
在不同擁塞控制的方法下之 TCP 效能分析與公平性改進

TCP Performance Analysis and Fairness Improvement in Different
Congestion Control Methods

研 究 生：張均瑋 Student：Chun-Wei Chang

指導教授：陳耀宗 博士 Advisor：Prof. Yaw-Chung Chen

國 立 交 通 大 學

資 訊 工程 系

碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

在不同擁塞控制的方法下之 TCP 效能分析與公平性改進

研究生 : 張均瑋 指導教授 : 陳耀宗 博士

國立交通大學資訊工程學系

中文摘要

在不同的擁塞控制的方法下，TCP Vegas 明顯的優於現行最常被使用的

TCP Reno，然而；當 TCP Vegas 的使用者在和 TCP Reno 的使用者競爭可用頻寬

時，TCP Vegas 很明顯的遠輸給 TCP Reno，這也就是為什麼在網際網路的使用者

裡，很少人採用 TCP Vegas 的最主要原因。

在這篇論文中，我們提出了一種方法，藉由我們估計出在路由器裡的連線

數，動態的去調整 RED 裡的最低下限值和最高上限值，達到偵測出 TCP Reno
的連線封包，根據我們審慎的分析，TCP Vegas 和 TCP Reno 是如何利用在 RED
路由器裡的緩衝空間，我們可以得知假使在 RED 路由器裡的緩衝空間能被適當

的設定，那麼 TCP Vegas 將能夠有能力和 TCP Reno 競爭，我們用了分析和模擬

實驗來評估公平性的問題，而且我們也證實了我們方法的可行性。

關鍵字： TCP Reno；TCP Vegas；RED 路由器；擁塞控制；公平性

TCP Performance Analysis and Fairness Improvement in

Different Congestion Control Methods

Student：Chun-Wei Chang Advisor：Dr. Yaw-Chung Chen

Department of Computer Science and Information Engineering

National Chiao Tung University

Abstract

TCP Vegas outperforms the more widespread TCP Reno in congestion control.

However, TCP Vegas sources show high weakness in taking the available bandwidth

when competing with other TCP Reno sources. This is a major reason that hinders

the spread of TCP Vegas among Internet users. In this thesis, we propose a method

to modify the RED algorithm for detecting packets from TCP Reno connections, just

simply dynamically adjusting the value of MinThresh and MaxThresh in RED Routers

according to the number of connections we predicted. With a careful analysis of

how Vegas and Reno use buffer space in RED routers, we will show that Reno and

Vegas can be compatible with one another if the buffer in RED Router is configured

properly. We use both of analysis and simulation experiment for evaluating the

fairness, and validate the effectiveness of the proposed mechanisms.

Keyword: TCP Reno; TCP Vegas; RED Router; Congestion Control; Fairness

 i

Acknowledgement

First, I would like to express my deep gratitude to my advisor, Prof. Yaw-Chung

Chen, for his enthusiastic guidance and continual encouragements in my graduate life.

Also, I would deeply appreciate to the new Ph.D. from our lab, Dr. Yi-Cheng Chan.

He gave me many beneficial suggestions and valuable comments in my research and

thesis writing.

Moreover, I would offer my heartfelt thanks to my lab-mate Iori, Kent, and

Kyho in the Multimedia Communications Laboratory and my friends in DSNS

laboratory. They made our laboratory such an enjoyable place to work and we had a

great time in my semester.

Finally, I would express my indebtedness to my family for their endless love,

inspiration, and support. I am really grateful to my lovely ex-girlfriend, I-Yi Liu.

She made my college life colorful and gave me many unforgettable pleasant

memories. Especially, I would thanks to Wan-Ting Huang. With her consideration

and inspiration, I have the power to complete this thesis.

Chun-Wei Chang

National Chiao Tung University in Hsinchu, Taiwan.

June 2004

 ii

TABLE OF CONTENTS

CHAPTER PAGE

Abstract in English i

Acknowledgment ii

Table of Contents iii

List of Figures v

1 Introduction . 1

 1.1 Evolution of Transmission Control Protocol (TCP) 1

 1.2 Motivation and Contribution 3

 1.3 Thesis Outline 4

2 Related Work 5

 2.1 TCP Congestion Control Mechanisms 5

 2.1.1 TCP Reno 8

 2.1.2 TCP Vegas 10

 2.2 Source-Based Congestion Avoidance Mechanisms 13

 2.2.1 Enlarge α and β 13

 2.2.2 TCP New Vegas 14

 2.2.3 TCP Vegas-A 15

 2.2.4 TCP Vegas+ 16

3 Proposed Approach based on RED Routers 18

 3.1 Problem Description 18

 3.2 Characteristics of Random Early Detection (RED) 20

 iii

 3.3 Effect with or without RED Router 25

 3.4 Proposed RED Router based Algorithm 29

4 Performance Evaluation 34

 4.1 Fairness Improvement 34

 4.2 Evaluation of Inaccurate Prediction. 44

 4.3 Gradual Deployment 49

5 Conclusion and Future Work 53

 REFERENCES 55

 iv

LIST OF FIGURES

Figure PAGE

Figure 2.1 Congestion control diagram of TCP Reno 7

Figure 2.2 Network topology 13

Figure 2.3 Throughput (β=α+2) 13

Figure 3.1 RED thresholds on a FIFO queue 24

Figure 3.2 Drop probability function for RED 24

Figure 3.3 Network topology 25

Table 3.1 Comparison between two connections with/without RED Router . 26

Figure 3.4 Throughput comparison between Drop-tail Router and RED Router 28

Figure 3.5 Throughput varying the buffer size B (bandwidth = 1500 Kb/s) . . 29

Figure 3.6 Queuing Size comparison between Drop-tail Router and RED Router. 30
Figure 3.7 Congestion Win comparison between Drop-tail Router and RED
 Router. 31

Figure 4.1 Network topology 35

Table 4.1 Comparison between five connections with/without RED Router . 36

Figure 4.2 Throughput comparison between Drop-tail Router and RED Router 38

Figure 4.3 Queuing Size comparison between Drop-tail Router and RED
Router 39

Figure 4.4 Congestion Win comparison between Drop-tail Router and RED
 Router 40

Table 4.2 Comparison between ten connections with/without RED Router. . .41

Figure 4.5 Throughput Ratio with Drop-tail Router or RED Router 43

Table 4.3 Comparison of ten connections with mis-predicted RED Router . . 45

Figure 4.6 8V2R comparison between Drop-tail Router and RED Router . . 47

 v

Figure 4.7 Throughput Ratio with Drop-tail Router or mis-predicted RED
 Router 48

Figure 4.8 Network topology for gradual deployment 49

Table 4.4 Performance comparison in gradual deployment network . . . 50

Figure 4.9 Throughput comparison with all Drop-tail Routers
or all RED Routers 52

Figure 4.10 Throughput comparison between Vegas and Reno with four conditions 52

 vi

CHAPTER 1

Introduction

1.1 Evolution of Transmission Control Protocol (TCP)

With the fast growth of Internet traffic, TCP has become the most widely used

end-to-end transport protocol on the Internet for congestion control. TCP uses

window-based flow control to pace the transmission of packets. Each source

maintains a “window size” variable that limits the maximum number of packets that

can be outstanding: transmitted but not yet acknowledged. When a window’s worth

of data is outstanding the source must wait for an acknowledgment before sending a

new packet. Two features of this general strategy are important. First, the

algorithm is “self-clocking” meaning that TCP automatically slows down the source

when the network becomes congested and acknowledgments are delayed. The

second is that the window size variable determines the source rate: roughly one

window’s worth of packets is sent every roundtrip time. This second feature is

exploited in Jacobson’s paper [1] in which he proposed an Additive-Increase-

Multiplicative-Decrease algorithm to adapt the window size to network congestion.

Transmission Control Protocol (TCP) has several implementation versions which

intend to improve network utilization. The first version of TCP, standardized in

RFC793, defined the basic structure of TCP, i.e. the window-based flow control

 1

scheme and a coarse-grain timeout timer. The second version, TCP Tahoe, added the

congestion avoidance scheme and fast retransmission proposed by Van Jacobson [1].

The third version, TCP Reno, extended the congestion control scheme by including

fast recovery scheme [2]. Today, TCP Reno is the most popular version and most

TCP congestion controls are based on this approach. The reason of using such a

window-based adjustment approach is the simplicity in implementation.

However, TCP Tahoe and Reno versions (and their variants), which are widely

used in the current Internet, are not perfect in terms of throughput and fairness among

connections. TCP Reno congestion control reacts to the network congestion only

after detecting a loss, that is, after the network congestion has already occurred.

This avoids congestion collapse, since the transmission rate is reduced as soon as a

packet loss occurs; but this generates an intrinsic instability of the congestion control,

whose evidence is the periodical oscillation of the source transmission rate.

TCP Vegas, proposed by Brakmo and Peterson in [3], represents a valid

alternative to the congestion control performed by the currently standard and most

widespread version of TCP, called TCP Reno. Although it introduces new

techniques into all the main mechanisms of TCP, it is fully compatible with all the

standard versions of TCP, because the changes only concern the TCP sending side.

TCP Vegas, by modifying the congestion avoidance scheme of TCP Reno, can achieve

a 37–71% higher throughput than TCP Reno did in a homogeneous environment. In

addition to a higher throughput, TCP Vegas has a fairer and more stable bandwidth

share than TCP Reno does.

TCP Vegas enhances the congestion avoidance algorithm of TCP Reno. The

key idea is that TCP Vegas dynamically increases/decreases its sending window size

according to observed RTTs (Round Trip Times) of sending packets, whereas TCP

Tahoe/Reno only continues increasing its window size until a packet loss is detected.

 2

1.2 Motivation and Contribution

Motivation Several simulation works have verified that TCP Vegas is better

than TCP Reno in terms of throughput (between 37 and 71% better than Reno),

fairness, stability, packet loss rate, end-to-end delay and ability in avoiding network

congestion in a very large number of network environments (see [3–6]). For this

reason TCP Vegas has been the subject of a number of recent studies (e.g., [7-8]).

The merits of TCP Vegas would appear to suggest that it should replace TCP

Reno soon. However, an unfairness problem occurs when TCP Reno and Vegas

connections coexist [4,9]. TCP Reno is an aggressive control scheme in which each

connection captures more bandwidth until the transmitted packets are lost.

Meanwhile, TCP Vegas is a conservative scheme in which each connection obtains a

proper bandwidth. Thus, the TCP Reno connections take bandwidth from the TCP

Vegas connections when they coexist. The problem is that TCP Reno is intrinsically

much more aggressive than TCP Vegas, because it reduces its transmission rate only

after packet loss detection. This represents the main reason why TCP Vegas cannot

be widely proposed to the users as a reliable transport protocol.

TCP Vegas performs poorly in a situation in which two versions coexist. Users

prefer not to adopt TCP Vegas despite its superior performance to that of TCP Reno in

a single version environment. However, TCP Vegas is actually a very good

congestion control and worth adopting. Resolving this unfairness is very important

in the transition from TCP Reno to Vegas.

Therefore, given that TCP Vegas basic approach is a sound one, there is a need

for some modifications of its basic congestion control algorithm to stimulate its use

among users.

 3

Contribution In this thesis, we propose a method to modify the RED algorithm

for detecting packets from TCP Reno connections, just simply dynamically adjusting

the value of MinThresh and MaxThresh in RED Routers according to the number of

connections we predicted [10]. For this purpose, we can utilize the algorithm

proposed in [11] to detect mis-behaving flows, which are TCP Reno connections in

the current content. Then the throughput of TCP Reno connections can be decreased

by intentionally dropping packets of TCP Reno at the router.

With a careful analysis of how Reno and Vegas use buffer space in RED routers,

we will show that Reno and Vegas can be compatible with one another if the buffer in

RED Router is configured properly. Further, overall network performance actually

improves with the addition of properly configured Vegas flows competing

head-to-head with Reno flows, thus encouraging the incremental adoption of Vegas.

1.3 Thesis Outline

The rest of this thesis is organized as follows. In Chapter 2, we first introduce

congestion control mechanisms of TCP Reno and TCP Vegas, and then elucidate

several TCP Vegas variants to solve the fairness problem. We next describe the RED

Router we proposed in this thesis and the way to set the value of MinThresh and

MaxThresh in RED Routers properly in Chapter 3. In Chapter 4, we present the

network model used in our simulation experiments and show the analysis results of

fairness between two versions of TCP, which are validated by the simulation results.

Finally, we conclude the thesis and present some future works in Chapter 5.

 4

CHAPTER 2

Related Work

In this Chapter, we first summarize the congestion control mechanisms of two

versions of TCP; TCP Reno and TCP Vegas. For detailed explanation, refer to [12]

for TCP Reno and [3] for TCP Vegas. Then, we describe several methods to solve

the fairness problem between TCP Reno and TCP Vegas presented in [13][14][15][16]

2.1 TCP Congestion Control Mechanisms

Congestion control is a distributed algorithm to share network resources among

competing sources. It consists of a source algorithm (e.g., Reno, Vegas, etc.), that

dynamically adjust source rates based on congestion in end-to-end paths, and a link

algorithm (e.g., Drop Tail, RED, REM, etc.), that updates, implicitly or explicitly, a

certain congestion measure at each link and feeds it back, implicitly or explicitly, to

sources that use this link. Different protocols use different metrics as congestion

measure. For example, Reno uses loss probability, and as it turns out Vegas uses

queuing delay. Congestion control which is a distributed algorithm carried out by

sources and links over the network to solve a global optimization problem, and that

different protocols (Reno, Vegas, Drop Tail, RED, REM, etc.) are different ways to

solve the same prototypical problem with different objective functions.

 5

A TCP connection contains three entities: sender, router, and receiver. A sender

uses some algorithms to estimate and control the amount of data to be retransmitted to

the receiver through some routers. A router in a TCP connection only forwards data

packets. A receiver acknowledges the received packets to the sender by sending

acknowledgement (ACK) packets. If any out-of-order packet is received, the

receiver sends a duplicate ACK back to the sender.

To ensure efficient use of network bandwidth, TCP controls its sending rate

based on the feedback from the network. In order to control the sending rate, TCP

estimates the available bandwidth in the network via a bandwidth-estimation scheme

[4]. In Tahoe and Reno, the bandwidth-estimation scheme uses packet losses (as an

indication of network congestion) to estimate available bandwidth while Vegas uses

the difference in the expected and actual sending rates.

TCP Reno and TCP Vegas use slow start at the beginning of the connection, also

whenever a packet loss is detected via timeout. When the congestion window

reaches a threshold value, called slow start threshold, TCP Reno and TCP Vegas leave

slow start and enter congestion avoidance.

Both protocols can detect packet losses by means of two mechanisms. If the

timeout (set when the packet is sent) expires, they reduce their congestion window to

one packet size, and then they start again in slow start mode. Otherwise, if three

duplicated acknowledgements (ack’s) come back to the sender before the timeout, the

protocols perform fast retransmit and fast recovery.

During the connection, the TCP receiver can limit the sender congestion window

by advertising the receiver window value.

TCP Vegas differs from TCP Reno in the way slow start, congestion avoidance

and fast retransmit are implemented.

 6

TCP Reno and TCP Vegas [3] adopt an end-to-end closed-loop adaptive window

congestion control. It is based on five fundamental mechanisms: slow start,

congestion avoidance, retransmission timeout, fast retransmit and fast recovery.

Figure 2.1 Congestion control diagram of TCP Reno.

TCP typically uses the acknowledgements to estimate the available bandwidth.

Reno and Vegas differ mainly in how to estimate bandwidth. Reno treats the packet

loss as an indicator of network congestion. The source is aware that it overuses the

bandwidth when the transmitted packets are lost. Vegas calculates the expected and

actual rates based on the round-trip time of each packet and controls the amount of

transmitted packet by using the difference between the expected and actual rates. This

section describes the control scheme of Reno [12] and then presents TCP Vegas [3].

 7

2.1.1 TCP Reno

In TCP Reno, the windows size is cyclically changed in a typical situation. The

window size continues to increase until packet loss occurs. TCP Reno has two

phases in increasing its window size; slow start phase and congestion avoidance

phase.

While there are no packet losses, Reno continues to increase its window size, and

hence the sending rate by one packet each round-trip time, thus allowing congestion

to eventually occur. Reno then detects congestion via packet loss and recovers from

it by halving the size of the sender window (i.e., halving the sending rate).

Reno uses a congestion window (cwnd) to control the amount of transmitted data

in one round trip time (RTT) and a maximum window (mwnd) to limit the maximum

value of cwnd. The control scheme of Reno can be divided into five parts, which are

interpreted as follows. Figure 2.1 schematically depicts the TCP Reno version

specified with these parts.

1. Slow-start. As a connection starts or a timeout occurs, the slow-start state begins.

 The initial value of cwnd is set to one packet in the beginning of this state. The

 sender increases cwnd exponentially by adding one packet each time it receives

 an ACK. Slow-start controls the window size until cwnd achieves a preset

 threshold, slow-start threshold (ssthresh). When cwnd reaches ssthresh, the

 congestion avoidance’ state begins.

2. Congestion avoidance. Since the window size in the slow start state expands

 exponentially, the packets sent at this increasing speed would quickly lead to

 network congestion. To avoid this, the ‘congestion avoidance’ state begins when

 cwnd exceeds ssthresh. In this state, cwnd is added by 1/cwnd packet every

 receiving an ACK to make the window size grow linearly.

 8

3. Fast retransmission. The duplicate ACK is caused by an out-of-order packet

 received in the receiver. The sender treats it as a signal of a packet loss or a

 packet delay. If three or more duplicate ACKs are received in a row, packet loss

 is likely. The sender performs retransmission of what appears to be the missing

 packet, without waiting for a coarse-grain timer to expire.

4. Fast recovery. When fast retransmission is performed, ssthresh is set to half of

 cwnd and then cwnd is set to ssthresh plus three packet sizes. Cwnd is added by

 one packet every receiving a duplicate ACK. When the ACK of the retransmitted

 packet is received, cwnd is set to ssthresh and the sender re-enters the congestion

 avoidance. Cwnd is reset to half of the old value of cwnd after fast recovery.

5. Timeout retransmission. For each packet sent, the sender maintains its

 corresponding timer, which is used to check for timeout of non-received ACK of

 the packet. If a timeout occurs, the sender resets the cwnd to one and restarts

 slow-start. The default value of clock used for the round-trip ticks is 500 ms, i.e.

 the sender checks for a timeout every 500 ms.

When an ACK is received by TCP at the sender side at time t + tA [sec], the current

window size cwnd(t + tA) is updated from cwnd(t) as follows;

Slow start phase:

cwnd(t + tA) = cwnd(t) + 1, if cwnd(t) < ssth(t);

Congestion avoidance phase:

cwnd(t + tA) = cwnd(t) + 1/cwnd(t), if cwnd(t) ≧ ssth(t);

Timeout expiration:

cwnd(t) = 1; ssth(t) = cwnd(t)/2

Fast retransmit:

ssth(t) = cwnd(t)/2; cwnd(t) = ssth(t)

 9

2.1.2 TCP Vegas

TCP Vegas [3] was introduced in 1994 as an alternative to TCP Reno

[BrakmoandPeterson1995]. It improves upon each of the three mechanisms of TCP

Reno. The first enhancement is a more prudent way to grow the window size during

the initial use of slow-start and leads to fewer losses. The second enhancement is an

improved retransmission mechanism where timeout is checked on receiving the first

duplicate acknowledgment, rather than waiting for the third duplicate

acknowledgment (as Reno would), and leads to a more timely detection of loss. The

third enhancement is a new congestion avoidance mechanism that corrects the

oscillatory behavior of Reno. In contrast to the Reno algorithm, which induces

congestion to learn the available network capacity, a Vegas source anticipates the

onset of congestion by monitoring the difference between the rate it is expecting to

see and the rate it is actually realizing. Vegas’ strategy is to adjust the source’s

sending rate (window size) in an attempt to keep a small number of packets buffered

in the routers along the path.

Vegas enhances Reno by adopting a bandwidth-estimation scheme that tries to

avoid rather than react to congestion. Vegas uses the measured RTT to accurately

calculate the amount of data packets that the sender can send to avoid packet losses.

In Vegas, the sender must record the RTT and the sending time of each packet. The

minimum round trip time, baseRTT, must also be kept. Herein, three modifications are

proposed based on the measured RTT [3].

(1) New congestion avoidance. Specifically, Vegas uses the difference in the

expected and actual flow rates to estimate the available bandwidth in the network.

When the network is not congested, the actual flow rate is close to the expected flow

 10

rate; otherwise, the actual rate is smaller than the expected rate, indicating that buffer

space in the network is filling up and that the network is approaching a congested

state. The difference in flow rates can be translated into the difference between the

window size and the number of acknowledged packets during the RTT, respectively.

When receiving an ACK, the sender calculates the difference of the expected and

the actual throughputs as follows:

diff = (expected – actual) * baseRTT,

expected = cwnd / baseRTT,

actual = cwnd / average measured RTT.

Expected throughput represents the available bandwidth for this connection

without network congestion, and actual throughput represents the bandwidth currently

used by the connection. To adjust the size of the congestion window (cwnd)

appropriately, Vegas defines two thresholds (α, β) (whose default values are 1 and 3,

respectively) as a tolerance that allows the source to control the difference between

expected and actual throughputs in one RTT. Cwnd is increased by one packet if diff

< α and decreased by one packet if diff > β. That is

cwnd(t + tA) = cwnd(t) + 1, if diff <α

cwnd(t + tA) = cwnd(t) - 1, if diff >β

cwnd(t + tA) = cwnd(t), if otherwise (α≤ diff ≤β)

Conceptually, Vegas tries to keep at least α packets but no more than β packets

queued in the network. Thus, with only one Vegas connection, the window size of

Vegas converges to a point that lies between window +α and window + β where

window is the maximum window size that does not cause any queuing.

Selecting α and β holds an implicit tradeoff between network utilization,

goodput, and fairness. By using the default settings for these parameters, i.e., α = 1,

β = 3, prior research inadvertently favored Reno over Vegas [4].

 11

(2) Earlier packet loss detection. Upon receiving a duplicate ACK, the sender

checks whether the difference between the current time and the sending time plus

baseRTT of the relevant packet is greater than the timeout value. If it is, Vegas

retransmits the packet without waiting for three duplicate ACKs. This modification

can avert a situation in which a sender never receives three duplicate ACKs and,

therefore, must rely on the coarse-grain timeout.

Aiming to multiple-packet-loss problem, Vegas pays special attention to the first

two partial ACKs after a retransmission. The sender determines whether this is a

multiple-packet-loss by checking the timeout of unacknowledged packets. If any

timeout occurs, the sender immediately retransmits the packet without waiting for any

duplicate ACK. Also to avoid the over-reduction of window size due to the loss

occurred at the previous window size, Vegas compares the timestamp of the

retransmitted packet and the timestamp of the last window decrease. When the

retransmitted packet is sent before the last decrease, Vegas will not decrease cwnd on

receiving duplicate ACKs for this packet because this packet loss occurred due to the

previous window size. For Vegas, it is very important that designing such a

mechanism to avoid unnecessary reduction of cwnd because of its quick response of

packet loss.

(3) Modified slow-start mechanism. To detect and avoid congestion during

slow-start, Vegas doubles it window size every other RTT, instead of every RTT.

When a TCP Vegas source receives three duplicate Ack’s, it performs fast

retransmit and fast recovery as TCP Reno does. Actually, TCP Vegas develops a

more refined fast retransmit mechanism based on a fine-grain clock, whose details are

described in [3]. After fast retransmit TCP Vegas sets the congestion window to 3/4

of the current congestion window and performs again the congestion avoidance

algorithm.

 12

2.2 Source-Based Congestion Avoidance Mechanisms

In this section, we describe several methods to solve the fairness problem

between TCP Reno and TCP Vegas presented in another paper.

2.2.1 Enlarge α and β

Lai [13] proposes a simple approach, parameter adjustment for Vegas, to solve

the fairness problem between TCP Reno and TCP Vegas.

Vegas relates the difference between the actual and expected throughput to the α

and β thresholds, which values can thus be thought in terms of the number of extra

buffers the connection occupies in the network. Thus, the Vegas connections with

larger α and β allow more packets queuing in the buffer and result in higher

throughput. We adjust α and β to observe the effects of these parameters.

A simulation is conducted by varying α and β. Figure 2.2 is the simulation

topology and Figure 2.3 shows that Vegas with larger α and β behaves more

aggressively. Thus, Lai [13] finally suggests choosing a large α and β.

 Figure 2.2 Network topology. Figure 2.3 Throughput (β=α+2).

 13

2.2.2 TCP NewVegas

Andrea De Vendictis [14] describe a new adaptive mechanism for TCP Vegas,

called TCP NewVegas, designed in order to improve its performance even in

heterogeneous network scenarios.

TCP NewVegas is able to overcome this weakness of TCP Vegas, by hindering it

to perform the last two phases when it competes with TCP Reno sources. The

changes introduced in TCP NewVegas are confined within the congestion avoidance

mechanism. Initially, TCP NewVegas sets the thresholds α and β to default values

α0 and β0 (in this work, respectively, set to 1 and 3). Whenever an ack arrives at the

source, TCP NewVegas updates the thresholds as follows:

if ((RTT > RTTold) and (W <= Wold))

{ α = α + 1; β = β + 1; }

if ((RTT <= RTTold) and (α > α0))

{ α = α - 1; β = β - 1; }

where RTT is the round trip delay of the target packet, RTTold the previous one, W

the current congestion window size and Wold the previous one.

Threshold updates are allowed once every round trip time. When a timeout

expiration or a triple duplicate ack’s occur, the two thresholds are set again to the

initial values α0 and β0. The key concept, expressed by the first condition, is that if

the congestion is increasing (last RTT larger than the previous one) but TCP

NewVegas has not increased its congestion window, it does not consider itself

responsible for the network congestion. Then, the source is allowed to increase the

number of packets it can put into the network buffers. We increase α and β by 1 in

order to follow the exact behavior of TCP Reno in congestion avoidance, given that it

put into the network an extra packet every round trip time.

 14

2.2.3 TCP Vegas-A

K.N. Srijith [15] introduced a modified version of TCP Vegas, TCP Vegas-A

which is able to obtain a fairer share of the network bandwidth when competing with

other TCP flows. The main idea in Vegas-A is that fixing α and β be made adaptive.

TCP Vegas-A

Th(t) = actual throughput at time t; Th(t-rtt) = actual throughput at previous time rtt;

if β > diff > α {

 if Th(t) > Th(t-rtt) { cwnd = cwnd – 1; α = α - 1; β = β - 1; }

/* The reasoning is that, even though diff > α, the throughput has been

increasing. This indicates that the network is not fully utilized and that

network bandwidth is still available. Hence, the sending rate can be increased,

to probe the network. */

/* Since throughput is increasing over time, diff is decreasing. The existing

small values of α and β prevent the connection from making use of the available

bandwidth. Hence we increase α and β to help congestion window grow. */

 else if Th(t) <= Th(t-rtt) {no update of cwnd, α, β}

}

else if diff < α {

 if α > 1 and Th(t) > Th(t-rtt) { cwnd = cwnd – 1; }

 else if α > 1 and Th(t) < Th(t-rtt) { cwnd = cwnd – 1; α = α - 1; β = β - 1; }

 else if α = 1 { cwnd = cwnd + 1; }

}

else if diff > β { cwnd = cwnd – 1; α = α - 1; β = β - 1; }

else {no update of cwnd, α, β}

 15

2.2.4 TCP Vegas+

Go Hasegawa [16] modify TCP Vegas so that it has an ability to compete the

link at least equally with TCP Reno connections, while preserving the merit of TCP

Vegas of the stability of the window size.

TCP Vegas+ normally behaves identically with TCP Vegas, but it enters the

other mode to increase its window size more aggressively when it perceives to have

competing connections of TCP Reno. More specifically, TCP Vegas+ has two modes

for updating its window size;

Moderate Mode: In the moderate mode, The TCP Vegas+ sender behaves

 identically to the original TCP Vegas.

Aggressive Mode: In the moderate mode, The TCP Vegas+ sender host

 behaves identically to the original TCP Reno.

To switch between the above two modes, we introduce new variables count and

countmax. First, count is updated according to the following algorithm.

1. If RTT is larger than the previous value while the window size is not

 increased, the sender increments count by 1.

2. On the other hand, if RTT becomes smaller, sender decrements count by 1.

3. If packet loss is detected by fast retransmit algorithm, count is halved.

4. If packet loss is detected by retransmission timeout, count is reset to 0.

TCP Vegas+ then changes its mode according to the count value;

Moderate Mode Aggressive Mode: if count reaches a certain threshold

 value countmax, the sender changes its mode from the moderate mode to

 the aggressive mode.

Aggressive Mode Moderate Mode: If count becomes 0, it goes back to

 the moderate mode.

 16

The proposed solutions present the following benefits:

1. The changes are confined to the TCP sender side, so modifications are not required

 at the receiver side nor within the network; this makes these modified versions of

 TCP Vegas easy to implement with respect to other solutions proposed in [16]

 that require changes in the network.

2. The algorithm does not introduce further thresholds generally hard to set, since it is

 completely adaptive to the status of the network; in this prospect TCP NewVegas

 appears to be more efficient than another algorithm proposed in [16], in which

 TCP Vegas should react to the aggressiveness of TCP Reno when a parameter

 exceeds a threshold, whose value is not easy to choose.

3. These modified versions of TCP Vegas behavior are not much different from that of

 the original TCP Vegas in presence of other TCP Vegas sources; so it is able to

 preserve all the nice features of the original TCP Vegas: good throughput

 performance, stability, fairness, ability in network congestion avoidance.

The reason why we didn’t choose end-to-end TCP Vegas algorithm to solve the

fairness problem between TCP Reno and TCP Vegas is that it always needs more

buffer size in routers, because those methods enable TCP Vegas connections to

compete with TCP Reno connections by increasing its congestion window when it

detects TCP Reno connections coexist (whether it is true or not). The fundamental

concept of these methods is based on the in formation of the measured RTT and

current congestion window to predict if TCP Reno connections exist. Mis-prediction

of those methods will cause network more congestion, while our proposed RED

Router algorithm is another way to restrict the mis-behave connections by early

packet drop. The RED Router algorithm we proposed is present in Chap 3 and the

performance evaluation is discussed in Chap 4.

 17

CHAPTER 3

Proposed Approach based on RED Routers

In this Chapter, we describe the reason why the fairness between TCP Reno and

TCP Vegas occurs at first, then the RED router in detail. Through a simple network

topology, we will show the fairness can be improved by RED router and discuss how

to set the parameter MaxThresh and MinThresh properly to utilize network bandwidth.

3.1 Problem Description

TCP Vegas is a more refined congestion control mechanisms based on the

estimation of round trip delays, it outperforms the more widespread TCP Reno

congestion control, which is based only on the packet loss detection, in various

environments. However, these mechanisms make TCP Vegas less aggressive with

respect to TCP Reno; thereby TCP Vegas sources show serious weakness in taking the

available bandwidth when competing with other TCP Reno sources. This is a major

reason that hinders the spread of TCP Vegas among Internet users.

In a homogeneous case, TCP Vegas outperforms TCP Reno owing to its higher

throughput and stability. However, TCP Vegas is in a squally situation when TCP

Reno and Vegas coexist. Because two TCP versions share the same buffer in the

routers, the aggressive behavior of TCP Reno and the conservative behavior of TCP

 18

Vegas cause unfairness when they are used simultaneously. TCP Reno obtains a

significant amount of bandwidth, which originally belonged to TCP Vegas. Also, as

more connections change their version, TCP Reno takes more bandwidth. Thus, users

delay, even protest, to use TCP Vegas despite its better performance than TCP Reno in

a homogeneous environment. This accounts for why TCP Vegas is still unpopular.

Hasegawa et al. [16] show that with the RED routers in place of the tail-drop

routers, the fairness between Vegas and Reno can be improved to some degree. But

there exists an inevitable trade-off between fairness and throughput. That is, if the

packet dropping probability of RED is set to be large, the throughput of TCP Vegas

can be improved, but the total throughput is degraded.

Replacing drop-tail policy with RED policy, a low average queue length is

maintained. Using the drop-tail policy, Reno will unlimitedly increase its window

size until buffer is full. However, using the RED, it will encounter packet loss

earlier and more frequently. Thus Reno will release some bandwidth and allow

Vegas to improve its performance.

Lai [13] points out that when packet losses occur, the Reno window is halved

and the Vegas window is decreased by one. Thus the aggressive behavior of Reno is

constrained. Hence, MaxThresh and MinthThresh should be set small enough to

favor Vegas. How ever, if MaxthThresh is too low, too many packets are lost and the

total throughput falls accordingly. He suggests MinThresh should be set low enough

and MaxThresh should not be too large.

This gives us a good idea to use RED router to solve the fairness problem

between TCP Reno and TCP Vegas. However, Lai [13] doesn’t address the proper

value to RED Router, and we should set the two thresholds dynamically to adapt the

network environment, so we use the prediction of the number of connections [10] as a

key to set two thresholds dynamically, and the fairness problem can be improved.

 19

3.2 Characteristics of Random Early Detection (RED)

Random Early Detection (RED) is a queuing discipline for routers in which,

when congestion is anticipated, packets are randomly dropped to alert the senders to

slow down.

To understand the basic idea, consider a simple FIFO queue. Rather than wait

for the queue to become completely full and then be forced to drop each arriving

packet (the tail drop policy), we could decide to drop each arriving packet with some

drop probability whenever the queue length exceeds certain drop level. This idea is

called early random drop. The RED algorithm defines the details of how to monitor

the queue length and when to drop a packet.

First, RED computes an average queue length using a weighted running average

similar to the one used in the original TCP timeout computation. That is, AvgLen is

computed as

AvgLen = (1 - Weight) * AvgLen + Weight * SampleLen

Where 0 < Weight < 1 (usually 0.002) and SampleLen is queue length each time a

packet arrives. In most software implementations, the queue length is measured

every time a new packet arrives at the gateway. In hardware, it might be calculated

at some fixed sampling interval.

The reason for using an average queue length rather than an instantaneous one is

that it more accurately captures the notion of congestion. Because of the busty

nature of Internet traffic, queues can be filled up very quickly and then become empty

again. If a queue is most of the time empty, then it’s not appropriate to conclude that

the router is congested and to tell the hosts to slow down. Thus, the weighted

running average calculation tries to detect long-lived congestion by filtering out

 20

short-term changes in the queue length. We can think of the running average as a

low-pass filter, where Weight determines the time constant of the filter.

Second, RED has two queue length thresholds that trigger certain activity:

MaxThreshold and MinThreshold. When a packet arrives at the router, RED

compares the current AvgLen with these two thresholds according to the following

rules:

 if AvgLen <= MinThreshold then

 enqueue the packet

 if MinThreshold < AvgLen < MaxThreshold then

 calculate probability P

 drop arriving packet with probability P

 if ManThreshold <= AvgLen then

 drop arriving packet

That is, if the average queue length is smaller than the lower threshold, no action is

taken, while if the average queue length is larger than the upper threshold, the packet

will always be dropped. If the average queue length is between the two thresholds,

then the newly arriving packet will be dropped with probability P. This situation is

depicted in Figure 3.1. The approximate relationship between P and AvgLen is

shown in Figure 3.2. Note that the probability of drop increases slowly when

AvgLen is between the two thresholds, reaching MaxP at the upper threshold, at

which point it jumps to unity. The rationale behind this is that if AvgLen reaches the

upper threshold, then the gentle approach (dropping few packets) is not working and a

smoother transition from random dropping to complete dropping rather than the

discontinuous approach shown here, may be appropriate.

Although Figure 3.2 shows the probability of dropping as a function of only

AvgLen, the situation is actually a little more complicated. In Fact, P is a function

 21

of both AvgLen and how long it has been since the last packet was dropped.

Specifically, it is computed as follows:

TempP= MaxP * (AvgLen - MinThreshold)/(MaxThreshold - MinThreshold)

P = TempP / (1 - count * TempP)

MinThreshold MaxThreshold

AvgLen

Figure 3.1 RED thresholds on a FIFO queue.

P(drop)

1.

AvgLen Max

MaxThreshMinThresh

Figure 3.2 Drop probability function for RED.

 22

TempP is the variable plotted on the y-axis in Figure 3.2. count keeps track of how

many newly arrived packets have been queued (not dropped) while AvgLen has been

between the two thresholds. P increases slowly as count increases, thereby making

a drop more likely as the time increases since the last drop. This makes closely

spaced drops relatively less likely than widely spaced drops. The extra step in

calculating P was introduced by the inventors of RED when they observed. Without it,

the packet drops were not well distributed over time, but instead tended to occur in

clusters. Because packet arrivals from a certain connection are likely to arrive in

bursts, this clustering of drops is likely to cause multiple drops in a single connection.

This is not desirable became only one drop per round-trip time is needed to cause a

connection to reduce its window size, whereas multiple drops might cause it back into

slow start.

Hopefully, if RED drops a small percentage of packets when AvgLen exceeds

MinThreshold, the effect will be TCP connections reducing their window sizes, this

in turn will reduce packets arriving rate at the router. All going well, AvgLen will

then decrease and congestion can be avoided. The queue length can be kept short,

while throughput remains high since few packets are dropped.

Because RED is operating based on a queue length averaged over time, it is

possible for the instantaneous queue length to be much longer than AvgLen. In this

case, if a packet arrives and there is nowhere to store it, it will be dropped. When

this happens, Red is operating in tail drop mode. One of the goals of RED is to

prevent tail drop behavior if possible.

The random nature of RED confers an interesting property on the algorithm.

Because RED drops packets randomly, the probability that RED decides to drop a

particular flow’s packets is roughly proportional to the share of the bandwidth that

flow is currently getting at that router. This is because a flow that is sending a

 23

relatively large number of packets is providing more candidates for random dropping.

Thus there is some sense of fair resource allocation built in RED, although it is by no

means precise.

Consider the setting of the two thresholds, MaxThreshold and MinThreshold.

If the traffic is fairly busty, then MinThreshold should be sufficiently large to allow

the link utilization to be maintained at an acceptabe high level. Also, the difference

between the two thresholds should be larger than the typical increase in the calculated

average queue length in one RTT. Setting MaxThreshold to twice MinThreshold

seems to be a reasonable rule of thumb given the traffic mix on today’s Internet. In

addition, since we expect the average queue length to hover between the two

thresholds during periods of high load, there should be enough free buffer space

above MaxThreshold to absorb the natural bursts that occur in Internet traffic

without forcing the router to enter tail drop mode.

Note that a fair amount of analysis has gone into setting the various RED

parameters-for example, MaxThreshold, MinThreshold, MaxP, and Weight- all in

the name of optimizing the power function (throughput-to-delay ratio). The

performance of these parameters has also been confirmed through simulation, and the

algorithm has been shown not to be overly sensitive to them. It is important to keep

in mind, however, that all of this analysis and simulation hinges on a particular

characterization of the network workload. The real contribution of RED is a

mechanism by which the router can more accurately manage its queue length.

Defining precisely what constitutes an optimal queue length depends on the traffic

mix and is still a subject of research with real information now being gathered from

operational deployment of RED in the Internet.

 24

3.3 Effect with or without RED Router

Before presenting our RED algorithm, we would like to demonstrate a simple

scenario to show the effect between two connections, TCP Reno and TCP Vegas, if

the RED router is used.

The network simulator (ns) [17] developed by the Lawrence Berkeley

Laboratory is used to run our simulations. This simulator is often used in

TCP-related studies [4, 9]. According to Figure 3.3, a two-router configuration is

used as the network topology, where S, D, and R denote ‘Source’, ’Destination’, and

‘Router’, respectively. The bottleneck link between two neighboring routers is 40

ms in delay and 1.5 Mbps capacity. The access links between sources and

neighboring routers or receivers and neighboring routers are 0.4 ms in delay and 10

Mbps capacity. Each packet is fixed at a length of 1000 bytes. The buffer size in

the bottleneck link router is set to 20 packets. The Minimum threshold and the

Maximum threshold we used in RED routers are 4 (packets) and 6 (packets). The

simulation time lasts for 100 seconds.

Figure 3.3 Network topology.

 25

As it is shown in Table 3.1, two versions of TCP, where V and R stand for Vegas

and Reno respectively, are used in connection1 (S1-R1) and connection2 (S2-R2) to

show the effect between Drop-tail Router and RED Router. The Table summarizes

the total Arrive and Drop in packets, and the throughput of Source 1, Source 2 and

total in Kbps. The Fairness between TCP Vegas and TCP Reno is calculated by

which the throughput in Vegas is divided by the throughput in Reno. The ideal

throughput is about 1500 Kbps, so the network Utilization is count by 1500 divides

Total throughput.

Undoubtedly, we can see the TCP Vegas works well in Homogeneous network.

There is no packet drop both in Drop-tail routers and RED routers and the bottleneck

link can be full utilized (where 1496 rather than 1500, it is because for slow-start

phase and we have to wait the network stable).

However, the throughput in TCP Vegas is dramatically decreased when

competing with TCP Reno. The reason is that TCP Reno keep increasing its

congestion window until packet loss occurs while TCP Vegas only keep amount of

data packets in bottleneck link routers.

Drop-tail Router RED Router

 V vs V V vs R R vs R V vs V V vs R R vs R

Arrive 18711 18139 17918 18711 18291 17333

Drop 0 62 140 0 151 211

S1 926 323 711 926 646 725

S2 570 1120 708 570 801 636

Total 1496 1443 1419 1496 1448 1362

Fairness X 0.28886 X X 0.80604 X

Utilization 0.99781 0.96256 0.94613 0.99781 0.96544 0.90826

Table 3.1 Comparison between two connections with/without RED Router.

 26

It can be seen obviously that whether the Drop-tail routers and RED routers are

used or not, if the TCP Reno exists, the packet loss occurs inevitably. The more TCP

Reno connections exist, the more packets loss in bottleneck link routers. The link

utility gradually decreases when the number of TCP Reno connections increase and it

will lead to more packet drops. The Minimum threshold and the Maximum

threshold we used in RED routers are set to 4 (packets) and 6 (packets). This is

because among several experiments, we observe a better result based on both the

Total Throughput and the Fairness between TCP Vegas and TCP Reno. It is sure that

if we set these two thresholds smaller, TCP Vegas gets more throughputs. When two

connections competes the buffers in bottleneck link router, the one get more buffer

size, it can increase its congestion window size, and get more bandwidth. So, lower

threshold can prevent TCP Reno from inflating its window unnecessarily, and release

more bandwidth shared with TCP Vegas.

However, there is a tradeoff between network utility and fairness. The lower

threshold means higher probability of packet drop and lower performance. It leaves

us a good question, how to set the RED router parameters properly to fully utilize the

network and give TCP Vegas connections higher bandwidth, even higher than TCP

Reno connections.

Figure 3.4 shows the throughput comparison between TCP Vegas and TCP Reno

with Drop-tail router or RED router. There is no difference between Fig. 3.4(a) and

Fig. 3.4(b) when two connections are TCP Vegas. The throughput difference in TCP

Vegas and TCP Reno gets closer when a Drop-tail router in Fig. 3.4(c) is replaced by

RED router in Fig. 3.4(d). When there are only TCP Reno connections exist, the

throughput in Fig. 3.4(e) is more stable than in Fig. 3.4(f). The fact is that TCP

Reno keeps increasing its window size until its buffer in bottleneck link router is filled

up, so the more bottleneck link buffer in router, the longer TCP Reno Saw-tooth cycle.

 27

 (a) (b)

 (c) (d)

Fig 3.4

 (e) (f)

Figure 3.4 Throughput comparison between Drop-tail Routers and RED Routers.

 28

3.4 Proposed RED Router based Algorithm

On the previous section, we have seen that the RED router will favor TCP Vegas

connections, but how to set these two thresholds (MinThresh and MaxThresh)

properly still needs investigation. Before introducing our RED Router based

Algorithm, I would like to show some phenomena to describe the algorithm.

The network topology is the same as Fig. 3.3 in Sec. 3.3. Figure 3.5 shows the

throughput varying depending on the buffer size B. It is clear that the fairness

problem results from the buffer size when two version of TCP competing the same

bottleneck link. So, we have to prevent the buffer from mis-behaved connections by

RED Router.

Figure 3.6 is the same experiment in Sec. 3.3. The queue size in bottleneck

link routers tell us that 5 packets in buffer is enough for 2 TCP Vegas connections

used, while the rest of buffer will give TCP Reno a chance to get more bandwidth.

Figure 3.7 is the same experiment as that in Sec. 3.3. The CWND in Fig. 3.7(d)

shows that RED router will enable TCP Vegas to compete with TCP Reno.

Figure 3.5 Throughput varying the buffer size B (bandwidth = 1500 Kb/s).

 29

 (a) (b)

 (c) (d)

 (e) (f)

Figure 3.6 Queue occupancy comparison between Drop-tail Routers and RED Routers.

 30

 (a) (b)

 (c) (d)

 (e) (f)

Figure 3.7 Congestion Window comparison between Drop-tail Router and RED Router.

 31

Modification to RED Router
In order to realize our algorithm, we need some modification to the parameters of

RED routers. These parameters are show as follows:

n : number of connections in router we predict by [10]

B : Buffer size in bottleneck link router

β : TCP Vegas parameter

MinThresh : The lower bound in RED Router for queue length threshold

MaxThresh : The upper bound in RED Router for queue length threshold

Time Interval for RED Router to compute the number of connections:

 Every time a new packet arrives at the router.

If (B > βn) MinThresh = βn;

 else MinThresh = B;

If (B > (β+1)n) MaxThresh = (β+1)n;

 else MaxThresh = B;

The reason we use βn and (β+1)n for MinThresh and MaxThresh is described as

follows.

1. Since the buffer size in bottleneck link routers will be mis-used by TCP Reno

 when two versions of TCP compete with each other, after examining the packets

 queuing in the bottleneck router, βn is enough for TCP Vegas connections used.

2. The value of α and β in TCP Vegas means the number of packets that will be

 queued in the bottleneck router. The default value of α and β in TCP Vegas is 1

 and 3. So, we choose the max value 3 for MinThresh, and 4 for MaxThresh.

3. The number of connections is predicted by the mechanism in [10]. There maybe

 some inaccurate predictions, like overestimation or underestimation, and we

 have to eliminate the problem because underestimation leads to packet losses.

 32

4. The trade-off between the fairness ratio and the throughput is still an open issue,

 because lower threshold in RED Router will result in smaller throughput.

5. In Lai’s paper [13], he states that estimate the prerequisite for TCP Vegas

 connections to achieve stability. When the formula holds, TCP Vegas can

 achieve a fair and stable share of bandwidth. If it is not held, instability

 possibly occurs. So, we have to choose MinThresh a little larger thanβ to

 avoid instability caused by lack of buffer.

 (buffer size in packets / number of Vegas connections) ≧β

We will see more simulations to evaluate our proposed approach based on RED

routers in Chapter 4.

 33

CHAPTER 4

Performance Evaluation

In this Chapter, we compare the performance between TCP Vegas and TCP Reno

by using network simulator ns-2.27. We first show that the performance result

before/after our RED router-based algorithm is used, then inaccurate prediction in

connections is discussed and finally we will show how to deploy our RED router

based algorithm in the current Internet gradually.

4.1 Fairness Improvement

In order to validate the analytical model, we carried out simulations under ns

[17], the simulation tool is widely used in the networking research community.

Figure 4.1 shows the network used in this section. It consists of n sender hosts

using TCP Reno and TCP Vegas, n receiver hosts, two intermediate routers, and links

connecting the router and the sender/receiver hosts. The bandwidth of each link

between the sender/receiver hosts and the router is 50 Mbps. The bandwidth of the

bottleneck link between routers is w Mbps. The size of buffer at the router is 100

packets. The propagation delay between the sender/receiver hosts and the router and

that between the routers is represented by 1ms and 40 ms, respectively. As the

scheduling discipline at the router buffer, we consider drop-tail and RED algorithm.

 34

In our first experiment, we set bottleneck link bandwidth w = 1.5 Mbps and there

are 5 connections, so we set the Minimum threshold and the Maximum threshold used

in RED routers 15 (packets) and 20 (packets), respective, according to our RED router

algorithm. Each packet is fixed at a length of 1000 bytes. All sources start at time

0 and the simulation lasts 100 s.

As shown in Table 4.1, two versions of TCP, V and R, standing for Vegas and

Reno respectively, are used in 5 connections (Sx-Rx) to show the effect between

Drop-tail Router and RED Router. The Table summarizes the total Arrival and Drop

in packets, and the throughput of Source 1, Source 2, Source 3, Source 4, Source 5

and total in Kbps. The average throughput of Vegas and Reno is computed in Kbps.

The Fairness between TCP Vegas and TCP Reno is calculated by which the mean

throughput in Vegas is divided by the average throughput in Reno. The throughput

is 1500 Kbps, so the Utilization is calculated as Total throughput divided by 1500.

Undoubtedly, TCP Vegas works well in Homogeneous network. There is no

packet drop both in Drop-tail routers and RED routers, and the bottleneck link can be

fully utilized (where 1499 rather than 1500, it is because of slow-start phase and we

have to wait the network until it is stable).

Figure 4.1 Network topology.

 35

However, the throughput in TCP Vegas is dramatically decreased when a TCP

Reno connection exists. The reason is that TCP Reno keeps increasing its

congestion window until packet loss occurs, while TCP Vegas only keeps a amount of

data packets in the bottleneck link router.

We can see whether we use the Drop-tail routers or RED routers, if the TCP

Reno exists, the packet loss occurs inevitable. The more TCP Reno connections

exist, the more packets loss in the bottleneck link routers. The link utilization

gradually decreases when the number of TCP Reno connections increase because of

more packet drops.

It can be seen obviously that TCP Vegas is fairly treated when RED router is

used. The performance improvement is about 230~259% (which is counted based

on dividing TCP Vegas throughput in Drop-tail Router by that in RED router).

Drop-tail Router RED Router

 5V 4V1R 1V4R 5V 4V1R 1V4R

Arrival 18750 18320 18159 18750 18370 18464

Drop 0 87 152 0 166 498

S1 300 80 81 300 210 187

S2 300 81 346 300 206 306

S3 299 79 338 299 191 273

S4 299 79 340 299 222 317

S5 299 1131 326 299 620 337

Vegas 299 80 81 299 207 187

Reno X 1131 338 X 620 308

Fairness X 0.07073 0.23964 X 0.33387 0.60714

Total 1499 1451 1431 1499 1450 1421

Utilization 0.99973 0.9672 0.95424 0.99973 0.96661 0.94704

Table 4.1 Comparison between five connections with/without RED Router.

 36

Figure 4.2 shows the throughput comparison between TCP Vegas and TCP Reno

with Drop-tail router and RED router. There is no difference between Fig. 4.2(a)

and Fig. 4.2(b) when five connections are all TCP Vegas. This is because the queue

size in the bottleneck link router is always around 13 packets as shown in Fig.4.4(a)

and Fig.4.4(b), and two thresholds ,MinThresh and MaxThresh set by our RED

algorithm is 15 and 20 respectively. Therefore, there won’t be any packet loss occur,

and there is no side effect when we use RED router. We can see that TCP Reno

takes almost all bandwidth in Drop-tail routers and leaves only small bandwidth to

share with TCP Vegas when there is only one TCP Reno connection in Fig. 4.2(c).

The throughput difference in TCP Vegas and TCP Reno gets closer when Drop-tail

routers in Fig. 4.2(c) are replaced by RED routers in Fig. 4.2(d). The TCP Vegas

connection is still in low throughput while the other TCP Reno connections share the

most bandwidth in Fig. 4.2(e). The fairness will be improved with RED router in

Fig. 4.2(f).

Figure 4.3 demonstrates the queuing size in the bottleneck link router and the

time that packet drop occurs. TCP Vegas behaves well in Fig. 4.3(a) and Fig. 4.3(b)

because there is no packet drop and the queue length keeps at a low level. The

saw-tooth cycle in Fig. 4.3(c) and Fig. 4.3(e) occurs when there TCP Reno

connections exist. This is because that TCP Reno increases its congestion size until

the buffer in bottleneck link router used up. TCP Reno will have early packet loss

with RED routers in Fig. 4.3(d) and Fig. 4.3(f).

Figure 4.4 shows the CWND variation in TCP Vegas and TCP Reno with

Drop-tail router and RED router. Again, there is no difference between Fig. 4.4(a)

and Fig. 4.4(b). In Fig. 4.4(c) and Fig. 4.4(e), there are n TCP Reno connections, so

n saw-tooth cycles are shown, while all TCP Vegas’ CWND are always kept at a low

level. It will be improved in Fig. 4.4(d) and Fig. 4.4(f) when RED router is used.

 37

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.2 Throughput comparison between Drop-tail Routers and RED Routers.

 38

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.3 Queue occupancy comparison between Drop-tail Routers and RED Routers.

 39

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.4 Congestion Window comparison between Drop-tail Router and RED Router.

 40

In our second experiment, we set bottleneck link bandwidth w = 2 Mbps. There

are 10 connections, so we set the Minimum threshold and the Maximum threshold

used in RED routers 30 (packets) and 40 (packets), respectively, according to our

RED router algorithm. All sources start at time 0 and the simulation lasts 100 s.

As shown in Table 4.2, V and R stand for Vegas and Reno respectively. The

table summarizes the Arrival and Drop of packets, and the individual and total

throughput in Kbps. The average throughput of Vegas and Reno is computed in

Kbps. The Fairness between TCP Vegas and TCP Reno is calculated based on

dividing the mean throughput in Vegas by the average throughput in Reno. The

ideal throughput is 2000 Kbps, so the Utilization is calculated based on dividing the

Total throughput by 2000.

Drop-tail Router RED Router

 9V1R 5V5R 1V9R 9V1R 5V5R 1V9R

Arrival 24531 24469 24354 24792 24828 24557

Drop 66 166 337 143 482 707

S1 87 86 91 128 108 95

S2 87 86 197 150 96 194

S3 87 86 183 135 107 210

S4 60 89 210 93 152 194

S5 131 89 210 172 135 196

S6 57 300 196 130 282 214

S7 74 300 222 181 258 191

S8 87 300 205 130 258 193

S9 64 299 203 80 250 199

S10 1213 300 194 766 284 215

Vegas 82 87 91 133 120 95

Reno 1213 300 202 766 266 200

Fairness 0.0676 0.29067 0.4505 0.17392 0.45113 0.475

Total 1951 1937 1910 1965 1930 1892

Utilization 0.97564 0.96828 0.95524 0.98228 0.96504 0.94616

Table 4.2 Comparison between ten connections with/without RED Router.

 41

It is the same result that the TCP Reno takes most bandwidth from TCP Vegas,

but the situation will be improved when RED Router is used. There are more total

packet arrivals and more packet drops in RED Router, it is because the RED Router

early drop these mis-behaved flow packet (like TCP Reno) to reduce its aggressive

increasing window size. This will release some bandwidth for TCP Vegas, so the

improvement in this experiment is about 6% to 157% based on our network topology.

Figure 4.5 demonstrates the throughput comparison between TCP Vegas and

TCP Reno with Drop-tail router or RED router. Fig. 4.5(a) tells us that a TCP Reno

connection has more than half of bandwidth, while other TCP Vegas connections

share the rest of bandwidth. We can see that in Fig. 4.5(b), the TCP Reno

connection will be limited by RED router, and let the other TCP Vegas connections

get more bandwidth. There are five TCP Vegas and five TCP Reno connections in Fig.

4.5(c) and Fig. 4.5(d), and one TCP Vegas and ten TCP Reno connections in Fig.

4.5(e) and Fig. 4.5(f). We will find that when TCP Reno connections increase, the

bandwidth of TCP Vegas connections decrease gradually in RED router, but increase

slightly in drop-tail router. This is because when more TCP Reno connections in

drop-tail router, they will compete with each other, and leave more bandwidth for TCP

Vegas connections, while RED router drops TCP Reno connections packets early.

In the above two experiments, we will see that if we can control the MinThresh

and MaxThresh parameter properly, the fairness problem in TCP Vegas and in TCP

Reno will be solved. Fig. 4.5(a) and Fig. 4.5(b) show that five TCP connections will

keep about 13 packets in Router whether drop-tail or RED queuing discipline is used,

while ten TCP connections will keep about 24 packets in our second experiment.

That is the reason why we choose 3n and 4n for the MinThresh and MaxThresh

parameter, respectively. This will prevent RED router from miss-dropping TCP

Vegas packets while there only TCP Vegas connections exist.

 42

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.5 Throughput Ratio with Drop-tail Router or RED Router

 43

4.2 Evaluation of Inaccurate Prediction

Lee [10] proposes an approach which is able to estimate the number of flows

passing through routers. However, the prediction maybe not so precise to estimate

the number of connections, because of the prediction time interval we choose and the

average queue length RED router calculate. In this section, we focus on what may

happen if we mis-predict the number of connections.

The network topology we take in our experiment is same as that in Fig 4.1. It

consists of 2 sender hosts using TCP Reno and 8 sender hosts using TCP Vegas, 10

receiver hosts, two intermediate routers, and links connecting the router and the

sender/receiver hosts. The bandwidth of each link between the sender/receiver hosts

and the router is 50 Mbps. The bandwidth of the bottleneck link between routers is 2

Mbps. The size of buffer at the router is 100 packets. The propagation delay

between the sender/receiver hosts and the router and that between the routers is

represented by 1ms and 40 ms, respectively.

Every 10 seconds, connections of Vegas from Vegas1 to Vegas8 successively

enter the network, and connections of Reno enter the network at 40 second. The

Minimum threshold and the Maximum threshold we used in RED routers are

dynamically increased by 3 and 4, respectively, for each connection entering into our

network according to our RED router algorithm. So the MinThresh and MaxThresh

will be 30 and 40 after 40 seconds of simulation time. The time we calculate our

average throughput for each connection is from 70 sec to 100 sec. This is because

when a new connection enters the network, the bandwidth will be recalculated by

every TCP source, so we have to wait for the network until it becomes stable. Each

packet size is fixed at 1000 bytes. The simulation lasts for 101 seconds.

 44

Table 4.3 summarizes the comparison of 8 TCP Vegas and 2 TCP Reno

connections with inaccurate RED Router. According to our RED router algorithm,

the MinThresh and the MaxThresh will be 30 and 40. The accuracy range we choose

is from +20% to -20%, so the MinThresh will vary from 24 to 36 and MaxThresh will

vary from 32 to 48 at the end of simulation time.

The throughput of TCP Vegas in Drop-tail router is always less than that in RED

router. Considering the error prediction, when the estimation difference is positive,

the TCP Reno connections will get more bandwidth because the MinThresh and the

MaxThresh is overestimated. When the estimation difference is negative, TCP Reno

connections will suffer packet drop earlier and experience lower bandwidth.

Drop-tail RED

 8V2R +20% +10% 8V2R -10% -20%

Arrival 24740 24834 24803 24854 24982 24988

Drop 79 159 169 148 222 229

Vegas1 80 64 128 80 104 112

Vegas2 80 120 72 120 96 96

Vegas3 80 64 88 152 112 96

Vegas4 80 144 112 96 80 120

Vegas5 80 144 176 184 184 128

Vegas6 80 104 152 152 168 328

Vegas7 80 112 136 80 232 216

Vegas8 80 168 72 192 256 192

Reno1 664 504 488 432 352 304

Reno2 672 512 512 456 360 336

Vegas 80 103 117 132 154 154

Reno 668 508 500 444 356 320

Fairness 0.11976 0.2028 0.234 0.2973 0.4326 0.48125

Total 1976 1936 1936 1944 1944 1928

Utilization 0.988 0.968 0.968 0.972 0.972 0.964

Table 4.3 Comparison of ten connections with Inaccurate RED Router

 45

It can be easily seen that if the number of connection is underestimated, the fairness

will be further improved. But the reason why we choose 3n and 4n for the MinThresh

and the MaxThresh is that if we underestimate the number of connections, we will have

enough buffer for those connections. Taking 2n and 3n for the MinThresh and the

MaxThresh in our experiment as an example, the value of the MinThresh and the

MaxThresh will be 20 and 30. If we underestimate the connection by 20%, the value

of the MinThresh and the MaxThresh will be 16 and 24, respectively. This will cause

all connections unstable, even in homogeneous networks; TCP Vegas connections will

behave worse than TCP Reno connections and lead to more packet drop. So after

observing the queue size in bottleneck link router, we suggest that the value of the

MinThresh and the MaxThresh should be 3n and 4n, respectively.

The fairness improvement will be 69% to 302% when taking error estimate into

consideration.

Figure 4.6 demonstrates the throughput, queue size, and congestion window

between TCP Vegas and TCP Reno with Drop-tail router or RED router. The

throughput of Vegas1 and Vegas2 steps down when new connections enter into

network in Fig. 4.6(a) and Fig. 4.6(b). After 40 seconds, two connections of TCP

Reno join, so network become unstable and TCP Vegas connections suffer low

bandwidth. This will be improved by RED router. We can see that queue size in

Fig. 4.6(d) is kept lower than 40 packets while we have to wait buffer full and packet

loss in Fig. 4.6(c). This is because the TCP Reno keeps increasing its congestion

window size in Fig. 4.6(e) and let the TCP Vegas starve to death. The RED router

used in Fig. 4.6(f) will solve such difference issue between TCP Reno and TCP Vegas.

Figure 4.7 illustrates the throughput of 8 TCP Vegas and 2 TCP Reno

connections with RED Router with inaccuracy. We can see that TCP Reno

connections favor overestimate while TCP Vegas connections favor underestimation.

 46

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.6 8V2R comparison between Drop-tail Routers and RED Routers.

 47

 (a) (b)

 (c) (d)

 (e) (f)

Figure 4.7 Throughput Ratio with Drop-tail Routers or Inaccurate RED Routers.

 48

4.3 Gradual Deployment

In the real networks, it can not expect that all routers are RED routers and all

RED routers are able to calculate the number of connections passing through it, while

our RED router algorithm is based on such assumption. So, we have to test what if

only one RED router is used while the others are all drop-tail routers in the networks.

Comparing with all drop-tail routers and all RED routers used in our simulation,

fortunately, we found that even there is only one our RED router used, the fairness

improvement between TCP Reno and TCP Vegas connections will be significantly

improved. In this section, we give a simple experiment to demonstrate and to show

our RED router algorithm is usable to gradual deployment for the current networks.

Figure 4.8 shows the network model used in this section. It consists of 1

sender hosts (S1) using TCP Reno and 3 sender hosts (S2, S3, S4) using TCP Vegas, 4

receiver hosts, 6 intermediate routers, and links connecting the router and the

sender/receiver hosts. The bandwidth of each link between the sender/receiver hosts

and the router is 10 Mbps. The bandwidth of each link between the routers is 1.5

Mbps. The bandwidth of the bottleneck link (R1-R2) between routers is 2 Mbps.

Figure 4.8 Network topology for gradual deployment.

 49

The buffer size at the intermediate routers (R3, R4, R5, and R6) is 20 packets

and the buffer size at the bottleneck link routers (R1, R2) is 100 packets. The

propagation delay between the sender/receiver hosts and the intermediate routers and

that between the bottleneck routers are represented by 1ms and 40 ms, respectively.

The propagation delay between the intermediate routers and the bottleneck routers is

20 ms. Each packet is fixed at a length of 1000 bytes. As the scheduling discipline

at the router buffer, we consider drop-tail and RED algorithm.

S2 (Vegas1) and S3 (Vegas2) start at 0 sec, while S1 (Reno) and S4 (Vegas3)

enter the network at 10 sec and 20 sec, respectively. The time we calculate our average

throughput for each connection is from 100 sec to 200 sec. This is because when a

new connection enters the network, the bandwidth will be recalculated by every TCP

source, so we have to wait for the network being stable. The simulation lasts for 201

seconds.

Table 4.4 summarizes the performance comparison between Drop-tail routers

and RED routers for gradually deploying our RED algorithm to the current Internet.

Drop-tail RED

 R1 R3 ALL

Arrival 48473 48572 48049 48597

Drop 0 118 0 118

S1 1272 728 960 752

S2 152 384 280 376

S3 256 408 336 400

S4 256 416 328 408

Vegas 221 403 315 395

Reno 1272 728 960 752

Fairness 0.1737 0.5536 0.3282 0.5253

Total 1936 1936 1904 1936

Utilization 0.968 0.968 0.952 0.968

Table 4.4 Performance comparison in gradual deployment networks.

 50

In our experiment, R1 and R3 in RED router mean that only one RED router is

used, so the Minimum threshold and the Maximum threshold used in RED router R1

are 12 (packets) and 16 (packets) and those used in RED router R3 are 6 (packets) and

8 (packets), according to our RED router algorithm based on the number of

connections that we predict in our RED routers.

The Arrival and Drop packets in Table 4.4 monitored are in the bottleneck link

router R1, so there is no packets drop in R3 column, because router R1 have buffer

sizes 100 and it is using drop-tail mode. The idle throughput is 2000 Kbps.

We can see that TCP Reno connection (S1) will effect other TCP Vegas

connections (S2, S3, S4) when they compete the same bottleneck link (R1-R2). The

difference between in R1 and R3 columns is the throughput of S1. This is because

in R3 column, the R3 router drops TCP Reno packets earlier than that in R1 column,

so S1+S2 will take more bandwidth than S3+S4. It is very clear that even there is

only one RED router (R1 or R3), while the others are drop-tail routers, there is still a

great improvement, which ranges from 89% to 219%.

Figure 4.9 illustrates the throughput comparison between TCP Vegas and TCP

Reno connections with all Drop-tail routers or all RED routers. The TCP Reno

connection in Fig. 4.9(a) will be restricted by RED routers in Fig. 4.9(b) and give

away more bandwidth for sharing with TCP Vegas connections.

Figure 4.10 shows the throughput comparison between TCP Vegas and TCP

Reno connections with those four conditions. We will find that there is a big

difference between Fig. 4.10(a) and Fig. 4.10(b), because the RED router will favor

TCP Vegas connection, while there are only R1 or R3 used RED queuing discipline in

Fig. 4.10(c) and Fig. 4.10(d), our method is still working.

Therefore, we can conclude that even there is only one RED router, if it is on the

path of a TCP Reno connection, it will be effective on the fairness problem.

 51

 (a) (b)

Figure 4.9 Throughput comparison with all Drop-tail Routers or all RED Routers.

 (a) (b)

 (c) (d)

Figure 4.10 Throughput comparison between Vegas and Reno with four conditions.

 52

CHAPTER 5

Conclusion and future work

Conclusion

In a homogeneous case, TCP Vegas outperforms TCP Reno owing to its higher

throughput and stability. However, TCP Vegas is in a squally situation when TCP

Reno and Vegas coexist. Because two TCP versions share the same buffer in the

routers, the aggressive behavior of TCP Reno and the conservative behavior of TCP

Vegas lead to unfairness. This accounts for why TCP Vegas is still unpopular.

In this thesis, we propose a RED Router-based algorithm to improve the fairness

problem between TCP Reno and Vegas. The RED Router will give more bandwidth

to TCP Vegas by early drop TCP Reno packets. With the function of the RED

routers, which can compute the number of connections passing through it, we can set

MinThresh and MaxThresh parameter dynamically. By setting the two thresholds

properly, it will lead to great fairness improvement which is shown in our simulations.

There is still a trade-off between fairness and throughput, since lower threshold

values result in smaller throughput while the fairness ratio will be improved. We

have shown that 3n and 4n are better values for the MinThresh and MaxThresh

parameter, taking the fairness, throughput, and error prediction into consideration.

The simulation tells us that even there is only one RED Router along the path using

 53

our algorithm with the TCP Reno connections passing through it, our approach is still

effective. It is feasible for the RED routers to deploy our algorithm gradually.

Future work

We have shown that RED can improve the fairness to some degree, but there is

an inevitable trade-off between fairness and throughput. The main reason is that

RED drops incoming packets from different connections with same probability,

regardless of the characteristics of the connections. Then as we set the packet

dropping probability to a higher value, throughput values of the TCP Reno and Vegas

connections become lower, and total throughput gets smaller while we can obtain

better fairness. Therefore, for further fairness improvement without throughput

degradation, we need two mechanisms:

– How to detect TCP Reno connections

– How to drop more packets from TCP Reno connections

 54

REFERENCES

 [1] V. Jacobson, Congestion avoidance and control, ACM SIGCOMM ’88 (1988)

273–288

[2] V. Jacobson, Modified TCP Congestion Avoidance Algorithm, mailing list,

end-to-end-interest, April 30, 1999

[3] L.S. Brakmo, L.L. Peterson, TCP Vegas end to end congestion avoidance on a

Global Internet, IEEE JSAC 13 (1995) 1465–1480

[4] J. Mo, R.L.V. Anantharam, J. Walrand, Analysis and comparison of TCP Reno

and Vegas, in: Proceedings of the IEEE Globecom’99, Rio de Janeiro, Brazil,

December 1999

[5] Y.-C. Lai, C.-L. Yao, The performance comparison between TCP Reno and TCP

Vegas, in: Proceedings of the Seventh International Conference on Parallel and

Distributed Systems, Iwate, Japan, July 2000

[6] U. Hengartner, J. Bolliger, Th. Gross, TCP Vegas revisited, in: Proceedings of the

IEEE INFOCOM’2000, Tel Aviv, Israel, March 2000

[7] K. Takagaki, H. Ohsaki, M. Murata, Analysis of a window-based flow control

mechanism based on TCP Vegas in heterogeneous network environment, in:

Proceedings of the IEEE ICC’01, Helsinki, Finland, June 11–14, 2001

[8] S.H. Low, L. Peterson, L. Wang, Understanding TCP Vegas: a duality model, in:

Proceedings of the ACM Sigmetrics’2001, Cambridge, MA, June 17–20, 2001

[9] O. Ait-Hellal, E. Altman, Analysis of TCP Vegas and TCP Reno, IEEE ICC ’97

(1997) 495–499

[10] C.L. Lee, C.W. Chen, Y.C Chen, Weighted Proportional Fair Rate Allocations in

a Differentiated Services Networks, IEICE TRANS. Communications, Jan 2002

 55

[11] Teunis J. Ott, T. V. Lakshman, and Larry Wong, SRED: Stabilized RED, in

Proceedings of IEEE INFOCOM ’99, March 1999

[12] W. Stevens, Slow TCP start, congestion avoidance, fast retransmit, and fast

recovery algorithms, RFC 2001 January 1997

[13] Yuan-Cheng Lai, Chang-Li Yao, Performance comparison between TCP Reno

and TCP Vegas, Computer Communications 25 (2002) 1765–1773

[14] Andrea De Vendictis, Andrea Baiocchi, Michela Bonacci, Analysis and

enhancement of TCP Vegas congestion control in a mixed TCP Vegas and TCP

Reno network scenario, INFOCOM Department, University of Roma “La

Sapienza”, Via Eudossiana 18, 00184 Rome, Italy

[15] K.N. Srijith, Lillykutty Jacob, A.L. Anada, TCP Vegas-A: Solving the fairness

and Rerouting Issues of TCP Vegas, IEEE (2003) 309–316

[16] Go Hasegawa, Kenji Kurata and Masayuki Murata, Analysis and improvement

of fairness between TCP Reno and Vegas for deployment of TCP Vegas to the

Internet, IEEE (ICNP2000) 177-186

[17] K. Fall, S. Floyd, ns-Network Simulator, http://www-mesh.cs.berkeley.edu/ns

 56

