
國 立 交 通 大 學

資訊工程學系

碩 士 論 文

在異質多處理器上針對即時系統具有容錯能力之動

態排程演算法

A Fault-Tolerant Dynamic Scheduling Algorithm for Real-Time

Systems on Heterogeneous Multiprocessor

研究生：張明鈿 mdd

指導教授：陳 正 教授

中 華 民 國 九 十 三 年 六 月

在異質多處理器上針對即時系統具有容錯能力之動態排程演算法

A Fault-Tolerant Dynamic Scheduling Algorithm for Real-Time

Systems on Heterogeneous Multiprocessor

 研究生 ：張明鈿 Student: Ming-Dien Chang

 指導教授：陳 正 教授 Advisor: Prof. Cheng Chen

國立交通大學

資訊工程學系

碩士論文

A Thesis

Submitted to

Institute of Computer Science and Information Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science and Information Engineering

June 2004

Hsinchu, Taiwan, Republic of China

中華民國九十三年六月

在異質多處理器上針對即時系統具有容錯能力

之動態排程演算法

研究生：張明鈿 指導教授：陳正 教授

國立交通大學資訊工程學系碩士班

摘要

即時系統已經廣泛地被應用在許多需要嚴格地符合時間要求的環境

中。在即時系統中的工作必須在時間限制內完成，否則可能造成嚴重的後

果。由於對穩定性的高度要求，容錯能力也是即時系統所必須具備的。由

於工作在進入系統後才能開始被排程，因此需要的是動態的排程演算法。

本論文即是提出一個在異質多處理器上針對即時系統具有容錯能力的動態

排程演算法。我們將會提出一個以工作可排程的時間與所需要的執行時間

作為考量的 heuristic 函式，來決定工作排程的優先順序。針對為達到容

錯目的所用的 backup，我們也提出新的排程策略，稱為 MNO。經由動態地

模擬一個即時系統，結果顯示我們提出的方法能夠決定出更恰當的排程順

序，而且挪出更多的可排程時間給後來的工作，使得較多的工作能夠在時

間限制前完成執行。並且在不同的環境中，不需要搭配任何參數也能得到

較好的結果。

 i

A Fault-Tolerant Dynamic Scheduling
Algorithm for Real-Time Systems on

Heterogeneous Multiprocessor

Student: Ming-Dien Chang Advisor: Prof. Cheng Chen

Institute of Computer Science and Information Engineering National Chiao

Tung University

Abstract

Real-time systems are being increasingly used in several applications which are time

critical. Tasks corresponding to these applications have deadlines to be met. Fault-tolerance is

an important requirement of such systems, due to the catastrophic consequences of not

tolerating faults. In this thesis, we propose an algorithm do dynamically schedule arriving

real-time tasks with PB fault-tolerant requirement on to a set of heterogeneous multiprocessor.

Our algorithm, named density first with minimum non-overlap scheduling algorithm (DNA),

proposes two performance improving techniques. First, a new heuristic function, called

density, takes account of the needed computation time and schedulable time of a task. The

task with the maximum density value will be given the highest priority. Second, the MNO

strategy for backup scheduling will minimize the time reserved for backups. In the result of

dynamic simulation, we can find that our algorithm has fewer rejected tasks and more general

and suitable for any kind of environment.

 ii

Acknowledgements

I would like to express my sincere thanks to my advisor, Prof. Cheng Chen, for his

supervision and advice. Without his guidance and encouragement, I could not finish this thesis.

I also thank Prof. Jyh-Jiun Shann and Dr. Guan-Joe Lai for their valuable suggestions.

There are many others whom I wish to thank. My thanks to Yi-Hsuan Lee for her kindly

advice suggestion. Ming-Chieh Chen, Shun-Min Hsu, Chien-Wei Chen, Wen-Pin Liu,

Chia-Chun Lee and Wei-Fen Yang are delightful fellows, I felt happy and relaxed because of

your presence.

Finally, I am grateful to my dearest parents and brothers. They encourage me all the time.

Special thanks to Li-Yu Lin for her companying and encouragement.

 iii

Table of Contents
摘要……………………………………………………………………………………i

Abstract………………………………………………………………………………..ii

Acknowledgments………………………………..…………………………………...iii

Table of Contents…..…………………………………………………………………iv

List of Figures.………………………………………………………………………..vi

List of Tables.………………………………………………………………………...vii

Chapter 1. Introduction………………………………………………………………..1

Chapter 2. System Model and Fundamental Background…………………………......4

 2.1 System Model and Assumptions……………………………………………..4

 2.1.1 Task Model……………………………………………………………4

 2.1.2 Scheduler Model……………………………………………………...5

 2.1.3 Fault Tolerance Model………………………………………………..6

 2.2 Related Work…………………………………………………………………7

Chapter 3. Density First with Minimum Non-overlap Scheduling Algorithm……….12

 3.1 A New Heuristic Function…………………………………………………..12

 3.2 Minimum Non-Overlap (MNO) for Backup………………………………..18

 3.3 The DNA Algorithm………………………………………………………...20

Chapter 4. Simulation and Performance Evaluations………………………………...24

 4.1 Simulation Construction…………………………………………………….24

 4.1.1 Task Generator……………………………………………………….24

 4.1.2 Simulator…………………………………………………………….26

 4.2 Performance Evaluations……………………………………………………28

 4.2.1 The Effect of Task Load………………………………………..........29

 4.2.2 The Effect of Laxity…………………………………………………29

 4.2.3 The Effect of the Number of Processor……………………………...31

 4.2.4 The Effect of Fault Probability………………………………………31

Chapter 5. Conclusion and Future Work……………………………………………..34

 5.1 Conclusion…………………………………………………………………..34

 iv

 5.2 Future Work…………………………………………………………………35

Bibliographies……………………………………………………………………......36

 v

List of Figures

Fig. 2.1 Scheduler model……………………………………………………...... 6

Fig. 2.2 Backup overloading…………………………………………………… 9

Fig. 3.1 The schedule at time = 10. Dark shading areas depict scheduled ddd

primaries. Grey shading areas depict scheduled backups……………... 16

Fig. 3.2 The maximum overlapped time of Bki is 10 on processor 1. The ddd

minimum non-overlapped time of Bki is 2 on processor 3…………….. 19

Fig. 3.3 MNO(Bk10) is 3 on processor 4………………………………………... 20

Fig. 3.4 Flow chart of DNA algorithm…………………………………………. 21

Fig. 3.5 Final schedule…………………………………………………………. 22

Fig. 4.1 The solid line with double arrows is the range of possible ddd

computation time………………………………………………………. 26

Fig. 4.2 di is chosen uniformly in the range of the solid line with double ddd

arrows when laxity = 3………………………………………………… 26

Fig. 4.3 Flow of the dynamic simulator………………………………………... 27

Fig. 4.4 Effect of task load. (R = 3, P = 8, FaultP = 0.2)………………………. 30

Fig. 4.5 Effect of laxity. (λ = 0.7, P = 8, FaultP = 0.2)………………………... 30

Fig. 4.6 Effect of the number of processor. (λ = 0.7, R = 3, FaultP = 0.2)……. 31

Fig. 4.7 Effect of fault probability with various task loads. (R = 3, P = 8)…….. 32

Fig. 4.8 Effect of fault probability with various laxity. (λ = 0.7, P = 8)……….. 32

Fig. 4.9 Effect of fault probability with various number of processor. dddd

(λ = 0.7, R = 3)…………………………………………………........... 32

 vi

List of Tables

Table 3.1 Attributes of tasks in the task queue………………………………… 16

Table 3.2 Density calculation for T9, T10, T11 in Table3.1……………………… 18

Table 4.1 Parameters for task generator………………………………………... 25

Table 4.2 Parameters for fault probability……………………………………... 28

 vii

Chapter 1. Introduction

 A heterogeneous system is a computing platform consisting of different kinds of

processors which are interconnected with some topology. These processors vary in

computation power and dedicated purposes. Because of the multiple and various processors,

the heterogeneous systems can support parallel and distributed applications. It is important to

distribute the tasks to the appropriate processors for achieving high performance [1-14,

19-28].

 In recent years, computing systems have been used in several applications which have

stringent timing constraints, such as autopilot systems, satellite and nuclear plant control.

Real-time systems are defined as those systems in which the correctness of the system

depends on not only the logical result of computation, but also on the time at which the results

are produced [14]. Real-time systems are broadly classified into three categories as follows:

[16] (1) hard real-time systems, in which the consequences of not executing a task before its

deadline may be catastrophic, (2) firm real-time systems, in which the result produced by the

corresponding task ceases to be useful as soon as the deadline expires, but the consequences

of not meeting the deadlines are not very severe, (3) soft real-time systems, in which the

utility of results produced by a task with soft deadline decreases over time after the deadline

expires. We will use the hard real-time system as our system model.

 The problem of scheduling real-time tasks in heterogeneous multiprocessors is to

determine when and on which processor a given task executes [14, 16]. This can be done

either statically or dynamically. If the characteristics of tasks such as arrival time and deadline

could be determined a priori, the scheduling process could be done by a static algorithm.

Static algorithms are often used to schedule periodic tasks. However, this approach is not

applicable to aperiodic tasks whose characteristics are not known a priori. Scheduling such

tasks require a dynamic scheduling algorithm [12]. In dynamic scheduling, when new tasks

 - 1 -

arrive at the system, the scheduler dynamically determines whether these tasks could be

scheduled successfully in the current schedule. A task is feasible if it can be scheduled

successfully. In hard real-time systems, if a task is found to be unfeasible, it should be rejected

as soon as possible.

 Real-time systems usually need high reliability. Thus, fault-tolerance is an important

issue in many real-time applications. A system is fault-tolerant if it produces correct results

even in the presence of faults [29]. In real-time multiprocessor systems, fault tolerance can be

provided by scheduling multiple copies of a task on different processors. Three different

models have evolved for fault-tolerant scheduling of real-time tasks. Firstly, the Primary

Backup (PB) model duplicates an additional copy, called backup, except the original one,

called primary [3]. The backup is executed only if the primary fails to produce the correct

results. Secondly, in the Triple Modular Redundancy (TMR) model, three copies of a task are

executed concurrently to achieve error checking by comparing results after completion [15,

16]. Thirdly, in the Imprecise Computational (IC) model, a task is divided into mandatory and

optional parts [5]. The mandatory part must be completed before the deadline of a task for

acceptable quality of result, and the optional part refines the result.

 In this thesis, we address the problem of dynamically scheduling hard real-time tasks

with PB fault-tolerant requirement on to a set of heterogeneous multiprocessor. The objective

of any dynamic real-time scheduling algorithm is to improve the number of tasks whose

deadlines are met. Most dynamic scheduling algorithms for real-time tasks take the steps

similar to the list scheduling algorithms. First, a heuristic function determines the scheduling

priority of tasks, and then, tasks are scheduled on appropriate processors in the order of

nonincreasing priority. The integrated heuristic function used in existing algorithms

emphasizes whether a task could be executed earlier. However, the needed computation time

and the time which is schedulable for a task will determine whether it is flexible to be

 - 2 -

scheduled. For this observation, we will propose an advanced heuristic function, name density

function. The density function takes account of the relation between computation time and

schedulable time, and will select the least flexible to be scheduled first. We also propose a

new strategy for scheduling backup copy, named MNO, to minimize the reserved processor

time for the backups. The MNO strategy takes advantage of backup overlapping and will find

a processor where the least extra time, i.e. non-overlapped time, is needed for a backup. New

arriving tasks will benefit from MNO because the schedulable time for them is getting more.

 For evaluating the performance, we construct a dynamic simulation and compare our

algorithm with FTMA [8] and distance myopic algorithm [2]. Unlike these two algorithms,

one feature of our algorithm is that it doesn’t need any input parameter for any kind of system

environments. In the simulation result, we can see the density function selects more

appropriate tasks, and MNO saves more time for new tasks. Moreover, DNA outperforms

FTMA and distance myopic with any combination of parameters.

 The remainder of this thesis is organized as follows. In chapter 2, we define the system

model and describe representative previous works done in the area of real-time fault-tolerant

scheduling. In chapter 3, we propose an algorithm for dynamically scheduling real-time tasks

with fault-tolerant requirement. In chapter 4, the performance of the proposed algorithm is

evaluated through dynamic simulation and compared with the algorithms described in chapter

2. Finally, in chapter 5, we make some conclusions and future work.

 - 3 -

Chapter 2. System Model and Fundamental
Background

 In this chapter, we first present our assumptions and system model, including task model,

scheduler model, and fault tolerance model. Then we discuss the existing work on

fault-tolerant scheduling algorithm. Finally, the limitations of those previous algorithms will

be highlighted to induce the motivation for our research work.

2.1 System Model and Assumptions

 The target environment is a multiprocessor system consisting of multiple heterogeneous

processing units. The heterogeneity of processors means that the computation time of a task

varies from processor to processor, such as Application-Specific Integrated Circuit (ASIC),

Field Programmable Gate Array (FPGA), and Digital Signal Processor (DSP) which are

applied widely on real-time embedded systems [11]. Basically, we will give some basic

concepts in the following.

2.1.1 Task Model

 The real-time systems discussed in this thesis are hard real-time [16]. Every real-time

task Ti has the following attributes:

 (i) arrival time (ai), at which Ti enters the task queue.

 (ii) ready time (ri), at which Ti is really ready to execute.

 (iii) deadline (di), by which Ti must finish execution.

 (iv) computation time (cip), the cip represents the computation time of task Ti on

 processor p.

Generally, a task is ready to execute at arrival time, i.e., ai = ri.

 - 4 -

 We assume that tasks are aperiodic [2], i.e., the task arrivals are not known a priori.

Attributes of a task is unknown until it is generated and enters the system. Periodic task model

is a special case of aperiodic task model, so that the algorithm proposed in this thesis is also

applied to periodic tasks.

 We also assume that tasks are independent, i.e., there are no precedence constraints

between tasks. Nevertheless, dealing with precedence constraints is equivalent to working

with the modified ready times and deadlines [5]. Therefore, the proposed algorithm can also

be applied to tasks with precedence constraints among them. There are also no

communications between tasks.

 Finally, tasks are nonpreemptable, i.e., when a task starts execution on a processor, it

finishes to its completion.

2.1.2 Scheduler Model

 In a dynamic multiprocessor scheduling, all the tasks arrive at a central processor called

the scheduler, and are distributed to other processors in the system for execution. Each

processor has its own dispatch queue to where scheduled tasks are distributed. The scheduler

is running in parallel with other processors, scheduling the newly arriving tasks, and updating

the dispatch queues. Fig. 2.1 shows the architecture of the scheduler model.

 Single scheduler in this model may make a point of failure. The scheduler model may be

fault-tolerant by employing modular redundancy technique in which another backup

scheduler runs scheduling in parallel with the primary scheduler [2]. Final schedule is chosen

from the results of the two schedulers by an acceptance test. A simple acceptance test is to

check whether all the tasks in the schedule finish before their deadlines.

 Due to the assumption of the hard real-time task model, we assume each task is

scheduled as soon as possible. That is, the scheduling action of the scheduler may be periodic

 - 5 -

ProcessorsDispatch queues

P1

with a small time quantum or may be starting as a task arrives. Because the scheduler is a

dedicated processor, the high frequency of the scheduling would not affect the other general

processors.

2.1.3 Fault Tolerance Model

 In this thesis, we uses Primary-Backup (PB) model for fault tolerance [3]. In the PB

model, each task has two copies, namely, primary copy and backup copy. The backup copy is

redundant for the purpose of fault tolerance, and starts execution only when the primary copy

fails. Using PB model for fault tolerance, the following necessary conditions are required.

(1) Mutually exclusive in space: primary and backup copies must be scheduled on

different processors (to tolerate permanent processor faults).

(2) Mutually exclusive in time: the start time of a backup copy must be latter than the

finish time of its primary copy. This condition also implies two facts. First, the two

versions of a task are not parallelizable. Second, the sum of computation times of

primary and backup copies should be less than or equal to (di–ri) so that the both

copies can be schedulable within this interval.

P2

P3

New tasks
Task queue

Scheduler

Fig. 2.1 Scheduler model

 - 6 -

 Because backup is the only redundant copy of a task, we assume that each task

encounters at most one failure either due to hardware failure or due to software failure. This

also implies that there is at most one failure in the system at any instant of time.

2.2 Related Work

 Many scheduling problems have been proved to be NP-complete [6], i.e., it was believed

that there is no optimal polynomial-time algorithm for them. It was also shown that an

algorithm does not exist for optimally scheduling dynamically arriving tasks on a

multiprocessor system [7]. These negative results motivated the need for heuristic approaches

to solve the scheduling problems. Generally, the heuristic scheduling algorithms try to find a

feasible schedule by repeating two steps. The first step is to select one task with the highest

priority which is determined by a heuristic function. The heuristic function synthesizes

various characteristics of a task to form the priority of scheduling order. The next step is to

decide one processor on which the selected task is assigned. The two steps repeat until all

tasks in the queue are either scheduled or rejected.

 In the past decade, many heuristic scheduling algorithms have been proposed to

dynamically schedule a set of tasks whose deadlines and computation times are unknown

until arriving into the system. For homogenous multiprocessor systems with resource

constraint, an algorithm called myopic algorithm was proposed [1]. Initially, myopic sorts all

tasks in the nondecreasing order of deadlines. In the task selection step, it checks whether the

current partial schedule is strongly feasible. If so, a given heuristic is applied to all tasks in

feasibility check window. The task with the lowest heuristic is chosen to extend the current

schedule. If the current schedule is not strongly feasible, backtracking is done by discarding

the current schedule, and extending the previous schedule by a different task. A partial

schedule is said strongly feasible if all the schedules obtained by extending this schedule with

 - 7 -

any one task in the feasibility check window are also feasible. Feasibility check window

contains the first k tasks in the sorted task queue. In order to reduce the cost of looking ahead,

[1] considers only the tasks in the feasibility check window both for strong-feasibility

checking and for heuristic calculating. It has been shown that an integrated heuristic, which is

a function of the deadline and the earliest start time of a task, outperforms other simple

heuristics such as minimum deadline first, minimum computation time first, least laxity first,

etc.

 Myopic is efficient and effective. However, it is limited on homogeneous systems, and

does not have the fault-tolerant mechanism which is more and more important for real-time

systems. Another issue is about the heuristic function. Myopic sorts all the tasks initially in

nondecreasing order of deadlines. When scheduling is in progress, the tasks under

consideration are limited in the feasibility check window. Because the size of feasibility check

window is small, the order of tasks to be scheduled is close to the order of nondecreasing

deadlines. A more realistic heuristic will be defined in the next chapter.

 In the PB model, backups are redundant if their primaries finish successfully. In order to

utilize the redundant time, the concept of overlapping backups is proposed by backup

overloading algorithm [3]. Overlapping backups means that more than one backup copy can

be overlapped with each other on the same processor. The necessary condition of backup

overloading is as follows. If the primary copies of two tasks are scheduled on two different

processors, then their backups can be overlapped with each other on a processor. Fig. 2.2

illustrates the backup overloading. Backup1 and Backup3 can be overlapped with each other

whose primaries, Primary1 and Primary3, are scheduled on different processors respectively.

Similarly, the Backup2 and Backup4 could also be overlapped with each other. Another

concept proposed by [3] is backup deallocation. Backup deallocation means the reclamation

of resources reserved for backup tasks when the corresponding primaries complete

 - 8 -

successfully. For example, the time interval used by the backups can reutilized if no faults

occur. Both of these two techniques help improve acceptance ratio of arriving tasks.

 For dynamically scheduling tasks with fault tolerance, distance myopic algorithm which

is extended from myopic algorithm is proposed in [2]. The main difference between distance

myopic and the original myopic algorithm is the construction of task queue. Because PB

based fault tolerance is included in this method, all primaries in the task queue are sorted in

nondecreasing order of deadlines. Then, the backups are inserted into the task queue at the

distance, called distance concept, from their primary copies. The primary always precedes its

backup in the task queue. The distance is an input parameter to the scheduling algorithm to

determine the relative positions of the two copies of a task in the task queue. The primary and

backup of a task are scheduled separately except that the backup could be scheduled until the

primary has been scheduled. The other enhancement of distance myopic is flexible backup

overloading, which introduces a trade-off between degree of fault tolerance and performance.

The flexible overloading scheme permits more than one fault occur at any instant of time by

forming the processors into different groups. In each group, there is at most one fault at a

time.

 Putting the primaries and backups in the single task queue is one of main disadvantages

in this algorithm. The reason is that a backup may appear in the feasibility check window

Backup 4

Backup 3

Primary 1 Primary 2

Fig. 2.2 Backup overloading

Primary3

Primary 4 Backup 1

Processor 1

Backup 2
Processor 2

Processor 3

 - 9 -

when its primary is also in the window. The strong feasibility checking is false because the

backup is unschedulable. The situation will result in backtracking and eventually rejecting this

task. Another disadvantage is that it is difficult to choose the right combination of the two

parameters, distance and the size of feasibility check window. With varying situations of

system environment, the same values of parameters will not always produce good result. Thus,

adjustments to the parameters are needed in different situations.

 Both of myopic and distance myopic are scheduling real-time tasks on homogeneous

multiprocessor systems. Fault-tolerant myopic algorithm (FTMA) [8], which is extended from

distance myopic, is used for heterogeneous multiprocessor systems. In addition, the

enhancements of FTMA include task queue construction and feasibility check window

movement. The main motivation of FTMA is to overcome the disadvantage of single task

queue in distance myopic algorithm. FTMA puts primary and backup copies separately in two

different task queues, namely primary task queue and backup task queue. Both primaries and

backups are sorted in nondecreasing order of deadlines. FTMA selects the task with smaller

heuristic value from the first primary and backup in the queues into the check window. The

heuristic of a backup is defined as infinite when its primary has not been scheduled. In this

way, the two versions of a task will not appear in the window simultaneously. The

two-task-queue method also eliminates the need of the distance parameter which is difficult to

be chosen. However, the other parameter, size of feasibility check window, is still needed in

FTMA. As distance myopic, adjustment to this parameter is still needed in different situations

of the system.

 eFRCD is a static scheduling algorithm on heterogeneous systems [4]. It takes account of

the heterogeneities of computation, communication and reliability. Tasks are judiciously

allocated to processors so as to reduce the reliability cost, defined to be the product of

processor failure rate and task execution time. Like the static algorithms proposed in [19, 30],

 - 10 -

eFRCD schedules all tasks with known attributes a priori. These static algorithms can not be

applied to a dynamic system due to their high complexity. The assumption with a priori

known attributes is also not realistic for the systems of aperiodic tasks.

 In the next chapter, we will describe the proposed algorithm which schedules real-time

tasks dynamically with fault tolerance on heterogeneous systems without any parameters.

 - 11 -

Chapter 3. Density First with Minimum
Non-overlap Scheduling Algorithm

 We have described the relative background about dynamically scheduling real-time tasks

with fault tolerance in the previous chapter. In this chapter, we will propose the density first

with minimum non-overlap scheduling algorithm (DNA). As those algorithms introduced in

chapter 2, DNA repeats two phases continuously until all tasks in the queue are scheduled or

rejected. The first one is the task selection phase followed by the second one, processor

assignment phase. In the task selection phase, we define a new heuristic, namely density, to

prioritize tasks in the task queue. In the processor assignment phase, the primary copy is

scheduled first, and then the next step is backup scheduling. A new strategy, called minimum

non-overlap (MNO), is proposed for scheduling backups.

 In section 3.1, we describe the definition of the density heuristic. In section 3.2, we state

the minimum non-overlap strategy for backup scheduling. Finally, the complete algorithm

will be presented in section 3.3 followed by the discussion of complexity.

3.1 A New Heuristic Function

 In the first phase, a heuristic function is used to decide the priorities of tasks. A task with

the highest priority will be selected to be scheduled first. Most scheduling algorithms

described in section 2.2 use deadlines and earliest finish times as the integrated heuristic

function. This implies that tasks which may or have to finish earlier are given higher priorities.

Nevertheless, real-time tasks are not concerned about when to start computation but rather

about meeting their deadlines. For example, tasks with earlier deadlines or finish times may

have small computation times so that they are still schedulable even with lower scheduling

order. On the other hand, tasks with later deadlines or finish times should be given higher

 - 12 -

priorities if their computation times are large with respect to their schedulable intervals. The

question of whether or not a task Ti could be scheduled by its deadline depends on the

relationship between the schedulable intervals of Ti and its computation times on each

processor. Thus, we introduce a concept of density as the heuristic function.

 The time of all schedulable intervals for a task is called schedulable time generally. The

density of a task is a ratio of the computation time to the schedulable time. When the

computation time needed by Ti is getting closer to its schedulable time, we say that Ti has

large density. With large density, it is less flexible to schedule Ti. That is, if Ti does not have

higher priority of scheduling order, it may be rejected because the schedulable time is getting

less after other tasks are scheduled. Conversely, if the computation time needed by Ti is small

with respect to its schedulable time, i.e. small density, Ti may be still schedulable with lower

priority. This is because it is easier to find schedulable intervals for tasks with small density

than tasks with large density. Before we give the formal definition of density, some

terminologies will be defined first.

 Let Pri and Bki be the primary and backup copies of task Ti respectively, and Proc is the

set of all processors in the system. Because of the time exclusion between primary and backup

copies of a task, the scheduled start time of Bki must be greater than or equal to the scheduled

finish time of Pri. It implies that the deadline of Ti, di, is impossible to be the latest finish time

of Pri, and the ready time of Ti, ri, is also impossible to the earliest start time of Bki. In the

following, the start or finish time for primary and backup will be redefined. First, Bki is

impossible to be scheduled if the interval between the scheduled finish time of Pri and di is

less than the minimum computation time of Ti. Thus, Pri must be finished before its latest

finish time, LFP(Ti). Actually, LFP(Ti) could be thought of as the deadline of Pri. Finally, we

give the following definitions.

 - 13 -

Definition 3.1 The Latest Finish time of Primary (LFP) is defined as:

 }c{MINd)T(LFP ipii −= , for all ocPrp∈ (1)

, where di is the deadline of Ti, and cip is the computation time of Ti on processor p.

 In additional to the LFP, Ti has the earliest finish time for its primary.

Definition 3.2 The Earliest Finish time of Primary (EFP) is defined as:

 }c)(PrEST{MIN)T(EFP ippii += , for all ocPrp∈ (2)

, where EST(Pri)p is the earliest start time of Pri on processor p.

 The scheduled start time of Bki could be as early as the earliest finish time of Pri. Thus,

we define the earliest start time of backup (ESB) for Ti as:

 ESB(Ti) = EFP(Ti) (3)

ESB(Ti) could also be thought of as the ready time of Bki. With the definitions of LFP and

ESB, we could claim that Pri should be scheduled between ri and LFP(Ti), and Bki should be

scheduled between ESB(Ti) and di.

 Neither primary nor backup of a task could be scheduled on the processors without

sufficient schedulable time for it. The processor on which the primary or backup could be

scheduled may be different. Thus, we define a set of available processors for the primary and

backup respectively. Each set contains processors on which the primary (backup) can be

scheduled.

Definition 3.3 We define availP(Pri), the set of available processor for Pri, and availP(Bki),

the set of available processor for Bki, as follows:

 (1) availP(Pri) = { processor j }, where there is at least one time slot greater than or

 - 14 -

equal to cij between ri and LFP(Ti) on processor j. The slot cannot be overlapped with any

scheduled tasks, neither primaries nor backups.

 (2) availP(Bki) = { processor j }, where there is at least one time slot greater than or

equal to cij between ESB(Ti) and di on processor j. The slot can be overlapped with any

scheduled backups.

 Here, we give an example to demonstrate the above definitions. We assume there are

four processors in the system, the current time is 10, and there are three tasks have arrived

into the system. Fig. 3.1 shows the current schedule, and Table 3.1 lists the attributes of the

tasks in the queue. This example will be used for illustration throughout this chapter. In this

example, Pr9 must finish before the time = 40 because the Br9 may be scheduled on processor

3 where T9 has the maximum computation time. Thus, the LFP(T9) is 40. Pr9 could start at

time = 17, and has the earliest finish time, 26, on processor 2. This implies Bk9 could start as

early as time = 26. Thus the ESB(T9) is 26. Pr9 can be scheduled in the range from the ready

time, r9 = 10, to the LFP(T9), 40. On processor 3, there are two time slots, (10, 15) and (28,

40), which are not reserved for any task yet between r9 and LFP(T9). But both of them are less

than c93 so that Pr9 could not be scheduled on processor 3. Similarly, Pr9 could not be

scheduled on processor 4 because the only unreserved time slot between r9 and LFP(T9), (21,

30), is less than c94. Thus, the set of processors which Pr9 can be scheduled, i.e. availP(Pr9),

is {processor 1, processor 2}. Bk9 can be scheduled in the range from the ESB(T9), 26, to the

deadline, d9 = 45. Between ESB(T9) and d9, we assume all scheduled backups may be

overlapped with Bk9. On processor 1, 2, 3, there are time slots large enough to execute Bk9.

However, time slots (26, 30) and (40, 45) are too small to execute Bk9. Thus, the availP(Bk9)

is {processor 1, processor 2, processor 3}.

 As we mentioned early in this section, the density of a task is a ratio of the computation

 - 15 -

d Table 3.1. Attributes of tasks in the task queue.

 ri di ci1 ci2 ci3 ci4

T9 10 45 5 11 15 10
T10 10 50 15 14 11 10
T11 10 37 5 7 5 8

time to its schedulable time. First, because of the two copies of a task, the computation time

needed by Ti includes the time for Pri and Bki. Actually, we define the time needed by primary

and backup as the average computation time on those processors in the availP(Pri) and

availP(Bki) respectively.

Definition 3.5 For task Ti, we define Pr_mean, the average computation time of Pri on

availP(Pri), and Bk_mean, the average computation time of Bki on availP(Bki) as follows:

)(PravailPc)T(meanPr_ i
)(PravailPp

ipi
i

∑
∈

= (4)

)Bk(availPc)T(mean_Bk i
)Bk(availPp

ipi
i

∑
∈

= (5)

, where)(PravailP i and)Bk(availP i are the number of processor in availP(Pri) and

10 15 20 25 30 35 40 45

10 15 20 25 30 35 40 45

10 15 20 25 30 35 40 45

Bk5Pr6 Bk8Proc 1

5045 3525 403020 10 15

Pr5 Bk6 Bk7Proc 2

50

Pr4Proc 3

50

Pr7 Pr8 Bk4Proc 4
50

Fig. 3.1. The schedule at time = 10. Dark shading areas depict scheduled
primaries. Grey shading areas depict scheduled backups.

 - 16 -

availP(Bk ly.

i) respective

Next, the schedulable time for Ti is the sum of time slots which are schedulable for Pri or

ki.

aries or backups on processor

B A time slot, represented as (start, end), which is schedulable for Pri on processor p is

defined as prslotip. prslotip must satisfies the following conditions: (1) irstart ≥ ,

(2))T(LFPend i≤ , (3) ipcstartend ≥− , (4) prslotip cannot be overlapped with any scheduled

prim time slot which is schedulable for Bkp. A i on processor p is

defined as bkslotip. Similarly, bkslotip must satisfy: (1))T(ESBstart i≥ , (2) idend ≤ ,

(3) ipcstartend ≥− , (4) bkslotip cannot be overlapped with s es on r

p. F chedulable time is the sum of all prslot

cheduled primari processo

or Ti, the total s

efinition 3.6 The Sum of Schedulable Time of Ti, named SST, is defined as:

ip and bkslotip.

D

 ∑∑
∈∈

+=
)Bk(availPp

ip
)(PravailPp

ipi bkslotprslot)T(SST ,
ii

 (6)

After introducing the above definitions, we could define the new heuristic function,

me

efinition 3.4 For each task Ti in the task queue, we define the density heuristic function as:

na d density function, as follows.

D

)T(mean_Bk)T(meanPr_

)T(density ii
i

+
= (7

)T(SST

i

)

The density of a task indicates the tightness of the interval between the ready time and

the deadline with respect to its computation time. The highest density means that it is least

flexible to schedule a task. On the other hand, low density means that it is easy to find

 - 17 -

schedulable intervals for primary and backup. Thus, we will select the task with the maximum

density in task selection phase. It is to be noted that the density is defined for a task Ti, rather

than Pri or Bki separately. The reason is that Ti will be rejected if either Pri or Bki fails to be

scheduled. Getting less flexible to schedule either Pri or Bki implies that it is also inflexible to

schedule Ti.

 Table 3.2 gives an example of density calculation for the tasks in table 3.1. T10 are given

Table 3.2. Density calculation for T9, T10, T11 in Table 3.1.

 LFP ESB

the highest priority even though both of the EFT(Pr10) and d10 are larger than the other tasks.

availP(Pr) availP(Bk) Pr_mean Bk_mean ∑ prslot ∑bkslot density

9 40 26 proc1,2 proc1,2,3 8 10.333 0.220
T10 13 140 36 proc1,3 proc2,3,4 1.667 29 38 0.368
T11 32 15 pr 6.25 6.25 oc1,2,3,4 proc1,2,3,4 36 54 0.139

T 28 55

.2 Minimum Non-Overlap (MNO) for Backup

 DNA starts to

3

After selecting the task with the maximum density in the first phase,

schedule the primary and backup in the second phase. As many scheduling algorithms for

heterogeneous systems, we will schedules the primary on the processor where it could finish

as early as possible. In the next step for scheduling backup, most algorithms like those

described in section 2.2.1 also assign a backup to a processor according to the earliest finish

time. The processor time reserved for backups, however, is redundant and will be deallocated

if their primaries finish successfully. If the processor time reserved for backups could be

minimized, there is more schedulable time for other new tasks. An intuitive method for this

idea is to overlap backups as much as possible. It works for homogeneous systems, but

doesn’t work for heterogeneous systems. This is because the computation time of a task varies

from processor to processor in heterogeneous systems. For a task Ti, having the maximum

 - 18 -

overlapped time on processor p does not necessarily mean that Ti also has the minimum

defined as:

, for each

non-overlapped time on processor p. The non-overlapped time is actually the extra processor

time being reserved for Bki. For example, in Fig. 3.2, lines with double arrows represent the

computation time and the possible schedule of Bki where it has the minimum non-overlapped

time on that processor. It is shown that Bki has the maximum overlapped time on processor 1,

however 6 extra time units, i.e. interval (23, 29), are required. Similarly, 6 extra time units

will be required for processor 2. Bki has the minimum non-overlapped time, 2, on processor 3

means that only 2 extra time units will be reserved for it. Thus, we will intend to minimize the

extra time being reserved for backups, i.e. non-overlapped time. That is, a backup will be

scheduled on the processor where it has the minimum non-overlapped time. We give the

definition of minimum non-overlap of a backup as follows.

Definition 3.7 The Minimum Non_Overlap (MNO) of Bki is

 }MAXoverlapc{MIN)Bk(MNO ipipi −= ocPrp∈ (8)

or p.

Fig. 3.2. The ximu overlap d time of Bki is 10 on processor 1. The

, where Maxoverlapip is the maximum overlapped time of Bki on process

 ma m pe
minimum non-overlapped time of Bki is 2 on processor 3.

10 15 20 25 35 40 30

10 15 20 25 30 40 35

10 15 20 25 30 35 40

Processor 3

diESB(Ti)

Bk1

ci1 = 16

Bk2 Bk3

ci2 = 11

Bk5

ci3 = 7

Processor 1

Processor 2

 - 19 -

rocessor where

in Fig.3.3. The schedule of Bk10 on processor 2 is exactly the

ter

 After introducing the concepts of density and MNO, the complete algorithm of DNA is

ws the flow of our DNA algorithm. Similar to most

On each processor, we try to find the maximum overlapped time for Bki in order to

minimize the non-overlapped time. Finally, Bki will be scheduled on the p

MNO(Bki) is obtained.

 For the example in section 3.1, T10 has the maximum density and Pr10 is scheduled on

processor 1 by its EFT shown

in val (ESB(T10), d10), and the non-overlapped times is 7. On processor 3, there is no any

backup to be overlapped with so that the non-overlapped time equals the c10,3, 11. On

processor 4, Bk4 could be overlapped with Bk10 completely, and the non-overlapped time is

only 3. Obviously, if Bk10 is scheduled on processor 4, the extra processor time reserved for

it is only 3. Thus, MNO(Bk10) is 3 and Bk10 will be scheduled on processor 4 even though the

maximum overlapped time is on processor 2, and the earliest finish time is on processor 3.

3.3 The DNA Algorithm

described in this section. Fig. 3.4 sho

Bk10

10 20 25 30 40 45 15 35

10 15 20 25 30 35 40 45

10 15 20 25 3 35 40 45 0

10 1 20 25 30 35 45

Proc 1

Proc 2

Proc 3

Proc 4

5 40

d10LFP(T10) ESB(T10)r10

Pr6

Pr5

Pr4

Pr7 Pr8

Bk7

50

50

50

50

Bk5 Bk8

Bk6

Bk4

Pr10

Fig. 3.3 NO(B 0) is 3 on processor 4. k1. M

 - 20 -

heuristic scheduling algorithms, the steps involved in DNA divided into two phases. The two

phases repeats continuously until the task queue is empty. The first phase is to select the task

with the maximum density as the candidate to be scheduled. In the second phase, we try to

schedule the primary copy of the selected task first. If successfully, the next step is trying to

schedule the backup copy. A task is said to be scheduled successfully only if both copies are

scheduled successfully. Conversely, the selected task will be rejected if either the primary or

Is the task
queue empty?

YES

Fig. 3.4 Flow chart of DNA algorithm

NO

Modify heuristic values of tasks affected by Ti

Select the task Ti with the maximum density
 heuristic value

Schedule Pri by EFT

Schedule bki by MNO

Calculate the density heuristic
for all tasks initially

Is Pri scheduled
successfully?

Is Bki scheduled
successfully?

Reject Ti

Deallocate Pri
and Reject Ti

NO

YES

NO

YES

Scheduling
completed

 - 21 -

 Bk11

25 30 35 40

Bk7

Bk10

10 15 20 25 40 45

10 15 20 25 30 35 40 45

10 15 20 25 35 45

the backup fails to be scheduled. For the previous example, after T10 is scheduled successfully,

we recalculate the density e remaini The next one to be scheduled is T9

with density = 0.395, and T11 is the last one. The final schedule is shown in Fig. 3.5.

 It is to be noted that after a task with the maximum density has been selected, we

schedule the primary first, and then, schedule the backup immediately. This is different from

many fa ed algorith yopic and FTMA which

schedule their backups as d 2, 8]. The reason is that the density

heuristic function determines the priorities among all original tasks, neither primaries nor

backups. The advantage is t tion any more. That is,

the distance parameter in distance myopic algorithm and the separated task queues in FTMA

are eliminated.

 of th ng tasks, T9, T11.

ult-tolerant sch

primaries and

uling ms, such as distance m

istinct tasks [

hat there is no need for task queue construc

 It is also to be noted that we have no checking strong feasibility and backtracking which

are used in distance myopic and FTMA [2, 8]. The purpose of checking strong feasibility is

for looking ahead. Although the feasibility check window decreases the number of tasks to be

checked, the overhead of checking each task exists at each selection phase. We just apply the

density heuristic function to all the remaining tasks in the task queue. Because of the

assumption of dynamic systems and scheduler model defined in chapter 2, the number of

30 35

30 40

10 15 20 45

Proc 1

Proc 2

Proc 3

Proc 4

Pr6

Pr5

Pr4

Pr7 Pr8

Fig. 3.5. Final schedule.

50

50

50

50

Bk5 Bk8

Bk4

Pr10

Pr9

Bk9Pr11

 Bk6

 - 22 -

tasks in the task queue should not become so large while the scheduler starts scheduling. Thus,

the overhead of the task selection shall not be very heavy. We need no backtracking in our

 neither chec he stron of th urrent partial schedule, nor

backtrack to the previous schedule if the selected task is not schedulable. It is just s eduling

all the tasks one by one.

 Because we take all tasks into consideration in the task selection phase e complexity

of worst ca e is O(n2 n is the numbe f tasks be sch uled. T compl ty is hi er than

that of FTMA and distance myop shall not be very large in the

assumption of our scheduler model. In addition, a trick could also reduce the run time cost.

The density heuristic function is applied to all tasks only before the repeat of the two

scheduling phases. After a task is scheduled successfully, the heuristic function may not be

applied to all the remaining tasks in the next task selection phase. Only those tasks, which

have schedulable time slots overlapped with the just scheduled primary or backup, will be

given the recalculated density.

 In the next chapter, we will evaluate our DNA algorithm using simulation. The

simulation result of DNA will compare with distance myopic and FTMA.

algorithm. If either primary or backup fails to be scheduled, this task is just rejected. Both

steps of checking and backtracking will increase the running time of algorithms in realistic

systems. Thus, we k t g feasibility e c

ch

, th

). r o to ed he exi ghs

ic, O(n). Nevertheless, n

 - 23 -

Chapter 4. Simulation and Performance
 Evaluations

 In this chapter, we will evaluate the performance of density first with minimum

non-overlap scheduling algorithm (DNA) through simulation. In section 4.1, we will describe

the architecture of the simulator and some simulation parameters. Next, we will give the

performance evaluations in section 4.2.

4.1 Simulation Construction

 Because DNA is a dynamic scheduling algorithm, we will construct a dynamic

simulation instead of a static simulation. The flow of dynamic simulation is divided into two

parts. The first one is the task generator which generates a set of real-time tasks as the input of

the second part, simulator. The simulator simulates the events in the systems and the actions

of the scheduler. In the following, we will describe how to construct these two parts.

4.1.1 Task Generator

 The task generator generates a set of real-time tasks in the non-decreasing order of

arriving times. Each task has the attributes as described in section 2.1.1. The parameters

which affect these attributes in the task generation are summarized in Table 4.1. In the

following, we will describe how to decide the attributes of a task.

 The computation time of a task varies from processor to processor, and is bounded by the

minimum and maximum computation time, MIN_C and MAX_C. The heterogeneity variable,

which is chosen uniformly between 0 and 1, represents the heterogeneity of computation

times of a task. It determines the range of possible computation times for a task. Thus,

 - 24 -

ddddddd Table 4.1. Parameters for task generator.

parameter explanation range of possible values

MIN_C minimum computation time 10

MAX_C maximum computation time 80

λ task arrival rate [0.3, 0.9] (real)

R laxity [2, 7] (real)

P number of processors [3, 10] (integer)

BurstP probability of a burst 100λ

MAX_Burst maximum task number for a burst 10

MIN_Burst minimum task number for a burst 30

computation times of a task are chosen uniformly in the range of MIN_C and MIN_C +

(MAX_C – MIN_C) × heterogeneity. The lower bound, however, is not always MIN_C, so

the range will be shifted by the variable shift. Because the upper bound cannot larger than

MAX_C, the shift is chosen uniformly between 0 and MAX_C – (MAX_C – MIN_C) ×

heterogeneity. Finally, computation times of a task are chosen uniformly between (MIN_C +

shift) and (MIN_C + ((MAX_C – MIN_C) × heterogeneity) + shift). Fig. 4.1 shows the range

of computation time.

 The arrival times of tasks depend on the interarrival time between each task. The

interarrival time is exponentially distributed with mean [2]:

2

C_MAXC_MIN
P

1 +
×

×λ

, where λ is the task arrival rate, and P is the number of processors. We also assume there is

a possibility of bursts of tasks. We define the mean of interarrival time for bursting is

10

C_MIN
P

1
×

×λ

The probability of burst, BurstP, varies with λ and is defined as 100λ . When a burst

 - 25 -

MIN_C + (MAX_C – MIN_C) ×
heterogeneity + shift MIN_C + shift

happens, there are at least MIN_Burst tasks and at most MAX_Burst tasks arriving at the

systems in a very short interval.

 Because both copies may be scheduled with the first two maximum computation times,

the deadline of a task must be late enough to satisfy this possible scheduling. Thus, the

deadline of a task Ti is uniformly chosen between (ai + max cip + second max cip) and (ai + R

× max cip). The laxity parameter, R, indicates the tightness of the deadline, and is at least 2.

Fig. 4.2 depicts the lower and upper bound of deadline when laxity = 3.

4.1.2 Simulator

 Our evaluation was done by implementing a discrete-event dynamic simulator [17]. The

dynamic simulator simulates all events which may happen in a realistic system. The possible

events include the arrival, start and completion of a task, start of the scheduling, and backup

MIN_C MAX_C

shift

Fig. 4.1. The solid line with double arrows is the range of possible
computation time.

(ai + 3 × max cip) (ai + max cip + second max cip)

ai

max cip second max cip

max cip max cip max cip

Fig. 4.2. di is chosen uniformly in the range of the solid line with double
arrows when laxity = 3.

 - 26 -

file of task set --------------

deallocation as well as occurrence of faults. Fig. 4.3 depicts the flow of the dynamic simulator.

After reading the task set generated by the task generator, the Timer function decides the time

of next event, and calls the corresponding operation. After dealing with the events, the update

function updates the status of the system. The flow will repeat until all tasks in the set have

arrived into the system and completed or been rejected. At the end time, the simulator

terminates and reports the number of rejected tasks.

 For reality, we simulate the failure events. The failures may be due to hardware fault or

software fault [2]. Because the backup copy is the only one redundancy, we assume that each

task encounters at most one failure. That is, the backup always succeeds if its primary fails. A

software fault will terminate the task immediately. The hardware faults are the faults

happened to processors. All tasks on the failed processor will be terminated and deallocated,

whatever they are running or ready to run. The hardware faults could be transient or

permanent. If a transient fault happens, the failed processor will be available again in some

recovery time. The recovery time is distributed normally between 0 and MAX_Recovery. If a

number of rejected tasks

Timer()

arrival() finish() failure() recover() scheduler()

dynamic simulator

update()

Fig. 4.3. Flow of the dynamic simulator.

 - 27 -

d Table 4.2. Parameters for fault probability.

parameter explanation range of possible
value

FaultP probability that a primary fails [0, 0.5] (real)

Soft_FP probability that a primary fails due to software
fault 0.2

Hard_FP probability that a primary fails due to hardware
fault 0.8

PermHard_FP probability that a hardware fault is permanent 0.000001

MAX_Recovery maximum recovery time after a transient
hardware fault happened 50

permanent fault happens, the failed processor would never be available to the end of

simulation. We define the relative probabilities and parameters for failure events in Table 4.2.

4.2 Performance Evaluations

 In this section, we will evaluate the performance of the DNA algorithm by comparison

with FTMA and a modified distance myopic algorithm for heterogeneous systems, called

HDMA. HDMA is proposed in [8]. The total number of tasks arrived into the system is

20,000. For each set of parameters of the task generator, 20 task sets are generated as the

inputs of the three algorithms. We take the average of the 20 rejection number as the final

result. HDMA needs two parameters, size of feasibility check window (K) and distance, and

FTMA needs one, i.e. K. Because the better results depend on the combination of these

parameters, we will run HDMA with various combinations of K and distance, and run FTMA

with various K for each task set. We will choose the best result among the various

combinations of parameters as the final result of HDMA and FTMA for each task set.

 Next, we define the metric for the performance evaluations. The objective of any

dynamic real-time scheduling algorithm is to improve the guarantee ratio. The guarantee ratio

is defined as the percentage of tasks whose deadlines are met [1]. The formal definition is

 - 28 -

given below:

 %100
systemtheinarrivedtasksofnumbertotal

metaredeadlineswhosetasksofnumberRatioGuarantee ×= (9)

 In the next subsections, we will evaluate the performance of DNA and the other

algorithms with four simulation parameters. These parameters are task arrival rate (λ), laxity

(R), processor number (P), and fault probability (FaultP).

4.2.1 The Effect of Task Load

 The task arrival rate (λ) has been varied in Fig. 4.4. The size of feasibility check

window, K, ranges from 6 to 10 for FTMA. For HDMA, K ranges from 3 to 8 and the distance

ranges from 5 to 8. Higher λ means lower interarrival time and, thus, higher task load. As

task load increases, the guarantee ratio decreases for all algorithms. Obviously, HDMA has

poor performance because of the single task queue for primaries and backups. Appearances of

a primary and its backup in the feasibility check window results in continuously backtracking

and rejecting eventually. FTMA overcomes this disadvantage and has almost the same

guarantee ratio as DNA with lower arrival rate. When the task load is getting higher, DNA

rejects fewer tasks than that of FTMA. This implies that the density heuristic function selects

more appropriate tasks to be scheduled when more and more tasks arrived at the system in an

interval.

4.2.2 The Effect of Laxity

 The effect of task laxity (R) is depicted in Fig. 4.5. The size of feasibility check window,

K, ranges from 6 to 10 for FTMA. For HDMA, K ranges from 3 to 8 and the distance ranges

from 5 to 8. As the laxity increases, the guarantee ration also increases for all algorithms. We

 - 29 -

60%

65%

70%

75%

80%

85%

90%

95%

100%

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
Task arrival rate (λ)

G
u

ar
an

te
e

ra
ti

o

DNA

FTMA

HDNA

d Fig 4.4. Effect of task load. (R = 3, P = 8, FaultP = 0.2)

70%

75%

80%

85%

90%

2 3 4 5 6 7 8 9 10
Laxity (R)

G
u

ar
an

te
e

ra
ti

o

DNA FTMA HDMA

Fig. 4.5. Effect of laxity. (λ = 0.7, P = 8, FaultP = 0.2)

can find that the difference of the performance between DNA and the other algorithms is the

largest with the smallest laxity, and is getting closed when laxity is bigger. This is because the

density heuristic function considers the relationship between computation time and

schedulable interval rather than the deadline. It will give the highest priority to the least

flexible task whatever the laxity is. Instead, in the other algorithms, the deadline is

synthesized as part of the integrated heuristic function directly. In the situation of low laxity,

 - 30 -

55%

60%

65%

70%

75%

80%

85%

90%

95%

3 4 5 6 7 8 9 10
Number of Processors (P)

G
u

ar
an

te
e

ra
ti

o

DNA FTMA HDMA

dd Fig 4.6. Effect of the number of processor. (λ = 0.7, R = 3, FaultP = 0.2)

the integrated heuristic function may not select the appropriate task to be scheduled first.

4.2.3 The Effect of the Number of Processor

 The effect of varying the number of processors (P) is given in Fig.4.6. The size of

feasibility check window, K, ranges from 1 to 12 for FTMA. For HDMA, K ranges from 3 to

P and the distance ranges from P/2 to P. To increase the number of processor will increases

the guarantee ratio for all algorithms. When more processors are available, the difference in

guarantee ratio between DNA and the other algorithms is getting large. This is because there

are more opportunities for a backup to be overlapped. The DNA could benefit from this

situation since the MNO strategy has more opportunities to find less non-overlapped time.

4.2.4 The Effect of Fault Probability

 In Fig. 4.7-4.9, the probability that a primary copy encounters a failure (FaultP) is varied

with three parameters, λ, R, and P. We compare DNA only with FTMA for simplicity since

 - 31 -

70%

75%

80%

85%

90%

95%

100%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
u

ar
an

te
e

ra
ti

o

DNA (λ= 0.4) FTMA (λ= 0.4)

DNA (λ= 0.6) FTMA (λ= 0.6)

DNA (λ= 0.8) FTMA (λ= 0.8)

 - 32 -

the HDMA does not outperform the other algorithms in the previous simulation results. As

FaultP increases, the guarantee ratio decreases in any situation. When FautP = 0, there is no

Fig. 4.7. Effect of fault probability with
various task loads. (R = 3, P = 8)

Fig. 4.8. Effect of fault probability with
various laxity. (λ= 0.7, P = 8)

75%

80%

85%

90%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
u

ar
an

te
e

ra
ti

o

DNA (R = 2) FTMA (R = 2)

DNA (R = 6) FTMA (R = 6)

DNA (R = 10) FTMA (R = 10)

70%

75%

80%

90%

0 0.1 0.2 0.3 0.4 0.5
Primary Fault Probability (FaultP)

G
u

ar
an

t

85%

95%

te
e

ra
io

DNA (P = 5) FTMA (P= 5)

DNA (P = 8) FTMA (P = 8)

DNA (P = 10) FTMA (P = 10)

Fig. 4.9. Effect of fault probability with various
number of processor. (λ= 0.7, R = 3)

fault in the system, which means that every backup will be deallocated and all the time

reserved for backups will be reutilized. When the fault probability increases, more backup

copies are active to be executed so that it cannot be overlapped with any backups of new tasks.

Thus, there is the most time which can be reutilized as fault probability equals 0, and less and

ss as fault probability increases. In additional, the results of different degree of parameters,

, R

 heuristic function selects more appropriate tasks to be scheduled, even when the

task load is heavy or the deadlines are tight. We also find that the MNO strategy saves more

processor time than EFT or overlap as mush as possible for new arriving tasks. Furthermore,

without any input parameter, DNA still has better guarantee ratio than that of HDMA or

FTMA.

le

λ , P, are the same as the simulation results shown in the above subsections. These figures

also show that DNA has higher guarantee ratio than FTMA in any degree of parameters as the

fault probability increases.

 By the simulation, we have verified the performance of the DNA algorithm. We find that

the density

 - 33 -

Chapter 5. Conclusion and Future Work

 In this thesis, we have proposed an algorithm, named DNA, for dynamically scheduling

arriving real-time tasks with PB-based fault-tolerant requirement in a heterogeneous

multiprocessor system. Through the dynamic simulation, we have evaluated the performance

of the proposed algorithm compared with distance myopic algorithm and FTMA. Finally, in

this chapter, we make conclusions and describe some future work about our research.

5.1 Conclusion

 The integrated heuristic function proposed in [1] is used by most algorithms which

dynamically schedule arriving real-time tasks. The integrated heuristic function emphasizes

whether a task could be executed earlier. Nevertheless, real-time tasks are not concerned

about when to start computation but rather about meeting deadlines. We propose a new

heuristic function, named density, which indicates the tightness of a task. The density function

takes account of the schedulable time and the computation time. A task with the highest

density means that it is the least flexible to be scheduled so that it will be selected first for

scheduling. The simulation results show that the density function selects more appropriate

tasks even with a heavy task load.

 The MNO strategy for backup scheduling will minimize the processor time reserved for

backups. This will also increase the schedulable time for new tasks. Obviously, MNO saves

more time than overlapping as much as possible on heterogeneous multiprocessor. Moreover,

though simulation, we can find that MNO save more and more time than the EFT strategy

when the processor number increases.

 Finally, DNA does not need to be adjudged by any input parameters, unlike the distance

myopic and FTMA. Though the simulation, DNA gets better results than those of distance

 - 34 -

myopic and FTMA which are the best among any combination of needed parameters. This

means DNA is more general and suitable for any environment.

5.2 Future Work

 In additional to the research results we have proposed, there are some issues in the future

work.

 First, the assumption of our scheduler model is a dedicated processor for scheduling, and

the scheduling overhead is ignored. However, the scheduler may have a lot of idle time if the

task load is low. This is not economic for a cost-sensitive system. The scheduler may be used

for computation while it is idle as well as scheduling tasks. In this way, the scheduling

overhead needs to be taken into account for those tasks scheduled on the scheduler. How to

define and quantify the scheduling overhead is not trivial and becomes the next extension of

this thesis.

 Second, most algorithms assume deadlines of tasks are fixed after they are released, i.e.

deadlines do not vary with time. For some real-time applications whose high-level

requirements may change with time, the model of variable deadlines is required. [26] has

proposed a new workload model, called the state-dependent deadline model, for this kind of

applications. How to modify the density function in our algorithm for the variable deadline

model is another future extension of our research.

 - 35 -

Bibliographies

[1] Krithi Ramamritham, John A. Stankovic, and Perng-fei Shiah, "Efficient Scheduling

Algorithms for Real-time Multiprocessor Systems," IEEE Trans. on Parallel and

Distributed Systems, vol. 1, no. 2, pp. 184-194, Apr. 1990.

[2] G. Manimaran and C. Siva Ram Murthy, "A Fault-tolerant Dynamic Scheduling

Algorithm for Multiprocessor Real-time Systems and Its Analysis," IEEE Trans. on

Parallel and Distributed Systems, vol. 9, no. 11, pp. 1137-1152, Nov. 1998.

[3] Sunondo Ghosh, Rami Melhem, and Daniel Mosse, "Fault-tolerance Through Scheduling

of Aperiodic Tasks in Hard Real-time Multiprocessor Systems," IEEE Trans. on Parallel

and Distributed Systems, vol. 8, no. 3, pp. 272-284, Mar. 1997.

[4] Xiao Qin, Hong Jiang, and David R. Swanson, "An Efficient Fault-tolerant Scheduling

Algorithm for Real-time Tasks with Precedence Constraints in Heterogeneous Systems,"

Proc. International Conference on Parallel Processing, pp. 360-368, 2002.

[5] J.W.S. Liu, W.K. Shih, K.J. Lin, R. Bettati, and J.Y. Chung, “Imprecise Computations,”

Proc. IEEE, vol. 82, no. 1, pp. 83-94, Jan. 1994.

[6] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory

of NP-Completeness. San Francisco: W.H. Freeman, 1979.

[7] M.L. Dertouzos and A.K. Mok, “Multiprocessor On-Line Scheduling of Hard Real-Time

Tasks,” IEEE Trans. Software Eng., vol. 15, no. 12, pp. 1,497-1,506, Dec. 1989.

[8] Yi-Hsuan Lee and Cheng Chen, “Effective Fault-tolerant Scheduling Algorithm for

Real-time Tasks on Heterogeneous Systems,” Proc. National Computer Symposium, pp.

302, 2003.

[9] C.M. Krishna and K.G. Shin, Real-Time Systems, McGraw-Hill Int’l, 1997.

[10] Y. Oh and S. Son, “Multiprocessor support for Real-Time Fault-Tolerant Scheduling,”

 - 36 -

Proc. IEEE Workshop Architectural Aspects of Real-Time Systems, pp. 76-80, Dec. 1991.

[11] T. –Y. Yen and W. Wolf, Hardware-Software Co-Synthesis of Distributed Embedded

Systems, Kluwer Academic Publishers, 1996.

[12] A.K. Mok, Fundamental Design Problems of Distributed Systems for Hard

Real-Time Environments, Doctoral Thesis TR-297, MIT, Laboratory for Computer

Science, Cambridge, Mass., 1983.

[13] Chi-Sheng Shih and Jane W.S. Liu, “State-Dependent Deadline Scheduling,” Proc. IEEE

Real-Time Systems Symposium, pp. 3-14, Dec. 2002.

[14] K. Ramamritham and J.A. Stankovic, “Scheduling Algorithms and Operating Systems

Support for Real-Time Systems,” Proc. IEEE, vol. 82, no. 1, pp. 55-67, Jan. 1994.

[15] L.V. Mancini, “Modular Redundancy in a Message Passing System,” IEEE Trans.

Software Eng., vol. 12, no. 1, pp. 79-86, Jan. 1986.

[16] K.G. Shin and P. Ramanathan, “Real-Time Computing: A New Discipline of Computer

Science and Engineering,” Proc. IEEE, vol. 82, no. 1, pp. 6-24, Jan. 1994.

[17] Averill Law and W. David Kelton, Simulation Modeling and Analysis, McGraw-Hill,

1999.

[18] Babak Hamidzadeh and Yacine Atif, “Dynamic Scheduling of Real-time Tasks, by

Assignment”, IEEE Concurrency, vol. 6, issue 4, pp. 14-25, Oct. – Dec. 1998.

[19] T. Tsuchiya, Y. Kakuda, and T. Kikuno, “A new Fault-Tolerant Scheduling Technique for

Real-Time Multiprocessor Systems,” Proc. 2nd International Workshop on Real-Time

Computing and Applications, pp. 197-202, Oct. 1995.

[20] R. Al-Omari, Arun K. Somani, and G. Manimaran, “A New Fault-tolerant Technique for

Improving Schedulability in Multiprocessor Real-time Systems”, Proc. 15th

International Parallel and Distributed Processing Symposium, pp. 32-39, Apr. 2001.

[21] R. Al-Omari, G. Manimaran, and Arun K. Somani, “An Efficient Backup-overloading for

 - 37 -

Fault-tolerant Scheduling of Real-time Tasks”, Proc. IEEE Workshop on Fault-tolerant

Parallel and Distributed Systems, pp. 1291-1295, 2000.

[22] A. Girault, H. Kalla, M. Sighireanu, and Y. Sorel, “An Algorithm for Automatically

Obtaining Distributed and Fault-Tolerant Static Schedules,” Proc. International

Conference on Dependable Systems and Networks, pp. 159-168. June 2003.

[23] Y. Sorel, “Massively Parallel Computing Systems with Real Time Constraints ‘The

Algorithm Architecture Adequation’ Methodology,” Proc. Massively Parallel Computing

Systems, pp. 44-53, May 1994.

[24] A. Girault, C. Lavarenne, M. Sighireanu, and Y. Sorel, “Fault-Tolerant Static Scheduling

for Real-Time Distributed Embedded Systems,” Proc. 21st International Conference on

Distributed Computing Systems, pp. 695-698, Apr. 2001.

[25] Y. Oh and S. H. Son, “Scheduling Real-Time Tasks for Dependability,” J. Operational

Research Society, vol. 48, no. 6, pp. 629-639, Jun. 1997.

[26] Chi-Sheng Shih, Lui Sha, and Jane W.S. Liu, “Scheduling Tasks with Variable

Deadlines,” Proc. 7th Real-Time Technology and Applications Symposium, pp. 120-122,

2001.

[27] G. Manimaran, C. Siva Ram Murthy, M. Vijay, and K. Ramamritham, “New Algorithms

for Resource Reclaiming form Precedence Constrained Tasks in Multiprocessor

Real-Time Systems,” J. Parallel and Distributed Computing, vol. 44, no. 2, pp. 123-132,

Aug. 1997.

[28] I. Ekmecic, I. Tartalja, and V. Milutinovic, “A Survey of Heterogeneous Computing:

Concepts and Systemds,” Proc. IEEE, vol. 84, pp. 1127-1144, Aug. 1996.

[29] B.W. Johnson, Design and Analysis of Fault Tolerant Digital Systems, Addison

Wesley, 1989.

[30] C.M. Krishna and K.G. Shin, “On Scheduling Tasks With Quick Recovery From

 - 38 -

Failure,” IEEE Trans. Computers, vol. 35, no. 5, pp. 448-455, 1986.

 - 39 -

	A Fault-Tolerant Dynamic Scheduling Algorithm for Real-Time

