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摘要 

即時系統已經廣泛地被應用在許多需要嚴格地符合時間要求的環境

中。在即時系統中的工作必須在時間限制內完成，否則可能造成嚴重的後

果。由於對穩定性的高度要求，容錯能力也是即時系統所必須具備的。由

於工作在進入系統後才能開始被排程，因此需要的是動態的排程演算法。

本論文即是提出一個在異質多處理器上針對即時系統具有容錯能力的動態

排程演算法。我們將會提出一個以工作可排程的時間與所需要的執行時間

作為考量的 heuristic 函式，來決定工作排程的優先順序。針對為達到容

錯目的所用的 backup，我們也提出新的排程策略，稱為 MNO。經由動態地

模擬一個即時系統，結果顯示我們提出的方法能夠決定出更恰當的排程順

序，而且挪出更多的可排程時間給後來的工作，使得較多的工作能夠在時

間限制前完成執行。並且在不同的環境中，不需要搭配任何參數也能得到

較好的結果。 
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Abstract 
 

Real-time systems are being increasingly used in several applications which are time 

critical. Tasks corresponding to these applications have deadlines to be met. Fault-tolerance is 

an important requirement of such systems, due to the catastrophic consequences of not 

tolerating faults. In this thesis, we propose an algorithm do dynamically schedule arriving 

real-time tasks with PB fault-tolerant requirement on to a set of heterogeneous multiprocessor. 

Our algorithm, named density first with minimum non-overlap scheduling algorithm (DNA), 

proposes two performance improving techniques. First, a new heuristic function, called 

density, takes account of the needed computation time and schedulable time of a task. The 

task with the maximum density value will be given the highest priority. Second, the MNO 

strategy for backup scheduling will minimize the time reserved for backups. In the result of 

dynamic simulation, we can find that our algorithm has fewer rejected tasks and more general 

and suitable for any kind of environment. 
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Chapter 1. Introduction 
 

 A heterogeneous system is a computing platform consisting of different kinds of 

processors which are interconnected with some topology. These processors vary in 

computation power and dedicated purposes. Because of the multiple and various processors, 

the heterogeneous systems can support parallel and distributed applications. It is important to 

distribute the tasks to the appropriate processors for achieving high performance [1-14, 

19-28]. 

 In recent years, computing systems have been used in several applications which have 

stringent timing constraints, such as autopilot systems, satellite and nuclear plant control. 

Real-time systems are defined as those systems in which the correctness of the system 

depends on not only the logical result of computation, but also on the time at which the results 

are produced [14]. Real-time systems are broadly classified into three categories as follows: 

[16] (1) hard real-time systems, in which the consequences of not executing a task before its 

deadline may be catastrophic, (2) firm real-time systems, in which the result produced by the 

corresponding task ceases to be useful as soon as the deadline expires, but the consequences 

of not meeting the deadlines are not very severe, (3) soft real-time systems, in which the 

utility of results produced by a task with soft deadline decreases over time after the deadline 

expires. We will use the hard real-time system as our system model. 

 The problem of scheduling real-time tasks in heterogeneous multiprocessors is to 

determine when and on which processor a given task executes [14, 16]. This can be done 

either statically or dynamically. If the characteristics of tasks such as arrival time and deadline 

could be determined a priori, the scheduling process could be done by a static algorithm. 

Static algorithms are often used to schedule periodic tasks. However, this approach is not 

applicable to aperiodic tasks whose characteristics are not known a priori. Scheduling such 

tasks require a dynamic scheduling algorithm [12]. In dynamic scheduling, when new tasks 
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arrive at the system, the scheduler dynamically determines whether these tasks could be 

scheduled successfully in the current schedule. A task is feasible if it can be scheduled 

successfully. In hard real-time systems, if a task is found to be unfeasible, it should be rejected 

as soon as possible. 

 Real-time systems usually need high reliability. Thus, fault-tolerance is an important 

issue in many real-time applications. A system is fault-tolerant if it produces correct results 

even in the presence of faults [29]. In real-time multiprocessor systems, fault tolerance can be 

provided by scheduling multiple copies of a task on different processors. Three different 

models have evolved for fault-tolerant scheduling of real-time tasks. Firstly, the Primary 

Backup (PB) model duplicates an additional copy, called backup, except the original one, 

called primary [3]. The backup is executed only if the primary fails to produce the correct 

results. Secondly, in the Triple Modular Redundancy (TMR) model, three copies of a task are 

executed concurrently to achieve error checking by comparing results after completion [15, 

16]. Thirdly, in the Imprecise Computational (IC) model, a task is divided into mandatory and 

optional parts [5]. The mandatory part must be completed before the deadline of a task for 

acceptable quality of result, and the optional part refines the result. 

 In this thesis, we address the problem of dynamically scheduling hard real-time tasks 

with PB fault-tolerant requirement on to a set of heterogeneous multiprocessor. The objective 

of any dynamic real-time scheduling algorithm is to improve the number of tasks whose 

deadlines are met. Most dynamic scheduling algorithms for real-time tasks take the steps 

similar to the list scheduling algorithms. First, a heuristic function determines the scheduling 

priority of tasks, and then, tasks are scheduled on appropriate processors in the order of 

nonincreasing priority. The integrated heuristic function used in existing algorithms 

emphasizes whether a task could be executed earlier. However, the needed computation time 

and the time which is schedulable for a task will determine whether it is flexible to be 
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scheduled. For this observation, we will propose an advanced heuristic function, name density 

function. The density function takes account of the relation between computation time and 

schedulable time, and will select the least flexible to be scheduled first. We also propose a 

new strategy for scheduling backup copy, named MNO, to minimize the reserved processor 

time for the backups. The MNO strategy takes advantage of backup overlapping and will find 

a processor where the least extra time, i.e. non-overlapped time, is needed for a backup. New 

arriving tasks will benefit from MNO because the schedulable time for them is getting more.  

 For evaluating the performance, we construct a dynamic simulation and compare our 

algorithm with FTMA [8] and distance myopic algorithm [2]. Unlike these two algorithms, 

one feature of our algorithm is that it doesn’t need any input parameter for any kind of system 

environments. In the simulation result, we can see the density function selects more 

appropriate tasks, and MNO saves more time for new tasks. Moreover, DNA outperforms 

FTMA and distance myopic with any combination of parameters. 

 The remainder of this thesis is organized as follows. In chapter 2, we define the system 

model and describe representative previous works done in the area of real-time fault-tolerant 

scheduling. In chapter 3, we propose an algorithm for dynamically scheduling real-time tasks 

with fault-tolerant requirement. In chapter 4, the performance of the proposed algorithm is 

evaluated through dynamic simulation and compared with the algorithms described in chapter 

2. Finally, in chapter 5, we make some conclusions and future work. 
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Chapter 2. System Model and Fundamental 
Background 

 

 In this chapter, we first present our assumptions and system model, including task model, 

scheduler model, and fault tolerance model. Then we discuss the existing work on 

fault-tolerant scheduling algorithm. Finally, the limitations of those previous algorithms will 

be highlighted to induce the motivation for our research work. 

 

2.1 System Model and Assumptions 
 
 The target environment is a multiprocessor system consisting of multiple heterogeneous 

processing units. The heterogeneity of processors means that the computation time of a task 

varies from processor to processor, such as Application-Specific Integrated Circuit (ASIC), 

Field Programmable Gate Array (FPGA), and Digital Signal Processor (DSP) which are 

applied widely on real-time embedded systems [11]. Basically, we will give some basic 

concepts in the following. 

 

2.1.1 Task Model 
 
  The real-time systems discussed in this thesis are hard real-time [16]. Every real-time 

task Ti has the following attributes:  

 (i) arrival time (ai), at which Ti enters the task queue. 

 (ii) ready time (ri), at which Ti is really ready to execute. 

 (iii) deadline (di), by which Ti must finish execution. 

 (iv) computation time (cip), the cip represents the computation time of task Ti on  

   processor p.  

Generally, a task is ready to execute at arrival time, i.e., ai = ri. 
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  We assume that tasks are aperiodic [2], i.e., the task arrivals are not known a priori. 

Attributes of a task is unknown until it is generated and enters the system. Periodic task model 

is a special case of aperiodic task model, so that the algorithm proposed in this thesis is also 

applied to periodic tasks. 

  We also assume that tasks are independent, i.e., there are no precedence constraints 

between tasks. Nevertheless, dealing with precedence constraints is equivalent to working 

with the modified ready times and deadlines [5]. Therefore, the proposed algorithm can also 

be applied to tasks with precedence constraints among them. There are also no 

communications between tasks. 

  Finally, tasks are nonpreemptable, i.e., when a task starts execution on a processor, it 

finishes to its completion. 

 

2.1.2 Scheduler Model 
 
 In a dynamic multiprocessor scheduling, all the tasks arrive at a central processor called 

the scheduler, and are distributed to other processors in the system for execution. Each 

processor has its own dispatch queue to where scheduled tasks are distributed. The scheduler 

is running in parallel with other processors, scheduling the newly arriving tasks, and updating 

the dispatch queues. Fig. 2.1 shows the architecture of the scheduler model. 

 Single scheduler in this model may make a point of failure. The scheduler model may be 

fault-tolerant by employing modular redundancy technique in which another backup 

scheduler runs scheduling in parallel with the primary scheduler [2]. Final schedule is chosen 

from the results of the two schedulers by an acceptance test. A simple acceptance test is to 

check whether all the tasks in the schedule finish before their deadlines. 

 Due to the assumption of the hard real-time task model, we assume each task is 

scheduled as soon as possible. That is, the scheduling action of the scheduler may be periodic 
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ProcessorsDispatch queues 

P1

with a small time quantum or may be starting as a task arrives. Because the scheduler is a 

dedicated processor, the high frequency of the scheduling would not affect the other general 

processors. 

 

2.1.3 Fault Tolerance Model 
 
 In this thesis, we uses Primary-Backup (PB) model for fault tolerance [3]. In the PB 

model, each task has two copies, namely, primary copy and backup copy. The backup copy is 

redundant for the purpose of fault tolerance, and starts execution only when the primary copy 

fails. Using PB model for fault tolerance, the following necessary conditions are required.  

(1) Mutually exclusive in space: primary and backup copies must be scheduled on 

different processors (to tolerate permanent processor faults). 

(2) Mutually exclusive in time: the start time of a backup copy must be latter than the 

finish time of its primary copy. This condition also implies two facts. First, the two 

versions of a task are not parallelizable. Second, the sum of computation times of 

primary and backup copies should be less than or equal to (di–ri) so that the both 

copies can be schedulable within this interval. 

P2

P3

New tasks 
Task queue 

Scheduler

Fig. 2.1 Scheduler model 
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 Because backup is the only redundant copy of a task, we assume that each task 

encounters at most one failure either due to hardware failure or due to software failure. This 

also implies that there is at most one failure in the system at any instant of time. 

 

2.2 Related Work 
 
 Many scheduling problems have been proved to be NP-complete [6], i.e., it was believed 

that there is no optimal polynomial-time algorithm for them. It was also shown that an 

algorithm does not exist for optimally scheduling dynamically arriving tasks on a 

multiprocessor system [7]. These negative results motivated the need for heuristic approaches 

to solve the scheduling problems. Generally, the heuristic scheduling algorithms try to find a 

feasible schedule by repeating two steps. The first step is to select one task with the highest 

priority which is determined by a heuristic function. The heuristic function synthesizes 

various characteristics of a task to form the priority of scheduling order. The next step is to 

decide one processor on which the selected task is assigned. The two steps repeat until all 

tasks in the queue are either scheduled or rejected. 

 In the past decade, many heuristic scheduling algorithms have been proposed to 

dynamically schedule a set of tasks whose deadlines and computation times are unknown 

until arriving into the system. For homogenous multiprocessor systems with resource 

constraint, an algorithm called myopic algorithm was proposed [1]. Initially, myopic sorts all 

tasks in the nondecreasing order of deadlines. In the task selection step, it checks whether the 

current partial schedule is strongly feasible. If so, a given heuristic is applied to all tasks in 

feasibility check window. The task with the lowest heuristic is chosen to extend the current 

schedule. If the current schedule is not strongly feasible, backtracking is done by discarding 

the current schedule, and extending the previous schedule by a different task. A partial 

schedule is said strongly feasible if all the schedules obtained by extending this schedule with 
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any one task in the feasibility check window are also feasible. Feasibility check window 

contains the first k tasks in the sorted task queue. In order to reduce the cost of looking ahead, 

[1] considers only the tasks in the feasibility check window both for strong-feasibility 

checking and for heuristic calculating. It has been shown that an integrated heuristic, which is 

a function of the deadline and the earliest start time of a task, outperforms other simple 

heuristics such as minimum deadline first, minimum computation time first, least laxity first, 

etc.  

 Myopic is efficient and effective. However, it is limited on homogeneous systems, and 

does not have the fault-tolerant mechanism which is more and more important for real-time 

systems. Another issue is about the heuristic function. Myopic sorts all the tasks initially in 

nondecreasing order of deadlines. When scheduling is in progress, the tasks under 

consideration are limited in the feasibility check window. Because the size of feasibility check 

window is small, the order of tasks to be scheduled is close to the order of nondecreasing 

deadlines. A more realistic heuristic will be defined in the next chapter. 

 In the PB model, backups are redundant if their primaries finish successfully. In order to 

utilize the redundant time, the concept of overlapping backups is proposed by backup 

overloading algorithm [3]. Overlapping backups means that more than one backup copy can 

be overlapped with each other on the same processor. The necessary condition of backup 

overloading is as follows. If the primary copies of two tasks are scheduled on two different 

processors, then their backups can be overlapped with each other on a processor. Fig. 2.2 

illustrates the backup overloading. Backup1 and Backup3 can be overlapped with each other 

whose primaries, Primary1 and Primary3, are scheduled on different processors respectively. 

Similarly, the Backup2 and Backup4 could also be overlapped with each other. Another 

concept proposed by [3] is backup deallocation. Backup deallocation means the reclamation 

of resources reserved for backup tasks when the corresponding primaries complete 
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successfully. For example, the time interval used by the backups can reutilized if no faults 

occur. Both of these two techniques help improve acceptance ratio of arriving tasks. 

 For dynamically scheduling tasks with fault tolerance, distance myopic algorithm which 

is extended from myopic algorithm is proposed in [2]. The main difference between distance 

myopic and the original myopic algorithm is the construction of task queue. Because PB 

based fault tolerance is included in this method, all primaries in the task queue are sorted in 

nondecreasing order of deadlines. Then, the backups are inserted into the task queue at the 

distance, called distance concept, from their primary copies. The primary always precedes its 

backup in the task queue. The distance is an input parameter to the scheduling algorithm to 

determine the relative positions of the two copies of a task in the task queue. The primary and 

backup of a task are scheduled separately except that the backup could be scheduled until the 

primary has been scheduled. The other enhancement of distance myopic is flexible backup 

overloading, which introduces a trade-off between degree of fault tolerance and performance. 

The flexible overloading scheme permits more than one fault occur at any instant of time by 

forming the processors into different groups. In each group, there is at most one fault at a 

time. 

 Putting the primaries and backups in the single task queue is one of main disadvantages 

in this algorithm. The reason is that a backup may appear in the feasibility check window 

Backup 4 

Backup 3

Primary 1 Primary 2 

Fig. 2.2 Backup overloading 

Primary3

Primary 4 Backup 1

Processor 1 

Backup 2 
Processor 2 

Processor 3 
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when its primary is also in the window. The strong feasibility checking is false because the 

backup is unschedulable. The situation will result in backtracking and eventually rejecting this 

task. Another disadvantage is that it is difficult to choose the right combination of the two 

parameters, distance and the size of feasibility check window. With varying situations of 

system environment, the same values of parameters will not always produce good result. Thus, 

adjustments to the parameters are needed in different situations. 

 Both of myopic and distance myopic are scheduling real-time tasks on homogeneous 

multiprocessor systems. Fault-tolerant myopic algorithm (FTMA) [8], which is extended from 

distance myopic, is used for heterogeneous multiprocessor systems. In addition, the 

enhancements of FTMA include task queue construction and feasibility check window 

movement. The main motivation of FTMA is to overcome the disadvantage of single task 

queue in distance myopic algorithm. FTMA puts primary and backup copies separately in two 

different task queues, namely primary task queue and backup task queue. Both primaries and 

backups are sorted in nondecreasing order of deadlines. FTMA selects the task with smaller 

heuristic value from the first primary and backup in the queues into the check window. The 

heuristic of a backup is defined as infinite when its primary has not been scheduled. In this 

way, the two versions of a task will not appear in the window simultaneously. The 

two-task-queue method also eliminates the need of the distance parameter which is difficult to 

be chosen. However, the other parameter, size of feasibility check window, is still needed in 

FTMA. As distance myopic, adjustment to this parameter is still needed in different situations 

of the system. 

 eFRCD is a static scheduling algorithm on heterogeneous systems [4]. It takes account of 

the heterogeneities of computation, communication and reliability. Tasks are judiciously 

allocated to processors so as to reduce the reliability cost, defined to be the product of 

processor failure rate and task execution time. Like the static algorithms proposed in [19, 30], 
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eFRCD schedules all tasks with known attributes a priori. These static algorithms can not be 

applied to a dynamic system due to their high complexity. The assumption with a priori 

known attributes is also not realistic for the systems of aperiodic tasks. 

 In the next chapter, we will describe the proposed algorithm which schedules real-time 

tasks dynamically with fault tolerance on heterogeneous systems without any parameters. 
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Chapter 3. Density First with Minimum 
Non-overlap Scheduling Algorithm 

 

 We have described the relative background about dynamically scheduling real-time tasks 

with fault tolerance in the previous chapter. In this chapter, we will propose the density first 

with minimum non-overlap scheduling algorithm (DNA). As those algorithms introduced in 

chapter 2, DNA repeats two phases continuously until all tasks in the queue are scheduled or 

rejected. The first one is the task selection phase followed by the second one, processor 

assignment phase. In the task selection phase, we define a new heuristic, namely density, to 

prioritize tasks in the task queue. In the processor assignment phase, the primary copy is 

scheduled first, and then the next step is backup scheduling. A new strategy, called minimum 

non-overlap (MNO), is proposed for scheduling backups.  

 In section 3.1, we describe the definition of the density heuristic. In section 3.2, we state 

the minimum non-overlap strategy for backup scheduling. Finally, the complete algorithm 

will be presented in section 3.3 followed by the discussion of complexity. 

 

3.1 A New Heuristic Function 
 
 In the first phase, a heuristic function is used to decide the priorities of tasks. A task with 

the highest priority will be selected to be scheduled first. Most scheduling algorithms 

described in section 2.2 use deadlines and earliest finish times as the integrated heuristic 

function. This implies that tasks which may or have to finish earlier are given higher priorities. 

Nevertheless, real-time tasks are not concerned about when to start computation but rather 

about meeting their deadlines. For example, tasks with earlier deadlines or finish times may 

have small computation times so that they are still schedulable even with lower scheduling 

order. On the other hand, tasks with later deadlines or finish times should be given higher 
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priorities if their computation times are large with respect to their schedulable intervals. The 

question of whether or not a task Ti could be scheduled by its deadline depends on the 

relationship between the schedulable intervals of Ti and its computation times on each 

processor. Thus, we introduce a concept of density as the heuristic function. 

 The time of all schedulable intervals for a task is called schedulable time generally. The 

density of a task is a ratio of the computation time to the schedulable time. When the 

computation time needed by Ti is getting closer to its schedulable time, we say that Ti has 

large density. With large density, it is less flexible to schedule Ti. That is, if Ti does not have 

higher priority of scheduling order, it may be rejected because the schedulable time is getting 

less after other tasks are scheduled. Conversely, if the computation time needed by Ti is small 

with respect to its schedulable time, i.e. small density, Ti may be still schedulable with lower 

priority. This is because it is easier to find schedulable intervals for tasks with small density 

than tasks with large density. Before we give the formal definition of density, some 

terminologies will be defined first. 

 Let Pri and Bki be the primary and backup copies of task Ti respectively, and Proc is the 

set of all processors in the system. Because of the time exclusion between primary and backup 

copies of a task, the scheduled start time of Bki must be greater than or equal to the scheduled 

finish time of Pri. It implies that the deadline of Ti, di, is impossible to be the latest finish time 

of Pri, and the ready time of Ti, ri, is also impossible to the earliest start time of Bki. In the 

following, the start or finish time for primary and backup will be redefined. First, Bki is 

impossible to be scheduled if the interval between the scheduled finish time of Pri and di is 

less than the minimum computation time of Ti. Thus, Pri must be finished before its latest 

finish time, LFP(Ti). Actually, LFP(Ti) could be thought of as the deadline of Pri. Finally, we 

give the following definitions. 
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Definition 3.1 The Latest Finish time of Primary (LFP) is defined as: 

 }c{MINd)T(LFP ipii −=  , for all ocPrp∈                                (1) 

, where di is the deadline of Ti, and cip is the computation time of Ti on processor p. 

 

 In additional to the LFP, Ti has the earliest finish time for its primary. 

 

Definition 3.2 The Earliest Finish time of Primary (EFP) is defined as: 

 }c)(PrEST{MIN)T(EFP ippii +=  , for all ocPrp∈                         (2) 

, where EST(Pri)p is the earliest start time of Pri on processor p. 

 

 The scheduled start time of Bki could be as early as the earliest finish time of Pri. Thus, 

we define the earliest start time of backup (ESB) for Ti as: 

 ESB(Ti) = EFP(Ti)                                                      (3) 

ESB(Ti) could also be thought of as the ready time of Bki. With the definitions of LFP and 

ESB, we could claim that Pri should be scheduled between ri and LFP(Ti), and Bki should be 

scheduled between ESB(Ti) and di. 

 Neither primary nor backup of a task could be scheduled on the processors without 

sufficient schedulable time for it. The processor on which the primary or backup could be 

scheduled may be different. Thus, we define a set of available processors for the primary and 

backup respectively. Each set contains processors on which the primary (backup) can be 

scheduled. 

 

Definition 3.3 We define availP(Pri), the set of available processor for Pri, and availP(Bki), 

the set of available processor for Bki, as follows: 

 (1) availP(Pri) = { processor j }, where there is at least one time slot greater than or 
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equal to cij between ri and LFP(Ti) on processor j. The slot cannot be overlapped with any 

scheduled tasks, neither primaries nor backups.  

 (2) availP(Bki) = { processor j }, where there is at least one time slot greater than or 

equal to cij between ESB(Ti) and di on processor j. The slot can be overlapped with any 

scheduled backups. 

 

 Here, we give an example to demonstrate the above definitions. We assume there are 

four processors in the system, the current time is 10, and there are three tasks have arrived 

into the system. Fig. 3.1 shows the current schedule, and Table 3.1 lists the attributes of the 

tasks in the queue. This example will be used for illustration throughout this chapter. In this 

example, Pr9 must finish before the time = 40 because the Br9 may be scheduled on processor 

3 where T9 has the maximum computation time. Thus, the LFP(T9) is 40. Pr9 could start at 

time = 17, and has the earliest finish time, 26, on processor 2. This implies Bk9 could start as 

early as time = 26. Thus the ESB(T9) is 26. Pr9 can be scheduled in the range from the ready 

time, r9 = 10, to the LFP(T9), 40. On processor 3, there are two time slots, (10, 15) and (28, 

40), which are not reserved for any task yet between r9 and LFP(T9). But both of them are less 

than c93 so that Pr9 could not be scheduled on processor 3. Similarly, Pr9 could not be 

scheduled on processor 4 because the only unreserved time slot between r9 and LFP(T9), (21, 

30), is less than c94. Thus, the set of processors which Pr9 can be scheduled, i.e. availP(Pr9), 

is {processor 1, processor 2}. Bk9 can be scheduled in the range from the ESB(T9), 26, to the 

deadline, d9 = 45. Between ESB(T9) and d9, we assume all scheduled backups may be 

overlapped with Bk9. On processor 1, 2, 3, there are time slots large enough to execute Bk9. 

However, time slots (26, 30) and (40, 45) are too small to execute Bk9. Thus, the availP(Bk9) 

is {processor 1, processor 2, processor 3}. 

 As we mentioned early in this section, the density of a task is a ratio of the computation 
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d                  Table 3.1. Attributes of tasks in the task queue. 

 ri di ci1 ci2 ci3 ci4

T9 10 45 5 11 15 10 
T10 10 50 15 14 11 10 
T11 10 37 5 7 5 8 

time to its schedulable time. First, because of the two copies of a task, the computation time 

needed by Ti includes the time for Pri and Bki. Actually, we define the time needed by primary 

and backup as the average computation time on those processors in the availP(Pri) and 

availP(Bki) respectively. 

 

Definition 3.5 For task Ti, we define Pr_mean, the average computation time of Pri on 

availP(Pri), and Bk_mean, the average computation time of Bki on availP(Bki) as follows: 

 )(PravailPc)T(meanPr_ i
)(PravailPp

ipi
i

∑
∈

=                                   (4) 

 )Bk(availPc)T(mean_Bk i
)Bk(availPp

ipi
i

∑
∈

=                                 (5) 

, where )(PravailP i  and )Bk(availP i  are the number of processor in availP(Pri) and 

10 15 20 25 30 35 40 45 

10 15 20 25 30 35 40 45 

10 15 20 25 30 35 40 45 

Bk5Pr6 Bk8Proc 1 

5045 3525 403020 10 15 

Pr5 Bk6 Bk7Proc 2 

50

Pr4Proc 3 

50

Pr7 Pr8 Bk4Proc 4 
50

Fig. 3.1. The schedule at time = 10. Dark shading areas depict scheduled 
primaries. Grey shading areas depict scheduled backups. 
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availP(Bk ly. 

 

i) respective

Next, the schedulable time for Ti is the sum of time slots which are schedulable for Pri or 

ki. 

aries or backups on processor 

 

B A time slot, represented as (start, end), which is schedulable for Pri on processor p is 

defined as prslotip. prslotip must satisfies the following conditions: (1) irstart ≥ , 

(2) )T(LFPend i≤ , (3) ipcstartend ≥− , (4) prslotip cannot be overlapped with any scheduled 

prim time slot which is schedulable for Bkp. A i on processor p is 

defined as bkslotip. Similarly, bkslotip must satisfy: (1) )T(ESBstart i≥ , (2) idend ≤ , 

(3) ipcstartend ≥− , (4) bkslotip cannot be overlapped with s es on r 

p. F chedulable time is the sum of all prslot

cheduled primari processo

or Ti, the total s

efinition 3.6 The Sum of Schedulable Time of Ti, named SST, is defined as: 

ip and bkslotip. 

 

D

 ∑∑
∈∈

+=
)Bk(availPp

ip
)(PravailPp

ipi bkslotprslot)T(SST ,                         
ii

          (6) 

After introducing the above definitions, we could define the new heuristic function, 

me

efinition 3.4 For each task Ti in the task queue, we define the density heuristic function as: 

 

 

na d density function, as follows. 

 

D

 
)T(mean_Bk)T(meanPr_

)T(density ii
i

+
=                                 (7

)T(SST

 

i

) 

The density of a task indicates the tightness of the interval between the ready time and  

the deadline with respect to its computation time. The highest density means that it is least 

flexible to schedule a task. On the other hand, low density means that it is easy to find 
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schedulable intervals for primary and backup. Thus, we will select the task with the maximum 

density in task selection phase. It is to be noted that the density is defined for a task Ti, rather 

than Pri or Bki separately. The reason is that Ti will be rejected if either Pri or Bki fails to be 

scheduled. Getting less flexible to schedule either Pri or Bki implies that it is also inflexible to 

schedule Ti.  

 Table 3.2 gives an example of density calculation for the tasks in table 3.1. T10 are given 

Table 3.2. Density calculation for T9, T10, T11 in Table 3.1. 

 LFP ESB 

the highest priority even though both of the EFT(Pr10) and d10 are larger than the other tasks. 

  

availP(Pr) availP(Bk) Pr_mean Bk_mean ∑ prslot  ∑bkslot  density

9 40 26 proc1,2 proc1,2,3 8 10.333 0.220 
T10 13 140 36 proc1,3 proc2,3,4 1.667 29 38 0.368 
T11 32 15 pr 6.25 6.25 oc1,2,3,4 proc1,2,3,4 36 54 0.139 

T 28 55 

 

.2 Minimum Non-Overlap (MNO) for Backup 

 DNA starts to 

3
 

After selecting the task with the maximum density in the first phase, 

schedule the primary and backup in the second phase. As many scheduling algorithms for 

heterogeneous systems, we will schedules the primary on the processor where it could finish 

as early as possible. In the next step for scheduling backup, most algorithms like those 

described in section 2.2.1 also assign a backup to a processor according to the earliest finish 

time. The processor time reserved for backups, however, is redundant and will be deallocated 

if their primaries finish successfully. If the processor time reserved for backups could be 

minimized, there is more schedulable time for other new tasks. An intuitive method for this 

idea is to overlap backups as much as possible. It works for homogeneous systems, but 

doesn’t work for heterogeneous systems. This is because the computation time of a task varies 

from processor to processor in heterogeneous systems. For a task Ti, having the maximum 
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overlapped time on processor p does not necessarily mean that Ti also has the minimum 

defined as: 

, for each 

non-overlapped time on processor p. The non-overlapped time is actually the extra processor 

time being reserved for Bki. For example, in Fig. 3.2, lines with double arrows represent the 

computation time and the possible schedule of Bki where it has the minimum non-overlapped 

time on that processor. It is shown that Bki has the maximum overlapped time on processor 1, 

however 6 extra time units, i.e. interval (23, 29), are required. Similarly, 6 extra time units 

will be required for processor 2. Bki has the minimum non-overlapped time, 2, on processor 3 

means that only 2 extra time units will be reserved for it. Thus, we will intend to minimize the 

extra time being reserved for backups, i.e. non-overlapped time. That is, a backup will be 

scheduled on the processor where it has the minimum non-overlapped time. We give the 

definition of minimum non-overlap of a backup as follows. 

 

Definition 3.7 The Minimum Non_Overlap (MNO) of Bki is 

 }MAXoverlapc{MIN)Bk(MNO ipipi −= ocPrp∈                 (8) 

or p. 

Fig. 3.2. The ximu overlap d time of Bki is 10 on processor 1. The 

, where Maxoverlapip is the maximum overlapped time of Bki on process

 ma m pe
minimum non-overlapped time of Bki is 2 on processor 3. 

10 15 20 25 35 40 30

10 15 20 25 30 40 35 

10 15 20 25 30 35 40 

Processor 3 

diESB(Ti) 

Bk1

ci1 = 16

Bk2 Bk3

ci2 = 11

Bk5

ci3 = 7

Processor 1 

Processor 2 
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rocessor where 

in Fig.3.3. The schedule of Bk10 on processor 2 is exactly the 

ter

 After introducing the concepts of density and MNO, the complete algorithm of DNA is 

ws the flow of our DNA algorithm. Similar to most 

On each processor, we try to find the maximum overlapped time for Bki in order to 

minimize the non-overlapped time. Finally, Bki will be scheduled on the p

MNO(Bki) is obtained. 

 For the example in section 3.1, T10 has the maximum density and Pr10 is scheduled on 

processor 1 by its EFT shown 

in val (ESB(T10), d10), and the non-overlapped times is 7. On processor 3, there is no any 

backup to be overlapped with so that the non-overlapped time equals the c10,3, 11. On 

processor 4, Bk4 could be overlapped with Bk10 completely, and the non-overlapped time is 

only 3. Obviously, if Bk10 is scheduled on processor 4, the extra processor time reserved for 

it is only 3. Thus, MNO(Bk10) is 3 and Bk10 will be scheduled on processor 4 even though the 

maximum overlapped time is on processor 2, and the earliest finish time is on processor 3. 

 

3.3 The DNA Algorithm 
 

described in this section. Fig. 3.4 sho

Bk10

10 20 25 30 40 45 15 35

10 15 20 25 30 35 40 45  

10 15 20 25 3 35 40 45 0

10 1 20 25 30 35 45 

Proc 1 

Proc 2 

Proc 3 

Proc 4 

5 40

d10LFP(T10) ESB(T10)r10

Pr6

Pr5

Pr4

Pr7 Pr8

Bk7

50

50

50

50

Bk5 Bk8

Bk6

Bk4

Pr10

Fig. 3.3 NO(B 0) is 3 on processor 4. k1. M
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heuristic scheduling algorithms, the steps involved in DNA divided into two phases. The two 

phases repeats continuously until the task queue is empty. The first phase is to select the task 

with the maximum density as the candidate to be scheduled. In the second phase, we try to 

schedule the primary copy of the selected task first. If successfully, the next step is trying to 

schedule the backup copy. A task is said to be scheduled successfully only if both copies are 

scheduled successfully. Conversely, the selected task will be rejected if either the primary or 

Is the task 
queue empty?

YES 

Fig. 3.4 Flow chart of DNA algorithm 

NO 

Modify heuristic values of tasks affected by Ti

Select the task Ti with the maximum density 
 heuristic value  

Schedule Pri by EFT 

Schedule bki by MNO 

Calculate the density heuristic  
for all tasks initially 

Is Pri scheduled 
successfully?

Is Bki scheduled 
successfully? 

Reject Ti

Deallocate Pri 
and Reject Ti

NO 

YES 

NO 

YES 

Scheduling 
completed
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    Bk11

25 30 35 40

Bk7

Bk10

10 15 20 25 40 45 

10 15 20 25 30 35 40 45 

10 15 20 25 35 45 

the backup fails to be scheduled. For the previous example, after T10 is scheduled successfully, 

we recalculate the density e remaini The next one to be scheduled is T9 

with density = 0.395, and T11 is the last one. The final schedule is shown in Fig. 3.5. 

 It is to be noted that after a task with the maximum density has been selected, we 

schedule the primary first, and then, schedule the backup immediately. This is different from 

many fa ed  algorith yopic and FTMA which 

schedule  their backups as d 2, 8]. The reason is that the density 

heuristic function determines the priorities among all original tasks, neither primaries nor 

backups. The advantage is t tion any more. That is, 

the distance parameter in distance myopic algorithm and the separated task queues in FTMA 

are eliminated. 

 of th ng tasks, T9, T11. 

ult-tolerant sch

primaries and

uling ms, such as distance m

istinct tasks [

hat there is no need for task queue construc

 It is also to be noted that we have no checking strong feasibility and backtracking which 

are used in distance myopic and FTMA [2, 8]. The purpose of checking strong feasibility is 

for looking ahead. Although the feasibility check window decreases the number of tasks to be 

checked, the overhead of checking each task exists at each selection phase. We just apply the 

density heuristic function to all the remaining tasks in the task queue. Because of the 

assumption of dynamic systems and scheduler model defined in chapter 2, the number of 

30 35

30 40

10 15 20 45 

Proc 1 

Proc 2 

Proc 3 

Proc 4 

Pr6

Pr5

Pr4

Pr7 Pr8

Fig. 3.5. Final schedule. 

50

50
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tasks in the task queue should not become so large while the scheduler starts scheduling. Thus, 

the overhead of the task selection shall not be very heavy. We need no backtracking in our 

 

 neither chec he stron  of th urrent partial schedule, nor 

backtrack to the previous schedule if the selected task is not schedulable. It is just s eduling 

all the tasks one by one. 

 Because we take all tasks into consideration in the task selection phase e complexity 

of worst ca e is O(n2  n is the numbe f tasks be sch uled. T compl ty is hi er than 

that of FTMA and distance myop  shall not be very large in the 

assumption of our scheduler model. In addition, a trick could also reduce the run time cost. 

The density heuristic function is applied to all tasks only before the repeat of the two 

scheduling phases. After a task is scheduled successfully, the heuristic function may not be 

applied to all the remaining tasks in the next task selection phase. Only those tasks, which 

have schedulable time slots overlapped with the just scheduled primary or backup, will be 

given the recalculated density.  

 

 In the next chapter, we will evaluate our DNA algorithm using simulation. The 

simulation result of DNA will compare with distance myopic and FTMA.  

algorithm. If either primary or backup fails to be scheduled, this task is just rejected. Both 

steps of checking and backtracking will increase the running time of algorithms in realistic

systems. Thus, we k t g feasibility e c

ch

, th

). r o  to ed he exi ghs

ic, O(n). Nevertheless, n
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Chapter 4. Simulation and Performance  
     Evaluations 

 

 In this chapter, we will evaluate the performance of density first with minimum 

non-overlap scheduling algorithm (DNA) through simulation. In section 4.1, we will describe 

the architecture of the simulator and some simulation parameters. Next, we will give the 

performance evaluations in section 4.2. 

 

4.1 Simulation Construction 
 
 Because DNA is a dynamic scheduling algorithm, we will construct a dynamic 

simulation instead of a static simulation. The flow of dynamic simulation is divided into two 

parts. The first one is the task generator which generates a set of real-time tasks as the input of 

the second part, simulator. The simulator simulates the events in the systems and the actions 

of the scheduler. In the following, we will describe how to construct these two parts. 

 

4.1.1 Task Generator 
 
 The task generator generates a set of real-time tasks in the non-decreasing order of 

arriving times. Each task has the attributes as described in section 2.1.1. The parameters 

which affect these attributes in the task generation are summarized in Table 4.1. In the 

following, we will describe how to decide the attributes of a task. 

 The computation time of a task varies from processor to processor, and is bounded by the 

minimum and maximum computation time, MIN_C and MAX_C. The heterogeneity variable, 

which is chosen uniformly between 0 and 1, represents the heterogeneity of computation 

times of a task. It determines the range of possible computation times for a task. Thus, 
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ddddddd               Table 4.1. Parameters for task generator. 

parameter explanation range of possible values

MIN_C minimum computation time  10 

MAX_C maximum computation time 80 

λ  task arrival rate [0.3, 0.9] (real) 

R laxity [2, 7] (real) 

P number of processors [3, 10] (integer) 

BurstP probability of a burst 100λ  

MAX_Burst maximum task number for a burst 10 

MIN_Burst minimum task number for a burst 30 
 

computation times of a task are chosen uniformly in the range of MIN_C and MIN_C + 

(MAX_C – MIN_C) × heterogeneity. The lower bound, however, is not always MIN_C, so 

the range will be shifted by the variable shift. Because the upper bound cannot larger than 

MAX_C, the shift is chosen uniformly between 0 and MAX_C – (MAX_C – MIN_C) × 

heterogeneity. Finally, computation times of a task are chosen uniformly between (MIN_C + 

shift) and (MIN_C + ((MAX_C – MIN_C) × heterogeneity) + shift). Fig. 4.1 shows the range 

of computation time. 

 The arrival times of tasks depend on the interarrival time between each task. The 

interarrival time is exponentially distributed with mean [2]: 

  
2

C_MAXC_MIN
P

1 +
×

×λ
 

, where λ is the task arrival rate, and P is the number of processors. We also assume there is 

a possibility of bursts of tasks. We define the mean of interarrival time for bursting is 

  
10

C_MIN
P

1
×

×λ
 

The probability of burst, BurstP, varies with λ and is defined as 100λ . When a burst 
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MIN_C + (MAX_C – MIN_C) × 
heterogeneity + shift MIN_C + shift 

happens, there are at least MIN_Burst tasks and at most MAX_Burst tasks arriving at the 

systems in a very short interval. 

  Because both copies may be scheduled with the first two maximum computation times, 

the deadline of a task must be late enough to satisfy this possible scheduling. Thus, the 

deadline of a task Ti is uniformly chosen between (ai + max cip + second max cip) and (ai + R 

× max cip). The laxity parameter, R, indicates the tightness of the deadline, and is at least 2. 

Fig. 4.2 depicts the lower and upper bound of deadline when laxity = 3. 

 

4.1.2 Simulator 
 
 Our evaluation was done by implementing a discrete-event dynamic simulator [17]. The 

dynamic simulator simulates all events which may happen in a realistic system. The possible 

events include the arrival, start and completion of a task, start of the scheduling, and backup 

MIN_C MAX_C

shift

Fig. 4.1. The solid line with double arrows is the range of possible 
computation time. 

(ai + 3 × max cip) (ai + max cip + second max cip) 

ai

max cip second max cip

max cip max cip max cip

Fig. 4.2. di is chosen uniformly in the range of the solid line with double 
arrows when laxity = 3. 
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----------------- 
file of task set -------------- 

------------

deallocation as well as occurrence of faults. Fig. 4.3 depicts the flow of the dynamic simulator. 

After reading the task set generated by the task generator, the Timer function decides the time 

of next event, and calls the corresponding operation. After dealing with the events, the update 

function updates the status of the system. The flow will repeat until all tasks in the set have 

arrived into the system and completed or been rejected. At the end time, the simulator 

terminates and reports the number of rejected tasks. 

 For reality, we simulate the failure events. The failures may be due to hardware fault or 

software fault [2]. Because the backup copy is the only one redundancy, we assume that each 

task encounters at most one failure. That is, the backup always succeeds if its primary fails. A 

software fault will terminate the task immediately. The hardware faults are the faults 

happened to processors. All tasks on the failed processor will be terminated and deallocated, 

whatever they are running or ready to run. The hardware faults could be transient or 

permanent. If a transient fault happens, the failed processor will be available again in some 

recovery time. The recovery time is distributed normally between 0 and MAX_Recovery. If a 

number of rejected tasks

Timer()

arrival() finish() failure() recover() scheduler() 

dynamic simulator 

update() 

Fig. 4.3. Flow of the dynamic simulator. 
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d                    Table 4.2. Parameters for fault probability. 

parameter explanation range of possible 
value 

FaultP probability that a primary fails [0, 0.5] (real) 

Soft_FP probability that a primary fails due to software 
fault 0.2 

Hard_FP probability that a primary fails due to hardware 
fault 0.8 

PermHard_FP probability that a hardware fault is permanent 0.000001 

MAX_Recovery maximum recovery time after a transient 
hardware fault happened 50 

 

permanent fault happens, the failed processor would never be available to the end of 

simulation. We define the relative probabilities and parameters for failure events in Table 4.2. 

 

4.2 Performance Evaluations 
 
 In this section, we will evaluate the performance of the DNA algorithm by comparison 

with FTMA and a modified distance myopic algorithm for heterogeneous systems, called 

HDMA. HDMA is proposed in [8]. The total number of tasks arrived into the system is 

20,000. For each set of parameters of the task generator, 20 task sets are generated as the 

inputs of the three algorithms. We take the average of the 20 rejection number as the final 

result. HDMA needs two parameters, size of feasibility check window (K) and distance, and 

FTMA needs one, i.e. K. Because the better results depend on the combination of these 

parameters, we will run HDMA with various combinations of K and distance, and run FTMA 

with various K for each task set. We will choose the best result among the various 

combinations of parameters as the final result of HDMA and FTMA for each task set. 

 Next, we define the metric for the performance evaluations. The objective of any 

dynamic real-time scheduling algorithm is to improve the guarantee ratio. The guarantee ratio 

is defined as the percentage of tasks whose deadlines are met [1]. The formal definition is 
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given below: 

 %100
systemtheinarrivedtasksofnumbertotal

metaredeadlineswhosetasksofnumberRatioGuarantee ×=         (9) 

 In the next subsections, we will evaluate the performance of DNA and the other 

algorithms with four simulation parameters. These parameters are task arrival rate (λ ), laxity 

(R), processor number (P), and fault probability (FaultP). 

 

4.2.1 The Effect of Task Load 
 
 The task arrival rate (λ) has been varied in Fig. 4.4. The size of feasibility check 

window, K, ranges from 6 to 10 for FTMA. For HDMA, K ranges from 3 to 8 and the distance 

ranges from 5 to 8. Higher λ  means lower interarrival time and, thus, higher task load. As 

task load increases, the guarantee ratio decreases for all algorithms. Obviously, HDMA has 

poor performance because of the single task queue for primaries and backups. Appearances of 

a primary and its backup in the feasibility check window results in continuously backtracking 

and rejecting eventually. FTMA overcomes this disadvantage and has almost the same 

guarantee ratio as DNA with lower arrival rate. When the task load is getting higher, DNA 

rejects fewer tasks than that of FTMA. This implies that the density heuristic function selects 

more appropriate tasks to be scheduled when more and more tasks arrived at the system in an 

interval. 

 

4.2.2 The Effect of Laxity 
 
 The effect of task laxity (R) is depicted in Fig. 4.5. The size of feasibility check window, 

K, ranges from 6 to 10 for FTMA. For HDMA, K ranges from 3 to 8 and the distance ranges 

from 5 to 8. As the laxity increases, the guarantee ration also increases for all algorithms. We 
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Fig. 4.5. Effect of laxity. (λ = 0.7, P = 8, FaultP = 0.2) 

 

can find that the difference of the performance between DNA and the other algorithms is the 

largest with the smallest laxity, and is getting closed when laxity is bigger. This is because the 

density heuristic function considers the relationship between computation time and 

schedulable interval rather than the deadline. It will give the highest priority to the least 

flexible task whatever the laxity is. Instead, in the other algorithms, the deadline is 

synthesized as part of the integrated heuristic function directly. In the situation of low laxity, 
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the integrated heuristic function may not select the appropriate task to be scheduled first.  

 

4.2.3 The Effect of the Number of Processor 
 
 The effect of varying the number of processors (P) is given in Fig.4.6. The size of 

feasibility check window, K, ranges from 1 to 12 for FTMA. For HDMA, K ranges from 3 to 

P and the distance ranges from P/2 to P. To increase the number of processor will increases 

the guarantee ratio for all algorithms. When more processors are available, the difference in 

guarantee ratio between DNA and the other algorithms is getting large. This is because there 

are more opportunities for a backup to be overlapped. The DNA could benefit from this 

situation since the MNO strategy has more opportunities to find less non-overlapped time. 

 

4.2.4 The Effect of Fault Probability 
 
 In Fig. 4.7-4.9, the probability that a primary copy encounters a failure (FaultP) is varied 

with three parameters, λ, R, and P. We compare DNA only with FTMA for simplicity since 
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the HDMA does not outperform the other algorithms in the previous simulation results. As 

FaultP increases, the guarantee ratio decreases in any situation. When FautP = 0, there is no 

Fig. 4.7. Effect of fault probability with 
various task loads. (R = 3, P = 8) 

Fig. 4.8. Effect of fault probability with 
various laxity. (λ= 0.7, P = 8) 
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Fig. 4.9. Effect of fault probability with various 
number of processor. (λ= 0.7, R = 3) 



fault in the system, which means that every backup will be deallocated and all the time 

reserved for backups will be reutilized. When the fault probability increases, more backup 

copies are active to be executed so that it cannot be overlapped with any backups of new tasks. 

Thus, there is the most time which can be reutilized as fault probability equals 0, and less and 

ss as fault probability increases. In additional, the results of different degree of parameters, 

, R

 heuristic function selects more appropriate tasks to be scheduled, even when the 

task load is heavy or the deadlines are tight. We also find that the MNO strategy saves more 

processor time than EFT or overlap as mush as possible for new arriving tasks. Furthermore, 

without any input parameter, DNA still has better guarantee ratio than that of HDMA or 

FTMA. 

le

λ , P, are the same as the simulation results shown in the above subsections. These figures 

also show that DNA has higher guarantee ratio than FTMA in any degree of parameters as the 

fault probability increases. 

 

 By the simulation, we have verified the performance of the DNA algorithm. We find that 

the density
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Chapter 5. Conclusion and Future Work 
 

 In this thesis, we have proposed an algorithm, named DNA, for dynamically scheduling 

arriving real-time tasks with PB-based fault-tolerant requirement in a heterogeneous 

multiprocessor system. Through the dynamic simulation, we have evaluated the performance 

of the proposed algorithm compared with distance myopic algorithm and FTMA. Finally, in 

this chapter, we make conclusions and describe some future work about our research. 

 

5.1 Conclusion 
 
 The integrated heuristic function proposed in [1] is used by most algorithms which 

dynamically schedule arriving real-time tasks. The integrated heuristic function emphasizes 

whether a task could be executed earlier. Nevertheless, real-time tasks are not concerned 

about when to start computation but rather about meeting deadlines. We propose a new 

heuristic function, named density, which indicates the tightness of a task. The density function 

takes account of the schedulable time and the computation time. A task with the highest 

density means that it is the least flexible to be scheduled so that it will be selected first for 

scheduling. The simulation results show that the density function selects more appropriate 

tasks even with a heavy task load. 

 The MNO strategy for backup scheduling will minimize the processor time reserved for 

backups. This will also increase the schedulable time for new tasks. Obviously, MNO saves 

more time than overlapping as much as possible on heterogeneous multiprocessor. Moreover, 

though simulation, we can find that MNO save more and more time than the EFT strategy 

when the processor number increases. 

 Finally, DNA does not need to be adjudged by any input parameters, unlike the distance 

myopic and FTMA. Though the simulation, DNA gets better results than those of distance 
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myopic and FTMA which are the best among any combination of needed parameters. This 

means DNA is more general and suitable for any environment. 

 

5.2 Future Work 
 
 In additional to the research results we have proposed, there are some issues in the future 

work. 

 First, the assumption of our scheduler model is a dedicated processor for scheduling, and 

the scheduling overhead is ignored. However, the scheduler may have a lot of idle time if the 

task load is low. This is not economic for a cost-sensitive system. The scheduler may be used 

for computation while it is idle as well as scheduling tasks. In this way, the scheduling 

overhead needs to be taken into account for those tasks scheduled on the scheduler. How to 

define and quantify the scheduling overhead is not trivial and becomes the next extension of 

this thesis. 

 Second, most algorithms assume deadlines of tasks are fixed after they are released, i.e. 

deadlines do not vary with time. For some real-time applications whose high-level 

requirements may change with time, the model of variable deadlines is required. [26] has 

proposed a new workload model, called the state-dependent deadline model, for this kind of 

applications. How to modify the density function in our algorithm for the variable deadline 

model is another future extension of our research. 
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