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使用Lagrangean 近似方法建立具有服務品質之點對點

虛擬路徑 

研究生：劉名恕            指導教授：陳昌居 

 國立交通大學 資訊工程學系 

摘要 

在現今的網路設計當中中,越來越重視 QoS (Quality of Service)的重要性,在我們

的設計中,我們針對不同服務所需滿足之服務要求(在文章中我們關心的目標是以每一

個連線的點對點的延遲為訴求), 我們的問題是專注在滿足各個連線的服務品質要求

下, 尋找一種路由的方式, 建立虛擬路徑, 使得使用率最高的連結上的負載為最輕

(Load Balance Model), 此種構想是希望滿足現有的連線的需求之下, 尋找一種資源分

配的方式, 去保留最富彈性的資源選擇給後續再進入網路中要求建立虛擬路徑的連

線, 使得其有最大的選擇空間。 我們將此問題規劃成為 mixed non-linear programming

的形式, 我們利用 Lagrangean Relaxation 的方式去將此問題的複雜度降低(將某些限

制放寬), 再利用此放寬限制後的問題的結果作為一個指引, 搭配我們所提出的一種

近似最佳化演算法, 尋得一組合法的解答, 再利用 subgradient 的方式,去一直改進答

案的優良性,我們的目標是雖然我們無法得到真正的最佳解, 但我們能藉由此種方法

的下限值與上限值的差距, 經由實驗的數據, 可以得知我們的方法已經非常優秀, 幾

乎求得最佳值。 
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Construct QoS end-to-end virtual path using 

Lagrangean relaxation method 
Student : Ming-Su Liu Advisor : Dr. Chang-Jiu Chen 

Department of Computer Science and Information Engineering 
National Chiao-Tung University 

Abstract 
In this thesis, we have improved a QoS routing problem. We give an approach to 

minimize the congested link utilization while to satisfy individual connection’s packet 

delay. We use a Lagrangean Relaxation based approach augmented with an efficient primal 

heuristic algorithm, called Lagrangean Relaxation Heuristic (LRH). With the aid of 

generated Lagrangean multipliers and lower bound indexes, the primal heuristic algorithm 

of LRH achieves a near-optimal upper-bound solution. A performance study delineated that 

the performance trade-off between accuracy and convergence speed can be manipulated 

via adjusting the Unimproved Count (UC) parameter in the algorithm. We have drawn 

comparisons of accuracy and computation time between LRH and the Linear Programming 

Relaxation (LPR)-based method, under three networks named NSFNET, PACBELL, and 

GTE and three random networks. Experimental results demonstrated that the LRH is 

superior to the other approach, namely the LPR method, in both accuracy and 

computational time complexity, particularly for larger size networks 
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1. Introduction 

To ensure reliable and high-quality network services, routing and capacity assignment 

policies should be carefully designed. Traditional quasi-static routing algorithms attempt to 

optimize a certain aggregate measure, e.g. to minimize the average end-to-end packet delay 

[3, 15]. However, this kind of performance measures may not be consistent with the service 

objectives and may result in fairness problems. 

Since end-to-end performance in users’ straightforward perception about the service 

quality, service objectives are typically specified on an end-to-end basis for many new 

services, e.g. Switched Multi-megabit Data Service (SMDS), Frame Relay Service (FRS). 

Asynchronous Transfer Mode (ATM) and Advanced Intelligent Network (AIN). As such, 

from service providers’ perspective, it is more appropriate to design a routing and capacity 

assignment policy such that end-to-end quality of service for each user is satisfied than a 

policy to optimize an aggregate performance measure, which in many cases may result in 

good average performance but unacceptable performance for some users (fairness issues). 

To ensure user-perceived end-to-end QoS requirement is one of the most important 

issues in providing modern network services, which typically requires sophisticated design 

of routing and capacity management policies. User-perceived end-to-end QoS measures 

include, for example, mean packet delay, packet delay jitter and packet loss probability. 

Besides users’ perspective of QoS, from the service providers’ perspective (which is a 
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traditional view of network performance management), optimizing a certain system-level 

performance measure, e.g. overall network utilization or average cross-network delay 

among all users, or call blocking probability is another major concern, Unfortunately, these 

two perspectives/objectives may not be entirely agreeable with each other. This then places 

a major challenge to network managers and therefore calls for an integrated methodology to 

consider these perspectives in a joint fashion.  

The routing problem in virtual circuit networks has been a traditional research topic in 

computer networks and has attracted even more attention since the emergence of the 

Asynchronous Transfer Mode (ATM) technology. However, most previous researches on 

virtual circuit routing considers the objective function of minimizing the average 

end-to-end packet delay [3, 8, 17], which address a system-optimization perspective 

without taking individual users into account. And also these researches do not consider the 

later connections, that is these current established connections may cause big load for 

connections that request to establish virtual circuits later. In [13] Cheng and Lin took a 

user-optimization approach and considered a fairness issue by minimizing the maximum 

individual end-to-end packet delay in virtual network, but they didn’t consider the system’s 

perspective. In this thesis, we attempt to jointly consider both system’s and user’s 

perspectives, and keep maximum tolerance to the later connections. More precisely, we 

construct the network into load balance model subject to end-to-end packet delay 
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constraints for each individual user. The problem has been shown to be NP-complete which 

means no polynomial time algorithm for it unless P=NP. For the sake of obtaining 

sub-optimal solutions, Lagrangean relaxation is applied to the formulation to decompose 

the problem into several tractable subproblems. The candidate path set does not need to be 

prepared in advance and the best paths are generated while solving the subproblems in our 

approach. A heuristic algorithm based on the solving procedure of the Lagrangean 

relaxation is developed to obtain a primal feasible solution. To make a performance 

comparison, a linear programming based algorithm is also been developed. By examining 

the gap between the upper bounds obtained from Lagrangean relaxation based heuristic and 

linear programming to the lower bounds of Lagrangean and linear programming, it reveals 

that the proposed Lagrangean based algorithm can effectively and efficiently provide a near 

optimal solution to the QoS based routing problem in short CPU time.  

The remainder of this thesis is organized as follows. In Chapter 2, we first describe the 

problem we want to solve. In Chapter 3, a mathematical formulation of the routing problem 

is proposed. In Chapter 4, a solution approach to the routing problem based on Lagrangean 

relaxation is presented. In Chapter 5, heuristic algorithm are developed to calculate good 

primal feasible solutions. In Chapter 6, computational results are reported. In Chapter 7, we 

conclude this thesis and bring up an application based on our concept for future work. 
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2. Previous Work  

In this chapter, we describe the unicast source, distributed, and hierarchical routing 

algorithms. We explain the problems and solutions, present the existing algorithms, compare 

them, and discuss their pros and cons. In Table 1, we give a summarizing comparison. 

Algorithms are referred to by the authors’ names and a reference to their article. 

2.1. Source Routing Algorithm  

  The Wang-Crowcroft Algorithm [16]-This algorithm finds a bandwidth-delay-constrained 

path by Dijkstra’s shortest-path algorithm. First, all links with bandwidths less than the 

requirement are eliminated so that any paths in the resulting graph will satisfy the bandwidth 

constraint. Then, the shortest path in terms of delay is found. The path is feasible if and only if 

it satisfies the delay constraint. 

  The Guerin-Orda Algorithm [19]-Guerin and Orda studied the bandwidth-constrained and 

delay-constrained routing problem with imprecise network states. The model of imprecision is 

based on the probability distribution functions. Every node maintains, for each link l, the 

probability ( )lp w  of link l having a residual bandwidth of w units. [0... ]lw c∈ , where lc  

is the capacity of the link. The goal of bandwidth-constrained routing is to find the path that 

has the highest probability to accommodate a new connection with a bandwidth requirement 

of x units. This problem can be solved by a standard shortest path algorithm with link l  
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weighted by ( log ( )).lp x−  

  The goal of delay-constrained routing is to find a path that has the highest probability to 

satisfy a given end-to-end delay bound. Suppose every node maintains, for each link l, the 

probability ( )lp d  of link l having a delay d  units, where d ranges from zero to maximum 

possible value. It is NP-hard to find the path that has the highest probability of satisfying a 

given delay constraint [19], but various special cases (e.g., symmetric networks and tight 

constraints) can be solved in polynomial time. Heuristic algorithms were proposed for the 

NP-hard problem. This idea is to transform a global constraint into local constraints. More 

specially, it splits the end-to-end delay constraint among the intermediate links in such a way 

that every link in the path has equal probability of satisfying its local constraint. The heuristic 

then try to find the path with the best multiplicative probability over all links. 

  The Guerin-Orda algorithm works with imprecise information and is suitable to be used in 

hierarchical routing. One of the heuristic algorithms was extended by the authors to make 

routing based on the aggregate network state of the hierarchical model. A further study of QoS 

routing with imprecise state based on the probability model was done by Lorenz and Orda [6]. 

  The Awerbuch et al. Algorithm [4]-Awerbuch et al. proposed a throughput-competitive 

routing algorithm for bandwidth-constrained connections. This algorithm tries to maximize 

the amortized (average) throughput of the network over time. It combines the function of 
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admission control and routing. Every link is associated with a cost function that is exponential 

to the bandwidth utilization. A new connection is admitted into the network only if there 

exists a path whose accumulated cost over the duration of the connection does not exceed the 

profit measured by the bandwidth-duration product of the connection. It was proved that such 

a path satisfies the bandwidth constraint. Let T be the maximum connection duration and v the 

number of nodes in the network. The algorithm achieves a throughput achieved by the best 

off-line algorithm that is assumed to know all of the connection requests in advance. The 

competitive routing for connections with unknown duration was studied in [5]. A survey for 

the competitive routing was done by Plotkin [22]. 

Strengths and Weaknesses of Source Routing 

Source routing achieved its simplicity by transforming a distributed problem into a 

centralized one. By maintaining complete global state, the source node calculates the entire 

path locally. It avoids dealing with distributed computing problems such as distributed state 

snapshot, deadlock diction, and distributed termination. It guarantees loop-free routes. Many 

source algorithms are conceptually simple and easy to implement, evaluate, debug, and 

upgrade. In addition, it is much easier to design centralized heuristics for some NP-complete 

routing problems than to design distributed ones. 

Source routing has several problems. First, the global state maintained at every node has to 
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be updated frequently enough to cope with the dynamics of network parameters such as 

bandwidth and delay. This makes the communication overhead excessively high for 

large-scale networks. Second, the link-state algorithm can only provide approximate global 

state due to the overhead concern and non-negligible propagation delay of state messages. As 

a consequence, QoS routing may fail to find an existing feasible path due to the imprecision in 

the global state used [1]. Third, the computation overhead at the source is excessively high. 

This is especially true in the case of multicast routing or multiple constraints are involved. In 

summary, source routing has a scalability problem. It is impractical for any single node to 

have access to detailed state information about all nodes and all links in a large network [19]. 

2.2. Distributed Routing Algorithms 

  The Wang-Crowcroft Algorithm [25]-Wang and Crowcroft proposed a hop-by-hop 

distributed routing scheme. Every node pre-computed a forwarding entry for every possible 

destination. The forwarding entry, which is updated periodically, stores the next hop on the 

routing path to the destination. After the forwarding entries at every node are computed, the 

actual routing simply follows the entries. 

  Given two end nodes, the path with the minimum bottleneck bandwidth is called the widest 

path. If there are several such paths, the one with the smallest delay is called the 

shortest-widest path. A link-state protocol is used to maintain complete global state at every 
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node. Based on the global state, the forwarding entry for the shortest-widest path to each 

destination is computed by a modified Bellman-Ford (or Dijkstra’s) algorithm [6]. A routing 

path is the combination of the forwarding entries indexed by the same destination at all 

intermediate nodes. The path is loop-free if the state information at all nodes is consistent. 

However, in a dynamic network the path may have a loop due to the contradicting state 

information at different nodes. 

   The Cidon et al. Algorithm [11]-The distributed multi-path routing algorithms proposed 

by Cidon et al. combine the process of routing and resource reservation. Every node maintains 

the topology of the network and the cost of every link. When a node wishes to establish a 

connection with certain QoS constraints, it finds a subgraph of the network which contains 

links that lead to destination at a “reasonable” cost. Such a subgraph is called diroute. A link 

is eligible if it has the required resources. Reservation messages are flooded along the eligible 

links in the diroute toward the destination and reserve resources along different paths in 

parallel. When the destination receives a reservation message, a routing path is established. 

The algorithm releases resources from segments of the diroute as soon as it learns that these 

segments are inferior to another segment. Variants of the above algorithm were proposed to 

make a trade-off between routing time and path optimality. Reserving resources on multiple 

paths makes the routing faster and more resilient to the dynamic change of network state. 

However, it also increases the level of resource contention. 
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The Chen-Nahrstedt Algorithm 

Selective Probing [23]-Chen and Nahrstedt proposed a distributed routing framework 

based on selective probing. After a connection request arrives, probes are flooded selectively 

along those paths which satisfy the QoS and optimization requirements. Every node only 

maintains its local state, based on which the routing and optimization decisions are made 

collectively in the process of probing. As in the Shin-Chou algorithm, each probe arriving at 

the destination detects a feasible path. 

Algorithms were derived from the framework to route connections with a variety of QoS 

constraints on bandwidth, delay, delay jitter, cost, and their combinations. Several techniques 

were developed to overcome the high communication overhead of the Shin-Chou algorithm. 

First, probes are only based on topological distance to the destination. Second, iterative 

probing is used to further reduce the overhead. At the first iteration, probes are sent only along 

the shortest paths. If the first iteration fails, probes are allowed to be sent along paths with 

increasing lengths in the following iterations. Simulation shows that with two iterations the 

Chen-Nahrstedt algorithm achieves substantial overhead reduction. 

  Ticket-Based Probing [24]-If every node maintains a global state, which is allowed to be 

imprecise, the ticket-based probing is used to improve the performance of selective probing. 

A certain number of tickets is issued at the source according to the contention level of network 
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resources. Each probe must contain at least one ticket in order to be valid. Hence, the 

maximum number of probes is bound by the total number of tickets, which limits the 

maximum number of paths to be searched. The algorithm utilizes the imprecise state at 

intermediate nodes to guide the limited tickets (the probes carrying them) along the best 

possible paths to the destination. In such a way, the probability of finding a feasible path is 

maximized with limited probing overhead. 

Strengths and Weaknesses of Source Routing 

In distributed routing, the path computation is distributed among the intermediate nodes 

between the source and the destination. Hence, the routing response time can be made shorter, 

and the algorithm is more scalable. Searching multiple paths in parallel for a feasible one is 

made possible, which increases the chance of success. Most existing distributed routing 

algorithms [25, 10, 17] require each node to maintain global network state (distance vector), 

based on which the routing decision is made on a hop-by-hop basis. Some flooding-based 

algorithms do not require any global state to be maintained. The routing decision and 

optimization is done based entirely on the local states [18, 17]. 

   The distributed routing algorithms which depend on the global state share more or less the 

same problems of source routing algorithms. The distributed algorithms which do not need 

any global state tend to send more messages. It is also very difficult to design efficient 
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distributed heuristics for the NP-complete routing problems, especially in the case of multicast 

routing, because there is no detailed topology and link-state information available. In addition, 

when the global states at different nodes are inconsistent, loops may occur. A loop can easily 

be detected when the routing message is received by a node for the second time. However, 

loops generally make the routing fail because vectors do not provide sufficient information for 

an alternative path. 

2.3. Hierarchical Routing Algorithms 

PNNI [24]-PNNI is a hierarchical link-state routing protocol [2]. Its hierarchical model 

was discussed earlier. We use an example to illustrate the routing process. The network in 

Fig.1a has a two-level hierarchy with three groups. The aggregated topology maintained at 

A.1, B.1 and C.1 are shown in Fig.1b, c, and d, respectively. Suppose every link has an 

available bandwidth of one. Consider a connection request arriving at A.1 with destination C.2. 

Let the bandwidth requirement be one. The routing process is described as follows. Based on 

the aggregated state, the source node A.1 finds a path (A.1->A.2) within its group and a logical 

path (A->B->C) on the higher hierarchy level. The logical path, together with the destination 

C.2 is sent to the next group B on the path. When the boarder node B.1 receives the 

information, it selects a path (B.1->B.2->B.3) within its group and then passes the logical path 

and the destination to group C. Finally, the boarder node C.1 of the destination group 
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completes the routing by selecting C.1->C.2. It may happen that a link on the selected path 

does not have sufficient resources. Fig.1e gives an example, where link B.3->B.2 does not 

have enough bandwidth for the connection due to traffic dynamics. In this case, the routing 

process is cranked back to B.1 and resumes with an alternative path B.1->B.2. 

 

Figure 1 An example of PNNI routing 
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2.4. Previous Work Summary 

We classify those algorithms according the solving routing problem, routing strategy, time 

complexity, communication complexity. The details are listed in table 1. 

Communication 

complexity 

Algorithm Solving routing problem Routing 

Strategy 

Time 

complexity 

Maintaining 

state 

Routing

Wang-Crowcroft Bandwidth-delay- 

contrrined 

Source O(vlogv + e) Global Zero 

Guerin-Orda Bandwidth-constrained Source O(vlogv + e) Global Zero 

Wang-Crowcroft Bandwidth-optimization Distributed O(ve) Global Zero 

Cidon et al. Generic Distributed O(e) Global O(e) 

Chen-Nahrstedt Generic Distributed O(e) Local O(e) 

PNNI Generic  Hierarchical Polynomial Aggregated O(v) 

 

Table 1 Unicast routing algorithms 
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3. Problem Model and Formulation 

In this chapter, we will describe our problem, and model it. Besides these, we also 

formulate our problem into non-linear integer programming form. In the next two chapters, 

we will propose an algorithm based on Lagrangean Relaxation to solve this problem. 

3.1. Problem Description 

We construct the network into load balance model subject to end-to-end packet delay 

constraints for each individual user. This model has two advantages. 

1. This model can reduce packets delay implicitly. 

2. This model reserves the maximum flexibility to the later connections. 

The problem has also been shown to be NP-complete which means no polynomial time 

algorithm for it unless P=NP. For the sake of obtaining sub-optimal solutions, Lagrangean 

relaxation is applied to the formulation to decompose the problem into several tractable 

subproblems in next chapter. The candidate path set does not need to be prepared in advance 

and the best paths are generated while solving the subproblems in our approach. A heuristic 

algorithm based on the solving procedure of the Lagrangean relaxation will be developed to 

obtain a primal feasible solution in the next two chapters. 
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3.2. Network Model and Definition 

A virtual circuit communications network is modeled as a graph where the processors are 

represented by nodes and the communication channels are represented by arcs. Let 

{1, 2, 3, ..........., N}V =  be the set of nodes in the graph and let L denote the set of 

communication links in the network. Let W be the set of origin-destination (O-D) pairs 

(commodities) in the network. For each O-D pair w W∈ , the arrival of new traffic is 

modeled as a Poisson process with rate wr  (packet/sec). To reduce the problem’s complexity, 

we assume that each O-D pair w, the overall traffic is transmitted over one path in the set wP . 

For each link l L∈ , the capacity is lC  packets/sec. 

 For each O-D pair w W∈ , let px  be 1 when wp P∈  is used to transmit packets for 

O-D pair w and 0 otherwise. In a virtual circuit network, all of the packets in a session are 

transmitted over exactly one path from the origin to the destination. Thus 1
w

p
p P

x
∈

=∑ . For each 

path p and link l L∈ , let plδ  denote the indicator function which is 1 if link l is on path p 

and 0 otherwise. Then, the aggregate flow over link l, denote as lg , is 
w

p w pl
p P w W

x r δ
∈ ∈
∑ ∑ . 

In the network, there is a buffer for each outbound link. Using Kleinrock’s independence 

assumption [16], the arrival of packets to each buffer is a Poisson process where the rate is the 

aggregate flow over the outbound link. It is assumed that the transmission time for each 

packet is exponential distributed with mean 1
lC − . Thus, each buffer is modeled as an M/M/1 
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queue, as considered in [1, 8, 4]. 

3.3. Problem Formulation 

An non-linear integer formulation is developed to formulate the QoS routing problem for 

load balancing purpose. The constraints are required to satisfy the traffic demand constraint, 

QoS required constraint and physical capacity limitations. The outputs are the routing path 

for each O-D pair.  

The following notations are used in the formulation. 

Input values: 

FN  : the set of nodes in the network. 

L  : the set of communication links in the communication network. 

W  : the set of source-destination (SD) pairs. 

Wn  : the set of SD pairs where node n is the source node. 

rw  :(packets/sec.):the arrival rate of new traffic of each O-D pair w W∈ ,which is 

modeled of Poisson process for illustration purpose. 

Cl : (packets/sec.),the capacity of each link l L∈ . 

Pw  : a given set of of simple directed paths from the origin to the  

destination of O-D pair w W∈ . 

gl : the aggregate flow over link l, which is equal to 
w

p w pl
p P w W

x r δ
∈ ∈
∑ ∑ . 

δpl : 1 if path p uses link l; 0 otherwise. 
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Dw : the maximum allowable end to end delay for O-D pair w W∈ . 

Decision variables: 

α  :percentage of capacity usage on maximum congested link. 

xp : 1 if path p is selected, 0 otherwise.  

The formulation is modeled as the following integer linear programming problem. 

Problem P  

 

 

Subject to: 

The objective function is to minimize the largest utilization on the most congested link. 

Constraint (1) requires the capacity used on every link must less than the one on the most 

min   α

                                                                                                (1)

                                                    

w

w

l p w pl l
p P w W

p pl
w

l L p P l l

g x r C l L

x
D

C g

δ α

δ

∈ ∈

∈ ∈

= ≤ ∀ ∈

≤
−

∑ ∑

∑∑                                                        (2)

                                   =      1                                                                          (3)

      

w

p
p P

w W

x w W
∈

∀ ∈

∀ ∈∑

                                    =   0 or 1                           ,                              (4)

                                    0 1                                          
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congested link. Constraint (2) requires the end-to-end delay should be no large than Dw for 

each O-D pair. Constraint (3) is the routing constraint. It also requires all traffic demands 

must be satisfied. Path selection or not is expressed as a binary variable in Constraint (4). 

The utilization is a real number between zero and one, which is described in Constraint (5).  

For the purpose of applying Lagrangean relaxation method, we transform the above 

problem formulation into an equivalent formulation PII. In PII, two auxiliary variables are 

introduced: wly  is defined as 
w

p pl
p P

x δ
∈
∑  and  fl denotes the estimate of the aggregate 

flow. 

 

Decision variables: 

α  :percentage of capacity usage on maximum congested link. 

xp : 1 if path p is selected, 0 otherwise.  

ywl : 1 if source-destination pair w uses link l, 0 otherwise. 
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Problem PII  

Subject to: 

 

 

Redundant constraints associated with these auxiliary variables (3) ,(4),(7) and (9) are 

added. It is clear that the equality should hold at the optimal point. By introducing these 

auxiliary variables, the Lagrangean relaxation problem can be decomposed into 

independent and easily solvable subproblems. 

In network optimization problem, it can usually be found that the desired problem 

consists of several special embedded structures which might have been well studied and 

min   α
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exist well-known algorithms to optimally solve them efficiently. However, the original 

problem may be a very difficult one due to its ill mathematical structures, large problem 

size, or complex integer/combinatorial property; even if we can solely handle all of its 

embedded modules efficiently. 

Another kind of problems is NP-complete/NP-hard problems. Since these problems 

cannot be modeled as polynomial time solvable programs unless P=NP, efficient heuristic 

algorithm or approximation algorithm has to be developed for these problems. Especially, 

when the problem size of the desired problem is out of the computation power by using 

exhaustive search or other exact evaluation methods. 

In order to deal with these intractable features, one might try to get near optimal 

solutions instead of casting the real optimal solutions. Thus, performing some relaxation to 

the design problem is necessary in solving these problems. 

Lagrangian relaxation is a general solution strategy for solving mathematical programs 

that permits us to decompose original problems into several subproblems such that we can 

exploit their special embedded structures. Lagrangean relaxation can provide bound on the 

value of the optimal objective function and the bound outperform those provided by linear 

programming relaxation in many instances [20]. Furthermore, the solutions of Lagrangean 

relaxation problem provide a good base to help designer to develop effective heuristic 

algorithms for the desired problems. 
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In the next chapter, we use Lagrangean relaxation to the heterogeneous Minmax end to 

end delay problem and decompose the original problem into several subproblems. 
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4. Lagrangean relaxation and problem decomposition 

We first dualize Constraints (1), (2), (3) and (4) to Problem PII to obtain the following 

Lagrangean relaxation problem. 

Problem (Dual_P): 

( ) min{[1 ] [ ( )]

                         ( ) [ ( ) ]}   ( )
w
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dual l l w w

l L w W l L l l

wl p pl wl l l l l l
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yZ v c s D
c f
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∈ ∈ ∈ ∈

= − + − +
−

− + − + − ∗

∑ ∑ ∑
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and vectorρ= (s,t,u,v) is the non-negative Lagrangean multiplier. 

Problem (Dual_P) can be decomposed into following three independent subproblems 

(S1, S2 and S3) by separating the decision variables α, x, y. Therefore, we have Zdual=ZS1+ 

ZS2 +ZS3 ∑
∈

−
Ww

ww Ds , where  

ZS1(v)= α







−∑

∈Ll
ll cv1 min   

subject to Constraint (8), 

ZS2(t,u)= min  [ ( ) ]
w

wl l w p pl
w W l L p P

t u r x δ
∈ ∈ ∈

+∑∑∑  

subject to Constraints (5) and (6) , and 

ZS3(s,t,u,v)= min{ ( ( ) )}
w wl

w W
wl wl l l l

l L w Wl l

s y
t y v u f

c f
∈

−
∈ ∈

− +
−

∑
∑ ∑  

subject to Constraints (7) and (9). 

  We will solve these three subproblems using linear algorithms in next three sections. 
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procedure subproblem1; 

begin 

Z:=1; 

for all link l∈L do 

Z:= Z−vl×Cl; 

if Z>0 then α:=0 ; 

else α:=0; 

end; 
 

4.1. Solving Subproblem 1 

Subproblem S1 is a problem for decision variable α. Variableαis set to 1 if the 

corresponding cost ∑
∈

−
Ll

ll cv1  is negative; otherwiseαis set to 0. Subproblem 1 runs on 

O(L) computation time. 

 

Figure 2 The algorithm of Subproblem 1 
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4.2. Solving Subproblem 2 

Subproblem S2 is a problem for decision variable x. It consists of |Wn| (one for each 

source node) independent problems. Each one is an edge-disjoint-path problem rooted at 

the given source node and destined to all destination nodes for the SD pairs with non-zero 

traffic demand. To solve the problem, one can view the input network as a graph. This 

graph contains (L) arcs and (N) nodes. We set each arc l have Cl capacity (it means that the 

transmission time for each packet is exponentially distributed with mean Cl) and 

non-negative arc weight, (twl+ulrw) . In such graph, the subproblem is a minimum cost flow 

problem to send minimum cost flow from the source node to all its destination nodes with 

specified traffic demands. We use traditional minimum cost flow algorithm such as 

successive shortest path algorithm [20] to solve the problem. 

 

Figure 3 The algorithm of Subproblem 2 

 

procedure subproblem2; 

begin  

for each link l∈L do 

  costlw:=twl+ulrw; 

for each node src∈Sn do 

 run successive-shortest-path(src, cost) to determine x; 

update Zs2; 

end; 
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4.3. Solving Subproblem 3 

Subproblem S3 is a problem for decision variable y. It consists of |L| (one for each link 

l L∈ ) independent problems.  

For each link l L∈ : 

               min[ ( ) ]
w wl

w W
wl wl l l l

w Wl l

s y
t y v u f

c f
∈

∈

− + −
−

∑
∑   

subject to (5) and (8). 

  For different values of fl, the value of ywl for minimum objective function, denoted as 

*( )wl ly f  may be different. As an example, consider the case that fl =0. The objective 

function is minimized by assigned *(0)wly  to 1 if ( ) 0w
wl

l

s t
c
− ≤  and to 0 otherwise. We 

define a set of break points of fl as those points where ( ) 0w
wl

l l

s t
C f

− =
−

 for each w. These 

break points are sorted and denoted as 1 2, ,.............. n
l l lf f f . Note that there are at most |W| 

break points. We observe that when 1i i
l l lf f f +≤ ≤  the value, the value of *( )wl ly f  

remains constant for all w W∈ . Within the above internal, *( )wl ly f  is 1 if 

( ) 0w
wl

l l

s t
c f

− ≤
−

 and is 0 otherwise. Therefore, within an interval, 1[ , )i i
l lf f + , the 

objective is only a function of fl, and the minimum point within the interval can be found 

analytically. By examining at most |W| +1 intervals, we can find the global minimum point 

by comparing those local minimum points. 

  When examining an interval, we first determine *( )i
wl ly f  within the interval for 
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each w. We denote *( )
i

w wl l
w W

s y f
∈
∑  as al and *( )

i

wl wl l
w W

t y f
∈
∑  as bl. Note that al and bl are 

non-negative. Within the interval, the objective function can then be expressed as: 

3_ ( )l
sub l l l l l

l l

aZ b v u f
C f

= − + −
−

. A typical curve of the objective function vs. fl within the 

interval 1i i
l l lf f f +≤ ≤  is shown in Figue 1. The curve of the objective function vs. fl is 

shown in Fig. 2. The local minimum point is either at the boundary point, i
lf  or 1i

lf
+ , or 

at point * ,(( ) 0)l
l l l l

l l

af C u v
u v

= − ≠
−

. 
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Figure 4 A typical curve of the objective 
function of (SUB3) vs. fl 

Figure 5 A typical graph of the objective 
function of (SUB3) vs. fl 
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Figure 5 The algorithm of Subproblem 3 

procedure subproblem3; 

begin  

      Step 1. Solve ( 0)w
wl

l l

s t
C f

− =
−

 for each O-D pair w, call 

them the break points of lf . 

      Step 2. Sorting these break points and denoted as 

1 2, ............, n
l l lf f f . 

      Step 3. At each interval, 1i i
l l lf f f +≤ ≤ , ( )wl ly f  is 1 if 

0w
wl

l l

s t
C f

− ≤
−

 and is 0 otherwise. 

      Step 4. Within the interval, 1i i
l l lf f f +≤ ≤ , let al be 

( )w wl l
w W

s y f
∈
∑  and bl be ( )wl wl l

w W

t y f
∈
∑ , then the local 

minimum is either at the boundary point, i
lf  or 1i

lf
+ , 

or at point * l
l l

l l

af C
u v

= −
−

. 

       Step 5. The global minimum point can be found by comparing 

these local minimum points. 

end; 
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4.4. Subgradient Optimization Procedure 

From the weak Lagrangian duality theorem, Zdual(ρ) is a lower bound of the Problem (P) 

for any non-negative Lagrangean multiplier vector ρ = (s, t, u ,v) ≥ 0. Naturally, one wants 

to determine the largest lower bound by       

   

The subgradient method can be applied to solve (11). 

The solution to Problem (Dual_P) at iteration k of the subgradient optimization 

procedure is given below. In subgradient solution procedure, the Lagrangian multiplier 

vector ρ is updated by 

 

where b is a subgradient of Zdual(ρ) with vector size |W+LW+L+L|. The step size kθ  is 

determined by 

 

UB is an upper bound obtained from a heuristic solution described in the next section and 

λk is a constant in a range from 0 to 2. 

The details of this procedure see below: 

_ 0
max ( )          (11)lower bound dualZ Z
ρ

ρ
≥

=

1k k k kbρ ρ θ+ = +

2
( ( ))k dual

k
k

UB Z
b

λ ρθ −
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 Figure 6 The algorithm of update-step-size and update-multiplier 

procedure update-multiplier; 

begin 

 for l:=1 to |W| do 

  sw:=[sw+θ (∑
∈

−
−Ll

w
ll

wl D
fC

y )]+ ; 

 for l:=1 to |L| do  

  for w:=1 to |W| do 

   tlw:= [tlw+θ ( ∑
∈

−
wpp

wlplp yx δ )]+ ; 

 for l:=1 to |L| do  

  ul:= [ul+θ ( ll fg − )]+ ; 

for l:=1 to |L| do  

  vl:= [vl+θ ( ll Cf α− )]+ ; 

end; 

procedure update-step-size; 

begin 

 
||1 wi≤≤

∀ bi:=∑
∈

−
−Ll

w
ll

wl D
fC

y ; 

 
||||||1|W|

 
WLWi +≤≤+

∀ bi:= ∑
∈

−
wpp

wlplp yx δ ; 

 
|||||||| 1||||||

 
LWLWiWLW ++≤≤++

∀ bi:= ll fg − ; 

|||||||||| 1||||||
 

LLWLWiWLW +++≤≤++
∀ bi:= ll Cf α− ; 

 step size 2/)( bdualZUB −= λθ ; 

end; 



 40

4.5. Summary of Lagrangean Relaxation Method 

The algorithms are described below: LRM denotes the Lagrangean relaxation method. 

 
Figure 7 The algorithm of LRM 

algorithm LRM; 

begin 

multiplier vector s:= 0, t:=0 , u:=0 and v:=0; 

UB:=1 and LB:=0; 

unimproved_count:=0; 

step size coefficient λ:=2; 

for each k:=1 to MaxIteration do 

begin 

run subproblem1, subproblem2 and subproblem3; 

Zdual=Zs1+Zs2+Zs3− w w
w W

s D
∈
∑ ; 

if Zdual>LB then LB:=Zdual and unimproved-count:=0; 

else unimproved-count:=unimproved-count+1; 

if unimproved-count>=Max-unimproved-count then  

 λ:=λ/2 and unimproved-count:=0; 

run primal-heuristic; 

if ub<UB then UB:=ub; 

run update-step-size; 

run update-multiplier; 

 end; 
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5. Lagrangean-based Heuristic Algorithm 

Since the Lagrangean relaxation is obtained by the relaxation of some constraints from 

the problem formulation, the solution to the dual problem might be infeasible for the 

original primal problem resulting from dissatisfaction of those relaxed constraints. However, 

such solution can still be used as a base to develop efficient heuristic algorithms to seek 

feasible solutions and obtain upper bounds for the original problem. In practice, at each 

iteration of the subgradient solving procedure, the solution of Lagrangean relaxation is used 

to obtain a lower bound of the primal problem. In addition, we verify the feasibility of the 

solution in the constraints of primal problem. If the solution is feasible, it is used to 

calculate an upper bound of the primal problem (Actually it is an optimal solution.). If the 

solution is not feasible, the following heuristic is applied to find a feasible solution. 

5.1. Proposed Lagrangean-based Heuristic Algorithm  

Based on the solution obtained from solving Lagrangean relaxation in each iteration. We 

observe that when solving xp in subproblem 2, we set the cost of each link be (twl + ulrw), so 

if we take the same paths in LRM, the gap between LB and UB will be minimum. But not 

all of these paths can be selected (due to some constraints are violated), so the cost of each 

link is modify to 
  (1- )    ;
  0 .
= +

 =
l l lCost Weight Delay

initial
λ λ

λ
 

Traffic demands are then routed onto the network for each SD pair sequentially (from 

short delay required connections to long delay required ones) by applying Dijkstra’s 

shortest path algorithm. The capacity of those arcs used by the above accepted paths are 

updated by subtracting the flow of this connection from the capacity of this link. If the 

utilization of a link will become greater than the best known lower bound (LB)×|Cl| when a 
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further virtual circuit setups on it, the weight of this arc is replaced by multiply a constant 

term on its weight as a penalty for avoiding further setup paths on this link. The process 

continues until all of the traffic demands are satisfied or the network cannot accommodate 

the traffic request. A feasible solution is obtained in the former case. 

5.2. Evaluation of the Feasible Schedule 

From the weak Lagrangian duality theorem, Zdual(ρ) is a lower bound of the Problem (P) 

for any non-negative Lagrangean multiplier vector ρ = (s, t, u ,v) ≥ 0. Naturally, one wants 

to determine the largest lower bound by       

   

The subgradient method can be applied to solve (11). The entire procedure is described 

below. 

 
 

Figure 8 The algorithm of LRM Evaluation Procedure
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Figure 9 The algorithm of Primal-Heuristic 
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6. Experimental Results 

We have carried out a performance study on LRH and drawn a comparison between 

LRH and the LPH approach via experiments over randomly generated networks. Given the 

total number of nodes, say n, the greatest possible number of bi-directional links is 2
nC , 

where C is the combination operation. Then, for a network with n nodes and a connectivity, 

t, it is generated by randomly selecting ( ,2)C n t×  out of the ( ,2)C n  bi-directional links 

of the network. 

6.1. Performance Study 

We carried out two sets of experiments over 15-node random networks with two 

connectivities v=0.4 and 0.8, which correspond to sparse and dense networks, respectively. 

In the first set of set of experiments, the LRH algorithm was terminated when the number 

of iteration exceeded a pre-determined Iteration_Number, ranging from 0 to 1500. 

Numerical results are displayed in Figure 12. We study both the lower and upper bounds on 

α  under different UC values.  We observe that while the upper bound performance is 

irrelevant to UC, the lower bound performance is highly dependent on the UC setting in the 

same manner as above. Specifically, smaller UC values yield faster convergence but only to 

looser lower bounds, while larger UC values result in tighter lower bounds through gradual 

convergence over a larger number of iterations. This fact reveals that, by adjusting the UC 

value, the LRH approach is capable of balancing the trade-off between accuracy and 

efficiency for resolving various types of our problems. 
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Figure 10 Convergence speed versus accuracy on the basis 

of using fixed iteration number. 
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6.2. Performance Comparisons 

We first carried out numerical computation of the lower and upper bound values of α , 

the maximum aggregate arrival rates of a link divided by the capacity of each link, lC , 

using our LRM-based method and a Linear Programming Relaxation (LPR)-based method. 

In the computation, we considered three widely used networks. They are: NSFNET with 14 

nodes and 42 links; PACBELL with 15 nodes and 42 links; and GTE with 11 nodes and 46 

links.  

In the LRM-based heuristic algorithm, we adopted a penalty term of 2. In addition, if the 

Lagrangean lower bound remains unimproved for 50 iterations (UC=50), the step size 

coefficient (λk ) would be divided by two. The simulation was written in the C language and 

terminated at the end of 2000 iterations and operated on a PC running Windows XP with a 

1.8 GHz CPU power.. 

In the LPR-based method, by removing Constraints (6) and (7), the original Integer 

Linear Programming (ILP) problem is relaxed to a Linear Programming (LP) problem. 

Thus, the solution to the relaxed problem is a legitimate lower bound of the original ILP 

problem. To obtain an upper bound, we also develop a corresponding heuristic algorithm. 

The algorithm ranks all SD pairs in accordance with the desired packet delay. The next 

feasible path founded in the LP solution is then assigned to the SD pair with the smallest 

packet delay. There may be multiple feasible paths for an SD pair; we select the shortest 

path with the largest xp value in the algorithm. The path assignment process repeats until 

either the traffic demands of all SD pairs are satisfied (i.e., feasible), or there is no 

remaining resource (i.e., infeasible). In the simulation, the LP problem was solved using the 

CPLEX software, operating in the same PC environment previously described. 
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Numerical results for the NSFNET, PACBELL, and GTE are summarized in Table II, III, 

and IV, respectively. The traffic demands (i.e., the traffic arrival rate) for all SD pairs are 

randomly determined with their mean value shown in the first column of the tables. 

Moreover, the Gap in the third column of the tables is computed as the ratio of the 

difference of the upper and lower bounds to the lower bound in percentage. 

As shown in Table II for NSFNET, the LPR-based method reaches a low guarantee of 

20% gap, incurring high CPU computation time. Compared to it, the LRM-based method 

achieves ideal lower and upper bounds (gap< 5%) under all four traffic demand cases 

except case 1. The algorithm also improves the CPU computation time by one order of 

magnitude. We discover that, even though both methods achieve optimal lower bounds, the 

LRM-based heuristic algorithm arrives at much improved upper bounds due to the use of 

the Lagrangean multipliers derived upon seeking the Lagrangean relaxation solution. 

In Table III for PACBELL, the LPR-based method reaches a low guarantee of 29% gap. 

Compared to it, the LRM-based method again achieves ideal lower and upper bounds 

(<8%). The LRM-based algorithm also improves the CPU computation time by two order 

of magnitude. It is worth mentioning that in the case of the mean traffic demand being 

equal to 3.0, while the LPR-based method fails to obtain a feasible solution, the LRM-based 

method arrives at the optimal solution. 

Finally, in Table IV for the GTE network, the LRM-based method outperforms the 

LPR-based method in both the solution superiority and the computation time in all traffic 

cases. Specifically, the LPR-based method again reaches fairly low guarantee of 27% gap. 

The method produces a non-optimal solution but with an improved guarantee of 13% gap. 

This justifies the viability of the LRM-based method for providing efficient QoS routing 

method.
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Table 2 Numerical results for NSFNET Network 

Demand LB LP_UB 
LP_CPU 

(sec) 
LP_Diff

% 
LP 

Feasibility
Lag_UB

Lag_CPU 
(sec) 

Lag_Diff 
% 

Lag 
Feasibility

5 0.134885 0.15625 1108 15.840 Yes 0.156250 28 15.840 Yes 
10 0.260588 0.31250 1694 19.921 Yes 0.281250 41 7.929 Yes 
15 0.403905 0.46875 1754 16.055 Yes 0.406250 54 0.581 Yes 
20 0.533426 0.62500 1809 17.167 Yes 0.562500 64 5.450 Yes 
25 0.646050 0.75000 1947 17.152 Yes 0.656250 71 1.579 Yes 
30 0.820311 0.90625 2027 10.476 Yes 0.843750 82 2.857 Yes 

 

Table 3 Numerical results for PACBELL Network 

Demand LB LP_UB 
LP_CPU

(sec) 
LP_Diff

% 
LP 

Feasibility
Lag_UB

Lag_CPU 
(sec) 

Lag_Diff 
% 

Lag 
Feasibility

10 0.289678 0.375000 2335 29.454 Yes 0.312500 41 7.878 Yes 
15 0.448961 0.531250 2151 18.329 Yes 0.468750 53 4.408 Yes 
20 0.596959 0.687500 2414 15.167 Yes 0.625000 67 4.697 Yes 
25 0.757723 0.906250 2697 19.602 Yes 0.781250 80 3.105 Yes 
30 0.951497 NA 2651 NA No 0.96875 90 1.812 Yes 

 

Table 4 Numerical results for GTE Network 

Demand LB LP_UB 
LP_CPU

(sec) 
LP_Diff

% 
LP 

Feasibility
Lag_UB

Lag_CPU 
(sec) 

Lag_Diff 
% 

Lag 
Feasibility

10 0.177474 0.218750 410 23.257 Yes 0.187500 65 5.649 Yes 
15 0.270522 0.343750 440 27.069 Yes 0.281250 85 3.966 Yes 
20 0.348616 0.406250 712 16.532 Yes 0.375000 103 7.568 Yes 
25 0.406115 0.468750 830 15.423 Yes 0.437500 124 7.728 Yes 
30 0.468669 0.562500 897 20.020 Yes 0.531250 135 13.353 Yes 
35 0.546826 0.687500 912 25.726 Yes 0.593750 148 8.581 Yes 
40 0.616869 0.687500 954 11.450 Yes 0.656250 157 6.384 Yes 
45 0.655807 0.750000 1024 14.363 Yes 0.718750 160 9.598 Yes 
50 0.701118 0.781250 1231 11.429 Yes 0.75000 162 6.972 Yes 
55 0.804162 0.906250 1403 12.695 Yes 0.875000 174 8.809 Yes 
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We further draw comparisons of accuracy and computation time between our LRH 

approach and the Linear Programming Relaxation (LPR)-based method. For generating 

networks, it is impractical to experiment on networks with smaller numbers of nodes and 

links. However, for networks with greater than 12 nodes, we experienced that the 

computation time using the LPR-based method became unmanageable. In the experiment, 

we considered three random networks, called NET1, NET2, and NET3, as shown in Figure 

13. NET1 consists of 10 nodes, and 19 bi-directional links, corresponding to a connectivity 

(v) of 0.44 . NET2 consists of 11 nodes, and 22 bi-directional links, corresponding to a 

connectivity (v) of 0.4. NET3 consists of 11 nodes, and 22 bi-directional links, 

corresponding to a connectivity (v) of 0.4. Numerical results are demonstrated in Figures 

14. 

In the computation using our LRH approach, we adopted UC=50 and two different 

termination criteria. The two criteria are: Iteration_Number=1000, and 2000. The algorithm 

was written in the C language and operated on a PC running Windows XP with a 1.8GHz 

CPU power. In the LPR-based method, by removing Constraints (6) and (7), the original 

Integer Linear Programming (ILP) problem is relaxed to a Linear Programming (LP) 

problem. Thus, the solution to the relaxed problem is a legitimate lower bound of the 

original ILP problem. The upper bound is then obtained according to the randomization 

procedure proposed in previous. In the experiment, the LP problem was solved using the 

CPLEX software, operating in the same PC environment. For both approaches, the 

accuracy is measured in terms of the Gap(%) which is defined as the ratio of the difference 

of the UB and LB of α to the LB value in percentage. 

As shown in the three figures, the LPR-based method exhibits larger gaps, namely 

poorer accuracy, and requires high computation time under both networks. In contrast, the 
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LRH-based method achieves ideal lower and upper bounds under several traffic demand 

cases. In fact, we discover that, both LRH and LPR-based approaches achieve tight lower 

bounds. Significantly, the LRH heuristic algorithm arrives at much improved upper bounds 

due to the use of the Lagrangean multipliers derived upon seeking the Lagrangean 

relaxation solution. Specifically, we discover from Figure 14 that the LRH approach using 

the 1000 iterations achieves as high accuracy as that using the 2000 iterations criterion 

under most demand cases.  

Furthermore, as shown in Figure 15, the LRH approach outperforms the LPR-based 

method in computation time by at least one order of magnitude under all cases. Notice that, 

the LRH approach using the fixed iteration =1000 incurs exceptionally low computation, 

and achieves as high accuracy as that using the 2000 iterations criterion under most demand 

cases. Compared to the LPR-based method, the LRH approach offers an improvement of 

computation time by more than two orders of magnitude. 
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Figure 12 Three random generating networks.

(a) NET1 (10 nodes) (b) NET2 (11 nodes) 

(c) NET3 (11 nodes) 
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Figure 13 Comparison of accuracy under three random networks.
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Figure 14 Comparison of computation time under three random networks. 
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7. Conclusions and Future Works 

In this thesis, we have improved a QoS routing problem using a Lagrangean Relaxation 

based approach augmented with an efficient primal Heuristic algorithm, called LRH. With 

the aid of generated Lagrangean multipliers and lower bound indexes, the primal heuristic 

algorithm of LRH achieves a near-optimal upper-bound solution. In our thesis, we have 

three major characteristics which are compared with other proposed methods. First, we start 

to consider user’s perspective and system’s perspective jointly. Second, in our routing 

procedure, the candidate path set does not need to be prepared in advance and the best paths 

are generated while solving the subproblems in our approach. Third, our method can both 

provide the upper bound and lower bound to the problem, this distinguishing feature can 

help us to verify the performance of our solutions. A performance study delineated that the 

performance trade-off between accuracy and convergence speed can be manipulated via 

adjusting the Unimproved Count (UC) parameter in the algorithm. We have drawn 

comparisons of accuracy and computation time between LRH and the Linear Programming 

Relaxation (LPR)-based method, under three networks NSFNET, PACBELL, and GTE 

and three random networks. Experimental results demonstrated that the LRH is superior to 

the other approach, namely the LPR method in both accuracy and computational time 

complexity, particularly for larger size networks. 

7.1. Future Works 

  A future work we can do is that we are able to reconfigure the virtual topology to adapt to 

changing traffic patterns. Some reconfiguration studies on virtual networks have been 

reported before [7, 12, 9]; however, these studies assumed that the new virtual topology was 
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known a priori, and were concerned with the cost and sequence of branch-exchange 

operations to transform from the original virtual topology to the new virtual topology. We 

propose a methodology to obtain the new virtual topology, based on optimizing a given 

objective function, as well as minimizing the changes required to obtain the new virtual 

topology from the current virtual topology. This approach would result in the minimum 

number of switch re-tunings, thus minimizing the number of disrupted virtual paths. 

Consequently, this approach also minimizes the time it takes to complete the reconfiguration 

process. Some discussions on the control mechanisms required to perform re-tunings of 

virtual paths can be found in [21]. 

 In the ideal situation, given a small change in the traffic matrix, we would prefer for the new 

virtual topology to be largely similar to the previous virtual topology, in terms of the 

constituent virtual paths and the routes for these virtual paths, i.e., we would prefer to 

minimize the changes needed to adapt from the existing virtual topology to the new topology. 

More formally, it would be preferable if a large number of the plδ  variables retain the same 

values in the two solutions, without compromising the quality of the solution (in terms of 

minimizing the congested link utilization). 

 Let us consider the snapshot of two traffic matrices, 1
sdλ  and 2

sdλ , taken at two 

not-too-distant time instants. We assume that there is a certain amount of correlation between 
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these two traffic matrices. Given a certain traffic, there may be many different virtual 

topologies, each of which has the same optimal value with regard to the objective function. 

But we will terminate after the first such optimal optimal solution is found. Our 

reconfiguration algorithm finds the virtual topology corresponding to 2
sdλ  which matches 

“closest” with the virtual topology corresponding to 1
sdλ  (based on our above definition of 

“closeness”). 

7.2.  Reconfiguration Algorithm 

 We perform the following sequence of actions: 

1). Generate formulations (1)F  and (2)F  corresponding to traffic matrices 1
sdλ  and 2

sdλ , 

respectively, based on the formulation in Section 3. 

2). Derive solutions (1)S  and (2)S , corresponding to (1)F  and (2)F , respectively. 

Denote the variables’ values in (1)S  as (1)px  and (1)wly , and those in (2)S  as 

(1)px  and (1)wly , respectively. Let the value of the objective function for (1)S  and 

(2)S  be 1OPT  and 2OPT , respectively. 

3). Modify ( (2)F  to '(2)F ) by adding the new constraint 

           2                                                                        (10)OPTα =  

This ensures that all the virtual topologies generated by '(2)F  would be optimal with 
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regard to the objective function. 

 The new objective function for '(2)F  is 

  Minimize: (1) (2)wl wl
w l

y y−∑∑                    (12) 

 Note that the mod operation, x , is a nonlinear function. If we assume that wly  can only 

take on binary values, then (12) become linear, i.e., if (1) 1wly = , then 

(1) (2) (1 (2))wl wl wly y y− ≡ − ; else if (1) 0wly = , then (1) (2) (2)wl wl wly y y− ≡ . Hence, '(2)F  

may be solved directly. 
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