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H.264 視訊壓縮迴路濾波器之超大型積體電路設計 
 

學生 : 彭彥璁    指導教授 : 蔡淳仁 

 

國立交通大學資訊工程所碩士班 

 
 

摘要 

 
以 Block 為單位的動態補償變換編碼之視訊編碼/解碼方法是目前最成功的

視訊編碼技術。在低位元率的應用下，這種編碼/解碼的方式會產生 blocking 
artifacts，讓畫面品質變差。即使能夠使用去塊濾波器去減少 blocking artifacts，
這種濾波器因為在運算上十分複雜，所以在處理器較弱的嵌入式編碼/解碼平台

上對效能的影響很大。此篇論文目的在設計一個有效率的超大型積體電路去塊濾

波器架構。  此外，在本研究中是先分析控制邏輯、計算單元和記憶器子系統，

進行分來幫助有效率的設計整個硬體架構。本論文的迴路濾波器是以符合

MPEG-4 AVC/H.264 [1]的演算法為目標。MPEG-4 AVC/H.264 是一個新一代的視

訊壓縮標準，它的視訊壓縮效率更優於 MPEG-4 Advanced Simple Profile [2] 和

H.263+。為這個標準，本論文設計了一個二階層的管線去塊濾波器和一個可以和

AMBA[3] 匯流排架構界面溝通的 codec 加速器架構。管線的切法是以在特定目

標晶片上能以 50 MHz 達到 CIF 解析度即時壓縮的目的來設計的。在本論文中

提出的方法主要是在設計一個 Real-time 濾波器的硬體設計和整個匯流排系統架

構，此外，我們使用一個 SoC emulation Platform, ARM INTEGRATOR [4], 來驗

證整個系統的功能性和量測整體的效能。
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ABSTRACT 

 
Block-based hybrid motion compensated transform video codecs are the most 

successful class of video coding technologies.  For low bit-rate applications, this type 
of codecs suffer from blocking artifacts that causes an unpleasant visual effect.  Even 
though deblocking filters can be used to smooth out blocking artifacts, it is quite often 
being omitted from low power embedded video terminals due to the computational 
complexity of a post processor.  This thesis studies efficient VLSI architecture for 
deblocking filters for video applications.  Thorough analysis on the complexity of 
control logic, computational units, and memory subsystem are conducted.  In 
particular, an efficient implementation for the in-loop filter of the emerging new video 
coding standard, namely MPEG-4 AVC/H.264 [1] with superior performance 
compared to MPEG-4 Advanced Simple Profile [2] and H.263+, is presented. A 
two-stage pipeline deblocking hardware architecture and an generic codec accelerator 
infrastructure with an interface to AMBA bus protocol [3] is proposed.  The feature of 
the proposed method is focused on an efficient hardware design for In-Loop Filter and 
the whole bus system architecture. Furthermore, to verify the functionality and 
performance of the proposed hardware design, an SoC emulation platform, the ARM 
INTEGRATOR[4], is used for H.264 hardware/software co-development. 
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1. Introduction to Video Filtering 

1.1. Introduction 

 
Block-based transform video coders suffer from an annoying visual distortion, 

blocking artifacts [6]. This phenomenon is characterized by luma and chroma 
discontinuities on block boundaries in video frames. The cause of blocking artifacts is 
that the inter-block correlation is lost during the quantization process of a video codec. 
To remove these blocking artifacts, a low pass filter can be used to smooth out the 
block boundaries [7].  These filters are usually referred to as the deblocking filters or 
smoothing filter. One of the simplest deblocking filters is a moving average filter.  In 
a moving average filter, each pixel in the image is replaced by the average of 
neighboring pixels [7]. An n×n region is typically used as the averaging window. The 
size n of the window controls the degree of smoothing or blurring of the deblocking 
process. Unfortunately, a space-invariant moving averaging filter introduces blurring 
distortion in addition to removing the blocking artifacts.  As a result, the visual 
quality is still not improved.  To remove the blocking artifacts without blurring 
distortion, an adaptive deblocking process is required.  Furthermore, an adaptive 
filter can reduce the computational complexity since degree of filtering can be 
reduced around image area where human vision is less susceptible to blocking 
artifacts [6]. 

 
In order to find an efficient deblocking filter, one must understand how the 

human visual system works.  There are three interesting observations about the 
human visual systems [5]. First of all, the human visual system is more sensitive to 
blocking artifacts in flat regions than in complex regions. Therefore, a deblocking 
filter should perform strong smoothing in flat regions, while in complex regions, only 
a few pixels around block boundaries need to be processed. Secondly, in complex 
regions, it is easy to introduce the undesired blurring distortion if filtering is not done 
carefully. An adaptive filter must prevent the image details from being smoothed out.  
Extra checking must be used to determine whether it is necessary to smooth a pixel or 
not in a complexity region. Finally, due to motion compensation, blocking artifacts 
will be propagated to the next frame. Due to that, the pixels inside the flat regions 
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must be filtered as well. 
 
The chapter is organized as follows.  Section 1.1 first presents the two main 

strategies of deblocking, namely post processing versus in-loop processing.  The 
pros and cons of each strategy will be discussed.  In section 1.2, an introduction to 
the deblocking post processor [5] recommended by the MPEG-4 Visual Standard [8] 
is presented. Section 1.3 describes the in-loop deblocking filter of the emerging new 
video coding standard, ISO MPEG-4 AVC/ITU-T H.264 [1].  Finally, a brief 
overview the remaining part of the thesis is given in section 1.4. 

 

1.2. Post Processing versus In-loop Processing 

1.2.1. The Post Processing Approach 
 
Post processing is to compensate the blocking artifacts closely related to the 

block-based structure of quantization. A significant improvement in subjective quality 
can be achieved by using filters designed to remove coding artifacts, in particular 
blocking and ringing. The goal of post processing is to reduce coding artifacts while 
maintaining visually important image features. 

 
In general, there are two coding artifact filtering approaches which are 

deblocking filter and deringing filter. Two different kinds of deblocking filters are 
described in this chapter. The ISO MPEG-4 Visual Standard post processor is 
presented in section 1.3 and the in-loop filter of AVC is described in section 1.4. 

 
The aim of deringing filter is to remove ringing artifacts. Quantization with large 

quantizer step size can have a low-pass filtering effect, since higher-frequency AC 
coefficients tend to be removed during quantization. This low-pass effect can cause 
ringing or ripples near strong edges in the original images. This is similar to the effect 
of applying a low-pass filter to a signal with a sharp change in amplitude: 
low-frequency ringing components appear near the sharp transition position [3]. 
MPEG-4 Annex F describes an optional post-decoder de-ringing filter [4]. In this 
algorithm, a threshold is set for each reconstructed block based on the mean pixel 
value in the block. The pixel values within the block are compared with the threshold 
and 3 x 3 regions of pixels that are all either above or below the threshold are filtered 
using a 2-D spatial filter. This has the effect of smoothing homogeneous regions of 
pixels on either side of strong image edges while preserving the edges themselves: it 
is these regions that are likely to be affected by ringing. 
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1.2.2. The In-loop Filtering Approach 
 
In-loop filtering was first adopted in the ITU-T H.261 video coding standard [11]. 

H.261 utilizes a spatial low-pass filter in the predictor, the “filter in the loop” or “loop 
filter”, which can be switched on a macroblock basis. It was later dropped from the 
succeeding standard, H.263 [12], because the bilinear interpolation used in H.263 for 
half-pel MC introduces spatial low-pass filter as a side effect. In H.264 [1], it was 
added again to force users to filter the decoded images for better visual quality. 
 

An in-loop filter sits inside the video coding loop and is applied to the 
reconstructed reference frame both in the encoder and the decoder.  There are two 
major advantages of this approach.  First, the filtering within an encoder loop can 
improve the visual quality of the reconstructed referenced frame.  As a result, motion 
prediction is more accurate since there is less quantization noise to bias the matching 
criteria (sum of absolute difference is usually used here).  Secondly, the in-loop filter 
is an integrated part of the codec so it guarantees that the decompressed frames are 
filtered before display.  This is not the case with a out-of-loop post processor, for 
example, the informative filters used in MPEG-4 Simple Profile, which is often 
omitted to reduce the complexity and cost of the decoder. 
 

The main disadvantage of an in-loop filter is simply that it increases the 
complexity and is not feasible with many embedded platforms without extra hardware 
support.  Therefore, an efficient and low-cost VLSI architecture for in-loop filters is 
crucial to the success of advanced video codecs such as AVC/H.264. 
 

1.2.3. The Comparisons of In-loop and Post Processing 
 

Post processing filters can be decoder-dependent as shown in Fig 1, or 
decoder-dependent, as shown in Fig 2. The decoder-dependent ones are applied after 
the decoder and makes use of decoded parameters to improves the performance.  An 
example is the deblocking filter design in Annex F.3.1 of MPEG-4 Visual 
Specification [2]. For example, a useful decoder parameter is the quantizer step size 
which can be used to predict the expected level of distortion in the current processed 
block. For example, high distortion will occur when the quantizer step size is large. 
This enables the decoder to adjust the strength of the filter according to the expected 
distortion. A strong filter may be applied when the quantizer step size is large, 
reducing the relevant type of distortion. A weak filter is applied when the step size is 
small, preserving detail in blocks with lower distortion. Moreover, in order to 
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minimize dependence on the decoder, the filter may be applied after decoding without 
any information of decoder parameters. This approach gives the maximum flexibility 
but the performance, however, is generally not as good as decoder-dependent filters. 

 
The in-loop filter, which is shown in Fig 3 and Fig 4, is applied to the reconstructed 
frame both in the encoder and in the decoder. Applying the filter within the encoder 
loop can improve the quality of the reconstructed reference frame, which in turn 
improves the accuracy of motion-compensated prediction for the next encoded frame 
since the quality of the prediction reference is improved. On the other hand, the 
complexity of the codec is higher.  This is in particular a problem with weak 
decoders. 

 

Fig 1. Decoder-dependent Filter 

 

Fig 2. Decoder-independent Filter 
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Fig 3. In-Loop Filter in Encoding Process 

 

Fig 4. In-Loop Filter in Decoding Process 
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1.3. The ISO MPEG-4 Visual Standard Post Processor 

1.3.1. Introduction to ISO/IEC MPEG-4 Visual Standard 
In November 1992, a new work item proposal for very low bit-rate audio-visual 

(AV) coding was presented in the context of ISO/IEC JTC1/SC29/WG11, well known 
as MPEG (Moving Pictures Experts Group). The scope of the new work item was 
described as “the development of international standards for generic audio-visual 
coding systems at very low bitrates (up to tens of kilobits/second)” [5]. The main 
motivations for the starting of the new work item were basically the prevision that the 
industry would need very low bit-rate video coding algorithms in a few years. The 
MPEG-4 work happened in July 1994, at the Grimstad meeting, when members were 
faced with the need to broaden the objectives of MPEG-4 which could no more be 
based on a pure compression gain target coming from new coding approaches such as 
region-based, analysis-synthesis, fractals or any other, since very few people believed 
in a compression improvement sufficient to justify (alone) a new standard (beside the 
LBC, latter H.263, standard). There are several functionalities in MPEG-4 Visual 
Standard, especially for very low bit-rate applications: 

 
♦ Improved coding efficiency – This is clearly functionality useful for 

very low bit-rate applications since improved coding efficiency is asked 
for, to supply an answer to the requests coming from, e.g. mobile network 
users. 

♦ Robustness in error-prone environments – The access to video 
applications through channels with severe error conditions, such as some 
mobile channels, requires sufficient error robustness is added. This 
functionality, by providing significant quality improvements, will with no 
doubts stimulate very low bit-rate applications, notably in mobile 
environments. 

♦ Content-based scalability – The ability to achieve scalability with a fine 
granularity in content, spatial or temporal resolution, quality and 
complexity, or any combination of these cases, is a fundamental concept 
for very low bit-rate applications since it provides the capacity to adapt 
the AV representation to the available resources. 

♦ Improved temporal random access – The provision of random access 
efficient methods, within a limited time and with fine resolution, 
including conventional random access at very low bit-rate is the target. 

♦ Content-based manipulation and bitstream editing – This 
functionality is more related to the syntactic organization of the 
information than to any specific bit-rate resources. 
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♦ Content-based multimedia data access tools – The possibility to 
content-based selectively access AV data is for sure an important 
capability in the context of very low bit-rate applications since it will 
allow to optimize the video information to transmit depending on the 
available resources. 

♦ Hybrid natural and synthetic data coding – Although this functionality 
is quite bit-rate-independent, the efficient integration of natural and video 
data will for sure make no harm to very low bit-rate applications. 

 
The very low bit-rate applications in MPEG-4 are quite important, however, it 

would suffer from annoying blocking artifacts because high quantization step sizes 
are applied to achieve low target bitrate. Due to that, a good post processor to remove 
the blocking artifacts is essential. In next paragraph, ISO MPEG-4 Visual Standard 
post processor will be introduced and the MPEG-4 decoding process with a 
deblocking filter is shown in Fig 5.  

 

Fig 5. MPEG-4 Decoding Process with Deblocking Filter 

 

1.3.2. ISO MPEG-4 Visual Standard Post Processing 
This filtering process consists of three major functional modules, i.e. mode 

decision, filtering for the flat region mode, and filtering for the complex region mode. 
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All of this three operating modes are block-based. One block contains 8*8 pixels. 
This de-blocking process filters the decoded Y, Cb and Cr frames. The filter performs 
filter operation along 4 block boundaries, i.e. top edge, bottom edge, left edge, and 
right edge. Filtering left and right edges is called vertical filtering. The horizontal 
filtering is for the other two edges. Let us take the vertical filtering as an example to 
illustrate this algorithm. In one filtering step, it processes 10 pixels within two 
neighboring blocks. Along one block edge, the left 5 pixels are called v0, v1, v2, v3, 
and v4 and the right 5 pixels are called v5, v6, v7, v8, and v9. The block edge is 
between v4 and v5. In the following three paragraphs, the three function modules will 
be described. 

 

 

Fig 6. 8x8 Block Boundary 

A. Mode Decision 
The flatness of the 10 pixels is calculated, v0 to v9, as shown in Fig 6: 

Flatness(v) = φ(v0-v1) + φ(v1-v2) + φ(v2-v3) + φ(v3-v4) + φ(v4-v5) + 
φ(v5-v6) + φ(v6-v7) + φ(v7-v8) + φ(v8-v9) 

 Where 
  φ(v) = 1, if |v| <= T1 
  φ(v) = 0, otherwise. 
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T1 represents a threshold to reflect the flatness. If the Flatness (v) is smaller than 
a threshold, T2, the filtering must be applied for the complex region mode. On 
another condition, the filtering must be applied for the smooth region mode. 

 
B. Filtering in the Smooth Region Mode 
MAX and MIN, represent the maximum value among v1 to v8 and minimum 

value among v1 to v8 relatively. The QP represents the specified quantization 
parameter of this block. 

 
 if ( |MAX−MIN| < 2*QP ) { 

  

( )

( )
16//}1,1,2,2,4,2,2,1,1{}44:{
8

81
1

,:?
,

,:?

81,

8998

1001

4

4

=≤≤−
>

≤≤
<

⎪
⎩

⎪
⎨

⎧

−

−
=

≤≤⋅=′ +
−=

∑

kb
m

m
m

if
if
if

vvQP<vv
v

vvQP<vv
p

npbv

k

mm

kn
k

kn

 
 } 
 Else 
  No change will be done. 
 
The purpose of the statement, if (|max−min| < 2*QP), is to prevent real edges in 

this filtering process from being smoothed out, for example: if there are two 
neighboring blocks, the color of the left block is white and the right block is black. In 
this case, the block edge is a real edge in the original image. But if the condition 
|max-min| < 2*QP is not checked, it will regard this edge as a blocking artifact and 
apply the strong smoothing filter over it. 

 
C. Filtering in the Complex Region Mode 
In this mode, the frequency components a3,0, a3,1, and a3,2 are defined, which are 

evaluated from the simple inner product of the approximated DCT kernel [2 -5 5 -2] 
with the pixel vectors, i.e., 

  a3,0 = ([2 -5 5 -2] • [v3 v4 v5 v6]T ) // 8, 
  a3,1 = ([2 -5 5 -2] • [v1 v2 v3 v4]T ) // 8, 
  a3,2 = ([2 -5 5 -2] • [v5 v6 v7 v8]T ) // 8. 
 
In this mode, it only filters two pixels next to the block edge.  
 
if(|a3,1|<QP) 
{ 
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v4′ = v4−d, 

v5′ = v5+d, 

 where 

d = CLIP(5⋅(a3,0′− a3,0)//8, 0, (v4−v5)/2)) 

 a3,0′ = SIGN(a3,0) ⋅ MIN(|a3,0|, |a3,1|, |a3,2|). 

 } 
The check on the condition (|a3,1|<QP) is to preserve image details. The three 

functional modules mentioned above produces good subjective and objective visual 
quality because they apply several useful judgments to adaptively select a proper 
filtering process. 

 

1.4. The In-loop Filter of MPEG-4 AVC/H.264 

1.4.1. Introduction to ISO/IEC MPEG-4 AVC/ITU-T H.264 
 
MPEG-4 and H.263 video codecs standards are based on video compression 

(video coding) technologies from 1995. The groups responsible for these standards, 
the Motion Picture Experts Group (MPEG) and the Video Coding Experts Group 
(VCEG) joint forces and developed a new standard, MPEG-4 AVC/H.264, that 
significantly outperforms MPEG-4 and H.263. The new codec, released in 2003,  
provides better compression of video images as well as a range of features supporting 
high-quality, low-bitrate streaming video. The origin of the new codec can be traced 
back to 1995. After finalizing the original H.263 standard for video-telephony in 1995, 
ITU-T VCEG started working on two further development projects: a short-term 
effort to add extra features to H.263 (resulting in Version 2 of the standard) and a 
long-term effort to develop a new standard for low bit-rate visual communications. 
The long-term effort led to the draft H.26L standard, offering significantly better 
video compression efficiency than previous ITU-T standards. In 2001, ISO/IEC 
MPEG issued a call for proposal (CfP) for next generation high performance video 
coding tools.  VCEG responded to the call with H.26L and as a result the Joint Video 
Team (JVT), composed of experts from both MPEG and VCEG was formed. During 
the two-year time frame of standardization, most the H.26L components have been 
replaced with new design. The new standard is named MPEG-4 Advanced Video 
Codec (AVC) by ISO and H.264 by ITU [6]. H.264/AVC offers enhanced 
compression performance and provides a network-friendly video representation which 
addresses conversational (video-telephony) and non-conversational (storage, 
broadcast or streaming) applications. The H.264/AVC adopts a three-layer design. The 
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Video Coding Layer (VCL) accounts for the compression of the video content.  The 
Network Abstraction Layer (NAL) defines a packet-based representation of the 
compressed video content. However, NAL is transport-independent.  The transport 
dependent design is governed by the Transport Encapsulation Layer (TEL).  TEL is 
not a normative part of the standard. 
 

The baseline profile of MPEG-4 AVC includes: 
♦ I and P slice types 
♦ Chrominance format 4:2:0 
♦ Progressive coding 
♦ 1/4-sample motion compensation 
♦ Tree-structured motion segmentation down to 4x4 block size 
♦ VLC-based entropy coding 
♦ In-loop deblocking filter 
♦ Some enhanced error resilience features 

 Flexible macroblock ordering (maximum 8 slice groups) 
 Arbitrary slice ordering 
 Redundant slices 

 
The emerging H.264 standard saves as much as 50% bit-rate over H.263 while 

maintaining the same or better visual quality. On the other hand, the computational 
complexity is much higher than the previous video coding standards. 

 
 

1.4.2. Adaptive Deblocking Filter in H.264/AVC 
 
There are several advantages for de-blocking filters to perform filtering inside 

the coding loop. First of all, a loop filter guarantees certain level of quality of any 
standard-compliant implementations. This is especially important in low bitrate 
communications systems. If a loop filter is enforced inside the codec, content 
providers can assume that their material would always be processed by a deblocking 
filter so that the quality of their material is guaranteed. 

 
Secondly, in an extreme case, an frame buffer in decoder can be saved because in 

the post-filtering approach, a reference frame buffer is required to store the decoded 
frame and another frame buffer is necessary to store the filtered frame for display. 
These two buffers are merged into one with the loop filter design. 
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Finally, the overall visual quality of video streams with a loop filter is better than 
that without it because the filtered reference frames offer higher quality prediction for 
motion compensation. The decoded video streams with a loop filter are sharper than 
those with a post filter. Computation complexity can be reduced by taking into 
account the fact that the image area in past frames is already filtered.  

 
Even though there are several advantages, it is inevitable that applying a loop 

filter in codec design requires high computational complexity. The complexity comes 
from the highly adaptive nature of the filter. Therefore, it is very important to design 
an efficient and effective algorithm for loop filter.  

 
The algorithm of H.264/AVC In-Loop filter is described as follows.  In the loop 

filtering process of H.264, there are three steps, determining the boundary filtering 
strength, getting thresholds for each block boundary, and filtering process according 
boundary strength. In each macroblock, the deblocking filter process applies to both 
luma and chroma. For each macroblock, vertical edges are filtered first, from left to 
right, and then horizontal edges are filtered from top to bottom. The luma deblocking 
filter process is performed on four 16-sample edges in each direction, as shown in Fig 
7. 
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Fig 7. Filtered Boundaries in a Macroblock 

 

For determining each boundary between neighboring 4x4 luma blocks, boundary 
strength is assigned as shown in Fig 8. If one of the neighboring blocks is intra-coded, 
boundary strength is set to 3 for strong filtering. If the previous condition is true and 
its block boundary is also macroblock boundary, boundary strength is set to 4 for even 
stronger filtering. If neither of the blocks is intra-coded and coefficient coded in one 
of the neighboring blocks, the medium filtering with boundary strength is applied. 
Boundary strength is 1 when encoding mode of two neighboring blocks are not coded 
and have different reference frames, the number of reference frame is not identical, or 
the difference of motion vectors of two blocks are greater than 4 for weak filtering. If 
all of previous conditions are not satisfied, boundary strength is equal to 0 for no 
filtering. 
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Fig 8. Flowchart for Getting Boundary Filtering Strength 

 

Fig 9. Convention for Describing Samples across a 4x4 Block 

Samples across this edge are only filtered if the conditions, Bs ≠ 0, Abs( p0 – q0 ) 
< α, Abs( p1 – p0 ) < β and Abs( q1 – q0 ) < β, are all true, which Bs represents 
boundary strength, and p3, p2, p1, p0, q3, q2, q1, q0 represent the pixels between 
block boundary as shown in Fig 9. Besides, α and β are quantization parameter 
dependent thresholds.  

 
A strong filtering process is applied for edges with boundary strength equal to 4. 
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The two intermediate threshold variables, ap and aq, which represents Abs( p2 – p0 ) 
and Abs( q2 – q0 ) relatively, are used to determine whether the luma samples p1 and 
q1 is needed to filtered at this position of the edge. For luma samples, if the 
conditions , ap < β and Abs( p0 – q0 ) < ( ( α >> 2 ) + 2 ), are all holds, the following 
filtering operation must be executed: 

P0 = ( p2 + 2p1 + 2p0 + 2q0 + q1 + 4 ) >> 3 

P1 = ( p2 + p1 + p0 + q0 + 2 ) >> 2 

P2 = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3 

P0, P1, and P2 are the filtered values. For chroma samples or for luma samples 
which either ap < β or Abs( p0 – q0 ) < ( ( α >> 2 ) + 2 ) does not satisfy, only p0 shall 
be filtered according to: 

P0 = ( 2*p1 + p0 + q1 + 2 ) >> 2 

The q values are modified in a similar manner by substituting condition aq < β 
for ap < β.  
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2. Previous Work 

The importance of deblocking filter for visual quality improvement is introduced 
in the previous chapter. In addition, the two well-known algorithms, namely the 
informative deblocking filter in ISO MPEG-4 Visual Standard and the in-loop filter of 
H.264/AVC, are described briefly. Since the research topic in this thesis is about a 
VLSI design of deblocking filter, some prior arts are surveyed in this chapter. 

 
For real-time multimedia applications of complex algorithms, pipelining and 

carefully designed memory subsystems are crucial for VLSI implementations. So far, 
there are few papers on VLSI implementation of deblocking filters. We discuss two 
most directly related papers in this chapter. The first one is “Real-time deblocking 
filter for MPEG-4 systems” [16] by Fang et al., The second one is “Architecture 
design for deblocking filter in H.264/JVT/AVC” [17] by Y.W Huang, et al. 

 

2.1. Prior proposals on VLSI Design of Deblocking Filters 

Two previously published architectures of video deblocking filters would be 
discussed here. Fig 10 shows the deblocking filter architecture for MPEG-4 systems 
[16]. Fig 11 is the in-loop filter for H.264/AVC published in.[17]. In Fig 10, the input 
pixels are shifted into the ISR pixel-by-pixel, which provides storage of input pixels 
for other modules. As the detailed design in ISR depicted in Fig 12 shows, ten 8-bit 
registers are used in this module to store input pixels from outside memory and it 
sequentially propagates from P9 to P0. There are five multiplexers at the input of P8, 
P3, P2, P1, and P0 for pixels replacement from input pixels to padded pixels. The MD 
module determines which mode should be used for the filtering operation. The DF 
module is the deblocking process performing the default mode which only filters two 
pixels. The SF module is the deblocking of smooth mode filtering eight pixels. Both 
DF and SF modules are two-stage pipeline architecture for reducing the critical path 
and increasing the frequency. The CP is the module to generate the padding pixels for 
filtering for the ISR module. Filtered pixels are fed in the OSR, which is shown in Fig 
13, and sequentially shifted out. 

For the in-loop filter design for H.264/AVC (shown in Fig 11), the solid lines 



 17

denote data path, and the dotted lines denote control signals. It has to load a 
macroblock and adjacent block from external RAM via system bus to on-chip SRAM 
before filtering. To support the parallel filter with high utilization, there two SRAM 
modules are well-organized that classify 4x4 blocks in different columns and use a 
word (32 bit) to store four pixels. 

There are two architectures using different kinds of SRAM, the single port 
SRAM and the dual port SRAM. When using the single port SRAM, it uses two 
blocks for the base architecture with only one read and one write ports to store the 
macroblock pixels. In Fig 14, it shows the careful organization of pixels in two 
single-ported SRAM blocks that makes it able to get one unfiltered pixel per clock 
cycle. The processing order of block boundaries for both directions is shown in Fig 15, 
which the write label with black number denotes the horizontal filtering on vertical 
edges and the black label denotes the vertical filtering on horizontal edges. The data 
path of basic architecture is shown in Fig 16 where the solid lines and dotted lines 
denote the horizontal filtering across vertical edges and the vertical filtering across 
horizontal edges relatively. 

On the other hand, if dual port SRAM is used, it only needs one SRAM block 
without modifying the data flow to store the macroblock pixels, as shown in Fig 17. 
The 160x32 dual-port SRAM has two separate read and write ports that can perform 
two read operations at the same cycle, as well as two write operations, or one read and 
one write at the same cycle. The processing order of boundaries for the advanced 
architecture must be modified to make use of dual-port SRAM, as shown in Fig 18. 

 

 

Fig 10. Block Diagram of Deblocking Filter Architecture in MPEG-4 Systems 
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Fig 11. Architecture Design for Deblocking Filter in H.264/AVC 

 

Fig 12. Interconnections between ISR Module and Other Modules 

 

 

Fig 13. Interconnections between OSR Module and Other Module 
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Fig 14. Organization of On-chip Single Port SRAM Modules 

 

 

Fig 15. Processing Order on Boundaries of Basic Architecture  
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Fig 16. Data path for Basic Architecture with Two Single-port SRAM Modules 

 

Fig 17. Organization of On-chip Dual Port SRAM 
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Fig 18. Processing Order of Boundaries for The Advanced Architecture 
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3. The Emulation Platform and the 

System Overview 

3.1. System Design Overview 

The bus system design for H.264 video accelerator hardware architecture is based on 
the Advanced Microcontroller Bus Architecture (AMBA) [3].  AMBA-based system 
includes a high performance system bus (AHB), on which the CPU, on-chip memory 
and other Direct Memory Access (DMA) devices reside.  The overall architecture of 
the codec accelerator platform used in this thesis is shown in Fig 19. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 19. The Bus System Design for H.264 Video Accelerator Hardware 
Architecture 

A
PB
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3.2. Introduction to AMBA 

 
The Advanced Microcontroller Bus Architecture (AMBA) includes three distinct 

buses defined within the AMBA specification [3] : 
♦ The Advanced High-performance Bus (AHB) 

 High performance 
 Pipelined operation 
 Multiple bus masters 
 Burst transfers 
 Split transactions 

♦ The Advanced System Bus (ASB) 
 High performance 
 Pipelined operation 
 Multiple bus masters 

♦ The Advanced Peripheral Bus (APB) 
 Low power 
 Latched address and control 
 Simple interface 
 Suitable for many peripherals 

 

 

Fig 20. A typical AMBA System 

A typical AMBA system consists of a high-performance system backbone bus 
(AMBA AHB or AMBA ASB) and the APB is attached to a bridge transforming bus 
protocol from high performance to the low power and bandwidth bus, where most of 
the peripheral devices in the system are located, as shown in Fig 20. Since only AHB 
and APB are applied for bus system of the proposed video accelerator, in following 
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paragraphs, AHB 3.2.1 and APB 3.2.2 protocols will be described with more details 
but ASB will be omitted. 

 

3.2.1. AMBA AHB 
 
AHB is a new generation of AMBA bus specialized for high-performance 

synthesizable designs. The high-performance protocol provides a multiple bus masters 
support and high-bandwidth operation.  

 
A typical AMBA AHB system design contains the following components: 
 

♦ AHB slave – An AHB slave responds to transfers initiated by bus masters 
within the system. When HSELx of the slave is active, it should respond 
to a bus transfer, as shown in Fig 22.  

♦ AHB master – A bus master is able to initiate read and write operations to 
access data from slave by providing an address, data, and control 
information. Besides, there is only one bus master is allowed to use the 
bus at any one time, as shown in Fig 23. 

♦ AHB arbiter – The bus arbiter ensures that only one bus master at any 
one time is allowed to use the bus to transfer data, as shown in Fig 24. 
Only one AHB arbiter is implemented on the bus. 

♦ AHB decoder – An AHB decoder is used to decode the address of each 
transfer and provide a select signal for the slave that is involved in the 
transfer, as shown in Fig 25. The decoder in an AMBA system is used to 
perform a centralized address decoding function, which improves the 
portability of peripherals, by making them independent of the system 
memory map. 

 
The AMBA AHB bus protocol is designed to be used with a central multiplexer 

interconnection scheme, as shown in Fig 21. All bus masters drive out the address and 
control signals and the arbiter determines which master can be granted to access the 
slaves. 
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Fig 21. Multiplexer Iinterconnection 

 
The AMBA AHB signals and brief descriptions are shown in Table 1.  
 

Name Source Description 

HCLK 
Clock 
source 

This clock times all bus transfers. All signal timings are 
related to the rising edge of HCLK. 

HRESETn Reset 
The bus reset signal is active LOW and is used to reset 
the system and the bus. This is the only active LOW 
signal. 

HADDR[31:0] Master The 32-bit system address bus. 
HTRANS[1:0] Master Indicates the type of the current transfer. 

HWRITE Master 
When HIGH this signal indicates a write transfer and 
when LOW a read transfer. 

HSIZE[2:0] Master Indicates the size of the transfer. 
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HBURST[2:0] Master 
Indicates if the transfer forms part of a burst data 
transfer. 

HPROT[3:0] Master 

The protection control signals provide additional
information about a bus access and are primarily
intended for use by any module that wishes to
implement some level of protection. 

HWDATA[31:0] Master 
The write data bus is used to transfer data from the
master to the bus slaves during write operations. 

HSELx Decoder 
Each AHB slave has its own slave select signal and this 
signal indicates that the current transfer is intended for 
the selected slave. 

HRDATA[31:0] Slave 
The read data bus is used to transfer data from bus 
slaves to the bus master during read operations. 

HREADY Slave 
When HIGH the HREADY signal indicates that a 
transfer has finished on the bus. This signal may be 
driven LOW to extend a transfer. 

HRESP[1:0] Slave 
The transfer response provides additional information 
on the status of a transfer. 

HBUSREQx Master 
A signal from bus master x to the bus arbiter which 
indicateds that the bus master requires the bus. 

HLOCKx Master 
When HIGH this signal indicates that the master 
requires locked access to the bus and no other master 
should be granted the bus until this signal is LOW. 

HGRANTx Arbiter A signal indicates bus master x is granted to use the bus.

HMASTER[3:0] Arbiter 
These signals from the arbiter indicate which bus master 
is currently performing a transfer. 

HMASTLOCK Arbiter 
Indicates that the current master is performing a locked 
sequence of transfers. 

HSPLITx[15:0] Slave 
This 16-bit bus is used by a slave to indicate to the 
arbiter which bus masters should be allowed to 
re-attempt a split transaction. 

 
Table 1 AMBA AHB Signals and Arbitration Signals 
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Fig 22. AHB Bus Slave Interface 

 

 

Fig 23. AHB Bus Master Interface 
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Fig 24. AHB Bus Arbiter Interface 

 

Fig 25. AHB Bus Decoder Interface 

3.2.2. AMBA APB 
 
The Advanced Peripheral Bus (APB) is part of the Advanced Microcontroller 

Bus Architecture (AMBA) hierarchy of buses and is optimized for minimal power 
consumption and reduced interface complexity. The AMBA APB should be used to 
interface to any peripherals which are low bandwidth and do not require the high 
performance of a pipelined bus interface. The data transfer on APB must follow a 



 29

state diagram shown in Fig 26. The default state is IDLE for peripheral bus. When a 
data transfer is required the bus moves from IDLE state to SETUP state for one clock 
cycle and always move to ENABLE state on next rising edge of the clock. In 
ENABLE state, the enable signal, PENABLE, is asserted. The ENABLE state also 
only lasts for a single clock cycle and after this state the bus will return to the IDLE 
state if no further transfers are required. Alternatively, if another transfer is to follow 
then the bus will move directly to the SETUP state. 

 

 

Fig 26. APB State Diagram 

 
A typical AMBA APB system contains the following components: 
 

♦ APB Bridge – The APB bridge is the only bus master on the AMBA APB 
and also a slave on the higher-level system bus, as shown in Fig 27. The 
bridge unit converts system bus transfers into APB transfers, which 
decodes the address and generates a peripheral select, PSELx, drives the 
data onto the APB for a write transfer and the APB data onto the system 
bus for a read transfer, and generates a timing strobe, PENABLE, for the 
transfer.  
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♦ APB Slave – For a write transfer, the data can be latched either on the rising 
edge of PCLK or the rising edge of PENABLE, when PSEL is HIGH. For 
read transfers the data can be driven on to the data bus when PWRITE is 
LOW and both PSELx and PENABLE are HIGH. While PADDR is used 
to determine which register should be read. 

 

 

Fig 27. APB Bridge Interface Diagram. 

 

 

Fig 28. APB Slave Interface 
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Fig 29. ARM Integrator Platform Architecture 

3.3. Prototype Platform Description 

 
The ARM Integrator is selected as the prototype platform for hardware/software 

co-design of the codec, as shown in Fig 29.  There are three main modules in our 
platform, a motherboard (Integrator/AP) [13], an ARM9 core module 
(Integrator/CM920T) [14] and a Xilinx FPGA logic module 
(Integrator/LM-XCV2000E).[15]. 

 

3.4. System Description 

 
There two masters, ARM processor and DMA controller, are on the Advanced 

High-performance Bus (AHB).  These bus masters are able to initiate read and write 
operations by providing an address, control information, and/or data to AHB slaves. 
There are several slaves in the accelerator system, including a SDRAM used to store 
video frames and coding information, a AHB register file used to control the H.264 
hardware accelerator blocks by the ARM core, and the APB register file and interrupt 
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register file. The Multi-Media Bus (MMB) is a simplified AHB with 32-bit width, 
which is limited in transfer type, burst operation, control signal, and transfer response. 
Those are reduced to fit the specific design of the video accelerator, discussed in 3.6. 

 

3.5. Software and Hardware Co-operation 

3.5.1. S/H Co-design Feature 
 
The memory map of the design in this thesis is shown in Fig 30. 
 

 

Fig 30. Memory Map 

 
The communication method from “Core Module” (CM) to “Logic Module” (LM) 

is through LM registers which can be read or written by CM. On the other hand, the 
method from LM to CM is through interrupts asserted by LM so that CM must install 
an interrupt handle routine. The flowchart is shown in Fig 31. 

 



 33

 

Fig 31. Flowchart for Installing Interrupt Handle Routine 

3.5.2. S/H Co-operation with DMA 
 
On MMB, there are three masters, DMA, In-Loop filter, and Motion Estimation 

Module. There is only one slave, ZBT SRAM on MMB. The procedure of video 
encoding or decoding in this system is described as follows. 
 

♦ Step 1 – Video frames and coding information are stored in the SDRAM on 
the Integrator/CM by the processor. 

♦ Step 2 – The processor enables the DMA by setting source address, target 
address, and data count in the AHB register file to move video frames and 
extra information from the SDRAM to the ZBT SRAM on the 
Integrator/LM 

♦ Step 3 –the processor enables a video accelerator to process data in the ZBT 
SRAM 

♦ Step 4 – After processing, video accelerator stores the results back to the 
ZBT SRAM and enables the DMA to move the results from the ZBT 
SRAM to the SDRAM. 

♦ Step 5 – When the DMA finishes the data transfer, an interrupt will be 
triggered to notify the processor to get the results from SDRAM. 

 

3.5.3. S/H Co-operation without DMA 
 
If there is no DMA in the design, the processor must move the data from 

SDRAM to ZBT SRAM on LM by itself. Contention may raises when both the 
processor and the accelerators on MMB both try to access the ZBT SRAM. For the 
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proposed system, the accelerators may stay in idle state until the processor enables 
them by writing to the ENABLE register in the AHB register file. Therefore shared 
accesses to the ZBT SRAM can be fully controlled by the processor to avoid data 
corruption.  The detailed steps are listed as follows. 

 
♦ Step 1 – Video frames and coding information are stored in the SDRAM on 

the Integrator/CM by the processor. 
♦ Step 2 – The processor moves video frames and extra information from the 

SDRAM to ZBT SRAM on Integrator/LM. 
♦ Step 3 – The processor enables a video accelerator to process data in the 

ZBT SRAM. Meanwhile, the processor will not access the ZBT SRAM 
until the video accelerator finishes its job and returns to the idle state. 

♦ Step 4 – After processing, video accelerator stores the results back to the 
ZBT SRAM and issues an interrupt to notify the processor to retrieve the 
results from the ZBT SRAM to the SDRAM. 

3.6. Details for MMB Design 

In this thesis, a simplified bus protocol called MMB that is based on AHB is 
proposed as the bus of a generic codec accelerator platform. For example, MMB only 
provides 32-bit data transfer and INCR burst mode. The signals of MMB are shown in 
Table 2. 

 

Signal Name Description 
MMCLK System clock 
MMRESETn Reset signal 
MMADDR The 32-bit system address bus. 

MMTRANS[1:0] 
It only provides the transfer type, IDLE, SEQUENTIAL, 
and NONSEQUENTIAL. 

MMWRITE 
HIGH means a write transfer, and LOW means a read 
transfer. 

MMWDATA[31:0] The write data bus. 
MMSELx Each MMB slave has its own slave select signal. 
MMRDATA[31:0] The read data bus. 

MMREADY 
Indicates that a transfer has finished on the bus and maybe 
drives LOW to extend a transfer. 

MMRESP[1:0] The transfer response only provides OKAY and ERROR. 

MMBUSREQx The signal is asserted when a bus master requires the bus. 
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MMGRANTx 
When this signal is HIGH, the master x is granted to use the 
bus. 

MMMASTER[3:0] 
These signals from the arbiter indicate which bus master is 
currently performing a transfer. 

 
Table 2 MMBUS Signals and Arbitration Signals 

 
There are seven basic components on MMB, listed as follows and the diagram is 
shown in Fig 21: 
 

♦ MMMaster 
 A bus master on MMB. 

♦ MMArbiter 
 A bus arbiter on MMB is up to a maximum of 4 bus masters, which 

will be discussed in 3.6.1 later. 
♦ MMSlave 

 A bus slave on MMB. 
♦ MMMstMux 

 A central multiplexer deal with the signals from all masters to slaves. 
♦ MMMux 

 A central multiplexer deal with the signals from all slaves to masters. 
♦ MMDefaultSlave 

 The default slave provides the MMREADY and the MMRESP outputs 
for MMMux when an address in the MMBUS memory map space is 
not covered by one of the peripherals present in the design. 

♦ MMDecoder 
 A decoder gives MMSELx module select outputs to the AHB system 

slaves and controls the read data multiplexer. 
 

3.6.1. MMBus Arbitration 
 

The arbitration algorithm used for MMBus is a method similar to token ring 
scheduling. One token is passed among four masters orderly, and the master which 
gets the token would be granted the right to use the bus. In initial state, the token is 
given to Master 1, and the master will pass the token to the next master if it does not 
require the bus. For example, if Master 1 requires the bus in the beginning, then it 
would get the token at first clock cycle and be granted. After that, Master 3 requires 
the bus and it will get the token after two clock cycles when Master 1 releases the bus 
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if Master 2 does not require the bus. However, if Master 2 requires the bus before 
Master 1 releases the bus, it will be the next one getting the token. In this case, Master 
3 has to wait until Master 2 releases the bus to pass the token to Master 3. In Fig 32, 
the lock means that if a master is locked, the token would not passes though it. 

 
 
 
 
 
 
 

 

Fig 32. MMBus Arbiter with Token Ring Scheduling 
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4. Proposed VLSI Architecture of H.264 

In-Loop Filter 

4.1. Overview of the VLSI Architecture 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 33. Hardware Design for In-Loop Filter 
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Fig 34. Organization of Dual Port Distributed SRAM Modules. 

 
Fig 33 shows the proposed hardware architecture design of the In-loop filter for 

H.264/AVC. There are two RAM blocks.  The first one is ZBT RAM for storing the 
video frames and coding information and the other one is a 764-byte dual-port 
distributed SRAM with 32-bit bandwidth synthesized by FPGA. The dual-port SRAM  
can perform two read operations per clock cycle and one write operation per clock 
cycle. It is used for temporarily saving one target macroblock and extra blocks at the 
left and top side of the target macroblock boundaries.  In addition, it stores the block 
parameters containing coded type, motion vectors, code block pattern, and reference 
frame index, as shown in Fig 34. A 8x4-byte register file is designed to store 
unfiltered pixels in a group that can be filtered together since two 4x4 blocks have one 
identical boundary strength. In the deblocking filter module, 8 pixels are fed into the 
logic once and the filtering operations finish in two cycles.  The filter adopts a 
two-stage pipeline design. As described in section 1.4, there are two types of filters, 
namely, a weak one with the boundary strength between 1 and 3 and a strong one with 
the strength equals 4. Zero strength represents that no filtering will be applied. The 
pipeline design of the “In-Loop filter” tries to evenly split the computational 
complexity into two stages so that the logic can run at higher frequencies with parallel 
computations of intermediate results. 
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4.2. Pipeline Design for In-Loop Filter 

 

Fig 35. Two-stage Pipeline Design for In-Loop Filter 

 

Fig 35 illustrates the pipeline design of the loop filter. The logic uses a 64-bit register 
file to store unfiltered pixels from SRAM input in stage one and a 209-bit register file 
to store computation results, control signals, and extra information in stage two. The 
QP scaling table and the threshold table which stores the average of quantization 
stepsizes of two blocks are stored in ROMs. Since the control signals including 
boundary strength, luma/chroma, and the signal, filter_en, are independent to pipeline 
stages, they are connected to the two computational components directly. Since the 
entire system runs 50MHz, it has to balance the time delay in each of the two stages 
and fit the 50MHz clock rate. In order to do so, it is necessary to find the critical path 
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of calculations and divide it evenly to balance the computation in pipeline in order to 
raise the clock rate. 

 
The following paragraph discusses the pipeline design for operations of in-loop 

filter process with more details. 

 
 

Fig 36. The Operating Cycles of Every Register for Filtering 

 

 

Fig 37. The Processing Order of One MB Filtering 
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The total operations of the in-loop filter are listed in Table 3 . 
 

 Strong Filtering (Bs=4) Weak Filtering (0<Bs<4) 

Q0 = ( p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4 ) >> 3

Q0 = ( 2*q1 + q0 + p1 + 2 ) >> 2 

Delta = Clip(-C, C, ( ( ( q0 – p0 ) << 2 + 

( p1 – q1 ) + 4 ) >> 3 ) ) 

Q1 = ( p0 + q0 + q1 + q2 + 2 ) >> 2 
P0 = Clip(0, 255,  p0 + Delta) 

Q2 = ( 2*q3 + 3*q2 + q1 + q0 + p0 + 4 ) >> 3 

P0 = ( p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4 ) >> 3 

P0 = ( 2*p1 + p0 + q1 + 2 ) >> 2 

P1 = p1 + Clip( –C0, C0, ( p2 + ( ( p0 + q0 + 

1 ) >> 1 ) – ( p1 << 1 ) )  >>  1 ) 

P1 = ( p2 + p1 + p0 + q0 + 2 ) >> 2 

P2 = ( 2*p3 + 3*p2 + p1 + p0 + q0 + 4 ) >> 3 
Q0 = Clip(0, 255, q0 – Delta ) 

Luminance 

 
Q1 = q1 + Clip( –C0, C0, ( q2 + ( ( p0 + q0 + 

1 ) >> 1 ) – ( q1 << 1 ) )  >>  1 ) 

P0 = ( (p1 + q1 + p1 + p0 + 2) ) >> 2 
Delta = Clip( –C, C, ( ( ( q0 – p0 ) << 2 + 

( p1 – q1 ) + 4 ) >> 3 ) ) 

P0 = Clip(0, 255,  p0 + Delta) 

Chrominance 
Q0 = ( (q1 + q0 + p1 + q1 + 2) ) >> 2 

Q0 = Clip(0, 255, q0 – Delta ) 

Table 3 Complete In-Loop Filter Operations 
 

According to Table 3, we can design two pipeline stages with almost balanced 
computation cycles. In addition, all the multiplications are replaced by shift and add 
to increase speed. The design of the pipeline stages was not achieved through detail 
analysis of computation time of each shift/add operation; instead, it is achieved by 
putting roughly the same amount of operations in the computational components of 
each stage relatively. The filtering for each 8x4 pixels takes 6 clock cycles and the 
operating period of each register is shown in Fig 36, where X means “Don’t Care”. 
F_En is a 1-bit register that specifies if the filter module is enabled or not. And Luma 
is also a 1-bit register that specifies whether the input pixels is from the luma channel 
or the chroma channel. The processing order of one macroblock filtering with 
luminance and chrominance is shown in Fig 37. The design of the computational 
component of each stage is shown in Fig 38 and Fig 39. 
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Fig 38. Computational Component of Stage 1 in Pipeline Design 

 
 
 
 
 
 
 
 
 
 
 
 

Computational
Component_1

(Adder and Shiter)

8x4 block

Luma

p1_L_reg1 = ((Q1 + PQ0) << 1) +  Q2

p1_L_reg2 = Q2Q1 + QP0

p1_L_reg3 = ((Q3 + Q2) <<1) + Q2Q1

p1_L_reg4 = Q1Q0 + QP1

p1_L_reg5 = ((P1 + QP0) << 1) + P2

p1_L_reg6 = P2P1 + QP0

p1_L_reg7 = ((P3 + P2) <<1) + P2P1

p1_L_reg8 = P1P0 + QP1

p1_weak_reg1 = (Delta << 2) + (P1 - Q1) + 4

p1_weak_reg2 = P2 + ((QP0 + 1) >> 1) - (P1<<1)

p1_weak_reg3 = Q2 + ((QP0 + 1) >> 1) - (Q1<<1)
Chroma

p1_C_reg1 = QP1 + P1P0

p1_C_reg2 = QP1 + Q1Q0

p1_weak_reg1 = (Delta << 2) + (P1 - Q1) + 4

p1_weak_reg2 = P2 + ((QP0 + 1) >> 1) - (P1<<1)

p1_weak_reg3 = Q2 + ((QP0 + 1) >> 1) - (Q1<<1)
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Fig 39. Computational Component of Stage 2 in Pipeline Design 

5. Simulation Results 

The System clock rate in the design is targeting at 50MHz. The whole 
architecture is coded in VHDL and the circuit is synthesized for an FPGA, the VirtexE 
XCV2000E, using Xilinx ISE. The total gate count is 120K. The filtering for every 
8x4 pixels takes 6 clock cycles and one extra cycle for getting boundary strength. It 
spends 191*3 clock cycles loading unfiltered pixels and coding information from 
outside SRAM into inner SRAM. For filtering one macroblock, it takes 15 cycles to 
filter vertical edges of 8x4 luminance pixels and 27 cycles to filter vertical edges of 
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8x4 chrominance pixels. Otherwise, it takes 22 cycles to filter horizontal edges of 8x4 
luminance pixels and 30 cycles to filter horizontal edges of 8x4 chrominance pixels. 
The operating cycles for every filtering process is depicted in Fig 40, Fig 41, Fig 42, 
and Fig 43. It also takes 190*3 clock cycles to store back the results from inner 
SRAM to outside SRAM. The sum of total clock cycles to filter 30 CIF (352x288 
pixels) frames is 22 * 18 * 30 * ( 16 * 15 + 27 * 4 +22 * 16 + 30 * 4) + 3*190*2, so 
the time is 0.195 second for filtering when targeting clock rate is 50MHz. It is easy to 
achieve real-time deblocking with CIF 30fps.  

 

 
 

Fig 40. Operating Cycles for Vertical Edges of 8x4 Luma Pixels 
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Fig 41. Operating Cycles for Vertical Edges of 8x4 Chroma Pixels 

 

 

 

Fig 42. Operating Cycles for Horizontal Edges of 8x4 Luma Pixels 
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Fig 43. Operating Cycles for Horizontal Edges of 8x4 Chorma Pixels 
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6. Conclusion and Future Work 

In this thesis, an VLSI accelerator architecture for the in-loop filter of 
H.264/AVC is proposed. The architecture is implemented and synthesized on an 
FPGA for verification. Simulation results show that the gate count is small and the 
efficiency of the proposed design is very good and can be used for real-time 
processing of CIF resolution video sequences. 

 
The architecture of the system is designed with future extension in mind. Other 

functional components of H.264/AVC will be designed and added into the system.  
In order to allow these modules to share the bus more efficiently, a better arbiter of 
MMB must be implemented.  In addition, when more functional units are added, a 
more sophisticated distributed SRAM subsystem must be used.  Another key point 
of study is the reduction of the communication overhead between the processor core 
and these functional units. 
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