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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 79, Number 3, July 1980 

ON THE REFLEXIVIWY OF Co(N) CONTRACGONS 

PEI YUAN WU1 

ABsTRAcr. Let T be a CO(N) contraction on a separable Hilbert space and let 
J = S(Qp) e S(Q2) ) *... e S(Tk) be its Jordan model, where T1, 2, . . .9, k are 
inner functions satisfying T.Ij,- I for j = 2, 3, . . ., k, and S(%pj) denotes the com- 
pression of the shift on H2 e pjH2,j = 1, 2, . . ., k. In this note we show that T is 
reflexive if and only if S(QI/q2) is. 

In this note we only consider bounded linear operators defined on complex, 
separable Hilbert spaces. For each operator T, let { T}', { T}" and Alg T denote 
the commutant, double commutant and the weakly closed algebra generated by T 
and I, respectively. Let Lat T denote the lattice of invariant subspaces of T and 
Alg Lat T denote the (weakly closed) algebra of operators which leave all the 
subspaces in Lat T invariant. Recall that T is reflexive if and only if Alg Lat T = 
Alg T. In [1] Deddens and Fillmore characterized reflexive operators on finite-di- 
mensional spaces in terms of their Jordan canonical forms. Now we generalize their 
result to Co(N) contractions. More specifically, we prove the following 

THEOREM 1. If T is a Co(N) contraction and J = S(TqI) E S(q2) ... E S(Pk) is 
its Jordan model, then T is reflexive if and only if S(p1/p2) is. 

A contraction T (11 TII < 1) on a Hilbert space is of class Co(N) for some integer 
N > 1 if there exists an inner function T such that p(T) = 0 and the defect indices 
of T, dT raank(I - T* T)1/2 and dr _ rank(I - TT*)l/2, are both equal to some 
M < N. A Co(N) contraction is unitarily equivalent to the operator T defined on 
H = H2 e OTHN2 by Tf = P(e'T) for f E H, where H2 denotes the standard 
Hardy space of CN-valued functions defined on the unit circle, eT iS the character- 
istic function of T, and P denotes the (orthogonal) projection from HN onto H (cf. 
[5, Chapter VI]). Two operators T1, T2 are quasi-similar if there exist one-to-one 
operators X and Y with dense ranges (called quasi-affinities) such that XT1 = T2X 
and YT2 = T1 Y. A Co(N) contraction is quasi-similar to a uniquely determined 
Jordan operator (called its Jordan model) J = S(1) ED S(p2) ED ... E S(qk), 
where T, I2, .... . k are inner functions satisfying P1l I9- j = 2, 3, ... , k, and 
S(pj) denotes the operator defined on H2 e qpjH2 by S(rpj)f = Pj(e'tf) for f E H2 
E pjH2, Pj being the (orthogonal) projection from H2 onto H2 E) q7H2, j = 

1, 2, . . ., k (cf. [4]). For t and q in HX, Aq = 1 denotes that { and q have no 
nontrivial common inner divisor. 
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406 P. Y. wu 

We start the proof of Theorem 1 by showing that for Co(N) contractions, the 
property of reflexivity is preserved under quasi-similarities. This generalizes 
Corollary 4.5 in [7]. 

THEOREM 2. Let T1 and T2 be Co(N) contractions on H1 and H2, respectively. 
Assume that T1 is quasi-similar to T2. Then T1 is reflexive if and only if T2 is. 

PROOF. We may assume that T1 and T2 are defined on H1 = H2 e E1HJ2 and 
H2= H2 e 92HN2 by T1 f = P,(e'f) and T2g = P2(e'tg), respectively, where f E 
H1 and g E H2. Since T1 and T2 are quasi-similar to each other, there exist 
bounded analytic functions 4 and P such that (DO = e21 and (det 4)(det I) A 
(det E1)(det 02) = 1 (cf. [3] and [2]). Let VO denote the algebraic adjoint of 4. It 
can be easily verified that the operators X: H1 -* H2 and Y: H2--* H1 defined by 
Xf = P2(4ff) for f E H1 and Yg = P,((det I)V?g) for g E H2 implement the 
quasi-affinities intertwining T1 and T2 (cf. [2, Theorem 2]). Moreover, we have 
YX = q(T1) and XY = q(T2), where ij = (det 4)(det I). Let ml and m2 denote the 
minimal functions of T1 and T2, respectively. From the quasi-similarity of T1 and 
T2we have ml = M2 

Assume that T1 is reflexive. Let S E Alg Lat T2 and K E Lat T1. Then YSXK 
C YXK=q(T1)K. 1 A (det El) = 1 implies that q A ml = 1 (cf. [5, Theorem 
VI.5.2]). In particular, q and the minimal function of T1IK have no nontrivial 
common inner divisor. Thus q(T1lK) is a quasi-affinity (cf. [7, Theorem 2.3]) and 
therefore q(T1)K=,q(T1IK)K= K. We have YSXK C K for any K E Lat T1, 
which shows that YSX E Alg Lat T1 = Alg T1. Hence YSX = v(T) -lu(T1) for 
some u, v E H , where v A ml = 1 (cf. [7, Theorem 3.2]). So v(T1)YSX = u(T,) 
and we have q(T2)v(T2)Sq(T2) = XYv(T2)SXY = X(v(T,)YSX)Y = Xu(T1)Y = 

u(T2)XY = u(T2),q(T2). Since as above q(T2) is a quasi-affinity, this implies that 
,q(T2)v(T2)S = u(T2). Note that (nv) A m2 = 1. We obtain S = (7qv)(T2)-lu(T2) E 
Alg T2. This shows that T2 is reflexive, completing the proof. 

As a by-product of the preceding proof, we have the following 

THEOREM 3. Let T1 and T2 be Co(N) contractions on H1 and H2, respectively. If T1 
is quasi-similar to T2, then Lat T1 _ Lat T2. 

PROOF. Let X: H1 -> H2 and Y: H2 -> H1 be the intertwining quasi-affinities 
given in the proof of Theorem 2. For K1 E Lat T1 and K2 E Lat T2 consider the 
mappings K1 ->XK1 and K2 ->YK2. As before we have 

YXK1 = 7(TI)KI = 7(T IK1)KI = K1. 

Similarly, XYK2 = K2. We infer that these mappings implement the lattice isomor- 
phisms between Lat T1 and Lat T2 and hence Lat T1 Lat T2. 

As a consequence of Theorem 2, to prove Theorem 1 it suffices to consider 
Jordan operators. The next lemma will be needed in the proof of the necessity part. 

LEMMA 4. Let T be an operator on a Hilbert space H. Let S E Alg Lat T n { T}' 
and T1 = TISH. Assume that Alg Lat T1 n {T1}' = Alg T1. If T is reflexive, so is 
T11 
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PROOF. Let S1 E Alg Lat T1. Consider S1S as an operator on H. For any 
K E Lat T, SK 5 Kn SH. Since K n SH E Lat T1, we have 
S1SK C S1(K n SH) 5 KnSHC K. This shows that S1S E Alg Lat T= 
Alg T. Hence S1TS = S1ST = TS1S. It follows that S,T, = T1S, on SH1, that is, 
S1 E {T1}'. We conclude that S1 E Alg Lat T1 n {T1}' = Alg T1 and hence T1 is 
reflexive. 

To prove the sufficiency part, we essentially follow the same line of arguments as 
given by Deddens and Fillmore [1] for reflexive linear transformations. The next 
two lemmas are analogous to part of Theorem 2 and its Corollary in [1], respec- 
tively. 

LEMMA 5. Let T = S(p1) E *... E S(QPk) be a Jordan operator defined on H = 
(H2 e p1H2) (E... @(H2 e pkH2) and let 4 = P1/P2. If S E Alg Lat T, then 
there exist an outer E E H and 8 Ei H such that q(T)S = 8(T) + D, where D is 
an operator on H satisfying 

D[(tH2 e pH2) ED (H2 e T2H2) ED... E (H2 eD kH2)] 

C (~T2H2 e) q9H2) ED O ED . .. 0E O for any 14i. 

PROOF. Let Tj = S(qj), Hj = H2 e qjH2 and let Pj denote the (orthogonal) 
projection from H2 onto H), j = 1, 2, ... , k. For brevity of notation, we identify 
Hj as a subspace of H in the natural way. Let e = P1(l) E H1 and h = Se E H1, 
since S leaves H1 invariant. Let 

h(X) = hj(A)he(X) 

=hi(X)exp[ 27T e'+ k(t) dt] for IXI < 1 

where hi and he are the inner and outer parts of h, and k(t)= log=h9(t)l a.e. Fix 
M > Oandleta = {t: Ihe(t)l > M). Let 

q(X) =exp[+ ef + A(_k(t)) dt] for 1X < 1 

and 8 = qh. Then it is easily seen that 71, 8 E H' and q(T)Se = 8(T)e. Let 
D = q(T)S - 8(T). Then De = 0. 

We first check that D(H2 ED* . . EDHk) = {0). Let f E H' and consider the 
element Pj( f) in Hj, j = 2, 3, . . . , k. Let W and U be the invariant subspaces for T 
generated by Pj(]) and e @ Pj(f) E H1 @D H, respectively. Let g E W n U 5 Hj. 
Then there exists a sequence of polynomials {p,,) such that p"(T)(e @ Pj(f)) -*0 
ED g as n -> oo. Hence P,(pn) = pn(T)e ->0 and Pj(p,f) = p"(T)Pj(J) -* g, which 
imply that Pj(pn) = PjP,(pn) -*0 and f(Tj)Pj(p,) -* g. It follows that g = 0, 
whence W n U = {0). Since De = 0, we have D(Pj(f)) = D(e ED Pj(f)) E W n 
U = (0). Therefore D(Pj(f)) = 0. Note that {Pj(f): f E H}) is dense in Hj. We 
conclude that DHj = (0) for j = 2, 3, . . . , k. Hence D(H2 @* . . . *H,)= (0), 
as asserted. 
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Next we show that D(tH2 e (p1H2) 5 42H2 e rP1H2 for any 14i. Let W1 = 
tH2 e 1H2 and U1 ={P,(Uf) (E@ P2(f):f E H2}. For g = Uf E W1, Dg = 

D(PI(Mf) $ P2(f)) E W1 n U1. Thus to complete the proof it suffices to show that 

WI n U1 5 {rp2H2 e q1H2. Let w E W1 n U1. There exists a sequence {fn} C 
H2 such that P1(Uf") $ P2(f") - w 0 O as n - oo. Assume that f, = gn + q92h, 
where gn E H2 e rp2H2 and hn E H2 for each n. We infer that P1(4g& + q2h,) -3 

w and g -* 0. Thus w - P1(p2hA) = (w - PA(g + 4p2hn)) + Pl((g&) -) 0. It fol- 
lows that w E (rp2H2 e rp1H2 completing the proof. 

LEMMA 6. Let T = S(pI) *... $ *S(4k) be a Jordan operator defined on H= 

(H2 e rp1H2) fl *... *$ (H2 e 99kH2) and let %P = P1/P2. Then T is reflexive if and 
only if S(41) is. 

PROOF. Necessity. Note that T1Iq2(T)H is unitarily equivalent to S(4'). (An 
explicit proof can be found in [6, pp. 315-316].) Since p2(T) E Alg Lat T n { T}' 
and Alg Lat s() n { ())' = Alg S(xp), the reflexivity of T implies that of S(4) 
by Lemma 4. 

Sufficiency. Let Tj, Hj and Pj be as in the proof of Lemma 5 and let S E Alg 
Lat T. By Lemma 5, there exist an outer q EC H ' and 8 E H ' such that 

7q(T)S = 0(T) + D, where D satisfies 

2e r1H2) E H2 E .. lHk] 

c (2H2 e IH2) ED 0 ffl ED ** 0 for any I4J. 
Let D1 = DIH2 e %PH2 and D2 = Dl(%PH2 e q1H2) $ H2 ED ... $ Hk. Since 

D(%PH2 e q1H2) 5 42H2 e 1H2 = {0) and D(H2 ED EDHk)= {0H, we 
have D2 = 0. On the other hand, for any ~J4x consider the subspace tH2 e 4iH2 in 
Lat S(xp). Note that tH2 e 4iH2 C tH2 e p1H2. Hence from the property of D we 
infer that D1(tH2 e 4'H2) 5 (p2H2 e (p1H2. Thus the operator D' defined on 
H2 e %pH2 by D'f = -2DIf forf E H2 e %pH2 is in Mg Lat S(xp). By the reflexiv- 
ity of S(4'), there exists p in H such that D'f = p(S(%P))f for allf E H2 e 4,H2. It 
follows that DI f = r92(P(p])) = PA(92pf), where P denotes the projection from H2 
onto H2 e %pH2. For any h E H, h = f + g where f E H2 e 4H2 and g = 
ED Egk E (%PH2 e q1H2) $ H2 ED * * * Hk. We deduce that (qg2p)(T)h = 

(r92P)(T1)(f + gl) = PA(92pf + p2pg9) = PA(92pf) = Dlf. Consequently, Dh = 

Dlf + D2g = (Q2p)(T)h. This shows that D = (Q2p)(T) and hence q(T)S = 0(T) 
+ (r92P)(T) = (6 + p2p)(T). Since q is outer, we conclude that S E { T)" = Alg T 
(cf. [7, Theorem 3.2]). Thus T is reflexive, completing the proof. 

Now Theorem 1 follows from Theorem 2 and Lemma 6. The condition in 
Theorem 1 was first formulated by C. Foia? for general C0 contractions in a private 
communication to the author. He also proved the necessity part. However our 
presentation here is more simplified. 
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