

國 立 交 通 大 學

資訊工程系

碩 士 論 文

立即的資料壓縮與解壓縮加速器在高度可擴充性 DVB-MHP 的

JVM 軟硬體協同設計

On-the-fly Compression and Decompression Accelerator for JVM HW/SW

co-design of a high upgradeable DVB-MHP Terminal

研 究 生：黃士嘉

指導教授：蔡淳仁 博士

中 華 民 國 九 十 四 年 六 月

 II

立即的資料壓縮與解壓縮加速器

在高度可擴充性 DVB-MHP 的 JVM 軟硬體協同設計

On-the-fly Compression and Decompression Accelerator for JVM HW/SW
co-design of a high upgradeable DVB-MHP Terminal

研 究 生：黃士嘉 Student：Shih Chia, Huang

指導教授：蔡淳仁 Advisor：Chun Jen, Tsai

國 立 交 通 大 學
資 訊 工 程 系
碩 士 論 文

A Thesis

Submitted to Department of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2005

Hsinchu, Taiwan, Republic of China

中華民國九十四年六月

 III

國 立 交 通 大 學

博碩士論文全文電子檔著作權授權書

(提供授權人裝訂於紙本論文書名頁之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系所 ＿＿

＿＿＿＿組， 93 學年度第_2_學期取得碩士學位之論文。

論文題目：立即的資料壓縮與解壓縮加速器在高度可擴充性 DVB-MHP 的 JVM 軟硬

體協同設計

指導教授：蔡淳仁 博士

■ 同意 □不同意

本人茲將本著作，以非專屬、無償授權國立交通大學與台灣聯合大學系統圖書館：

基於推動讀者間「資源共享、互惠合作」之理念，與回饋社會與學術研究之目的，

國立交通大學及台灣聯合大學系統圖書館得不限地域、時間與次數，以紙本、光

碟或數位化等各種方法收錄、重製與利用；於著作權法合理使用範圍內，讀者得

進行線上檢索、閱覽、下載或列印。

論文全文上載網路公開之範圍及時間：

本校及台灣聯合大學系統區域網路 ■ 中華民國 94 年 8 月 15 日公開

校外網際網路 ■ 中華民國 94 年 8 月 15 日公開

授 權 人：黃士嘉

親筆簽名：______________________

中華民國 94 年 8 月 3 日

 IV

國 立 交 通 大 學

博碩士紙本論文著作權授權書

(提供授權人裝訂於全文電子檔授權書之次頁用)

本授權書所授權之學位論文，為本人於國立交通大學 資訊工程 系所

＿＿＿＿＿＿組， 93 學年度第__2__學期取得碩士學位之論文。

論文題目：立即的資料壓縮與解壓縮加速器在高度可擴充性 DVB-MHP 的 JVM

軟硬體協同設計

指導教授：蔡淳仁 博士

■ 同意

本人茲將本著作，以非專屬、無償授權國立交通大學，基於推動讀者間「資

源共享、互惠合作」之理念，與回饋社會與學術研究之目的，國立交通大學

圖書館得以紙本收錄、重製與利用；於著作權法合理使用範圍內，讀者得進

行閱覽或列印。

本論文為本人向經濟部智慧局申請專利(未申請者本條款請不予理會)的附

件之一，申請文號為：____________________，請將論文延至____年____

月____日再公開。

授 權 人：黃士嘉

親筆簽名：______________________

中華民國 94 年 8 月 3 日

 V

國家圖書館博碩士論文電子檔案上網授權書

ID:GT009117582

本授權書所授權之論文為授權人在國立交通大學 電機資訊 學院 資訊工程 系

所 _________ 組 _93_學年度第_2_學期取得碩士學位之論文。

論文題目：立即的資料壓縮與解壓縮加速器在高度可擴充性 DVB-MHP 的 JVM 軟硬

體協同設計

指導教授：蔡淳仁 博士

茲同意將授權人擁有著作權之上列論文全文（含摘要），非專屬、無償授權國家

圖書館，不限地域、時間與次數，以微縮、光碟或其他各種數位化方式將上列

論文重製，並得將數位化之上列論文及論文電子檔以上載網路方式，提供讀者

基於個人非營利性質之線上檢索、閱覽、下載或列印。

※ 讀者基於非營利性質之線上檢索、閱覽、下載或列印上列論文，應依著作權法相關規定辦理。

授權人：黃士嘉

親筆簽名：_______________

民國 94 年 8 月 3 日

 VI

國 立 交 通 大 學

論 文 口 試 委 員 會 審 定 書

本校 資訊工程系 碩士班 黃士嘉 君

 所提論文:

 On-the-fly Compression and Decompression Accelerator

for JVM HW/SW co-design of a high upgradeable DVB-MHP Terminal

立即的資料壓縮與解壓縮加速器在高度可擴充性

DVB-MHP 的 JVM 軟硬體協同設計

合於碩士資格水準、業經本委員會評審認可。

口試委員：

指導教授：

系主任：

中 華 民 國 九十四 年 六 月 二十二 日

 i

立即的資料壓縮與解壓縮加速器在高度可擴充性

DVB-MHP 的 JVM 軟硬體協同設計

學生：黃士嘉 指導教授：蔡淳仁 博士

國立交通大學資訊工程學系﹙研究所﹚碩士班

摘 要

在嵌入式即時系統中，記憶體的使用與電能的消耗一直是很重要的議

題，我們在數位電視標準中的 DVB/MHP 的 Java processor 中，加入物件資

料壓縮與解壓縮的機制，以達到較少的記憶體的使用、較低電量的消耗，

進而提升整體的執行效率。

目前在 JVM 中，都採用軟體的方式來做資料壓縮與解壓縮的機制，這

樣通常會造成整體的執行效率降低。我將設計硬體的壓縮與解壓縮加速

器，利用硬體的平行度來提升整體的執行效能。
達到的目的，分別條列如下：
(1) 減少記憶體的使用
(2) 達到低電量的消耗
(3) 減少整體執行時間

我們選用的實驗平台是 Xilinx ML-310 的嵌入式發展平台，可程式化的

邏輯陣列，主要包含：兩個 IBM Power PCTM 405(PPC 405)處理器、30816
Logic Cell、2,448 kb BRAM(block RAM)。

 ii

On-the-fly Compression and Decompression

Accelerator for JVM HW/SW co-design of a high

upgradeable DVB-MHP terminal

Student: Shih Chia, Huang Advisor: Dr. Chun Jen, Tsai

Institute of Computer Science and Information Engineering
National Chiao-Tung University

Abstract
Multimedia Home Platform (MHP) is a digital video broadcasting (DVB) standard

intended to combine digital television (DTV) with the Internet and the World Wide Web. An

MHP setop box is a complicated embedded system that contains both multimedia and

communication components. Memory size (includes both volatile and non-volatile memory

devices) and power consumption is always the main concern when designing this kind of

embedded devices. One of the critical components in a DVB-MHP setop box is the Java VM.

To achieve the best performance/power consumption ratio, a dedicated Java processor is often

used.

The goal of this thesis is to design a runtime bytecode/data compression and

decompression hardware logic to a Java processor for DVB-MHP applications.

Fo software-based Java VM, runtime bytecode/data compression and decompression are

used to reduce the memory usage. However, the performance of the system usually decreases

due to the extra overhead. To maintain performance while reducing memory usage, a

hardware accelerator for real-time compression/decompression with parallel datapaths is a

reasonable aproach. The proposed hardware design is implemented and verified on an FPGA

platform, Xilinx ML310. Based on the experimental results, the proposed architecture is very

efficient and promising for practical applications.

 iii

誌 謝

在這篇論文裡，覺得學習的非常扎實，有 Java Processor、Power PC、IBM Bus

Core-connect，和在 Xilinx ML-310、Xilinx Spartan III 方面的實作，也讓我深

深的體會到系統方面的實作，真的不太容易，需要花費很多的時間和心思。

 非常感謝我的指導教授 蔡淳仁老師給我的教導和鼓勵，Xilinx 的資深工程師

何奇旺老師在板子上的許多的指導與協助，也很感謝實驗室的所有成員給我的鼓

勵，還有我的家人、朋友給我的鼓勵和支持。

 iv

Table of Content
摘要 ..i
Abstract..ii
誌謝 ..iii
Table of Content .. iv
List of Figures ..v
List of Tables...vi
1. Introduction .. 1

1.1. On-the-fly Compression and Decompression Accelerator1
1.2. OCD for Java VMs Using HW/SW Co-design Approach.............................2
1.3. Overview of this Thesis ...2

2. Previous Work ..3
2.1. Java System...3
2.2. Java Virtual Machine ...5
2.3. Java Processor ...6
2.4. Main Reference Papers..7

2.4.1. Heap Compression for Low Memory Java Systems7
2.4.2. Fast Interpreters for Huffman Compressed Bytecode8
2.4.3. Hardware Data Compression for Energy Minimization9

3. Problem Formulation .. 10
3.1. JOP Runtime System... 10
3.2. Overview of JOP ... 11
3.3. Datapath of JOP .. 12
3.4. Xilinx ML-310 .. 16
3.5. Discussion... 19
3.6. Approach... 20

4. The Architecture of JOP on ML-310 ... 22
4.1. System Overview .. 22
4.2. IPIF Architecture... 23

4.2.1. IPIF Features ... 23
4.3. Our Modify Architecture ... 24

5. Proposed VLSI Compressor/Decompressor Architecture... 25
5.1. JOP File Format .. 25
5.2. Description of the Compression Schemes .. 27

5.2.1. Variable-Length Coding Scheme.. 27
5.2.2. Zero-Removal Compression .. 28
5.2.3. Difference Compression .. 29

5.3. Hardware Implement ... 29
5.3.1. Hierarchical Design ... 29
5.3.2. On-the-fly Compression and Decompression Accelerator 30

6. Experimental Results .. 32
6.1. Java Benchmark Programs... 32

6.1.1. Sieve of Eratosthenes... 32
6.1.2. Kfl ... 32
6.1.3. UDP/IP.. 33

6.2. Main Memory Compression Ratio... 33
6.3. Fetch time Reduction of Java Binaries... 34

7. Conclusion & Future Work ... 36
REFERENCES... 37

 v

List of Figures

Figure 1. Java System...3
Figure 2. Architecture of the JVM ..4
Figure 3. Implement JVM three methods ..5
Figure 4. The general Java Runtime System.. 10
Figure 5. The JCC and JOP Runtime System .. 11
Figure 6. Block diagram of JOP.. 12
Figure 7. Pipeline of JOP.. 12
Figure 8. Java Bytecode Fetch .. 13
Figure 9. JOP instruction fetch.. 14
Figure 10. Decode and Address Generation .. 15
Figure 11. Execution... 16
Figure 12. ML-310 Board and Front Panel Detail ... 18
Figure 13. ML-310 High-Level Block Diagram.. 19
Figure 14. ML-310 SoPC.. 22
Figure 15. IPIF Features ... 23
Figure 16. OCDA Interface between JOP and IPIF ... 24
Figure 17. Main memory contents .. 26
Figure 18. Table-Based compression algorithm... 27
Figure 19. Table-Based compression example... 28
Figure 20. Zero-Removal compression algorithm ... 28
Figure 21. Zero-Removal compression example ... 28
Figure 22. Difference compression algorithm ... 29
Figure 23. Difference compression example ... 29
Figure 24. Hardware Hierarchical Design ... 30
Figure 25. OCDA Architecture ... 31
Figure 26. Pictures of a Kippfahrleitung Mast in Down and Up Position........................... 33
Figure 27. Each compression reduction .. 34
Figure 28. Execution time with oscilloscope... 35

 vi

List of Tables

Table 1. Comparison of Java hardware..7
Table 2. The garbage collection strategies ...7
Table 3. The first part of this table gives the absolute heap sizes in KBs, and the second part
gives the values (heap sizes) normalized with respect to that of the MC collector................8
Table 4. Energy and Memory Traffic Reductions...9

 1

1. Introduction

In this chapter, we will give an introduction to On-the-fly Compression and

Decompression Accelerator (OCDA) for Java VM. Some analysis of the performance

of an OCDA will be presented. In addition, a mechanism that adopts different

compression schemes to achieve better compression ratio based on the characteristics

of DVB-MHP applications [1] will be proposed.

1.1. On-the-fly Compression and Decompression Accelerator

Due to its portability, Java is becoming a popular software platform for

embedded devices. However, embedded devices are constrained by memory size and

power consumption. Both factors are not the main concern of a Java runtime

environment when Java was first proposed in 1991 and announced in 1995. Therefore,

to increase the performance/resource consumption ratio, a on-the-fly data

compression and decompression mechanism can minimize the use of memory and

also arrive at lower energy consumption. The advantages and disadvantages of an

On-the-fly Compression and Decompression (OCD) mechanism is as follows:

Advantages:

1. Reduction of memory usage

2. Decrease of data communication time

3. Slash of memory access time

4. Cutback of power consumption

Disadvantages:

1. Extra design effort

2. Computational overhead of data compression and decompression

Due to the computational overhead of data compression and decompression, a

software-based OCD module generally suffers some performance degradation. In this

thesis, a hardware-assisted solution is proposed to reduce data compression and

decompression overhead. The proposed hardware OCD module has all the advantages

of a software-based OCD module without the drawback of performance degradation.

 2

1.2. OCD for Java VMs Using HW/SW Co-design Approach

Java is a dynamically-typed pure object-oriented language developed by Sun

Microsystems in the early 1990. In general, Java language has some excellent features

such as being secure and platform-independent. However, easy portability of Java

programs across platform comes at a cost of low execution performance. To increase

performance, OCD is sometime used to perform real-time data compression and

decompression between main memory and internal Java VM cache. To be more

precise, before a Java binaries (e.g. jar files or class files) is ready for execution, an

offline (or semi real-time) compression pass is performed on the Java binaries so that

the input binaries to the Java VM is smaller. By doing this, the main memory access

time will be greatly reduced. This is true even for a processor-based software VM

implementation. The compressed Java binaries are then de-compressed on-the-fly

inside the Java VM for execution. Since a large portion of power consumption comes

from main memory accesses, this approach can reduce the power consumption as long

as the on-the-fly de-compressor is efficient.

1.3. Overview of this Thesis

Chapter 2 gives the introduction to the Java system and three major

implementation approaches for Java VM (JVM). Among these approaches, the Java

processor approaches is adopted in this thesis for its good performance/resource ratio

for real-time embedded systems. Chapter 2 also presented some details of existing

Java data compression and decompression mechanisms. In chapter 3, an introduction

to the Java Optimized Processor (JOP) is given. JOP is designed by Martin Schoeberl

[5]. We have ported it to the Xilinx ML-310 Embedded Development Platform. Some

analysis of OCD for JOP is also discussed in this chapter. The required modification

to JOP in order to port it to ML-310 is presented in chapter 4. Chapter 5 describes the

compression and decompression algorithms adopted in our design and the proposed

OCD architecture. Some experimental results are presented in chapter 6. Finally, the

conclusion and some discussions are given in Chapter 7.

 3

2. Previous Work

In this chapter, we introduce the Java system including Java programming

language, Java class library, and Java virtual machine (JVM). JVM is the core

component of a Java System. Typical implementation approaches for a JVM include:

interpreters, Just-in-Time (JIT) compilers, and Java processors. In this thesis, we

adopt a java processor to implement OCDA-enabled JVM.

The requirements for the embedded implementation of JVM are constrained by

memory size and power consumption. After an introduction to Java runtime systems,

we will discuss several papers about compression technologies for different Java

Systems.

2.1. Java System

Java System is a stand-alone cross-platform system. It consists of three main

components, as we can see in Figure 1. [1]

Figure 1. Java System

1. Java Programming Language

Java Programming Language[1], named Bytecode by Sun, is an intermediate

instruction set, with an accompanying execution environment. This combination helps

to make write once, run anywhere possible.

 4

Java Bytecode, comprises one-byte opcode and zero-to-five bytes operands, is

variable-length instruction format, but there are some one-byte instructions which also

encode operand inside.

2. Java Class Library

Java Class Library [1] which is defined as part of the Java specification between

Java Programming Language and Java Virtual Machine.

Java Application Programming Interfaces (API) is organized as sets of packages,

in respect of

 java.lang – object, data types, commonly used mathematical functions, system

operations like dynamic loading of classes, etc.

 java.util – enumeration, random number generation, string tokenizer, classes

for accessing Java arrays, etc.

 java.io – stream I/O in a sequence of 8-bit bytes

3. Java Virtual Machine (JVM)

The Java Virtual Machine (JVM) [1][1][1] provides the runtime framework

executes java bytecode programs and it is a CISC stack-based architecture. Java

makes cross-platform is due to the existence of JVM.

The JVM, abstract machine with cross-platform capability, run-time data areas

contain Program Counter, Java Stack, Heap, Method Area, and Runtime Constant

Pool.

Figure 2. Architecture of the JVM

Java Execution Engine

Operand Stack
(OS)

Loacl Variables
(LV)

Constant Pool

State Variables

Java Stack

St
ac

k
Fr

am
e

65,535

0

...

8 bits

32 bits

32 bits

Bytecodes

Control

Top of Stack Pointer
Program Counter

Stack Frame Pointer
0-th Local Variable Pointer

R
eg

is
te

rs

m - 1

0

...

n - 1

0

...

 5

2.2. Java Virtual Machine

There are three major implementations for JVM as described below and shown

in Figure 3. [1] [1]

Figure 3. Implement JVM three methods

1. Interpreter

Interpreter [1][1][1] is the traditionally used way to execute Java Bytecode. The

interpreter is composed of a big time-consuming loop to map each Java bytecode into

native code sequence, and the main disadvantage is the high execution overhead.

2. Just-in-Time Compilation

Just-in-Time (JIT) Compiler [1] translates Java bytecodes to native codes during

runtime and stores the compiled codes. Then we can use the compiled codes directly

next time without compiling them again. To reduce the compilation overhead, current

JVM operate in mixed mode: Java methods are executed in interpreter mode and call

frequency is monitored. Often-called methods, the hot spots, are often compiled to

native code.

Due to compilation during runtime, execution times are not predictable. JIT

compilation wasn’t suited for embedded real time system.

Java Program (*.java)

Java Compiler

Bytecode (*.class)

JIT
Compiler

Machine
BinaryInterpreter

Operating System

Non-Java CPU

Java
Operating

System

Java
CPU

1 2 3

 6

3. Java Processor

Java Processor [1] [1] is a stack hardware machine with Java Bytecodes as native

instruction set. The solution can result in a small processor with predictable execution

time and memory-efficient suited for embedded real time system.

2.3. Java Processor

There are two different approaches to implement Java processor by hardware as

described below and shown in Table 1. [1] [1] [1]

1. Stand-alone Java Processor

Java processors are stack architectures with an instruction set that resembles the

java bytecodes form the JVM.

2. Java/RISC Dual Processor

Java bytecodes are executed on the Java and RISC core. In general, the java

coprocessor, is an accelerator, is integrated into the same chip as the RISC main

processor.

 Type
Target

Technology
Size

Speed

[MHz]

Java

Standard

Jazelle

Co-Processor ASIC 0.18µ 12k gates 200

JSTAR

Co-Processor

ASIC 0.18µ

Softcore
30k gates 104

J2ME

CLDC

picoJava

1999 year
Processor No realization

128k gates

Memory
 Full

aJile

2000 year
Processor ASIC 0.28µ

25k gates

ROM
100

J2ME

CLDC

Komodo

2000 year
Processor Xilinx FPGA 2600 LCs 20

Subset:50

bytecodes

FemtoJava

2001 year
Processor Altera Flex 10K 2000 LCs 4

Subset:69

bytecodes

 7

Moon

2000 year
Processor Altera FPGA

3660 LCs,

4KB RAM

LightFoot

2001 year
Processor Xilinx FPGA 3400 LCs, 40

JOP

2001 year
Processor Altera, Xilinx FPGA

1830 LCs,

3KB RAM
100

J2ME

CLDC

1. Comparison of Java hardware

2.4. Main Reference Papers

2.4.1. Heap Compression for Low Memory Java Systems

This paper proposes a set of memory management strategy to reduce heap

footprint of embedded Java applications that execute under memory constraints.

There are several new garbage collectors proposed, and we distribute in Table 2. [1]

Scheme Compaction Compression Reference

Breaking

Down

Large

Object

Lazy

Allocation

Mark-Swap No No Direct No No

Mark-Compact Yes No Direct No No

Mark-Compact-Lazy- Allocate Yes No Direct Yes Yes

Mark-Compact-Compress Yes Yes Handle No No

Mark-Compact-Compress-Lazy-All

ocate
Yes Yes Handle Yes Yes

2. The garbage collection strategies

The Mark-Sweep (MS) and Mark-Compact (MC) are conventional collectors.

The Mark-Compact-Compress (MCC) collector compresses objects when heap

 8

compaction is not sufficient for creating space for the current allocation request, and

the Mark-Compact-Lazy Allocate (MCL) is based on lazy allocation, which means no

heap space is allocated unless the object is used after breaking large objects, of object

portions. We combine MCC and MCL, and present Mark-Compact-Compress-Lazy

(MCCL), which outperforms both MCC and MCL.

Table3 gives the minimum heap sizes for each benchmark using different

garbage collectors. The results in Table 3 is that, compared to the MC collector, the

MS collector requires 47.9% more heap space on the average. In regard to MC, MCL

and MCC bring down the heap memory requirements of our benchmarks by 9.5% and

10.8%, respectively; (the average reduction with respect to MS is around 40%).

Combing them in MCCL results in even more heap memory space saving (21% on the

average) .

3. The first part of this table gives the absolute heap sizes in KBs, and the

second part gives the values (heap sizes) normalized with respect to that of

the MC collector.

2.4.2. Fast Interpreters for Huffman Compressed Bytecode

We use canonical Huffman codes to generate compact codes with custom-sized

operand fields and with a virtual machine that directly executed this compact code in

this paper. They present techniques to automatically generate the new instruction

formats and decoder. In effect, this automatically creates both an instruction set for a

customized virtual machine and an implementation of that machine. The primary

focus of this paper is to show that there are techniques to efficiently decode such

compressed instructions. For speed, canonical Huffman codes should not be decoded

bit by bit; instead, blocks of k bits should be used. The paper mainly proposes

Minimum Heap Size (KB) Normalized against MC (%)

 MS MC MCL MCC MCCL MS MCL MCC MCCL

Average 132 90 75 81 65 147.9 90.5 89.2 79.0

 9

multiple k bits look-ups specially and generates decoders given a space constrain.

After the experiments on Scheme, Java benchmarks show an average execution

slowdown of 9%. [1]

2.4.3. Hardware Data Compression for Energy Minimization

In this paper, they design hardware-assisted data compression as a tool for

reducing energy consumption of core-based embedded systems. They explore two

classes of compression methods, profile-driven and differential. The experimental

results about memory traffic and energy consumption in the cache-to-memory path of

a core-based system runs standard benchmark programs. The summary of achieved

memory traffic reductions (ΔT) and overall energy savings (ΔE) is shown in Table 4.

An average of 35.2% energy decrease is obtained by using the profile-driven

compression method, while savings in the range from 4.2% to 10.1% are provided by

the differential compression schemes. [1]

4. Energy and Memory Traffic Reductions

 Profile-Driven Difference1 Difference2 Difference3

ΔE [%] 35.24 4.18 10.09 9.36

Average

ΔT [%] 36.10 4.37 10.41 10.41

 10

3. Problem Formulation

We adopt Java Optimized Processor (JOP) design to implement the java virtual

machine (JVM). It is part of Mr. Martin Schoeberl’s PhD thesis at the Technical

University of Vienna, Austria. JOP is one way to use a configurable Java processor in

embedded real-time systems, and Java Optimized Processor (JOP) is the main

execution engine to run our DVB-MHP (Multimedia Home Platform) API. We

modified JOP VHDL codes and ported it to Xilinx ML310 (Virtex-II Pro

XC2VP30-FF896) Embedded Development Platform. Finally we tried to analyze

experimental environment in a mathematical method.

3.1. JOP Runtime System

The JOP runtime system is different from general Java Virtual Machine (JVM)

runtime system. JOP adopts the JavaCodeCompact (JCC) tool combines one or more

Java class files and produces a *.JOP file. The class files are verified, linked and

transformed into an internal representation (*.JOP file) before being executed on

execution engine. Figure 4 and Figure 5 shows the general Java and JOP run time

environment

Figure 4. The general Java Runtime System

 11

Figure 5. The JCC and JOP Runtime System

3.2. Overview of JOP

JOP’s major function units are the JOP core, a memory interface, a number of

I/O devices and the module extension, as shown in Figure 6. [1] [1] [1] [1] [1] [1]

Figure 6. Block diagram of JOP

 12

The JOP core contains the four pipeline stages bytecode fetch, microcode fetch,

decode, execute, and we will introduce the JOP pipeline detail in the 2.3 section. The

JOP core reads bytecode instructions through dedicated buses (BC address and BC

data) from the memory interface. And the JOP core transfers Data (A, B, Data) and a

number of control signals from the extension module.

The memory interface, contains the bytecode cache, provides a connection

between the main memory and JOP core.

The extension module controls read and write to and from between the JOP core,

the memory, and IO modules.

The I/O interface contains peripheral devices, such as the system time, a serial

interface and application-specific devices.

3.3. Datapath of JOP

JOP is a full–pipelined architecture and every JOP instruction (8 bit microcode)

takes one cycle, as we can see in Figure 7. Four pipelined stage from Bytecode Fetch

(Figure 8.), JOP instruction Fetch (Figure 9.), decode (Figure 10.), executing JOP

instruction (Figure 11.). [1] [1] [1] [1] [1] [1]

Figure 7. Pipeline of JOP

Stage1: Java Bytecode Fetch

 13

The first pipeline stage can be seen in fig.8. There are some actions in this stage.

1. All bytecode are fetched from internal memory (bytecode ram). This memory,

the instruction cache, is filled on function call and return.

2. Every bytecode is mapped through jtbl to an address for the microcode rom

(jpaddr). It is also stored in a register for later use as operand.

3. Since jpc is also used to read operands, the program counter is stored in jpcbr

during an instruction fetch.

4. Jinstr to decode the type of a branch and jpcbr to calculate the target address

Figure 8. Java Bytecode Fetch

Stage 2: JOP instruction Fetch

The second pipeline stage can be seen in fig.9. JOP micro code that implements

the JVM is stored in the memory labeled jvm rom. There are some actions in this

stage.

1. The program counter pc is incremented during normal execution. If the

instruction is labeled with nxt a new bytecode is requested from the first

stage and pc is loaded with jpaddr.

2. Jpaddr is the starting address for the implement of that bytecode. This

 14

label and the one for a bytecode operand load (opd) are stored in bc-fetch.

3. brdly holds the target for a taken conditional branch, and many

destinations share the same offset. A table (offset) is used to store these

relative offsets. This indirection makes it possible to use only five bits in

the instruction coding for branch targets and allow larger offsets.

4. The three tables bc-fetch, offset and jtbl, from the bytecode fetch stage,

are generated during assembly of the JVM code.

Figure 9. JOP instruction fetch

Stage 3: Decode and Address Generation

The third pipeline stage shown in fig.10 provides two functions. JOP instructions

are decode for the execution stage and addresses for read and write accesses of the

stack ram are generated.

 15

Figure 10. Decode and Address Generation

Stage 4: Execute

The fourth pipeline stage shown in fig.11 TOS and TOS-1 are implement as

register A and B. Every arithmetic/logic operation is performed with A and B as

destination. All load operations, local variables, internal register, external memory and

periphery, result in the value loaded in A. Therefore no write back pipeline stage is

necessary. A is also the source for store operations. Register B is never accessed

directly. It is read as implicit operand or for stack spill on push instructions and

written during stack spill and fill.

 16

Figure 11. Execution

3.4. Xilinx ML-310

The ML310 Embedded Development Platform, Figure 12, is a versatile Virtex-II

Pro XC2VP30-FF896 based platform for rapid prototyping and system verification.

The ML-310 includes dual IBM PowerPCTM 405 (PPC405) processors, 30,816 logic

cells, 2,448 kb of block RAM (BRAM), available in the FPGA. [1]

Description of the ML-310 fabric follows:

 Dual IBM PowerPCTM 405 Core

 Max frequency : 300MHz

 Processor Local Bus (PLB)/On-chip Peripheral Bus (OPB)/ On-chip Memory

(OCM)

 100 MHz

 30,816 Logic Cells

 17

 8 RocketIOTM Multi-Gigabit Transceiver blocks (MGTs)

 2,448 kb BRAM

 136 Xtreme Multipliers

 256 MB DDR DIMM

 100 MHz ; 64-bit

 System ACE™ CF controller

 512 MB CompactFlash card

 Onboard 10/100 Ethernet NIC

 4 PCI slots (3.3V and 5V)

 33 MHz ; 32-bit

 LCD character display and cable

 FPGA serial port connection

 RS-232 mini-cable

 Personality module interface for RocketIO and LVDS access

 Standard JTAG connectivity

 ALi Super I/O

 1 parallel and 2 serial ports;

 2 USB ports;

 2 IDE connectors;

 GPIO;

 SMBus Interface;

 AC97 Audio CODEC;

 PS/2 keyboard and mouse ports;

 ATX power supply

 18

Figure 12. ML-310 Board and Front Panel Detail

 19

3.5. Discussion

After introducing our environment and platform, the JOP IP is added on the

OPB or PLB bus, and DDR-SDRAM is added on the same bus. A memory

initialization file, on the DDR-SDRAM, is from the Java application file

(package_App.jop) that is read by the JOP of the main memory.

 Before adding OCDA, we break down among external ram, bus and internal ram

during execution Java Program

1. access data from External ram(DDR-SDRAM)

2. OPB or PLB Data Communication

3. access data from internal ram(JOP cache)

 After Adding OCDA, we break down among external ram, bus, OCDA and

internal ram

1. access data from External ram(DDR-SDRAM)

2. OPB or PLB Data Communication

3. Data Compression and Decompression

4. access data from internal ram(JOP cache)

We can expect reduction of execution time and power consumption for 1, 2, and

4, but there will be an extra overhead for 3.

Figure 13. ML-310 High-Level Block Diagram

 20

3.6. Approach

We will mathematically denote Main Memory usage, memory traffic, and energy.

Main Memory usage

Before adding OCDA:

 Usage_external ram (original)

After adding OCDA:

 Usage_external ram (new)

Reduction

 Usage_external ram (reduce)=

Usage_external ram (original) – Usage_external ram (new)

Memory traffic

Before adding OCDA:

 Time_total (original)= Time_external ram (original) +

Time_communication (original) +

Time_OCDA (original) +

Time_internal ram (original)

After adding OCDA

 Time_total (new)= Time_external ram (new) +

Time_communication (new) +

Time_OCDA (new) +

Time_internal ram (new)

Reduction

 Time_total (reduce)= Time_total (original) - Time_total (new)

Usage_external ram () : the usage of External ram

Time_external ram () : access data from External ram time
Time_communication () : OPB or PLB Data Communication time
Time_ODCA () : Data Compression and Decompression time
Time_interanl ram () : access data from internal ram time

 21

Energy

Before adding OCDA:

 Power_total (original)= Power_external ram (original) +

Power_communication (original) +

Power_OCDA (original) +

Power_internal ram (original)

After adding OCDA

 Time_total (new)= Power_external ram (new) +

Power_communication (new) +

Power_OCDA (new) +

Power_internal ram (new)

Reduction

 Power_total (reduce) = Power_total (original) - Power_total (new)

Power_external ram () : access data from External ram energy
Power_communication():OPB or PLB Data Communication energy
Power_ODCA () : Data Compression and Decompression energy
Power_interanl ram () : access data from internal ram energy

 22

4. The Architecture of JOP on ML-310

The JOP has been ported to many FPGA devices. Our porting to ML-310 is

based on the Xilinx Spartan-3 [18] port of JOP. The Sparatn-3 Start Kit

implementation of JOP is not suitable for execution of larger Java applications due to

its small main memory size and lack of many external I/O support. The Xilinx

ML-310 platform is on the other hand much more suitable for DVB-MHP

applications.

4.1. System Overview

To port the JOP IP to Xilinx ML-310 platform [17], we must connect the JOP

Intellectual Property (IP) to the IBM CoreConnect OPB (or PLB) bus [19][20] (see

Figure 14) so that it can communicate with the DDR SDRAM and the PowerPC core.

Under the IBM CoreConnect bus architecture, various hardware IPs are connected to

the OPB (or PLB) bus via the Intellectual Property Interface (IPIF). The OPB (or PLB)

IPIF is a interface module for attaching an IP solution to the IBM-defined OPB (or

PLB) Bus, the details of IPIF will be presented in the next section.

Figure 14. ML-310 SoPC

Arbi
ter

Arbi
ter Bus

Bridge On-Chip Peripheral Bus Processor Local Bus

PowerPC
405 Core

Instruction Data

DCR Bus

Hi-Speed
Peripherie

Hi-Speed
Peripherie

e.g.
Memory
Controlle

OPB PLB

Dedicated Hard IP Flexible Soft IP

Off-Chip
Memory

ZBT SSRAM

DDR SDRAM

SDRAM

Etherne II GPI

Serial
Ports
UART

Interrupt
CNTL

Our Modify
JOP IP Our Modify

JOP IP

 23

4.2. IPIF Architecture

The IPIF architecture allows various fully parameterized IPIF modules, e.g. the

Read and Write FIFO, DMA/SG, Interrupt Controller, and the Reset block, to attach to

the IPIC inside the IPIF and to utilize the register and/or SRAM interfaces (see Figure

15). The IPIF has two basic functions:

1. To facilitate attachment of devices to the OPB in a standard way.

2. To provide services that are useful to different classes of IP.

Figure 15. IPIF Features

4.2.1. IPIF Features

The IPIF contains the capabilities and features summarized below:

 Slave interface

 Separate Address, Data-in and Data-out Buses.

 Transaction Qualification: Read Req, Write Req, Byte Enable, Burst

 Transaction Response: Read Ack, Write Ack, Error, Retry, Timeout

Suppression

 Master interface

 Bus Address

 Local Address

 24

 Single and burst transactions

 Transaction Qualification: Read Req, Write Req, Byte Enable, Burst, Bus

Lock

 Transaction Response: separate Read and Write Acks, Transaction Acks,

Error, Retry, Timeout

4.3. Our Modify Architecture

Figure 16 illustrates the CoreConnect interface architecture for JOP. The OCDA

module is added between the JOP IP and DDR SDRAM to transfer the OCDA

compressed DATA on bus through IPIF. A detailed discuss of the design of the OCDA

module will be presented in chapter 5.

Figure 16. OCDA Interface between JOP and IPIF

Bus
Bridge

Arbiter

Our Modify JOP IP

Internal
RAM

On-the-fly
Compression/Decomppression

Acceleraor

IPIF

OPB or PLB Bus

DDR SDRAM

 25

5. Proposed VLSI Compressor/Decompressor

Architecture

The proposed OCD scheme is presented in this chapter. First, the Java bytecoe

file format used by the open source JOP project will be introduced in section 5.1. The

JOP file format contains bytecodes, special pointers, string table, static fields, class

information, method table, and constants. Different compression schemes are

employed for different data area. These compression schemes are discussed in section

5.2. In section 5.3, the hardware architecture is proposed according to the analysis of

the features of various data areas and the adopted compression schemes.

5.1. JOP File Format

A JOP file is a compact Java class binary archive generated by a Java pre-verifier

and linker program called JavaCodeCompact (jcc). 錯誤 ! 找不到參照來源。

illustrates the original contents of a JOP file. The size of a JOP file is a crucial

performance factor of the embedded systems that executes the file since the file is

stored in the main memory. Only the methods and data structures which are used at

certain time instant are loaded into the internal cache of the Java VM. The smaller the

size of each method and the associated data structure, the faster the fetch time at

runtime will be.

Since different area of the JOP file has different characteristics, a single

compression method cannot achieve good compression ratio. Therefore, we proposed

a hybrid OCDA architecture that adopts different compression schemes according to

the characteristic of each area of the file format to obtain a better compression ratio.

The summary of the characteristics of each file area and the potential

compression techniques for that area is as follows:

1. All methods’ bytecode area: According to statistical analysis, the execution

frequency of 14 to 18 bytecodes accounts for 60 to 70 percent of the complete

execution time. Therefore a variable-length coding scheme, like Huffman coding,

is used for the all methods’ bytecode area.

2. Special pointer: neighboring values stored in this area have high correlation to

 26

each others, so we adopts predictive (differential) compression scheme for the

special pointer area.

Figure 17. Main memory contents

3. String table: Values stored in this area has no distinct features, so compression is

not applied here.

4. All classes: for the all classes area, there four sub-areas, namely static fields, class

information, method table, and constants. These areas are compressed as follows:

 Static fields: values stored in this area are full of zeros, so we apply

zero-removal compression scheme here.

 Class information: values stored in this area are full of zeros, so we apply

zero-removal compression scheme here.

 Method table: neighboring values stored in this area have high correlation

to each others, so we adopts predictive (differential) compression scheme

here.

 Constants: values stored in this area has no distinct features, so

compression is not applied here.

All Method’s: Bytecode

Special Pointer
String Table

All
Classes

Static Fields

Class Information

Method Table :
(a method use 2 address)

Address of Special Pointer 0
1 Table-based

Compression Scheme

Difference
Compression Scheme

Zero-removal
Compression Scheme

Constant Pool

 27

5.2. Description of the Compression Schemes

5.2.1. Variable-Length Coding Scheme

It uses statistical information about the occurrence of all bytecodes in all

methods to decide whether compression should take place. The 16 most frequently

used bytecodes among all bytecodes are selected and form a set called S. Each

bytecode in S is encoded with 4 bits.

Figure 18. Table-Based compression algorithm

As a Table-Based Compression example:

ByteCode1, ByteCode3, and ByteCode4 belong to S

ByteCode2 doesn’t belong to S

 Uncompressed Data

 Table-Based compression Data

For (each Bytecode)
If (Bytecode belong to S)

Head=1(1 bit) and
store compressed bytecode (4 bits).

Else If (Bytecode doesn’t belong to S)
Head=0(1 bit) and
store uncompressed bytecode (8 bits).

 End If
End For

 28

Figure 19. Table-Based compression example

5.2.2. Zero-Removal Compression

If there are a lot of zeros in the data area, four consecutive bytes of zeros are

represented with a single bit of zero as illustrated in Figure 20.

Figure 20. Zero-Removal compression algorithm

As a Zero-Removal Compression example:

There are all-zero pattern in the Data1, Data3, and Data4, but not all four bytes

are zero in Data2.

 Uncompressed Data

 Zero-removal compression Data

Figure 21. Zero-Removal compression example

For (each 4-Bytes)
 If (4-Bytes are all zeros)
 Head=0 (1 bit)
 Else
 Head=1 (1 bit) and

store original data (4 Bytes)
 End If

End For

 29

5.2.3. Difference Compression

Since neighboring values are close to each other in this area, differential coding

are used as in Figure 22.

Figure 22. Difference compression algorithm

For example, in Figure 23, values in Data1 and Data2, and Data3 are very close to

each others, therefore, Data2 and Data3 are coded differentially.

 Uncompressed Data

 Difference compression Data

Figure 23. Difference compression example

5.3. Hardware Implement

5.3.1. Hierarchical Design

The hardware architecture of the OCDA is divided into three levels as follows.

Level 1 Compressed Address Mapped Table

Depending on the results of compression and decompression, main memory

address was assigned, and the related address was recorded.

For (each 32-bits)
 Compare with basic_32-bits

If (i-th bit is difference)
 Head = i (5 bits)
 store the remainder
 End If

End For

 30

Level 2 Compressed and Decompressed Component

The proper compression and decompression scheme is selected in this level

according to the characteristics of data. It is worth mentioning that we could

do pre-fetching of the code from the “Head” fields during decompression.

Level 3 Compressed and Decompressed Scheme

Data compression and decompression are actually performed in this level.

Figure 24. Hardware Hierarchical Design

5.3.2. On-the-fly Compression and Decompression Accelerator

The high-level architecture of the OCDA, with basic interface signals and

functional blocks, is depicted in Figure 25. The OCDA contains three major

functional blocks, namely, the Compressed Address Table (CAT), the Compression

Component (CC), and the Decompression Component (DC).

 31

Figure 25. OCDA Architecture

Action of the Data Compression

1. The offset address of the JOP file selects which compression scheme will be

used.

2. After the data is compressed by Compression Component (CC), we transfer the

Compressed Code Length (CCL) to Compressed Address Table (CAT), and the

compressed data to IPIF.

3. The Compressed Address Table (CAT) calculates the new main memory address

and transfers it to IPIF.

Action of the Data Decompression

1. The location of the compressed data in the JOP file determines which

compression scheme will be used.

2. Compute the related address in main memory from Compressed Address Table

(CAT) and transfer compressed data through IPIF.

3. Decompression Component (DC) decompresses the compressed data (CD),

transferring the data to Internal RAM.

 32

6. Experimental Results

The data compression results of “Bytecodes”, “Special Pointers”, “Class

Information & Static Fields”, and “Method Table” are represented in this chapter. We

also use an oscilloscope to measure the execution time before and after data

compression.

6.1. Java Benchmark Programs

In this section, we introduce three small benchmark programs used in the

experiments. The benchmark suite includes a synthetic benchmark, Sieve of

Eratosthenes, and two application benchmarks, kfl and UDP/IP.

6.1.1. Sieve of Eratosthenes

Sieve of Eratosthenes is a program that computes the list of prime numbers. This

program has several computation steps as follows [12]:

1. First of all, all the integers are listed.

2. Mark all multiples of ki (k1 = 2 for the first iteration), i = 1, 2, …, is the

number of iteration

3. We move to the next unmarked number p, and let ki = p.

4. Repeat Step 2 and Step 3, until all the listed integers are marked.

5. The list of numbers ki are primes.

6.1.2. Kfl

The Kfl real-time application is taken from one of the nodes of a distributed

motor control system for railroad cargo. The system measures the position (sensors

and actors) and communicates (commands from the master station) with a base station.

Fig 26 shows the master with the motor and the control system in the ‘down’ and ‘up’

positions. The base station has to control the deviation of individual positions during

the tilt. It also includes the user interface for the operator. In technical terms, this is a

distributed, embedded real-time control system, communicating over an RS485

network. [12]

 33

Figure 26. Pictures of a Kippfahrleitung Mast in Down and Up Position

6.1.3. UDP/IP

The UDP/IP benchmark ,contains the generation of a request, transmitting it

through the UDP/IP stack, generating the answer and transmitting it back, is an

adaptation of a tiny TCP/IP stack (Ejip) for embedded Java. [12]

6.2. Main Memory Compression Ratio

We adopt three benchmarks, Sieve, Kfl, and UDP/IP, which is provided by Mr.

Martin Schoeberl. Because different compression schemes are adopted according to

the characteristics of each fragment of data, the table reports the break down among

“Bytecodes”, “Special Point”, “Class Information & Static Field”, and “Method

Table” of three benchmarks.

 34

Figure 27. Each compression reduction

After compression, one can observe that it has a reduction in the “Bytecode” data

area of about 20%. The reduction of the “Special Point” data area is in the range from

35% to 55%. And the “Class Information & Static Field” data area is reduced about

86%. Finally, the “Method Table” data area reduction is in the range from 50% to

54%.

6.3. Fetch time Reduction of Java Binaries

In this section, an oscilloscope is used to measure the Java binaries fetch time

between the main memory and the Java VM internal cache using a DMA to estimate

the total execution time.

 35

Figure 28. Execution time with oscilloscope

According to the numbers, it takes about 1.72ns for the DMA to transfer 1-Byte

of data (1.72 ns ~ 1 clock cycle) to/from the main memory. From the experiments, it

takes about 0.56 ms to transfer uncompressed sieve and about 0.33 ms to transfer

compressed sieve into the Java VM. The difference in transfer time will become even

more significant since various parts of the JOP file will be loaded into the Java VM

repeatedly. Similarly, we need about 0.39 ms transferring uncompressed kfl and about

0.25 ms transferring compressed kfl to and from the main memory. The transfer time

of the UDP/IP program takes about 0.46 ms for uncompressed code, and about 0.28

ms for compressed code.

 36

7. Conclusion & Future Work

For embedded systems such as DVB-MHP terminals, power consumption and

external memory usage are very important design issues. In this thesis, an on-the-fly

compression/decompression module is proposed to reduce memory usage

substantially, and as a result reduces power consumption as well.

The performance of the proposed architecture can be improved further when the

on-the-fly decompression is performed after the code/data are fetched from the Java

processor cache. In this case, the effective size of the cache can be increased due to

data compression. Since more (compressed) runtime data can fit into the cache, the

bandwidth requirement between the main memory and the Java processor can further

be reduced.

Another possible improvement is to integrate the real-time compressor into the

system for generic Java runtime environment that does not invoke jcc for

preprocessing. In this case, the real-time compressor is used to compress fetched

method bytecodes and related data structure on-the-fly and store them into (large)

internal cache. Since the uncompressed Java binaries only pass through the main bus

once, great fetch time savings for methods that are fetched repeatedly can be

achieved.

 37

REFERENCES

[1] DVB project, “Digital Video Broadcasting (DVB): Multimedia Home Platform

(MHP) Specification 1.1.1,” [Online] Available: http://www.mhp.org, Jun 2003.

[2] Sun Microsystems Inc., “The Java Virtual Machine Specification,” [Online]

Available: http://java.sun.com.

[3] Jon Meyer and Troy Downing, “Java Virtual Machine,” published by O’REILLY,

2000.

[4] Eric Armstrong, “HotSpot : A New Breed of Virtual Machine,“ [Online]

Available: http://www.javaworld.com/jw-03-1998/jw-03-hotspot.html, 1998.

[5] Martin Schoberl, “JOP: A Java Optimized Processor for Embedded Real-Time

Systems”, Vienna, Jan 2005.

[6] J.Michael O’Connor and Marc Tremblay, “picoJava-I: The Java Virtual Machine

in Hardware,” In IEEE Micro, 17(2):45–53, 1997.

[7] ARM, “ARM Jazelle Technology,” [Online] Available:

http://www.arm.com/products/solutions/Jazelle.html

[8] G. Chen, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, B. Mathiske “Heap

Compression for Memory-Constrained Java Environments” , California, USA,

October, 2003,

[9] Mario Latendresse, Marc Feeley,”Generation of Fast Interpreters for Huffman

Compressed Bytecode, ” San Diego, California, USA , June 12, 2003

[10] Luca Benini Davide Bruni, “Hardw are-Assisted Data Compression for Energy

Minimization in Systems with Em bedded Processors ”, Bologna, ITALY, IEEE

2002.

[11] Martin Schoeberl, “Restricitons of Java for Embedded Real-Time Systems, “ In

Proceeding of the 7th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing, ISORC 2004, Austria, Vienna, May 2004.

[12] Martin Schoeberl, “Using a Java Optimized Processor in a Real World Application,” In

Proceeding of the First Workshop on Intelligent Solutions in Embedded Systems (WISES

2003), pages 165–176, Austria, Vienna, June 2003.

[13] Martin Schoeberl, “JOP : A Java Optimized Processor, ” In Proceeding of the First

Workshop on Intelligent Solutions in Embedded Systems (WISES 2003), Austria, Vienna,

June 2003.

[14] Martin Schoeberl, “Design Decisions for a Java Processor, ” In Proceeding of the 7th

 38

IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,

ISORC 2004, Austria, Vienna, May 2004.

[15] Martin Schoeberl, “Java Technology in an FPGA, ” In Proceeding of the 7th IEEE

International Symposium on Object-Oriented Real-Time Distributed Computing, ISORC

2004, Austria, Vienna, May 2004.

[16] Martin Schoeberl, “Real-Time Scheduling on a Java Processor, ” In Proceeding of the

7th IEEE International Symposium on Object-Oriented Real-Time Distributed Computing,

ISORC 2004, Austria, Vienna, May 2004.

[17] Xilinx, “ML-310 User Guide”, Jul 2004.

[18] Xilinx, “Spartan-3 Starter Kit Board User Guide”, Jul 2004.

[19] Xilinx, “PLB IPIF Product Specification”, August ,2004.

[20] Xilinx, “OPB IPIF Product Specification”, August ,2004.

