’s

high capacitance. Therefore, the interaction between a processor and its instruction

memory significantly contributes to total power consumption. Having the instruction

memory off-chip (for example, external flash memory) further aggravates this effect,

because of the significantly higher capacitance of the bus lines going through the

system I/O pins.

1.2 Research Motivations

As mentioned in Section 1.1, the major power consumption comes from the

buses. In fact, 50% to 80% of the power cost in application-specific integrated circuits

(ASIC) for real-time signal processing is dissipated as a consequence of memory

traffic caused by the ASIC and the off-chip memories [1]. A considerable amount of

power is required at the I/O pins of the microprocessor when data have to be

transmitted over the bus as a result of the intrinsic capacitances of the bus lines. More

specifically, it has been estimated that the capacitance driven by the I/O nodes is

usually much larger (up to three orders of magnitude [1]) than the one seen by the

internal nodes of the microprocessor. This implies that design techniques leading to

decrease in power dissipation in this part will make a significant impact on the overall

power dissipation of the application. As a consequence, dramatic optimizations of the

average power consumption can be achieved by minimizing the number of transitions

 2

(i.e., the switching activity) on system-level buses.

Instruction streams could be encoded at static time. Moreover, contents on bus

transactions reflect program execution behaviors. Execution flow is composed of

many simple blocks by analyzing the execution flow of programs. These simple

blocks are well known as basic blocks [3]. Basic block is an instruction sequence that

begins with a branch target instruction and ends with a branch instruction and most

import of all, contains no other branch target or branch instruction at all. It means that

basic block is the execution unit of program. Processor executes the whole basic block

except interrupting by exceptions. Executing program loops also reflects this fact that

one loop might contain one or more entire basic blocks. During loops execution, these

basic blocks transmit on bus repeatedly and thus cause unnecessary power

consumption. If these frequently executed basic blocks can be transmitted with lower

bit transitions, power can be efficiently saved.

Pervious low-power bus encoding techniques either need a complicated encoder

or a large transformation table. Moreover, these techniques are not considered to be

combined with compiler techniques such as to further reduce power consumption.

1.3 Research Goal

An instruction encoding method combined with post-compilation techniques is

proposed to further reduce the runtime power dissipated on the system-level buses in

this thesis. We focus on the instruction bus to exploit the repetitions of instructions for

reducing power dissipations on buses. A pre-selected transformation table is applied

for the sake of reducing the bit transitions of the repeated instructions from

transmitting on the buses. This transformation table is working as internal memory

 3

nearby the processor core. These techniques need extra hardware support includes a

decoder, a basic-block identification table and a transformation table.

1.4 Organization of This Thesis

This thesis is divided as follows. Chapter 2 shows the background of embedded

system, power consumption model, and discusses previous relative researches on bus

power reduction. In Chapter 3, bus power reduction techniques for instruction bus are

introduced. The experimental environment, simulation results and relative analysis are

presented in Chapter 4. Finally, we summarize our conclusions and future works in

Chapter 5.

 4

Chapter 2 Backgrounds

The main purpose of this chapter is to provide the necessary background for the

concepts and methods presented in the following chapters. First, we will give an

overview of the embedded systems. The main sources of power consumption in VLSI

circuits based on static CMOS technology are then introduced. More specifically, we

highlight how the dominant fraction of the average power dissipation in CMOS

circuits is due to the switching power caused by the transition activity of the gate

outputs. The main parameters affecting the switching power, namely the clock

frequency, the supply voltage, the capacitive load, and the switching activity are

briefly analyzed. Finally, the chapter provides a non-comprehensive review of the

related approaches for bus power optimization and estimation appeared in the

literature in the last few years.

2.1 Overview of Embedded Systems

Embedded systems abound in everyday life today. Examples include the modern

cellular phone, PDA, the engine control unit of an automobile and the aircraft

autopilot. These systems are also found in process monitoring and control, signal

processing, home appliances, industrial robots, and laser printers. Typical metrics that

impact the design of embedded systems include reliability, performance, cost, and

form factors, which include size, weight, and power constraints.

Embedded systems can be divided into two broad classes based on performance.

Low to moderate performance systems have severe cost and form factor requirements.

Examples include controllers for home appliances. For these applications,
 5

microcontrollers are typically sufficient. High performance systems are required more

powerful microprocessors. Examples include cellular phone, PDA and aircraft

autopilot.

2.2 Source of Power Consumption

It has shown that 50% to 80% of power cost is due to memory traffic in Chapter

1. Our target system is a typical memory-intensive embedded system. According to

the Amdahl’s law, we tend to reduce the power consumption on buses.

Power dissipation in CMOS circuits can be considered as composed of a static

and a dynamic component. Static power is due to the leakage current. However, in

“well-designed” CMOS devices, static power dissipation can be considered

insignificant in most designs [5]. Dynamic power is the main source dissipation for

most CMOS designs. Leakage power will become a significant problem as process

feature sizes decrease, but one that we will not discuss [6]. The dominant part of the

power dissipation in CMOS circuits is thus the dynamic component, which is in turn

composed of two terms. The first term, indicated as the switching power, is due to the

charge and discharge of the circuit node capacitances at the output of each logic gate.

The second term, indicated as short-circuit power, represents the short-circuit current

from the supply to the ground voltage during output transitions.

There are three most contributions of average power consumption in digital

CMOS circuits which are summarized in the following equation: [4]

leakagecircuitshortswitchingavg PPPP ++= −

 . (1) ddleakageddscclkvddL VIVIfVC ⋅+⋅+⋅⋅= →
2

10α

The first represents the switching power, where CL is the load capacitance, Vdd is the
 6

supply voltage, fclk is the clock frequency and α0→1 is the node switching activity

factor (the average number of times the node makes a power consuming transition in

one clock period).

Let us analyze each contribution in detail, considering a simple static CMOS gate,

an inverter, as a motivating example. Other combinational and sequential gates show

a similar behavior. Figure 2-1 shows the structure of the generic static CMOS inverter.

The pull-up network is built with PMOS transistors (T1 for the selected inverter) and

it connects the output node Vout to the power supply Vdd. Conversely, the pull-down

network is composed of NMOS transistors (T2 for the selected inverter) and it

connects the output node to the ground node Vss. In CMOS gates, the structure of the

pull-up and pull-down network is such that when the circuit is stable (i.e. after the

output rise or fall transients are exhausted) the output node is never connected to both

Vdd and Vss at the same time.

Figure 2-1: The structure of a CMOS inverter

When an input transition causes a change in the conductive state of the pull-up

and the pull-down network, the electric charge is transferred from the power supply to

the output capacitance CL or from the output capacitance to ground. The transition

causes power dissipation on the resistive pull-up and pull-down networks. Let us

 7

consider a rising output transition (see Figure 6-a). Power is by definition Psw (t) = d

E(t) / dt = id (t) v (t), where id (t) is the current drawn from the supply and v (t) is the

supply voltage Vdd. The total energy provided by the supply is [13]:

∫ ∫ ===
r ddT V

ddoutoutLdddr VCdVCVdttvtiE
0 0

2)()(

where Tr is the time interval long enough for the transient exhaustion. Notice that

we implicitly assume that all current provided by Vdd is used to charge the output

capacitance. We also assume the output capacitance to be a constant.

At the end of the transition, the output capacitance is charged to Vdd, and the

energy stored in it is given by: . Hence, the total energy dissipated by T1

during the 0→1 output transition is: .

22/1 ddLs VCE =

222 2/12/1 ddLddLddLd VCVCVCE =−=

(a) (b)

Figure 2-2: (a) The 0→1 and (b) 1→0

If we consider the falling output transition (see Figure 6-b), no energy is stored in

the output capacitance. For the conservation of the energy, the total energy dissipated

 8

by T2 during a falling output transition is given by . This derivation

leads us to the fundamental expression of the switching power consumption [13]:

22/1 ddLs VCE =

fVCP ddLsw
2α=

where CL is the load capacitance, Vdd is the supply voltage, f is the clock frequency

and α is the node switching activity factor.

Factor CL is decided once the manufacture process has been chosen. Decreasing

the Vdd factor has a quadratic effect and can be an effective way. However, the supply

voltage is usually determined by the system and technology consideration, and

decreasing Vdd will accordingly increase the propagation delay. The computing time

will be definitely extended by reducing the factor f, clock speed. It is an unacceptable

defect to trade performance of embedded system that usually has real-time demands.

Moreover, the power of other idle modules cannot be omitted since execution time

increases. Therefore, the most important factor that distinguishes power is its

dependence on the switching activity.

There are two ways to cut-down the switching activity on buses in execution

time,

1. Reducing transaction counts:

Reducing requests of memory access is a direct approach to

reduce bit transitions on buses. Buses can keep idle and eliminate

power consumption since requests are saved. To increase the

reusability of transmitted values is a common example of this idea.

2. Reducing numbers of switch activities per transaction:

Reducing numbers of switch activities per transaction that make

the current transmitted bits near previous ones can reduce number of

capacitances needed to be driven. Bus masking is a general technique

 9

to eliminate variability between two sequential accesses.

2.3 Baseline System

Our baseline architecture model is as Figure 2-3. The processor sends address

request and receives instructions from main memory directly at this baseline system.

We find that repeatedly executed instructions will continuously drive the same bus

transactions and consume power. Therefore, power consumption of instruction bus is

reduced by reducing memory transactions.

Data Memory

Program
Memory

DAddr

Data

Data

IAddr
CPU core

Data Memory

Program
Memory

DAddr

Data

Data

IAddr
CPU core

Figure 2-3: Architecture model of baseline system

The power consumption on instruction and address buses all follows the follows

the formula for that of CMOS circuit. The power consumption model on buses of the

baseline system is

 10

frequency bus ,
tagesupply vol ,

line bus of escapacitanc load ,

buson sbit toggle of numbers ,

 ignored becan n dissipatiopower static ,

 2

BUS

dd

L

toggles

BUS

toggles

BUSddLtoggles

BUSBUSBaseline

f
V
C

n

P
where

n

fVCn

PPPower

Static

StaticDynamic

∝

∝

+=

The average power consumption also concludes the leakage power and the

short-circuit power, which are not in our discussion. The static power dissipated by

CMOS VLSI gate is in the nanowatt range [1], which is ignored. Using this evaluation

metric, we can calculate the power consumption during programs executing. We

mention above that the capacitances and supply voltage should remain unchanged.

Our design goal is reducing numbers of bit transitions on bus with less power

consumption.

2.4 Previous Research of Power Reduction on Buses

 Four previous researches in reducing the switching activities on buses are

introduced in the following sections: bus invert encoding scheme [7], BITS (Bus

Invert Transition Signaling) encoding scheme [8], Petrov’s bus encoding scheme [10],

and register relabeling [9]. As described in Chapter 1, there are two ways to reduce

the numbers of switching activities. All belong to reducing numbers of switching

activities per transaction. According to the characteristics of buses, bus invert and
 11

BITS perform well on instruction and data buses. Petrov’s bus encoding scheme and

register relabeling can only reduce transactions on instruction buses.

2.4.1 Bus Invert Power Saving Technique

This method [7] first computes the hamming distance between the present value

and the data value on a bus. If the number of transitions between the current pattern

on the bus, denoted by Xi, and the previous pattern, denoted by Zi-1, exceeds half the

width, the current pattern is transferred with each bit inverted. Otherwise, the current

pattern keeps unchanged. An extra bus line, denoted by I, is used to signal the

inversion. It is set as 0 or 1 according as the data pattern is inverted or not. At the

receiver side, the contents of bus can be restored according to the invert bus line. An

encoder and decoder are shown in Figure 2-4(a) and (b), respectively.

I

Zi-1
0

Zi-1
7

Xi
0

Xi
7

voter I

Zi-1
0

Zi-1
7

Xi
0

Xi
7

voter

I

Zi
0

Zi
7

Xi
0

Xi
7

I

Zi
0

Zi
7

Xi
0

Xi
7

Figure 2-4: Schematic diagrams of bus-invert (a) encoder (b) decoder

 12

 Bus-Invert method presents a trade-off between performance and power

dissipation. The performance decreases because the comparator and majority voting

circuits increase the area and delay of the data-path. Another trade-off is that an extra

I/O pin (invert line) is needed.

2.4.2 Bus Invert Transition Signaling Power Saving Technique

This method [8] first computes the 1s in present value Xi on a bus. If the number

of 1s in Xi is larger than half the bus width, then each bit of Xi is inverted (with line I

set to 1) and then transition-encoded. Otherwise, each bit of Xi is transition-encoded

without alteration. At the same time, an extra line, called as invert line, is set as 0 or 1

according to the data value is inverted or not. At the receiver side, the contents of bus

can be restoring according to the invert line. An encoder and decoder are shown in

Figure 2-5(a) and (b), respectively.

I

Zi-1
0

Zi-1
7

Xi
0

Xi
7

voter I

Zi-1
0

Zi-1
7

Xi
0

Xi
7

voter
I

Zi
0

Zi
7

Xi
0

Xi
7

Figure 2-5 : Schematic diagrams of BITS (a) encoder (b) decoder

Bus-Invert Transition Signaling method presents a trade-off between

 13

performance and power dissipation. The performance decreases because the

comparator and majority voting circuits increase the area and delay of the data-path.

Another trade-off is that an extra I/O pin (invert line) is needed.

2.4.3 Petrov’s Bus Encoding Power Saving Technique

Petrov’s bus encoding scheme [10] minimizes the total number of transitions on

each bit line of data bus from the instruction memory. Therefore, it can reduce the

significant power overhead in processor memory communication. This technique is an

application-specific dynamic customization for power minimization in the instruction

memory’s data bus. Fundamentally, it uses application-specific information to identify

optimal power encoding. The encoded instructions reside in memory, and the

processor core receives information about the transformation, either when loading the

program or when running the software. The processor’s fetch module uses this

information to efficiently restore the original bit sequence on each bus line. Figure 2-6

is design flow of this bus encoding method.

 14

Transformation
data

Source
Code

Compiler
and linker

Petrov’s
encoding

Transformed
code

Program code

Instruction
memory

Processor

Decoder

Static-time Dynamic-time

Transformation
data

Source
Code

Source
Code

Compiler
and linker
Compiler
and linker

Petrov’s
encoding

Transformed
code

Program code

Instruction
memory

Processor

Decoder

Static-time Dynamic-time

Figure 2-6: Design flow of Petrov’s bus encoding scheme

 An application typically spends most of its execution time on a few tight loops.

Data bus transfers form instruction storage causes many transitions on each bus line.

Vertical bit sequences are targeted for this encoding method that independently

considers the bit streams associated with each bus. Consider arbitrary bit sequence X

= {…, xn+3, xn+2,…, xn-3,….}. They want to find alternative bit sequence Y = {…, yn+3,

yn+2,…, yn-3,….} and transformation τ such that the total number of bit flips in Y is

less than in X. and X =τ(Y). The bit sequence length can be arbitrarily long.

Identifying a single transformation that maps Y to X and providing the necessary

hardware support would permit restoration of the original bit sequence.

Given block size k, identifying the optimal subset of transformations requires finding

transformationτ(xi-1 , yi) for every block word, such that X =τ(Y) and the number

of bit transitions in Y is minimal. Therefore, this transformation must satisfy the

following system of equations:

ki),y , (x; i1-i00 ≤== τixyx

This system of equation must be solved with variable τ for all 2k block words

 15

for the sake of finding optimal transformation τ of each block word. Figure 2-7

illustrates the basic concept of Petrov’s encoding scheme. Figure 2-8 and Figure 2-9

are encoding and decoding examples for 3-bit block word.

x0 = y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

y0 = x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

For 3-bit block word

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

. 0 0 . . . 1

. 0 1 . . . 0

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

. 0 0 . . . 1

. 0 1 . . . 0

x0 = y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0 = y0

x1 = τ(x0 , y1)

x2 = τ(x1 , y2)

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding

x0
x1
x2

y0
y1
y2

x0
x1
x2

X Xencoding decoding
τ

y0 = x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

y0 = x0

τ(x0 , y1) = x0

τ(x1 , y2) = x1

For 3-bit block word

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

. 0 0 . . . 1

. 0 1 . . . 0

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

. 0 0 . . . 1

. 0 1 . . . 0

Figure 2-7: Basic concept

0
1
0

x0
x1
x2

Original bit
sequence X

Encode

Encoded bit
sequence Y

0
0
0

(0)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

x0 = y0

τ (x0 , y1) = x1

τ (x1 , y2) = x2

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ = 'x

τ =

τ = y

τ =

'x

'x

0
1
0

x0
x1
x2

Original bit
sequence X

0
1
0

x0
x1
x2

Original bit
sequence X

Encode

Encoded bit
sequence Y

0
0
0

(0)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

Encoded bit
sequence Y

0
0
0

(0)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

Encoded bit
sequence Y

0
0
0

(0)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

0
0
0

(0)

y0
y1
y2

0
0
0

(0)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
0
1

(1)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
0

(2)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

0
1
1

(1)

y0
y1
y2

x0 = y0

τ (x0 , y1) = x1

τ (x1 , y2) = x2

τ (x0 , y1) = x1

τ (x1 , y2) = x2

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ(x0 , y1) =τ (0 , 0) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 0) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ(x0 , y1) =τ (0 , 1) = 1

τ(x1 , y2) =τ (1 , 1) = 0

τ = 'x

τ =

τ = y

τ =

'x

'x

Figure 2-8: 3-bit block word encoding example

According to Figure 2-8, we can construct Table 2-1 that shows the

transformation mapping for 3-bit block word. It uses three transformation functions.

Therefore, transformation data per block word is 2 bits.

 16

Table 2-1: 3-bit block word transformation

0
1
0

Original bit
sequence X

x0
x1
x2

0
1
0

Original bit
sequence X

x0
x1
x2

0
1
0

Original bit
sequence X

x0
x1
x2

Original bit
sequence X

x0
x1
x2

Decode

0
0
0

y0
y1
y2

Encoded bit
sequence Y

τ = 'x

x0 = y0 = 0

x1 = τ (x0 , y1) = = 1

x2 = τ (x1 , y2) = = 0

x0 = y0

x1 = τ (x0 , y1)

x2 = τ (x1 , y2)

'0x

'1x

x0 = y0 = 0

x1 = τ (x0 , y1) = = 1

x2 = τ (x1 , y2) = = 0

x0 = y0

x1 = τ (x0 , y1)

x2 = τ (x1 , y2)

x0 = y0 = 0

x1 = τ (x0 , y1) = = 1

x2 = τ (x1 , y2) = = 0

x0 = y0

x1 = τ (x0 , y1)

x2 = τ (x1 , y2)

x0 = y0

x1 = τ (x0 , y1)

x2 = τ (x1 , y2)

'0x

'1x

Figure 2-9: 3-bit block word decoding example

 Table 2-2 shows the transformation mapping for 4-bit block word. It uses five

transformation functions. Therefore, transformation data per block word is 3 bits.

 17

Table 2-2: 4-bit block word transformation

The hardware support of this implementation is presented in Figure 2-10. The

Basic Block Identification Table (BBIT), shown in Figure 2-10(a), contains the

program counter of the starting instruction together with an index into Transformation

Table. The Transformation Table, as shown in Figure 2-10(b), contains the control bits

for selecting the transformations data associated to each bit sequence.

PC3

PC2
PC1

PC3

PC2
PC1

.

.

.

.

τ1τ2τ3..τn E CT
τ1τ2τ3..τn E CT

.

.

.

.

τ1τ2τ3..τn E CT
τ1τ2τ3..τn E CT

Index to TT

BBIT

TT

Figure 2-10: Hardware support

Suppose that there are N instructions in a basic block, and each instruction is 32

bits. When the block size is four bits, the number of transformation data for a basic

block is ⎡ ⎤ 323/)1(×−N .

 18

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

. 0 0 . . . 1

. 0 0 . . . 1

Inst7 0 0 . . . 1

31 0
4-bit block word

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

. 0 0 . . . 1

. 0 0 . . . 1

Inst7 0 0 . . . 1

31 0
4-bit block word

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

Inst6 0 0 . . . 1

. 0 0 . . . 1

. 0 0 . . . 1

Inst9 0 0 . . . 1

31 0
5-bit block word

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

Inst6 0 0 . . . 1

. 0 0 . . . 1

. 0 0 . . . 1

Inst9 0 0 . . . 1

31 0

Inst1 1 1 . . . 0

Inst2 0 1 . . . 1

Inst3 1 0 . . . 1

Inst4 0 0 . . . 0

Inst5 0 0 . . . 1

Inst6 0 0 . . . 1

. 0 0 . . . 1

. 0 0 . . . 1

Inst9 0 0 . . . 1

31 0
5-bit block word

Figure 2-11: 4-bit and 5-bit block words example

We let TTsize denote transformation table size. According to Figure 2-11, we can

compute the TTsize as follows:

 ⎡ ⎤ bitsNTTsize 3323/)1(××−=

 [] [] bitsNTTsizebitsN 33213/)1(3323/)1(××+−≤≤××−

 bitsNTTsizebitsN)2(32)1(32 +≤≤−

When the block size is five bits, the transformation data for a basic block

is ⎡ ⎤ . 324/)1(×−N

⎡ ⎤ bitsNTTsize 3324/)1(××−=

 [] [] bitsNTTsizebitsN 33214/)1(3324/)1(××+−≤≤××−

 bitsNTTsizebitsN)3(24)1(24 +≤≤−

The bit transition reduction is higher for codes with shorter block size. However,

having shorter block words leads to higher hardware overhead. Selecting the

appropriate block size is a tradeoff between hardware overhead and the solution’s

efficacy.

 19

Comparison of Transformation Table Size

0

5

10

15

20

25

30

35

2 3 4 5 6 7

Block word size (bits)

Tr
an

sf
or

m
at

io
n

Ta
bl

e
Si

ze
 (N

-1
)b

its

Petrov's method

Figure 2-12: Comparison of transformation table size

When the block size is four bits, the transformation table size is about equal to the

size of total instructions in the basic block. Therefore, block sizes of 5 and 6 bits

should receive primary consideration to be compared with our proposed method later.

2.4.4 Register Relabeling Power Saving Technique

In a typical RISC ISA, register fields are in fixed positions within the instruction

encoding and occupy a significant part of the instruction word. Figure 2-13 shows

MIPS instruction format. These general-purpose registers are interchangeable.

 20

op

op

op

rs

rs rt

rt rd shamt funct

target address

immediate

0

0

0

61116212631

31

31 26

26

21 16

6 bits

6 bits

6 bits 5 bits

5 bits

5 bits

5 bits

5 bits

16 bits

6 bits5 bits

26 bits

R-type

I-type

J-type

op

op

op

rs

rs rt

rt rd shamt funct

target address

immediate

0

0

0

61116212631

31

31 26

26

21 16

6 bits

6 bits

6 bits 5 bits

5 bits

5 bits

5 bits

5 bits

16 bits

6 bits5 bits

26 bits

R-type

I-type

J-type

Figure 2-13: MIPS instruction format

The basic concept of register relabeling [9] is to minimize the bit changes of the

register fields during instruction fetches by re-assigning register numbers. Naïve

register labeling can incur significant bit transitions in consecutive register fields of

the instruction word. Since general-purpose registers are interchangeable, this

technique reassigns registers so that the bit transitions within the register index

streams are minimized. Figure 2-14 shows an example code fragment. It could

achieve reduction in bit transition with no performance penalties.

Bit transitions on
Register fields:

r6 r7
r3 r6add r3, r2, r4

sub r6, r3, r5
sub r3, r2, r6
mul r4, r4, r5

7
4
5

16

+

add r6, r2, r4
sub r7, r6, r5
sub r6, r2, r7
mul r4, r4, r5

3
4

3

10

+

Bit transitions on
Register fields:

r6 r7
r3 r6
r6 r7
r3 r6add r3, r2, r4

sub r6, r3, r5
sub r3, r2, r6
mul r4, r4, r5

7
4
5

16

add r3, r2, r4
sub r6, r3, r5
sub r3, r2, r6
mul r4, r4, r5

7
4
5

16

+

add r6, r2, r4
sub r7, r6, r5
sub r6, r2, r7
mul r4, r4, r5

3
4

3

10

+

add r6, r2, r4
sub r7, r6, r5
sub r6, r2, r7
mul r4, r4, r5

3
4

3

10

+

Figure 2-14: Example code fragment

 21

r5

r8 r1

r2

r3 0

3

2

1

1

1

1 1

1

RHG

1

Reg pair frequency

(r5,r2)
(r8,r5)
(r5,r3)
(r8,r1)
(r8,r3)
(r2,r1)
(r5,r5)
(r3,0)
(r5,0)

Bit
transition

3
3
2
2
3
2
0
2
2

3
2
1
1
1
1
1
1
1 Immediate

value

r5

r8 r1

r2

r3 0

3

2

1

1

1

1 1

1

RHG

1
r5

r8 r1

r2

r3 0

3

2

1

1

1

1 1

1

RHG

r5r5

r8r8 r1r1

r2r2

r3r3 00

3

2

1

1

1

1 1

1

RHG

11

Reg pair frequency

(r5,r2)
(r8,r5)
(r5,r3)
(r8,r1)
(r8,r3)
(r2,r1)
(r5,r5)
(r3,0)
(r5,0)

Bit
transition

3
3
2
2
3
2
0
2
2

3
2
1
1
1
1
1
1
1

Reg pair frequency

(r5,r2)
(r8,r5)
(r5,r3)
(r8,r1)
(r8,r3)
(r2,r1)
(r5,r5)
(r3,0)
(r5,0)

Bit
transition

3
3
2
2
3
2
0
2
2

3
2
1
1
1
1
1
1
1 Immediate

value

Figure 2-15: (a) Frequency distribution of register pairs (b) Register Histogram

Graph

Register Histogram Graph (RHG) is introduced for capturing the utilization

frequency and relation between register pairs. RHG nodes correspond to registers and

literals. Each RHG edge annotated with the frequency of occurrence. Figure 2-15 (a)

shows all pairs of registers and literal-register pairs, which appear in the code and the

quantity of each pair. Figure 2-15 (b) is one RHG example. The following algorithm

utilizes the RHG to reassign the register name.

Algorithm
Iterate through the edges starting from the most frequent ones
Rename the registers yet unassigned so that hamming distance to
all their assigned neighbors in the graph is minimized

Figure 2-16 shows the RHG after register relabeling.

 22

Number of transitions reduced from 28 to 12 !

R1

R5 R7

R3

R4 0

3
2

1

1

1
1 1

R1
R2
R3
R4
R5
R6
R7

Unassigned Register Names

1
1

Number of transitions reduced from 28 to 12 !

R1

R5 R7

R3

R4 0

3
2

1

1

1
1 1

R1
R2
R3
R4
R5
R6
R7

Unassigned Register Names

1
1

R1

R5 R7

R3

R4 00

3
2

1

1

1
1 1

R1
R2
R3
R4
R5
R6
R7

Unassigned Register Names

1
11

Figure 2-16: RHG after register relabeling

The register fields that occupy the instruction set encoding are small than 50%.

Moreover, the best assignment can only be one hamming distance for each register

pair with different registers. Therefore, when the distribution of all register pairs is

very skew, or the numbers of some register pairs are very large, there is some

improvement space to further reduce bit transitions.

2.4.5 Summary of Previous Researches

This section gives a brief summary of previous researches mentioned above.

The bus-invert method performs well when patterns to be transmitted are

randomly distributed in time and no information about pattern correlation is available.

Therefore, the method seems to be appropriate for encoding the information traveling

on data buses. Major drawbacks of this approach are related to the required redundant

bus line and the overhead due to the logic to implement the voter to decide whether

the Hamming distance exceeds N / 2. Also, an additional bus line is required to mark

if the buses are inverted or not. Moreover, it appropriates for narrow bus.

BITS method can efficiently reduce bit transitions when the transition signaling is

biased. Moreover, it appropriates for narrow bus. But it also needs a complicated

 23

encoder and a redundant control line.

Petrov’s bus encoding scheme is efficient for programs include frequently

executed loops and no encoder requirement, but it need large transformation table that

stores transformation data and a complicated decoder.

Register relabeling can only reduce bit transitions on register fields. It’s not very

efficient method because register fields that occupy the instruction set encoding are

small than 50%. Moreover, the best assignment can be only one hamming distance for

each register pair with different registers. We observe that the distribution of various

register pairs is highly skewed, or the numbers of some register pairs is very large.

Taking advantage of this skew, there is some improvement space so as to further

reduce bit transitions. And it has an advantage that does not need extra hardware

overhead.

These four techniques are compared in Table 2-3. The symbol “—” means that

there is not this kind of extra hardware requirement. We also list our design here to

compare with these methods. The detail description of our design will be discussed in

the next chapter.

Table 2-3: Extra hardware comparison of the power saving techniques

 BI BITS Petrov’s

method

Register

relabeling

Our design,

BIBITS

Encoder complexity High High — — —

Decoder complexity Low Low High — Medium

Table size — — Large — Small

 From the next chapter, a new power reduction scheme that provides the abilities

of low power and real-time execution will be proposed. The proposed method is

 24

designed for reducing the power consumption on instruction buses. It divides the

power-saving scheme into two phases so that process the complicated phase is able to

be processed in the software offline.

 25

Chapter 3 Design of BIBITS Bus Encoding

The design of reducing the switching activity on system-level buses through the

application of dedicated encoding schemes is discussed in this chapter. The aim is to

propose innovative encoding techniques combined with register relabeling to

minimize the total number of bit transitions on each bit line on the data bus from the

instruction memory.

Figure 3-1 shows the static-time design flow of BIBITS bus encoding scheme

with modified register relabeling. We add modified register relabeling step before

BIBITS bus encoding scheme.

Source
Code

Traditional Compiler/
Register Allocator

Code
Generation

LinkerBIBITS
Encoding

Modified
Register Relabeling

Transformation data

Transformed code

Program

code

Source
Code

Source
Code

Traditional Compiler/
Register Allocator

Traditional Compiler/
Register Allocator

Code
Generation

Code
Generation

LinkerBIBITS
Encoding

Modified
Register Relabeling

Transformation data

Transformed code

Program

code

Figure 3-1 Static-time design flow of BIBITS bus encoding scheme with

modified register relabeling

BIBITS encoding scheme for power saving is discussed in Section 3.1. Based on

the design of BIBITS encoding scheme, a further technique, BIBITS encoding

scheme with register relabeling, is introduced so as to further reduce power

consumption in Section 3.2. A basic block selection algorithm used in our design is

proposed in Section 3.3.

 26

3.1 BIBITS Bus Encoding Scheme

Our design, BIBITS bus encoding scheme, is applied only for the major

application loop. This method is divided as three phase: BIBITS encoding method

algorithm, hardware mechanism, and basic-block selection algorithm. The part of

BIBITS encoding method algorithm introduces how to encoding instruction at static

time .The hardware mechanism of our design includes decoding-control logic, basic

block identification table and transformation table. The part of basic-block selection

algorithm is responsible to choose the most important basic-blocks to lower numbers

of bit transitions on bus.

3.1.1 BIBITS Encoding Method Algorithm

 First, all basic blocks of the original program are encoded. Because we intend to

combine an encoding method with register relabeling, we let the partition size equal to

register field size. In other words, the partition size is five bits. Bit 6 and bit 30 are not

encoded because bit 30 has less bit transitions by statically analysis. An instruction

format is partitioned like Figure 3-2 so as to let one register field exactly be one

partition. Each partition of current instruction is compared with the corresponding

partition of previous instruction, and then the best encoding function that can reduce

the most bit transitions for each partition is chosen.

 27

1

0

1

0

1

1101110000100101000110011110010

0011110000000100001010000110010

1111110000100101001100001000010

1101100000000111001010001101011

1100010010100101001000000110100

1

0

1

0

1

1101110000100101000110011110010

0011110000000100001010000110010

1111110000100101001100001000010

1101100000000111001010001101011

1100010010100101001000000110100

5 bits partition

B1

B3B2

B4

Basic Block

B1

B3B2

B4

Basic Block

31 0

Figure 3-2: BIBITS encoding method

Let HDn,p be the Hamming distance between partition Bn,p and Bn-1,p given by HDn,p =

1s of (Bn,p B♁ n-1,p)

The objective function then is to minimize ∑ ∑= =

N

n pnp
HD

1 ,
6

1

xi: Original current pattern

yi: Encoded current pattern

yi-1: Encoded previous pattern

xi

encoder decoder

yi = xi op yi-1
yi xi = yi op yi-1 xi

yi-1

xi

encoder decoder

yi = xi op yi-1
yi xi = yi op yi-1 xi

yi-1

Figure 3-3: BIBITS encoding basic concept

Table 3-1 shows us sixteen functions of two Boolean variables.

Table 3-1: The 16 functions of two Boolean variables

 28

According to Table 3-1, only four functions that can be used to decode the encoded

partition by using the same function which is used in the encoding step is chosen, as

illustrated in Figure 3-3. In other words, the relation between encoder and decoder

must satisfy the following equation.

((xi op yi-1) op yi-1) = xi

Only four functions satisfy the Boolean expression from table of 16 binary operators,

and also that none of the other 12 functions in the table has this property. Therefore,

four selected functions are identify, invert, XOR, and XNOR.

Since it is an NP-complete problem to find an optimal assignment function, we

propose a heuristics algorithm that can be applied to find better encodings.

BIBITS encoding method algorithm is

–Sequentially choose the best encoding function for each partition

–With the contribution ratio of each basic block , we can apply the greedy

algorithm to help us select which basic block should be encoded.

yi-1 01101

xi 11110

3
Bit

transition

yi-1 01101

yi 01100

yi-1 01101

yi 11011
yi -1 01101

yi 00001

yi-1 01101

yi 11110

3 2 3 1

xi: Original current pattern

yi: Encoded current pattern

yi-1: Encoded previous pattern

yi-1 01101

xi 11110

3
Bit

transition

yi-1 01101

xi 11110

yi-1 01101

xi 11110

yi-1 01101

xi 11110

3
Bit

transition

yi-1 01101

yi 01100

yi-1 01101

yi 01100

yi-1 01101

yi 11011

yi-1 01101

yi 11011

yi-1 01101

yi 11011
yi -1 01101

yi 00001

yi -1 01101

yi 00001

yi -1 01101

yi 00001

yi-1 01101

yi 11110

yi-1 01101

yi 11110

yi-1 01101

yi 11110

3 2 3 1

xi: Original current pattern

yi: Encoded current pattern

yi-1: Encoded previous pattern

Figure 3-4: BIBITS encoding example

 29

3.1.2 Hardware Support for BIBITS Encoding

The hardware mechanism consists of three main modules: basic-block

identification table, transformation table and decoding hardware.

 The block diagram of the proposed method is shown in Figure 3-5. The blocks

inside the dotted line are our designed circuits, the decoding-control logic, that

contain four elements: instruction fetcher, basic block identification table,

transformation table, and decoder. This hardware mechanism may be combined with

processor core into a single chip.

Figure 3-5: System architecture with BIBITS encoding

3.1.3 Decoding-Control Logic

The decoding-control logic is responsible for sending instructions to processor

from memory. It first fetches instructions from memory and then determines if the

fetched instruction is an encoded instruction. If the fetched instruction is an encoded

 30

instruction, the original instructions will be gathered from the decoder. The

decoding-control logic consists of four elements: instruction fetcher, basic block

identification table, transformation table, and decoder.

 1. Instruction Fetcher:

The instruction fetcher receives the program-counter address request

from processor.

 2. Basic Block Identification Table (BBIT):

The basic block identification table stores the program counter value of

the starting instruction and an index that points to the first entry in the

transformation table for this basic block. The number of entries in this table

corresponds to the number of encoded basic blocks for the particular

application loop.

Figure 3-6: BBIT and Transformation Table

 3. Transformation Table (TT):

The transformation table stores transformation data τn associated with

each encoded partition from the instruction memory. A TT entry contains

 31

the control bits for selecting the transformation associated with each

partition. The hardware structure asserts the end bit field (E) in the TT entry

for entries corresponding to the last partition word in a given basic block.

 4. Decoder:

The decoder receives the control bitsτn from TT , and selects decoder

function to restore each partition of encoded instructions. The circuit

diagram of the decoder is shown in Figure 3-7.

Figure 3-7: Decoder circuit

Decoding Procedure

The decoding procedure of this architecture is as follows.

1. CPU sends program counter value to decoding controller.

2. Instruction fetcher access memory for reading instruction.

3. Search basic block identification table to see if there is an entry that is equal

to the program counter value.

I. Yes; the fetched instruction is an encoded instruction. Send the value

of the found entry to the transformation table. Go to Step 4.

II. No; the fetched instruction is directly passed to CPU core. Go to Step

1.

4. Use transformation index to read transformation data in transformation table

and send to decoder and check if entry boundary bit it true.

 32

I. Yes; this transformation table entry is finished, and thus the next

instruction should be a non-encoded instruction. Go to Step 1.

II. No; next instruction is still an encoded instruction.

5. Go to Step 4.

3.2 Modified Register Relabeling for BIBITS Bus Encoding

Scheme

Based on the design of the BIBITS encoding scheme, there is still a chance to

reduce power consumption in advance. A further technique, modified register

relabeling, is introduced to further reduce power consumption in this section. The idea

of this is come from the observation of program-execution trace. When program is

executed, processor often executes sequence of instructions repeatedly. This sequence

of instructions is known as loop. A loop contains either one or more basic blocks.

Therefore, the distribution of register pairs is very skew.

According to Figure 3-8, we find that the best assignment can only be one

Hamming distance for each register pair with different registers. However, there are

still a lot of bit transitions when frequency of the register pair is very large. If he

Hamming distance of the register pair can further be reduced from one to zero, a lot of

bit transitions will be reduced. Therefore, modify original register relabeling method

is proposed to resolve this problem. The difference between our proposed register

relabeling algorithm and original register relabeling algorithm is that we consider that

register relabeling is able to be combined with BIBITS bus encoding scheme, such

that the best assignment of register relabeling will be one register pair that is zero

Hamming distance. We see the following Figure 3-8, for example, R2 and R5 are

 33

assigned as R2 and R3 that is one Hamming distance. And it is a best assignment case

in original register relabeling method. But our modified register relabeling method

assigns one inverse register pair that is R26 and R5. After applying BIBITS bus

encoding step, this register pair will become R5 and R5, and the Hamming distance of

this register pair becomes zero.

Original Register Relabeling Modified Register Relabeling

Bit transition = 1 Bit transition = 0

R2 (00010) R5 (00101)

R2 (00010) R3 (00011)

Relabeling

R2 (00010) R5 (00101)

R26 (11010) R5 (00101)

R5 (00101) R5 (00101)

BIBITS
encoding

Y = X′

Modified
Relabeling

Original Register Relabeling Modified Register Relabeling

Bit transition = 1 Bit transition = 0

R2 (00010) R5 (00101)

R2 (00010) R3 (00011)

Relabeling

R2 (00010) R5 (00101)

R26 (11010) R5 (00101)

R5 (00101) R5 (00101)

BIBITS
encoding

Y = X′

Modified
Relabeling

Figure 3-8: Comparison of original register relabeling and modified register

relabeling for BIBITS bus encoding

Figure 3-9(a) shows us register pairs frequency of some program. RHG captures

the utilization frequency and relation between register pairs. Nodes of the RHG

correspond to registers and literals, and edge weight corresponds to frequency. Iterate

through the edges starting from the most frequent ones. The following Figure 3-9 (b)

is an example of RHG.

 34

r5

r8 r1

r2

r3 0

6

4

2

2

2

2 2

2

RHG

2
r5

r8 r1

r2

r3 0

6

4

2

2

2

2 2

2

RHG

r5r5

r8r8 r1r1

r2r2

r3r3 00

6

4

2

2

2

2 2

2

RHG

22

Reg pair frequency

(r5,r2)
(r8,r5)
(r5,r3)
(r8,r1)
(r8,r3)
(r2,r1)
(r5,r5)
(r3,0)
(r5,0)

Bit
transition

3
3
2
2
3
2
0
2
2

6
4
2
2
2
2
2
2
2

Reg pair frequency

(r5,r2)
(r8,r5)
(r5,r3)
(r8,r1)
(r8,r3)
(r2,r1)
(r5,r5)
(r3,0)
(r5,0)

Bit
transition

3
3
2
2
3
2
0
2
2

6
4
2
2
2
2
2
2
2

Figure 3-9: (a) Register pairs frequencies of some program (b) An example of

register histogram graph

The detailed modified register relabeling for BIBITS bus encoding algorithm is

–Iterate through the edges starting from the highest weight edgei

‧If two nodes of edgei have not been assigned a new register name,

then assign one inverted register pair Rx and R31-x, such that

H.D.(BIBITS(Rx,R31-x))=0.

 If one inverted register pair is not found, then assign one register

pair Rx and Ry, such that H.D.(BIBITS(Rx, Ry)) is minimized.

‧If one node of edgei has been assigned Rx, then assign Ry to another

node, such that H.D.(BIBITS(Rx, Ry)) is minimized.

‧If all nodes of edgei have been assigned new register names, then

process the next edge.

 35

3.3 Basic Block Selection Algorithm

Our selection algorithm is applied to analyze programs-execution behavior. We

analyze and calculate the numbers of bit toggles and execution counts of each basic

block.

The task of determining an optimal basic blocks for a given programs is known

to be NP-complete in the size of the programs. However, many heuristics have sprung

up that find near optimal solutions to the problem, and most are quite similar. The key

idea of the encoded basic-block selection algorithm is to select the most frequent

basic blocks to be encoded. We analyze the program-execution trace with this

algorithm. First, we identify every basic block, and then we calculate the occurrence

frequency and numbers of bit transitions of each basic block occurs on bus. After the

trace analyzing, each basic block has three parameters: numbers of instruction of this

basic block (length of this basic block), numbers of execution counts, and numbers of

bit transitions.

Each basic block has a contribution value measured as the product of numbers

of execution counts and numbers of bit transitions. We can compute the contribution

as the contribution value divided by the length of this basic block.

 The greedy algorithm with the contribution ratio of each basic block is applied to

help us select which basic block should be encoded. The selection algorithm is shown

as follows. Suppose that there is a set { }nBB ,...2,1= of n basic blocks in the

program. Each basic block has a contribution value:

Length
BitTogglesountsExecutionConContributi ⋅

= . (EQ1)

Assumption that transformation table size is S. The greedy-basic-block selector

 36

algorithm is

TT : Transformation Table

BB : Basic Block

TD(BB{i}): Transformation data of basic block

TTreturn 6.
TD(BB{i}) TT TT then .5

S) TD(BB{i}) Sizeof(TT if do .4
order in BB[n] ifor .3

block basiceach of ratio(CR)on contributiby BBset Sort .2
empty as TTLet .1

),(

∪←
≤∪

↓∈

↓

−−− CRnSelectorBlockBasicGreedy

 For example, the algorithm can be illustrated as Figure 3-10

Figure 3-10: An example of greedy-basic -block selector algorithm

 37

Table 3-2: Computing contribution ratio of each basic block

 Frequency Bit Toggles Length Contribution CR
 BB1 3 43 4 129 32.25
BB2 2 55 4 110 27.5
BB3 2 30 3 60 20

 After analyze the trace of program execution, the set BB has three elements:

Basic-Block 1, Basic-Block 2, and Basic-Block 3. The parameters of these three basic

blocks are shown as Table 3-2. The selection priority is first BB 1, then BB 2, and BB

3 is the last one.

 38

Chapter 4 Simulation and Analysis

Benchmark programs are first discussed in this chapter. Simulation methods are

then introduced in this thesis, including the toolsets, simulation flow, simulation

parameters and evaluating factors.

4.1 Experimental Benchmarks

We perform experiments for the following benchmarks for evaluating the

efficiency of encoding in bus transition reduction. These six DSP or

numerical-computation kernels that represent code frequently encountered in many

embedded system products. Table 4-1 gives a summary of our choice of benchmarks.

Table 4-1: Benchmark

Function Name Description

Mmul A matrix multiplication of 100 × 100 element matrices.
SOR Successive over-relaxation on a 256 × 256 element

matrix.
EJ Extrapolated Jacobi-iterative method on a 128 × 128

entry grid.
FFT Fast Fourier transform with a 256-bit sample block size.
Tri Tri-diagonal system solver on a 128 × 128 element

matrix.
LU Lower/upper triangular matrix decomposition algorithm

on a 128 × 128 element matrix.

The size and basic block number of each benchmark program is presented in

Table 4-2.

 39

Table 4-2: Benchmark program size and numbers of each basic block

Program Program size (Bytes) Number of Basic Block
Mmul 304 13
Sor 1300 14
Ej 1500 22
FFT 1152 65
Tri 1252 9
LU 3376 34

4.2 Experimental Methods

 The experimental toolset we used in this simulation are described in this section.

These tools are either MIPS® SDE Lite, a free subset of the MIPS Software Toolkit

[11][12], or created by us. We wrote a simulation tool so that we could do basic block

selection, modified register relabeling and BIBITS encoding scheme. And we also

could evaluate the number of bit transitions on all the lines of the instruction bus. We

also list the experimental flow, the experiments we planned to do, and simulation

parameters we referred.

4.2.1 Experimental Toolset

Experimental environment is divided into three sub-environments:

 Code Generation phase: The purpose of this sub-environment is to

compile the executable machine codes for the benchmark programs. We

adopt MIPS® SDE Lite version 5.03.06.[12] to build the MIPS ELF

(Executable and Linkable Format) image format for each benchmark

program.

 40

 Transformation Table Building phase: This sub-environment includes a

transformation table builder and a code-rebuilder. The transformation table

builder scans the program execution trace running under the GNU MIPS

CPU Simulator and builds the transformation table for each benchmark

program. The code-rebuilder rebuilds selected basic-blocks of programs by

BIBITS encoding.

 Result Calculation phase: The final sub-environment includes the

modified simulator and a bit transition calculator.

We have adopted and developed the complete experimental toolset consisting of

individual tools that accomplish specific tasks respectively for constructing the

experimental environment.

 Table 4-3 lists all tools composing the experimental toolset.

Table 4-3: Experimental toolset descriptions

Tool Name Description

sde-gcc

SDE’s version of the Free Software Foundation’s
ANSI-compatible GNU C Compiler compiling C source code.
This version incorporates superb optimization for RISC
processors, such as MIPS architecture processors.

sde-ld
SDE’s version of the GNU linker and loader links the object
files necessary for building MIPS ELF files of the components
in the benchmark suite.

sde-run
The GNU MIPS CPU simulator executes the MIPS ELF image
files. It could trace the execution behaviors of the benchmark
programs.

BB-sel
The Basic Block Selector that builds the recovery dictionary
with dictionary building rules by scanning the MIPS program
execution trace.

code-rebuild
The code-rebuilder rebuilds the program with the
transformation table provided from the transformation table

 41

builder.

modsde-run
The modified GNU MIPS CPU simulator to execute the
encoded programs and calculate the power needed for this
architecture.

4.2.2 Experimental Flow

The experimental flow, the experimental toolset and intermediate files, such as

object files, MIPS ELF files, etc., are shown in Figure 4-1. By a horizontal dotted line,

this figure is divided into three sub-figures representing the three experimental

sub-environments representing the three experimental sub-environments.

 42

TT Files
(.tt)

C Compiler
(sde-gcc)

Benchmarks (.c)

Assembly code
(.S)

Reg. relabeler
(reg-relabel)

GNU Tracer
(sde-run)

Execution
Trace

BB-Selector
(BB-Sel)

Input Data

ELF

Encoded Files
(.coded)

Modified-Tracer
(Mod-run)

Input Data
TT Files

(.tt)

Bit transition

Assembly code
(.S)

Linker

(sde-ld) ELF

Code Generation

Build
Transformation
Table

Result Calculator

Code-Rebuilder
(Code-rebuild)

TT Files
(.tt)

TT Files
(.tt)

C Compiler
(sde-gcc)

C Compiler
(sde-gcc)

Benchmarks (.c)Benchmarks (.c)

Assembly code
(.S)

Reg. relabeler
(reg-relabel)

Reg. relabeler
(reg-relabel)

GNU Tracer
(sde-run)

GNU Tracer
(sde-run)

Execution
Trace

BB-Selector
(BB-Sel)

BB-Selector
(BB-Sel)

Input Data

ELFELF

Encoded Files
(.coded)

Modified-Tracer
(Mod-run)

Input Data
TT Files

(.tt)
TT Files

(.tt)

Bit transitionBit transition

Assembly code
(.S)

Linker

(sde-ld)
Linker

(sde-ld) ELFELF

Code Generation

Build
Transformation
Table

Result Calculator

Code-Rebuilder
(Code-rebuild)
Code-Rebuilder
(Code-rebuild)

Figure 4-1: Experimental flow by using our experimental toolset

 43

 The complete experimental flow is described as follows:

1. The MIPS C compiler (sde-gcc) compiles the source files (.c) of the

benchmark programs into its corresponding object files (.o).

2. The register relabeler (reg-relabel) adjusts register name to reduce the bit

transitions of the instruction register fields.

3. The MIPS C linker (sde-ld) links the object files necessary for building

MIPS ELF files of the components in the benchmark suite.

4. The GNU MIPS CPU Simulator (sde-run) traces the ELF files with input

data and then output the execution instructions and the corresponding

program counters (PC value).

5. The Basic Block Selector (BB-sel) scans execution trace and produces the

transformation table that contains selected basic block and encoding

information.

6. According the transformation table files, the code-rebuilder build the MIPS

machine code files.

7. The modified GNU MIPS CPU Simulator (modsde-run) executes the coded

programs with transformation tables and input data. It also calculates the bit

transitions for executing these programs.

4.2.3 Designing Experiments

The transformation table builder (TTbuild) and the modified tracer (modsde-run)

are the core tools in the entire experimental toolset because they are the tools actually

analyzing the execution trace and we can evaluate the power consumption of each

benchmark. In our simulation, we evaluate the bit transitions of these conditions:

 44

 Base system architecture. This is the simply architecture with only the

processor and instruction memory. The instructions are always fetched from

the instruction memory.

 Bus-invert encoding scheme. This is the power reduction technique

mentioned in Chapter 2. We implement this architecture to compare the

results between this approach and ours.

 BITS bus encoding scheme. This is the power reduction technique

mentioned in Chapter 2. We implement this architecture to compare the

results between this approach and ours.

 Register Relabeling. This is the power reduction technique we mentioned in

tChapter 2. We implement this to compare the results between this approach

and ours.

 Petrov’s bus encoding scheme. This is also the power reduction technique

we mentioned in Chapter 2. We implement this architecture to compare the

results between this approach and ours.

 BIBITS bus encoding scheme. This is our design that we execute the coded

program with the recovery dictionary.

 BIBITS bus encoding scheme with original register relabeling. This is our

design that we apply original register relabeling before BIBITS bus

encoding scheme stage.

 BIBITS bus encoding scheme with modified register relabeling. This is our

design that we apply modified register relabeling before BIBITS bus

encoding scheme stage.

The bit transitions effects are evaluated with different transformation table sizes

 45

in Petrov’s bus encoding scheme and our proposed BIBITS bus encoding scheme.

4.3 Simulation Results and Analyses

Experimental results obtained from evaluating power consumed by the

benchmark programs as described above are presented in this chapter. The bit

transitions reduction by various techniques for each benchmark programs is first

evaluated. The bit transitions reduction of our proposed BIBITS and Petrov’s bus

encoding scheme are then evaluated in different transformation table sizes. Notice that

the results of bit transition are all normalized to those of the base system.

4.3.1 Bit Transition Reduction of Different Techniques

Our approach’s effectiveness is measured by observing the reduction of

transition on the data bus to the instruction memory. We ran simulation using a typical

embedded processor as the baseline system architecture. We used six DSP or

numerical-computation benchmarks that represent code frequently encountered in

many embedded products.

 Figure 4-2 displays the bit transition reduction by applying different techniques

in six different benchmark programs. There are seven techniques applied in this figure:

Bus-invert, BITS, register relabeling, Petrov’s bus encoding scheme, BIBITS bus

encoding scheme, BIBITS with original register relabeling (ORR+BIBITS), and

BIBITS with modified register relabeling (MRR+BIBITS). Petrov’s bus encoding

scheme and relative BIBITS bus encoding schemes need use transformation tables.

This experiment selected all basic blocks of each program to be encoded. In other
 46

words, the transformation table size is unlimited.

Figure 4-2: Transition reduction of different techniques

Experimental results indicate that reductions in bit transition of Bus-invert

method are not very good. It also shows that reductions in bit transition of our

proposed BIBITS encoding scheme range around 56% to 61% except for the fft

program.

Assume that there are N instructions in some basic block. What about actual

transformation table size use by Petrov’s bus encoding scheme and BIBITS bus

encoding scheme when all basic blocks are encoded? Results of these are presented in

Table 4-4. Obviously, the table size of BIBITS bus encoding scheme is only a half of

Petrov’s bus encoding scheme.

Table 4-4: Comparison with transformation table size

Method Transformation data
 number

Transformation
table size (bits)

Petrov’s bus encoding
(4-bit block word)

⎡ ⎤ 323/)1(×−N ⎡ ⎤
bitsN

bitsN
3232

3323/)1(
−≅

××−

 47

Petrov’s bus encoding
(5-bit block word)

⎡ ⎤ 324/)1(×−N ⎡ ⎤
bitsN

bitsN
2424

3324/)1(
−≅

××−

Petrov’s bus encoding
(6-bit block word)

⎡ ⎤ 325/)1(×−N ⎡ ⎤
bitsN

bitsN
2.192.19

3325/)1(
−≅

××−

BIBITS bus encoding (N-1)×6=6N-6 (6N-6)×2=12N-12bits

BIBITS bus encoding scheme is combined with register relabeling technique so

as to further reduce bit transitions. First, original register relabeling is applied before

doing BIBITS bus encoding scheme. However, total bit transitions of some programs

applied BIBITS bus encoding scheme with original register relabeling are bigger than

these applied only BIBITS bus encoding scheme. Resolving this problem requires

proposing a modified register relabeling method applied before doing BIBITS bus

encoding scheme. According to the result of this experiment, this method can

efficiently resolve this problem. Applying register relabeling before BIBITS bus

encoding scheme could further reduce bit transitions without increasing extra

hardware overhead.

While all basic blocks are encoded, transformation table size of “MRR+BIBITS”

bus encoding scheme is about a half of Petrov’s bus encoding scheme (5-bit block

word). Achieve 64% average bit transition reduction as compared with base-line

system. Further reduce 31% average bit transitions as compared with total bit

transitions of Petrov’s method (5-bit block word). Moreover, the decoder hardware is

more uncomplicated than Petrov’s. In Section 5.2, experiment results of BIBITS bus

encoding scheme and Petrov’s bus encoding scheme (5-bit block word) will be

presented with different transformation table sizes in detail.

 48

4.3.2 Bit Transition Reduction of Techniques with Different

Transformation Table Sizes

In the Petrov’s bus encoding scheme (5-bit block word) and our proposed

BIBITS bus encoding scheme, we will evaluate the bit transitions effects with

different transformation table sizes.

Figure 4-3 shows the bit transition reduction of mmul program with different

transformation table sizes. BIBITS method has higher bit transition reduction than

Petrov’s method. Furthermore, when the transformation table size increases to 0.3

Kbytes, BIBITS method reaches about 51% bit transition reduction. However,

Petrov’s method can only reaches 0.6% bit transition reduction. These following

figures are experiment result of each benchmark program.

Figure 4-3: mmul - Bit transition reduction with different transformation table

sizes

 49

Figure 4-4: sor - Bit transition reduction with different transformation table sizes

Figure 4-5: ej - Bit transition reduction with different transformation table sizes

 50

Figure 4-6: fft - Bit transition reduction with different transformation table sizes

Figure 4-7: tri - Bit transition reduction with different transformation table sizes

 51

Figure 4-8: lu - Bit transition reduction with different transformation table sizes

We observe that our method has higher bit transitions reduction than Petrov’s bus

encoding scheme. Figure 4-9 displays BIBITS detailed experiment results that are

average bit transitions reductions for full benchmarks with different transformation

table sizes.

Figure 4-9: Average bit transition reduction for full benchmarks with different
transformation table sizes

 52

Chapter 5 Conclusion and Future Works

BIBITS bus encoding scheme is proposed to reduce power consumption on

program memory bus in this thesis. Moreover, a modified register relabeling

algorithm is also proposed to be combined with BIBITS bus encoding scheme so as to

further reduce bit transitions. The key idea of our method is to apply a transformation

table which stores frequently execution basic block transformation data to make use

of repetitions of basic blocks at program execution time so as to reduce bit transitions

on program memory data bus.

The simulation results show that the overall average switching reduction is 64%

over original data and 57% more than original register relabeling scheme only and

more than Petrov’s bus encoding scheme about 13~ 20% except for FFT program.

Problems arising form FFT program is almost small basic blocks that has only two or

three instructions. Petrov’s bus encoding scheme is more suitable for this kind of basic

block size. The suitable size of transformation table varies with different programs.

Contrary to Petrov’s bus encoding scheme, our proposed scheme need only a half

transformation table size to encode all basic blocks. Moreover, our decoder

implementation is more uncomplicated than theirs. Therefore, the extra hardware

overhead of our proposed is lower than Petrov’s bus encoding scheme.

There are still several researches could be further studied. For example, find

compiler techniques that can be combined with bus encoding methods to further

reduce bit transitions. For example, BIBITS is combined operand swapping with and

instruction scheduling.

A large number of instructions, such as addition, multiplication, and logic

operations, are insensitive to the order of their operands. Consequently, the

commutability of certain instructions provides a degree of freedom. In the same way,

 53

instruction scheduling that changes instruction sequences could also provide a degree

of freedom. But these pervious compilation techniques did not consider to be

combined with bus encoding schemes. However, applying directly these compilation

techniques combined with BIBITS encoding scheme maybe result in worse reduction

than only applying BIBITS.

Therefore, we must think deeply how to integrate and modify these techniques

perfectly, such that the closed integrated scheme is able to further reduce total bit

transitions.

 54

Reference

[1] S. Wuytack, F. Catthoor, L. Nachtergaele, H. De Man, “Global communication

and memory optimizing transformations for low power signal processing systems,”

IWLPD-94: ACM/IEEE International Workshop on Low Power Design, pp. 203-208,

April 1994.

[2] P.R. Panda and N. D. Dutt, “Reducing Address Bus Transitions for Low Power
Memory Mapping,” EDTC-96: IEEE European Design and test Conference, pp.
63-67, Paris, France, March 1996.

[3] A. Aho, R. Sethi and J. Ullman, Compilers Principles, Techniques and Tools,

Addison-Wesley Publishing Company, 1986

[4] N. Weste, K. Enshraghian, Principles of CMOS VLSI Design, a System

Perspective. Reading: Addison-Wesley Publishing Company, 1988

[5] A.P. Chandrakasan, S. Sheng, and R.W. Brodersen, “Low-Power CMOS Digital

Design,” IEEE Journal of Solid-State Circuits, Vol. 27, No. 4, pp. 473-483, Apr.1992.

[6] A. Chandrakasan, R. Brodersen, “Minimizing Power Consumption in Digital

CMOS Circuits,” Vol. 83, No. 4, pp. 498-523, Proceedings of the IEEE, April 1995

[7] M.R. Stan, W.P. Burleson, “Bus-invert coding for low-power I/O,” IEEE Trans. on

VLSI Systems, Vol. 3, No. 1, pp. 49-58, Mar. 1995

[8] Youngsoo Shin, Kiyoung Choi, Young-Hoon Chang, “Narrow Bus Encoding for

Low-Power DSP systems,” IEEE Trans. On VLSI systems, Vol. 9, No. 5, pp. 656-660,

Oct. 2001

[9] Huzefa Mehta, Robert Michael Owens, Mary Jane Irwin, Rita Chen, Debashree

Ghosh, “Techniques for Low Energy Software,” Low Power Electronics and Design,

 55

1997. Proceedings.,International Symposium on , Aug. 1997 Pages:72 – 75

[10] P. Petrov, A. Orailoglu, ”Application-Specific Instruction Memory

Customizations for Power-Efficient Embedded Processors,” IEEE Design and Test of

Computers magazine, Jan 2003 pages : 18-25

[11] Dominic Sweetman, “See MIPS run,” Morgan Kaufmann Publishers Inc., San

Francisco, CA, 1999

[12] MIPS Technologies, Inc., “MIPS SDE 5.03 Programmers’ Guide,” Jan 2004

[13] L. Benini, “Automatic Synthesis of Sequential Circuits for Low Power

Dissipation,” Ph.D. Thesis, Dept. of Electrical Engineering Stanford University,

CSL-TR-97-717, Feb. 1997.

 56

	Introduction
	Power Constraint of Embedded Systems
	Research Motivations
	Research Goal
	Organization of This Thesis

	Backgrounds
	Overview of Embedded Systems
	Source of Power Consumption
	Baseline System
	Previous Research of Power Reduction on Buses
	Bus Invert Power Saving Technique
	Bus Invert Transition Signaling Power Saving Technique
	Petrov’s Bus Encoding Power Saving Technique
	Register Relabeling Power Saving Technique
	Summary of Previous Researches

	Design of BIBITS Bus Encoding
	BIBITS Bus Encoding Scheme
	BIBITS Encoding Method Algorithm
	Hardware Support for BIBITS Encoding
	Decoding-Control Logic

	Modified Register Relabeling for BIBITS Bus Encoding Scheme
	Basic Block Selection Algorithm

	Simulation and Analysis
	Experimental Benchmarks
	Experimental Methods
	Experimental Toolset
	Experimental Flow
	Designing Experiments

	Simulation Results and Analyses
	Bit Transition Reduction of Different Techniques
	Bit Transition Reduction of Techniques with Different Transf

	Conclusion and Future Works
	Reference

