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中文摘要 

 

現今的攻擊偵測系統大致分成兩個方向，一為以特徵基礎的偵測方式，二為

以異常現象為基礎的偵測方式。在本篇論文，我們主要針對異常現象的偵測。我

們拿了三個已經設計好的模組來做比較。Packet Header Anomaly Detector 監測封

包的 33 個欄位，而 Application Layer Anomaly Detector 著重在應用層的監測，而 

Network Traffic Anomaly Detector 使用過濾封包的技術並且位元組為監測的單

位。利用封包過濾的技術，大幅降低用以偵測的封包數量。且將不必要再分析的

多餘警告給除去，這些方法都可以使得偵測率提升，同時減少警告數量。在實驗

中都有詳細的分析 。 
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ABSTRACT 

 

The intrusion detection system (IDS) is divided into two aspects generally. One 

is signature-base detection, and the other is anomaly-base detection. In this thesis, we 

focus on the anomaly traffic detection. We compare three designed models. Packet 

Header Anomaly detector monitors 33 fields of a packet, and Application Layer 

Anomaly Detector emphasizes monitor on the application layer, and Network Traffic 

Anomaly Detector uses the scheme of traffic filtering and monitors unit by byte-level. 

By traffic filtering, we can reduce packet need to be detected greatly. And reduce the 

unnecessary alarms; these approaches can raise the detection rate, and reduce the 

number of alarms simultaneously. We analyze it in our experiment. 
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CHAPTER 1 
 

Introduction 
 

 

1.1 A Brief Introduction of Intrusion Detection 
 

Intrusion detection takes an important role in the protection of a network with the 

growing threat of abuse of network resources. IDS (Intrusion Detection System) are 

tools used to detect traces of malicious activities that are targeted against the network. 

A Network IDS (NIDS) monitors packets on the network wire and attempts to 

discover whether a hacker/cracker is attempting to break into a system. An NIDS may 

run either on the target machine who watches its own traffic (usually integrated with 

the stack and services themselves), or on an independent machine promiscuously 

watching all network traffic (hub, router, probe). NIDS are usually divided into two 

classes. One is signature based, the other is anomaly based. The System using 

signature based works as virus scanner and search known, suspicious patterns in their 

input data. A signature detector, such as SNORT [1] or Bro [2] looks for known attack 

patterns using rules written by security experts. If some novel attacks are discovered, 

we must add new rules for these attacks. When traffic consisting of IP datagrams 

flows across a network, an NIDS is able to capture those packets as they pass by on 

the wire. A NIDS consists of a special TCP/IP stack that reassembles IP datagrams 

and TCP streams. It applies some of the following techniques:  

(1) Protocol stack verification : A number of intrusions, such as 
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"Ping-O-Death" and "TCP Stealth Scanning" use violations of the underlying IP, TCP, 

UDP, and ICMP protocols in order to attack the targeted machine. A simple 

verification system can flag invalid packets, this can include valid, by suspicious, 

behavior such as severally fragmented IP packets.  

(2) Application protocol verification: A number of intrusions use invalid 

protocol behavior, such as "WinNuke", which uses invalid NetBIOS protocol (adding 

OOB data) or DNS cache poisoning, which has a valid, but unusual signature. In 

order to effectively detect these intrusions, a NIDS must re-implement a wide variety 

of application-layer protocols in order to detect suspicious or invalid behavior.  

(3) Creating new loggable events: A NIDS can be used to extend the auditing 

capabilities of your network management software. For example, a NIDS can simply 

log all the application layer protocols used on a host machine. Downstream event log 

systems (WinNT Event, UNIX syslog, SNMP TRAPS, etc.) can then correlate these 

extended events with other events on the network.  

 However, Signature-matching usually has significant limitations. In general, 

especially when using tight signatures, the matcher has no capability to detect attacks 

other than those for which it has explicit signature. It is important that signature 

matcher in general completely miss novel attacks. Unfortunately, new attacks are 

generated at a brisk pace. And we know that so “tight” signature will miss novel 

attacks. On the other hand, if we use “loose” signatures, it will raise the major 

problem of false positives: alert that in fact do not reflect an actual attack, or we say 

that is a false alarm.  

In this thesis, we focus on the anomaly based intrusion detections. Anomaly 

based detection system watch for deviations of actual from expected behavior and 

classifies all ‘abnormal’ activities as malicious. As signature based designs compare 

their input to known, hostile scenarios they have the advantage of raising virtually no 
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false alarms. But they have significant drawback of failing to detect variations of 

known attacks or entirely new attacks. Anomaly detection overcomes the limitation of 

misuse detection by focusing on normal system behaviors, rather than attack 

behaviors. This approach always has two phases: in the training phase, the behavior 

of system is observed in the attack-free environment, and machine learning techniques 

used to create a profile, a “normal” behavior. In the detection phase, this profile is 

compared against the current behavior of the system, and any deviations are marked 

as potential attacks. Unfortunately, system often exhibit some behavior rightful but 

unseen before. As a result, it will lead anomaly detection techniques to produce a high 

degree of false alarms. So anomaly detection has the advantage that no rules are 

needed to be written, and that it can detect novel attacks. However, it has the 

disadvantages that it cannot say anything about the nature of the attack, and because 

normal traffic may also deviate from the model, hence it generates false alarms. On 

the contrary, anomaly detection can solely bring the suspicious traffic to the attention 

of a network security expert, who must then figure out what, if any, need to be done. 

An anomaly detection system such as SPADE [3], ADAM [4], or NIDES [5] models 

normal traffic, usually the distribution of IP address and ports. Systems that use traffic 

models monitor the flow of packets. The source and destination IP addresses and ports 

are used to determine parameters like the number of total connection arrivals in a 

certain period of time, the inter-arrival time between packets or the number of packet 

to/from a certain machine. These parameters can be used to detect port scans or 

denial-of-service attempts.  

 

 

1.2 Thesis Outline 
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The rest of this thesis is organized as follows.  In Chapter 2, we discuss related 

work in anomaly detection. In Chapter 3, we introduce three models for anomaly 

detection, PHAD, ALAD, and NETAD. Also we propose methods that can improve 

the detection performance.  In Chapter 4, we use our method proposed in Chapter 3 

and analyze the result for each models.  Finally, we conclude our work and present 

some future works in Chapter 5. 
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CHAPTER 2 
 

Related Works 
 

 

In this Chapter, we introduce the evolution for network anomaly detection.  

 

 2.1 Network intrusion detection  

Network intrusion detection systems usually use signature detection, matching 

patterns in network traffic with the patterns of known attacks. This approach is good 

for detecting intrusion, but has significant disadvantage of being vulnerable to novel 

attacks. For this reason, we use an alternative approach, anomaly detection, which 

models a normal behavior of traffic and alerts any deviation from this model as 

doubtful. Early work in anomaly detection was host based. Forrest et. al. [6] 

demonstrated that when software errors in UNIX servers or operating system services 

(suid root programs) are exploited in an R2L [13] or U2R attack, that they deviate 

from the normal pattern of system calls. When compromised, these programs execute 

code on the behalf of the attacker (usually a shell), rather than the code intended by 

the developer (such as a DNS name server or print queue manager). Forrest detected 

these attacks by training an n-gram model (n = 3 to 6) as the system ran normally. 

More recent work has focused on better models, such as state machines [4], or neural 

networks [10]. Solaris makes system call information available through its basic 

security module (BSM) service for this purpose. 
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Anomaly detection depends on models of the ‘normal’ behavior of users and 

applications, and observes the ‘abnormal’ deviations as malicious activity [14]. This 

approach is different from the misuse detection. In many models, they use the 

anomaly score to quantify suspicious packets. They quantify the ‘difference’ from the 

normal behavior of network. Many techniques have been proposed to analyze data 

stream, such as mining for network traffic [15], statistical analysis for audit records 

[16]. If a packet has higher score, then it is more suspicious. So if we have good 

detection rate then we have more efficiency on anomaly detection. 

 6



 

 

CHAPTER 3 
 

Proposed Method 
 

 

In this Chapter, we introduce three models for anomaly detection: one is packet 

header anomaly detector (PHAD), one is application layer anomaly detector (ALAD), 

and the other is network traffic anomaly detector (NETAD). We will take advantage 

of the skill of NETAD for traffic filtering. Moreover, we use the skill of reducing 

alarms, and observe the effect of detect result.  

 

 

3.1 Packet Header Anomaly Detector 
     

Packet Header Anomaly Detector (PHAD) [7] is an algorithm that learns the 

normal ranges of values for each packet header field at the data link, network, and 

transport/control layers. But PHAD does not examine application layers protocols like 

HTTP, DNS, FTP, or SMTP, so it would not detect attacks on servers, although it 

might detect attempts to hide them from an application layer monitor like snort by 

manipulating the TCP/IP protocols. An important shortcoming of all anomaly 

detection systems is that they cannot discern intent; they can only detect when an 

event is unusual, which may or may not indicate an attack. Thus, a system should 

have a method of ranking alarms by how unusual or unexpected they were, with the 

assumption that the rarer the event, the more likely it is to be hostile. If this 
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assumption holds, the user can adjust the threshold to trade off between a high 

detection rate or a low false alarm rate. PHAD is based on the assumption that events 

that occur with probability p should receive a score of 1/p.  

PHAD uses the rate of anomalies during training to estimate the probability of an 

anomaly while in detection mode. If a packet field is observed n times , and generated 

r distinct values, there must have been r "anomalies" during the training period. If this 

rate continues, the probability that the next observation will be anomalous is 

approximated by r/n. This method is probably an overestimate, since most anomalies 

probably occur early during training, but it is easy to compute, and it is consistent 

with the PPMC method of estimating the probability of novel events used by data 

compression programs (Bell, Witten, and Cleary, 1989). 

 To consider the dynamic behavior of real-time traffic, PHAD uses a 

nonstationary model while in detection mode. In this model, if an event last occurred t 

seconds ago, then the probability that it will occur in the next one second is 

approximated by 1/t. Often, when an event occurs for the first time, it is because of 

some change of state in the network, for example, installing new software or starting a 

process that produces a particular type of traffic. Thus, we assume that events tend to 

occur in bursts. During training, the first anomalous event of a burst is added to the 

model, so only one anomaly is counted. This does not happen in detection mode, so 

we discount the subsequent events by the factor t, the time since the previous anomaly 

in the current field. Thus each packet header field containing an anomalous value is 

assigned a score inversely proportional to the probability, 

 

                  scorefield = tn/r 
 

Finally, we add up the scores to score the packet. Since each score is an inverse 
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probability, we could assume that the fields are independent and multiply them to get 

the inverse probability of the packet. But they are not independent, instead, we use a 

crude extension of the stationary model where we treat the fields as occurring 

sequentially. If all the tn/r are equal, then the probability of observing k consecutive 

anomalies in a nonstationary model is (r/tn)(1/2)(2/3)(3/4)...((k-1)/k) = (1/k)r/tn. This 

is consistent with the score ktn/r that we would obtain by summation. Thus, we assign 

a packet score of 

 

               score packet = Σi ∈  anomalous fields tini/ri 

 

where anomalous fields are the fields with values not found in the training model. In 

PHAD, the packet header fields range from 1 to 4 bytes, allowing 28 to 2 32 possible 

values, depending on the field. It is not practical to store a set of 2 32 values for two 

reasons. First, the memory cost is prohibitive, and second, we want to allow 

generalization to reasonable values not observed in the limited training data. The 

approach we have used is to store a list of ranges or clusters, up to some limit C = 32. 

If C is exceeded during training, then we find the two closest ranges and merge them. 

For instance, if we have the set {1, 3-5, 8}, then merging the two closest clusters 

yields {1-5, 8}. In the PHAD model, the clusters are set as 32. Because this method 

(PHAD-C32) gives the best results on the test data that we used.  

 

Field name r/n Values 

Ether Size 508/12814738 42 60-1181 1182... 

Ether Dest Hi 9/12814738 x0000C0 x00105A x00107B... 

Ether Dest Lo 12/12814738 x000009 x09B949 x13E981.. 

Ether Src Hi 6/12814738 x0000C0 x00105A x00107B... 
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Ether Src Lo 9/12814738 x09B949 x13E981 x17795A... 

Ether Protocol 4/12814738 x0136 x0800 x0806 x9000 

IP Header Len 1/12715589 x45 

IP TOS 4/12715589 x00 x08 x10 xC0 

IP Length 527/12715589 38-1500 

IP Frag ID 4117/12715589 0-65461 65462 65463... 

IP Frag Ptr 2/12715589 x0000 x4000 

IP TTL 0/12715589  

IP Protocol 3/12715589 1 6 17 

IP Checksum 1/12715589 xFFFF 

IP Src 293/12715589 12.2.169.104-12.20.180.101... 

IP Dest 287/12715589 
0.67.97.110 

12.2.169.104-12.20.180.101... 

TCP Src Port 3546/10617293 20-135 139 515... 

TCP Dest Port 3545/10617293 20-135 139 515... 

TCP Seq 5455/10617293 
0-395954185   

395969583-396150583... 

TCP Ack 4235/10617293 
0-395954185 

395969584-396150584... 

TCP Header Len 2/10617293 x50 x60 

TCP Flg UAPRSF 9/10617293 x02 x04 x10... 

TCP Window Size 1016/10617293 0-5374 5406-10028 10069-10101... 

TCP Checksum 1/10617293 xFFFF 

TCP URG Ptr 2/10617293 0 1 

TCP Option 2/611126 x02040218 x020405B4 

UCP Src Port 6052/2091127 53 123 137-138... 

 10



UDP Dest Port 6050/2091127 53 123 137-138... 

UDP Len 128/2091127 25 27 29... 

UDP Checksum 2/2091127 x0000 xFFFF 

ICMP Type 3/7169 0 3 8 

ICMP Code 3/7169 0 1 3 

ICMP Checksum 1/7169 xFFFF 

 

Figure 3.1.The PHAD-C32 model after training on week 3. 

 

As above PHAD examines 33 packet header fields, mostly as defined in the 

protocol specifications. If it encounters the fields smaller than 8 bits, like the TCP 

flags, then they are grouped into a single byte field. However, if the fields larger than 

4 bytes, like the 6 byte Ethernet addresses, then they are split in half. The philosophy 

behind PHAD is to build as little protocol-specific knowledge as possible into the 

algorithm, but we felt it was necessary to compute the checksum fields (IP, TCP, UDP, 

ICMP), because it would be unreasonable for a machine learning algorithm to figure 

out how to do this on its own. Thus, we replace the checksum fields with their 

computed values (normally FFFF hex) prior to processing. 

 
 

3.2. Application Layer Anomaly Detection                      

 

 

The second component of our anomaly detection model is the application layer 

anomaly detector (ALAD) [9]. Instead of assigning anomaly scores to each packet, it 
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assigns a score to an incoming TCP connection in a server. TCP connections are 

reassembled from packets. ALAD, unlike PHAD, is configured knowing the range of 

IP addresses it is supposed to protect, and it distinguishes server ports (0-1023) from 

client ports (1024-65535). It does this because it thinks that most attacks are initiated 

by the attacker (rather than by waiting for a victim), and are therefore against servers 

rather than clients. We tested a large number of attributes and their combinations that 

we believed might make good models, and settled on five that gave the best 

performance individually (high detection rate at a fixed false alarm rate) on the 

DARPA IDS evaluation data set [8]. These are: 

1. P(src IP | dest IP), where src IP is the external source address of the client making 

the request, and dest IP is the local host address. This differs from PHAD in that the 

probability is conditional (a separate model for each local dest IP), only for TCP, 

and only for server connections (destination port < 1024). In training, this model 

learns the normal set of clients or users for each host. In effect, it models the set of 

clients allowed on a restricted service. 

2. P(src IP | dest IP, dest port). This model is like (1) except that there is a separate 

model for each server on each host. It learns the normal set of clients for each 

server, which maybe differ out across the servers on a single host. 

3. P(dest IP, dest port). This model learns the set of local servers which normally 

receive requests. It should catch probes that attempts to access nonexistent hosts 

or services. 

4. P(TCP flags | dest port). This model learns the set of normal TCP flag sequences for 

the first, next to last, and last packet of a connection. A normal sequence is SYN 

(request to open), FIN-ACK (request to close and acknowledge the previous 

packet), and ACK (acknowledge the FIN). The model generalizes across hosts, but 

is separate for each port number, because the port number usually indicates the type 
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of service (mail, web, FTP, telnet, etc.). An anomaly can result if a connection fails 

or is opened or closed abnormally, possibly indicating an abuse of a service. 

5. P(keyword | dest port). This model examines the text in the incoming request from 

the reassembled TCP stream to learn the allowable set of keywords for each 

application layer protocol. A keyword means the first word on a line input, i.e. the 

text between a linefeed and the following space. ALAD examines only the first 

1000 bytes, which is sufficient for most requests. It also examines only the header 

part (ending with a blank line) of SMTP (mail) and HTTP (web) requests, because 

the header is more rigidly structured and easier to model than the body (text of 

email messages form uploads). An anomaly indicates the use of a rarely used 

feature of the protocol, which is common in many R2L attacks. 

    As described above, the first two rule forms model the set of users of a 

private (password protected) service, either on a per host or per server basis. The third 

is intended to detect probes, attempts to access nonexistent hosts or services. The 

fourth detects malformed or interrupted connections. The fifth models the application 

layer , and detects some malformed server request. 

As with PHAD, the anomaly score is tn/r, where r different values were observed 

out of n training samples, and it has been t seconds since the last anomaly was 

observed. An anomaly occurs only if the value has never been observed in training. 

For example, Table 2 shows the keyword model for ports 80, 25, and 21, which are 

the three ports with the highest n/r values. 

For example: ALAD models for P(keyword | dest port) for ports 80, 25, and 21 after 

training on inside tcpdump files week 3 of the DARPA IDS evaluation data set [8]. 

 

Attribute r/n Allowed Values 

 13



80(HTTP) 13/83650 Accept-Charset: 

  Accept-Encoding: 

  Accept-Language: 

  Accept: 

  Cache-Control: 

  Connection: 

  GET 

  Host: 

  If-Modified-Since: 

  Negotiate: 

  Pragma: 

  Referer: 

  User-Agent: 

25(SMTP) 34/142610 (34 values...) 

21(FTP) 11/16822 (11 values...) 

 

Figure 3.2. ALAD models for P(keyword | dest port) for port80, 25, and 21, after 

training on week 3. 

  

The first line of the table says that there are 83,650 TCP connections to port 80, 

and only 13 different keywords were observed. These keywords are listed in the third 

column. The total score assigned to a TCP connection is the sum of the tn/r scores 

assigned by each of the five components. The keyword model might contribute more 

than one score because there could be more than one novel keyword. 
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3.3 Network Traffic Anomaly Detector 
 
 

NETAD (Network Traffic Anomaly Detector), like PHAD, detects anomalies in 

network packets. However, it differs as follows: 

1. The traffic is filtered, so only the start of incoming server requests are examined. 

2. Starting with the IP header, we treat each of the first 48 bytes as an attribute for our 

models--we do not parse the packet into fields. 

3. There are 9 separate models corresponding to the most common protocols (IP, TCP, 

HTTP, etc.). 

4. The anomaly score tn/r is modified to (among other things) score rare, but not 

necessarily novel, events. 

NETAD Anomaly Score 

We know that PHAD, and ALAD use the anomaly score S tn/r (summed over the 

attributes) where t is the time since the attribute was last anomalous (in training or 

testing), n is the number of training instances, and r is the number of allowed values 

(up to 256 for NETAD).  

The NETAD model make three improvements to the tn/r anomaly score. The 

first improvement, we reset n (the number of training examples) back to 0 when an 

anomaly occurs during training. Because the training data contains no attacks, we 

know that any such anomaly must be a false alarm. The effect is to reduce the weight 

of this attribute. We call this new score tna/r, where na is the number of training 

packets from the last anomaly to the end of the training period. Note that this is 

different from t, which continues to change during the test period. (Like ALAD and 

LERAD[12], NETAD uses the packet count rather than the real time to compute t). 

The second improvement is to decrease the weight of rules when r (the number 
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of allowed values) is near the maximum of 256. A large r suggests a nearly uniform 

distribution, so anomalies are of little value. Thus, we use the anomaly score tna 

(1-r/256)/r. For small r, this is approximately tna /r as before. 

The third improvement, a criticism of PHAD, ALAD, and LERAD is that they 

ignore the frequency of events. If a value occurs even once in training, its anomaly 

score is 0. To correct this, we add a second model, ti /(fi + r/256), where ti is the time 

(packet count in the modeled subset) since the value i (0-255) was last observed (in 

either training or testing), and fi is the frequency in training, the number of times i was 

observed among training packets. Thus, the score is highest for values not seen for a 

long time (large ti ), and that occur rarely (small fi ). The term r/256 prevents division 

by 0 for novel values. It is preferred over a simple count offset (e.g. ti /(fi + 1)) 

because for novel events it reduces to a value that is large for small r. 

Thus, the NETAD anomaly score for a packet is S tna (1 - r/256) /r + ti /(fi + r/256) 

where the summation is over the 9 × 48 = 432 subset/attribute combinations. 

 

 

3.4 Traffic Filtering 

 

In NETAD [11] , it uses a method that is traffic filtering. This scheme filters out 

traffic that is uninteresting to us. Because most attacks are initiated against a target 

victim, so it is usually sufficient to examine only the first few packets of incoming 

server request. Using this method, we can not only filter out traffic likely to generate 

false alarm, but also speed up processing. Our approaches are as follows: 

 

 Remove non-IP 
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 Remove outgoing IP packets not to 172.16.x, 192.168.x, 163.118.135.1 

 Remove UDP to high ports 

 Remove TCP data packets except near start 

 

We can use this scheme in other models, for example, packet header anomaly 

detection. Because in the original PHAD model , the input traffic is 2.70 GB of week 

3 inside tcpdump files for training, and 4.64 GB of weeks 4 and 5 inside tcpdump files 

for testing. After filtering, the training data reduces to 36MB, and the testing data 

reduces to 69MB. The next step, we evaluate these data instead of the original data. 

The detail of the experimental statistics will be shown in the next chapter. After our 

experiment, we find out that the detection rate increases and the processing time 

decreases significantly. If the original data set is much larger, the efficiency of the 

scheme will be more notable.  

 

 

3.5 Merge Models  
 
 

Because each models has its peculiarity for specific attack detection, so we can 

combine them for detecting the DARPA inside traffic data. The models mentioned 

above are useful for detecting anomaly traffic, and give those suspicious packets an 

anomaly score. Finally, the security experts will analyze the packet with highest score 

and distinguish whether it is an attack or not. We put the input data into the three 

models. Because our experiment is based on off-line detection, so we are not very 

care about the training time and the testing time. Although we do not care about the 

process time, they make a acceptable performance in our testing computer. 
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We know that each model generates its result for processing those packets of 

inside traffic. Since they use different monitoring and scoring methods, therefore, the 

score of those suspicious packets are different. For example, in our experiment with 

the 1999 DARPA intrusion data set, the output of the score range is different from 

each other. The ALAD output has scored 1.009149 decreasing gradually, and the 

PHAD output has scored 0.748198 decreasing gradually. In actual anomaly detection, 

it always sorted by score and analyzed by the security experts from the top to the 

bottom. It is reasonable that the highest score is the most possible malicious packet. 

So, if we do not adjust the score distribution of these models, for example, in the first 

100 false alarms, we should examine the result of ALAD in the great part. This is 

meaningless for combining two or more models to evaluate. In our experiment, we 

adjust these score and evaluate the subsequent result, and observe the detection rate. 

We adjust the highest score in each model with approximation. The details of the 

experiment will also be shown in the next chapter. 

 

 

3.6 Reduce Alarms 

       

 

When we merge these models and evaluate the 1999 DARPA off-line IDS 

evaluation data set. We will come up against a problem, that is, the alarms will 

increase greatly. Because each model aiming at each packet will generate a score for a 

suspicious packet, for the same packet, one model maybe thought that it is suspicious 

in a high degree, and the others may be not. Consequently, there are different scores 

represented for one packet. If the data we will evaluate is huge, than the alarms 

generated will increase dramatically. Therefore the alarms to be analyzed will also 

 18



increase greatly. But we know that many alarms are redundant, and we can leave them 

out of consideration. On the other hand, if we reduce these redundant alarms, it will 

decrease the false alarms at the same time. Hence, the detection rate in a fixed false 

alarm will increase relatively.  

Each model generates different results for each packet if there is one packet 

which has more than one score. We just take the highest score to represent the packet, 

and analyze it whether it is an attack or not. This is reasonable, because we need not 

to analyze the lower score in the same packet. Regarding the same packet, if the 

highest score we analyze is not an attack, then it wouldn’t be an attack for lower score. 

On the other hand, when we analyze the alarm with highest score and determine that it 

is an attack, it is reasonable that we need not to analyze those alarms with lower 

scores. Therefore, we look for the alarms generated by those models, in case it has the 

same date and time, and the same destination, that is, the same packet, we leave the 

highest alarm and dispose of those alarms with lower score if they is any.  
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CHAPTER 4 
 
 

Simulation and Performance Evaluation 
 

 

In this Chapter, we introduce the 1999 DARPA off-line intrusion data set [8], our 

experiment uses these data for training and detecting. It consists of network traffic 

(tcpdump files) collected at two points, BSM logs, audit logs, and file system dumps 

from a simulated local network of a fabricative air force base over a 5 weeks. In our 

experiment, we use the attack-free data during the third week for training, and the data 

during the forth and the fifth weeks for detection. Finally, we use our evaluate 

program to evaluation the result.   

 

4.1 The 1999 DARPA IDS Evaluation Data Set  

DAPRA classifies attacks as probes, denial of service (DOS), remote to local 

(R2L), user to root (U2R), and other violations of a security policy (Data). The 1999 

evaluation was a blind off-line evaluation, as that in 1998, but modified based on 

suggestions from 1998 and also with major extensions to enhance the analysis and 

cover more attack types. The Figure 4.1 shows a block diagram of the 1999 test bed. 
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Figure 4.1 Block diagram of 1999 test bed. 

 

Major changes for 1999 are the addition of a Windows NT workstation as a 

victim, the addition of an inside tcpdump sniffer machine, and the collection of both 

Windows NT audit events and inside tcpdump sniffing data for inclusion in archival 

data provided to participants. Not shown in this figure are new Windows NT 

work-stations added to support NT attacks, new inside attacks, and new stealthy 

attacks designed to avoid detection by network-based systems tested in 1998. The 

Windows NT victim machine and associated attacks and audit data were added due to 

in-creased reliance on Windows NT systems by the military. Inside attacks and inside 

sniffer data to detect these attacks were added due to the dangers posed by inside 

attacks. 

Stealthy attacks were added due to an emphasis on sophisticated attackers who can 

carefully craft attacks to look like normal traffic. In addition, two new types of 

analyses were performed. First, an analysis of misses and high-scoring false alarms 

was performed for each system to determine why systems miss specific attacks and 
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what causes false alarms. Second, participants were optionally permitted to submit 

attack forensic information that could help a security analyst identify important 

characteristics of the attack and respond. This identification information included the 

attack category, the name for old attacks, ports/protocols used, and IP addresses used 

by the attacker. 

It contains five weeks tcpdump files and so on, we trains on inside tcpdump files 

week 3 of the 1999 DARPA IDS evaluation data set, which does not contain any 

attack. After training, we test on weeks 4 and weeks 5, which contain 185 detectable 

attacks. In weeks 4 and weeks 5, there are 201 labeled attacks .The inside traffic in 

week 4, day 2 is missing which contains 12 attacks. There is also one unlabeled attack 

(apache2) which we found by examining the test data, and there are five external 

attacks (one queso and four snmpget) against the router which are not visible from 

inside the local network. This leaves 185 detectable attacks.   

 

 

 

 

4.2 Compare PHAD with ALAD  

 

At first, we compare the PHAD with ALAD model in various false alarms 

threshold, and we observe the detection result of them. 
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Figure 4.2 Compare PHAD with ALAD. 

 

In Figure 4.2, we observe that the ALAD model detects more than PHAD in each 

threshold, we also examine the maximum detection numbers in each model. The 

ALAD model detects 72 when false alarms are 414. In addition, the PHAD model 

detects 84 when false alarms are 5609. In the maximum detection numbers, PHAD is 

more than ALAD. But the false alarms reach to 5609, it’s too large.      

 

 

 

4.3 Traffic Filtering 

 

In Section 3.4, we mention the skill of filtering the input data. It is used for the 
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NETAD model. Now, we use the filtered data as input , and process it by PHAD. We 

compare it with the original PHAD, as shown in Figure 4.3  

 

Figure 4.3 PHAD with Traffic Filtering. 

 

In Figure 4.3, we observe that PHAD with Traffic Filtering always detect more 

anomalies than the original PHAD in each false alarm threshold. The maximum 

detection number of PHAD with traffic filter is 93 when the false alarms reach to 488. 

The detection rate is much higher than the original PHAD.  

 

 

4.4 Merge Models 

 

In Chapter 3, we know that each model has its peculiarity for specific attack 
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detection. According to this reason, we combine two models and observe the number 

of detection it analyzed. In this case, we use the filtered traffic for PHAD training. 

Because of the score range they generated are different, we fix the anomaly score of 

PHAD by adding a value 0.47.   

 

 

Figure 4.4 Merge PHAD and ALAD. 

 

In Figure 4.4, we can know that we get good detection rate through combining 

them. The maximum detection number of it is 129 when the false alarms reach to 910. 

It deserves a claim that the total alarms it generated is 1703. Oppositely, PHAD 

generate 6260 alarms and get lower detection rate. 

 

 

4.5 Reduce Alarms 
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    In Section 3.6, we know that get rid of unnecessary alarms not only speeds up 

our analysis process, but also improves the detection rate. We use the scheme to 

reduce alarms in each model and observe the results.  

 

Figure 4.5 PHAD with reduce alarms. 

 

In Figure 4.5, we observe that in each false alarms threshold, the models through 

reducing alarms has more or equal detection number than original PHAD. In addition, 

the alarms are reduced from 6260 to 6226.  
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Figure 4.6 ALAD with reduce alarms 

 

In Figure 4.6, we observe that in each false alarms threshold, the models through 

reducing alarms has more or equal detection number than the original ALAD. In 

addition, the alarms are reduced from 887 to 821.  
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Figure 4.7 NETAD with reduce alarms. 

 

In Figure 4.7, we observe that through reducing alarms, the detection rate is 

better than the original. In addition, the alarms of the improved NETAD are 23714. It 

is much smaller than the original, 93753. On one hand, the maximum detection 

number of NETAD is 169 when the false alarms reaches  8723, while on the other 

hand the maximum detection number of improved NETAD is also 169 while the false 

alarms only reaches to 6353.     

Another instance, we use the combined model described before, and with 

reducing alarms.  
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Figure 4.8 merge PHAD and ALAD with reduce alarms. 

 

Figure 4.8 show that reducing alarms also improves the detection rate. In 

addition, the alarms reduced from 1703 to 1585.  

We observe those results via our experiment, we know that the traffic filtering 

can reduce the input data, and improve the detection. The scheme of reducing alarms 

can reduce redundant alarms, and leave the necessary alarms for us to detect. It can 

also improve the detection rate. 
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CHAPTER 5 
 
 

Conclusion 
 

In this Chapter, we conclude this thesis, and state our work briefly. Finally, we 

propose our future work. 

 

. 

5.1 Conclusion  

 

Popular intrusion detection has two major aspects, one is signature based, and the 

other is anomaly based. Signature based detection emphasizes pattern matching, 

however, anomaly based detection system watch for deviations of actual from 

expected behavior and classifies all ‘abnormal’ activities as malicious. So it needs a 

training period to establish a ‘normal’ behavior. It can detect novel attack better than 

signature based system. In our experiment, we use the week 3 of the DARPA-offline 

intrusion data set for training. Then we use the weeks 4 and 5 for testing. At first, we 

compare the PHAD and the ALAD models .Then we also exploit the skill of traffic 

filtering from NETAD, and process it by PHAD. It can not only reduce the input data 

greatly, but also promote the detection rate. We observe that merge them will generate 

better performance. Through reducing alarms, we can get better detection rate. 

Equally, we come at the NETAD models with reducing alarms also has better 

manifestation.  
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5.2 Future Work  

 

We use the 1999 DARPA-offline intrusion data set in our experiment, but we 

found a simulation artifact in the TTL field of the IP header which makes the attacks 

easy to detect, especially in PHAD. So, in our evaluations, we set 0 to this field. In 

addition, we need a attack-free data for training, and this is not easy for actual 

network. Therefore, we may use our method with a real data set in the future. 
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