
一個網路異常訊務偵測效能改進之方法

An Approach for Performance Enhancement of Anomaly Traffic Detection

研 究 生：柳竣凱 Student：June-Kai Leou

指導教授：陳耀宗 博士 Advisor：Dr. Yaw-Chung Chen

國 立 交 通 大 學

資 訊 工程 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

一個網路異常訊務偵測效能改進之方法

研究生： 柳竣凱 指導教授： 陳耀宗 博士

國立交通大學資訊工程學系

中文摘要

現今的攻擊偵測系統大致分成兩個方向，一為以特徵基礎的偵測方式，二為

以異常現象為基礎的偵測方式。在本篇論文，我們主要針對異常現象的偵測。我

們拿了三個已經設計好的模組來做比較。Packet Header Anomaly Detector 監測封

包的 33 個欄位，而 Application Layer Anomaly Detector 著重在應用層的監測，而

Network Traffic Anomaly Detector 使用過濾封包的技術並且位元組為監測的單

位。利用封包過濾的技術，大幅降低用以偵測的封包數量。且將不必要再分析的

多餘警告給除去，這些方法都可以使得偵測率提升，同時減少警告數量。在實驗

中都有詳細的分析 。

關鍵字：特徵、異常現象、警告

 i

An Approach for Performance Enhancement of Anomaly Traffic Detection

Student: June-Kai Leou Advisor: Yaw-Chung Chen

Department of Computer Science and Information Engineering

Nation Chiao Tung University

ABSTRACT

The intrusion detection system (IDS) is divided into two aspects generally. One

is signature-base detection, and the other is anomaly-base detection. In this thesis, we

focus on the anomaly traffic detection. We compare three designed models. Packet

Header Anomaly detector monitors 33 fields of a packet, and Application Layer

Anomaly Detector emphasizes monitor on the application layer, and Network Traffic

Anomaly Detector uses the scheme of traffic filtering and monitors unit by byte-level.

By traffic filtering, we can reduce packet need to be detected greatly. And reduce the

unnecessary alarms; these approaches can raise the detection rate, and reduce the

number of alarms simultaneously. We analyze it in our experiment.

Keyword: signature, anomaly, alarm

 ii

Acknowledgement

First, I would express my deep gratitude to my advisor, Prof. Yaw-Chung Chen,

for his enthusiastic guidance and continual encouragements. Also, I would deeply

appreciate to my seniors, Dr. Yi-Cheng Chan. He gave me beneficial suggestions and

encouragement in my research and thesis writing.

Second, I would thank my lab-mate, kent, finphin, kyho, and friends of DSNS

lab, oak, joelin, ming, olga, killer, and my roommate, cloudt, Bennett. They tolerate

my stupid words and deeds, and say “you are the best” to me when I feel bored. They

bring me a nice graduate life.

Finally, I would express my deep indebtedness to my dear family. My mother,

and father, and my sisters, and my lovely dog, small white. They give me endless love,

and encouragement, and support. I can not do anything without them, so I thank them,

and love them forever.

 iii

Contents

Abstract in Chinese...i
Abstract in English ..ii
Acknowledgement .. iii
Contents ...iv
List of Figures...v
CHAPTER 1 ..1

Introduction..1
1.1 A Brief Introduction of Intrusion Detection ..1
1.2 Thesis Outline...3

CHAPTER 2 ..5
Related Works ..5

2.1 Network intrusion detection..5
CHAPTER 3 ..7

Proposed Method ...7
3.1 Packet Header Anomaly Detector ..7
3.2. Application Layer Anomaly Detection ..11
3.3 Network Traffic Anomaly Detector ..15
3.4 Traffic Filtering ..16
3.5 Merge Models ...17
3.6 Reduce Alarms ...18

CHAPTER 4 ..20
Simulation and Performance Evaluation ..20

4.1 The 1999 DARPA IDS Evaluation Data Set.......................................20
4.2 Compare PHAD with ALAD...22
4.3 Traffic Filtering ..23
4.4 Merge Models ...24
4.5 Reduce Alarms ...25

CHAPTER 5 ..30
Conclusion ..30

5.1 Conclusion ..30
5.2 Future Work ...31

REFERENCES ..32

 iv

List of Figures

Figure 3.1.The PHAD-C32 model after training on week 3.10

Figure 3.2. ALAD models for P (keyword | dest port) for port80, 25, and 21, after

training on week 3. ...13

Figure 4.1.Block diagram of 1999 test bed. ..20

Figure 4.2. Compare PHAD with ALAD. ...22

Figure 4.3. PHAD with Traffic Filtering. ..23
Figure 4.4. Merge PHAD and ALAD. ...24

Figure 4.5. PHAD with reduce alarms. ...25

Figure 4.6. ALAD with reduce alarms. ...26

Figure 4.7. NETAD with reduce alarms. ...27

Figure 4.8. merge PHAD and ALAD with reduce alarms. ..28

 v

CHAPTER 1

Introduction

1.1 A Brief Introduction of Intrusion Detection

Intrusion detection takes an important role in the protection of a network with the

growing threat of abuse of network resources. IDS (Intrusion Detection System) are

tools used to detect traces of malicious activities that are targeted against the network.

A Network IDS (NIDS) monitors packets on the network wire and attempts to

discover whether a hacker/cracker is attempting to break into a system. An NIDS may

run either on the target machine who watches its own traffic (usually integrated with

the stack and services themselves), or on an independent machine promiscuously

watching all network traffic (hub, router, probe). NIDS are usually divided into two

classes. One is signature based, the other is anomaly based. The System using

signature based works as virus scanner and search known, suspicious patterns in their

input data. A signature detector, such as SNORT [1] or Bro [2] looks for known attack

patterns using rules written by security experts. If some novel attacks are discovered,

we must add new rules for these attacks. When traffic consisting of IP datagrams

flows across a network, an NIDS is able to capture those packets as they pass by on

the wire. A NIDS consists of a special TCP/IP stack that reassembles IP datagrams

and TCP streams. It applies some of the following techniques:

(1) Protocol stack verification : A number of intrusions, such as

 1

"Ping-O-Death" and "TCP Stealth Scanning" use violations of the underlying IP, TCP,

UDP, and ICMP protocols in order to attack the targeted machine. A simple

verification system can flag invalid packets, this can include valid, by suspicious,

behavior such as severally fragmented IP packets.

(2) Application protocol verification: A number of intrusions use invalid

protocol behavior, such as "WinNuke", which uses invalid NetBIOS protocol (adding

OOB data) or DNS cache poisoning, which has a valid, but unusual signature. In

order to effectively detect these intrusions, a NIDS must re-implement a wide variety

of application-layer protocols in order to detect suspicious or invalid behavior.

(3) Creating new loggable events: A NIDS can be used to extend the auditing

capabilities of your network management software. For example, a NIDS can simply

log all the application layer protocols used on a host machine. Downstream event log

systems (WinNT Event, UNIX syslog, SNMP TRAPS, etc.) can then correlate these

extended events with other events on the network.

 However, Signature-matching usually has significant limitations. In general,

especially when using tight signatures, the matcher has no capability to detect attacks

other than those for which it has explicit signature. It is important that signature

matcher in general completely miss novel attacks. Unfortunately, new attacks are

generated at a brisk pace. And we know that so “tight” signature will miss novel

attacks. On the other hand, if we use “loose” signatures, it will raise the major

problem of false positives: alert that in fact do not reflect an actual attack, or we say

that is a false alarm.

In this thesis, we focus on the anomaly based intrusion detections. Anomaly

based detection system watch for deviations of actual from expected behavior and

classifies all ‘abnormal’ activities as malicious. As signature based designs compare

their input to known, hostile scenarios they have the advantage of raising virtually no

 2

false alarms. But they have significant drawback of failing to detect variations of

known attacks or entirely new attacks. Anomaly detection overcomes the limitation of

misuse detection by focusing on normal system behaviors, rather than attack

behaviors. This approach always has two phases: in the training phase, the behavior

of system is observed in the attack-free environment, and machine learning techniques

used to create a profile, a “normal” behavior. In the detection phase, this profile is

compared against the current behavior of the system, and any deviations are marked

as potential attacks. Unfortunately, system often exhibit some behavior rightful but

unseen before. As a result, it will lead anomaly detection techniques to produce a high

degree of false alarms. So anomaly detection has the advantage that no rules are

needed to be written, and that it can detect novel attacks. However, it has the

disadvantages that it cannot say anything about the nature of the attack, and because

normal traffic may also deviate from the model, hence it generates false alarms. On

the contrary, anomaly detection can solely bring the suspicious traffic to the attention

of a network security expert, who must then figure out what, if any, need to be done.

An anomaly detection system such as SPADE [3], ADAM [4], or NIDES [5] models

normal traffic, usually the distribution of IP address and ports. Systems that use traffic

models monitor the flow of packets. The source and destination IP addresses and ports

are used to determine parameters like the number of total connection arrivals in a

certain period of time, the inter-arrival time between packets or the number of packet

to/from a certain machine. These parameters can be used to detect port scans or

denial-of-service attempts.

1.2 Thesis Outline

 3

The rest of this thesis is organized as follows. In Chapter 2, we discuss related

work in anomaly detection. In Chapter 3, we introduce three models for anomaly

detection, PHAD, ALAD, and NETAD. Also we propose methods that can improve

the detection performance. In Chapter 4, we use our method proposed in Chapter 3

and analyze the result for each models. Finally, we conclude our work and present

some future works in Chapter 5.

 4

CHAPTER 2

Related Works

In this Chapter, we introduce the evolution for network anomaly detection.

 2.1 Network intrusion detection

Network intrusion detection systems usually use signature detection, matching

patterns in network traffic with the patterns of known attacks. This approach is good

for detecting intrusion, but has significant disadvantage of being vulnerable to novel

attacks. For this reason, we use an alternative approach, anomaly detection, which

models a normal behavior of traffic and alerts any deviation from this model as

doubtful. Early work in anomaly detection was host based. Forrest et. al. [6]

demonstrated that when software errors in UNIX servers or operating system services

(suid root programs) are exploited in an R2L [13] or U2R attack, that they deviate

from the normal pattern of system calls. When compromised, these programs execute

code on the behalf of the attacker (usually a shell), rather than the code intended by

the developer (such as a DNS name server or print queue manager). Forrest detected

these attacks by training an n-gram model (n = 3 to 6) as the system ran normally.

More recent work has focused on better models, such as state machines [4], or neural

networks [10]. Solaris makes system call information available through its basic

security module (BSM) service for this purpose.

 5

Anomaly detection depends on models of the ‘normal’ behavior of users and

applications, and observes the ‘abnormal’ deviations as malicious activity [14]. This

approach is different from the misuse detection. In many models, they use the

anomaly score to quantify suspicious packets. They quantify the ‘difference’ from the

normal behavior of network. Many techniques have been proposed to analyze data

stream, such as mining for network traffic [15], statistical analysis for audit records

[16]. If a packet has higher score, then it is more suspicious. So if we have good

detection rate then we have more efficiency on anomaly detection.

 6

CHAPTER 3

Proposed Method

In this Chapter, we introduce three models for anomaly detection: one is packet

header anomaly detector (PHAD), one is application layer anomaly detector (ALAD),

and the other is network traffic anomaly detector (NETAD). We will take advantage

of the skill of NETAD for traffic filtering. Moreover, we use the skill of reducing

alarms, and observe the effect of detect result.

3.1 Packet Header Anomaly Detector

Packet Header Anomaly Detector (PHAD) [7] is an algorithm that learns the

normal ranges of values for each packet header field at the data link, network, and

transport/control layers. But PHAD does not examine application layers protocols like

HTTP, DNS, FTP, or SMTP, so it would not detect attacks on servers, although it

might detect attempts to hide them from an application layer monitor like snort by

manipulating the TCP/IP protocols. An important shortcoming of all anomaly

detection systems is that they cannot discern intent; they can only detect when an

event is unusual, which may or may not indicate an attack. Thus, a system should

have a method of ranking alarms by how unusual or unexpected they were, with the

assumption that the rarer the event, the more likely it is to be hostile. If this

 7

assumption holds, the user can adjust the threshold to trade off between a high

detection rate or a low false alarm rate. PHAD is based on the assumption that events

that occur with probability p should receive a score of 1/p.

PHAD uses the rate of anomalies during training to estimate the probability of an

anomaly while in detection mode. If a packet field is observed n times , and generated

r distinct values, there must have been r "anomalies" during the training period. If this

rate continues, the probability that the next observation will be anomalous is

approximated by r/n. This method is probably an overestimate, since most anomalies

probably occur early during training, but it is easy to compute, and it is consistent

with the PPMC method of estimating the probability of novel events used by data

compression programs (Bell, Witten, and Cleary, 1989).

 To consider the dynamic behavior of real-time traffic, PHAD uses a

nonstationary model while in detection mode. In this model, if an event last occurred t

seconds ago, then the probability that it will occur in the next one second is

approximated by 1/t. Often, when an event occurs for the first time, it is because of

some change of state in the network, for example, installing new software or starting a

process that produces a particular type of traffic. Thus, we assume that events tend to

occur in bursts. During training, the first anomalous event of a burst is added to the

model, so only one anomaly is counted. This does not happen in detection mode, so

we discount the subsequent events by the factor t, the time since the previous anomaly

in the current field. Thus each packet header field containing an anomalous value is

assigned a score inversely proportional to the probability,

 scorefield = tn/r

Finally, we add up the scores to score the packet. Since each score is an inverse

 8

probability, we could assume that the fields are independent and multiply them to get

the inverse probability of the packet. But they are not independent, instead, we use a

crude extension of the stationary model where we treat the fields as occurring

sequentially. If all the tn/r are equal, then the probability of observing k consecutive

anomalies in a nonstationary model is (r/tn)(1/2)(2/3)(3/4)...((k-1)/k) = (1/k)r/tn. This

is consistent with the score ktn/r that we would obtain by summation. Thus, we assign

a packet score of

 score packet = Σi ∈ anomalous fields tini/ri

where anomalous fields are the fields with values not found in the training model. In

PHAD, the packet header fields range from 1 to 4 bytes, allowing 28 to 2 32 possible

values, depending on the field. It is not practical to store a set of 2 32 values for two

reasons. First, the memory cost is prohibitive, and second, we want to allow

generalization to reasonable values not observed in the limited training data. The

approach we have used is to store a list of ranges or clusters, up to some limit C = 32.

If C is exceeded during training, then we find the two closest ranges and merge them.

For instance, if we have the set {1, 3-5, 8}, then merging the two closest clusters

yields {1-5, 8}. In the PHAD model, the clusters are set as 32. Because this method

(PHAD-C32) gives the best results on the test data that we used.

Field name r/n Values

Ether Size 508/12814738 42 60-1181 1182...

Ether Dest Hi 9/12814738 x0000C0 x00105A x00107B...

Ether Dest Lo 12/12814738 x000009 x09B949 x13E981..

Ether Src Hi 6/12814738 x0000C0 x00105A x00107B...

 9

Ether Src Lo 9/12814738 x09B949 x13E981 x17795A...

Ether Protocol 4/12814738 x0136 x0800 x0806 x9000

IP Header Len 1/12715589 x45

IP TOS 4/12715589 x00 x08 x10 xC0

IP Length 527/12715589 38-1500

IP Frag ID 4117/12715589 0-65461 65462 65463...

IP Frag Ptr 2/12715589 x0000 x4000

IP TTL 0/12715589

IP Protocol 3/12715589 1 6 17

IP Checksum 1/12715589 xFFFF

IP Src 293/12715589 12.2.169.104-12.20.180.101...

IP Dest 287/12715589
0.67.97.110

12.2.169.104-12.20.180.101...

TCP Src Port 3546/10617293 20-135 139 515...

TCP Dest Port 3545/10617293 20-135 139 515...

TCP Seq 5455/10617293
0-395954185

395969583-396150583...

TCP Ack 4235/10617293
0-395954185

395969584-396150584...

TCP Header Len 2/10617293 x50 x60

TCP Flg UAPRSF 9/10617293 x02 x04 x10...

TCP Window Size 1016/10617293 0-5374 5406-10028 10069-10101...

TCP Checksum 1/10617293 xFFFF

TCP URG Ptr 2/10617293 0 1

TCP Option 2/611126 x02040218 x020405B4

UCP Src Port 6052/2091127 53 123 137-138...

 10

UDP Dest Port 6050/2091127 53 123 137-138...

UDP Len 128/2091127 25 27 29...

UDP Checksum 2/2091127 x0000 xFFFF

ICMP Type 3/7169 0 3 8

ICMP Code 3/7169 0 1 3

ICMP Checksum 1/7169 xFFFF

Figure 3.1.The PHAD-C32 model after training on week 3.

As above PHAD examines 33 packet header fields, mostly as defined in the

protocol specifications. If it encounters the fields smaller than 8 bits, like the TCP

flags, then they are grouped into a single byte field. However, if the fields larger than

4 bytes, like the 6 byte Ethernet addresses, then they are split in half. The philosophy

behind PHAD is to build as little protocol-specific knowledge as possible into the

algorithm, but we felt it was necessary to compute the checksum fields (IP, TCP, UDP,

ICMP), because it would be unreasonable for a machine learning algorithm to figure

out how to do this on its own. Thus, we replace the checksum fields with their

computed values (normally FFFF hex) prior to processing.

3.2. Application Layer Anomaly Detection

The second component of our anomaly detection model is the application layer

anomaly detector (ALAD) [9]. Instead of assigning anomaly scores to each packet, it

 11

assigns a score to an incoming TCP connection in a server. TCP connections are

reassembled from packets. ALAD, unlike PHAD, is configured knowing the range of

IP addresses it is supposed to protect, and it distinguishes server ports (0-1023) from

client ports (1024-65535). It does this because it thinks that most attacks are initiated

by the attacker (rather than by waiting for a victim), and are therefore against servers

rather than clients. We tested a large number of attributes and their combinations that

we believed might make good models, and settled on five that gave the best

performance individually (high detection rate at a fixed false alarm rate) on the

DARPA IDS evaluation data set [8]. These are:

1. P(src IP | dest IP), where src IP is the external source address of the client making

the request, and dest IP is the local host address. This differs from PHAD in that the

probability is conditional (a separate model for each local dest IP), only for TCP,

and only for server connections (destination port < 1024). In training, this model

learns the normal set of clients or users for each host. In effect, it models the set of

clients allowed on a restricted service.

2. P(src IP | dest IP, dest port). This model is like (1) except that there is a separate

model for each server on each host. It learns the normal set of clients for each

server, which maybe differ out across the servers on a single host.

3. P(dest IP, dest port). This model learns the set of local servers which normally

receive requests. It should catch probes that attempts to access nonexistent hosts

or services.

4. P(TCP flags | dest port). This model learns the set of normal TCP flag sequences for

the first, next to last, and last packet of a connection. A normal sequence is SYN

(request to open), FIN-ACK (request to close and acknowledge the previous

packet), and ACK (acknowledge the FIN). The model generalizes across hosts, but

is separate for each port number, because the port number usually indicates the type

 12

of service (mail, web, FTP, telnet, etc.). An anomaly can result if a connection fails

or is opened or closed abnormally, possibly indicating an abuse of a service.

5. P(keyword | dest port). This model examines the text in the incoming request from

the reassembled TCP stream to learn the allowable set of keywords for each

application layer protocol. A keyword means the first word on a line input, i.e. the

text between a linefeed and the following space. ALAD examines only the first

1000 bytes, which is sufficient for most requests. It also examines only the header

part (ending with a blank line) of SMTP (mail) and HTTP (web) requests, because

the header is more rigidly structured and easier to model than the body (text of

email messages form uploads). An anomaly indicates the use of a rarely used

feature of the protocol, which is common in many R2L attacks.

 As described above, the first two rule forms model the set of users of a

private (password protected) service, either on a per host or per server basis. The third

is intended to detect probes, attempts to access nonexistent hosts or services. The

fourth detects malformed or interrupted connections. The fifth models the application

layer , and detects some malformed server request.

As with PHAD, the anomaly score is tn/r, where r different values were observed

out of n training samples, and it has been t seconds since the last anomaly was

observed. An anomaly occurs only if the value has never been observed in training.

For example, Table 2 shows the keyword model for ports 80, 25, and 21, which are

the three ports with the highest n/r values.

For example: ALAD models for P(keyword | dest port) for ports 80, 25, and 21 after

training on inside tcpdump files week 3 of the DARPA IDS evaluation data set [8].

Attribute r/n Allowed Values

 13

80(HTTP) 13/83650 Accept-Charset:

 Accept-Encoding:

 Accept-Language:

 Accept:

 Cache-Control:

 Connection:

 GET

 Host:

 If-Modified-Since:

 Negotiate:

 Pragma:

 Referer:

 User-Agent:

25(SMTP) 34/142610 (34 values...)

21(FTP) 11/16822 (11 values...)

Figure 3.2. ALAD models for P(keyword | dest port) for port80, 25, and 21, after

training on week 3.

The first line of the table says that there are 83,650 TCP connections to port 80,

and only 13 different keywords were observed. These keywords are listed in the third

column. The total score assigned to a TCP connection is the sum of the tn/r scores

assigned by each of the five components. The keyword model might contribute more

than one score because there could be more than one novel keyword.

 14

3.3 Network Traffic Anomaly Detector

NETAD (Network Traffic Anomaly Detector), like PHAD, detects anomalies in

network packets. However, it differs as follows:

1. The traffic is filtered, so only the start of incoming server requests are examined.

2. Starting with the IP header, we treat each of the first 48 bytes as an attribute for our

models--we do not parse the packet into fields.

3. There are 9 separate models corresponding to the most common protocols (IP, TCP,

HTTP, etc.).

4. The anomaly score tn/r is modified to (among other things) score rare, but not

necessarily novel, events.

NETAD Anomaly Score

We know that PHAD, and ALAD use the anomaly score S tn/r (summed over the

attributes) where t is the time since the attribute was last anomalous (in training or

testing), n is the number of training instances, and r is the number of allowed values

(up to 256 for NETAD).

The NETAD model make three improvements to the tn/r anomaly score. The

first improvement, we reset n (the number of training examples) back to 0 when an

anomaly occurs during training. Because the training data contains no attacks, we

know that any such anomaly must be a false alarm. The effect is to reduce the weight

of this attribute. We call this new score tna/r, where na is the number of training

packets from the last anomaly to the end of the training period. Note that this is

different from t, which continues to change during the test period. (Like ALAD and

LERAD[12], NETAD uses the packet count rather than the real time to compute t).

The second improvement is to decrease the weight of rules when r (the number

 15

of allowed values) is near the maximum of 256. A large r suggests a nearly uniform

distribution, so anomalies are of little value. Thus, we use the anomaly score tna

(1-r/256)/r. For small r, this is approximately tna /r as before.

The third improvement, a criticism of PHAD, ALAD, and LERAD is that they

ignore the frequency of events. If a value occurs even once in training, its anomaly

score is 0. To correct this, we add a second model, ti /(fi + r/256), where ti is the time

(packet count in the modeled subset) since the value i (0-255) was last observed (in

either training or testing), and fi is the frequency in training, the number of times i was

observed among training packets. Thus, the score is highest for values not seen for a

long time (large ti), and that occur rarely (small fi). The term r/256 prevents division

by 0 for novel values. It is preferred over a simple count offset (e.g. ti /(fi + 1))

because for novel events it reduces to a value that is large for small r.

Thus, the NETAD anomaly score for a packet is S tna (1 - r/256) /r + ti /(fi + r/256)

where the summation is over the 9 × 48 = 432 subset/attribute combinations.

3.4 Traffic Filtering

In NETAD [11] , it uses a method that is traffic filtering. This scheme filters out

traffic that is uninteresting to us. Because most attacks are initiated against a target

victim, so it is usually sufficient to examine only the first few packets of incoming

server request. Using this method, we can not only filter out traffic likely to generate

false alarm, but also speed up processing. Our approaches are as follows:

 Remove non-IP

 16

 Remove outgoing IP packets not to 172.16.x, 192.168.x, 163.118.135.1

 Remove UDP to high ports

 Remove TCP data packets except near start

We can use this scheme in other models, for example, packet header anomaly

detection. Because in the original PHAD model , the input traffic is 2.70 GB of week

3 inside tcpdump files for training, and 4.64 GB of weeks 4 and 5 inside tcpdump files

for testing. After filtering, the training data reduces to 36MB, and the testing data

reduces to 69MB. The next step, we evaluate these data instead of the original data.

The detail of the experimental statistics will be shown in the next chapter. After our

experiment, we find out that the detection rate increases and the processing time

decreases significantly. If the original data set is much larger, the efficiency of the

scheme will be more notable.

3.5 Merge Models

Because each models has its peculiarity for specific attack detection, so we can

combine them for detecting the DARPA inside traffic data. The models mentioned

above are useful for detecting anomaly traffic, and give those suspicious packets an

anomaly score. Finally, the security experts will analyze the packet with highest score

and distinguish whether it is an attack or not. We put the input data into the three

models. Because our experiment is based on off-line detection, so we are not very

care about the training time and the testing time. Although we do not care about the

process time, they make a acceptable performance in our testing computer.

 17

We know that each model generates its result for processing those packets of

inside traffic. Since they use different monitoring and scoring methods, therefore, the

score of those suspicious packets are different. For example, in our experiment with

the 1999 DARPA intrusion data set, the output of the score range is different from

each other. The ALAD output has scored 1.009149 decreasing gradually, and the

PHAD output has scored 0.748198 decreasing gradually. In actual anomaly detection,

it always sorted by score and analyzed by the security experts from the top to the

bottom. It is reasonable that the highest score is the most possible malicious packet.

So, if we do not adjust the score distribution of these models, for example, in the first

100 false alarms, we should examine the result of ALAD in the great part. This is

meaningless for combining two or more models to evaluate. In our experiment, we

adjust these score and evaluate the subsequent result, and observe the detection rate.

We adjust the highest score in each model with approximation. The details of the

experiment will also be shown in the next chapter.

3.6 Reduce Alarms

When we merge these models and evaluate the 1999 DARPA off-line IDS

evaluation data set. We will come up against a problem, that is, the alarms will

increase greatly. Because each model aiming at each packet will generate a score for a

suspicious packet, for the same packet, one model maybe thought that it is suspicious

in a high degree, and the others may be not. Consequently, there are different scores

represented for one packet. If the data we will evaluate is huge, than the alarms

generated will increase dramatically. Therefore the alarms to be analyzed will also

 18

increase greatly. But we know that many alarms are redundant, and we can leave them

out of consideration. On the other hand, if we reduce these redundant alarms, it will

decrease the false alarms at the same time. Hence, the detection rate in a fixed false

alarm will increase relatively.

Each model generates different results for each packet if there is one packet

which has more than one score. We just take the highest score to represent the packet,

and analyze it whether it is an attack or not. This is reasonable, because we need not

to analyze the lower score in the same packet. Regarding the same packet, if the

highest score we analyze is not an attack, then it wouldn’t be an attack for lower score.

On the other hand, when we analyze the alarm with highest score and determine that it

is an attack, it is reasonable that we need not to analyze those alarms with lower

scores. Therefore, we look for the alarms generated by those models, in case it has the

same date and time, and the same destination, that is, the same packet, we leave the

highest alarm and dispose of those alarms with lower score if they is any.

 19

CHAPTER 4

Simulation and Performance Evaluation

In this Chapter, we introduce the 1999 DARPA off-line intrusion data set [8], our

experiment uses these data for training and detecting. It consists of network traffic

(tcpdump files) collected at two points, BSM logs, audit logs, and file system dumps

from a simulated local network of a fabricative air force base over a 5 weeks. In our

experiment, we use the attack-free data during the third week for training, and the data

during the forth and the fifth weeks for detection. Finally, we use our evaluate

program to evaluation the result.

4.1 The 1999 DARPA IDS Evaluation Data Set

DAPRA classifies attacks as probes, denial of service (DOS), remote to local

(R2L), user to root (U2R), and other violations of a security policy (Data). The 1999

evaluation was a blind off-line evaluation, as that in 1998, but modified based on

suggestions from 1998 and also with major extensions to enhance the analysis and

cover more attack types. The Figure 4.1 shows a block diagram of the 1999 test bed.

 20

Figure 4.1 Block diagram of 1999 test bed.

Major changes for 1999 are the addition of a Windows NT workstation as a

victim, the addition of an inside tcpdump sniffer machine, and the collection of both

Windows NT audit events and inside tcpdump sniffing data for inclusion in archival

data provided to participants. Not shown in this figure are new Windows NT

work-stations added to support NT attacks, new inside attacks, and new stealthy

attacks designed to avoid detection by network-based systems tested in 1998. The

Windows NT victim machine and associated attacks and audit data were added due to

in-creased reliance on Windows NT systems by the military. Inside attacks and inside

sniffer data to detect these attacks were added due to the dangers posed by inside

attacks.

Stealthy attacks were added due to an emphasis on sophisticated attackers who can

carefully craft attacks to look like normal traffic. In addition, two new types of

analyses were performed. First, an analysis of misses and high-scoring false alarms

was performed for each system to determine why systems miss specific attacks and

 21

what causes false alarms. Second, participants were optionally permitted to submit

attack forensic information that could help a security analyst identify important

characteristics of the attack and respond. This identification information included the

attack category, the name for old attacks, ports/protocols used, and IP addresses used

by the attacker.

It contains five weeks tcpdump files and so on, we trains on inside tcpdump files

week 3 of the 1999 DARPA IDS evaluation data set, which does not contain any

attack. After training, we test on weeks 4 and weeks 5, which contain 185 detectable

attacks. In weeks 4 and weeks 5, there are 201 labeled attacks .The inside traffic in

week 4, day 2 is missing which contains 12 attacks. There is also one unlabeled attack

(apache2) which we found by examining the test data, and there are five external

attacks (one queso and four snmpget) against the router which are not visible from

inside the local network. This leaves 185 detectable attacks.

4.2 Compare PHAD with ALAD

At first, we compare the PHAD with ALAD model in various false alarms

threshold, and we observe the detection result of them.

 22

Figure 4.2 Compare PHAD with ALAD.

In Figure 4.2, we observe that the ALAD model detects more than PHAD in each

threshold, we also examine the maximum detection numbers in each model. The

ALAD model detects 72 when false alarms are 414. In addition, the PHAD model

detects 84 when false alarms are 5609. In the maximum detection numbers, PHAD is

more than ALAD. But the false alarms reach to 5609, it’s too large.

4.3 Traffic Filtering

In Section 3.4, we mention the skill of filtering the input data. It is used for the

 23

NETAD model. Now, we use the filtered data as input , and process it by PHAD. We

compare it with the original PHAD, as shown in Figure 4.3

Figure 4.3 PHAD with Traffic Filtering.

In Figure 4.3, we observe that PHAD with Traffic Filtering always detect more

anomalies than the original PHAD in each false alarm threshold. The maximum

detection number of PHAD with traffic filter is 93 when the false alarms reach to 488.

The detection rate is much higher than the original PHAD.

4.4 Merge Models

In Chapter 3, we know that each model has its peculiarity for specific attack

 24

detection. According to this reason, we combine two models and observe the number

of detection it analyzed. In this case, we use the filtered traffic for PHAD training.

Because of the score range they generated are different, we fix the anomaly score of

PHAD by adding a value 0.47.

Figure 4.4 Merge PHAD and ALAD.

In Figure 4.4, we can know that we get good detection rate through combining

them. The maximum detection number of it is 129 when the false alarms reach to 910.

It deserves a claim that the total alarms it generated is 1703. Oppositely, PHAD

generate 6260 alarms and get lower detection rate.

4.5 Reduce Alarms

 25

 In Section 3.6, we know that get rid of unnecessary alarms not only speeds up

our analysis process, but also improves the detection rate. We use the scheme to

reduce alarms in each model and observe the results.

Figure 4.5 PHAD with reduce alarms.

In Figure 4.5, we observe that in each false alarms threshold, the models through

reducing alarms has more or equal detection number than original PHAD. In addition,

the alarms are reduced from 6260 to 6226.

 26

Figure 4.6 ALAD with reduce alarms

In Figure 4.6, we observe that in each false alarms threshold, the models through

reducing alarms has more or equal detection number than the original ALAD. In

addition, the alarms are reduced from 887 to 821.

 27

Figure 4.7 NETAD with reduce alarms.

In Figure 4.7, we observe that through reducing alarms, the detection rate is

better than the original. In addition, the alarms of the improved NETAD are 23714. It

is much smaller than the original, 93753. On one hand, the maximum detection

number of NETAD is 169 when the false alarms reaches 8723, while on the other

hand the maximum detection number of improved NETAD is also 169 while the false

alarms only reaches to 6353.

Another instance, we use the combined model described before, and with

reducing alarms.

 28

Figure 4.8 merge PHAD and ALAD with reduce alarms.

Figure 4.8 show that reducing alarms also improves the detection rate. In

addition, the alarms reduced from 1703 to 1585.

We observe those results via our experiment, we know that the traffic filtering

can reduce the input data, and improve the detection. The scheme of reducing alarms

can reduce redundant alarms, and leave the necessary alarms for us to detect. It can

also improve the detection rate.

 29

CHAPTER 5

Conclusion

In this Chapter, we conclude this thesis, and state our work briefly. Finally, we

propose our future work.

.

5.1 Conclusion

Popular intrusion detection has two major aspects, one is signature based, and the

other is anomaly based. Signature based detection emphasizes pattern matching,

however, anomaly based detection system watch for deviations of actual from

expected behavior and classifies all ‘abnormal’ activities as malicious. So it needs a

training period to establish a ‘normal’ behavior. It can detect novel attack better than

signature based system. In our experiment, we use the week 3 of the DARPA-offline

intrusion data set for training. Then we use the weeks 4 and 5 for testing. At first, we

compare the PHAD and the ALAD models .Then we also exploit the skill of traffic

filtering from NETAD, and process it by PHAD. It can not only reduce the input data

greatly, but also promote the detection rate. We observe that merge them will generate

better performance. Through reducing alarms, we can get better detection rate.

Equally, we come at the NETAD models with reducing alarms also has better

manifestation.

 30

5.2 Future Work

We use the 1999 DARPA-offline intrusion data set in our experiment, but we

found a simulation artifact in the TTL field of the IP header which makes the attacks

easy to detect, especially in PHAD. So, in our evaluations, we set 0 to this field. In

addition, we need a attack-free data for training, and this is not easy for actual

network. Therefore, we may use our method with a real data set in the future.

 31

REFERENCES

 [1] Roesch, Martin, “Snort – Lightweight Intrusion Detection for Networks ”, Proc.

USENIX Lisa ’99 ,Seattle: NOV. 7-12, 1999.

[2] Paxson, Vern, “Bro: A System for Detecting Network Intrusion in Real-Time”,

Lawrence Berkley National Laboratory Proceedings, 7’th USENIX Security

Symposium,Jan. 26-29, 1998 ,San Antonio TX.

[3] SPADE, Silicon Defense

 http://www.silicondefense.com/software/spice/

[4] Sekar ,R. ,M . Bendre , D.mDhurjati , P. Bollineni , “A Fast Automaton-based

Method for Detecting Anomalous Program Behaviors ”. Proceedings of the 2001

IEEE Symposium on Security and Privacy.

[5] Anderson, D. et. Al., “Detecting unusual program behavior using the statistical

component of Next-generation Intrusion Detection Expert System (NIDES) ”,

Computer Science Laboratory SRI-CSL 95-06 May 1995.

[6] Forrest, S., S. A. Hofmeyr, A. Somayaji, and T. A. Longstaff, “A Sense of Self for

UNIX Processes”. Proceedings of 1996 IEEE Symposium on Computer Security

and Privacy.

ftp://ftp.cs.unm.edu/pub/forrest/ieee-sp-96-unix.pdf

[7] Mahoney, M., P. K. Chan, “PHAD: Packet Header Anomaly Detection for

Identifying Hostile Network Traffic”, Florida Tech. technical report 2001-04,

http://cs.fit.edu/~tr/

[8] Lippmann, R., et al., "The 1999 DARPA Off-Line Intrusion Detection

Evaluation", Computer Networks 34(4) 579-595, 2000.

 32

[9] Mahoney, M., P. K. Chan, “Learning Nonstationary Models for Normal Network

Traffic for Detecting Novel Attacks”, Florida Tech. Technical report 2002-08,

[10] Ghosh, A.K., A. Schwartzbard, M. Schatz, “Learning Program Behavior

Profiles for Intrusion Detection ”, Proceedings of the 1st USENIX Workshop on

Intrusion Detection and Network Monitoring , April 9-12 ,1999 , Santa Clara,

CA . http://www.cigital.com/~anup/usenix_id99.pdf

[11] Mahoney, M., “NETAD: Network Traffic Anomaly Detection Based on Packet

Bytes”, 2003 ACM.

[12] Mahoney, M., P. K. Chan, “Learning Models of Network Traffic for Detecting

Novel Attacks”, Florida Tech. Technical report 2002-08,”

[13] Christopher Kruegel, Thomas Toth and Engin Kirda, “Service Specific Anomaly

Detection for Network Intrusion Detection.” April 30, 2002 ACM.

 [14] A.K. Ghosh, J Wanken, and F. Charron. Detecting Anomalous and Unknown

Intrusions Against Programs. In Proceedings of the Annual Computer Security

Applications Conference (ACSAC’98), pages 259-267, Scottsdale, AZ,

December 1998.

 [15] W. Lee, S. Stolfo, and K. Mok. Mining in a Data-flow Environment: Experience

in Network Intrusion Detection. In Proceedings of 5th ACM SIGKDD

International Conference on Knowledge Discovery & Data Mining (KDD ‘99),

San Diego, CA, August 1999.

[16] H. S. Javitz and A. Valdes. The SRI IDES Statistical Anomaly Detector. In

Proceedings of the IEEE symposium on Security and Privacy, May 1991.

 33

