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中文摘要 

 

在不同的擁塞控制的方法下，TCP Vegas 明顯的優於現行最常被使用的

TCP Reno，然而；當 TCP Vegas 的使用者在和 TCP Reno 的使用者競爭可用頻寬

時，TCP Vegas 很明顯的遠輸給 TCP Reno，這也就是為什麼在網際網路的使用者

裡，很少人採用 TCP Vegas 的最主要原因。 

 

在這篇論文中，我們提出了一種方法，藉由我們估計出在路由器裡的連線

數，動態的去調整 RED 裡的最低下限值和最高上限值，達到偵測出 TCP Reno
的連線封包，根據我們審慎的分析，TCP Vegas 和 TCP Reno 是如何利用在 RED
路由器裡的緩衝空間，我們可以得知假使在 RED 路由器裡的緩衝空間能被適當

的設定，那麼 TCP Vegas 將能夠有能力和 TCP Reno 競爭，我們用了分析和模擬

實驗來評估公平性的問題，而且我們也證實了我們方法的可行性。 
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Abstract 

 

TCP Vegas outperforms the more widespread TCP Reno in congestion control.   

However, TCP Vegas sources show high weakness in taking the available bandwidth 

when competing with other TCP Reno sources.  This is a major reason that hinders 

the spread of TCP Vegas among Internet users.  In this thesis, we propose a method 

to modify the RED algorithm for detecting packets from TCP Reno connections, just 

simply dynamically adjusting the value of MinThresh and MaxThresh in RED Routers 

according to the number of connections we predicted.  With a careful analysis of 

how Vegas and Reno use buffer space in RED routers, we will show that Reno and 

Vegas can be compatible with one another if the buffer in RED Router is configured 

properly.  We use both of analysis and simulation experiment for evaluating the 

fairness, and validate the effectiveness of the proposed mechanisms. 
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CHAPTER 1 
 

Introduction 
 

 

1.1  Evolution of Transmission Control Protocol (TCP) 

 

With the fast growth of Internet traffic, TCP has become the most widely used 

end-to-end transport protocol on the Internet for congestion control.  TCP uses 

window-based flow control to pace the transmission of packets.  Each source 

maintains a “window size” variable that limits the maximum number of packets that 

can be outstanding: transmitted but not yet acknowledged.  When a window’s worth 

of data is outstanding the source must wait for an acknowledgment before sending a 

new packet.  Two features of this general strategy are important.  First, the 

algorithm is “self-clocking” meaning that TCP automatically slows down the source 

when the network becomes congested and acknowledgments are delayed.  The 

second is that the window size variable determines the source rate: roughly one 

window’s worth of packets is sent every roundtrip time.  This second feature is 

exploited in Jacobson’s paper [1] in which he proposed an Additive-Increase- 

Multiplicative-Decrease algorithm to adapt the window size to network congestion. 

Transmission Control Protocol (TCP) has several implementation versions which 

intend to improve network utilization.  The first version of TCP, standardized in 

RFC793, defined the basic structure of TCP, i.e. the window-based flow control 
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scheme and a coarse-grain timeout timer.  The second version, TCP Tahoe, added the 

congestion avoidance scheme and fast retransmission proposed by Van Jacobson [1]. 

The third version, TCP Reno, extended the congestion control scheme by including 

fast recovery scheme [2].  Today, TCP Reno is the most popular version and most 

TCP congestion controls are based on this approach.  The reason of using such a 

window-based adjustment approach is the simplicity in implementation. 

However, TCP Tahoe and Reno versions (and their variants), which are widely 

used in the current Internet, are not perfect in terms of throughput and fairness among 

connections.  TCP Reno congestion control reacts to the network congestion only 

after detecting a loss, that is, after the network congestion has already occurred.  

This avoids congestion collapse, since the transmission rate is reduced as soon as a 

packet loss occurs; but this generates an intrinsic instability of the congestion control, 

whose evidence is the periodical oscillation of the source transmission rate. 

TCP Vegas, proposed by Brakmo and Peterson in [3], represents a valid 

alternative to the congestion control performed by the currently standard and most 

widespread version of TCP, called TCP Reno.  Although it introduces new 

techniques into all the main mechanisms of TCP, it is fully compatible with all the 

standard versions of TCP, because the changes only concern the TCP sending side.  

TCP Vegas, by modifying the congestion avoidance scheme of TCP Reno, can achieve 

a 37–71% higher throughput than TCP Reno did in a homogeneous environment.  In 

addition to a higher throughput, TCP Vegas has a fairer and more stable bandwidth 

share than TCP Reno does. 

TCP Vegas enhances the congestion avoidance algorithm of TCP Reno.  The 

key idea is that TCP Vegas dynamically increases/decreases its sending window size 

according to observed RTTs (Round Trip Times) of sending packets, whereas TCP 

Tahoe/Reno only continues increasing its window size until a packet loss is detected. 

 2



1.2  Motivation and Contribution 

 

Motivation  Several simulation works have verified that TCP Vegas is better 

than TCP Reno in terms of throughput (between 37 and 71% better than Reno), 

fairness, stability, packet loss rate, end-to-end delay and ability in avoiding network 

congestion in a very large number of network environments (see [3–6]). For this 

reason TCP Vegas has been the subject of a number of recent studies (e.g., [7-8]). 

The merits of TCP Vegas would appear to suggest that it should replace TCP 

Reno soon.  However, an unfairness problem occurs when TCP Reno and Vegas 

connections coexist [4,9].  TCP Reno is an aggressive control scheme in which each 

connection captures more bandwidth until the transmitted packets are lost.  

Meanwhile, TCP Vegas is a conservative scheme in which each connection obtains a 

proper bandwidth.  Thus, the TCP Reno connections take bandwidth from the TCP 

Vegas connections when they coexist.  The problem is that TCP Reno is intrinsically 

much more aggressive than TCP Vegas, because it reduces its transmission rate only 

after packet loss detection.  This represents the main reason why TCP Vegas cannot 

be widely proposed to the users as a reliable transport protocol. 

TCP Vegas performs poorly in a situation in which two versions coexist.  Users 

prefer not to adopt TCP Vegas despite its superior performance to that of TCP Reno in 

a single version environment.  However, TCP Vegas is actually a very good 

congestion control and worth adopting.  Resolving this unfairness is very important 

in the transition from TCP Reno to Vegas. 

Therefore, given that TCP Vegas basic approach is a sound one, there is a need 

for some modifications of its basic congestion control algorithm to stimulate its use 

among users. 
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Contribution In this thesis, we propose a method to modify the RED algorithm 

for detecting packets from TCP Reno connections, just simply dynamically adjusting 

the value of MinThresh and MaxThresh in RED Routers according to the number of 

connections we predicted [10].  For this purpose, we can utilize the algorithm 

proposed in [11] to detect mis-behaving flows, which are TCP Reno connections in 

the current content.  Then the throughput of TCP Reno connections can be decreased 

by intentionally dropping packets of TCP Reno at the router. 

With a careful analysis of how Reno and Vegas use buffer space in RED routers, 

we will show that Reno and Vegas can be compatible with one another if the buffer in 

RED Router is configured properly.  Further, overall network performance actually 

improves with the addition of properly configured Vegas flows competing 

head-to-head with Reno flows, thus encouraging the incremental adoption of Vegas. 

 

1.3  Thesis Outline 

 

The rest of this thesis is organized as follows.  In Chapter 2, we first introduce 

congestion control mechanisms of TCP Reno and TCP Vegas, and then elucidate 

several TCP Vegas variants to solve the fairness problem.  We next describe the RED 

Router we proposed in this thesis and the way to set the value of MinThresh and 

MaxThresh in RED Routers properly in Chapter 3.  In Chapter 4, we present the 

network model used in our simulation experiments and show the analysis results of 

fairness between two versions of TCP, which are validated by the simulation results.  

Finally, we conclude the thesis and present some future works in Chapter 5. 
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CHAPTER 2 
 

Related Work 
 

 

In this Chapter, we first summarize the congestion control mechanisms of two 

versions of TCP; TCP Reno and TCP Vegas.  For detailed explanation, refer to [12] 

for TCP Reno and [3] for TCP Vegas.  Then, we describe several methods to solve 

the fairness problem between TCP Reno and TCP Vegas presented in [13][14][15][16] 

 

2.1  TCP Congestion Control Mechanisms 

 

Congestion control is a distributed algorithm to share network resources among 

competing sources.  It consists of a source algorithm (e.g., Reno, Vegas, etc.), that 

dynamically adjust source rates based on congestion in end-to-end paths, and a link 

algorithm (e.g., Drop Tail, RED, REM, etc.), that updates, implicitly or explicitly, a 

certain congestion measure at each link and feeds it back, implicitly or explicitly, to 

sources that use this link.  Different protocols use different metrics as congestion 

measure.  For example, Reno uses loss probability, and as it turns out Vegas uses 

queuing delay.  Congestion control which is a distributed algorithm carried out by 

sources and links over the network to solve a global optimization problem, and that 

different protocols (Reno, Vegas, Drop Tail, RED, REM, etc.) are different ways to 

solve the same prototypical problem with different objective functions. 
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A TCP connection contains three entities: sender, router, and receiver.  A sender 

uses some algorithms to estimate and control the amount of data to be retransmitted to 

the receiver through some routers.  A router in a TCP connection only forwards data 

packets.  A receiver acknowledges the received packets to the sender by sending 

acknowledgement (ACK) packets.  If any out-of-order packet is received, the 

receiver sends a duplicate ACK back to the sender. 

To ensure efficient use of network bandwidth, TCP controls its sending rate 

based on the feedback from the network.  In order to control the sending rate, TCP 

estimates the available bandwidth in the network via a bandwidth-estimation scheme 

[4].  In Tahoe and Reno, the bandwidth-estimation scheme uses packet losses (as an 

indication of network congestion) to estimate available bandwidth while Vegas uses 

the difference in the expected and actual sending rates. 

TCP Reno and TCP Vegas use slow start at the beginning of the connection, also 

whenever a packet loss is detected via timeout.  When the congestion window 

reaches a threshold value, called slow start threshold, TCP Reno and TCP Vegas leave 

slow start and enter congestion avoidance. 

Both protocols can detect packet losses by means of two mechanisms.  If the 

timeout (set when the packet is sent) expires, they reduce their congestion window to 

one packet size, and then they start again in slow start mode.  Otherwise, if three 

duplicated acknowledgements (ack’s) come back to the sender before the timeout, the 

protocols perform fast retransmit and fast recovery. 

During the connection, the TCP receiver can limit the sender congestion window 

by advertising the receiver window value. 

TCP Vegas differs from TCP Reno in the way slow start, congestion avoidance 

and fast retransmit are implemented. 
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TCP Reno and TCP Vegas [3] adopt an end-to-end closed-loop adaptive window 

congestion control.  It is based on five fundamental mechanisms: slow start, 

congestion avoidance, retransmission timeout, fast retransmit and fast recovery. 

 

 
Figure 2.1  Congestion control diagram of TCP Reno. 

 

TCP typically uses the acknowledgements to estimate the available bandwidth. 

Reno and Vegas differ mainly in how to estimate bandwidth. Reno treats the packet 

loss as an indicator of network congestion. The source is aware that it overuses the 

bandwidth when the transmitted packets are lost. Vegas calculates the expected and 

actual rates based on the round-trip time of each packet and controls the amount of 

transmitted packet by using the difference between the expected and actual rates. This 

section describes the control scheme of Reno [12] and then presents TCP Vegas [3]. 
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2.1.1  TCP Reno 

 

In TCP Reno, the windows size is cyclically changed in a typical situation.  The 

window size continues to increase until packet loss occurs.  TCP Reno has two 

phases in increasing its window size; slow start phase and congestion avoidance 

phase. 

While there are no packet losses, Reno continues to increase its window size, and 

hence the sending rate by one packet each round-trip time, thus allowing congestion 

to eventually occur.  Reno then detects congestion via packet loss and recovers from 

it by halving the size of the sender window (i.e., halving the sending rate). 

Reno uses a congestion window (cwnd) to control the amount of transmitted data 

in one round trip time (RTT) and a maximum window (mwnd) to limit the maximum 

value of cwnd.  The control scheme of Reno can be divided into five parts, which are 

interpreted as follows.  Figure 2.1 schematically depicts the TCP Reno version 

specified with these parts. 

1. Slow-start. As a connection starts or a timeout occurs, the slow-start state begins. 

 The initial value of cwnd is set to one packet in the beginning of this state. The 

 sender increases cwnd exponentially by adding one packet each time it receives 

 an ACK. Slow-start controls the window size until cwnd achieves a preset 

 threshold, slow-start threshold (ssthresh). When cwnd reaches ssthresh, the 

 congestion avoidance’ state begins. 

2. Congestion avoidance. Since the window size in the slow start state expands 

 exponentially, the packets sent at this increasing speed would quickly lead to 

 network congestion. To avoid this, the ‘congestion avoidance’ state begins when 

 cwnd exceeds ssthresh. In this state, cwnd is added by 1/cwnd packet every 

 receiving an ACK to make the window size grow linearly. 
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3. Fast retransmission. The duplicate ACK is caused by an out-of-order packet 

 received in the receiver. The sender treats it as a signal of a packet loss or a 

 packet delay. If three or more duplicate ACKs are received in a row, packet loss 

 is likely. The sender performs retransmission of what appears to be the missing 

 packet, without waiting for a coarse-grain timer to expire. 

4. Fast recovery. When fast retransmission is performed, ssthresh is set to half of 

 cwnd and then cwnd is set to ssthresh plus three packet sizes. Cwnd is added by 

 one packet every receiving a duplicate ACK. When the ACK of the retransmitted 

 packet is received, cwnd is set to ssthresh and the sender re-enters the congestion 

 avoidance.  Cwnd is reset to half of the old value of cwnd after fast recovery. 

5. Timeout retransmission. For each packet sent, the sender maintains its 

 corresponding timer, which is used to check for timeout of non-received ACK of 

 the packet. If a timeout occurs, the sender resets the cwnd to one and restarts 

 slow-start. The default value of clock used for the round-trip ticks is 500 ms, i.e. 

 the sender checks for a timeout every 500 ms. 

 

When an ACK is received by TCP at the sender side at time t + tA [sec], the current 

window size cwnd( t + tA ) is updated from cwnd(t) as follows; 

Slow start phase: 

cwnd( t + tA ) = cwnd(t) + 1,   if cwnd(t) < ssth(t); 

Congestion avoidance phase: 

cwnd( t + tA ) = cwnd(t) + 1/cwnd(t), if cwnd(t) ≧ ssth(t); 

Timeout expiration: 

cwnd(t) = 1;      ssth(t) = cwnd(t)/2 

Fast retransmit: 

ssth(t) = cwnd(t)/2;     cwnd(t) = ssth(t) 
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2.1.2  TCP Vegas 
 

TCP Vegas [3] was introduced in 1994 as an alternative to TCP Reno 

[BrakmoandPeterson1995].   It improves upon each of the three mechanisms of TCP 

Reno.  The first enhancement is a more prudent way to grow the window size during 

the initial use of slow-start and leads to fewer losses.  The second enhancement is an 

improved retransmission mechanism where timeout is checked on receiving the first 

duplicate acknowledgment, rather than waiting for the third duplicate 

acknowledgment (as Reno would), and leads to a more timely detection of loss.  The 

third enhancement is a new congestion avoidance mechanism that corrects the 

oscillatory behavior of Reno.  In contrast to the Reno algorithm, which induces 

congestion to learn the available network capacity, a Vegas source anticipates the 

onset of congestion by monitoring the difference between the rate it is expecting to 

see and the rate it is actually realizing.  Vegas’ strategy is to adjust the source’s 

sending rate (window size) in an attempt to keep a small number of packets buffered 

in the routers along the path. 

Vegas enhances Reno by adopting a bandwidth-estimation scheme that tries to 

avoid rather than react to congestion.  Vegas uses the measured RTT to accurately 

calculate the amount of data packets that the sender can send to avoid packet losses. 

In Vegas, the sender must record the RTT and the sending time of each packet. The 

minimum round trip time, baseRTT, must also be kept. Herein, three modifications are 

proposed based on the measured RTT [3]. 

 

(1) New congestion avoidance.  Specifically, Vegas uses the difference in the 

expected and actual flow rates to estimate the available bandwidth in the network.  

When the network is not congested, the actual flow rate is close to the expected flow 
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rate; otherwise, the actual rate is smaller than the expected rate, indicating that buffer 

space in the network is filling up and that the network is approaching a congested 

state.  The difference in flow rates can be translated into the difference between the 

window size and the number of acknowledged packets during the RTT, respectively.    

When receiving an ACK, the sender calculates the difference of the expected and 

the actual throughputs as follows: 

diff = (expected – actual) * baseRTT, 

expected = cwnd / baseRTT, 

actual = cwnd / average measured RTT. 

Expected throughput represents the available bandwidth for this connection 

without network congestion, and actual throughput represents the bandwidth currently 

used by the connection.  To adjust the size of the congestion window (cwnd) 

appropriately, Vegas defines two thresholds (α, β) (whose default values are 1 and 3, 

respectively) as a tolerance that allows the source to control the difference between 

expected and actual throughputs in one RTT.  Cwnd is increased by one packet if diff 

< α and decreased by one packet if diff > β.  That is 

cwnd( t + tA ) = cwnd(t) + 1,   if diff <α 

cwnd( t + tA ) = cwnd(t) - 1,   if diff >β 

cwnd( t + tA ) = cwnd(t),    if otherwise ( α≤ diff ≤β ) 

Conceptually, Vegas tries to keep at least α packets but no more than β packets 

queued in the network.  Thus, with only one Vegas connection, the window size of 

Vegas converges to a point that lies between window +α and window + β where 

window is the maximum window size that does not cause any queuing. 

 

Selecting α and β holds an implicit tradeoff between network utilization, 

goodput, and fairness.  By using the default settings for these parameters, i.e., α = 1,  

β = 3, prior research inadvertently favored Reno over Vegas [4]. 
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(2) Earlier packet loss detection.  Upon receiving a duplicate ACK, the sender 

checks whether the difference between the current time and the sending time plus 

baseRTT of the relevant packet is greater than the timeout value.  If it is, Vegas 

retransmits the packet without waiting for three duplicate ACKs.  This modification 

can avert a situation in which a sender never receives three duplicate ACKs and, 

therefore, must rely on the coarse-grain timeout. 

Aiming to multiple-packet-loss problem, Vegas pays special attention to the first 

two partial ACKs after a retransmission.  The sender determines whether this is a 

multiple-packet-loss by checking the timeout of unacknowledged packets.  If any 

timeout occurs, the sender immediately retransmits the packet without waiting for any 

duplicate ACK.  Also to avoid the over-reduction of window size due to the loss 

occurred at the previous window size, Vegas compares the timestamp of the 

retransmitted packet and the timestamp of the last window decrease.  When the 

retransmitted packet is sent before the last decrease, Vegas will not decrease cwnd on 

receiving duplicate ACKs for this packet because this packet loss occurred due to the 

previous window size.  For Vegas, it is very important that designing such a 

mechanism to avoid unnecessary reduction of cwnd because of its quick response of 

packet loss. 

(3) Modified slow-start mechanism.  To detect and avoid congestion during 

slow-start, Vegas doubles it window size every other RTT, instead of every RTT. 

When a TCP Vegas source receives three duplicate Ack’s, it performs fast 

retransmit and fast recovery as TCP Reno does.  Actually, TCP Vegas develops a 

more refined fast retransmit mechanism based on a fine-grain clock, whose details are 

described in [3].  After fast retransmit TCP Vegas sets the congestion window to 3/4 

of the current congestion window and performs again the congestion avoidance 

algorithm. 
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2.2  Source-Based Congestion Avoidance Mechanisms 

 

In this section, we describe several methods to solve the fairness problem 

between TCP Reno and TCP Vegas presented in another paper. 

 

2.2.1  Enlarge α and β 

 

Lai [13] proposes a simple approach, parameter adjustment for Vegas, to solve 

the fairness problem between TCP Reno and TCP Vegas. 

Vegas relates the difference between the actual and expected throughput to the α 

and β thresholds, which values can thus be thought in terms of the number of extra 

buffers the connection occupies in the network. Thus, the Vegas connections with 

larger α and β allow more packets queuing in the buffer and result in higher 

throughput. We adjust α and β to observe the effects of these parameters. 

A simulation is conducted by varying α and β.  Figure 2.2 is the simulation 

topology and Figure 2.3 shows that Vegas with larger α and β behaves more 

aggressively.  Thus, Lai [13] finally suggests choosing a large α and β. 

 

 

 

 

 

 

 

 Figure 2.2  Network topology.   Figure 2.3  Throughput (β=α+2). 
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2.2.2  TCP NewVegas 

 

Andrea De Vendictis [14] describe a new adaptive mechanism for TCP Vegas, 

called TCP NewVegas, designed in order to improve its performance even in 

heterogeneous network scenarios. 

TCP NewVegas is able to overcome this weakness of TCP Vegas, by hindering it 

to perform the last two phases when it competes with TCP Reno sources.  The 

changes introduced in TCP NewVegas are confined within the congestion avoidance 

mechanism.  Initially, TCP NewVegas sets the thresholds α and β to default values 

α0 and β0 (in this work, respectively, set to 1 and 3).  Whenever an ack arrives at the 

source, TCP NewVegas updates the thresholds as follows: 

if (( RTT > RTTold ) and ( W <= Wold )) 

{ α = α + 1;  β = β + 1; } 

if (( RTT <= RTTold ) and ( α > α0 )) 

{ α = α - 1;  β = β - 1; } 

where RTT is the round trip delay of the target packet, RTTold the previous one, W 

the current congestion window size and Wold the previous one. 

Threshold updates are allowed once every round trip time. When a timeout 

expiration or a triple duplicate ack’s occur, the two thresholds are set again to the 

initial values α0 and β0.  The key concept, expressed by the first condition, is that if 

the congestion is increasing (last RTT larger than the previous one) but TCP 

NewVegas has not increased its congestion window, it does not consider itself 

responsible for the network congestion.  Then, the source is allowed to increase the 

number of packets it can put into the network buffers.  We increase α and β by 1 in 

order to follow the exact behavior of TCP Reno in congestion avoidance, given that it 

put into the network an extra packet every round trip time. 
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2.2.3  TCP Vegas-A 

 

K.N. Srijith [15] introduced a modified version of TCP Vegas, TCP Vegas-A 

which is able to obtain a fairer share of the network bandwidth when competing with 

other TCP flows.  The main idea in Vegas-A is that fixing α and β be made adaptive. 

 

TCP Vegas-A 

Th(t) = actual throughput at time t; Th(t-rtt) = actual throughput at previous time rtt; 

if β > diff > α { 

 if Th(t) > Th(t-rtt)  { cwnd = cwnd – 1; α = α - 1; β = β - 1; } 

/* The reasoning is that, even though diff > α, the throughput has been 

increasing.  This indicates that the network is not fully utilized and that 

network bandwidth is still available.  Hence, the sending rate can be increased, 

to probe the network. */ 

/* Since throughput is increasing over time, diff is decreasing.  The existing 

small values of α and β prevent the connection from making use of the available 

bandwidth.  Hence we increase α and β to help congestion window grow. */ 

 else if Th(t) <= Th(t-rtt)  {no update of cwnd, α, β} 

} 

else if diff < α { 

 if α > 1 and Th(t) > Th(t-rtt)  { cwnd = cwnd – 1; } 

 else if α > 1 and Th(t) < Th(t-rtt)  { cwnd = cwnd – 1; α = α - 1; β = β - 1; } 

 else if α = 1  { cwnd = cwnd + 1; } 

} 

else if diff > β  { cwnd = cwnd – 1; α = α - 1; β = β - 1; } 

else  {no update of cwnd, α, β} 
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2.2.4  TCP Vegas+ 

 

Go Hasegawa [16] modify TCP Vegas so that it has an ability to compete the 

link at least equally with TCP Reno connections, while preserving the merit of TCP 

Vegas of the stability of the window size. 

TCP Vegas+ normally behaves identically with TCP Vegas, but it enters the 

other mode to increase its window size more aggressively when it perceives to have 

competing connections of TCP Reno.  More specifically, TCP Vegas+ has two modes 

for updating its window size; 

Moderate Mode:  In the moderate mode, The TCP Vegas+ sender behaves 

 identically to the original TCP Vegas. 

Aggressive Mode:  In the moderate mode, The TCP Vegas+ sender host  

 behaves identically to the original TCP Reno. 

To switch between the above two modes, we introduce new variables count and 

countmax.  First, count is updated according to the following algorithm. 

1. If RTT is larger than the previous value while the window size is not   

    increased, the sender increments count by 1. 

2. On the other hand, if RTT becomes smaller, sender decrements count by 1. 

3. If packet loss is detected by fast retransmit algorithm, count is halved. 

4. If packet loss is detected by retransmission timeout, count is reset to 0. 

TCP Vegas+ then changes its mode according to the count value; 

Moderate Mode  Aggressive Mode:  if count reaches a certain threshold 

 value countmax, the sender changes its mode from the moderate mode to 

 the aggressive mode. 

Aggressive Mode  Moderate Mode:  If count becomes 0, it goes back to 

 the moderate mode. 
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The proposed solutions present the following benefits: 

1. The changes are confined to the TCP sender side, so modifications are not required 

 at the receiver side nor within the network; this makes these modified versions of 

 TCP Vegas easy to implement with respect to other solutions proposed in [16] 

 that require changes in the network. 

2. The algorithm does not introduce further thresholds generally hard to set, since it is 

 completely adaptive to the status of the network; in this prospect TCP NewVegas 

 appears to be more efficient than another algorithm proposed in [16], in which 

 TCP Vegas should react to the aggressiveness of TCP Reno when a parameter 

 exceeds a threshold, whose value is not easy to choose. 

3. These modified versions of TCP Vegas behavior are not much different from that of 

 the original TCP Vegas in presence of other TCP Vegas sources; so it is able to 

 preserve all the nice features of the original TCP Vegas: good throughput 

 performance, stability, fairness, ability in network congestion avoidance. 

 

The reason why we didn’t choose end-to-end TCP Vegas algorithm to solve the 

fairness problem between TCP Reno and TCP Vegas is that it always needs more 

buffer size in routers, because those methods enable TCP Vegas connections to 

compete with TCP Reno connections by increasing its congestion window when it 

detects TCP Reno connections coexist (whether it is true or not).  The fundamental 

concept of these methods is based on the in formation of the measured RTT and 

current congestion window to predict if TCP Reno connections exist.  Mis-prediction 

of those methods will cause network more congestion, while our proposed RED 

Router algorithm is another way to restrict the mis-behave connections by early 

packet drop.  The RED Router algorithm we proposed is present in Chap 3 and the 

performance evaluation is discussed in Chap 4. 
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CHAPTER 3 
 

Proposed Approach based on RED Routers 
 

 

In this Chapter, we describe the reason why the fairness between TCP Reno and 

TCP Vegas occurs at first, then the RED router in detail.  Through a simple network 

topology, we will show the fairness can be improved by RED router and discuss how 

to set the parameter MaxThresh and MinThresh properly to utilize network bandwidth. 

 

3.1  Problem Description 

 

TCP Vegas is a more refined congestion control mechanisms based on the 

estimation of round trip delays, it outperforms the more widespread TCP Reno 

congestion control, which is based only on the packet loss detection, in various 

environments.  However, these mechanisms make TCP Vegas less aggressive with 

respect to TCP Reno; thereby TCP Vegas sources show serious weakness in taking the 

available bandwidth when competing with other TCP Reno sources.  This is a major 

reason that hinders the spread of TCP Vegas among Internet users. 

In a homogeneous case, TCP Vegas outperforms TCP Reno owing to its higher 

throughput and stability. However, TCP Vegas is in a squally situation when TCP 

Reno and Vegas coexist. Because two TCP versions share the same buffer in the 

routers, the aggressive behavior of TCP Reno and the conservative behavior of TCP 
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Vegas cause unfairness when they are used simultaneously. TCP Reno obtains a 

significant amount of bandwidth, which originally belonged to TCP Vegas. Also, as 

more connections change their version, TCP Reno takes more bandwidth. Thus, users 

delay, even protest, to use TCP Vegas despite its better performance than TCP Reno in 

a homogeneous environment. This accounts for why TCP Vegas is still unpopular. 

Hasegawa et al. [16] show that with the RED routers in place of the tail-drop 

routers, the fairness between Vegas and Reno can be improved to some degree.  But 

there exists an inevitable trade-off between fairness and throughput.  That is, if the 

packet dropping probability of RED is set to be large, the throughput of TCP Vegas 

can be improved, but the total throughput is degraded. 

Replacing drop-tail policy with RED policy, a low average queue length is 

maintained.  Using the drop-tail policy, Reno will unlimitedly increase its window 

size until buffer is full.  However, using the RED, it will encounter packet loss 

earlier and more frequently.  Thus Reno will release some bandwidth and allow 

Vegas to improve its performance. 

Lai [13] points out that when packet losses occur, the Reno window is halved 

and the Vegas window is decreased by one.  Thus the aggressive behavior of Reno is 

constrained.  Hence, MaxThresh and MinthThresh should be set small enough to 

favor Vegas.  How ever, if MaxthThresh is too low, too many packets are lost and the 

total throughput falls accordingly.  He suggests MinThresh should be set low enough 

and MaxThresh should not be too large. 

This gives us a good idea to use RED router to solve the fairness problem 

between TCP Reno and TCP Vegas.  However, Lai [13] doesn’t address the proper 

value to RED Router, and we should set the two thresholds dynamically to adapt the 

network environment, so we use the prediction of the number of connections [10] as a 

key to set two thresholds dynamically, and the fairness problem can be improved. 
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3.2  Characteristics of Random Early Detection (RED) 

 

Random Early Detection (RED) is a queuing discipline for routers in which, 

when congestion is anticipated, packets are randomly dropped to alert the senders to 

slow down. 

To understand the basic idea, consider a simple FIFO queue.  Rather than wait 

for the queue to become completely full and then be forced to drop each arriving 

packet (the tail drop policy), we could decide to drop each arriving packet with some 

drop probability whenever the queue length exceeds certain drop level.  This idea is 

called early random drop.  The RED algorithm defines the details of how to monitor 

the queue length and when to drop a packet. 

First, RED computes an average queue length using a weighted running average 

similar to the one used in the original TCP timeout computation. That is, AvgLen is 

computed as 

AvgLen = (1 - Weight) * AvgLen + Weight * SampleLen 

Where 0 < Weight < 1 (usually 0.002) and SampleLen is queue length each time a 

packet arrives.  In most software implementations, the queue length is measured 

every time a new packet arrives at the gateway.  In hardware, it might be calculated 

at some fixed sampling interval. 

The reason for using an average queue length rather than an instantaneous one is 

that it more accurately captures the notion of congestion.  Because of the busty 

nature of Internet traffic, queues can be filled up very quickly and then become empty 

again.  If a queue is most of the time empty, then it’s not appropriate to conclude that 

the router is congested and to tell the hosts to slow down.  Thus, the weighted 

running average calculation tries to detect long-lived congestion by filtering out 
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short-term changes in the queue length.  We can think of the running average as a 

low-pass filter, where Weight determines the time constant of the filter. 

Second, RED has two queue length thresholds that trigger certain activity: 

MaxThreshold and MinThreshold.  When a packet arrives at the router, RED 

compares the current AvgLen with these two thresholds according to the following 

rules: 

 if AvgLen <= MinThreshold then 

     enqueue the packet 

 if MinThreshold < AvgLen < MaxThreshold then 

     calculate probability P 

     drop arriving packet with probability P 

 if ManThreshold <= AvgLen then  

     drop arriving packet 

That is, if the average queue length is smaller than the lower threshold, no action is 

taken, while if the average queue length is larger than the upper threshold, the packet 

will always be dropped.  If the average queue length is between the two thresholds, 

then the newly arriving packet will be dropped with probability P.  This situation is 

depicted in Figure 3.1.  The approximate relationship between P and AvgLen is 

shown in Figure 3.2.  Note that the probability of drop increases slowly when 

AvgLen is between the two thresholds, reaching MaxP at the upper threshold, at 

which point it jumps to unity.  The rationale behind this is that if AvgLen reaches the 

upper threshold, then the gentle approach (dropping few packets) is not working and a 

smoother transition from random dropping to complete dropping rather than the 

discontinuous approach shown here, may be appropriate. 

Although Figure 3.2 shows the probability of dropping as a function of only 

AvgLen, the situation is actually a little more complicated.  In Fact, P is a function 
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of both AvgLen and how long it has been since the last packet was dropped.  

Specifically, it is computed as follows: 

TempP= MaxP * (AvgLen - MinThreshold)/(MaxThreshold - MinThreshold) 

P = TempP / ( 1 - count * TempP ) 

 

MinThreshold MaxThreshold 

AvgLen 

 

Figure 3.1  RED thresholds on a FIFO queue. 

 

P(drop) 

1.

AvgLen Max

MaxThreshMinThresh  
 

Figure 3.2  Drop probability function for RED. 
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TempP is the variable plotted on the y-axis in Figure 3.2.  count keeps track of how 

many newly arrived packets have been queued (not dropped) while AvgLen has been 

between the two thresholds.  P increases slowly as count increases, thereby making 

a drop more likely as the time increases since the last drop.  This makes closely 

spaced drops relatively less likely than widely spaced drops.  The extra step in 

calculating P was introduced by the inventors of RED when they observed. Without it, 

the packet drops were not well distributed over time, but instead tended to occur in 

clusters.  Because packet arrivals from a certain connection are likely to arrive in 

bursts, this clustering of drops is likely to cause multiple drops in a single connection.  

This is not desirable became only one drop per round-trip time is needed to cause a 

connection to reduce its window size, whereas multiple drops might cause it back into 

slow start. 

Hopefully, if RED drops a small percentage of packets when AvgLen exceeds 

MinThreshold, the effect will be TCP connections reducing their window sizes, this 

in turn will reduce packets arriving rate at the router.  All going well, AvgLen will 

then decrease and congestion can be avoided.  The queue length can be kept short, 

while throughput remains high since few packets are dropped. 

Because RED is operating based on a queue length averaged over time, it is 

possible for the instantaneous queue length to be much longer than AvgLen.  In this 

case, if a packet arrives and there is nowhere to store it, it will be dropped.  When 

this happens, Red is operating in tail drop mode.  One of the goals of RED is to 

prevent tail drop behavior if possible. 

The random nature of RED confers an interesting property on the algorithm.  

Because RED drops packets randomly, the probability that RED decides to drop a 

particular flow’s packets is roughly proportional to the share of the bandwidth that 

flow is currently getting at that router.  This is because a flow that is sending a 
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relatively large number of packets is providing more candidates for random dropping.  

Thus there is some sense of fair resource allocation built in RED, although it is by no 

means precise. 

Consider the setting of the two thresholds, MaxThreshold and MinThreshold.  

If the traffic is fairly busty, then MinThreshold should be sufficiently large to allow 

the link utilization to be maintained at an acceptabe high level.  Also, the difference 

between the two thresholds should be larger than the typical increase in the calculated 

average queue length in one RTT.  Setting MaxThreshold to twice MinThreshold 

seems to be a reasonable rule of thumb given the traffic mix on today’s Internet.  In 

addition, since we expect the average queue length to hover between the two 

thresholds during periods of high load, there should be enough free buffer space 

above MaxThreshold to absorb the natural bursts that occur in Internet traffic 

without forcing the router to enter tail drop mode. 

Note that a fair amount of analysis has gone into setting the various RED 

parameters-for example, MaxThreshold, MinThreshold, MaxP, and Weight- all in 

the name of optimizing the power function (throughput-to-delay ratio).  The 

performance of these parameters has also been confirmed through simulation, and the 

algorithm has been shown not to be overly sensitive to them.  It is important to keep 

in mind, however, that all of this analysis and simulation hinges on a particular 

characterization of the network workload.  The real contribution of RED is a 

mechanism by which the router can more accurately manage its queue length.  

Defining precisely what constitutes an optimal queue length depends on the traffic 

mix and is still a subject of research with real information now being gathered from 

operational deployment of RED in the Internet. 
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3.3  Effect with or without RED Router 

 

Before presenting our RED algorithm, we would like to demonstrate a simple 

scenario to show the effect between two connections, TCP Reno and TCP Vegas, if 

the RED router is used. 

The network simulator (ns) [17] developed by the Lawrence Berkeley 

Laboratory is used to run our simulations.  This simulator is often used in 

TCP-related studies [4, 9].  According to Figure 3.3, a two-router configuration is 

used as the network topology, where S, D, and R denote ‘Source’, ’Destination’, and 

‘Router’, respectively.  The bottleneck link between two neighboring routers is 40 

ms in delay and 1.5 Mbps capacity.  The access links between sources and 

neighboring routers or receivers and neighboring routers are 0.4 ms in delay and 10 

Mbps capacity.  Each packet is fixed at a length of 1000 bytes.  The buffer size in 

the bottleneck link router is set to 20 packets.  The Minimum threshold and the 

Maximum threshold we used in RED routers are 4 (packets) and 6 (packets).  The 

simulation time lasts for 100 seconds. 

 

 
Figure 3.3  Network topology. 
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As it is shown in Table 3.1, two versions of TCP, where V and R stand for Vegas 

and Reno respectively, are used in connection1 (S1-R1) and connection2 (S2-R2) to 

show the effect between Drop-tail Router and RED Router.  The Table summarizes 

the total Arrive and Drop in packets, and the throughput of Source 1, Source 2 and 

total in Kbps.  The Fairness between TCP Vegas and TCP Reno is calculated by 

which the throughput in Vegas is divided by the throughput in Reno.  The ideal 

throughput is about 1500 Kbps, so the network Utilization is count by 1500 divides 

Total throughput. 

Undoubtedly, we can see the TCP Vegas works well in Homogeneous network.  

There is no packet drop both in Drop-tail routers and RED routers and the bottleneck 

link can be full utilized (where 1496 rather than 1500, it is because for slow-start 

phase and we have to wait the network stable). 

However, the throughput in TCP Vegas is dramatically decreased when 

competing with TCP Reno.  The reason is that TCP Reno keep increasing its 

congestion window until packet loss occurs while TCP Vegas only keep amount of 

data packets in bottleneck link routers. 

Drop-tail Router RED Router 

 V vs V V vs R R vs R V vs V V vs R R vs R

Arrive 18711 18139 17918 18711 18291 17333

Drop 0 62 140 0 151 211

S1 926 323 711 926 646 725

S2 570 1120 708 570 801 636

Total 1496 1443 1419 1496 1448 1362

Fairness X 0.28886 X X 0.80604 X

Utilization 0.99781 0.96256 0.94613 0.99781 0.96544 0.90826

Table 3.1  Comparison between two connections with/without RED Router. 
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It can be seen obviously that whether the Drop-tail routers and RED routers are 

used or not, if the TCP Reno exists, the packet loss occurs inevitably.  The more TCP 

Reno connections exist, the more packets loss in bottleneck link routers.  The link 

utility gradually decreases when the number of TCP Reno connections increase and it 

will lead to more packet drops.  The Minimum threshold and the Maximum 

threshold we used in RED routers are set to 4 (packets) and 6 (packets).  This is 

because among several experiments, we observe a better result based on both the 

Total Throughput and the Fairness between TCP Vegas and TCP Reno.  It is sure that 

if we set these two thresholds smaller, TCP Vegas gets more throughputs.  When two 

connections competes the buffers in bottleneck link router, the one get more buffer 

size, it can increase its congestion window size, and get more bandwidth.  So, lower 

threshold can prevent TCP Reno from inflating its window unnecessarily, and release 

more bandwidth shared with TCP Vegas. 

However, there is a tradeoff between network utility and fairness.  The lower 

threshold means higher probability of packet drop and lower performance.  It leaves 

us a good question, how to set the RED router parameters properly to fully utilize the 

network and give TCP Vegas connections higher bandwidth, even higher than TCP 

Reno connections. 

Figure 3.4 shows the throughput comparison between TCP Vegas and TCP Reno 

with Drop-tail router or RED router.  There is no difference between Fig. 3.4(a) and 

Fig. 3.4(b) when two connections are TCP Vegas.  The throughput difference in TCP 

Vegas and TCP Reno gets closer when a Drop-tail router in Fig. 3.4(c) is replaced by 

RED router in Fig. 3.4(d).  When there are only TCP Reno connections exist, the 

throughput in Fig. 3.4(e) is more stable than in Fig. 3.4(f).  The fact is that TCP 

Reno keeps increasing its window size until its buffer in bottleneck link router is filled 

up, so the more bottleneck link buffer in router, the longer TCP Reno Saw-tooth cycle. 
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Figure 3.4  Throughput comparison between Drop-tail Routers and RED Routers. 
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3.4  Proposed RED Router based Algorithm 

 

On the previous section, we have seen that the RED router will favor TCP Vegas 

connections, but how to set these two thresholds (MinThresh and MaxThresh) 

properly still needs investigation.  Before introducing our RED Router based 

Algorithm, I would like to show some phenomena to describe the algorithm. 

The network topology is the same as Fig. 3.3 in Sec. 3.3.  Figure 3.5 shows the 

throughput varying depending on the buffer size B.  It is clear that the fairness 

problem results from the buffer size when two version of TCP competing the same 

bottleneck link.  So, we have to prevent the buffer from mis-behaved connections by 

RED Router. 

Figure 3.6 is the same experiment in Sec. 3.3.  The queue size in bottleneck 

link routers tell us that 5 packets in buffer is enough for 2 TCP Vegas connections 

used, while the rest of buffer will give TCP Reno a chance to get more bandwidth. 

Figure 3.7 is the same experiment as that in Sec. 3.3.  The CWND in Fig. 3.7(d) 

shows that RED router will enable TCP Vegas to compete with TCP Reno. 

Figure 3.5  Throughput varying the buffer size B ( bandwidth = 1500 Kb/s). 
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Figure 3.6 Queue occupancy comparison between Drop-tail Routers and RED Routers. 
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Figure 3.7 Congestion Window comparison between Drop-tail Router and RED Router. 
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Modification to RED Router 
In order to realize our algorithm, we need some modification to the parameters of 

RED routers.  These parameters are show as follows: 

n : number of connections in router we predict by [10] 

B : Buffer size in bottleneck link router 

β : TCP Vegas parameter 

MinThresh : The lower bound in RED Router for queue length threshold 

MaxThresh : The upper bound in RED Router for queue length threshold 

Time Interval for RED Router to compute the number of connections:  

 Every time a new packet arrives at the router. 

If ( B > βn ) MinThresh = βn; 

 else MinThresh = B; 

If ( B > (β+1)n ) MaxThresh = (β+1)n; 

 else MaxThresh = B; 

The reason we use βn and (β+1)n for MinThresh and MaxThresh is described as 

follows. 

1. Since the buffer size in bottleneck link routers will be mis-used by TCP Reno 

 when two versions of TCP compete with each other, after examining the packets 

 queuing in the bottleneck router, βn is enough for TCP Vegas connections used. 

2. The value of α and β in TCP Vegas means the number of packets that will be 

 queued in the bottleneck router.  The default value of α and β in TCP Vegas is 1 

 and 3.  So, we choose the max value 3 for MinThresh, and 4 for MaxThresh. 

3. The number of connections is predicted by the mechanism in [10].  There maybe 

 some inaccurate predictions, like overestimation or underestimation, and we 

 have to eliminate the problem because underestimation leads to packet losses. 
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4. The trade-off between the fairness ratio and the throughput is still an open issue, 

 because lower threshold in RED Router will result in smaller throughput. 

5. In Lai’s paper [13], he states that estimate the prerequisite for TCP Vegas 

 connections to achieve stability.  When the formula holds, TCP Vegas can 

 achieve a fair and stable share of bandwidth.  If it is not held, instability 

 possibly occurs.  So, we have to choose MinThresh a little larger thanβ to 

 avoid instability caused by lack of buffer. 

 

 (buffer size in packets / number of Vegas connections) ≧β 

 

 

We will see more simulations to evaluate our proposed approach based on RED 

routers in Chapter 4. 
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CHAPTER 4 
 

Performance Evaluation 
 

 

In this Chapter, we compare the performance between TCP Vegas and TCP Reno 

by using network simulator ns-2.27.  We first show that the performance result 

before/after our RED router-based algorithm is used, then inaccurate prediction in 

connections is discussed and finally we will show how to deploy our RED router 

based algorithm in the current Internet gradually. 

 

4.1 Fairness Improvement 

 

In order to validate the analytical model, we carried out simulations under ns 

[17], the simulation tool is widely used in the networking research community. 

Figure 4.1 shows the network used in this section.  It consists of n sender hosts 

using TCP Reno and TCP Vegas, n receiver hosts, two intermediate routers, and links 

connecting the router and the sender/receiver hosts.  The bandwidth of each link 

between the sender/receiver hosts and the router is 50 Mbps.  The bandwidth of the 

bottleneck link between routers is w Mbps.  The size of buffer at the router is 100 

packets.  The propagation delay between the sender/receiver hosts and the router and 

that between the routers is represented by 1ms and 40 ms, respectively.  As the 

scheduling discipline at the router buffer, we consider drop-tail and RED algorithm. 
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In our first experiment, we set bottleneck link bandwidth w = 1.5 Mbps and there 

are 5 connections, so we set the Minimum threshold and the Maximum threshold used 

in RED routers 15 (packets) and 20 (packets), respective, according to our RED router 

algorithm.  Each packet is fixed at a length of 1000 bytes.  All sources start at time 

0 and the simulation lasts 100 s. 

As shown in Table 4.1, two versions of TCP, V and R, standing for Vegas and 

Reno respectively, are used in 5 connections (Sx-Rx) to show the effect between 

Drop-tail Router and RED Router.  The Table summarizes the total Arrival and Drop 

in packets, and the throughput of Source 1, Source 2, Source 3, Source 4, Source 5 

and total in Kbps.  The average throughput of Vegas and Reno is computed in Kbps.  

The Fairness between TCP Vegas and TCP Reno is calculated by which the mean 

throughput in Vegas is divided by the average throughput in Reno.  The throughput 

is 1500 Kbps, so the Utilization is calculated as Total throughput divided by 1500. 

Undoubtedly, TCP Vegas works well in Homogeneous network.  There is no 

packet drop both in Drop-tail routers and RED routers, and the bottleneck link can be 

fully utilized (where 1499 rather than 1500, it is because of slow-start phase and we 

have to wait the network until it is stable). 

 

Figure 4.1  Network topology. 
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However, the throughput in TCP Vegas is dramatically decreased when a TCP 

Reno connection exists.  The reason is that TCP Reno keeps increasing its 

congestion window until packet loss occurs, while TCP Vegas only keeps a amount of 

data packets in the bottleneck link router. 

We can see whether we use the Drop-tail routers or RED routers, if the TCP 

Reno exists, the packet loss occurs inevitable.  The more TCP Reno connections 

exist, the more packets loss in the bottleneck link routers.  The link utilization 

gradually decreases when the number of TCP Reno connections increase because of 

more packet drops. 

It can be seen obviously that TCP Vegas is fairly treated when RED router is 

used.  The performance improvement is about 230~259% (which is counted based 

on dividing TCP Vegas throughput in Drop-tail Router by that in RED router). 

 

Drop-tail Router RED Router 

 5V 4V1R 1V4R 5V 4V1R 1V4R

Arrival 18750 18320 18159 18750 18370 18464

Drop 0 87 152 0 166 498

S1 300 80 81 300 210 187

S2 300 81 346 300 206 306

S3 299 79 338 299 191 273

S4 299 79 340 299 222 317

S5 299 1131 326 299 620 337

Vegas 299 80 81 299 207 187

Reno X 1131 338 X 620 308

Fairness X 0.07073 0.23964 X 0.33387 0.60714

Total 1499 1451 1431 1499 1450 1421

Utilization 0.99973 0.9672 0.95424 0.99973 0.96661 0.94704

Table 4.1  Comparison between five connections with/without RED Router. 
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Figure 4.2 shows the throughput comparison between TCP Vegas and TCP Reno 

with Drop-tail router and RED router.  There is no difference between Fig. 4.2(a) 

and Fig. 4.2(b) when five connections are all TCP Vegas.  This is because the queue 

size in the bottleneck link router is always around 13 packets as shown in Fig.4.4(a) 

and Fig.4.4(b), and two thresholds ,MinThresh and MaxThresh set by our RED 

algorithm is 15 and 20 respectively. Therefore, there won’t be any packet loss occur, 

and there is no side effect when we use RED router.  We can see that TCP Reno 

takes almost all bandwidth in Drop-tail routers and leaves only small bandwidth to 

share with TCP Vegas when there is only one TCP Reno connection in Fig. 4.2(c).  

The throughput difference in TCP Vegas and TCP Reno gets closer when Drop-tail 

routers in Fig. 4.2(c) are replaced by RED routers in Fig. 4.2(d).  The TCP Vegas 

connection is still in low throughput while the other TCP Reno connections share the 

most bandwidth in Fig. 4.2(e).  The fairness will be improved with RED router in 

Fig. 4.2(f). 

Figure 4.3 demonstrates the queuing size in the bottleneck link router and the 

time that packet drop occurs.   TCP Vegas behaves well in Fig. 4.3(a) and Fig. 4.3(b) 

because there is no packet drop and the queue length keeps at a low level.  The 

saw-tooth cycle in Fig. 4.3(c) and Fig. 4.3(e) occurs when there TCP Reno 

connections exist.  This is because that TCP Reno increases its congestion size until 

the buffer in bottleneck link router used up.  TCP Reno will have early packet loss 

with RED routers in Fig. 4.3(d) and Fig. 4.3(f). 

Figure 4.4 shows the CWND variation in TCP Vegas and TCP Reno with 

Drop-tail router and RED router.  Again, there is no difference between Fig. 4.4(a) 

and Fig. 4.4(b).  In Fig. 4.4(c) and Fig. 4.4(e), there are n TCP Reno connections, so 

n saw-tooth cycles are shown, while all TCP Vegas’ CWND are always kept at a low 

level.  It will be improved in Fig. 4.4(d) and Fig. 4.4(f) when RED router is used. 
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Figure 4.2  Throughput comparison between Drop-tail Routers and RED Routers. 
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Figure 4.3 Queue occupancy comparison between Drop-tail Routers and RED Routers. 
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Figure 4.4 Congestion Window comparison between Drop-tail Router and RED Router. 
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In our second experiment, we set bottleneck link bandwidth w = 2 Mbps.  There 

are 10 connections, so we set the Minimum threshold and the Maximum threshold 

used in RED routers 30 (packets) and 40 (packets), respectively, according to our 

RED router algorithm.  All sources start at time 0 and the simulation lasts 100 s. 

As shown in Table 4.2, V and R stand for Vegas and Reno respectively.  The 

table summarizes the Arrival and Drop of packets, and the individual and total 

throughput in Kbps.  The average throughput of Vegas and Reno is computed in 

Kbps.  The Fairness between TCP Vegas and TCP Reno is calculated based on 

dividing the mean throughput in Vegas by the average throughput in Reno.  The 

ideal throughput is 2000 Kbps, so the Utilization is calculated based on dividing the 

Total throughput by 2000. 

Drop-tail Router RED Router 

 9V1R 5V5R 1V9R 9V1R 5V5R 1V9R

Arrival 24531 24469 24354 24792 24828 24557

Drop 66 166 337 143 482 707

S1 87 86 91 128 108 95

S2 87 86 197 150 96 194

S3 87 86 183 135 107 210

S4 60 89 210 93 152 194

S5 131 89 210 172 135 196

S6 57 300 196 130 282 214

S7 74 300 222 181 258 191

S8 87 300 205 130 258 193

S9 64 299 203 80 250 199

S10 1213 300 194 766 284 215

Vegas 82 87 91 133 120 95

Reno 1213 300 202 766 266 200

Fairness 0.0676 0.29067 0.4505 0.17392 0.45113 0.475

Total 1951 1937 1910 1965 1930 1892

Utilization 0.97564 0.96828 0.95524 0.98228 0.96504 0.94616

Table 4.2  Comparison between ten connections with/without RED Router. 
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It is the same result that the TCP Reno takes most bandwidth from TCP Vegas, 

but the situation will be improved when RED Router is used.  There are more total 

packet arrivals and more packet drops in RED Router, it is because the RED Router 

early drop these mis-behaved flow packet (like TCP Reno) to reduce its aggressive 

increasing window size.  This will release some bandwidth for TCP Vegas, so the 

improvement in this experiment is about 6% to 157% based on our network topology. 

Figure 4.5 demonstrates the throughput comparison between TCP Vegas and 

TCP Reno with Drop-tail router or RED router.  Fig. 4.5(a) tells us that a TCP Reno 

connection has more than half of bandwidth, while other TCP Vegas connections 

share the rest of bandwidth.  We can see that in Fig. 4.5(b), the TCP Reno 

connection will be limited by RED router, and let the other TCP Vegas connections 

get more bandwidth. There are five TCP Vegas and five TCP Reno connections in Fig. 

4.5(c) and Fig. 4.5(d), and one TCP Vegas and ten TCP Reno connections in Fig. 

4.5(e) and Fig. 4.5(f).  We will find that when TCP Reno connections increase, the 

bandwidth of TCP Vegas connections decrease gradually in RED router, but increase 

slightly in drop-tail router.  This is because when more TCP Reno connections in 

drop-tail router, they will compete with each other, and leave more bandwidth for TCP 

Vegas connections, while RED router drops TCP Reno connections packets early. 

In the above two experiments, we will see that if we can control the MinThresh 

and MaxThresh parameter properly, the fairness problem in TCP Vegas and in TCP 

Reno will be solved.  Fig. 4.5(a) and Fig. 4.5(b) show that five TCP connections will 

keep about 13 packets in Router whether drop-tail or RED queuing discipline is used, 

while ten TCP connections will keep about 24 packets in our second experiment.  

That is the reason why we choose 3n and 4n for the MinThresh and MaxThresh 

parameter, respectively.  This will prevent RED router from miss-dropping TCP 

Vegas packets while there only TCP Vegas connections exist. 
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Figure 4.5  Throughput Ratio with Drop-tail Router or RED Router 
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4.2  Evaluation of Inaccurate Prediction 

 

Lee [10] proposes an approach which is able to estimate the number of flows 

passing through routers.  However, the prediction maybe not so precise to estimate 

the number of connections, because of the prediction time interval we choose and the 

average queue length RED router calculate.  In this section, we focus on what may 

happen if we mis-predict the number of connections. 

The network topology we take in our experiment is same as that in Fig 4.1.  It 

consists of 2 sender hosts using TCP Reno and 8 sender hosts using TCP Vegas, 10 

receiver hosts, two intermediate routers, and links connecting the router and the 

sender/receiver hosts.  The bandwidth of each link between the sender/receiver hosts 

and the router is 50 Mbps.  The bandwidth of the bottleneck link between routers is 2 

Mbps.  The size of buffer at the router is 100 packets.  The propagation delay 

between the sender/receiver hosts and the router and that between the routers is 

represented by 1ms and 40 ms, respectively. 

Every 10 seconds, connections of Vegas from Vegas1 to Vegas8 successively 

enter the network, and connections of Reno enter the network at 40 second.  The 

Minimum threshold and the Maximum threshold we used in RED routers are 

dynamically increased by 3 and 4, respectively, for each connection entering into our 

network according to our RED router algorithm.  So the MinThresh and MaxThresh 

will be 30 and 40 after 40 seconds of simulation time.  The time we calculate our 

average throughput for each connection is from 70 sec to 100 sec.  This is because 

when a new connection enters the network, the bandwidth will be recalculated by 

every TCP source, so we have to wait for the network until it becomes stable.  Each 

packet size is fixed at 1000 bytes.  The simulation lasts for 101 seconds. 

 44



Table 4.3 summarizes the comparison of 8 TCP Vegas and 2 TCP Reno 

connections with inaccurate RED Router.  According to our RED router algorithm, 

the MinThresh and the MaxThresh will be 30 and 40.  The accuracy range we choose 

is from +20% to -20%, so the MinThresh will vary from 24 to 36 and MaxThresh will 

vary from 32 to 48 at the end of simulation time. 

The throughput of TCP Vegas in Drop-tail router is always less than that in RED 

router.  Considering the error prediction, when the estimation difference is positive, 

the TCP Reno connections will get more bandwidth because the MinThresh and the 

MaxThresh is overestimated.  When the estimation difference is negative, TCP Reno 

connections will suffer packet drop earlier and experience lower bandwidth. 

 

Drop-tail RED 

 8V2R +20% +10% 8V2R -10% -20%

Arrival 24740 24834 24803 24854 24982 24988

Drop 79 159 169 148 222 229

Vegas1 80 64 128 80 104 112

Vegas2 80 120 72 120 96 96

Vegas3 80 64 88 152 112 96

Vegas4 80 144 112 96 80 120

Vegas5 80 144 176 184 184 128

Vegas6 80 104 152 152 168 328

Vegas7 80 112 136 80 232 216

Vegas8 80 168 72 192 256 192

Reno1 664 504 488 432 352 304

Reno2 672 512 512 456 360 336

Vegas 80 103 117 132 154 154

Reno 668 508 500 444 356 320

Fairness 0.11976 0.2028 0.234 0.2973 0.4326 0.48125

Total 1976 1936 1936 1944 1944 1928

Utilization 0.988 0.968 0.968 0.972 0.972 0.964

Table 4.3  Comparison of ten connections with Inaccurate RED Router 
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It can be easily seen that if the number of connection is underestimated, the fairness 

will be further improved.  But the reason why we choose 3n and 4n for the MinThresh 

and the MaxThresh is that if we underestimate the number of connections, we will have 

enough buffer for those connections.  Taking 2n and 3n for the MinThresh and the 

MaxThresh in our experiment as an example, the value of the MinThresh and the 

MaxThresh will be 20 and 30.  If we underestimate the connection by 20%, the value 

of the MinThresh and the MaxThresh will be 16 and 24, respectively.  This will cause 

all connections unstable, even in homogeneous networks; TCP Vegas connections will 

behave worse than TCP Reno connections and lead to more packet drop.  So after 

observing the queue size in bottleneck link router, we suggest that the value of the 

MinThresh and the MaxThresh should be 3n and 4n, respectively. 

The fairness improvement will be 69% to 302% when taking error estimate into 

consideration. 

Figure 4.6 demonstrates the throughput, queue size, and congestion window 

between TCP Vegas and TCP Reno with Drop-tail router or RED router.  The 

throughput of Vegas1 and Vegas2 steps down when new connections enter into 

network in Fig. 4.6(a) and Fig. 4.6(b).  After 40 seconds, two connections of TCP 

Reno join, so network become unstable and TCP Vegas connections suffer low 

bandwidth.  This will be improved by RED router.  We can see that queue size in 

Fig. 4.6(d) is kept lower than 40 packets while we have to wait buffer full and packet 

loss in Fig. 4.6(c).  This is because the TCP Reno keeps increasing its congestion 

window size in Fig. 4.6(e) and let the TCP Vegas starve to death.  The RED router 

used in Fig. 4.6(f) will solve such difference issue between TCP Reno and TCP Vegas. 

Figure 4.7 illustrates the throughput of 8 TCP Vegas and 2 TCP Reno 

connections with RED Router with inaccuracy.  We can see that TCP Reno 

connections favor overestimate while TCP Vegas connections favor underestimation. 
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Figure 4.6  8V2R comparison between Drop-tail Routers and RED Routers. 
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Figure 4.7  Throughput Ratio with Drop-tail Routers or Inaccurate RED Routers. 
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4.3 Gradual Deployment 

 

In the real networks, it can not expect that all routers are RED routers and all 

RED routers are able to calculate the number of connections passing through it, while 

our RED router algorithm is based on such assumption.  So, we have to test what if 

only one RED router is used while the others are all drop-tail routers in the networks.  

Comparing with all drop-tail routers and all RED routers used in our simulation, 

fortunately, we found that even there is only one our RED router used, the fairness 

improvement between TCP Reno and TCP Vegas connections will be significantly 

improved.  In this section, we give a simple experiment to demonstrate and to show 

our RED router algorithm is usable to gradual deployment for the current networks. 

Figure 4.8 shows the network model used in this section.  It consists of 1 

sender hosts (S1) using TCP Reno and 3 sender hosts (S2, S3, S4) using TCP Vegas, 4 

receiver hosts, 6 intermediate routers, and links connecting the router and the 

sender/receiver hosts.  The bandwidth of each link between the sender/receiver hosts 

and the router is 10 Mbps.  The bandwidth of each link between the routers is 1.5 

Mbps.  The bandwidth of the bottleneck link (R1-R2) between routers is 2 Mbps. 

 

 

Figure 4.8  Network topology for gradual deployment. 
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The buffer size at the intermediate routers (R3, R4, R5, and R6) is 20 packets 

and the buffer size at the bottleneck link routers (R1, R2) is 100 packets.  The 

propagation delay between the sender/receiver hosts and the intermediate routers and 

that between the bottleneck routers are represented by 1ms and 40 ms, respectively.  

The propagation delay between the intermediate routers and the bottleneck routers is 

20 ms.  Each packet is fixed at a length of 1000 bytes.  As the scheduling discipline 

at the router buffer, we consider drop-tail and RED algorithm. 

S2 (Vegas1) and S3 (Vegas2) start at 0 sec, while S1 (Reno) and S4 (Vegas3) 

enter the network at 10 sec and 20 sec, respectively.  The time we calculate our average 

throughput for each connection is from 100 sec to 200 sec.  This is because when a 

new connection enters the network, the bandwidth will be recalculated by every TCP 

source, so we have to wait for the network being stable.  The simulation lasts for 201 

seconds. 

Table 4.4 summarizes the performance comparison between Drop-tail routers 

and RED routers for gradually deploying our RED algorithm to the current Internet. 

Drop-tail RED 

 R1 R3 ALL

Arrival 48473 48572 48049 48597

Drop 0 118 0 118

S1 1272 728 960 752

S2 152 384 280 376

S3 256 408 336 400

S4 256 416 328 408

Vegas 221 403 315 395

Reno 1272 728 960 752

Fairness 0.1737 0.5536 0.3282 0.5253

Total 1936 1936 1904 1936

Utilization 0.968 0.968 0.952 0.968

Table 4.4  Performance comparison in gradual deployment networks. 
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In our experiment, R1 and R3 in RED router mean that only one RED router is 

used, so the Minimum threshold and the Maximum threshold used in RED router R1 

are 12 (packets) and 16 (packets) and those used in RED router R3 are 6 (packets) and 

8 (packets), according to our RED router algorithm based on the number of 

connections that we predict in our RED routers. 

The Arrival and Drop packets in Table 4.4 monitored are in the bottleneck link 

router R1, so there is no packets drop in R3 column, because router R1 have buffer 

sizes 100 and it is using drop-tail mode.  The idle throughput is 2000 Kbps. 

We can see that TCP Reno connection (S1) will effect other TCP Vegas 

connections (S2, S3, S4) when they compete the same bottleneck link (R1-R2).  The 

difference between in R1 and R3 columns is the throughput of S1.  This is because 

in R3 column, the R3 router drops TCP Reno packets earlier than that in R1 column, 

so S1+S2 will take more bandwidth than S3+S4.  It is very clear that even there is 

only one RED router (R1 or R3), while the others are drop-tail routers, there is still a 

great improvement, which ranges from 89% to 219%. 

Figure 4.9 illustrates the throughput comparison between TCP Vegas and TCP 

Reno connections with all Drop-tail routers or all RED routers.  The TCP Reno 

connection in Fig. 4.9(a) will be restricted by RED routers in Fig. 4.9(b) and give 

away more bandwidth for sharing with TCP Vegas connections. 

Figure 4.10 shows the throughput comparison between TCP Vegas and TCP 

Reno connections with those four conditions.  We will find that there is a big 

difference between Fig. 4.10(a) and Fig. 4.10(b), because the RED router will favor  

TCP Vegas connection, while there are only R1 or R3 used RED queuing discipline in 

Fig. 4.10(c) and Fig. 4.10(d), our method is still working. 

Therefore, we can conclude that even there is only one RED router, if it is on the 

path of a TCP Reno connection, it will be effective on the fairness problem. 
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Figure 4.9  Throughput comparison with all Drop-tail Routers or all RED Routers. 
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Figure 4.10  Throughput comparison between Vegas and Reno with four conditions. 
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CHAPTER 5 
 

Conclusion and future work 
 

 

Conclusion 

 

In a homogeneous case, TCP Vegas outperforms TCP Reno owing to its higher 

throughput and stability.  However, TCP Vegas is in a squally situation when TCP 

Reno and Vegas coexist.  Because two TCP versions share the same buffer in the 

routers, the aggressive behavior of TCP Reno and the conservative behavior of TCP 

Vegas lead to unfairness.  This accounts for why TCP Vegas is still unpopular. 

In this thesis, we propose a RED Router-based algorithm to improve the fairness 

problem between TCP Reno and Vegas.  The RED Router will give more bandwidth 

to TCP Vegas by early drop TCP Reno packets.  With the function of the RED 

routers, which can compute the number of connections passing through it, we can set 

MinThresh and MaxThresh parameter dynamically.  By setting the two thresholds 

properly, it will lead to great fairness improvement which is shown in our simulations. 

There is still a trade-off between fairness and throughput, since lower threshold 

values result in smaller throughput while the fairness ratio will be improved.  We 

have shown that 3n and 4n are better values for the MinThresh and MaxThresh 

parameter, taking the fairness, throughput, and error prediction into consideration.  

The simulation tells us that even there is only one RED Router along the path using 
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our algorithm with the TCP Reno connections passing through it, our approach is still 

effective.  It is feasible for the RED routers to deploy our algorithm gradually. 

 

 

Future work 

We have shown that RED can improve the fairness to some degree, but there is 

an inevitable trade-off between fairness and throughput.  The main reason is that 

RED drops incoming packets from different connections with same probability, 

regardless of the characteristics of the connections.  Then as we set the packet 

dropping probability to a higher value, throughput values of the TCP Reno and Vegas 

connections become lower, and total throughput gets smaller while we can obtain 

better fairness.  Therefore, for further fairness improvement without throughput 

degradation, we need two mechanisms: 

– How to detect TCP Reno connections 

– How to drop more packets from TCP Reno connections 
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