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Abstract

In this thesis, we have improved a QoS routing problem. We give an approach to
minimize the congested link utilization while to satisfy individual connection’s packet
delay. We use a Lagrangean Relaxation based approach augmented with an efficient primal
heuristic algorithm, called Lagrangean Relaxation Heuristic (LRH). With the aid of
generated Lagrangean multipliers andslower bound indexes, the primal heuristic algorithm
of LRH achieves a near-optimal upper=bound solution. A performance study delineated that
the performance trade-off between accuracy and convergence speed can be manipulated
via adjusting the Unimproved .Count (UC) parameter in the algorithm. We have drawn
comparisons of accuracy and computation time between LRH and the Linear Programming
Relaxation (LPR)-based method, under three networks named NSFNET, PACBELL, and
GTE and three random networks. Experimental results demonstrated that the LRH is
superior to the other approach, namely the LPR method, in both accuracy and

computational time complexity, particularly for larger size networks
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1. Introduction

To ensure reliable and high-quality network services, routing and capacity assignment
policies should be carefully designed. Traditional quasi-static routing algorithms attempt to
optimize a certain aggregate measure, e.g. to minimize the average end-to-end packet delay
[3, 15]. However, this kind of performance measures may not be consistent with the service
objectives and may result in fairness problems.

Since end-to-end performance in users' straightforward perception about the service
quality, service objectives are typically specified .on an end-to-end basis for many new
services, e.g. Switched Multi-megabit Data Service (SMDS), Frame Relay Service (FRS).
Asynchronous Transfer Mode (ATM) and:Advaneed; |ntelligent Network (AIN). As such,
from service providers perspective, it is more appropriate to design a routing and capacity
assignment policy such that end-to-end quality of service for each user is satisfied than a
policy to optimize an aggregate performance measure, which in many cases may result in
good average performance but unacceptable performance for some users (fairness issues).

To ensure user-perceived end-to-end QoS requirement is one of the most important
issues in providing modern network services, which typically requires sophisticated design
of routing and capacity management policies. User-perceived end-to-end QoS measures
include, for example, mean packet delay, packet delay jitter and packet loss probability.

Besides users perspective of QoS, from the service providers perspective (which is a
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traditional view of network performance management), optimizing a certain system-level
performance measure, e.g. overall network utilization or average cross-network delay
among all users, or call blocking probability is another major concern, Unfortunately, these
two perspectives/objectives may not be entirely agreeable with each other. This then places
amajor challenge to network managers and therefore calls for an integrated methodol ogy to
consider these perspectivesin ajoint fashion.

The routing problem in virtual circuit networks has been a traditional research topic in
computer networks and has attracted even more attention since the emergence of the
Asynchronous Transfer Mode (ATM) technology. However, most previous researches on
virtual circuit routing considers thetobjective~function of minimizing the average
end-to-end packet delay [3, 8, 17],-which address a system-optimization perspective
without taking individual usersinto account. And aso these researches do not consider the
later connections, that is these current established connections may cause big load for
connections that request to establish virtual circuits later. In [13] Cheng and Lin took a
user-optimization approach and considered a fairness issue by minimizing the maximum
individual end-to-end packet delay in virtual network, but they didn’t consider the system’s
perspective. In this thesis, we attempt to jointly consider both system’s and user’s
perspectives, and keep maximum tolerance to the later connections. More precisely, we

construct the network into load balance model subject to end-to-end packet delay
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constraints for each individual user. The problem has been shown to be NP-complete which

means no polynomia time algorithm for it unless P=NP. For the sake of obtaining

sub-optimal solutions, Lagrangean relaxation is applied to the formulation to decompose

the problem into severa tractable subproblems. The candidate path set does not need to be

prepared in advance and the best paths are generated while solving the subproblems in our

approach. A heuristic algorithm based on the solving procedure of the Lagrangean

relaxation is developed to obtain a primal feasible solution. To make a performance

comparison, a linear programming based algorithm is also been developed. By examining

the gap between the upper bounds obtained from Lagrangean relaxation based heuristic and

linear programming to the lower boundsof Lagrangean and linear programming, it reveals

that the proposed Lagrangean based algorithm can effectively and efficiently provide a near

optimal solution to the QoS based routing problem in short CPU time.

The remainder of thisthesisis organized as follows. In Chapter 2, we first describe the

problem we want to solve. In Chapter 3, a mathematical formulation of the routing problem

Is proposed. In Chapter 4, a solution approach to the routing problem based on Lagrangean

relaxation is presented. In Chapter 5, heuristic algorithm are developed to calculate good

primal feasible solutions. In Chapter 6, computational results are reported. In Chapter 7, we

conclude this thesis and bring up an application based on our concept for future work.
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2. PreviousWork

In this chapter, we describe the unicast source, distributed, and hierarchical routing
algorithms. We explain the problems and solutions, present the existing algorithms, compare
them, and discuss their pros and cons. In Table 1, we give a summarizing comparison.

Algorithms are referred to by the authors' names and a reference to their article.

2.1 Source Routing Algorithm

The Wang-Crowcroft Algorithm [16]-This agorithm finds a bandwidth-delay-constrained
path by Dijkstra’s shortest-path agorithm. First, al:links with bandwidths less than the
requirement are eliminated so that any 'paths in the resulting graph will satisfy the bandwidth
constraint. Then, the shortest path in terms of delay 1sfound. The path isfeasible if and only if

it satisfies the delay constraint.

The Guerin-Orda Algorithm [19]-Guerin and Orda studied the bandwidth-constrained and
delay-constrained routing problem with imprecise network states. The model of imprecisionis
based on the probability distribution functions. Every node maintains, for each link I, the
probability (W) of link | having aresidual bandwidth of w units. We[0...G], where ¢
is the capacity of the link. The goal of bandwidth-constrained routing is to find the path that
has the highest probability to accommodate a new connection with a bandwidth requirement

of Xunits. This problem can be solved by a standard shortest path algorithm with link |
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weighted by (—log p, (X)).

The goal of delay-constrained routing is to find a path that has the highest probability to
satisfy a given end-to-end delay bound. Suppose every node maintains, for each link |, the
probability p (d) of link | having adelay d units, where d ranges from zero to maximum
possible value. It is NP-hard to find the path that has the highest probability of satisfying a
given delay constraint [19], but various specia cases (e.g., symmetric networks and tight
constraints) can be solved in polynomia time. Heuristic algorithms were proposed for the
NP-hard problem. This idea is to transform a global constraint into local constraints. More
speciadly, it splits the end-to-end delay: constraint among the intermediate links in such a way
that every link in the path has equal probability of satisfyifg itslocal constraint. The heuristic

then try to find the path with the best multiplicative probability over all links.

The Guerin-Orda agorithm works with imprecise information and is suitable to be used in
hierarchical routing. One of the heuristic algorithms was extended by the authors to make
routing based on the aggregate network state of the hierarchical model. A further study of QoS

routing with imprecise state based on the probability model was done by Lorenz and Orda [6].

The Awerbuch et al. Algorithm [4]-Awerbuch et al. proposed a throughput-competitive
routing algorithm for bandwidth-constrained connections. This agorithm tries to maximize

the amortized (average) throughput of the network over time. It combines the function of
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admission control and routing. Every link is associated with a cost function that is exponential

to the bandwidth utilization. A new connection is admitted into the network only if there

exists a path whose accumulated cost over the duration of the connection does not exceed the

profit measured by the bandwidth-duration product of the connection. It was proved that such

a path satisfies the bandwidth constraint. Let T be the maximum connection duration and v the

number of nodes in the network. The algorithm achieves a throughput achieved by the best

off-line algorithm that is assumed to know al of the connection requests in advance. The

competitive routing for connections with unknown duration was studied in [5]. A survey for

the competitive routing was done by Plotkin22].

Strengths and Weaknesses of Source Routing

Source routing achieved its simplicity by transforming a distributed problem into a

centralized one. By maintaining complete global state, the source node calculates the entire

path localy. It avoids dealing with distributed computing problems such as distributed state

snapshot, deadlock diction, and distributed termination. It guarantees loop-free routes. Many

source algorithms are conceptually smple and easy to implement, evaluate, debug, and

upgrade. In addition, it is much easier to design centralized heuristics for some NP-complete

routing problems than to design distributed ones.

Source routing has several problems. First, the global state maintained at every node has to
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be updated frequently enough to cope with the dynamics of network parameters such as
bandwidth and delay. This makes the communication overhead excessively high for
large-scale networks. Second, the link-state algorithm can only provide approximate global
state due to the overhead concern and non-negligible propagation delay of state messages. As
a conseguence, QoS routing may fail to find an existing feasible path due to the imprecision in
the global state used [1]. Third, the computation overhead at the source is excessively high.
This is especidly true in the case of multicast routing or multiple constraints are involved. In
summary, source routing has a scalability problem. It is impractical for any single node to

have access to detailed state information.about all nedes and al linksin alarge network [19].

2.2. Distributed Routing Algorithms

The Wang-Crowcroft Algorithm [25]-Wang and Crowcroft proposed a hop-by-hop
distributed routing scheme. Every node pre-computed a forwarding entry for every possible
destination. The forwarding entry, which is updated periodically, stores the next hop on the
routing path to the destination. After the forwarding entries at every node are computed, the

actual routing simply follows the entries.

Given two end nodes, the path with the minimum bottleneck bandwidth is called the widest
path. If there are several such paths, the one with the smallest delay is caled the

shortest-widest path. A link-state protocol is used to maintain complete global state at every
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node. Based on the globa state, the forwarding entry for the shortest-widest path to each

destination is computed by a modified Bellman-Ford (or Dijkstra' s) algorithm [6]. A routing

path is the combination of the forwarding entries indexed by the same destination at all

intermediate nodes. The path is loop-free if the state information at all nodes is consistent.

However, in a dynamic network the path may have a loop due to the contradicting state

information at different nodes.

The Cidon et al. Algorithm [11]-The distributed multi-path routing algorithms proposed

by Cidon et a. combine the process of routing and resource reservation. Every node maintains

the topology of the network and the cost of . every link.-When a node wishes to establish a

connection with certain QoS constraints, it finds a subgraph of the network which contains

links that lead to destination at a “reasonable”. cost:"Such a subgraph is called diroute. A link

iseligibleif it has the required resources. Reservation messages are flooded along the eligible

links in the diroute toward the destination and reserve resources along different paths in

paralel. When the destination receives a reservation message, a routing path is established.

The agorithm releases resources from segments of the diroute as soon as it learns that these

segments are inferior to another segment. Variants of the above algorithm were proposed to

make a trade-off between routing time and path optimality. Reserving resources on multiple

paths makes the routing faster and more resilient to the dynamic change of network state.

However, it also increases the level of resource contention.
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The Chen-Nahrstedt Algorithm

Selective Probing [23]-Chen and Nahrstedt proposed a distributed routing framework

based on selective probing. After a connection request arrives, probes are flooded selectively

along those paths which satisfy the QoS and optimization requirements. Every node only

maintains its local state, based on which the routing and optimization decisions are made

collectively in the process of probing. As in the Shin-Chou algorithm, each probe arriving at

the destination detects a feasible path.

Algorithms were derived from the framework to route connections with a variety of QoS

constraints on bandwidth, delay, delay jitter, cost, and their combinations. Several techniques

were developed to overcome the high-communication overhead of the Shin-Chou algorithm.

First, probes are only based on topological distance to the destination. Second, iterative

probing is used to further reduce the overhead. At the first iteration, probes are sent only along

the shortest paths. If the first iteration fails, probes are allowed to be sent along paths with

increasing lengths in the following iterations. Simulation shows that with two iterations the

Chen-Nahrstedt algorithm achieves substantial overhead reduction.

Ticket-Based Probing [24]-If every node maintains a global state, which is allowed to be

imprecise, the ticket-based probing is used to improve the performance of selective probing.

A certain number of ticketsisissued at the source according to the contention level of network
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resources. Each probe must contain at least one ticket in order to be valid. Hence, the
maximum number of probes is bound by the total number of tickets, which limits the
maximum number of paths to be searched. The algorithm utilizes the imprecise state at
intermediate nodes to guide the limited tickets (the probes carrying them) along the best
possible paths to the destination. In such a way, the probability of finding a feasible path is

maximized with limited probing overhead.

Strengths and Weaknesses of Source Routing

In distributed routing, the path computation isidistributed among the intermediate nodes
between the source and the destination. Hence, the routing-response time can be made shorter,
and the algorithm is more scalable. Searching multiple paths in parallel for a feasible one is
made possible, which increases the chance of success. Most existing distributed routing
algorithms [25, 10, 17] require each node to maintain global network state (distance vector),
based on which the routing decision is made on a hop-by-hop basis. Some flooding-based
algorithms do not require any global state to be maintained. The routing decision and

optimization is done based entirely on the local states[18, 17].

The distributed routing algorithms which depend on the global state share more or less the
same problems of source routing algorithms. The distributed algorithms which do not need

any global state tend to send more messages. It is also very difficult to design efficient
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distributed heuristics for the NP-compl ete routing problems, especially in the case of multicast
routing, because there is no detailed topology and link-state information available. In addition,
when the global states at different nodes are inconsistent, loops may occur. A loop can easily
be detected when the routing message is received by a node for the second time. However,
loops generally make the routing fail because vectors do not provide sufficient information for

an alternative path.

2.3. Hierarchical Routing Algorithms

PNNI [24]-PNNI is a hierarchical linksstate routing protocol [2]. Its hierarchical model
was discussed earlier. We use an example to illustrate the routing process. The network in
Fig.1la has a two-level hierarchy with three groups. The aggregated topology maintained at
A.l, B.1 and C.1 are shown in Fig.1b, ¢, and d, respectively. Suppose every link has an
available bandwidth of one. Consider a connection request arriving at A.1 with destination C.2.
L et the bandwidth requirement be one. The routing process is described as follows. Based on
the aggregated state, the source node A.1 finds a path (A.1->A.2) within its group and alogical
path (A->B->C) on the higher hierarchy level. The logical path, together with the destination
C.2 is sent to the next group B on the path. When the boarder node B.1 receives the
information, it selects a path (B.1->B.2->B.3) within its group and then passes the logical path

and the destination to group C. Findly, the boarder node C.1 of the destination group
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completes the routing by selecting C.1->C.2. It may happen that a link on the selected path
does not have sufficient resources. Fig.1le gives an example, where link B.3->B.2 does not
have enough bandwidth for the connection due to traffic dynamics. In this case, the routing

process is cranked back to B.1 and resumes with an aternative path B.1->B.2.

i ~--s B3 €3
P A1 A2 { B.1 B2" iCA c2'
ﬂ' .. . I'-_L_ -2 ;_1 i
A B .
Al—=A2 B —= B3 —= B2 Ci1—sC2
A—+=B—=C A—wB—>C A e §—eC
{a) Routing
; B3 e T
A1 A2 8.1 83 :'Ui c2}
. . H .—-J‘IJI. - -':.. - . .I.\. I."I
00 R SO R Y B C.n e C
(b) Aggregated (c) Aggregated (d) Aggregated
tnpmyatﬁ;.l topology at B.A topology at C.1
; A A2, : a:/.iq..z L c2}
A B c
Al == A2 B.1 —= B.2 C1-—C2
A e B> C A—=B—>C A B—wC
{e) Crankback

Figure 1 An example of PNNI routing
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24, Previous Work Summary

We classify those algorithms according the solving routing problem, routing strategy, time

complexity, communication complexity. The details are listed in table 1.

Algorithm Solving routing problem | Routing | Time Communication
Strategy | complexity | complexity
Maintaining| Routing
state
Wang-Crowcrof{ Bandwidth-delay- Source O(vlogv + €) | Global Zero
contrrined
Guerin-Orda Bandwidth-constrained Source O(vlogv + €) | Global Zero
Wang-Crowcroft Bandwidth-optimization | Distributed | O(ve) Globa Zero
Cidon et al. Generic Distributed | O(e) Global O(e)
Chen-Nahrstedt | Generic Distributed | O(e) Local O(e)
PNNI Generic Hierarchical Polynomial | Aggregated | O(v)

Table 1 Unicast routing algorithms
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3. Problem Model and Formulation

In this chapter, we will describe our problem, and model it. Besides these, we aso
formulate our problem into non-linear integer programming form. In the next two chapters,

we will propose an algorithm based on Lagrangean Relaxation to solve this problem.

3.1. Problem Description

We construct the network into load balance model subject to end-to-end packet delay

constraints for each individual user. This model has two advantages.

1. Thismodel can reduce packets delay implicitly.

2. Thismode reserves the maximum flexibility toithe | ater connections.

The problem has also been shown to be NP-complete which means no polynomia time
algorithm for it unless P=NP. For the sake of obtaining sub-optimal solutions, Lagrangean
relaxation is applied to the formulation to decompose the problem into several tractable
subproblems in next chapter. The candidate path set does not need to be prepared in advance
and the best paths are generated while solving the subproblems in our approach. A heuristic
algorithm based on the solving procedure of the Lagrangean relaxation will be developed to

obtain a primal feasible solution in the next two chapters.
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3.2. Network Model and Definition

A virtua circuit communications network is modeled as a graph where the processors are
represented by nodes and the communication channels are represented by arcs. Let
V={123...... , N} be the set of nodes in the graph and let L denote the set of
communication links in the network. Let W be the set of origin-destination (O-D) pairs
(commodities) in the network. For each O-D pair weW, the arrival of new traffic is
modeled as a Poisson process with rate r,, (packet/sec). To reduce the problem’s complexity,
we assume that each O-D pair w, the overall traffic is transmitted over one path in the set P, .

For eachlink | € L, the capacity is C, packets/sec.

For each O-D par weW, let:x, be L when peP, is used to transmit packets for

O-D pair w and O otherwise. In a virtual circuit-network, all of the packets in a session are

transmitted over exactly one path from the origin to the destination. Thus Z X, =1. For each
peR,

pathp and link leL, let 6, denote the indicator function which is 1 if link | is on path p

and 0 otherwise. Then, the aggregate flow over link |, denoteas g,,is > > x.r,5, .

peR, weW

In the network, there is a buffer for each outbound link. Using Kleinrock’ s independence
assumption [16], the arrival of packets to each buffer is a Poisson process where the rate is the
aggregate flow over the outbound link. It is assumed that the transmission time for each

packet is exponential distributed with mean C,‘l. Thus, each buffer is modeled as an M/M/1
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gueue, as considered in[1, 8, 4].

3.3. Problem Formulation

An non-linear integer formulation is developed to formulate the QoS routing problem for
load balancing purpose. The constraints are required to satisfy the traffic demand constraint,
QoS required constraint and physical capacity limitations. The outputs are the routing path

for each O-D pair.
The following notations are used in the formulation.

I nput values:

N :the set of nodesin the network.

L :theset of communication linksin the communication network.

W : the set of source-destination (SD)-pairs.

W, :theset of SD pairs where node nis the source node.

rw :(packets/sec.):the arrival rate of new traffic of each O-D pair weW ,which is
modeled of Poisson process for illustration purpose.

C : (packets/sec.),the capacity of each link | e L.

Pw :agiven set of of smple directed paths from the origin to the

destination of O-D pair weW.
g :theaggregate flow over link I, which is equal to Z Z Xprw5p| .

peR, weW

oo 1if path puseslink I; O otherwise.
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Dw : the maximum allowable end to end delay for O-D pair weW.

Decision variables;

a  :percentage of capacity usage on maximum congested link.
Xp . 1if path pisselected, O otherwise.

The formulation is modeled as the following integer linear programming problem.

Problem P
min «
Subject to:
g9=> D Xrd, < aC Vel 1)
peR, weW

X O
Yy P2 < D, vweW (2
leL peR, C| _gl

dx, = 1 vweW 3)
peRy
X, = 0orl VpePR,,weW 4
0<a<l 5)

The objective function is to minimize the largest utilization on the most congested link.

Constraint (1) requires the capacity used on every link must less than the one on the most
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congested link. Constraint (2) requires the end-to-end delay should be no large than D,, for

each O-D pair. Constraint (3) is the routing constraint. It aso requires al traffic demands

must be satisfied. Path selection or not is expressed as a binary variable in Constraint (4).

The utilization is areal number between zero and one, which is described in Constraint (5).
For the purpose of applying Lagrangean relaxation method, we transform the above

problem formulation into an equivalent formulation P;,. In Py, two auxiliary variables are

introduced: Y,, isdefined as pr5

peRy

o and fi denotes the estimate of the aggregate

flow.

Decision variables:

a :percentage of capacity usage on maximum.congested link.

X - 1if path pisselected, O otherwise.

Ywi : 1if source-destination pair w useslink I, O otherwise.
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Problem P,

min o
Subject to:
f, < aC Viel (1)
3 ., YweW )
leL C| - f|
Y X0y < Y vweW,l el 3)
peRy
g = f| VlelL (4)
dx, = 1 vwe W (5)
peRy
X, = 0Oorl Vpe R, weW (6)
Y = Oorl vYweW,l &L )
O<a<1 8
0<f, <C Vlel 9

Redundant constraints associated with these auxiliary variables (3) ,(4),(7) and (9) are
added. It isclear that the equality should hold at the optimal point. By introducing these
auxiliary variables, the Lagrangean relaxation problem can be decomposed into
independent and easily solvable subproblems.

In network optimization problem, it can usually be found that the desired problem

consists of several special embedded structures which might have been well studied and



exist well-known algorithms to optimally solve them efficiently. However, the original

problem may be avery difficult one dueto itsill mathematical structures, large problem

size, or complex integer/combinatorial property; even if we can solely handle all of its

embedded modules efficiently.

Another kind of problems is NP-complete/NP-hard problems. Since these problems

cannot be modeled as polynomial time solvable programs unless P=NP, efficient heuristic

algorithm or approximation algorithm has to be devel oped for these problems. Especially,

when the problem size of the desired problem is out of the computation power by using

exhaustive search or other exact evaluation:methods.

In order to deal with these intractable features, one might try to get near optimal

solutionsinstead of casting the real optimal solutions. Thus, performing some relaxation to

the design problem is necessary in solving these problems.

Lagrangian relaxation is a general solution strategy for solving mathematical programs

that permits us to decompose original problemsinto several subproblems such that we can

exploit their special embedded structures. Lagrangean relaxation can provide bound on the

value of the optimal objective function and the bound outperform those provided by linear

programming relaxation in many instances [20]. Furthermore, the solutions of Lagrangean

relaxation problem provide a good base to help designer to develop effective heuristic

algorithms for the desired problems.
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In the next chapter, we use Lagrangean relaxation to the heterogeneous Minmax end to

end delay problem and decompose the original problem into several subproblems.
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4. Lagrangean relaxation and problem decomposition

We first dualize Constraints (1), (2), (3) and (4) to Problem P, to obtain the following

L agrangean relaxation problem.

Problem (Dual_P):

Zos (0) = min{[1- S gl +[ S 5,0 - D, )]+

leL weW leL -

S St (O X8, — V) + DU (G~ )V ] — (%)

weW leL peR, leL

subject to constraints (5), (6), (7), (8), and (9) .

x, = 1 VEW (5)
peR,

X, = Oorl vpePR,weW (6)

Ya = Oorl vweW,l elL )

0<ac<l (8)

0< f, <C Vlel 9

Reorganizes formulation (*), dual (P) becomes =>

Zdua] (p):mln{ [1_Zvlcl]a+[z Z z (twl +U| r.w)xpé‘pl]

leL weW leL peR,

Z SNwa
+[Z(W€é|v_ o ztwl Yur TV 4) f)— Z SwDul}

subject to Constraints (5), (6), (7), (8), and (9)
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and vectorp = (s;t,u,v) isthe non-negative Lagrangean multiplier.

Problem (Dual_P) can be decomposed into following three independent subproblems

(S1, S2 and S3) by separating the decision variables ., X, y. Therefore, we have Zgyq=Zs1+

Zs+Zs3— ) s,D,, , Where

weW

Zsi(v)= min (1— D ovig ja

leL

subject to Constraint (8),

Zo(tu)= min [D D (t, +Ur,)x,5,]

weW lelL pePR,

subject to Constraints (5) and (6) , and

DS,V

Zss(stuv)= min{d (= — Mot Vo + (0 £}

leL - fl wewW
subject to Constraints (7) and (9).

We will solve these three subproblems using linear algorithms in next three sections.
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4.1. Solving Subproblem 1

Subproblem S1 is a problem for decision variable a . Variablea is set to 1 if the

corresponding cost 1-— ZV| C, is negative; otherwisen is set to 0. Subproblem 1 runs on

leL

O(L) computation time.

procedur e subproblemi;
begin

Z:=1;

for al link leL do

Z.= Z-\XxC;

if Z>0then «:=0;

else a:=0;

end;

Figure 2 The algorithm of Subproblem 1
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4.2. Solving Subproblem 2

Subproblem S2 is a problem for decision variable x. It consists of |W,| (one for each
source node) independent problems. Each one is an edge-digoint-path problem rooted at
the given source node and destined to all destination nodes for the SD pairs with non-zero
traffic demand. To solve the problem, one can view the input network as a graph. This
graph contains (L) arcs and (N) nodes. We set each arc | have C; capacity (it means that the
transmission time for each packet is exponentialy distributed with mean C) and
non-negative arc weight, tw+Uuiry) . In such graph, the subproblem is a minimum cost flow
problem to send minimum cost flow from the source node to all its destination nodes with
specified traffic demands. We use traditional minimum cost flow agorithm such as

successive shortest path algorithm [20] to solve the problem.

procedur e subproblem2;
begin
for each link leL do
COSty: =ty Uy,
for each node srce §,do
run successive-shortest-path(src, cost) to determine x;
update Zy;

end;

Figure 3 The algorithm of Subproblem 2
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4.3. Solving Subproblem 3

Subproblem S3 is a problem for decision variable y. It consists of |L| (one for each link

| € L) independent problems.

Foreachlink | eL:

Z SNyW|

min[WeW—f—thuyM +(v —u)f]

- h wew

subject to (5) and (8).

For different values of f;, the value of vy, for minimum objective function, denoted as

yw,* (f,) may bedifferent. As an example; consider the case that f, =0. The objective

function is minimized by assigned yW,*(O) tolif (%—tw,) <0 andto O otherwise. We

define a set of break points of f; as those points where ( —t,) =0 for eachw. These

break points are sorted and denoted as f,*, {7, .............. f,". Note that there are at most |W|

i+1

break points. We observe that when f' < f, < " thevalue, thevalueof y,, (f))

remains constant for all weW . Within the above internal, y,, (f,) is1if

(if—tm) <0 andisO otherwise. Therefore, within aninterval, [f', f'™), the

N

objectiveis only afunction of f;, and the minimum point within the interval can be found
analytically. By examining at most [W| +1 intervals, we can find the global minimum point

by comparing those local minimum points.

When examining an interval, we first determine y,, (f,') within theinterval for
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each w. We denote ZsNyW,*(fli) as a and th,ywl*(f,i) asby. Note that a and by are

wew wew

non-negative. Within the interval, the objective function can then be expressed as:

Lf -Bb + (v, —u)f, . Atypical curve of the objective function vs. fi within the

Zsub3_| = CI

interval f,' < f, < f'" isshown in Figue 1. The curve of the objective function vs. f; is

i+1

shown in Fig. 2. The local minimum point is either at the boundary point, fli or f ~,or

a point ' =C /% (U —v) % 0).
| |

fi fl

\/ g

Figure 4 A typical curve of the objective Figure5 A typical graph of the objective
function of (SUB3) vs. f function of (SUB3) vs. fl
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procedur e subproblem3;

begin

Sep 1. Solve (CS"V]c —t,, =0) for each O-D pair w, call

them the break pointsof f, .

Step 2. Sorting these break points and denoted as

Sep 3. Ateachinterval, f'<f <f™, vy, (f) islif

S —t,, <0 andisO otherwise.

-1

Sep 4. Withintheinterval, f'<f <™, leta be

> sV () andbibe >'t,v, (f), thenthelocal

wewW weW

i i+1

minimum is either at the boundary point, f or f

oratpoint f =C— |-
U =V

Sep 5. The global minimum point can be found by comparing
these local minimum points.

end;

Figure5 Thealgorithm of Subproblem 3
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4.4. Subgradient Optimization Procedure

From the weak Lagrangian duality theorem, Zyua(p) is alower bound of the Problem (P)
for any non-negative Lagrangean multiplier vector p = (s, t, u ,v) >0. Naturally, one wants

to determine the largest lower bound by

ZIower_bound = Tgé( Zgual (p) (11)
The subgradient method can be applied to solve (11).

The solution to Problem (Dual P) at iteration k of the subgradient optimization
procedure is given below. In subgradient solution procedure, the Lagrangian multiplier

vector p is updated by

Prs1 =Py O

where b is a subgradient of Zgua(p) with'vector-size W+ LW+L+L|. The step size 6, is

determined by
0. — UB=Zyq (p))

‘ IoJ?

UB is an upper bound obtained from a heuristic solution described in the next section and

Axisaconstant in arange from O to 2.

The details of this procedure see below:
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procedur e update-step-size;
begin
ywl

vV b= ¥ __D,;
1<icp ch_fl W

leL

\4 bi=Yx68 -y :
W I<isWHLIW] pr: PO~ Y »

_V bi:: 0 - f| ;
WHLIWHI< i SW LWL

v bi:= f, —aC,;
WHILIW 1< i<W HLIW L L

stepsize 6=A(UB-2,,)/o[;

end:

procedur e update-multiplier;

begin
for I:=1to |W| do
sW:=[sw+<9(§%—Dw N
for I:=1to|L|do
for w:=1to |W|do
ti:= [t.W+0(pEszp5pI v I
for I:=1to|L|do
w:=[u+é(g - 1)1";
for I:=1to|L|do
vi= [Vi+6(f, —aC)]";
end;

Figure 6 The algorithm of update-step-size and update-multiplier




4.5. Summary of Lagrangean Relaxation Method

The algorithms are described below: LRM denotes the L agrangean relaxation method.

algorithm LRM;
begin
multiplier vector s:=0, t:=0, u:=0 and v: =0;
UB:=1 and LB:=0;
unimproved count:=0;
step size coefficient 1:=2;
for each k:=1 to MaxlIteration do
begin
run subprobleml, subproblem?2 and subproblem3;

Lya=LatZot s Z SH DI

weW

If Zgua>LB then LB:=Zy,4 and unimproved.count:=0;

el se unimproved.count:=unimproved.count+1;

If unimproved.count>=Max unimproved.count then
A:=A/2 and unimproved.count:=0;

run primal-heuristic;

iIf ub<UB then UB:=ub;

run update-step-size;

run update-multiplier;

end;

Figure 7 Thealgorithm of LRM



5. Lagrangean-based Heuristic Algorithm

Since the Lagrangean relaxation is obtained by the relaxation of some constraints from
the problem formulation, the solution to the dua problem might be infeasible for the
original primal problem resulting from dissatisfaction of those relaxed constraints. However,
such solution can still be used as a base to develop efficient heuristic algorithms to seek
feasible solutions and obtain upper bounds for the original problem. In practice, at each
iteration of the subgradient solving procedure, the solution of Lagrangean relaxation is used
to obtain a lower bound of the primal problem. In addition, we verify the feasibility of the
solution in the constraints of primal problem. If the solution is feasible, it is used to
calculate an upper bound of the primal problem (Actualy it is an optimal solution.). If the

solution is not feasible, the following heuristic is applied to find a feasible solution.

5.1. Proposed Lagrangean-based Heuristic Algorithm

Based on the solution obtained from solving Lagrangean relaxation in each iteration. We
observe that when solving X, in subproblem 2, we set the cost of each link be (tw + ury), o
if we take the same pathsin LRM, the gap between LB and UB will be minimum. But not

all of these paths can be selected (due to some constraints are violated), so the cost of each

o _ Cost, = (1-A)Weight, + ADe€lay, ;
link ismodify to <. . .
initial 2 =0.

Traffic demands are then routed onto the network for each SD pair sequentially (from
short delay required connections to long delay required ones) by applying Dijkstra’s
shortest path algorithm. The capacity of those arcs used by the above accepted paths are
updated by subtracting the flow of this connection from the capacity of this link. If the
utilization of alink will become greater than the best known lower bound (LB)x|Cj| when a
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further virtual circuit setups on it, the weight of this arc is replaced by multiply a constant
term on its weight as a penalty for avoiding further setup paths on this link. The process
continues until al of the traffic demands are satisfied or the network cannot accommodate

the traffic request. A feasible solution is obtained in the former case.

5.2. Evaluation of the Feasible Schedule

From the weak Lagrangian duality theorem, Zqua(p) isalower bound of the Problem (P)
for any non-negative Lagrangean multiplier vector p = (s, t, u ,v) >0. Naturally, one wants
to determine the largest lower bound by

ZIower_bound =Max Zg, (p) (11)
p=0

The subgradient method can be applied to;solve (11). The entire procedure is described

below.

Initialization

solving
A —
~ —

Subproblem_1 Subproblem_ Subproblem_

l

Obtain feasible routing
scheme by heuristic

l

| Compute Duality Gap |

!

No
Result good
enough ?
l Yes

Subgradient method to
update multipliers

Figure8 Thealgorithm of LRM Evaluation Procedure
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procedure primal-heuistic:
hegin
for cach link f=£ da
bepin
el =0
|:'||:“\-|'_|: (L0
A=
[or cach o-d pair weH do
welghlil =t mry
cosf:=(1-A ) weighh +4 delan

cnd;
ane-paifi-sedip N,
repical
lor cach S0 pair 5= to | do
bepin
il mo path seigp~7 then
bewin
se—sourcalsd
aewd —destina tiong =aqf;
ford =0 dae
begin
run Dhjkstra s-shotest-pathi cest, sre, desd)
il the shortest path exist= then
for all link f on the shortest path do
hegin
I Ty
(1 B | Wl
wlphly: = wedght, * penalty;
end
clse
if 4=—1
retum infeasible;
alae
A=A+
ast=(1-4 ) weighh +A4  delaw
end
end:
cnd;

mntil all 513 demand =atisied;
update upper bound ab;
end;

Figure 9 Thealgorithm of Primal-Heuristic
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6.Experimental Results

We have carried out a performance study on LRH and drawn a comparison between
LRH and the LPH approach via experiments over randomly generated networks. Given the
total number of nodes, say n, the greatest possible number of bi-directional linksis C;,
where C is the combination operation. Then, for a network with n nodes and a connectivity,

t, it isgenerated by randomly selecting C(n,2)xt out of the C(n,2) bi-directional links

of the network.

6.1. Performance Study

We carried out two sets of expériments-over 15-node random networks with two
connectivities v=0.4 and 0.8, which correspond-to sparse and dense networks, respectively.
In the first set of set of experiments, the LRH algorithm'was terminated when the number
of iteration exceeded a pre-determined Iteration_Number, ranging from 0 to 1500.
Numerical results are displayed in Figure 12. We study both the lower and upper bounds on
o under different UC values. We observe that while the upper bound performance is
irrelevant to UC, the lower bound performance is highly dependent on the UC setting in the
same manner as above. Specifically, smaller UC values yield faster convergence but only to
looser lower bounds, while larger UC values result in tighter lower bounds through gradual
convergence over alarger number of iterations. This fact reveals that, by adjusting the UC
value, the LRH approach is capable of balancing the trade-off between accuracy and

efficiency for resolving various types of our problems.
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6.2. Performance Comparisons
We first carried out numerical computation of the lower and upper bound values of «,

the maximum aggregate arrival rates of a link divided by the capacity of each link, C,,

using our LRM-based method and a Linear Programming Relaxation (L PR)-based method.
In the computation, we considered three widely used networks. They are: NSFNET with 14
nodes and 42 links; PACBELL with 15 nodes and 42 links; and GTE with 11 nodes and 46

links.

In the LRM-based heuristic algorithm, we adopted a penalty term of 2. In addition, if the
Lagrangean lower bound remains unimproved for 50 iterations (UC=50), the step size
coefficient (Ax) would be divided by two. The simulation was written in the C language and
terminated at the end of 2000 iterations and operated on‘a PC running Windows XP with a

1.8 GHz CPU power..

In the LPR-based method, by removing Constraints (6) and (7), the origina Integer
Linear Programming (ILP) problem is relaxed to a Linear Programming (LP) problem.
Thus, the solution to the relaxed problem is a legitimate lower bound of the original ILP
problem. To obtain an upper bound, we also develop a corresponding heuristic algorithm.
The algorithm ranks all SD pairs in accordance with the desired packet delay. The next
feasible path founded in the LP solution is then assigned to the SD pair with the smallest
packet delay. There may be multiple feasible paths for an SD pair; we select the shortest
path with the largest X, value in the algorithm. The path assignment process repeats until
either the traffic demands of all SD pairs are satisfied (i.e., feasible), or there is no
remaining resource (i.e., infeasible). In the ssmulation, the LP problem was solved using the

CPLEX software, operating in the same PC environment previously described.
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Numerical results for the NSFNET, PACBELL, and GTE are summarized in Table 1, 111,
and 1V, respectively. The traffic demands (i.e., the traffic arrival rate) for all SD pairs are
randomly determined with their mean value shown in the first column of the tables.
Moreover, the Gap in the third column of the tables is computed as the ratio of the

difference of the upper and lower bounds to the lower bound in percentage.

As shown in Table Il for NSFNET, the LPR-based method reaches a low guarantee of
20% gap, incurring high CPU computation time. Compared to it, the LRM-based method
achieves ideal lower and upper bounds (gap< 5%) under al four traffic demand cases
except case 1. The algorithm also improves the CPU computation time by one order of
magnitude. We discover that, even though both methods achieve optimal lower bounds, the
LRM-based heuristic agorithm arrives at much improved upper bounds due to the use of

the Lagrangean multipliers derived upen seeking the L agrangean relaxation solution.

In Table 11l for PACBELL, the L PR-based ' method reaches a low guarantee of 29% gap.
Compared to it, the LRM-based method again achieves idea lower and upper bounds
(<8%). The LRM-based algorithm also improves the CPU computation time by two order
of magnitude. It is worth mentioning that in the case of the mean traffic demand being
equal to 3.0, while the LPR-based method fails to obtain a feasible solution, the LRM-based

method arrives at the optimal solution.

Finally, in Table IV for the GTE network, the LRM-based method outperforms the
L PR-based method in both the solution superiority and the computation time in all traffic
cases. Specifically, the LPR-based method again reaches fairly low guarantee of 27% gap.
The method produces a non-optimal solution but with an improved guarantee of 13% gap.
This justifies the viability of the LRM-based method for providing efficient QoS routing

method.
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(8) NSFNET network

(b) PACBELL network

(c) GTE network

Figure 11 Three networks
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Table 2 Numerical resultsfor NSFNET Network
LP_CPU|LP_Diff LP Lag CPU|Lag_Diff| Lag
Demand] LB |[LP UB ... |Lag_UB et
(sec) % |Feasibility (sec) % |Feasihility
5 ]0.134885(0.15625| 1108 | 15.840 Yes ]0.156250, 28 15.840 Yes
10 |0.260588|0.31250| 1694 | 19.921 Yes |0.281250, 41 7.929 Yes
15 |0.403905|0.46875| 1754 | 16.055 Yes ]0.406250, 54 0.581 Yes
20 |0.533426|0.62500, 1809 |17.167 Yes |0.562500, 64 5.450 Yes
25 ]0.646050/0.75000, 1947 |17.152 Yes |0.656250 71 1.579 Yes
30 ]0.820311|0.90625| 2027 |10.476 Yes |0.843750, 82 2.857 Yes
Table 3 Numerical results for PACBELL Network
LP_CPU|LP_Diff LP Lag CPU|Lag_Diff| Lag
Demand| LB LP UB . ... |Lag_UB e
(sec) % |Feasibility (sec) % |Feasihility
10 |0.289678|0.375000, 2335 |29.4%4 Yes |0.312500 41 7.878 Yes
15 |0.448961|0.531250, 2151 | 18.329 Yes . |0.468750, 53 4.408 Yes
20 |0.596959|0.687500| 2414 1 15.167 Yes ' 10.625000 67 4.697 Yes
25 |0.757723|0.906250| 2697 -| 19.602 Yes- [0.781250, 80 3.105 Yes
30 (0.951497| NA 2651 NA No 0.96875 90 1.812 Yes
Table 4 Numerical results for GTE Network
Demand| LB LP UB LP_CPUILP_Dif LP .. |Lag_UB Leg CPULag Dift L_ag .
(sec) % |Feasihility (sec) % |Feasibility
10 |0.177474/0.218750, 410 |23.257 Yes ]0.187500, 65 5.649 Yes
15 |0.270522|0.343750, 440 | 27.069 Yes ]0.281250, 85 3.966 Yes
20 ]0.348616|0.406250 712 |16.532 Yes |0.375000, 103 7.568 Yes
25 ]0.406115|0.468750; 830 |15.423 Yes (04375000 124 7.728 Yes
30 ]0.468669|0.562500] 897 | 20.020 Yes |0.531250 135 13.353 Yes
35 |0.546826/0.687500] 912 | 25.726 Yes |0.593750| 148 8.581 Yes
40 ]0.616869(0.687500, 954 | 11.450 Yes |0.656250| 157 6.384 Yes
45 ]0.655807|0.750000, 1024 | 14.363 Yes |0.718750 160 9.598 Yes
50 |0.701118|0.781250| 1231 | 11.429 Yes |0.75000| 162 6.972 Yes
55 ]0.804162|0.906250| 1403 | 12.695 Yes |0.875000 174 8.809 Yes
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We further draw comparisons of accuracy and computation time between our LRH
approach and the Linear Programming Relaxation (LPR)-based method. For generating
networks, it is impractical to experiment on networks with smaller numbers of nodes and
links. However, for networks with greater than 12 nodes, we experienced that the
computation time using the LPR-based method became unmanageable. In the experiment,
we considered three random networks, called NET1, NET2, and NET3, as shown in Figure
13. NET1 consists of 10 nodes, and 19 bi-directional links, corresponding to a connectivity
(v) of 0.44. NET2 consists of 11 nodes, and 22 bi-directional links, corresponding to a
connectivity (v) of 0.4. NET3 consists of 11 nodes, and 22 bi-directiona links,
corresponding to a connectivity (v) of 0.4. Numerical results are demonstrated in Figures

14.

In the computation using our LRH approach, we adopted UC=50 and two different
termination criteria. The two criteriaare: Iteration” Number=1000, and 2000. The algorithm
was written in the C language and operated'on a PC running Windows XP with a 1.8GHz
CPU power. In the LPR-based method, by removing Constraints (6) and (7), the original
Integer Linear Programming (ILP) problem is relaxed to a Linear Programming (LP)
problem. Thus, the solution to the relaxed problem is a legitimate lower bound of the
original ILP problem. The upper bound is then obtained according to the randomization
procedure proposed in previous. In the experiment, the LP problem was solved using the
CPLEX software, operating in the same PC environment. For both approaches, the
accuracy is measured in terms of the Gap(%) which is defined as the ratio of the difference

of the UB and LB of a to the LB value in percentage.

As shown in the three figures, the LPR-based method exhibits larger gaps, namely

poorer accuracy, and requires high computation time under both networks. In contrast, the
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LRH-based method achieves ideal lower and upper bounds under several traffic demand
cases. In fact, we discover that, both LRH and LPR-based approaches achieve tight lower
bounds. Significantly, the LRH heuristic algorithm arrives at much improved upper bounds
due to the use of the Lagrangean multipliers derived upon seeking the Lagrangean
relaxation solution. Specifically, we discover from Figure 14 that the LRH approach using
the 1000 iterations achieves as high accuracy as that using the 2000 iterations criterion

under most demand cases.

Furthermore, as shown in Figure 15, the LRH approach outperforms the LPR-based
method in computation time by at least one order of magnitude under all cases. Notice that,
the LRH approach using the fixed iteration =1000 incurs exceptionally low computation,
and achieves as high accuracy as that using the 2000;iterations criterion under most demand
cases. Compared to the LPR-based method, the LRH approach offers an improvement of

computation time by more than two orders of magnitude.
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(c) NET3 (11 nodes)
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Figure 13 Comparison of accuracy under three random networks.
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7. Conclusions and Future Works

In this thesis, we have improved a QoS routing problem using a Lagrangean Relaxation
based approach augmented with an efficient primal Heuristic algorithm, called LRH. With
the aid of generated Lagrangean multipliers and lower bound indexes, the primal heuristic
algorithm of LRH achieves a near-optimal upper-bound solution. In our thesis, we have
three major characteristics which are compared with other proposed methods. First, we start
to consider user’s perspective and system’s perspective jointly. Second, in our routing
procedure, the candidate path set does not need to be prepared in advance and the best paths
are generated while solving the subproblems in our approach. Third, our method can both
provide the upper bound and lower bound to the problem, this distinguishing feature can
help us to verify the performance of our: solutions. A performance study delineated that the
performance trade-off between accuracy and convergence speed can be manipulated via
adjusting the Unimproved Count (UC): paraméter’ in' the algorithm. We have drawn
comparisons of accuracy and computation‘time between LRH and the Linear Programming
Relaxation (LPR)-based method, under three networks NSFNET, PACBELL, and GTE
and three random networks. Experimental results demonstrated that the LRH is superior to
the other approach, namely the LPR method in both accuracy and computational time

complexity, particularly for larger size networks.

7.1. Future Works

A future work we can do is that we are able to reconfigure the virtual topology to adapt to
changing traffic patterns. Some reconfiguration studies on virtual networks have been

reported before [7, 12, 9]; however, these studies assumed that the new virtual topology was
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known a priori, and were concerned with the cost and sequence of branch-exchange
operations to transform from the original virtual topology to the new virtual topology. We
propose a methodology to obtain the new virtua topology, based on optimizing a given
objective function, as well as minimizing the changes required to obtain the new virtual
topology from the current virtual topology. This approach would result in the minimum
number of switch re-tunings, thus minimizing the number of disrupted virtual paths.
Consequently, this approach also minimizes the time it takes to complete the reconfiguration
process. Some discussions on the control mechanisms required to perform re-tunings of

virtual paths can be found in [21].

In the ideal situation, given a small thange tn'the traffic matrix, we would prefer for the new
virtual topology to be largely similar to:the previous virtual topology, in terms of the
constituent virtual paths and the routes for these virtua paths, i.e.,, we would prefer to
minimize the changes needed to adapt from the existing virtual topology to the new topology.
More formally, it would be preferable if a large number of the 6, variables retain the same
values in the two solutions, without compromising the quality of the solution (in terms of

minimizing the congested link utilization).

Let us consider the snapshot of two traffic matrices, AL, and A2, taken a two

not-too-distant time instants. We assume that there is a certain amount of correlation between
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these two traffic matrices. Given a certain traffic, there may be many different virtual
topologies, each of which has the same optimal value with regard to the objective function.
But we will terminate after the first such optima optima solution is found. Our
reconfiguration agorithm finds the virtual topology corresponding to A2 which matches
“closest” with the virtual topology corresponding to A2 (based on our above definition of

“closeness’).

7.2. Reconfiguration Algorithm

We perform the following sequence of actions:

1). Generate formulations F(1) and:F(2),Corresponding to traffic matrices A, and A2,

respectively, based on the formulation in-Section 3.

2). Derive solutions S(1) and S(2), corresponding to F(1) and F(2), respectively.
Denote the variables' vaues in S(1) as x,() and vy, (1), and those in S(2) as
X,() and vy, (1), respectively. Let the value of the objective function for S(1) and

S(2) be OPT, and OPT,, respectively.

3). Modify (F(2) to F'(2)) by adding the new constraint

a =OPT, (10)

This ensures that all the virtual topologies generated by F'(2) would be optimal with
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regard to the objective function.
The new abjective function for F'(2) is

Minimize: > )" |y, (D) - Vi (2)| (12)

Note that the mod operation, |x| is a nonlinear function. If we assume that y,, can only
take on binary vaues, then (12) become linear, ie, if y,(@=1, then
Y @ = Yo (D] = - ¥, (2); elseif y,,(1)=0, then |y, () -y, (D] =y, (2). Hence, F'(2)

may be solved directly.
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