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Average partition function of an electron in random binary alloy
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We compute the average partition function for an electron moving in a random binary alloy system. A coherent
state representation variational (CSRVj method is applied to the single-band tight-banding model Hamiltonian. The
results are compared with the exact solution in one-dimensional Anderson s model. The partition function goes over
smoothly to the Lifshitz tail in the low-temperature limit and to the result of mean-field theory in the high-density
limit. This CSRV method gives the exact results in periodic and very-high-density limit and approaches virtual-

crystal theory in small-P limit.

I. INTRODUCTION

The nature of electronic states in a binary alloy
with two atomic species A. and B distributed at
random on a regular space lattice, has drawn a
lot of attention. In this paper we are interested
in computing the average partition function of an
electron moving in a random alloy. This partition
function is averaged over the random configura-
tions. The electronic density of states of the
random binary alloy may be found as the inverse
Laplace transform of this average partition func-
tion. Gross' has computed the average partition
function of an electron moving in a Gaussian
random potential by path integral formulation.
It is interesting to use the coherent state repre-
sentation variational (CSRV) method which is
closely related to the Feynman path integral for-
malism to the binary random alloy which is under
extensive investigation by other methods. 1his
paper is arranged as follows: I formulate the
problem in Sec. II and apply this formalism to
Anderson's model in Sec. III. In Sec. IV the exact
solution of the one-dimensional Anderson's model
is given, and finally, I compare the CSRV re-

sults with the exact ones, analytically and num-
erically.

II. FORMULATION BY THE CSRV METHOD

Let us take the single-band tight-binding model
Hamiltonian in a random alloy which has been
under extensive study. For a specific configura-
tion of the alloy, the model Hamiltonian is given
by

=&„5, +h„

The diagonal elements may be regarded as
random atomic levels which assume one of the
two possible values g„or &~, depending on whether
an atom of type A or B occupies the site &. The
hopping integrals h are assumed to be indepen-
dent of the alloy configuration. In other words,

the elements of q„are diagonal but random,
whereas those of k are off-diagonal but trans-
lationally invariant (i.e., k„depends only on the
distance from site m to site yg).

We shall use the coherent state representation
variational (CSRV) method which was developed
by Luttinger, ' to dea'l with the simple liquidlike
disordered system and its diamagnetism'; Lu
has applied this method to the repulsive4 and
attractive' Frisch-Lloyd disordered model. ' Let
us reformulate the CSRV method in the discrete
representation and briefly describe the method by
introducing the set of functions 4(P, Q; l) defined
as

~(P, Q;f)=e' 'X(f —Q)

for a. discrete lattice point l. P and Q are c num-
bers and y is the normalized function

(x, x)=Q tx(f) ('=l .

We formulate this theory in one dimension for
simplicity and it can be extended to the three-
dimensional case trivially. In order to satisfy
periodic boundary conditions, we take

IP=2m, Q=na,

where rn =0, +1, +2, . . . , g =0, +1, a2, . . . ,
a is the lattice length, and N is the total number
of lattice points. - It can be easily shown that the
set of functions 4(P, Q; l) is overcomplete and
does not form an orthonormal set', and the trace
of any reasonable operator B is given by

Tr(B)=—g g [@(P, Q), B4(P, Q)]. (3

with arbitrary but normalized y.'
Therefore, the partition function of the random

alloy system is given by

S(p) = Tr(e )= —QQ [+(P,Q), e '~(P, Q)].
1
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By the Jensen's inequality for convex functions,
we have

p(P)) —~ e-&)&+~&1~
N P, g

and

+Re"" ' 'X*(l —Q)X(l'- Q)&«

We can express the random &, as follows:

t =+t&+ 6~ ~

where & = z„-&~ and

if A. atom is at l site
0 if B atom is at E site .-

8 is the configuration-dependent partition func-
tion. Let us calculate the conf iguration average
to obtain the average partition function:

z(p)-=(e(p))e —g exp —p(Pe, /x() —rp)l'+ g e'"" ''x"( -))rx)(t' )rl)-r) ).1

&Pg . S

The configuration average is defined by

(f(e,)) = 2'f(e, )/ Z'( .

The prime of the summation means we sum over all the (n,j configurations with the constraint Q, n, =N„.
In order to relax this restriction, we may use the canonical ensemble average which is defined as follows:

(f(n, ))= g f(n, ) e-"'&"& Z e-"')"& .

By the canonical ensemble average, the average partition function becomes

z(p) ~ — (p„- '~'" "-e) + p e '&'" "-e" )exp' —p ~e&~" &'„*(-l—Q)„(l' —Q)h„ lN ~.a

Because of the requirement(Zn, )=N„, we have p„=N„/N=(e"+l) '; that is, p„ffpe=e". After
the configuration average, the system is translationally invariant, so we can let l+ Q-l and
l'+ Q-l' and sum over Q. We then obtain

z(p)= Peep g(e(p e e' '""r' +pzee' '"r ' ) —pge' " ''X(()X()'))rrr')
P s&&

If we take the nearest-neighbor interaction ap-
proximation with

&«'= &(6&,&'~+ 6
&,

&' .} p (4)

z (P)
~ I,(P&)(}exp(gin(P„e

-e 'r
r))

then

z(P)= +exp Q[ln(p„e '~"'"'+pee 's" "')
P

—p&). cos(Pa)] l,

where we assume x(l) is real for simplicity and
o. is defined as

c(=2k+X(l}X(l-a) . (6)

Next, we sum over I', and in order to carry out
this sum simply, we assume this is a very long
chain with N approaching infinity. Then the parti-
tion function of a one-dimensional random alloy
system per unit lattice point can be written as

where I, is the Bessel function of an imaginary
argument of order zero. Let us call the right-
hand side of the expression z„(p}; thus z(p) &z„(p)-=exp[W[X(l)]j.

The criterion for choosing the best x(l) is that
one which will make the above inequality as strong
as possible. The stationary condition with the
normalization constraint is

XE' Oyl =0. 8

From this condition we obtain a self-consistent
nonlinear difference equation as the follows:

I),
' [x(l+a)+x (l —a)]I, (Pn)

Io p&)&

~pe-86X (l )—,„„-.&, ) (l )
x(l) = &x(l),
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where we set &„=& and as= 0, p„=p, and x,/p= A..
If we assume X(l) is a very slowly varying func-

tion, then Eq. (9) becomes a Schrodinger-type
equation with self-consistent potential:

Maximizing the exponent, we obtain

27(' lk l
a'p

—ln(1 —P)

Therefore,

(16)

«(n)x" (I)+ l,2(=(n) — B.x=(l). . .lx (I) = »(I»
(10)

If P is small, that is, in the high-temperature
case, the approximate solution of X and X (f) is
given by

~=2( -Ps+ P(p-P')&'X'(0),

X(l) = X (0)sech(kl),

(12)

(»)
where k = (p -p')p&'X'(0)/2a'G and X (0) can be
determined by the normalization condition given
by the following equation:

where G(n) = kI, (pn)/I, (Pn).
Making use of the boundary X(L)=X'(I-)=0, Eq.

(10) can be integrated exactly:

x'()) = I, x'()) — »(b~ "*"'+ (1-b)J)"&x-2G
( at' pgG

z, =- (4~~ lkl)"exp ~(2 lk I)

—2 —"
lk

I
I»(1 -P)l' I'"&"'

4
(17)

From the inverse Laplace transform, this parti-
tion function will give the fa.mous Lifshitz's tail
spectrum which starts from the band bottom

Another interesting case is the high-density
limit for N„N; for this case Eq. (7) becomes

z „(P)-I()(P n)e

This is just the partition function for a pure A.

atom crystal in tight-binding approximation,
because the exact partition function for a pure
A atom crystal is given by

(p) e-()b(()) dk w(b~b2)b c(bs(bbb)
zA

,277 8Z

2x'(o)
(P P')&~'x'(0)-

(P -P')e "x'(0) '"(Nxt nh

For small P, X (0) is approximately given by

x (0)-1/MN .

(14)

= Io(2pk)ea'w .
Therefore, if we choose X((() =1/MN as an ex-
tended state in our CSRV method, ot will equal
2h. This proves the CSRV method will give the
exact result in the periodic limit.

III. APPLICATION TO ANDERSON'S MODEL
WITH e~ =0 AND e~~~

Therefore the lower bound of the average parti-
tion function is

z „=I,(Pn)e @'-
which can also be obtained directly from Eq. (7).
This result implies that in the high-temperature
limit, the virtual crystal picture is a good ap-
proximation. In the virtual crystal picture' the
random system is represented by a virtual or-
dered system which replaces the random atomic
levels by the averaged level & =p„&„+p~&~.

The other limit is the low-temperature case,
that is, P-~. For this case, we expect the wave
function will be localized in a large region, that
is, the X (l) is not zero only inside this big well of
width b. Therefore the partition function is given
by

2

z „(P)= (2((pn) '~'exp P 2 lk l
—-l k

l

(n(1-()
(b) I

(19)z(P)=' I.(2@&)p~,
where B=Q "(', X(f)X(f+ 1).

Because I, is an even, montonically increasing
function, the best x (f) must be the one which
makes B maximum subject to the constraint

The formulation of the previous section can be
applied to the so-called Anderson's model of
substitutional binary random alloy with &„=0
and q~-~. ' " In fact, the problem of the one-
dimansional Anderson's model can be solved ex-
actly and it, is interesting to compare the results
of the CSRV method and the exact solution.

In one dimension the system is divided by B
atoms randomly. Let us assume there is some
range of yg lattice sites on which the effective
wave function X (l) is not equal to zero and X(l) = 0
on all the complementary regions of lattice points.
The region where X(l) 40 is empty of B atoms.
The partition function of the one-dimensional
Anderson's model of the random alloy which
satisfies Eq. (7) is
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z„(P)=p„"I8 2ph cosl (21)
(n+ 1

Now we maximize z„(P) by choosing the best value
of n, then the z, (P) will provide the best approx-
imation to the exact result. In the large-P limit,
by using the asymptotic representation of Io, we
have the best n as

2WL hI '~,
g3n -lnp (22)

1 /3
z (P) (4vPh)-) I2e21&l 8-88 (23)

whe~e d=3[m2 (h((lnp)']'~2. Therefore, the Lif-
shitz tail will come out in the low-lying spectrum
again, starting from -2 lh l

which is the band
bottom of the corresponding crystal system.

The previous work can be extended to the three-
dimensional case trivially; we just write down the
results:

3

z.(p) =„,f,(Pc(,) (p e"'"" "'+p e "8" "')
(24)

",X2(l)=1 for some given n. By variational prin-
ciple,

tt

d(d —sQ s'())) ds (m)=0 . (20)
re

This yields the set of equations

y(m —1)-&y(m)+ y(m+1)=0, for m=1, 2, . .. , n .
The eigenvalues and the eigenfunctions are given
by

X~= 2 cos
for s= 1~ 2~

1(")(m)=y(*)(I)sin m (vn+ 1)

Because B can be expressed in the form —2'(y, Ay ),
whereA is givenby annwfn matrix withA~
= (58 „~+6„„,), by the property of orthogonal
transformation we can easily see B= zA, There-
fore, the maximum value of B is just one-half the
maximum eigenvalue X, ~= cos(v/n+ 1), hence
the best z„(P) for a given n can be written as

N(E, (v;})= g pe(E —e„,(v, )),j a

where we sum over all the intervals and all the
energy levels for a specified interval. The con-
figuration-averaged cumulative density of states
can be done by assuming canonical distribution
for vi, i.e., the probability distribution of (v&}
is given by

(25)

J ((v,})=Qp,e "';,
j-1

where K=N~ —1, the chemical potential p is
determined by the requirement (Z, , v~)=N„, as
e "=p„. It is very convenient to calculate N(E,
(v&}) by relaxing the constraint Q &, v&= N„and
using Eq. (26):

(26)

= Z Zg S'((s,))e(d - s. (s,)))

=NP28+ e ""+8(E—a, (v)),
v=1

(27)

where the &,(g are the eigenvalues of the Ander-
son's model Hamiltonian within the interval of
vA atoms, and is given by

s.(s) = SS sos( ( s (28)

Therefore the density of states per unit lattice
can be written as

( )
1 dN(E)

v (
=pe gg p„"6(E—2hcos v (, (29)

v&1 ggl v+ 1

&~ —1 intervals and there are v, A atoms in the
first interval and v, A atoms in the second inter-
val and so on, such that el+~2+ ~ ~ ~ + N - +A9
Any fixed set of (v,}corresponds to a fixed con-
figuration of the random alloy and the energy level
of the v,. interval is denoted by g„(v&).

The cumulative density of states (integrated
density of states) N(E, (vI}) is defined by

where (,). = 2hZ- y(1)y(1+ a,). a, is the primitive
lattice vector; for P - ~ we also obtain the Lif-
shitz tail in the three-dimensional case.'"

IV. EXACT SOLUTION FOR ONE-DIMENSIONAL
ANDERSON'S MODEL

The Anderson's model can be solved exactly in
the one-dimensional case. Let us assume there
are Ã lattice points divided by N~B atoms into

and the average partition function per unit lattice
is the Laplace transform of g(E) is obtained as
follows:

8O V

Z (p ) p2 pg p e-288 (osgnw/8s+1)3

v& tf-l

From (29) we can find that the density of states is
symmetric about E= 0 and confined between -2 (hl
and+2 (hi ~
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V. COMPARISON BETWEEN CSRV METHOD
AND THE EXACT SOLUTION

AND DISCUSSIONS

ln(z)

80

In this section I try to compare the results of
the CSRV method and the exact solution in the
one-dimensional Anderson's model; comparisons
were Inade in several limiting regions and I
also compare them numerically.

(2) The high-temperature or p- 0 limit. In this
limit, Eq. (30) can be reduced to

z(P) -(1 p„)' Q p"„a=p„.
v=1

40

50 40 50

On the other hand, for the CSRV result, I use
the fact that I,(0)= 1. The variational partition
function given by the CSRV method is

z,(p)"pg.
It is obvious that the best value of n which will
maximize z„(p) is n=1. Hence it is shown in the
high-temperature limit that the CSRV method
is exact.

(2) For the high-density limit, that is, p„- &. In

this limit the CSRV method should work well be-
cause this approximation method in some sense is
a mean-field theory. In the high-density case, the
averaged mean-field picture is very close to the
exact one. For p„-1, we can see the large v

term in Eq. (30) will dominate. Therefore we can
just approximate Eq. (30) by

z(p) (] p )2 gp" g e-sN cos([n/&v+&)3s) (3] )
~=1 e=i

For large v the summation can be replaced by
integration, hence Eq. (31) can be reduced as

(P) -( -P.)'g e.",(2Ph)=, ( Ph) .
v~1

The averaged variational partition function given
by the CSRV method is

FIG. 1. The logarithm of the exact partition function
(solid curve) and that of the CSRV method (broken curve);
the magnitude of h is taken to be 1.0, and the density is
0.8.

the absolute error is still large. In fact, it is in-
creasing as lnP compared to the correct P' ' lead-
ing term in the one-dimensional case. That is,
the pre-exponent P-dependence factor is not cor-
rect but the exponent leading term is correct.

(4) By using an electronic computer, we can
maximize the z„(P) numerically and also compute
the exact formula (30). Figures 1 and 2 present
the comparisons between these two results. It
can be seen, for small P or large density, that
the CSRV method gives good agreement.

The theory of an electron moving in random
binary alloy is a simple example of a set of p»-
blems covering a wide range of phenomena. . I
have calculated the average partition function in

a tight-binding, single-band model Hamiltonian
and the Anderson's model with &~ - and checked
for accuracy by comparing with the exact one-
dimensional results. The satisf actory agreement
between them is quite encouraging and gives me
some confidence in the CSHV method for some

o,(S)-l,
~i

2Si'aooo(
n+ Ii)

and the best choice of n is g . Thus the agree-
ment between the CSRV method and the exact so-
lution in the high-density limit is obtained.

(3'/ The very-lou/-temperature or p- ~ limit. The
Lifshitz tail spectrum can be obtained very na-
turally by the CSRV method which is superior to
any perturbation theory'~'" and other mean-field
theory or CPA (coherent-potential approximation)
and ATA (average-T-matrix approximation). ""
But it should be noticed that as p-~, although the
relative error produced by the CSHV method ap-
proximation gets smaller as P becomes larger,

IO 20 50 40 50

FIG. 2. The logarithm of the exact partition function
(solid curve) and that of the CSRV method (broken curve);
h = 1.0 and density = 0.5.
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more complicated cases which include the be-
havior of an electron interacting with randomly
placed scatterers or with lattice vibrations and

certain polymer configuration problems, or even
a more realistic model Hamiltonian.

APPENDIX

In this appendix, I will prove T is the trace of
any reasonable operator I3 in the lattice coordinate
representation:

+p,
NpQ

First, sum over I' by using the identity

~fp(r-r') pg l, l'
p

and shift Q by l; then carry out the Q summation.
By the normalization requirement, we have,
therefore,

r Q

= —Pg, e' ' "x*(~-Q&x(~-Q)&& l&l~& .
&s, Q r, r'

which is just the trace of 8 in the lattice coor-
dinate representation.
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