s TR R AR R E B AR }§1 ¥% - 1+ DVB-MHP
JUM S/ R84 3K 3

On-the-fly Compression and Decompression Accelerator for JVM HW/SW
co-design of a high upgradeable DVB-MHP Terminal

i g Je o [MF A

2 AWDT RS R GE F
w8 &R ¥ oot DVB-MHP = JVM #ic Al %8 4 Fe 3K 3+
On-the-fly Compression and Decompression Accelerator for JVM HW/SW
co-design of a high upgradeable DVB-MHP Terminal

PR N N 4 Student : Shih Chia, Huang
hERR I BRC Advisor : Chun Jen, Tsai

T omo1oAR %
L i~

A Thesis
Submitted to Department-of Computer Science and Information Engineering
College of Electrical ' Engineering and Computer Science
National Chiao-Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

PEARAY e £

I

IR S S S
BRd®e 22 R F e EEES

\

(BB TR pe d 2T LAT)

AL TR Y > S AANRE I T k4
2o 93 HFERY 2 HFEVYFEMIFELHG o
%¢%PIi%*?ﬂ@ﬁ?ﬁﬁﬁﬁﬁﬁp%ﬁ?%fHDWMWﬁUW@H
U0

;J}}:‘l %?’%ﬁ R IR Tés 4

Brs: (17 FR

AAGRAFE O NEERH R RN A A FE L < F AR
AuREFHEE T TARSS %@ﬁJiﬂw’ﬁ?%ﬁgﬁ§%P219ﬁ’
W22 ~§2 S@Me <« FRARIZAER? Wi~ PFRE T 1k %
GEE SERUE RS AR LA < 'L ik s S RS R PN
CERI AR TR

WY e PR R PR ER

AR SBELE B AR RR B Q535 04# 87 15 p
LA WP Ea®0i& 8 15 p R

¥R LIELE

RELE L

PEAR 94 & 8§ ' 3 B

I

B> 2
B AAD TieHmED

i

(B BRAE A K2 TR RI LT ")
RS T gfi"éiA%@iaﬁ%ﬁ Faagr ket
@” FERY 2 BPFEHLE Rk o
%égﬂszmﬁ“@m*ﬁﬁﬁ“ﬁ 6% &7 I 4 DVBMHP 2 JVM
R R e K3
¥R FRC AL

B -

o R R RER L F o AR F R T F
wQWJ~W£’**%ﬁ€*§WP“fBmvﬂ*t
Aok ok~ £l SR E R BRIP O F Fe

ORTNGARE & 5 U

=2 - FF ‘ %’fu%- . ?_;}5_//\

ﬂ‘ﬁj‘g—fﬂy

B FLE
R

v

RimE B Ml 233 il

ID:GT009117582

AEREE LB SR AR 8 THFR SR FRIE
. o D EERE 2N AFLE L
v LR WA OR RS R R AR B & F R Y vz DVB-MHP = JVM At

W R

s R L

PRBIRIEAIR FIFRL 70 2% (FHL) B0 £ FRERA T
B AR,
’—@é‘?\l’ﬁ"%ﬂﬁz—ﬁif%f’v7 '—JIJ’/‘QK /‘Q'ﬂa-i-*%l,('—i\&]ky”'\ ’;I';-?Ep_’%—ﬂz
1115”5 x]}/{ﬂ“]V}IF‘F zﬁ!v}:ﬁ?x%?@ Tg\ B o

DS €§—‘§f§*?#—%’?'}1}i?ifﬁl WESR T S ERI B o ik F TR AP MR T IET -
AL F —_l-,ﬁﬂ
mELE L

AF 94 & 8§ * 3 P

B T R

MXAOEAZEEEEES

Al

A RIS fEd 2 [AEE

5’?}%73%@ :
On-the-fly Compression and Decompression Accelerator
for JVM HW/SW co-design of a high upgradeable DVB-MHP Terminal
o ST S S A T R 1

DVB-MHP [iv JVM B iRIE 2[R =t
o o

PSR AR AE « AR LR

IRE

e ;

s LT .

N 1

VI

2R R A R e i L

N
DVB-MHP = JVM #ic A %4+ e 2% 3+

B4 F1E B B B4

W2l A BT 8 5 (9 AiLs

1% &
fogr 2 TPE LY 3o RRDERR P SR i i) 4 - B OEE & ok
30 AP e AL ¥ e DVB/MHP. &0 Java processor ® 0 4v » 7 i F
LR SR8 R 4 mﬁg‘% » E R G R i KT & a4 o
Ea f D FER I TS o

pamJVM P o “”3%%3* ﬁi‘@ﬁﬁ’”’% 7 ilﬂ?ﬁf'@ﬁ"t’ﬁ;@ﬁmw#
B ¥ €~ FH m% 73 E M o AN IR A Y R 1F]‘l'fk’ e ﬁﬁé‘: x?
B I W T TR R R 3L T e o

FE PP e A W EEF] Ao o

(1) Boehgai

(2) E 3| M7 & ie

B) FOEHMREFERE

E i 5&—1 & #_Xilinx ML-310 ng‘,L N VARG AL en
BIEY 7> 2 & ¢ 7 ¢ A B IBM Power PCTM 405(PPC 405)@% ~ 30816
Logic Cell ~ 2,448 kb BRAM(block RAM) -

On-the-fly Compression and Decompression
Accelerator for JVM HW/SW co-design of a high
upgradeable DVB-MHP terminal

Student: Shih Chia, Huang Advisor: Dr. Chun Jen, Tsai

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract

Multimedia Home Platform«(MHP) is,a-digital video broadcasting (DVB) standard
intended to combine digital television (DTV) with the Internet and the World Wide Web. An
MHP setop box is a complicated embedded system that'contains both multimedia and
communication components. Memorysize (includes both volatile and non-volatile memory
devices) and power consumption is always-the main concern when designing this kind of
embedded devices. One of the critical components in a DVB-MHP setop box is the Java VM.
To achieve the best performance/power consumption ratio, a dedicated Java processor is often
used.

The goal of this thesis is to design a runtime bytecode/data compression and

decompression hardware logic to a Java processor for DVB-MHP applications.

Fo software-based Java VM, runtime bytecode/data compression and decompression are
used to reduce the memory usage. However, the performance of the system usually decreases
due to the extra overhead. To maintain performance while reducing memory usage, a
hardware accelerator for real-time compression/decompression with parallel datapaths is a
reasonable aproach. The proposed hardware design is implemented and verified on an FPGA
platform, Xilinx ML310. Based on the experimental results, the proposed architecture is very

efficient and promising for practical applications.

tizhwme A FEEY 2ty £+ 9 > 3 JavaProcessor ~ Power PC ~ IBM Bus

Core-connect » fv# Xilinx ML-310 ~ Xilinx Spartan III = & 3§ iF > & EAE

RO ED ARG G ORI B 2 E 0 FREEF R OFEF o) .

YR gy E Rk R A R E o Xilink F IR A2
P PLERF G e 5 s S e B o 0 ORI R R iry o e ik

P24

B

~t

B FIRA B A A R e 4

il

Table of Content

F N 01 1 2T PRSP ii
F = TR PRSPPI iii
Table OF CONENLeiiiiiiiiiiiiiie ettt ettt e e v
LSt OF FIGUIES ..eeviie ittt ettt ettt e ettt e e et ee e satee e e esesbae e e stsaaeeensseeessnnnaeesennseas \%
LISt OF TaBIES ...ttt et vi
Lo INErOAUCHION ...ttt ettt s e 1
1.1. On-the-fly Compression and Decompression Accelerator............cceecveenen. 1

1.2. OCD for Java VMs Using HW/SW Co-design Approach..............ccccuernneee. 2

1.3. Overview Of this TRESIS ...c...evviiiiiiiiiiiiie i 2

2. Previous WOTK ...c..oouiiiiiiiiiiiiiic ettt e 3
2.1. JAVA SYSIEIML.uiiiiiiiiiiiiiiiee et ee e ee e e et e e e e s et e e e e e e e nnnaees 3

2.2 Java Virtual Machine...........coooeiiiiiiiiiiiieeiiee et 5

2.3. JaVA PrOCESSOT .cciiiieiie ittt 6

2.4. Main Reference Papers..........ccccuivieeiiiiiiiiiie et 7
2.4.1. Heap Compression for Low Memory Java Systemscccccvveennne 7

2.4.2. Fast Interpreters for Huffman Compressed Bytecodeccceeeeeen. 8

2.43. Hardware Data Compression for Energy Minimization........................ 9

3. Problem FOrmulationoooouiie e it fimneeeenrereeenieieeeseieeeeiieeeesneeeeesseeeeseneeeeeens 10
3.1. JOP Runtime System .o oo iiadin et 10

3.2. Overview of JOP ... i e i i et 11

3.3. Datapath of JOP i i e 12

3.4. XNX ML-3T0 . st it 16

3.5. DISCUSSION ...t Hebi e g bt taitin e te e ettt et e 19

3.6. 2N o) 03 (0 : To] o B S U USPRRR 20

4. The Architecture of JOP on MI=310oouioiitiatoniiiiiiiiicccc e 22
4.1. SYSEIM OVETVIEWeeie s it it s th s e eereeeestreeessetreeesnrseeeessnsaeessnsseeensenees 22

4.2. IPIF ATCRItECTUIEC ...ttt s 23
4.2.1. TPIF FEAtUIeSoooviiiiiiiiiiiieiiic e 23

4.3 Our Modify ATChItECUIEcccvvviieeeciiie it e 24

5. Proposed VLSI Compressor/Decompressor Architecture...........c.eeeeveveeieicneeeeecieeeenn. 25
5.1. JOP File FOIMALtoouiiiiiiiiiiiniienecee e 25

5.2. Description of the Compression SChemesceeeveciieeeiiiieeeiiiiee e 27
5.2.1. Variable-Length Coding Scheme............ccccceeviiieiiniiiieeiie e 27

5.2.2. Zero-Removal COMPIESSIONeeeeiruvirieeiiiiieeeriiieeeeieeeesiieeeeeiaeeeeans 28

5.2.3. Difference COMPIESSIONcceeruviieeriiirieeeiiiieeeeiieeeesieeeeesiaeeeeeereeens 29

5.3. Hardware Implement............coooiiiiiieiiiiiie e 29
5.3.1. Hierarchical Desi@ncccceeieeiiiiieiiiiieie ettt 29

5.3.2. On-the-fly Compression and Decompression Accelerator 30

6. Experimental RESUILSc..oiiiiiiiiiiiiiiee et 32
6.1. Java Benchmark Programs............cooeeeviiieeiiiie e 32
6.1.1. Sieve of Eratosthenes.ccccuveeveiiiieeiiiiiee e 32

0.1.2. KAl e 32

0.1.3. UDP/IP ..t et 33

6.2. Main Memory Compression Ratio............cccveeeeiiieiiniiiiieiiiie e 33

6.3. Fetch time Reduction of Java Binaries...........cccecveeeivciiiieeciiie e, 34

7. Conclusion & Future WOrkcoooviiiiiiiiiiiiieiie e 36
REFERENCES ...ttt ettt ettt ettt et et see e 37

List of Figures

Figure 1. Java SYSTEIM....cceiiuiiiie ettt ettt e e ettt e e et ee e e st eeeensbeeeanneeens 3
Figure 2. Architecture 0f the JVIMcooiiiiiiiiiiiie et e 4
Figure 3. Implement JVM three methods..........cceeeiiiiiiiiiiiiiiniiieie e 5
Figure 4. The general Java RUNtime SyStem..........ccooueevriiiiiiiiiiiieiiie et 10
Figure 5. The JCC and JOP Runtime SySteImccueeriviiiiieiniiiiieeiie e 11
Figure 6. Block diagram of JOP...........coiiiiiiiiiiie e 12
Figure 7. PIpeline Of JOPc..oiiiiiiiiiiiee e 12
Figure 8. Java Bytecode FEetChccuoiiiiiiiiiiiiiiee e 13
Figure 9. JOP instruction fetCh.........cc.eeiiiiiiiiiiiiie e 14
Figure 10. Decode and Address Generationcceeeoueerriveerneeenieeeiieeseieeneeenieeeneeeeens 15
FIigure 11, EXECULION......ccciiiiiiiiiiiiie et etiee et e ettt ee ettt ee e eenaeeeebreaeessnsaeaeensseeeas 16

Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.

ML-310 Board and Front Panel Detailcooouuuuiiiiiiiiiiiiiiiiieeeeeeeeeeeiiian, 18
ML-310 High-Level Block Diagram............cccceeeviiiiieiiiieeeeiie e 19
ML=3T0 SOPC et e ettt e eeeeeeaeas 22
IPIEF FQATUIES ...uiiiiieeeeeeeeee ettt e e e e e e e e e e e eeaaas 23
OCDA Interface between JOP and IPIFoooviiiiiiiiiiiiiiiiiiieee, 24
Main memory CONtENLS ... ol e it ettt ettt et e 26

Figure 18. Table-Based compression @lgorithie. . .coiei.veerveieniiiiiiiiiiciiicciicc e 27
Figure 19. Table-Based compression eXample.i:.. .. coui e 28
Figure 20. Zero-Removal compression algorithim ..o oo oo 28
Figure 21. Zero-Removal compression eXamplecctheoeeeerieiiiierniiieniieeiieeniee e 28
Figure 22. Difference compression algorithmianiii. oo 29
Figure 23. Difference compression €Xampleiieioueenieernieeiieeiie e 29
Figure 24. Hardware Hierarchical Desig@n it 30
Figure 25. OCDA ATCHITECTUTEcceeiiiieeeeiiiieeeeiieeeeetiee et ee e et ee e et ee e eeaee e e sneeeeeenees 31
Figure 26. Pictures of a Kippfahrleitung Mast in Down and Up Position..............c........... 33
Figure 27. Each compression redUCtioneeeciuieereiiieeeiiiiiee i 34
Figure 28. Execution time with 0SCIllOSCOPE.......cuvviieeiiiiieiiieiecee e 35

List of Tables

Table 1. Comparison of Java hardwWare.............ccceeeeieeeiiieiiie e 7
Table 2. The garbage collection Srate@IeSccvveeerureerriieerieeeieeeeiieeeireeeteeeieeeneeeeneeeeenees 7
Table 3. The first part of this table gives the absolute heap sizes in KBs, and the second part
gives the values (heap sizes) normalized with respect to that of the MC collector................ 8
Table 4. Energy and Memory Traffic Reductions.............ccoovieviiieiiieiieieeceeieceee e 9

vi

1. Introduction

In this chapter, we will give an introduction to On-the-fly Compression and
Decompression Accelerator (OCDA) for Java VM. Some analysis of the performance
of an OCDA will be presented. In addition, a mechanism that adopts different
compression schemes to achieve better compression ratio based on the characteristics

of DVB-MHP applications [1] will be proposed.

1.1. On-the-fly Compression and Decompression Accelerator

Due to its portability, Java is becoming a popular software platform for
embedded devices. However, embedded devices are constrained by memory size and
power consumption. Both factors are not the main concern of a Java runtime
environment when Java was first proposed in 1991 and announced in 1995. Therefore,
to increase the performance/resourée-| consumption ratio, a on-the-fly data
compression and decompression mechanism can minimize the use of memory and
also arrive at lower energy consumiption.—IFhe-advantages and disadvantages of an
On-the-fly Compression and Decompression (OCD) mechanism is as follows:
Advantages:

1. Reduction of memory usage

2. Decrease of data communication time

3. Slash of memory access time

4. Cutback of power consumption
Disadvantages:

1. Extra design effort

2. Computational overhead of data compression and decompression

Due to the computational overhead of data compression and decompression, a
software-based OCD module generally suffers some performance degradation. In this
thesis, a hardware-assisted solution is proposed to reduce data compression and
decompression overhead. The proposed hardware OCD module has all the advantages

of a software-based OCD module without the drawback of performance degradation.

1.2. OCD for Java VMs Using HW/SW Co-design Approach

Java is a dynamically-typed pure object-oriented language developed by Sun
Microsystems in the early 1990. In general, Java language has some excellent features
such as being secure and platform-independent. However, easy portability of Java
programs across platform comes at a cost of low execution performance. To increase
performance, OCD is sometime used to perform real-time data compression and
decompression between main memory and internal Java VM cache. To be more
precise, before a Java binaries (e.g. jar files or class files) is ready for execution, an
offline (or semi real-time) compression pass is performed on the Java binaries so that
the input binaries to the Java VM is smaller. By doing this, the main memory access
time will be greatly reduced. This is true even for a processor-based software VM
implementation. The compressed Java binaries are then de-compressed on-the-fly
inside the Java VM for execution. Since a large portion of power consumption comes
from main memory accesses, this approach can reduce the power consumption as long

as the on-the-fly de-compressor is ‘efficient

1.3. Overview of this Thesis

Chapter 2 gives the introduction to the Java system and three major
implementation approaches for Java VM (JVM). Among these approaches, the Java
processor approaches is adopted in this thesis for its good performance/resource ratio
for real-time embedded systems. Chapter 2 also presented some details of existing
Java data compression and decompression mechanisms. In chapter 3, an introduction
to the Java Optimized Processor (JOP) is given. JOP is designed by Martin Schoeberl
[5]. We have ported it to the Xilinx ML-310 Embedded Development Platform. Some
analysis of OCD for JOP is also discussed in this chapter. The required modification
to JOP in order to port it to ML-310 is presented in chapter 4. Chapter 5 describes the
compression and decompression algorithms adopted in our design and the proposed
OCD architecture. Some experimental results are presented in chapter 6. Finally, the

conclusion and some discussions are given in Chapter 7.

2. Previous Work

In this chapter, we introduce the Java system including Java programming
language, Java class library, and Java virtual machine (JVM). JVM is the core
component of a Java System. Typical implementation approaches for a JVM include:
interpreters, Just-in-Time (JIT) compilers, and Java processors. In this thesis, we
adopt a java processor to implement OCDA-enabled JVM.

The requirements for the embedded implementation of JVM are constrained by
memory size and power consumption. After an introduction to Java runtime systems,
we will discuss several papers about compression technologies for different Java

Systems.
2.1. Java System

Java System is a stand-alongicross-platform system. It consists of three main

components, as we can see in Figure 1. [1]

Java Application

Java Programming Language

Java Java Class Library
Native
Interface

Java Virtual Machine

Classloader Verifier Execution

Operating System

Figure 1. Java System

1. Java Programming Language
Java Programming Language[l], named Bytecode by Sun, is an intermediate
instruction set, with an accompanying execution environment. This combination helps

to make write once, run anywhere possible.

Java Bytecode, comprises one-byte opcode and zero-to-five bytes operands, is
variable-length instruction format, but there are some one-byte instructions which also

encode operand inside.

2. Java Class Library
Java Class Library [1] which is defined as part of the Java specification between
Java Programming Language and Java Virtual Machine.
Java Application Programming Interfaces (API) is organized as sets of packages,
in respect of
® java.lang — object, data types, commonly used mathematical functions, system
operations like dynamic loading of classes, etc.
® javautil — enumeration, random number generation, string tokenizer, classes
for accessing Java arrays, etc.

® java.io — stream I/O in a sequence of 8-bit bytes

3. Java Virtual Machine (JVM)
The Java Virtual Machine (JVM) [lj[l][l] ‘priovides the runtime framework

executes java bytecode programs and-it'is a. CISC stack-based architecture. Java

makes cross-platform is due to fhe existence of JVME:
The JVM, abstract machine with ¢ross-platform capability, run-time data areas
contain Program Counter, Java Stack, Heap, Method Area, and Runtime Constant

Pool.

Java Stack

Bytecodes

i ; ; Control

Java Execution Engin

Operand Stack
(GS)

. 8 bits
Constant Pool .

State Variables

(0]

Stack Frame
A

Program Counter
Top of Stack Pointer
0-th Local Variable Pointer
Stack Frame Pointer

Registers

Figure 2. Architecture of the JVM

2.2. Java Virtual Machine

There are three major implementations for JVM as described below and shown

in Figure 3. [1] [1]

Java Program (*.java)

/ Java Compiler \

Bytecode (*.class)

Machine
Binary

/ Operating System \
Non-Java CPU Java
on-Java CPU

Figure3. ImplementdV M three methods

Interpreter

Java
Operating
System

1 2

1. Interpreter
Interpreter [1][1][1] is the traditionally used way to execute Java Bytecode. The
interpreter is composed of a big time-consuming loop to map each Java bytecode into

native code sequence, and the main disadvantage is the high execution overhead.

2. Just-in-Time Compilation

Just-in-Time (JIT) Compiler [1] translates Java bytecodes to native codes during
runtime and stores the compiled codes. Then we can use the compiled codes directly
next time without compiling them again. To reduce the compilation overhead, current
JVM operate in mixed mode: Java methods are executed in interpreter mode and call
frequency is monitored. Often-called methods, the hot spots, are often compiled to
native code.

Due to compilation during runtime, execution times are not predictable. JIT

compilation wasn’t suited for embedded real time system.

3. Java Processor
Java Processor [1][1] is a stack hardware machine with Java Bytecodes as native
instruction set. The solution can result in a small processor with predictable execution

time and memory-efficient suited for embedded real time system.

2.3. Java Processor

There are two different approaches to implement Java processor by hardware as

described below and shown in Table 1. [1][1][1]

1. Stand-alone Java Processor
Java processors are stack architectures with an instruction set that resembles the

java bytecodes form the JVM.

2. Java/RISC Dual Processar
Java bytecodes are executed on the Java and RISC core. In general, the java

coprocessor, is an accelerator,.is. intégrated-finto the same chip as the RISC main

processor.
Target . Speed Java
Type Size
Technology [MHZz] Standard
Jazelle
Co-Processor ASIC0.18u 12k gates 200
JSTAR ASIC0.18u J2ME
Co-Processor 30k gates 104
Softcore CLDC
picoJava o 128k gates
Processor No realization Full
1999 year Memory
adile 25k gates J2ME
Processor ASIC0.28u £ 100
2000 year ROM CLDC
Komodo Subset:50
Processor Xilinx FPGA 2600 LCs 20
2000 year bytecodes
FemtoJava Subset:69
Processor Altera Flex 10K 2000 LCs 4
2001 year bytecodes

Moon 3660 LCs,
Processor Altera FPGA

2000 year 4KB RAM

LightFoot .
Processor Xilinx FPGA 3400 LCs, 40

2001 year

JOP 1830 LCs, J2ME
Processor Altera, Xilinx FPGA 100

2001 year 3KB RAM CLDC

Comparison of Java hardware

2.4. Main Reference Papers

2.4.1. Heap Compression for Low Memory Java Systems

This paper proposes a set of memory management strategy to reduce heap

footprint of embedded Java applications sthat execute under memory constraints.

There are several new garbage collectors proposed;”and we distribute in Table 2. [1]

Breaking
) . Down Lazy
Scheme Compaction | Compression Reference)
Large Allocation
Object
Mark-Swap No No Direct No No
Mark-Compact Yes No Direct No No
Mark-Compact-Lazy- Allocate Yes No Direct Yes Yes
Mark-Compact-Compress Yes Yes Handle No No
Mark-Compact-Compress-Lazy-All
Yes Yes Handle Yes Yes
ocate

2. The garbage collection strategies

The Mark-Sweep (MS) and Mark-Compact (MC) are conventional collectors.

The Mark-Compact-Compress (MCC) collector compresses objects when heap

compaction is not sufficient for creating space for the current allocation request, and
the Mark-Compact-Lazy Allocate (MCL) is based on lazy allocation, which means no
heap space is allocated unless the object is used after breaking large objects, of object
portions. We combine MCC and MCL, and present Mark-Compact-Compress-Lazy
(MCCL), which outperforms both MCC and MCL.

Table3 gives the minimum heap sizes for each benchmark using different
garbage collectors. The results in Table 3 is that, compared to the MC collector, the
MS collector requires 47.9% more heap space on the average. In regard to MC, MCL
and MCC bring down the heap memory requirements of our benchmarks by 9.5% and
10.8%, respectively; (the average reduction with respect to MS is around 40%).
Combing them in MCCL results in even more heap memory space saving (21% on the

average) .

3. The first part of this table gives the absolute heap sizes in KBs, and the

second part gives the values (heap.sizes) normalized with respect to that of

Minimum Heap Size (KB) Normalized against MC (%)
MS MC MCL MCC | MCCL MS MCL MCC | MCCL
Average 132 90 75 81 65 147.9 | 90.5 89.2 | 79.0

the MC collector.

2.4.2. Fast Interpreters for Huffman Compressed Bytecode

We use canonical Huffman codes to generate compact codes with custom-sized
operand fields and with a virtual machine that directly executed this compact code in
this paper. They present techniques to automatically generate the new instruction
formats and decoder. In effect, this automatically creates both an instruction set for a
customized virtual machine and an implementation of that machine. The primary
focus of this paper is to show that there are techniques to efficiently decode such
compressed instructions. For speed, canonical Huffman codes should not be decoded

bit by bit; instead, blocks of k bits should be used. The paper mainly proposes

8

multiple k bits look-ups specially and generates decoders given a space constrain.
After the experiments on Scheme, Java benchmarks show an average execution

slowdown of 9%. [1]

2.4.3. Hardware Data Compression for Energy Minimization

In this paper, they design hardware-assisted data compression as a tool for
reducing energy consumption of core-based embedded systems. They explore two
classes of compression methods, profile-driven and differential. The experimental
results about memory traffic and energy consumption in the cache-to-memory path of
a core-based system runs standard benchmark programs. The summary of achieved
memory traffic reductions (AT) and overall energy savings (AE) is shown in Table 4.
An average of 35.2% energy decrease is obtained by using the profile-driven
compression method, while savings in the range from 4.2% to 10.1% are provided by

the differential compression schemés. [1]

Profile-Driven [Differencel Difference2 Difference3
AE [%] 35.24 4.18 10.09 9.36
Average
AT [%] 36.10 4.37 10.41 10.41

4. Energy and Memory Traffic Reductions

3. Problem Formulation

We adopt Java Optimized Processor (JOP) design to implement the java virtual
machine (JVM). It is part of Mr. Martin Schoeberl’s PhD thesis at the Technical
University of Vienna, Austria. JOP is one way to use a configurable Java processor in
embedded real-time systems, and Java Optimized Processor (JOP) is the main
execution engine to run our DVB-MHP (Multimedia Home Platform) API. We
modified JOP VHDL codes and ported it to Xilinx ML310 (Virtex-II Pro
XC2VP30-FF896) Embedded Development Platform. Finally we tried to analyze

experimental environment in a mathematical method.
3.1. JOP Runtime System

The JOP runtime system is different from general Java Virtual Machine (JVM)
runtime system. JOP adopts the JaVéfC*odhComgapi (JCC) tool combines one or more

Java class files and produces & " ".{Q_I_’[_ ‘ ’ﬁm o.léss files are verified, linked and
l\c 1 B

transformed into an internal re'plesentatlgq’w(’*JOPI I'lle) before being executed on

execution engine. Figure 4 ana Fig —

._:_"'."-

environment L

Support Code:

Garbage Exceptions
T Dynamic Collected R
np:’_mt_‘“ Class Heap Security
application)|
. class files / 4 I.?;?jel’

Verifier

Execution Engine

Native

Native Methods . | Method
(.dl or .sq files) \r\ Linker

Figure 4. The general Java Runtime System

10

/ The Java Runtime System \

=) Support Code:
. .J\ Exceptions
pplet or 7 Threads
application - £ e Security
class files / : RT Support
34 Linker {bytecode)
Loader |
3
Execution Engine
* jop (VHDL code, in FPGA)
(in SRAM)

\—d

Figure 5. The JCC and JOP Runtime System

3.2. Overview of JOP .

JOP’s major function unns are. Ele ,ijP coré alnemory interface, a number of
I/0 devices and the module exténslon, és sﬁom in F;gure 6. [1]1[1][LT[1][1][1]

)
JOP Core -2 Memory Interface
BC Address
> AN
Bytecode ¢ ECData Bytecode N—/
Fetch — Cache
A
Data Control
Fetch
£ » Extension
Data
K
= —
Decode N Multiplier
] [Data Control
y
Stack
L==)1 I/O Interface A\
,_Interrupt d /

Figure 6. Block diagram of JOP

11

The JOP core contains the four pipeline stages bytecode fetch, microcode fetch,
decode, execute, and we will introduce the JOP pipeline detail in the 2.3 section. The
JOP core reads bytecode instructions through dedicated buses (BC address and BC
data) from the memory interface. And the JOP core transfers Data (A, B, Data) and a
number of control signals from the extension module.

The memory interface, contains the bytecode cache, provides a connection
between the main memory and JOP core.

The extension module controls read and write to and from between the JOP core,
the memory, and 10 modules.

The 1/O interface contains peripheral devices, such as the system time, a serial

interface and application-specific devices.
3.3. Datapath of JOP

JOP is a full-pipelined architecture and every JOP instruction (8 bit microcode)
takes one cycle, as we can see in Figure 7. Four pipelined stage from Bytecode Fetch
(Figure 8.), JOP instruction Fetch (Figure:.9.), decode (Figure 10.), executing JOP
instruction (Figure 11.). [1] [1E[1]]1] [1] [1] :

branch

next bytecode microcode branch condition

| [I

Bytecode Microcode Microcode Microcode
Fetch, translate —|/ Fetchand |— Decode Execute
and branch branch
L
* T”Q branch |
* . 4 ry spill,
$ytecode branch o, fill
N 7S
* o4 S
AR agjack Stack
* L | .
*
. L— /| Address?, RAM
L[> generation ¥ 4
4 R
N ‘A
ava ump microcode
s J J I JOP microcod
bytecode table —_—

iadd:
——»| JOP pc isul

Java instruction of idiv
(e.g. Oxéc) in JVM ROM

Figure 7. Pipeline of JOP

Stagel: Java Bytecode Fetch

12

The first pipeline stage can be seen in fig.8. There are some actions in this stage.

1. All bytecode are fetched from internal memory (bytecode ram). This memory,

the instruction cache, is filled on function call and return.

2. Every bytecode is mapped through jtbl to an address for the microcode rom

(jpaddr). 1t is also stored in a register for later use as operand.

3. Since jpc is also used to read operands, the program counter is stored in jpcbr

during an instruction fetch.

4. Jinstr to decode the type of a branch and jpcbr to calculate the target address

1
+
nxt, opd,)
jmp
[e Bytecode RAM
A—> "
e > addr data .
jpebr >
- -
‘—l <]
opd opd
high low
-+ —
< <

Figure 8. Java Bytecode Fetch

Stage 2: JOP instruction Fetch

Translation
table

jinstr

jpaddr

The second pipeline stage can be seen in fig.9. JOP micro code that implements

the JVM is stored in the memory labeled jvm rom. There are some actions in this

stage.

1. The program counter pc is incremented during normal execution. If the

instruction is labeled with nxt a new bytecode is requested from the first

stage and pc is loaded with jpaddr.

2. Jpaddr is the starting address for the implement of that bytecode. This

13

label and the one for a bytecode operand load (opd) are stored in bc-fetch.

3. brdly holds the target for a taken conditional branch, and many

destinations share the same offset. A table (offset) is used to store these

relative offsets. This indirection makes it possible to use only five bits in

the instruction coding for branch targets and allow larger offsets.

4. The three tables bc-fetch, offset and jtbl, from the bytecode fetch stage,

are generated during assembly of the JVM code.

instruction

nxt, opd BC fetch
< table -—
nxt, Microcode
br, ROM
jpaddr wait
O pec rd ir
—> N _ | addr
> >
|—P > [@»2 >
/4—
+ <
\4_ 1
brdly / :
B + 9 Branch
4 \= offset |«

Figure 9. JOP instruction fetch

Stage 3: Decode and Address Generation

The third pipeline stage shown in fig.10 provides two functions. JOP instructions

are decode for the execution stage and addresses for read and write accesses of the

stack ram are generated.

14

dec
| reg sel_ex
instruction | Decode >
_—
Sp l
z rd
vp[0..3]
ey addr
vp+jopd
_4’
Ir—.. >
Stack
RAM
sp+1 \d
vp[0..3] Wr Wwr
TR dly addr
vp+jopd > >
_—.‘
LS. > >

Figure 10. Decode and Address Generation

Stage 4: Execute

The fourth pipeline stage-shown in fig. 11+ TOS and TOS-1 are implement as
register A and B. Every arithmetic/logic operation is performed with A and B as
destination. All load operations;lecal variables, internal register, external memory and
periphery, result in the value loaded in A. Thetefore no write back pipeline stage is
necessary. A is also the source for store operations. Register B is never accessed
directly. It is read as implicit operand or for stack spill on push instructions and

written during stack spill and fill.

15

din —.D—I‘
> >
> g
\

-
_| Id, logic >

addr Stack i
RAM i [

shift >

r sp, vp, jpc
: —_

add dout -
- din
jopd imm
jopd | dly Type val
— | conversion > —
> > L

Figure 11. Execution

3.4. Xilinx ML-310

The ML310 Embedded Development Platform, Figure 12, is a versatile Virtex-II
Pro XC2VP30-FF896 based platform for rapid prototyping and system verification.
The ML-310 includes dual IBM PowerPC™ 405 (PPC405) processors, 30,816 logic
cells, 2,448 kb of block RAM (BRAM), available in the FPGA. [1]

Description of the ML-310 fabric follows:

® Dual IBM PowerPCTM 405 Core
B Max frequency : 300MHz

® Processor Local Bus (PLB)/On-chip Peripheral Bus (OPB)/ On-chip Memory
(OCM)
® 100 MHz

® 30,816 Logic Cells

16

8 RocketlO™ Multi-Gigabit Transceiver blocks (MGTs)
2,448 kb BRAM

136 Xtreme Multipliers

256 MB DDR DIMM

B 100 MHz ; 64-bit

System ACE™ CF controller

B 512 MB CompactFlash card

Onboard 10/100 Ethernet NIC

4 PCl slots (3.3V and 5V)

B 33 MHz; 32-bit

LCD character display and cable

FPGA serial port connection

RS-232 mini-cable

Personality module interface for RocketlO and LVDS access
Standard JTAG connectivity

ALi Super I/0

B | parallel and 2 serial-ports;

B 2 USB ports;

B 2 IDE connectors;

GPIO;

SMBus Interface;

AC97 Audio CODEC;

PS/2 keyboard and mouse ports;

ATX power supply

17

CPU JTAG Header, J12
Parallel Cable IV

SystemAGE Status and Error LEDs
Jo e . (PC4) JTAG, Jo
SystemACE Configuration DIP Switch, SW3 PCl-to-PCI Bridge, U32
LCD Interface Reset Switches, ALi South Brid
ge

Power-On Jumper Header, J13 SWIEWe Super /0 Controller, U15

Front Panel

Header, J23
; GPIO

IDE Drive Connectors, — Header, J5
J15/J16 '
System ACE CF
Controller, U38
CompactFlash
Slot (shown with T
card inserted), J22 P fianiEe)
JTAG Source p— Ethernet
Select Header, J19 " Controller, U1
System ACE
Configuration =
CDROM In, J&6

Mode Header, J14
3.3V OSC and Socket

SMA Connector, J17
PM1
Expansion Slot s

MGT BREF Clock
Selection Headers,
J2o/21) —
Virtex-1l Pro
XC2VP30
FPGA, U37

FPGA JTAG/TRACE
Debug Connector, P8

PM2
Expansion SIot s

o
ATX Power g
Connector, J18) £2
MGT VTRX Voltage Selection Headers, J10/J11 Power Supply Monitors, FPGA UART
Fan Power, J7/J8 LEDs, and Test Points Header, J4
Parallel Port Ethernet Port Line Out Amp Out
PS/2 Mouse
Port
PS/2 Keyboard)
Port = :
. Mic In
RS-232 Ports USE Ports Line In
UGDEE_01_002804

Figure 12. ML-310 Board and Front Panel Detail

18

3.5. Discussion

After introducing our environment and platform, the JOP IP is added on the
OPB or PLB bus, and DDR-SDRAM is added on the same bus. A memory
initialization file, on the DDR-SDRAM, is from the Java application file
(package App.jop) that is read by the JOP of the main memory.

» Before adding OCDA, we break down among external ram, bus and internal ram
during execution Java Program
1. access data from External ram(DDR-SDRAM)
2. OPB or PLB Data Communication
3. access data from internal ram(JOP cache)
» After Adding OCDA, we break down among external ram, bus, OCDA and
internal ram
1. access data from External ram(DDR=SDRAM)
2. OPB or PLB Data Communication
3. Data Compression and-Decompression
4

access data from internal ram(JOP cache)

We can expect reduction of execution-time'and power consumption for 1, 2, and

4, but there will be an extra overhead for 3.

-1—- System ACE

RS232

=i

256 MB
DODR DIMM
High-Speed

PM1
High-Speed
PM2
33vPCl
| b —

Intel GD82559 LL Flash
PCI 2250

SMBus

SP

i

GPIO/ LEDs

10/100 Ethernet NIC|
3.3V PCI
SV PCI ario

Slots AL

M15350+
South Bridge

IDE
(2}

use
(2)

Figure 13. ML-310 High-Level Block Diagram

5V PCI
Slots

b
b4

19

3.6. Approach

We will mathematically denote Main Memory usage, memory traffic, and energy.

Main Memory usage

Usage external ram () : the usage of External ram

Before adding OCDA:

» Usage external ram (original)
After adding OCDA:

» Usage external ram (new)

Reduction
» Usage external ram (reduce)=

Usage external ram (original) — Usage external ram (new)

Memory traffic

Time external ram () : access data from External ram time

Time communication () : OPB or PLB Data Communication time
Time ODCA () : Data Compression and Decompression time
Time_interanl ram () : access data from internal ram time

Before adding OCDA:
» Time_total (original)= Time external ram (original) +
Time communication (original) +
Time OCDA (original) +
Time internal ram (original)
After adding OCDA
» Time_total (new)= Time_external ram (new) +
Time communication (new) +
Time OCDA (new) +
Time_internal ram (new)

Reduction

» Time_total (reduce)= Time total (original) - Time_total (new)

20

Energy

Power external ram () : access data from External ram energy
Power _communication():OPB or PLB Data Communication energy
Power ODCA () : Data Compression and Decompression energy
Power _interanl ram () : access data from internal ram energy

Before adding OCDA:
» Power total (original)= Power_external ram (original) +
Power communication (original) +
Power OCDA (original) +
Power internal ram (original)
After adding OCDA
» Time total (new)= Power external ram (new) +
Power communication (new) +
Power OCDA(new) +
Power_internal.ram’(new)
Reduction

» Power total (reduce) = Power total (original) - Power_total (new)

21

4. The Architecture of JOP on ML-310

The JOP has been ported to many FPGA devices. Our porting to ML-310 is
based on the Xilinx Spartan-3 [18] port of JOP. The Sparatn-3 Start Kit
implementation of JOP is not suitable for execution of larger Java applications due to
its small main memory size and lack of many external I/O support. The Xilinx
ML-310 platform is on the other hand much more suitable for DVB-MHP

applications.
4.1. System Overview

To port the JOP IP to Xilinx ML-310 platform [17], we must connect the JOP
Intellectual Property (IP) to the IBM CoreConnect OPB (or PLB) bus [19][20] (see
Figure 14) so that it can communicate With the DDR SDRAM and the PowerPC core.
Under the IBM CoreConnect bus a'r‘c'h-i.tecturé-: i}aripus hardware IPs are connected to
the OPB (or PLB) bus via the Iri'tell.ectuai‘t"li’r;gﬁéirt_y iﬁterface (TPIF). The OPB (or PLB)
IPIF is a interface module for-attaching an 1P soluti&n to the IBM-defined OPB (or
PLB) Bus, the details of IPIF will beprésented-in the Rext section.

Dedicated Hard IP

PowerPC
405 Core

I Our Modify
Our Modify JOP IP
JOP IP

Arbi oFe t Arb]
ter ter

Processor Local Bus i On-Chip Peripheral Bus

e.g.
Hi-Speed Memgory Hi-Speed

Peripherie Controlle Peripherie

T T

Etherne Il e13]]

= mm Serial |- - — -
Interrupt Ports
CNTL
ZBT SSRAM UART
DDR SDRAM

SDRAM

Figure 14. ML-310 SoPC

22

4.2. IPIF Architecture

The IPIF architecture allows various fully parameterized IPIF modules, e.g. the

Read and Write FIFO, DMA/SG, Interrupt Controller, and the Reset block, to attach to

the IPIC inside the IPIF and to utilize the register and/or SRAM interfaces (see Figure

15). The IPIF has two basic functions:

1. To facilitate attachment of devices to the OPB in a standard way.

2. To provide services that are useful to different classes of IP.

IPIC
and
“glue”

Write FIFO

4.2.1. IPIF Features

The IPIF contains the capabilities and features summarized below:

® Slave interface
v

v
v

Suppression

® Master interface
v" Bus Address
v' Local Address

Figure 15. IPIF Features

Separate Address, Data-in and Data-out Buses.

Transaction Qualification: Read Req, Write Req, Byte Enable, Burst

23

el

External
I/F

Transaction Response: Read Ack, Write Ack, Error, Retry, Timeout

v Single and burst transactions

v' Transaction Qualification: Read Req, Write Req, Byte Enable, Burst, Bus
Lock

v' Transaction Response: separate Read and Write Acks, Transaction Acks,

Error, Retry, Timeout

4.3. Our Modify Architecture

Figure 16 illustrates the CoreConnect interface architecture for JOP. The OCDA
module is added between the JOP IP and DDR SDRAM to transfer the OCDA
compressed DATA on bus through IPIF. A detailed discuss of the design of the OCDA

module will be presented in chapter 5.

Our Modify JOP IP

Internal

On-the-fly
Compression/Decomppression
Acceleraor

Arbiter
OPB or PLB Bus

Figure 16. OCDA Interface between JOP and IPIF

24

5. Proposed VLSI Compressor/Decompressor

Architecture

The proposed OCD scheme is presented in this chapter. First, the Java bytecoe
file format used by the open source JOP project will be introduced in section 5.1. The
JOP file format contains bytecodes, special pointers, string table, static fields, class
information, method table, and constants. Different compression schemes are
employed for different data area. These compression schemes are discussed in section
5.2. In section 5.3, the hardware architecture is proposed according to the analysis of

the features of various data areas and the adopted compression schemes.
5.1. JOP File Format

A JOP file is a compact Java class'binaryarchive generated by a Java pre-verifier
and linker program called JavaCodeCompact (jcc). %Fﬁ 2! BrE= EEFJITF?’FI o
illustrates the original contents of a JOP file. The size of a JOP file is a crucial
performance factor of the embedded’systems that executes the file since the file is
stored in the main memory. Only the*methods and'data structures which are used at
certain time instant are loaded into the‘internal cache of the Java VM. The smaller the
size of each method and the associated data structure, the faster the fetch time at
runtime will be.

Since different area of the JOP file has different characteristics, a single
compression method cannot achieve good compression ratio. Therefore, we proposed
a hybrid OCDA architecture that adopts different compression schemes according to
the characteristic of each area of the file format to obtain a better compression ratio.

The summary of the characteristics of each file area and the potential
compression techniques for that area is as follows:

1. All methods’ bytecode area: According to statistical analysis, the execution
frequency of 14 to 18 bytecodes accounts for 60 to 70 percent of the complete
execution time. Therefore a variable-length coding scheme, like Huffman coding,
is used for the all methods’ bytecode area.

2. Special pointer: neighboring values stored in this area have high correlation to

25

each others, so we adopts predictive (differential) compression scheme for the

special pointer area.

Address of Special Pointer

|

Difference
Compression Scheme
Special Pointer -]
String Table
: Static Fields] Zero-removal

____________ Compression Scheme

All

Classes Method Table :

(a method use 2 address)

Figure 17.-Main memory:contents

String table: Values stored’in this area hasno distinct features, so compression is
not applied here.
All classes: for the all classes area, there four sub-areas, namely static fields, class
information, method table, and constants. These areas are compressed as follows:
® Static fields: values stored in this area are full of zeros, so we apply
zero-removal compression scheme here.
® (lass information: values stored in this area are full of zeros, so we apply
zero-removal compression scheme here.
® Method table: neighboring values stored in this area have high correlation
to each others, so we adopts predictive (differential) compression scheme
here.
® Constants: values stored in this area has no distinct features, so

compression is not applied here.

26

5.2. Description of the Compression Schemes

5.2.1. Variable-Length Coding Scheme

It uses statistical information about the occurrence of all bytecodes in all
methods to decide whether compression should take place. The 16 most frequently
used bytecodes among all bytecodes are selected and form a set called S. Each

bytecode in S is encoded with 4 bits.

For (each Bytecode)
If (Bytecode belong to S)
Head=1(1 bit) and
store compressed bytecode (4 bits).
Else If (Bytecode doesn’t belong to S)
Head=0(1 bit) and
store uncompressed bytecode (8 bits).
End If
End For

Figure 18. Table-Based compression algorithm

As a Table-Based Compression example:
ByteCodel, ByteCode3, and ByteCode4 belong to S
ByteCode2 doesn’t belong to S

® Uncompressed Data

B C 1 (8 bits) B CZ{E hits) B C3f3 bits) I B C4(8 bits) I

® Table-Based compression Data

Head

E 1 j BC1%4 mls}l B szﬁ' hits) I BC3\ s |BC4 4 i)

27

Figure 19. Table-Based compression example

5.2.2. Zero-Removal Compression

If there are a lot of zeros in the data area, four consecutive bytes of zeros are

represented with a single bit of zero as illustrated in Figure 20.

For (each 4-Bytes)
If (4-Bytes are all zeros)
Head=0 (1 bit)
Else
Head=1 (1 bit) and
store original data (4 Bytes)
End If
End For

Figure 20. Zero-Removal compression algorithm

As a Zero-Removal Compression example:
There are all-zero pattern in';the Datal, Data3;'and Data4, but not all four bytes

are zero in Data?2.

® Uncompressed Data

Data1 sz vis) Data2 sz vis) Data3,sz vits) I Data4 sz vis) I

® Zero-removal compression Data

Data2'i3s vits)

oI Dataz::2 100

Figure 21. Zero-Removal compression example

28

5.2.3. Difference Compression

Since neighboring values are close to each other in this area, differential coding

are used as in Figure 22.

For (each 32-bits)
Compare with basic_32-bits
If (i-th bit is difference)
Head =i (5 bits)
store the remainder
End If
End For

Figure 22. Difference compression algorithm

For example, in Figure 23, values in Datal_and Data2, and Data3 are very close to

each others, therefore, Data2 and Data3 are coded differentially.

® Uncompressed Data

Datalgzoms | Data2isz ois) I Data 3z bits) I

® Difference compression Data
ata - Datad' —
I Data a2 vis ﬁ-rr@’.l I I IRS

Figure 23. Difference compression example

5.3. Hardware Implement

5.3.1. Hierarchical Design

The hardware architecture of the OCDA is divided into three levels as follows.
Level 1 Compressed Address Mapped Table
Depending on the results of compression and decompression, main memory

address was assigned, and the related address was recorded.

29

Level 2 Compressed and Decompressed Component
The proper compression and decompression scheme is selected in this level
according to the characteristics of data. It is worth mentioning that we could
do pre-fetching of the code from the “Head” fields during decompression.
Level 3 Compressed and Decompressed Scheme

Data compression and decompression are actually performed in this level.

Compressed Address
Mapped Table

Compressed Decompressed
Component Component

Table-Based Difference Zero-Removal Table-Based Difference Zero-Removal
Compression Compression Compression Decompression| |Decompression| |Decompressio
Scheme Scheme Scheme Scheme Scheme Scheme

Figure 24. Hardware Hierarchical Design

5.3.2. On-the-fly Compression and Decompression Accelerator

The high-level architecture of the OCDA, with basic interface signals and
functional blocks, is depicted in Figure 25. The OCDA contains three major
functional blocks, namely, the Compressed Address Table (CAT), the Compression
Component (CC), and the Decompression Component (DC).

30

Interanl RAM OCDA IPIF

data in |« DC data read

address . CAT P address
data out > —9| data write

Figure 25. OCDA Architecture

Action of the Data Compression

1. The offset address of the JOP file selects. which compression scheme will be
used.

2. After the data is compressed by 'Compression Component (CC), we transfer the
Compressed Code Length (CCL) to Compressed Address Table (CAT), and the
compressed data to IPIF.

3. The Compressed Address Table (CAT) calculates the new main memory address
and transfers it to IPIF.

Action of the Data Decompression

1. The location of the compressed data in the JOP file determines which
compression scheme will be used.

2. Compute the related address in main memory from Compressed Address Table
(CAT) and transfer compressed data through IPIF.

3. Decompression Component (DC) decompresses the compressed data (CD),

transferring the data to Internal RAM.

31

6. Experimental Results

The data compression results of “Bytecodes™, ““Special Pointers”, “Class
Information & Static Fields, and ““Method Table” are represented in this chapter. We
also use an oscilloscope to measure the execution time before and after data

compression.
6.1. Java Benchmark Programs

In this section, we introduce three small benchmark programs used in the
experiments. The benchmark suite includes a synthetic benchmark, Sieve of

Eratosthenes, and two application benchmarks, kfl and UDP/IP.

6.1.1. Sieve of Eratosthenes

Sieve of Eratosthenes is a program that computes the list of prime numbers. This
program has several computation steps as-follows [12]:
1. First of all, all the integers are listed:
2. Mark all multiples of k; (ky=-2-for-the first iteration), i = 1, 2, ..., is the
number of iteration
3. We move to the next unmarked number p, and let ki = p.
4. Repeat Step 2 and Step 3, until all the listed integers are marked.

5. The list of numbers kj are primes.

6.1.2. Kfl

The Kfl real-time application is taken from one of the nodes of a distributed
motor control system for railroad cargo. The system measures the position (sensors
and actors) and communicates (commands from the master station) with a base station.
Fig 26 shows the master with the motor and the control system in the ‘down’ and ‘up’
positions. The base station has to control the deviation of individual positions during
the tilt. It also includes the user interface for the operator. In technical terms, this is a
distributed, embedded real-time control system, communicating over an RS485

network. [12]

32

Figure 26. Pictures of a Kippfahr!

.-'J g —

6.1.3. UDP/IP

The UDP/IP benchmark ,contains the generation of a request, transmitting it
through the UDP/IP stack, generating the answer and transmitting it back, is an

adaptation of a tiny TCP/IP stack (Ejip) for embedded Java. [12]

6.2. Main Memory Compression Ratio

We adopt three benchmarks, Sieve, Kfl, and UDP/IP, which is provided by Mr.
Martin Schoeberl. Because different compression schemes are adopted according to
the characteristics of each fragment of data, the table reports the break down among
“Bytecodes”, “Special Point”, “Class Information & Static Field”, and “Method
Table” of three benchmarks.

33

Sieve Kfl UDP/IP

Bytecodes
Before Compression 90968 bits 62128 bits 71424 bits
After Compression 72688 bits 49872 bits 56688 hits
Compression Reduce 18280 hits 12256 bits 1473 6bits
Compress reductions 20.0950 % 19.7270 % 208317%
Special Point
Before Compression 128 bits 128 bits 128 bits
After Compression 67 bits 82 bits 57 bits
Compression Reduce 61 bits 46 bits 11 bits
Compress reductions 47 6562 % 359375 % 554688 %
Class Information & Static Field
Before Compression 12832 hits 8640 bits 11136 hits
After Compression 1540 hits 1230 hits 1612 bits
Compression Reduce 11292 hits 7410 bits 9524 bits
Compress reductions 87.8988 % 857638 % 855244%
Method Table
Before Compression 138240 bits 82944 bhits 99328 bits
After Compression 63294 hits 40643 bits 47674 bits
Compression Reduce 749486 bits 42301 bits 51654 hits
Compress reductions 54 2144 % 50.9995% 52.0035 %

Figure-27. Each compression reduction

After compression, one can observe that'it has a reduction in the “Bytecode” data
area of about 20%. The reduction of the ““Special Point” data area is in the range from
35% to 55%. And the *““Class Information & Static Field” data area is reduced about
86%. Finally, the “Method Table” data area reduction is in the range from 50% to
54%.

6.3. Fetch time Reduction of Java Binaries

In this section, an oscilloscope is used to measure the Java binaries fetch time
between the main memory and the Java VM internal cache using a DMA to estimate

the total execution time.

34

Times Total Execute time | Average Bxecute time
Before 100 5Bms 056 ms
_ o o 10000 5160s 05160 ms
Sieve
After 100 33Bms 033 ms
Gompression 10000 336s 03306 s
Before 100 s 039ns
Kﬂ Cormpression 10000 3688 s 03638 s
After 100 2% ms 025ms
e 10000 2342s 0.2342 s
Before 100 45 ms 046 s
Gompression 10000 4339 s 0.4339 s
UDPIP
After 100 28ms 028 s
2ot L 10000 2674 02674 s

Figure 28. Execution time with oscilloscope

According to the numbers; it takes about 1.72ns for the DMA to transfer 1-Byte
of data (1.72 ns ~ 1 clock cycle) to/from the main' memory. From the experiments, it
takes about 0.56 ms to transfer uncompressed sieve' and about 0.33 ms to transfer
compressed sieve into the Java VM. The difference.in transfer time will become even
more significant since various parts of the JOP file will be loaded into the Java VM
repeatedly. Similarly, we need about 0.39 ms transferring uncompressed kfl and about
0.25 ms transferring compressed Kfl to and from the main memory. The transfer time
of the UDP/IP program takes about 0.46 ms for uncompressed code, and about 0.28

ms for compressed code.

35

7. Conclusion & Future Work

For embedded systems such as DVB-MHP terminals, power consumption and
external memory usage are very important design issues. In this thesis, an on-the-fly
compression/decompression module is proposed to reduce memory usage
substantially, and as a result reduces power consumption as well.

The performance of the proposed architecture can be improved further when the
on-the-fly decompression is performed after the code/data are fetched from the Java
processor cache. In this case, the effective size of the cache can be increased due to
data compression. Since more (compressed) runtime data can fit into the cache, the
bandwidth requirement between the main memory and the Java processor can further
be reduced.

Another possible improvement is to integrate the real-time compressor into the
system for generic Java runtime ,environment that does not invoke jcc for
preprocessing. In this case, the:teal-time,compréssor is used to compress fetched
method bytecodes and related:data structure.on-the-fly and store them into (large)
internal cache. Since the uncompressed Java binaries only pass through the main bus
once, great fetch time savings for imethods that-are fetched repeatedly can be

achieved.

36

REFERENCES

(2]

(3]

[9]

DVB project, “Digital Video Broadcasting (DVB): Multimedia Home Platform
(MHP) Specification 1.1.1,” [Online] Available: http://www.mhp.org, Jun 2003.

Sun Microsystems Inc., “The Java Virtual Machine Specification,” [Online]
Available: http://java.sun.com.

Jon Meyer and Troy Downing, “Java Virtual Machine,” published by O’REILLY,
2000.

Eric Armstrong, “HotSpot: A New Breed of Virtual Machine,“ [Online]
Available: http://www.javaworld.com/jw-03-1998/jw-03-hotspot.html, 1998.
Martin Schoberl, “JOP: A Java Optimized Processor for Embedded Real-Time

Systems”, Vienna, Jan 2005.

J.Michael O’Connor and Marc Tremblay, “picoJava-I: The Java Virtual Machine
in Hardware,” In IEEE Micro, 17(2):45=53, 1997.

ARM, “ARM Jazelle Technology,” [Online] Available:
http://www.arm.com/products/solutions/Jazelle.html

G. Chen, M. Kandemir, Ni Vijaykrishnan, M. J. Irwin, B. Mathiske “Heap

Compression for Memory-Constrained Java Environments” , California, USA,
October, 2003,
Mario Latendresse, Marc Feeley,”Generation of Fast Interpreters for Huffman

Compressed Bytecode, ” San Diego, California, USA , June 12, 2003

[10] Luca Benini Davide Bruni, “Hardw are-Assisted Data Compression for Energy

[11]

[12]

[14]

Minimization in Systems with Em bedded Processors ”, Bologna, ITALY, IEEE
2002.

Martin Schoeberl, “Restricitons of Java for Embedded Real-Time Systems, “ In
Proceeding of the 7th IEEE International Symposium on Object-Oriented Real-Time
Distributed Computing, ISORC 2004, Austria, Vienna, May 2004.

Martin Schoeberl, “Using a Java Optimized Processor in a Real World Application,” In
Proceeding of the First Workshop on Intelligent Solutions in Embedded Systems (WISES
2003), pages 165-176, Austria, Vienna, June 2003.

Martin Schoeberl, “JOP : A Java Optimized Processor, ” In Proceeding of the First
Workshop on Intelligent Solutions in Embedded Systems (WISES 2003), Austria, Vienna,
June 2003.

Martin Schoeberl, “Design Decisions for a Java Processor, ” In Proceeding of the 7th

37

IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
ISORC 2004, Austria, Vienna, May 2004.

[15] Martin Schoeberl, “Java Technology in an FPGA, ” In Proceeding of the 7th IEEE
International Symposium on Object-Oriented Real-Time Distributed Computing, ISORC
2004, Austria, Vienna, May 2004.

[16] Martin Schoeberl, “Real-Time Scheduling on a Java Processor, ” In Proceeding of the
7th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,
ISORC 2004, Austria, Vienna, May 2004.

[17] Xilinx, “ML-310 User Guide”, Jul 2004.

[18] Xilinx, “Spartan-3 Starter Kit Board User Guide”, Jul 2004.

[19] Xilinx, “PLB IPIF Product Specification”, August ,2004.

[20] Xilinx, “OPB IPIF Product Specification”, August ,2004.

38

