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Calculation of the Peierls barrier with a tension —Frenkel-Kontorova model
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A tension —Frenkel-Kontorova dislocation model with a nonlinear interatomic force appears to be better justified
than previous models in the interpretation of the Peierls stress of dislocation motion. Numerical anisotropic
calculations on several fcc crystals result in good agreement within the order of Seeger s double-kink-generation
interpretation of Bordoni relaxation peaks. Comparisons of the recalculation results of the Peierls stress with
Hobart s compression model suggest that the present tension model is a more realistic representation of an edge-
dislocation migration, in which energy is thought to be concentrated on these tension atoms just below the slip
plane. It is also possible with this analysis to estimate the surface energies of material studied by internal friction in
close agreement. This suggests that the tension-Frenkel-Kontorova model is more than a phenomenological
representation of an edge dislocation.

I. INTRODUCTION

The plasticity of solids is caused by dislocation
motions in crystals. Owing to the discrete lat-
tice structure, the motion of a dislocation re-
quires on it a minimum shear stress to overcome
the Peierls (-Nabarro) barrier. '2 Although vari-
ous continuum approximations, either the original
three-dimensional- elasticity methods by Peierls
and Nabarro' or the one-dimensional Frenkel-
Kontorova approximation by Indenbom, have the
advantage of using analytical techniques, they
also suffer from losing atomistic features, and
it becomes difficult to account for the nonlinear
interatomic force of crystals. In reality, the core
energy might only be a small portion of the dis-
location formation energy; however, the core
migration energy couM be the major contribution
to the dislocation migration energy, namely, the
Peierls energy. Since atoms in a core are all
heavily displaced, the neglect of the nonlinear
force effect between these atoms could cause
serious errors in evaluating the migration ener-
gy. The results were that these continuum ap-
proximations gave wider dislocations and therefore
smaller barriers for dislocation migration than
expected from discrete models. '6 This also led
some people to question the significance of the
Peierls hindering in plastic deformation of
solids. '

Discrete approximations of Peierls barrier cal-
culation have been modeled by many people. s'~'~ '4

Maradudin~ had considered a three-dimensional
lattice of spring-connected atoms in two sym-
metric configurations (stable and unstable) of a
screw dislocation, which allowed him to find the
Peierls energy, but not the stress, since the

asymmetric configuration was not available.
Hobart~ ' ' "had used the conventional discrete
Frenkel-Kontorova model in an exact manner for
the analysis of the Peierls barrier, which enabled
him to obtain the complete energy variation over
a lattice period or Burgers vector. His result~
for copper had doubled Indenbom's calculation of
continuum approximation but was still an order of
magnitude less than Seeger's double-kink-genera-
tion interpretation" on the Bordoni absorption
peak&6 of internal friction. ' ' ~ pecently, Tysone
had used a complete two-dimensional atomistic
model with two phenomenological interatomic po-
tentials. His numerical calculations gave much
higher values of the Peierls stress than that pre-
dicted by Peierls and Nabarro. However, owing
to the sensitive structure dependence of the
Peierls barrier as will be seen below, the use of
an equivalent isotropic square lattice to represent
an fcc lattice is still a rough approximation which
only proves that the discrete calculation will, in
general, give higher friction stress.

In the following, we are presenting a tension-
Frenkel- Kontorova (TFK) dislocation model. This
model" (Fig. 2), referred to by Seeger and Schil-
ler as the positive dislocation, has one more sub-
strate-potential valley than the overlaying atoms,
so that tension always exists between the atoms.
In contrast, the conventional Frenkel- Konotrova
(CFK) dislocation model (Fig. l) always has a
compression force existing between the atoms.
With linear forces connecting the atoms, the two
models are not different from each other in the
calculation of the Peierls barrier, but when the
nonlinear force is used, the TFK model is found
to be overwhelmingly better than the CFK model
in the interpretation of an edge-dislocation migra-
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(a)

(b)
FIG. 1. Configurations of the compression-Frenkel-

Kontorova dislocation model: (a) stable, (b) unstable.

of the CFK model. The substrate potential repre-
sents the influence of the atoms just below the slip
plane to the layer above, which is represented by
the spring-connected mass points. Equivalently,
their roles are interchangeable, and this TFK
model is shown in Figs. 2(a) and 2(b).

When identical linear springs are used for the
models, their equations of force equilibrium are
both written in the form

2' . 2&u;
k(u, , , —2u;+u;, )+ sin

b
' ——0,

i=0,+I,+2, .. .
or in the normalized form

II. TFK DISLOCATION MODEL

A. Comments on the Frenkel-Kontorova models

Phenomenologically, owing to its simple struc-
ture and on account of discreteness, the Frenkel-
Kontorova models provide us with simpler and
reasonable ways of analyzing the Peierls barrier
and with a better chance to obtain analytic solu-
tions, therefore depicting a more physical picture
of the dislocation movement.

Figures 1(a) and 1(b) show, respectively, the
stable and unstable (saddle-point) configurations

Up Ut U2

(o)
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(b)
FIG. 2. Configurations of the tension —Frenkel-Kon-

torova dislocation model: (a) stable, (b) unstable.

tion. We then apply the model to the numerical
calculations of the Peierls stress of several widely
studied fcc metals, which appear to be close to
within an order of magnitude of the values derived
from the activation energies of the internal-fric-
tion experiments using Seeger's theory of double-
kink-generation mechanism. We also reverse the
derivations of the analysis, which allows us to
estimate from the dislocation-internal-friction
data the interatomic forces, and therefore the
surface energies of the examined fcc metals along
the slip direction. Finally, we discuss the ac-
curacy and the effectiveness of the TFK model.

y;, &- 2y;+y; &+Psiny;=0, (2)

where k is the spring constant between atoms, b

the Burgers vector, P=4n'~A/kb2 the peak value
of the normalized substrate potential, and y;
=2~u, /b the normalized displacement of the ith
atom, shown in Figs. 1 and 2 for each model. A
is found5 in the same way as Frenkel'9 did in pre-
dicting the theoretical shear strength of a perfect
crystal, which reads

A = QQ3g/4 p2g

with t" the shear modulus and abc the atomic
volume. The value of k used by Endenbom4 and
Hobart was found by a plain-strain condition,
which is written as

b = acE/b (1 —v2),

(3)

where E is Young's modulus and v is Poisson's
ratio. However, owing to the sensitive dependence
of the Peierls barrier on. the value of I' which is a
function of A and k, their works ' ' ' ' "of using
isotropic values of C and E and the plain-strain
condition in finding the spring constant k are very
questionable for the following reasons.

(1) Microscopically, the grain in which a dis-
location slips is essentially a single crystal, and
the use of isotropic elastic constants deviates from
reality. As shown in Table I, large differences
exist between the isotropic and the directional
Young's moduli for the five fcc metals. Hobart
mentioned this point in discussing his calculated
value. ' However, with the anisotropic elastic con-
stants of copper put into his model, his result of
the Peierls stress worsens to a smaller value due
to the smaller P (from 0.4V to 0.3536), as calcu-
lated by us in Table Q. This is contradictory to
his conclusion.

(2) Since grains in a polycrystal solid have no
definite shape and orientation, the resultant com-
plicated internal stress distribution around a
grain does not justify the use of plain-strain con-
dition in evaluating the spring constant k. The
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question remains even in single crystals. In frac-
ture studies, people have used the directional
simple-tension condition to evaluate the inter-
atomic force and the bond strength of solids with
evident agreement with experiment. Further-
more, judging from internal-friction experiments ~

we think that the simple tension condition is more
suitable for evaluating the spring constant k in
Frenkel- Kontorova model. As will be derived
later, simple tension gives the relationship

b =acE/b .
This value is different from that of the plain-
strain condition by a factor of (1 —v') '.

In summary, anisotropic elastic constants and
the directional simple-tension derivation of k are
believed to be more accurate for the model analy-
sis,

B. Nonlinear interatomic forces

When a nonlinear interatomic force f is intro-
duced, Eq. (1) changes to

creases with an increase of index N, even to the
extent that the stable and the unstable configura-
tions are interchanged as indicated by negative
energies. This shows not only that the Peierls
barrier is sensitive to the interatomic force form
imposed on the model, but also that the effect of
the nonlinear repulsive force makes the conven-
tional CFK model unfavorable. The situation does
not happen to our TFK model.

In the following analysis, we introduce the sinu-
soidal interatomic force law as used by Qrowan2'
in evaluating the theoretical tensile strength of
perfect crystals, which is written

f (u„&—u;) =fo sin[2n'(u„, —u;)/X],

i=O, +1,+2, . .. .
(8)

This force law is a good approximation to real
crystals in the tension part not exceeding the bond-
breaking strength fo, which is just what we need
for our TFK model. The parameters fo and X are
related to the surface free energy g, by

2mu, .f(u;, ~
—u;)-f(u; —u, ,)+ sin ' =0,

and

f0=acEX/2mb =ac(Eg, /b)'~~ (9)

i=0, +1,+2, . .. .
As an illustration, we will use a phenomenological
interatomic potential

(7)

X = 2m (g,b/E) ~~ 2 (10)

Substituting Eqs. (9) and (10) into Eq. (8) and
using the small deformation condition, one can
readily obtain Eq. (6) discussed above.

where X=u;, ,—u, + b -is the distance between
atom i and i+1. Derive the interatomic forces
according to the potential function for Eq. (6) with
the conventional CFK model; the result as depicted
in Fig. 3 is that the calculated Peierls energy de-

C. Numerical solutions

Combining Eqs. (6), (8), (9), and (10), we ob-
tain the force equilibrium conditions in normalized
form as

7 — 9 10 11 12
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FIG. 3. Difference in energy between the unstable and

the stable configurations in compression-Frenkel-Kon-
torova dislocation model as a function of index Ã defined
in Eq. (7) for a phenomenological interatomic potential.
P is the normalized substrate potential defined in Eq.
(2).

Y dislocation position

FIG. 4. Calculated Peierls energy by TFK model as a
function of dislocation position, Y, defined by Eq. (13).
Note that solid line is a sinusoidal curve, dots indicate
the values calculated for P =0.4126 and A =1.$52, tri-
angles indicate values for P =0.4455 and A =1.433.
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TABLE I. Crystal parameters of some face-centered cubic metals.

Metal

Elastic moduli
atpK~

(10"dyn/cm')
Cii Ci2 C

Elastic compliances
at 0 K"

(1P cm /dyn)
~i2 ~44

Elastic constants
atPKc

(1pi2 dyn/cm2)
E&iio& G bio&

Burgers vector, Surface energy,
brio& g. (& K)

(10 cm) (10 erg/cm )

Cu
Ag
Au

Al
Pb

1.762
1.315
2.016
1.143
0.555

1.249
0.973
1.697
0.619
0.454

0.818
0.511
0.454
p.316
0.194

1.378
2.052
2.153
1.412
6.829

—0.572
-0:872
—p.983
-0.496
—3.073

1a 223
1.957
2.203
3.165
5.155

1.411
0.927
0.881
0.800
0.316

0.333
0.220
0.204
0.277
Q.Q67

1.090
0.723
0.689
0.687
Q.232

2.56
2.89
2.88
2.86
3.16

1.650 (-m.t.)
1.130 (-m. t.)
1.35P d (-m. t.)
1.205 ' (100 K)
0.442 ' (623 K)

~C. Kittel, in Phonons, edited by R. W. H. Stevenson (Oliver and Boyd, London, 1966).
Transformed from elastic moduli of column 2.

'Calculated from elastic compliances of column 3 by simple tension condition.
dReference 20.
'Reference 23.

sin —sin i +—siny - =0
A A

(11)i=0, +1,+2, ...

max mill
min y i y i

yf

then the Peierls stress 0~ can be obtained as

(13)

where A=X/ff =2ff(g, /b'E)f~2 is referred to as the
maximum strain parameter. In principle, the
value of each y; can be solved according to Eq.
(ll) for a specified value of y, of the largest dis-
placed atom. Denoting y; as g;(y, ), the normalized
dislocation energy is read as

A
E~(yf) = g — 1 —cos

+, (1+cosg;) . (12)
P

The Peierls energy E~ is the maximum fluctua-
tion of E,.

If we define the dislocation position F to be pro-
portional to yi in the first half of the migrational
period, that is,

max min) E4(y f)
O'p = (y i

max
(14)

In Fig. 4, one can see that the plots of E~ as a
function of y deviate little from a sinusoidal
curve. This justifies our definition of k by Eq.
(13). The nonlinear force effect makes Hobart's
definition difficult to be applied in our model. Al-
though the two definitions are not comparable,
they should not differ much from each other in
evaluating o~. The nonlinear tension releases
atom 1 more towards the potential valley; thus it
contributes more to the Burgers vector and makes
Efl. (13) more effective. The accurate o~ can also
be calculated by Hobart's method' of obtaining the
maximum force required to pull atom 1 statically
while other atoms follow their respective equilib-

TABLE II. Comparisons of Peierls energy and stress for fcc metals under simple tension
condition by our TFK model, Hobart's model, and the experiment.

Material A/2

Normalized
Peierls energy

(10 ')
TFK Hobart's

Peierls stress g&

G&iio &)

TFK Hobart's Experiment ~

Cu
Ag
Au

Al
Pb

0.3536
0.3556
0.3464
0.5206
0.3184

0.671
0.645
0.724
0.721
0.628

0.313
0.468
0.149
4.773
0.212

0.0088
0.0092
0.0075
0.1510
0.0037

3.374
5.008
1.647

34.600
2.536

0.096
0 099c
0.082
1.116c

p p44c

5 03"
6.22 b

11.06b
23.49'
5.16 d

~From dislocation —internal-friction experiment, interpreted by Seeger's double-kink-
generation theory.

Reference 21. Corresponding activation energies are for Cu, 0.122 eV, Ag, 0.124 eV,
Au, 0.158 eV, . and Al, 0.25 eV.

Calculated by the authors according to Hobart's original model.
"Reference 15. Selected from low-frequency values only.
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TABLE III. Calculated Peierls energies and stresses for fcc metals under plain-strain
condition by our TFK model and Hobart's model.

Material TFK

Normalized
Peierls energy

(10-5)
Hobart's

Peierls stress 0&

(10 4
G&&«&)

TFK Hobart's

Cu
Ag
Au
Al
Pb

0.268
0.264
0.235
0.450
0.210

0.671
0.645
0.724
0.690
0.628

0.233
0.269
0.038

20.516
0.029

0.0077
0.0067
0.0021
0.5670
0.0006

0.332
0.389
0.061

17.265
0.054

0.0111
0.0097
0.0035
0.4820
0.0012

rium positions.
In the numerical calculations, we first find

y,
'" —y~ according to Eqs. (11) and (12). The

distance between them is then divided into -20

positions. E~ and v~ are calculated accordingly
at these positions.

III. RESULTS

Values of the normalized substrate potential P
and the maximum strain parameter A are calcu-
lated and listed in Table II according to their ap-
propriate definitions. The numerical results of the
Peierls energy and stress are listed in the fourth
and sixth columns of the table. It is evident that

Table I lists the various numerical values of
crystal parameters of five fcc metals required in
our analysis. Since the slip direction is along
(110) for the fcc crystal, G&„p~ and E&„p) are de-
rived by suitable transformations from values of
elastic compliance in the second column of the
table under simple tension condition. For the pur-
pose of comparison, as discussed in Sec. DA, the
isotropic Young's modulus, E,.„, used by previous
models is also listed for each metals. Owing to
the low-temperature flattening of elastic con-
stants, their values at absolute zero are used as
approximations of various low- temperature values '

with which the internal-friction experiments to be
compared were performed. With the exception of
aluminum, the surface energies of the other four
metals employ their high-temperature values.
This is because of many difficulties of obtaining
the accurate surface entropies from scarce
sources; hence the extrapolation to the low-tem-
perature regime is either unavailable or unreli-
able. Besides, the configuration around a dis-
location differs from that of the surface; therefore
the surface-entropy correction might not be
meaningful to our dislocation problem. The value
for aluminum is extrapolated to 100 K from data
given by Bondi. '3 The reason is that the high-
temperature value listed in other sources is found
too small to "bond" the two central atoms; there-
fore it makes the calculation unrealistic if a high-
temperature value is used. In addition to these un-
certainties, we wish to remind the reader here
that the surface energies are isotropic values, al-
though the quantities are only weakly directionally
dependent for fcc metals. ""
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E
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N
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E
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FIG. 5. Normalized displacements of core atoms: (a)
gold, (b) aluminum. Circles on lines are the continuum
approximations. Squares are our solutions. Note that
Al has the largest deviation from the continuum solution
while Au has the least in our five illustrated crystals.
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the calculated Peierls stresses of the five fcc
metals are all within an order of magnitude of the
experimental values derived according to Seeger's
theory'5 in the interpretation of the Bordoni ab-
sorption peak in the internal-friction experiments.
The values of the activation energy employed by
the double-kink-generation theory here are not
those given in Seeger's original paper, but are
those discussed by Niblett, "which are thought to
be more reliable. Listed in the table are also the
Peierls energies and stresses calculated according
to Hobart's compression model. They are in poor
agreement with Seeger's interpretation values.
One might wonder if these are due to the prejudice
of the simple tension condition applied in the
model, Table III lists the calculated values of the
Peierls barrier according to the plain-strain con-
dition for these nonisotropic crystals. The results
still show that our TFK model is better than the
conventional CFK model as used by Hobart, al-
though both are not in accord with experiment,
with the exception of our calculated value of alumi;—

num.

should be applicable; that is, to test the correct-
ness of the model of the Peierls-barrier calcula-
tion requires us to see if the stable configuration
is the true ground state. This principle is not ap-
plicable to the dynamic problem, where equilibrium
of the stable configuration cannot be established in
time; therefore a reduction in the Peierls barrier
can be expected. '4

The extreme sensitivity of the Peierls barrier
to the value of I' also indicates that the isotropic
models are very questionable in the precise cal-
culation of the barrier, although they could some-
times describe more qualitative pictures owing to
the possibility of using analytic techniques.
Nevertheless, they could also lead to incorrect
concepts due to the underestimation of the Peierls
barrier.

The discrepancies of our results with the ex-
perimental data might arise from the following
sources.

25—

IV. DISCUSSIONS

From our analysis discussed above, the move-
ment of an edge dislocation can be interpreted
better by the TFK model as supported by our cal-
culated results of fcc metals. Except for Au, most
of our calculated values are different from the ex-
perimental data by not more than a factor of 2,
which had never been done previously.

This suggests that our model is probably close
to the true situation of the edge-dislocation migra-
tion, where the energy of migration is concentrated
on the core atoms just below the slip plane where
tension exists. Figures 5(a) and 5(b) illustrate the
displacements of core atoms of Au and Al, which
are the two extremes of our calculation. It is
clear that the tension model gives larger displace-
ments and the atoms relax faster to the potential
valleys than does the continuum model. In con-
trast, the repulsive nonlinearity of the inter-
atomic force makes the CFK model, which has
been used in previous work, unfavorable in the
evaluation of the Peierls barrier. Tension tries
to localize the strain of an edge dislocation around
its core region, and therefore traps the dislocation
more in its stable configuration. This not only is
energetically favorable but also increases the dif-
ficulty of escaping to the neighbor stable positions
and hence gives a larger barrier energy. In the
quasistatic problem, dislocations are required to
populate for a longer period of time in the stable
configuration than in the unstable. It seems then
the principle just implied in the above statement

20—

Pb 0I, I, I, I, I, I, I

0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

FIG. 6. Plot of Peierls stress as function of maximum
stxain parameter A for various fcc metals. . Numbers
listed are the P value for each metal as calculated in
Table II. The surface energy can be obtained from A

derived from experimental 0&.
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TABLE IV. Estimation of surface energy from the experimental activation energy of disloca-
tion internal friction by the TFK dislocation model.

Material

CU

Ag
Au
Al
Pb

Expt. activation
energy (eV)

0.122
0.124
0.158
0.250
0.058

Corresponding ~

Peierls stress
(10 a&gyp))

5.03
6.22

11.06
23.49
5.16

Est. A/2

0.640
0.630
0.598
0.748
0.588

Est. surface'
energy

(10' erg/cm')

1.497
1.077
0.920
1.299
0.387

According to Seeger's double-kink-generation theory. See Ref. 15.
Refer to Fj.g. 6.

'According to Eq. (11).

(1) The uncertainty of the accuracy of the sur-
face energies, which were obtained in the high-
temperature regime, whereas most of the internal-
friction experiments were performed at low tem-
perature.

(2) The inaccuracy of our TFK representation of
a true edge dislocation. This might arise from the
oversimplified nature of the Frenkel- Kontorova
model itself, the force law used in the analysis as
well as the assumption that the law around the
ruptured dislocation center does not change from
that of the perfect crystal.

(2) The question of the accuracy of Seeger's
derivations in terms of continuum mechanics in
the interpretation of the Bordoni relaxation peak.
Since the kink energy can only be calculated ac-
curately by atomistic model, elastic continuum
theory is only an approximation.

Any one of these factors could cause an order-
of-magnitude error in the calculated Peierls
values. In spite of this, the results of our cal-
culations are still within order-of-magnitude
agreement. The more striking fact is that the
corresponding variations between the experimental
values and our calculated values for the metals
examined are correlated. This provides more
evidence for the excellency of the TFK model.
More accurate predictions of the Peierls stresses,
or the proof of the effectiveness of the model, de-
pend on the availability of the accurate surface
free energies at low temperature, which has long
been difficult to obtain by experiment. However,
if we use the experimental Peierls stresses given
in the last column of Table II and reverse the
analysis, we will be able to estimate the surface
energies of these metals. This can only be per-
formed graphically by using the curves shown in
Fig. 6, where a stress value corresponds to a
value of A; therefore the surface energy can be
calculated, according to its definition. The re-

10

h 10
Ve

tll

e 10
CL

"0
N

a
E
0z

10

-6
1.40 1.50 1.60 1.70 1.90

FIG. 7. Plot of Peierls stress as function of disloca-
tion width parameter P defined in Hobart's analysis.
Note that nearly straight lines in the plot for various A
shows that the definition of dislocation width is still ap-
plicable to our nonlinear force model, except for high-
stress regime where P is large and corresponding to
narrow dislocation.

suits are listed in Table IV. It is interesting to
see that the estimated surface energies are close
to the values we used in Table I. This further con-
firms the effectiveness of our model. Incidentally,
the analysis provides a method of estimatio~,
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through the dislocation- internal-f riction experi-
ment, of the surface energy, or perhaps more
directly, the interatomic force and the theoretical
bond strength, fo, of plastic materials. Therefore
the problem of plasticity and the brittleness of a
pure material can probably be overcome and di-
rectly compared from-this point of view.

It is also astonishing that the simple sinusoidal
force form can produce such a good agreement
with experiment. However, if one views that any
complicated force form can be expanded in terms
of our sinusoidal force as the fundamental mode
and its corresponding high harmonics, then the
energy cancellation which results in a small
Peierls barrier not only exists between the right-
hand part and the left-hand part of the dislocation
center for the fundamental mode, but also exists
in the domains of each part itself for the high
harmonic force components. This argument also
applies to the harmonic substrate potential used
in our model and is supported by Tyson's numeri-
cal calculation, 6

The dislocation width, which is widely used in
all models as a characteristic parameter, seems
to be worth checking in our model, although a non-
linear force has been used in the analysis. This
is shown in Fig. 7, where the logarithm of the
Peierls stress is plotted as a function of the width
parameter, I' '~2. The nearly straight line ob-
tained for various maximum strain parameter A

indicates that the dislocation width as defined in
Hobart's model' is still meaningful except in the
regime of high Peierls stress of above 10 Q.

V. CONCLUSIONS

The conventional Frenkel- Kontorova model has
been modified into a tension-type Frenkel-Kon-
torova structure, which represents a more
realistic edge-dislocation movement. The sinu-
soidal force law as the interatomic force with its
parameters derived from the simple tension and
the anisotropic conditions has been used and is
logically explainable. Calculations of the Peierls
stress by the TFK model have shown good agree-
ment with Seeger's interpretation of data on sev-
eral fcc crystals. The best fit is to the silver. It
suggests that the Peierls hindering is largely
caused by these tension atoms just below the slip
plane. Incidently, the analysis also suggests a
way of estimating the surface energy of solids
from the dislocation —internal-friction experiment.
Other potential laws and their relationships to
other crystal properties, such as heat of sub-
limation, could also be used or evaluated by the
analysis under appropriate formulations.

In principle, more accurate descriptions of an
edge-dislocation migration can be achieved by ex-
tending the one-row dislocation to the two- or
more-row models. Evidently, the adding of com-
pressive rows will not strengthen the Peierls value
directly, but it could help the relaxation of tension
atoms and therefore lead to a more accurate re-
sult. Applications of the model to bcc materials
and accounting for the temperature effect, there-
fore, to interpret more dislocation-related phe-
nomena are also encouraging future extensions.
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