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A b s f r e T h e  best deterministic  rule, newly proposed in this paper 
is similar  in nature to the best stochastic rule [3], except that 1) a 
maximum traffic  bifurcation flow distribution is chosen and 2) 
deterministic  routing  sequences  are  used. Analysis shows  that the best 
deterministic  rule  always  gives better delay performance than the best 
r.tochastic  rule.  A semidynamic version of this rule is introduced for 
use  in  a varying traffic  rate environment. 

T 
I. INTRODUCTION 

HERE are four essential components  of  information  that 
can  be  used by a routing rule in a computer-communica- 

tion  network. 1) The topological  information concerns the 
entire  network.  It  includes,  for  example,  whether a given out- 
going link  can lead to a certain  destination,  number  of  hops 
from  the originating node to each  destination  node,  etc.  It 
is changed  whenever the  network is expanded, some parts 
of it are  removed, or  when  nodes  and  links fail. 2)  The traf- 
fic rate information accounts  for  the  external  traffic  intensity 
of each source and  destination pair. It  may change over a 
period  of  perhaps  hours,  in  contrast to  the topological in- 
formation which  changes perhaps over days or even weeks. 
As an  example  in  one region, the  traffic  may peak at  certain 
hours  during  the  morning  and  afternoon,  and  may decline 
considerably at night. 3) The local queue  length information, 
includes  lengths of  output  queues,  the  types  of messages 
in each queue,  their priorities, etc.,  at  each local node. 4) The 
feedback  information includes the  state  of  the  queues  and 
other local information  at neighboring nodes.  Usually, only 
portions  of  this  are  fed  back  and used. 

Rules  which incorporate  feedback  information are called 
feedback rules. Otherwise they are called local rules. Routing 
rules that use the  instantaneous  queue  length  information  for 
their  routing decisions are called adaptive rules. Otherwise 
they are called fixed rules. Adaptive  rules have been  shown 
to give better delay performance than the  fixed rules, but 
their  implementations are more  complex. Fixed  rules have 
been  studied extensively  in the  literature  [2] . Most of  them 
are  of  the  stochastic  type, i.e., messages are distributed to 
the  output  buffers  under a fixed  probability assignment.  One 
particular stochastic fixed rule that minimizes the average 
message delay is analyzed in [3]. We refer to it  here as the 
BS (best  stochastic) rule. We shall  first  summarize the BS 
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rule in the  next section because it is the  substructure of the 
BD (best deterministic) rule,  the rule to be studied  here. 

In  Section I11 we introduce  the flow distribution  entropy 
function H .  We shall see that finding the flow distribution 
of  maximum H is essential for  the efficient operation  of  the 
BD rule. We then  introduce  the BD rule and discuss how  it 
operates in  a network  under a varying traffic  rate  environment. 
In  Section IV, we study  the  properties  of  the BD rule and 
compare  its delay performance to  the BS rule. 

The primary  purpose of  this  paper is to single out  the 
routing aspect of  the  network  operation  and  demonstrate, 
through analysis, the  improvement possible by using de- 
terministic  routing sequences to  bifurcate traffic. We would 
also like to emphasize that  this  kind  of  theoretical  study  pro- 
vides insight in “custom designing” routing rules for specific 
networks. I t  also points  out  the  directions  for improving net- 
work  performance  (more  throughput, less delay) through 
the choice of  routing rules. 

Note  that  the BS rule is used  primarily for  network design 
purposes; there is no  known  implementation  of it in any 
existing network. As for  the BD rule,  it is newly proposed. 
Deterministic  routing sequences introduced  here are  being 
used  in the  Common Channel Interoffice Signaling (CCIS) 
network  for  telephone signaling. The use of  the  optimum 
flow distribution  and  the  semidynamic version of  the rule 
in the CCIS network is still under investigation. 

11. THE BEST STOCHASTIC ROUTING RULE  [3] , [ 101 

The BS rule is globally optimum  in  the sense that  it gives 
a minimum overall average time  delay, averaged over all nodes 
of the  network  and averaged over statistically varying time 
delay due to traffic  fluctuation, given that traffic is bifurcated 
(or routed to different  outgoing  links) by fuced probability 
assignments at each node. Here, we assume that  the  input 
traffic rates  are fixed.  In  situation where traffic  rates  do 
change, this rule can be  operated in  a  semidynamic mode 
with new routing decisions  calculated  periodically from new 
estimates  of  the  traffic rates. Algorithms incorporating  this 
feature can be  found in [4] ,  [5]. Let us consider  a hypo- 
thetical  computer  communication  network  with N nodes 
and L links. Let Ci be the  capacity  of  link i in bits/s; Ai be the 
rate  of average message flow over link i ;  1/11 the average 
length  of  exponentially  distributed messages, assumed to 
be the same throughout  the  network;  and yi, the  external 
Poisson arrival rate  of messages from  node i to  node j .  After 
invoking the message length  independence  assumption [ 6 ] ,  
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the  complex  queueing  network is reduced to a network of 
M/M/1  queues.  The average time delay is 

where Ti is the  nonqueueing delay in link i (e.g., processing 
delay,  propagation  delay, etc.), and J;: 4  hi/^ is the flow in 
link i. Our routing  problem is similar to  the  multicommodity 
flow  problem  in network-flow  theory.  The objective is’% 
assign paths for  each commodity so as to minimize T. Let 
there be M source-destination pairs (or  commodities)  in the 
network  and  let  the average flow in  link i due  to  commodity 
k be  denoted a s h k .  Then 

M 

and  the set Cfik}  completely specifies the  routing  strategy. 
There are two  constraints  on ( f i k } .  1) The  capacity  constraints 
say that J;: < Ci for all i. 2) the flow constraints say that mes- 
sage flows must be conserved, commodity  by  commodity. 
Thus, if  we labei commodities  by  the  source-destination nodal 
pairs, and links by  the  two  nodes  to which they are con- 
nected, we have at  node I ,  due  to  comodity (i, i) (from [ l o ]  ) 

N N -yii/p if 1 = i 
yiJp if I = j (3) 

k= 1 m=l 
0 otherwise. 

There are various algorithms for solving this  constrained 
minimization  problem. The flow  deviation  (FD) method [3] 
is the earliest one. The extrema1  flow (EF)  method  [7]  and 
the gradient projection (GP) method  [8] are more  recent and 
execute in less time.  They all use the  iteration  approach  and 
rely on  the  fact  that ‘T is convex, as  is the feasible set of 
multicommodity flows. Thus, a unique global minimum 
exists. The  FD  method provides the total flow g.}. .The 
individual commodity flows ( f i k }  required for  routing assign- 
ment  must  be  determined  by  additional “bookkeeping.” 

III. THE BEST DETERMINISTIC ROUTING RULE 
The BD rule  differs from  the BS rule  in two aspects: the 

choice of  maximum  traffic  bifurcation and the use of  de- 
terministic routing sequences. In  this  section, we shall first 
elaborate  on these two  and  then discuss the  operation of the 
BD rule  in  a network. 

A .  Maximum  Traffic  Bifircation 
In  the preceding section, we have indicated  the use of 

the  FD  method,  among  others,  to  find  the  total flow vi}. 
Now for a  specific set ofJ;:, say cf;:*}, there  corresponds  many 
sets of Cf;:k} satisfying (2). For  the BS rule,  it  makes no dif- 
ference  which set  of g.k} is used, because they all result  in 
the same delay. For  the BD rule, however,  we want to  find 

the particular set C f k * }  results  in maxinlum  triffic  bifurca- 
tion, Now for an  adaptive routing  rule,  more  traffic  bifurca- 
t ion.  means more  traffic can be adaptively routed. And it 
has been  shown [I]   that  as the adaptive portion  of  traffic 
increases, relative to  the fixed traffic, while keeping  the  total 
traffic  constant,  the delay performance improves.  This is 
also true for the BD rule for  the same reason. 

To find Cfik*}) ,  let us focus  on a  particular node, say 
node n.  Let L ,  be  the  set  of outgoing lirlks and define Pik 
as the  probability of routing  the  kth  commodity  to link i 
at  node n ,  or 

Recall that  our. objective is to find Cfik*}  such that  the  traf- 
fic bifurcation in the  network is maximum; This is equivalent 
to finding the  set  of Pik3 whose value are “as near to each 
other” as pdssible at each node.  Therefore, we  can find x.k*} , 

by  maximizing the  traffic  distribution  entropy  function’ H :  

subject to the  nonnegativity  constraints f i k  2 0, the flow 
conservation constraints (3), and  the link  utilization con- 
straints (2). 

It can be shown that H is a  linear combination of  convex 
functions,  and so is itself  convex. The  constraints are all linear. 
Therefore a unique  maximum value of H exists  and  can Lie 
found  by  the same iterative technique prescribed in the last 
section.  The flows X} and  the initial guessed  values  of g k }  
are obtained  from  the  solution of the  optimization problem in 
the preceding section.  The  set {Pik*} which  completely 
specifies the  routing  strategy is calculated from xk*} at each 
node via (4). 

B. Deterministic  Routing  Sequences 

each node, we can use a deterministic  routing sequence S, k :  

Instead  of assigning routes  randomly according to  {Pik*} at 

S,k = {SI,  s2,  ...) Sm} 

with si = 1 meaning  a routink decision to send the  ith incoming 
messages of  commodity k to outgoing  iink 1 at  node n. . 

We now show  how to  calculate the decision  sequence via a 
simple example. Consider the queueing  system of Fig. l(b), 
which is a model of the Singie node in Fig. l(aj.  For  the values 
of X1,  A 2 ,  and X shown, PI and P2 are calculated to  be 0.7 and 

1 Any change  toward  equalization  of  the  probabiiities {Pi”} increases 
H. MaximixingH  therefore  mdximizes  the  ambunt  of  traffic  bifurcation. 
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In a network, we first  calculate Pik from f i k .  We then de- 
termine the sequences S, from  the Pik’s for each commodity 
at each node. With the {Snk}  determined,  the  routing rule is 
completely  specified. 

As a final remark, we find out that  the  number of sequences 
we have generated are all recurrent. A closer study reveals the 
following theorem,  which is needed  in  the analysis of the BD 
rule (Section IV). The  proof is in the Appendix. 

given by Pi = ni/N is recurrent  with period N ,  where (n i l  and 
N are relativeiy prime. 

C. An Example for Illustration 

(a) 

x, =0.2 Theorem: The sequence of decisions S with  rational Pi’s 

Consider the five-node network in Fig. 2(a). Let I’ = [ y i j ]  
be  the  input  traffic  matrix  with yii the  rate of external mes- 
sage arrival from  node i to node j .  All links  are  assumed to 
have a  capacity of one  and message lengths are also  normalized 

X2 
(b) 

Fig. 1. (a) A network node with two outgoing  links.  (b) A twoqueue 
system, model of the network  node  in (a). 

0.3. We want to find a  sequence of decisions, say S = 11 2 1 
1 2 e . . }  such  that  the  number  of decisions of 1 (or  on  queue 1) 
and  the  number  of decisions on 2 have ratios as close to 7:3 
as possible for  any segments of S. Compare  this  sequence to 
the  randomly  generated sequence S’ where  the probabilities 
of selecting “1” and “2” are 0.7 and 0.3, respectively. S ap- 
pears to be more “orderly.”  Hence  delay performance of the 
queueing  system using S is improved when  compared to  that 
which uses $.,This we shall show in the  next  section. 

For any subsequence of  length r n ,  let D(l In i )  be the  num- 
ber  of 1-decisions and D(2 Im) = m - D(l Im) be the  number 
of 2-decisions. We want D(i Im)/m, the  fraction of messages 
to be  routed  to Qi in  a total of vi message, lie as close to Pi 
as possible for all m. Therefore,  starting  from m = 1, we 
choose the decision (1 or 2  in  this case) that minimizes 
C;= ,.[D(; Im)/m - Pi]  ’ for  each m. AS an  example, S for  the 
X messages of Fig. l(b) is calculated to  be S = {[I 2 1 1 1 2 
1 1 2 11) where [.] means that the sequence  inside is to be 
repeated In general, for  the  set  of Pi’s, i = 1, 2,  -., Q ,  S is 
determined  by  the following algorithm.’ 

Step Q:-n = 1 

to  unity.  For this simple network  with  symmetric  input  traffic 
and y i  = 7 3 2  = 0, it is sufficient t o  consider  a unidirectional 
flow of  traffic because the flow is the same in the reverse 
direction. If we focus  on  the flow from  left  to  right, we have 
the queueing  model and  the rates of flow in and  out  of  the 
queues as shown  in Fig. 2(b). Using the BS rule for this simple 
network,  it is easy to see that all messages would follow their 
unique  minimum  hop  routes  except  the y I 4  and  the y 1 5  
messages, which can be routed  either  through  node 2 or  node 
3. How should these two message streams  be  bifurcated  for 
minimum average time delay is what we are going to investi- 
gate. The fi that minimizes (1) is  given  as cfl, fz , f3, f4,  f5) = 
(0.8, 0.7, 0.6, 0.8,  0.8). Focusing on  node 1 and  its  two 
outgoing  links, we note  that  the  four  unknown flows due to 
individual commodities are f l  ‘ p 4 ,  fz194, fl  ’”, and fZ1.’. 

They are the flows due to y1,4 and yl, messages on  links 
1 and  2, respectively;  and  are  related by  the link utilization 
constraints (2) and  the flow  conservation constraints (3). 
Thus,  from (2) we have 

Noting  that fl ‘ 2 ’  = y1 = 0.4 andfi 1 9 3  = 71 3 = 0.4, we 
arrive at 

f 1 1 r 4  + f 1 1 r 5  = 0.4 

f21.4 +f21’5 = 0.3. 

And from (3), we have 

= squared error  in making an i-decision at 
decision-node n .  

f 1 l S 4  + f 2 1 , 4  =y14 ~ 0 . 4  

Step 2: ek = min  [min [ e l ,  e2 ,   e3 ,  -1 I fl 1 9 5  +f21p5 = y1 5 = 0.3. (9) 

s, = k  Here are four  equations  for  four  unknowns.  But,  unfor- 
Step 3: n + n  + 1; GO TO Step 1. tunately,  one of them is linearly dependent [ (6)  added to (7) 

is the same as (8) added to (9)]. So the Cf;:k} cannot be 
2 T~ demonstrate  the efficiency of this  algorithm,  the  above se- dniquely determined  and We have a little  freedom in choosing 

quence  is  calculated  by  hand. the values of the individual commodity flows. As explained 

i ei 
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(b) 
Fig. 2. (a)  The  five-node  network  and  the  input  traffic  matrix. (b) 

The  queueing  model. 

before, we want  to choose the u.k} for maximum traffic 
bifurcation  by maximizing H.  For this example, we have 

- - ~ = f , 1 - 4  10gf11.4 + f 2 l I 4  +flip5 10gf,'2~ 

+ f 2 1 , 5  1 0 g f 2 1 3 5  --(J-~',~ + f i 1 t 4 >  

-1og(fl1r4 + f 2 1 3 4 ) - ~ 1 1 9 5  + f 2 1 9 5 )  

- l ~ g ( f ~ ' ~ ~  + f 2 1 , 5 )  

=fl l p 4  logfl l r 4  + 2(0.4 -f1 1 , 4 )  log (0.4 -fl 1 , 4 )  

+ (J-1 1 , 4  - 0.1) log l P 4  - 0.1) + 2.390. 

Differentiating H with respect to f1 setting the result 
equal to zero and simplifying, we arrive at fi 1 ,4  = 8/35. 
Hence f 2 1 9 4  = 6/35, fi ' x 5  = 12/70, and f i 1 p 5  = 9/70.  The 
714 traffic  therefore is to be split into  two  streams  with  a 
4:3 proportion  for links 1 and 2 ;  and  for  the y1 5 traffic, also 
a  4:3  proportion. This therefore is the maximum bifurcation 

of traffic in node 1 while still preserving the flow  rates on links 
1 and 2 to be 0.8 and 0.7. 

D. Network Operation 

In  the  operation  of  the BD rule in a  network  under  a 
varying traffic rate environment,  it is assumed that  a  network 
control  center (NCC) exists  and  recalculates the  optimum 
flow distribution (in the sense of  the BS rule criterion) when- 
ever there  are significant changes in the  external flow pattern 
at  the local nodes. It  then determines the maximum  traffic 
bifurcation of each commodity  at each node  by maximizing 
the H function.  The  patterns  of traffic bifurcation  (the Pik's) 
are sent to  the respective nodes. This can be done  either 
periodically o r  when necessary. Each node  then generates the 
decision sequences from  the Pik's received. The messages, after 
being classified by commodities (or their  source-destination 
type), are then  routed according to  the decision  sequences 
associated with  their  commodity. 

We now come to discuss some  practical  considerations  in 
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implementing  the BD rule. It should be noted  that we are not 
documenting an existing  rule. We are only  pointing out  the 
feasibility of this rule (or infeasibility,  depending on the 
particular network being  considered) based on some common 
technical requirements,  such as traffic  updates,  computational 
overhead and  traffic overhead. 

1)  Traffic  rates usually vary during the  hours of the  day. 
Thus,  they have to be updated periodically for efficient opera- 
tion  of  the  network. Under  unusual  circumstances  such as 
node  and link failure,  however,  immediate  update is required. 
As an example,  the  input traffic to  the CCIS network is tele- 
phone call initiated.  The rates generally do  not vary very much 
in  any  15  minute intervals. In 1141 , the ARF’A network HOST 
message arrival rate is shown on hourly basis. The  update  in- 
terval can be determined  from these  plots. 

2) Computation  of  the  optimum flow distribution is needed 
after each traffic  update.  There are two  computational ad- 
vantages. 

i) The flow distribution  of  the last update is a  sub- 
optimal  solution of the present update.  Therefore,  the  time to 
reach the  optimum  solution is significantly less than  the case 
where  some arbitrary initial feasible solution is assumed. 

ii) Due to random  fluctuations,  input  traffic rates cannot 
be  measured  precisely. Therefore  optimum flow distribution 
need not be highly a ~ c u r a t e . ~  As an example, in 131 it was 
reported  that  the  optimum flow computation  time  for  the 2 1 - 
node ARF’A topology is 30 s (starting from  an  arbitrary initial 
feasible flow and  with an accuracy of lop4  on T ,  the overall 
average network delay).  This is acceptable when  the  traffic 
update interval is in the  order of minutes. 

3) The local nodes need  only  send their estimates of the 
external arrival rates to  the NCC when  there is a significant 
change. On the  other  hand,  a typical  local node needs to re- 
ceive only  the f i k  values that is i) associated with  its  outgoing 
links  and ii) changed  significantly from  their previous values. 
Thus if the  traffic  update is not  too  frequent,  the  traffic over- 
head  in the use of  the BD rule is minimum. 

IV. THE ANALYSIS OF THE BEST 
DETERMINISTIC RULE 

In this  section, we first  analyze the BD rule in an isolated 
network  node  and  study  two degenerate cases. We then gener- 
alize the analysis to arbitrary  networks  and show that  the BD 
rule always gives lower  delay than  the BS rule. 

Consider an isolated network  node  with L outgoing  links, 
all assumed to have the same capacity. Let Xi represent the 
rate of message arrivals that is constrained to  join  queue i(Qi) 
and X represent the rate of message arrivals that is constrained 
to  join  Q, , Q 2 ,  ..., QL in proportion  to P1 : P 2 :  P3: ... PL 
(Fig. 3). Using the BD rule, let us first  consider the  state 
description of Q, . Let N be the recurrence  period of  the  rout- 
ing sequence and h(t); the position of  the sequence at t. Then 
h(t)  = j with si = m means that  the  next arrival of the X mes- 
sage  is to be routed  to Q, . Denote 4 (t)  as the  number  of 

3 As an  example, if the  traffic  rate is measured  to t5 percent ac- 
curacy,  there is no  need  to  compute  the  flow  distribution  any  more 
accurately  than,  say,  two  significant figures (1 percent  error). 

- Q3 
L> 

Fig. 3. An L-queue system  with  fiied arrivals to  individual queues. 

messages residing in Ql  at t .  The  two  quantities q 1  (t) and h(t) 
completely specified Ql  at t .  Hence [q l ( t ) ,  h(t)] is an ap- 
propriate  state vector for  a Markov process. The  number  of 
states  for h(t) is N and  for 4,(t)  is M + 1, where M is the 
buffer  capacity.  The  transition time between  states  has ex- 
ponential  distribution. Hence we can solve the  steady  state 
behavior of Ql  by representing it as a two-dimensional  Markov 
chain. Define 

Si’(j) = 1 when s; = i 

- - otherwise. 

Thus if 

s ={1 3 4 2 1 3  3 2 1 -1, 

we have 

s2 = (0  0 0 1 0 0 0 1 0 -1. 
Let  Pl(i, j )  = Prob[ql = i and h = j] . The state  equations 

for  Q, are 

+ [ 1   - - S l ’ ( j - l ) ]   - X . P l ( i , j - l )  

+ X I P l ( i - l , j ) + P l ( i +   l , j ) ]  

l < i < M - I   \ d i m o d N  

* X . P , ( O , j - l ) + P l ( l , j ) ]  ‘d;modN 
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The equations  for  other  queues in Fig. 3 can be written 
down  and solved independently. The occupancy probability 
for Q, is 

Pl(i) = Prob [i messages in Q1] 
L 

Fig. 4. A  two-queue  system  with  fixed  arrivals  suppressed. 

j =  1 

1 
The expected length of Q,, the overall delay, blocking prob- 
abilities for  different  traffic streams, etc. can all be calculated 
in the usual way [ 101 . 

To assess the delay performance of the BD rule, we con- 
sider two degenerate cases. 

1)  A two-queue  system  with arrival rate 2X (Fig. 4). Assum- 
ing 1/pC = 1,  the utilization of each queue is p = X. The BS 
rule assigns incoming  traffic to Q1 and Q2 with equal prob- 
ability. Using M/M/l result, the average delay of messages is 
Ds = l/($ - X) = 1/(1 - X). The BD rule routes arrival mes- 
sages alternately  to Q ,  and Q2(S  = { [ 1 21)). The interarrival 
time T of external arrivals is exponentially  distributed with 
mean 1/2h. Since every other message joins Q , ,  the  interar- 
rival time of those messages joining Q , ,  denoted by T ,  is 
Tl = T + T.  Its  density has transform 

2 

FTI(S)  = [ s "1 +2X 

This is the transform of the E, distribution. The BD rule 
therefore changed the Poisson statistic  at  the  input  end  of  the 
queue to  the Erlangian statistic. By the  technique in [9],  the 
characteristic root of the above system is  given by 

(3 = FT1(l - a). 

The  unique  root in (0 ,  1) is u = (1 + 4h - 4-/2. The 
average delay of messages in Q, is DD = 1/(1 - a). (By sym- 
metry,  the messages in Q2 have the same average delay.) To 
compare  with  the BS rule, we form  the delay ratio 

DD _ -  2(1 -X) - 
Ds 1  -'4X+4- 

For p = X = 0.5, the  ratio is 0.809. For p + 1,  the  ratio  ap- 
proaches 0.75. The deterministic rule therefore gives 19-25 
percent  reduction of delay  in the range 0.5 < p < 1 when 
compared to  the  stochastic rule. 

2) An L-queue system with arrival rate LA (Fig. 5).  The 
BD rule degenerates to  the sequential routing scheme with 
S = { [l 2 3 ... L]}. By symmetry,  the queueing behavior is 
the same for all L queues. The arrival rate for any  particular 
queue is LX/L = X. When L is large, the transform of inter- 
arrival time to Q ,  is 

The  interarrival  time therefore, is a  constant equal to 1/X 

7'" 

Fig. 5. An  L-queue  system  with  fixed  traffic  suppressed, S = {[ 1 ,  2, ..., 
LI}. 

and Q, is essentially a D I M I  1 queue  (or  equivalently an 
E ,  IMI 1 queue).  The  characteristic root is  given by u = 
1 + Xlnu. Comparing the delay with  that given by  the BS 
rule, we have 
DD- 1 - u f l n u  
Ds (1 --)In u 
- - 

For p = 0.5, u = 0.203,  the delay ratio is 0.627. As p + 1, 
u -+ 1, the delay ratio approaches  0.5. We conclude that when 
the fixed traffic is suppressed, and  with L large, the  reduction 
of delay from  the BS rule ranges from  37.3 percent to 50 
percent in the range of 0.5 < p  < 1. 

The analysis of  the BD rule in a general network is similar 
to  the join-biased-queue  best stochastic (JBQ-BS) rule studied 
[ l ]  . We first use the Poisson departure  assumption? This 
assumption says that  for local routing rules (Le., nonfeedback 
rules) with exponential messages, the  departure process can 
be assumed as memoryless, or Poisson. It allows us to de- 
couple  queues at  different  nodes  and analyze them separately. 
We have shown how  to analyze queues at local  nodes. The 
overall average time  delay  and the overall average blocking 
probability can be calculated from Little's  formula  applied to 
a  network [ lo] .  

We can actually prove that  the BD rule always gives lower 
delay than  the BS rule.  The  argument is quite simple: since 
the utilization of each link is the same for both rules, we only 
need to  compare  the average length of each queue.  For each 
queue,  the above analysis (the  delay ratio DD/Ds) indicates 
that  the BD rule (i.e., with Erlangian distributed interarrival 
time) always gives smaller average queue length  than  the BS 

4 This  assumption  has  been  used  in [ 121, [ 131, [ I ]  and possibly 
many  other similar  works  in  the  analysis  of  queueing  networks. 
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rule (i.e., with exponential  distributed interarrival  time). 
Since  this is true  for all queues (i.e., a  network  of Erlangian 
queues compared to a  network of MIMI1 queues), we con- 
clude  that  the BD rule always gives lower  delay than  the BS 
rule. Further, this  argument is independent  of  the  network 
size, the  network  topology  and the input  traffic assumed. 

We refer the reader to [l I ]  for an example of  the applica- 
tion  of  the BD rule to the  Common Channel Interoffice 
Signaling (CCIS) network  for  the  telephone  system. 

V. SUMMARY AND CONCLUSION 

We started  our discussion with  a brief view of the BS rule 
and  continued on to make an extensive study of the BD rule. 
The BD rule was shown to always give lower  delay than  the 
BS rule and  has  the  best delay performance  among  the fixed 
rules5 in the  literature.  The  operation  of  the BD rule in a 
varying traffic  rate  environment was described and  its feasi- 
bility based on some common technical requirements was 
discussed. 

APPENDIX 

PROOF  OF THE THEOREM IN SECTION 111 

Let us decompose the sequence  generated into  a sum of L 
subsequences: S = S1 + S2 + ... SL where L is the  number of 
queues in  the  system. Si has  the  property  that all non-i- 
decisions  are set to zero.  Thus if 

S = { 1 3 4 2 1 3 3 2 1 . . . }  

we have 

Sz = (0  0 0 2 0 0 0 2 0 - 9 ) .  

Si contains all the  information needed for Qi for  routing. 
Consider the  kth decision of S1, where m*N < k < (m + 

m is any nonnegative integer.  Suppose  for  the (k - 1) 
past  decisions, I decisions  are on 1 and k - 1 - 1 decisions 
are on 0, or others.  The decision rule for  the  kth decision will 
then be 

mnl + (z+ 1 )  nl   nl  mnl + 1 

m N + k  
-_  2 --____ 

N o N m N + k  

by  the given algorithm. Simplifying, we have 

1 
N[2mn1 + 22 + 11 S 2nl[mN + k ]   ( A l l  

0 

Now  consider the (k + N)th  decision;  the decision rule is  given 
as 

2(m + l)n, + 2k + 1 2n, 

( m + l ) N + k  0 N 
2 -. 

5 These  are the rules  which do  not  use the  instantaneous  queue 
length  information  in  making  routing  decisions. 

Upon  simplifying, we have 
1 

N[2mnI + 21 + 1 1  2 2n,  [ m ~  +- k].  
0 

Comparing with (Al), we observe that  the  kth decision is the 
same as the (k + N)th decision. Since the above is true  for 
arbitrary m ,   k ,  N ,  and n l ,  we conclude that  the sequence S1 is 
recurrent  with period N .  We can go through  the same argu- 
ment  for Q2,  Q 3 ,  *-, etc., and  establish that all Si’s are recur- 
rent  with period N .  Now since S is the sum of all the Si’s, it  is 
easy to see that S is also recurrent  with  the same period. 

The case where equality  holds in ( A l )  needs further  ex- 
planation. This is the case where routing  the incoming  mes- 
sage to Q, or some other queues  results  in the same “error.” 
Step 2 of  the algorithm uniquely  determined  the queue to 
be  selected.  Since this  determination  depends only on  the 
numbering  of  queues,  the (k  + N)th decision will be the 
same as the  kth decision. Therefore, we conclude  that  blocks 
of N decisions located anywhere  in S is recurrent. 
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