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在交易雜訊下估計具違約邊界之結構化信用風險模型 

 

 

 

 

研 究 生：袁倫賜                   指導教授：李漢星  博士 

 

國立交通大學財務金融研究所碩士班 

 

摘要 

在 2007 年的全球金融風暴過後，不僅學術界對企業的違約風險非常的重視，實務

界亦然，因此，如何能夠更準確的預測企業違約風險成為一個重要的研究課題。本篇研

究根據 Duan and Fulop (2009) 所提出的平滑局部化取樣/重要性重新取樣粒子濾波器

(smoothed localized sampling/importance resampling particle filter)架構去處理在有交易雜

訊(trading noise)下之結構式模型估計。我們的模型在障礙選擇權的架構下以結構式方法

進行公司有價證券訂價，本研究結果指出交易雜訊在流動性差的股票上會有顯著的影響，

而且可能對於波動度與破產機率的估計產生影響。 

 

關鍵字：障礙選擇權模型、粒子濾波器、結構式信用風險模型、交易雜訊 
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Estimating the Structural Credit Risk Model with Default Boundaries in the 

Presence of Equity Trading Noise  

 

 

Student：Luen-Tsz Yuan            Advisor：Dr. Han-Hsing Lee 

 

Graduate Institute of Finance 

National Chiao Tung University 

 

Abstract 

After the worldwide financial crisis in 2007, credit risk of a company is getting vast 

attention not only from academic but also from practitioners. It is of interest for researchers to 

more accurately model and estimate the default risk of a firm. In this paper, we apply the 

method proposed by Duan and Fulop (2009), the smoothed localized sampling/importance 

resampling (SL-SIR) particle filter, to deal with the structural model estimation in the 

presence of trading noise. Our model employs the structural approach for valuing corporate 

securities under the barrier option framework. Our results suggest that trading noise can be 

substantial for the less liquid stocks and may potentially affect volatility and default 

probability estimation. 

 

Keywords: Barrier model, Particle filter, Structural credit risk model, Trading noise. 
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1. Introduction 

After the worldwide financial crisis in 2007, credit risk of the company is getting vast 

attention not only from academic but also from practitioners. Specifically, many firms had 

good performance but suddenly default during the financial crisis. It raises the importance to 

more precisely model and estimate default risk of a firm.  

One of the fundamental approaches to model the default risk of a corporation is the 

structural approach. Structural credit risk modeling or defaultable claim modeling is 

pioneered by the seminal paper by Black and Scholes (1973) and Merton (1974) in which 

corporate liabilities can be viewed as a covered call — own the asset but short a call option. 

Later on, the idea is further advanced by Black and Cox (1976), Leland (1994), and others. 

This approach to model default claims is named structural approach since the model explicitly 

ties default risk to the firm value process and its capital structure. Currently, structural models 

are mostly built upon default barrier assumptions proposed by Black and Cox (1976).  

Brockman and Turtle (2002) employed a simple proxy approach to calculate asset values 

by approximating the market value of corporate assets as the sum of the market value of 

equity and the book value of liabilities. The proxy forces the default barrier to be greater than 

the future promised payment of liabilities under the down-and-out call option framework.  

To overcome this problem, Duan (1994) devised a transformed-data maximum likelihood 

estimation (MLE) method for structural models. The MLE method hinges on a recognition 

that the equity value should result from one-to-one differentiable transformation of the firm’s 

unobserved asset value under the given structural credit risk model even though the 

transformation depends on some unknown model parameters.  

However, it has been well documented in the market microstructure literature that observed 



 

2 
 

equity prices can diverge from their equilibrium value due to microstructure noises like as 

illiquidity, asymmetric information, price discreteness. Microstructure noises have also been 

shown to have material effect on volatility estimation in the realized volatility literature. The 

transformed-data MLE method can no longer be applied when trading noises are present in 

equity prices. 

The smoothed localized sampling/importance resampling (SL-SIR) particle filter methods 

proposed by Duan and Fulop (2009), can effectively estimate structural model in the presence 

of trading noise in equity value. They devised a nonlinear filtering scheme using the auxiliary 

particle filtering idea of Pitt and Shephard (1999). They used the Merton model to estimate 

firm’s value and show that their method has good estimation performance. 

In our study, we attempt to investigate the performance of SL-SIR particle filter method 

under barrier option framework. We first conduct Monte Carlo simulation analysis for testing 

the performance of SL-SIR particle filter method on the Brockman and Turtle (BT) models. 

Next, we perform an empirical investigation to compare the default forecasting ability of the 

Merton and the Brockman and Turtle models. Our empirical results show the trading noise 

indeed impact the volatilities and default probabilities of firms when we estimate both of 

Merton model and BT models.  

 

2. Literature Review 

2.1 Structural Form Model 

  Credit risk modeling has gained increasing prominence over the years. Structural model 

and reduced form models are the two most commonly used approaches to model credit risk. 

The first structure model for default risky bonds was proposed by Blake and Scholes (1973). 
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They explained how equity owners hold a call option on the firm.  

Merton (1974) extended the framework and analyzed risk debt behavior with the model. 

The basic idea is that a company defaults on its debt if the value of the assets of the company 

falls below a certain default point. The firm’s asset value is assumed to follow a geometric 

Brownian motion and the firm’s capital structure to consist of a zero-coupon debt and 

common equity. This structural approach then yields formulas for the risky corporate bond 

and the default probability of the firm. There are two disadvantages of using Black-Sholes 

model when pricing equity value. One is bond default happen only at maturity, and other is 

ignoring that low liquidity makes corporate bond default.  

  Blake and Cox (1976) have evolved to extend the BSM model to multiple periods. Barrier 

structural models, these models view default as a down-and-out barrier option. It allows for 

corporate bond default anytime that before maturity only if the bond value hits a pre-specific 

level. Whenever the bond value reaches the pre-specific level, the corporation goes into 

default or is liquidated immediately.  

Leland (1994) had extended the model to include taxes, bankruptcy costs, and protective 

covenants. He considers two possible bankruptcy determinants. One is when bankruptcy is 

endogenously by the inability of the firm to raise sufficient equity capital to meet its current 

debt obligations and one is the Brennan and Schwartz case with a positive net-worth covenant. 

He used to derive closed-form solutions for optimal capital structure when firm asset value 

follows a diffusion process with constant volatility. 

2.2 Transformed-Data Maximum Likelihood Estimation 

  The structural approach is conceptually elegant but is laden with implementation problems. 

That is the firm’s asset values are unobservable and the model parameters are unknown. It is 

meaning that the assets’ expected return and volatility in the case of Merton’s model are 

unknown. 
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  In the academic literature, there exist at least three other ways of dealing with the 

unobservability issue. First is a proxy asset value may be computed as the sum of the market 

value of the firm’s equity and the book value of liabilities. The second way is based on 

solving a system of equation. And the MLE method is third way of dealing with the 

unobservability issue. The approach put forward in Duan (1994) is based on maximum 

likelihood estimation (MLE) which views the observed equity time series as a transformed 

data set with the theoretical equity pricing formula serving as the transformation. The benefits 

of using the MLE method are well understood in statistics and econometrics.  

The estimation problem associated with unobserved asset values can be naturally cast as a 

transformed-data MLE problem. Such an approach was first developed in Duan (1994). The 

obvious advantages are that (1) the resulting estimators are known to be statistically efficient 

in large samples, and (2) sampling distributions are readily available for computing 

confidence intervals or for testing hypotheses. 

 

2.3 Particle Filter 

Since 1993 years particle filter have become a very popular class of numerical methods for 

the solution of optimal estimation problems in non-Gaussian scenarios. In comparison with 

standard approximation methods, the principal advantage of particle methods is that they do 

not rely on any local linearisation technique or any crude functional approximation. 

Now we describe the problem of principle filter. Assume that the state of a financial model 

at time k  is described by a random vector kx  whose dynamics follows the transition 

equation 

1 1( , )k k kx Q x                              (1) 

where ( )Q  is an arbitrary function and k  is a sequence of independent random vectors. 
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When kx  is continuous, this defined the conditional probability density 1( | )k kq x x . kx  is 

not directly observable, instead at time k  a noisy observation ky  is available, linked to kx  

through the measurement equations  

( , )k k ky G x v                               (2) 

where ( )G  us an arbitrary function and kv  the observation noise is a sequence of 

random vectors, independent across time and form k . When ky  is continuous, this defines 

the conditional probability density ( | )k kg y x .  

  Further, assume some prior distribution, 0 0( )q x , for the initial state variable. Then, the 

objective of filtering is to come up with the distribution of the hidden variable, kx , given the 

observed data up to k . This quantity is the filtering distribution of kx  and is denoted by 

0:( | )k kf x y . In the algorithms that follow these distributions are obtained sequentially, as new 

observations arrive. 

Kalman Filtering is applicable to linear normal systems. Here the filtering distributions are 

normally distributed with a mean and variance that can be recursively updated using the 

Kalman recursion. 

Extended Kalman Filter (EKF) is useful when the transition and measurement equation are 

not linear but differentiable. This method using a first-order Taylor expansion around 

1 1( )k kE x   and applies Kalman Filtering on the approximating linear system. This approach is 

often applied in term structure modeling and in commodities modeling. The methods have a 

big problem that is the system only up to a first order and provide poor results when the 

nonlinearity of the measurement or transition equation is serious. 

Unscentes Kalman Filter (UKF) avoids the linearization altogether and provides a higher 
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order approximation to the nonlinear system than the EKF. This method approximates the 

normal filtering distribution using a discrete distribution that matches the mean and 

covariance matrix of the target Gaussian random variable. Then, these points are passed 

through directly the nonlinear functions to obtain the quantities necessary for the Kalman 

recursion. 

When the system is non-linear or non-gaussian, the filtering distribution may not be normal 

and the Kalman Filter is not valid any more. To appreciate the difficulty of the task, in the 

following we describe the sequential filtering problem in the general model. 

The joint filtering distribution of 0:kx  given 1:ky  is 

0: 1: 0: 1:
0: 1:

1: 1:

( , ) ( , )
( | )

( ) ( )

k k k k
k k

k k

f x y f x y
f x y

f y L y
   

where 1:( )kL y  is the likelihood of the data observed up to 𝑘 

1: 0: 1: 0:( ) ( , )k k k kL y f x y dx   

Now derive the recursive formula connecting the filtering distributions at k  and 1k    

          0: 1 1: 1( | )k kf x y 
0: 1 1: 1

1: 1

( , )

( )

k k

k

f x y

L y

 



  

1 1 1 0: 1: 1:

1: 1: 1

( | ) ( | ) ( , ) ( )

( ) ( )

k k k k k k k

k k

g y x q x x f x y L y

L y L y

  



  

1 1 1
0: 1:

1 1:

( | ) ( | )
( | )

( | )

k k k k
k k

k k

g y x q x x
f x y

f y y

  



  

This equation gives the recursion of filtered distributions over the whole path space. 

Integrating over 0: 1kx   one gets the following relationship 

1 1 1
: 1 1: 1 1:

1 1:

( | ) ( | )
( | ) ( | )

( | )

k k k k
k k k k k

k k

g y x q x x
f x y f x y

f y y

  
 



  

1 1 1 1:( | ) ( | ) ( | )k k k k k kg y x q x x f x y    

shows that 0: 1:( | )k kf x y  is a sufficient statistic. Integrating out kx , one arrives at the filtering 

distribution of 1kx   
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1: 1 1 1 1 1:( | ) ( | ) ( | ) ( | )k k k k k k k kf x y g y x q x x f dx y      

The Kalman Filter is a special case where this recursion can be executed in closed-form due 

to the joint normality of the system. In general, the filtering distributions do not belong to a 

known parametric family and the integration has to be done using numerical methods. 

  Our target is the joint filtering distribution of the hidden states  

0: 1: 1 0 0

1

( | ) ( | ) ( | ) ( )
k

k k t t t t

t

f x y g y x q x x q x



                (3) 

Ideally, we would like to sample directly from the densities 1( | ) ( | )t t t tg y x q x x  , providing a 

straightforward recursive Monte Carlo scheme. Unfortunately this is usually impossible 

because the complexity of these densities. 

Importance sampling (IS) is an approach that can be used in such case. Here, one draws 

from a feasible proposal distribution 0:( )kr x  instead of the target and attaches importance 

weights to the samples to compensate for the discrepancy between the proposal and the target. 

If the weighted samples is denoted by 
( )

0:( , )m m

k kw  where m=1,…,M, the samples and weights 

are obtained as 

( )

0: 0:( )m

k kr x  

( ) ( ) ( ) ( )

1 0 0
( ) 1

( )

0:

( | ) ( | ) ( )

( )

k
m m m m

t t t t
m t

k m

k

g y q q

w
r

   








 

The expectation 0: 1:( ( | ))k kE h x y  can be estimated by the estimator 

( ) ( )

0:

1

( )

1

( )
M

m m

k k

m

M
m

k

m

h w

h

w










 

Using independence of the sample the estimator is asymptotically consistent  

  0: 1:
ˆ | 0 

P

k kh E h x y   as M  
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and asymptotically normal  

   0: 0:
0: 1: 2

0:

( ( ) ( ))ˆ | 0,
[ ( ( ))]

d
h k k

k k

r k

Var h x w x
M h E h x y N

E w x

 
     

 
 as M  

Note that the asymptotic variance can also be estimated using the simulation output, allowing 

inference on the reliability of the estimate. 

The preceding importance sampling algorithm can be made sequential by choosing a 

recursive structure for the importance sampling distribution, 0:( )kr x  

0: 1 0 0

1

( ) ( | , ) ( )
k

k t t t

t

R x r x y x r x



  

Then the importance weight kw  can be written as 

1 0 0

1 1 1

( | ) ( | ) ( )

( | , ) ( | , )

k
t t t t

k

t t t t t t t

g y x q x x q x
w

r x y x r x y x



  

  

and the importance sampler can be implemented in a sequential manner that is the way which 

is calling Sequential Importance Sampling (SIS). 

This algorithm seems to provide a solution to the recursive filtering problem. Unfortunately 

after a couple of time steps the normalized weights of most points fall to zero and the 

weighted sample cease to provide a reliable representation of the target distribution. 

Sequential Importance Sampling with Resampling (SIR) is a way that can deal the weight 

degeneracy problem. The method is resampling the current population of particles using the 

normalized weights as probabilities of selection. After resampling, all importance weights are 

reset to one. The intuition behind this procedure is that unlikely trajectories are eliminated and 

likely ones are multiplied. This approach concentrates on the marginal filtering distribution 

0:( | )k kf x y  instead of the joint distribution 0: 0:( | )k kf x y . Resampling helps to achieve a better 

characterization of the last state of the system at the expense of representing the past of the 

full hidden path, 0:kx .  
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3. Model and Estimation Method 

3.1 Equity value in Brockman and Turtle’s (2002) Model 

    In this section, we describe the model of pricing the equity value using the barrier option 

model of Brockman and Turtle (BT). They propose a framework for corporate security 

valuation based on path dependent instead of the commonly used path-independent approach. 

They argue that path dependency is an intrinsic and fundamental characteristic of corporate 

direct implication of this framework is that equity will be price as a European down-and-out 

call option. The equity pricing equation is as follow: 

( ; , , , , )t tS S V K H r T t 

( ) 2 ( ) 2 2( ) ( ) ( ) ( ) ( ) ( )   (4)r T t r T t

t t t t t t

t t

H H
V a Ke a T t V b Ke b T t

V V

                 

where tS  is the equity value at time t, tV  is the firms value at time t, K  is the debt value 

at time T, H  is the barrier, ( )   is the standard normal distribution,  

ta =

{
  
 

  
 

2ln( / ) ( 0.5 )( )tV K r T t

T t





  



                  for      K H

2ln( / H) ( 0.5 )( )tV r T t

T t





  


                 for     K H

     , 

tb =

{
 
 

 
 

2 2ln(H / ) ( 0.5 )( )tV K r T t

T t





  


             for      K H

2ln(H / ) ( 0.5 )( )tV r T t

T t





  


                  for     K H

     , 

and 
2

1

2

r



  . 
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3.2 Log Likelihood Function   

We can apply the transformed-data MLE method of Duan (1994) to obtain the 

log-likelihood function of a discretely sampled equity value on a firm that survives in the 

entire sample period. It turns out to be the log-likelihood function of the firm’s asset value 

conditional on survival evaluated at the implied asset values and then plus a term related to 

the Jacobian of the transformation. Thus  

0 1 2
( , , ; , , ,..., )

n

S

BT t t t tL H V V V V   

0 1 2

1

ˆ( ( , ); , , , , )
( , , ; , , ,..., ) ln

j

n

j

n
tV

BT t t t t

j t

S V H K H r T t
L H V V V V

V

 
 



 
 


  

where  

0 1 2
( , , ; , , ,..., )

n

V

BT t t t tL H V V V V 

2
2

2

2
1 1

( ( ) )
1 2ln(2 ) ln( )

2 2

j

j

n nt

t

j j

R h
n

h V
h





 

 

      

1

2
1

2
ln(1 exp( ln ln ))

j j

n
t t

j

V V

h H H





                (5) 

1j jh t t   , 

1

ln( )
j

j

j

t

t

t

V
R

V


  and the first derivative of the equity value with respect to the 

asset value can be derived as follow: 

ˆ( ; , ) ( ) ( )
( )t t t

t t

t t t

S V H a a S
V a X

V V V

   
  

  
 

2

2 2

( )
( ) ( )

tt
t t t t

t t t t

H

VbH H
V V b b

V V V V



 

  
                                  
 
 
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2 2

2 2

( )
( )

tt
t

t t t

H

Vb sH
X X b s

V V V









  
                       
 
 

 

where 

( )r T tX Ke   

s T t   

2

2
( ) 1 1

2

ta

t

t t

a
e

V sV





 

2

2
( ) 1 1

2

tb

t

t t

b
e

V sV


 


 

2

2

1
2

t

t t t

H

V H

V V V







 
 

          
    

 

2 2

2 2

1
(2 2)

t

t t t

H

V H

V V V











 
  

           
    

 

2( )

2
( ) 1 1

2

ta s

t

t t

a S
e

V sV


 




 

2( )

2
( ) 1 1

2

tb s

t

t t

b s
e

V sV


 

 


 

 

3.3 Contain Trading Noise 

3.3.1 Basic Model and Method 

  It will become much complex estimation if the equity prices contain trading noise. The 
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market microstructure literature indeed strongly suggests that noise should be expected. Then 

the relationship between the unobserved asset value and the observed equity value predicted 

by the equity pricing formula is masked by trading noise, which is modeled as an exogenous 

variable in our pricing model. Following Duan and Fulop (2009), we assume a multiplicative 

error structure for the trading noise and change the Merton model to become BT’s model. We 

express the logarithmic equity value as follow: 

ln ln ( ; , , , , )                                                    (6)
i it t i iS S V K H r T     where 

 , 0,...,i i N   are i.i.d. standard normal random variables and the nonlinear pricing function 

( ; , , , , )
it iS V K H r T t   has been given. 

  We can derive its discrete-time form of the unobserved asset value which with the process 

following the geometric Brownian motion as following:  

1

2

1ln ln ( )                                                      (7)
2i it t tV V h h


  
      

where  , 1,...,i i N   are i.i.d. standard normal random variables. 

This two equation constitute a state-space model with the first being the measurement 

equation and the second the transition equation. To deal with the non-linear filtering problem, 

we employ Smoothed Localized SIR (SL-SIR) particle filter which is proposed by Duan and 

Fulop (2009). They construct a localized sampler that takes advantages of the knowledge on 

1it
S


 and localize the sampling of 

1it
V


 around the asset value implied by 

1it
S


 under no 

trading noise. The complete step of our method is as follow: 

  Initial State: Set 
0 0

( ) 1( )m

t tV S S  where the function 
1( )S    is the inverse of the equity 

pricing function describe above. 

  Recursion: For 1,...,j N  

1. Sampling 
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- Begin with 
1

( )

j

m

tV


 in the equal-weight filtering sample. Draw a standard normal 

( )m

jv  and compute ( ) * ( )( , )
j j j

m m

t t t jV V S v  to obtain the pair 
1

( ) ( )( , )
j j

m m

t tV V


, where 

* 1( , ) ( ; , , , , )j

j j j

v

t t j t jV S v S S e K H r T t



   

- Compute the importance weights  

1

1

( ) ( ) ( )
( | )

( | , )
j

j j

j

tm m m

j t t

t

S V
w f V V

V



 
 


 

- Normalized the importance weights 

( )

( )

( )

1

m

jm

j M
m

j

m

w

w








 

2. Resample from the weighted sample   ( ) ( ), ; 1,...,
j

m m

t jV m M   to obtain a new 

equal-weight sample of size M. 

 

3.3.2 Smooth resampling 

  Since the likelihood function based on the typical particle filtering algorithm is not 

continuous due to a requited resampling step, smoothness must be built into the algorithm to 

make it suitable for parameters estimation. We used the smooth bootstrapping method that is 

proposed by Pitt (2002).  First, sort the data  ( ) ( )( , ); 1,...,
j

m m

t jV m M   and then becomes 

 , , 1,...,m

mx m M  . Then we following Pitt to assign  1 1 2

1
Pr(1) 2

2
     , 

 1 1

1
Pr( 1) 2

2
R R R

R    
     and  1

1
Pr( )

2
i i ii        for 2,..., 2i R  . We 

generate the M sorted uniforms as 
 

( )

1
j

j u
u

M M


   where 1,...,j M  and u  is the 

single random variable with the uniform distributions (  ~ 0,1u U ). And we get regions ( jr ) 

and *

ju  for all j , as following: 
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set 0 ,   1 ;s j   

for ( 1    R-1 )i to  

{ 

 ;
i

s s    

 while ( ( )ju s  and j M ) 

 { 

   ;jr i  

  
  ( )*  ;

j i

j

i

u s
u





 
  

  1 ;j j   

} 

} 

Having obtained the region we are in , 1,...,jr j M , we then sample conditional upon the 

region. If 1jr   ,  1 * 2 11 1 2

1 2 1 2

2
max 0,

2
j jy x u x x

  

   

  
      

  
. 

If 2 2jr R    then  1 *j j jr r r

j jy x x u x


    . If 1jr R   and 
* 1

1 2

R R
j

R R

u
 

 








 then 

 1 1 *1

1

2R R RR R
j j

R R

y x x x u
 

 

 




    


, else R

jy x . And  , 1,...,jy j M  is the new 

equal-weight sample of size M. 

 

3.3.3 Describe the work of finding the MLE 

There are four parameters,  , , , H   , we need to estimate.  First, we use the estimate 

parameter under traditional model, with no noise, to be the initial parameter. Then use 

dichotomy to get firm’s value under BT’s model by equation (4). Second, generate a matrix 
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1MA   with all elements are under standard normal distribution (  0,1N ). Then we take the 

matrix multiply 0.1 and plus the initial firm’s value, 
0t

V , then we get M point equal-weights 

sample be the initial firms value. Now we are using localized sampling to generate the 

proposal distribution: 

set 10gridlength  , N=25 and /intervallength gridlength N  

for 0i   to N  

{ 

 ( ) *exp( 0.5 ( 1) )tS i S gridlength i intervallength       

} 

and use dichotomy to find the correspond ( )V i . 

for 1i   to M 

{ 

 ( )noise i v  , (where (0,1)v N ) 

 
( ) 0.5noise i gridlength

bin
intervallength

  
  
 

       

    then 0.5upper bin intervallengthgridlength     

  ( ) /w upper noise i intervallength     

 (Interpolation Method) 

 
( )ln ln ( ) (1 ) ln ( 1)i

tV V bin w V bin                 

} 

After that, we calculate the weights of the proposal sample given old particles as we 

describe above and the log-likelihood value at time jt  can be write as 
1

ln( )
j

M
j

t i

i

L w M


  . 

Then we can calculate that  
( )

1

, 1,...,
M

i j j

j i i

i

w w i M


  . Then we used the smooth 

resampling method as Section 3.3.2 to find out the new equal weights sample. Finally, the 
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estimate of firm’s value is the mean of the new samples. 

  After the process, we calculate likelihood estimation as 
1

j

n

t

j

L L


 , where n is the size of 

observe equity value. Then repeat the step and find out the maximum likelihood estimation to 

find the parameter we are interesting. 

 

4. Result  

4.1 Simulation Analysis 

  We conduct Monte Carlo simulation experiment to investigate the finite-sample 

performance of SL-SIR particle filter on the Brockman and Turtle model. We generate sample 

paths of noisy equity observations by setting initial firm value as 100, the debt value at 

maturity as 100, risky free rate as 0.05 and the time to maturity as ten years. In short, we 

generate 250 daily returns and then compute the firm’s asset values backward to a yield a 

sample of 251 asset values. We keep the simulated data only when asset values are above of 

the barrier (H) all the time before maturity. Corresponding to the simulated asset values, we 

compute 251 equity values using the measurement equation (4). For estimating model 

parameters, we act as if we do not know the asset value as it is in the real-life estimation 

situation.  

  The parameters we set in Monte Carlo experiment are taken from Duan and Fulop (2009), 

expect default boundary H. The base case parameter values are as follow: 0.3  , 

0.004   and 0.2  . Following Duan et al (2004), we set the barrier to be 80. We also 

change the three key parameters,  ,   and H , to investigate the     performance of 

SL-SIR particle filter under these setting. We simulate 500 samples in each case of Tables 1 

and 2. 
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Panel A of Table 1, presents the estimation results for the base case parameter. We next 

compare the results of different  (0.15 and 0.7) while keeping other parameters identical as 

they are in base case. Panel C presents the results for different values of H  (50 and 90). 

Similar to the result of Duan and Fulop, when   is increasing the performance is getting 

worse in estimates of firm value, and   is overestimated than base case. We observe that   

is closer to true value and the mean of firm’s value error is smallest when   is smaller. In 

Panel B, we can find that when H  is bigger the standard deviation of barrier estimates is 

smaller. It means that the estimates is more accurate when H  is bigger. We also find that 

when 50H   the trading noise   is closer to true value. It is reasonable because when the 

value of H  is close to zero, the BT’s model will become Merton’s model. As a result, the 

estimates of   become more accurate and similar to those in Duan and Fulop (2009). 

Table 2 reports the results of different size of trading noise from 0.004 to 0.016, 0.02 and 

0.025. As we already find in Table 1 that   is overestimated under the BT’s model. We next 

want to examine in which case the parameter can be better pinned down. 

It is apparent that  s are overestimated when   is smaller than 0.009. When   is bigger 

than 0.01, the estimation performance improves as the percentages of mean’s error are smaller 

than five percent. Although it seems to have underestimate trading noise when  =0.16, we 

can find that the SL-SIR particle filter can effectively uncover true parameters when  =0.2 

and  =0.25. It is shown as   is getting larger, SL-SIR particle filter can perform better and 

obtain more accurate results. The percentage of mean’s error is 1.4477253% and 0.345951% 

for 0.2   and 0.25  , respectively. 
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Table 1           

Panel A 

Estimation performance for Base Case Parameters 

 
Model parameters 

 

 
  100     H  V̂ V  

True Value 0.3  0.4  0.2  80.0    

Mean 0.289535  0.694017  0.317163  81.354324  6.934573  

Median 0.280056  0.487926  0.278804  83.056711  5.832541  

Standard deviation 0.073935  0.764775  0.242836  14.128389  5.731099  

Mean's Error (%) 3.45  73.50  58.58  1.69  
 

Median's Error (%) 6.65  21.98  39.40  3.82  
 

Panel B 

Estimation performance for different values of volatility 

 Model parameters  

   100     H  V̂ V  

True Value 0.15 0.4 0.2 80   

Mean 0.166208  0.442701  0.219092  73.356847  3.886265  

Median 0.148554  0.460068  0.224714  79.690627  1.380885  

Standard deviation 0.075934  0.364792  0.148109  21.769248  8.259415  

Mean's Error (%) 10.81  10.68  9.55  8.30  
 

Median's Error (%) 0.96  15.02  12.36  0.39  
 

True Value 0.7 0.4 0.2 80   

Mean 0.681307  1.137764  0.871481  80.711376  11.692051  

Median 0.665008  0.959083  0.839004  82.489340  11.567329  

Standard deviation 0.109159  1.131262  0.453123  16.754879  7.567292  

Mean's Error (%) 2.67  184.44  335.74  0.89  
 

Median's Error (%) 5.00  139.77  319.50  3.11    

Panel C 

Estimation performance for different values of H (Barrier) 

 
Model parameters     

 
    100     H  V̂ V  

True Value 0.3 0.4 0.2 50   

Mean 0.298248  0.461218  0.194039  44.409513  5.629562  

Median 0.295778  0.432980  0.198395  47.273668  4.434005  

Standard deviation 0.062164  0.445027  0.287267  22.896787  5.016560  

Mean's Error (%) 0.58  15.30  2.98  11.18  
 

Median's Error (%) 1.41  8.24  0.801  5.45  
 

True Value 0.3 0.4 0.2 90   

Mean 0.292529  0.732502  0.405107  89.726744  5.528392  

Median 0.280429  0.585835  0.384180  92.277832  4.587497  

Standard deviation 0.057169  0.776436  0.230903  11.000337  4.968595  

Mean's Error (%) 2.49  83.13  102.55  0.30  
 

Median's Error (%) 6.52  46.46  92.09  2.53    
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Table 2           

Estimation performance for different values of trading noise 

 
Model parameters 

 
    100     H  V̂ V  

True Value 0.3 0.4 0.2 80   

Mean 0.289535  0.694017  0.317163  81.354324  6.934573  

Median 0.280056  0.487926  0.278804  83.056711  5.832541  

Standard deviation 0.073935  0.764775  0.242836  14.128389  5.731099  

Mean's Error (%) 3.49  73.50  58.58  1.69  
 

Median's Error (%) 6.65  21.98  39.40  3.82  
 

True Value 0.3 0.5 0.2 80   

Mean 0.289467  0.695682  0.317105  81.365318  6.936071  

Median 0.280759  0.495246  0.279546  82.858325  5.781936  

Standard deviation 0.074145  0.766175  0.242746  14.191345  5.780183  

Mean's Error (%) 3.51  39.14  58.55  1.71  
 

Median's Error (%) 6.41  0.95  39.77  3.57  
 

True Value 0.3 0.6 0.2 80   

Mean 0.294242  0.775547  0.324763  80.180297  6.887912  

Median 0.284981  0.596755  0.295044  81.792215  5.790525  

Standard deviation 0.079514  0.822876  0.238358  14.387245  6.275649  

Mean's Error (%) 1.92  29.26  62.38  0.23  
 

Median's Error (%) 5.01  0.54  47.52  2.24  
 

True Value 0.3 0.7 0.2 80   

Mean 0.292950  0.848283  0.325065  80.302363  6.741612  

Median 0.285692  0.733541  0.291508  81.816070  5.836279  

Standard deviation 0.072632  0.820944  0.235947  13.912915  5.689180  

Mean's Error (%) 2.35  21.18  62.53  0.378  
 

Median's Error (%) 4.77  4.793  45.75  2.27  
 

True Value 0.3 0.8 0.2 80   

Mean 0.293906  0.903380  0.326171  80.141896  6.757292  

Median 0.287266  0.846911  0.291558  81.506543  5.785801  

Standard deviation 0.072455  0.830006  0.237592  13.916262  5.629737  

Mean's Error (%) 2.03  12.92  63.09  0.18  
 

Median's Error (%) 4.24  5.86  45.78  1.88  
 

True Value 0.3 0.9 0.2 80   

Mean 0.296631  0.938760  0.328385  79.776027  6.957787  

Median 0.287888  0.897966  0.296226  81.064581  5.832944  

Standard deviation 0.076099  0.844382  0.238327  14.362693  5.990341  

Mean's Error (%) 1.12  4.31  64.19   0.28  
 

Median's Error (%) 4.04  0.23  48.11   1.33    
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Table 2 (continued)           

Estimation performance for different values of trading noise  

 
Model parameters 

 

    100     H  V̂ V  

True Value 0.3 1 0.2 80   

Mean 0.301696  1.025207  0.330317  78.723039  7.133954  

Median 0.290818  1.071254  0.307786  81.117809  5.830117  

Standard deviation 0.077207  0.766523  0.245389  14.922607  6.414935  

Mean's Error (%) 0.57  2.52   65.16  1. 60  
 

Median's Error (%) 3.06   7.13  53. 90  1.40  
 

True Value 0.3 1.1 0.2 80   

Mean 0.300864  1.099797  0.335889  79.236590  7.155484  

Median 0.291033  1.104849  0.300734  80.249527  6.165905  

Standard deviation 0.082791  0.968198  0.254974  14.656768  6.110792  

Mean's Error (%) 0.29  0.02  67.94   0.95  
 

Median's Error (%) 2.99  0.44  50.37  0.31    

True Value 0.3 1.2 0.2 80   

Mean 0.301904  1.156085  0.334673  79.061060  7.258010  

Median 0.290482  1.190590  0.303950  80.083199  6.108626  

Standard deviation 0.082940  0.867500  0.241394  14.947478  6.420176  

Mean's Error (%) 0.63  3.66  67.34  1.17  
 

Median's Error (%) 3.17  0.78  51.97  0.10  
 

True Value 0.3 1.3 0.2 80   

Mean 0.302884  1.267403  0.332679  78.853835  7.343398  

Median 0.290809  1.307893  0.309171  80.286758  6.338478  

Standard deviation 0.081462  0.922298  0.242305  14.970130  6.279127  

Mean's Error (%) 0.96  2.51  66.34  1.43  
 

Median's Error (%) 3.06  0.61  54.59  0.36  
 

True Value 0.3 1.4 0.2 80   

Mean 0.303326  1.366716  0.337996  78.761607  7.374877  

Median 0.293122  1.418037  0.309068  80.129119  6.220201  

Standard deviation 0.081793  0.867711  0.246041  15.048518  6.297342  

Mean's Error (%) 1.11  2.38  69.00  1.55  
 

Median's Error (%) 2.29   1.29  54.53  0.16  
 

True Value 0.3 1.5 0.2 80   

Mean 0.304000  1.448024  0.335804  78.676881  7.488319  

Median 0.294014  1.514571  0.306532  80.284168  6.193693  

Standard deviation 0.083616  0.865700  0.243837  15.233475  6.389743  

Mean's Error (%) 1.33  3.47  67.90  1.65  
 

Median's Error (%) 2.00  0.97  53.27  0.36    
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Table 2 (continued)           

Estimation performance for different values of trading noise 

 
Model parameters 

 

    100     H  V̂ V  

True Value 0.3 1.6 0.2 80   

Mean 0.307599  1.528617  0.335275  78.066716  7.836115  

Median 0.295355  1.610964  0.307866  79.985345  6.173877  

Standard deviation 0.084953  0.783359  0.241210  15.990268  6.893824  

Mean's Error (%) 2.53  4.46  67.64  2.42  
 

Median's Error (%) 1.55  0.69  53.93  0.02  
 

True Value 0.3 2 0.2 80   

Mean 0.307512  1.971045  0.339919  78.095754  7.947089  

Median 0.294395  2.021401  0.312005  80.072815  6.099056  

Standard deviation 0.089618  0.817818  0.247985  16.184400  7.016480  

Mean's Error (%) 2.50  1.45  69.96  2.38  
 

Median's Error (%) 1.87  1.07  56.00  0.09  
 

True Value 0.3 2.5 0.2 80   

Mean 0.310238  2.508649  0.344919  77.577095  8.318177  

Median 0.295412  2.541412  0.315167  80.521116  6.373411  

Standard deviation 0.096634  0.756537  0.255675  17.381054  7.717444  

Mean's Error (%) 3.41  0.35  72.46  3.03  
 

Median's Error (%) 1.53  1.66  57.58  0.65    

 

From Table 2, we find that the median of our estimation parameters are more close to the 

true value than mean’s. It may because that the number of our simulation experiment, 

currently 500, is not large enough to overcome the problem of unstable parameter estimates 

due to the complexity of the Brockman and Turtle model. We believe that the estimate results 

can be better with larger samples size. 

 

4.2 Empirical analysis  

  We conduct empirical analysis on the 35 companies that constitute the index of Dow Jones 

Industrial Average during 2006 to 2009. Since one expects severe trading noise for the least 
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liquid companies, for the purpose of comparison, we also select the other 35 companies which 

are least liquid in 2008 to be the comparison group. We use the illiquidity ratio proposed by 

Amihud (2002) as a proxy for the price impact of a trade, and we select 35 stocks with the 

largest illiquidity ratio in 2008. The firm-specific illiquidity ratio 
tiAMIHUD ,
 for stock i in 

year t is given by the average daily ratio of the absolute return of a stock to its dollar trading 

volume over a year. 


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where 
tdir ,,
 and 

tdiV ,,
 are return and volume (measured in million dollars), respectively, for 

the stock on day d in year t, and 
tiD ,
 is the number of observations for the stock in year t. 

Our data samples consist of daily equity values of these firms over 2006 to 2009. The initial 

maturity of debt is set to 10 years. To implement the Merton model, T is usually taken to be 

one year and L is measured as the firm's book value of short-term debt, plus one half of its 

long-term debt (see Bharath and Shumway, 2008). Following Duffiee, Saita and Wang (2007), 

we measure the short-term debt as the maximum of “Debt in current liabilities” and “Total 

current liabilities”. Accordingly, the liability measure L is equal to short-term debt plus one 

half of the long-term debt. The three month T-bill rate from the Federal Reserve website is 

chosen as the risk-free rate. The resulting value is our proxy for the face value of the debt in 

our pricing model. We set 1/ 251h   to reflect the use of daily equity values. And we run 

the estimation using the 5000-particle SL-SIR filter. 

   Figure 1 demonstrates the default probabilities of the Merton and the BT models using 

General Motor (GM) as an example. We use the monthly data to illustrate that considering 

trading noise or not does influence the implied default probability. We also find that both the 

Merton and the BT models are feasible in estimating default probability. Although we could 

not find the root cause of an unreasonable default probability estimate of the Merton model in 
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2008, this kind of results are rare in our estimation.   

Figure 1. Monthly implied default probabilities of GM from 2007 to 2009 

 

We next report the differences of implied default probability and volatility estimates in 

Tables 3 and 4. In Table 3, BT(noise) represents the BT model in the [presence of trading 

noise while BT(nonoise) does not consider trading noise. Similarly, M(noise) incorporates 

trading noise while M(nonoise) does not. Table 3 reports the absolute difference of default 

probabilities. Because implied default probabilities are low (many of them are close to zero) 

before financial tsunami, we present the results by percentiles of the absolute difference. It 

appears that the probabilities are impacted by different pricing models as well as different 

liquidity conditions in terms of groups of Dow-Jones and illiquidity stocks. The estimates of 

volatility also have observable difference between these two groups. It means that trading 

noise indeed influence the estimation of implied default probability and volatility. 
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Table 3 

Panel A.   

Absolute Difference of Default Probability  

Dow Jones BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Components -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.031864  0.013354  0.264293  0.260407  

25 th percentile 0.000002  0.000000  0.000199  0.000091  

Median 0.000796  0.000029  0.075084  0.051885  

75
 
th percentile 0.013679  0.010548  0.536559  0.547368  

90
 
th percentile 0.071517  0.040340  0.808958  0.813308  

95 th percentile 0.133160  0.065176  0.910398  0.926545  

Illiquid  BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Stocks -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.037535  0.212264  0.329232  0.197663  

25 th percentile 0.000000  0.001134  0.009735  0.005404  

Median 0.000113  0.039172  0.116780  0.076523  

75
 
th percentile 0.013074  0.292674  0.645902  0.307275  

90
 
th percentile 0.092606  0.821428  0.989598  0.592290  

95 th percentile 0.249004  0.926299  0.999351  0.825591  

Panel B.   

Absolute Difference of Volatility 

Dow Jones BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Components -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.039642  0.039686  0.177541  0.151296  

25 th percentile 0.001134  0.000229  0.012484  0.009888  

Median 0.006527  0.017756  0.116565  0.090000  

75
 
th percentile 0.025453  0.054508  0.280177  0.225390  

90
 
th percentile 0.062772  0.104063  0.388257  0.335491  

95 th percentile 0.109684  0.158432  0.544140  0.465794  

Illiquid  BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Stocks -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.262956  0.118848  0.262843  0.174705  

25 th percentile 0.026349  0.000000  0.051156  0.013393  

Median 0.121739  0.003040  0.197470  0.072725  

75
 
th percentile 0.388565  0.106766  0.437946  0.180761  

90
 
th percentile 0.722370  0.456727  0.588492  0.386295  

95 th percentile 0.966690  0.570590  0.680860  0.694316  
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Table 4 

Panel A.   

Difference of Default Probability  

Dow Jones BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Components -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.022275  -0.004801  0.260541  0.233465  

25 th percentile -0.000059  -0.000364  0.000066  0.000007  

Median 0.000000  0.000000  0.071311  0.039093  

75
 
th percentile 0.002244  0.000001  0.536007  0.518805  

90
 
th percentile 0.054480  0.009397  0.808869  0.802970  

95 th percentile 0.109080  0.028934  0.910298  0.916753  

Illiquid  BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Stocks -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average -0.006302  -0.153317  0.310956  0.163942  

25 th percentile -0.005831  -0.221848  0.001394  0.000611  

Median -0.000009  -0.008673  0.099461  0.057745  

75
 
th percentile 0.000000  0.000000  0.637916  0.286693  

90
 
th percentile 0.000000  0.062442  0.987768  0.565846  

95 th percentile 0.026856  0.184319  0.999316  0.770740  

Panel B.   

Difference of Volatility  

Dow Jones BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Components -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.004440  0.033661  -0.173105  0.350527  

25 th percentile -0.000739  0.000014  -0.278849  0.192099  

Median 0.001851  0.014228  -0.116222  0.258953  

75
 
th percentile 0.017170  0.051748  -0.001309  0.390042  

90
 
th percentile 0.038537  0.103409  0.006132  0.541114  

95 th percentile 0.065636  0.158292  0.009722  1.162767  

Illiquid  BT(nonoise) M(nonoise) BT(nonoise) BT(noise) 

Stocks -BT(noise) -M(noise) -M(nonoise) -M(noise) 

average 0.191549  0.118187  0.141635  0.068273  

25 th percentile 0.017597  0.000000  0.007219  0.000000  

Median 0.110124  0.002524  0.140785  0.028836  

75
 
th percentile 0.339242  0.106766  0.345676  0.124270  

90
 
th percentile 0.642578  0.456727  0.541707  0.260886  

95 th percentile 0.843289  0.570590  0.603962  0.391795  

 

  In Table 4, we present the difference among models to explore the relationship among 

various models. The results show that when we consider trading noise, the default 
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probabilities in general increase. And the implied default probabilities of BT model are higher 

than those of the Merton model. The estimates of volatility are smaller when we incorporate 

trading noise, especially for those illiquid stocks with larger trading noise. 

 

Table 5  

Estimation results of trading noise ( 100  ) 

Data Dow Jones Dow Jones Illiquid Stocks Illiquid Stocks 

Model BT Merton BT Merton 

2007.Q1~2009.Q4 

average 0.620997 0.512007 6.164850 2.763445 

average 0.000034 0.001515 1.140957 0.000286 

25 th percentile 0.236182 0.347953 2.226918 1.319713 

Median 0.563633 0.872474 3.936719 2.798791 

75
 
th percentile 1.080099 1.309204 5.794606 4.223958 

90
 
th percentile 1.499628 1.701847 8.662014 6.100530 

2007.Q1~2008.Q2 

average 0.187281 0.194590 4.440171 0.486229 

25 th percentile 0.000001 0.000001 0.706262 0.000001 

Median 0.078462 0.023637 1.160575 0.000650 

75
 
th percentile 0.324260 0.349305 1.774399 0.738272 

90
 
th percentile 0.499112 0.555216 2.890811 1.768415 

95 th percentile 0.564012 0.612619 4.264387 2.326484 

2008.Q3~2009.Q4 

average 1.048487 0.824867 7.807008 4.942600 

25 th percentile 0.011285 0.334262 2.509572 2.001414 

Median 0.478274 0.824949 3.575181 2.671950 

75
 
th percentile 0.947227 1.183250 5.044821 3.828606 

90
 
th percentile 1.340457 1.699006 7.263062 5.953734 

95 th percentile 1.841368 2.010067 9.798447 8.062973 

 

  Table 5 shows that no matter what pricing model we use, there exists substantial difference 

in trading noise estimates between the Dow Jones stocks and the low liquidity stocks. 

Compare firms, less-liquid stocks, consistently have larger   than Dow Jones stocks. In the 

subperiod results in Panels B and C, we can also observe that the trading noise is smaller 
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during the period 2007.Q1 to 2008 Q2. In contrast, trading noise estimates are much larger 

during the period of global financial tsunami.  

 

5. Conclusion  

 This paper investigates the performance of the SL-SIR particle filter, proposed by Duan and 

Fulop (2009), on the popular structural models with default boundaries – the Brockman and 

Turtle model. Compared with the Merton model, the structural models with default 

boundaries introduce additional complexities in parameter estimation. In our Monte Carlo 

simulation analysis, it appears that the parameter estimates of the Brockman and Turtle model 

are not as stable as the simple Merton model. Fortunately, the problems  are less severe and 

SL-SIR particle filter has good performance when trading noise is getting larger. The 

empirical analysis shows that trading noises indeed impact the calculation of default 

probabilities when one applies the structural form models. Our results suggest that one cannot 

ignore trading noise when one attempts to calibrate credit risk of a firm and to measure its 

default probability, especially when the impact of trading noise is substantial during the global 

financial crisis.  

  In this study, we attempted to investigate if the Brockman and Turtle model can outperform 

the Merton model when we introduce trading noise into structural credit risk modeling. Due 

to the time constraint, we have not yet tested the capabilities of bankruptcy prediction 

accuracy of these two models. In the future, the difference of these two credit risk models in 

pricing bonds and bankruptcy predictions can be further explored.       
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