
國 立 交 通 大 學

資 訊 工 程 學 系
碩 士 論 文

以代理人技術為基礎來設計一個新的工作流程

管理系統

Using Software Agents to Design a Modern

Workflow Management System

研究生：張瓊文

指導教授：王豐堅 教授

中華民國九十三年六月

以代理人技術為基礎來設計一個新的工作流程管理系統

Using Software Agents to Design a Modern Workflow

Management System

研究生：張瓊文 Student：Chiung-Wen Chang

指導教授：王豐堅 博士 Advisor：Dr. Feng-Jian Wang

國立交通大學

資訊工程學系

碩士論文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
In Partial Fulfillment of the Requirements

For the Degree of Master
In

Computer Science and Information Engineering

June 2004

HsinChu, Taiwan, Republic of China

中華民國九十三年六月

以代理人技術為基礎來設計一個新的工作流程

管理系統

研究生: 張瓊文 指導教授: 王豐堅 博士

國立交通大學

資訊工程研究所

新竹市大學路 1001 號

摘要

傳統的工作流程管理系統基本上是一個單一中央集中管理式的架構，這點從

現今的網際網路系統觀點來看顯得慢又不適宜，其流程的執行會受到事先定義好

的資源分配所限制，在任務排班上面也缺少其調度的彈性；它跟所有使用者之間

的操作介面都是固定的，缺少了因人因環境而異的可變通性。基於以上所提及的

種種不方便因素考量下，這篇論文引進了代理人的觀念技術到工作流程管理的技

術上，藉由代理人本身所具備的性質以及其運作的機制來提出一個新的工作流程

管理系統的模式，此架構對上述所提到的不方便性，提供一個合理而且有彈性的

解決方式。

關鍵字: 代理人、工作流程、工作流程管理系統

 i

Using Software Agents to Design a Modern

Workflow Management System

Student: Chiung-Wen Chang Advisor: Dr. Feng-Jian Wang

Institute of Computer Science and Information Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

The traditional workflow management systems (WfMSs) are based on a

centralized architecture, which need be modified to suit for the Internet technology

nowadays. For example, a workflow is restricted to pre-defined resource allocation

constraints, and the routing decisions of flow processes cannot be changed easily and

dynamically, i.e. lack of schedule flexibility. The operation data filled in a

manipulation interface is generally fixed and carried to all participants based on a

process generator. It is not flexible to provide suitable views and operations for

different participants or roles. Besides, if the operation data is small, it is not

necessary to apply current big applications to interact with participants. Thus, this

thesis introduces agent and artifact technologies into WfMSs and presents a new

WfMS architecture that could provide adequate and flexible solutions to cope with

these shortcomings.

Keywords: agent, workflow, workflow management system (WfMS)

 ii

誌謝

本篇論文的完成，首先要感謝我的指導教授王豐堅博士兩年來不斷的指導與

鼓勵，讓我在軟體工程及工作流程的技術上，得到很多豐富的知識與實務經驗。

另外，也非常感謝我的畢業口試評審委員楊鎮華博士以及朱正忠博士，提供許多

寶貴的意見，補足我論文裡不足的部分。

其次，我要感謝實驗室的夥伴們，有博士班建偉學長督導我寫論文，對論文

適時給予了許多重要的思考方向及建議；而其他學長姐們熱心地參與幫忙和討

論，讓我學得許多論文技巧，得以順利的撰寫論文。當然，值得一提的是我們這

屆畢業生吉正、祖年及大立，在各方面彼此不斷的砥礪與照顧下，使得大家在各

個領域的技術及理論上都能夠有所成長。

最後，我要感謝我的家人，因為有你們的支持，讓我能心無旁騖地讀書、作

研究然後到畢業，由衷地感謝你們大家一路下來陪著我走過這段研究生歲月。文

末也僅將我這一點點成就，獻給我在天上最敬愛的祖父。

 iii

Table of Contents

摘要...i

Abstract ..ii

誌謝.. iii

Table of Contents ..iv

List of Figures ...vi

List of Programs...vii

Chapter 1. Introduction ..1

Chapter 2. Background ..5

2.1 Workflow Technology and WfMS ...5

2.2 Software Agents Technology ...6

2.3 Related Research..7

Chapter 3. System Architecture ... 11

3.1 Overview.. 11

3.2 System Architecture ─ Design Phase ...12

3.3 System Architecture ─ Execution Phase ..14

3.3.1 Person Agent ...15

3.3.2 Artifact Agent..18

3.3.3 Process Agent..20

3.3.4 Workflow Manager ...22

3.4 An Example..24

Chapter 4. Flow Behaviors ..28

4.1 Workflow Enactment ...28

4.1.1 Automatic..28

4.1.2 Manual ..29

 iv

4.2 Workflow Termination ...30

4.2.1 Forced by External Power...31

4.2.2 Complete ...32

4.3 The Detailed Interactions of Workflow Enactment32

4.3.1 Accomplish a Task ..33

4.3.2 Split a Task..34

4.3.3 Merge Tasks ..36

Chapter 5. Implementation Issues..38

5.1 ISE Mobile Agent System..38

5.2 Interfaces of Workflow Manager ...38

5.3 Agent Script Format...41

5.3.1 Script Format of the Person Agent..41

5.3.2 Script Format of the Artifact Agent ..44

5.3.3 Script Format of the Process Agent ..46

Chapter 6. Conclusion & Future Work ..49

Reference ...50

 v

List of Figures

Figure 1. WfMC’s Workflow Reference Model...5

Figure 2. System Architecture Overview.. 11

Figure 3. System Architecture ─ Design Phase ..12

Figure 4. System Architecture ─ Execution Phase.......................................14

Figure 5. Instantiation of a Person Agent ..16

Figure 6. Lifecycle of an Artifact Agent ...19

Figure 7. Interactions of the Workflow Manager..22

Figure 8. A Simple Model of Ask-for-leave Workflow25

Figure 9. Interactions of Enacting a Workflow Automatically28

Figure 10. Interactions of Enacting a Workflow Manually..............................29

Figure 11. Interactions of Stopping a Workflow ...31

Figure 12. Interactions of Completing a Workflow...32

Figure 13. Interactions of Accomplishing a Task ..33

Figure 14. Interactions of Tasks Splitting ..34

Figure 15. Interactions of Tasks Merging ..36

 vi

List of Programs

Program 1. Goal of Person Agent ...41

Program 2. Fact of Person Agent..41

Program 3. Procedure of Starting a Workflow ...42

Program 4. Procedure of Querying a Workflow Progress42

Program 5. Procedure of Replying a Workflow Progress43

Program 6. Plan of Person Agent ...44

Program 7. Plan of Artifact Agent..45

Program 8. Plan of Process Agent ..48

 vii

Chapter 1. Introduction

Workflow management came mainly from the domain of office automation,

where all kinds of documents need to be digitalized and transferred among co-workers.

From paper works to e-form data manipulation nowadays, this technology has

evolved for decades. Due to the capability of modeling, executing, and monitoring

processes, workflow technologies attracted a lot of attentions and were deeply

discussed. With the evolution of Internet technology, the requirements of workflow

also increase in various applications. Besides, the communication information

between the departments in an organization might be changed. Traditional WfMS

technology needs large more efforts to support these demands. The defects of a

traditional WfMS architecture can be discussed with four significant aspects:

scalability, extensibility, flexibility and adaptability [14].

z Scalability

Basically, the conventional WfMS is a centralized architecture, which may not

be useful for current technologies. For example, when large-scale information

is applied by the users in an organization, the centralized server may be

deemed as a bottleneck.

z Extensibility

In a conventional WfMS, the business process scenarios and data

representations are almost restricted before execution. A WfMS is usually

utilized to integrate diverse application software, so that kinds of mechanisms

and adaptor programs for interoperability change frequently. It cannot be easily

extended to meet new requirements and standards. Furthermore, the issues

about exception handling for unexpected running workflows are emerging and

 1

need to be studied in accordance with the extensibility.

z Flexibility

Flexibility of a WfMS affects how workflow processes are designed, executed

and managed. Traditionally, initiation and completion conditions of each

process activity can be statically described only. Artifact representations and

routings are also defined in strict and limited rules. Besides, the client tools

provide unitary interfaces to all users. A modern WfMS needs to support

flexible process representations, i.e., which can be created, modified and

deleted dynamically. Different and configurable interfaces might be provided

for discrepancy of user groups based on their individual needs, preference and

expertise.

z Adaptability

The enactment services of current WfMSs are usually restricted by predefined

flow definitions. For example, the handling routines to all events need to be

well defined and set in advance, so that the execution of workflows lacks

flexibility in task scheduling and dispatching. However, the open environment

changes frequently. There might thus result in unavoidable and unexpected

cases. A modern WfMS should evolve with increasing (or modified)

mechanisms.

From the agent’s viewpoints, the business process scenarios are better modeled

as the interactions among the system components, users and software agents. Namely,

the traditional software modules described in the WfMC workflow reference model [2]

can be assisted or even replaced with software agents completely. Here we adopt the

major characteristics of software agents such as mobility, autonomy and intelligence

to construct, simplify and empower the whole workflow system and its applications.

 2

The agents adopted by our system are divided into three kinds. Process Agents

facilitate managing and monitoring the enactment of workflows. Artifact Agents are

designed to take charge of the artifact transmission and tasks accomplishment. Person

Agents assist participants in accomplishing tasks. They are also responsible for

artifact representation with the Client Tool. Furthermore, our agents can perceive the

changes of external environments, so that they may adjust themselves timely and

adequately based on predefined rules. That is, during workflow enactment, process

agents can proactively analyze the workflow to make smarter routing decision,

resource allocation and task scheduling. And person agents can proactively alter and

determine better artifact representation. They will also provide timely predictions and

decision advices for workflow participants according to the business rules and

changing environment.

In our system architecture, a process agent acts as a decentralized service

executor in the distributed environment. Next, the database access of artifact agents

can be deemed different that of conventional centralized one. Although the

instantiation of artifact agents need to refer databases, but after successful

instantiation, they will maintain these data objects and act as data carriers during

workflow execution. Afterwards, no more access to databases needed. Subsequently,

person agents can bring more new ideas to the workflow enactment, since now the

person agent is an active object in the system. That is, conventional passive operation

can be replaced with active ones, such as the work list handling and interface

manipulation now can be more humanized. The person agent can actively notify the

user about the oncoming events, such as the urgent task or workflow failure, and not

the user operates the tools to receive the result.

The rest of this thesis would be organized as follows. Chapter 2 introduces the

 3

background including WfMSs and recent research work on agent systems. Chapter 3

clearly describes our system architecture including the interactions among three

agents and system components thoroughly. Chapter 4 explains system design with

typical workflow behaviors. Chapter 5 gives some implementation issues about our

system. Chapter 6 concludes with the advantages of the proposed system architecture

and future works.

 4

Chapter 2. Background

2.1 Workflow Technology and WfMS

According to the Workflow Management Coalition’s (WfMC) [1] definitions, a

workflow is the computerized facilitation or automation of a business process, in

whole or part. And the workflow management system is a system that completely

defines, manages, and performs workflows through the execution of software, whose

order of execution is driven by a computer representation of the workflow logic.

Inside a WfMS, one of the significant parts is workflow enactment service [2]. It may

consist of one or more workflow engines in order to create, manage and execute

workflow instances. Besides, it also provides various interfaces to users and

applications distributed across the workflow area. These applications include process

definition tools, administration or monitor tools and invoked applications etc. Figure 1

illustrates the WfMC’s Workflow Reference Model and its generic components.

Figure 1. WfMC’s Workflow Reference Model

 5

2.2 Software Agents Technology

The idea of software agents was firstly used for the domain of artificial

intelligence, and tries to use agents to simulate human behaviors. Soon, many

domains of computer science adopted this concept in their research area. Jennings et

al. [4] defined that an agent is a computer system situated in some environment, and

that is capable of autonomous action in this environment in order to meet its design

objectives. Afterward, intelligent agents [5], mobile agents [16] and other new

concepts of software agents were proposed. Their primary objective to study is that

software agents own more power and better ways to accomplish tasks. And

researchers generally agree that a so-called intelligent agent must demonstrate

following properties [5] [6].

z Autonomy

Agents perform the majority of their problem solving tasks without the direct

intervention of humans or other agents, and they have control over their own

actions and internal state.

z Reactivity

Agents are able to perceive their environment and respond in a timely fashion

to changes that occur in themselves.

z Pro-activeness

Agents are able to exhibit goal directed behaviors by taking the initiative

where appropriate.

z Social ability

Agents are capable of interacting with other agents, and possibly humans.

Among those researches of intelligent agents, the BDI (Belief-Desire-Intention)

 6

[17] theory is a very well known model. For BDI agents, the “belief, desire, intention”

are said to be the internal mental states of an agent.

2.3 Related Research

Owing to the increasing shortcomings of the traditional WfMS, many researchers

in the related areas have invested a lot of time in enhancing the workflow

management and proposed various modified workflow management system

architectures. Researches about introducing the software agent technology into the

workflow management systems have been invested for years. Yuhong Yan et al. [8]

got the related information about agent-oriented system architectures together and

divide them into two ways. One of them is called agent-enhanced; its concept is

similar to treat agents as tools for workflow automation. That is, they could only do

something helpful for running workflows, such as acting as middleware for invoked

applications. Because the objective of these agents is automation, they don’t need to

interact and communicate with each other. There always exists a workflow engine

monitoring and controlling all these agents’ behaviors. So these agents are more like a

piece of ordinary software.

The other way is called agent-based; an agent based system means one in which

the key abstraction used is that of an agent. At this time, software agents replace the

behaviors and actions of business processes in the whole system. They not only did

something helpful for running workflows, but also fulfilled the entire business process

of workflow enactment. That is, the process logic is embedded in these agents, and

they take full responsibilities of this WfMS. In other words, it means that they have

all the means to analyze, automate, integrate and inspect workflows. Every agent is an

independent individual and would have the ability to interact and communicate with

 7

each other to accomplish the task. The software agent’s high-level capabilities, such

as learning, negotiation and mobility etc., may be also put into the system architecture

considerations. Although some abilities of them are not mature today, but it is obvious

to see that the WfMS with these high-level abilities would be more flexible and

powerful.

In this thesis, we introduce a software agent technology for WfMSs and describe

the agent-based WfMS architecture to cope with the fast increments on open systems.

Firstly, an agent itself is an active object which runs in a loosely coupled distributed

computing environment. Adding more agents and using the corporation mechanism of

agents can solve the problems of scalability with large number of participant

involvement. Secondly, when integrating with other applications and systems, the

communication mechanisms and interfaces of agents provide more flexibility and

extensibility than API calls. Thirdly, the interactions within a workflow may be much

complicated and happen frequently. By making use of the agent communication

languages such as FIPA ACL [18], SOAP [19] and KQML [20], the standards can be

normalized with various interactions in a general form. Moreover, the autonomy,

intelligence and pro-activeness of agents can provide personalized interfaces and

timely help for workflow participants. Fourthly, the autonomy characteristic of agents

makes an agent able to execute its own tasks or fulfill activities automatically.

Many research projects of agent orient workflow system have been presented

and tried to fully use the agent capabilities in every dimension. One example is the

TRP support environment (TSE) [21] proposed by Andersen Consulting, which has a

central workflow authoritarian agent acting as a workflow engine and other

authoritarian agents, actor agents etc. Its goal is to enable active collaborative work

among participants workings on the TRP’s component based software engineering

 8

environment. Another example is Advanced Decision Environment for Process Tasks

(ADEPT) [7] project proposed by British Telecom Lab, which focuses on enhancing

the supply chain management. The system consists of multiple software agents that

concurrently negotiate an agreement on how resources should be assigned to support a

business process. Later, Weishuai Yang et al. [9] proposed an agent-enhanced

workflow (AEWF) model, which aims at enhancing the interoperability of workflow

management engines. It is based on the BDI agent model, and tries to use mobile

agents to increase the capability of workflow interoperability. Subsequently,

Leangzhao Zeng et al. [10] proposed an approach that combines agents with

workflows to effectively integrate cross-enterprise workflows. It is in order to support

virtual enterprise and business-to-business e-commerce. Besides, although some

projects among these researches claimed that they adopt the agent-based viewpoints,

but according to the classification mentioned above, these projects are actually

agent-enhanced systems.

These researches are all emphasized on inter-organization workflows, such as

supply chain management and business-to-business. But they don’t really consider the

significant problems happening to basic workflow definitions, such as the ones of

scalability, extensibility, flexibility and adaptability mentioned in Chapter 1. Although,

in order to solving conventional business-to-business (B2B) or business-to-customer

(B2C) workflow behaviors, a sound service orient architecture has been proposed.

However, these workflows are almost very simple and stationary, they don’t even

need to have a role model. A workflow becomes complicated just because of human

involvement, such as cancel and countersignature. So here we primarily aim at

presenting an agent-based system architecture for primitive workflows. And how to

use agents to realize typical workflow behaviors such as start, stop, or enactment will

 9

be described thoroughly in Chapter 4. On the other hand, these proposed systems still

have fixed artifact representations only, which should be represented dynamically and

adequately for varied process executors from current workflow’s viewpoints. Besides,

the increasing facilitation not only occurs in inter-organization workflows, but also

happens to workflows inside an organization. Thereupon, all of them should be solved

effectively and flexibly in a modern workflow management system.

 10

Chapter 3. System Architecture

3.1 Overview

Enacted
Results

Flow
Requirements

Execution PhaseDesign Phase

Script
Generation

Module

Flow
Enactment

Module

Flow
Definition
Module

Process
Definitions

Target
Applications

Figure 2. System Architecture Overview

As shown in Figure 2, our system can be applied in the design and execution two

phases. For the design phase, the system contains the flow definition module and

script generation module. The former facilitates the definitions of workflow processes

thoroughly and the latter is used to compile the process definitions to agent script files

(i.e. the target applications shown in the figure). These script sources are stored in the

rear-end Script Repository. During the execution phase (i.e. the workflows are

enacted), the flow enactment module is used to load the related script files and

documents from the Script Repository and databases. Then, the agent platform could

instantiate the corresponding agents to realize and accomplish the entire workflow.

Figure 2 just simply introduces our system architecture. The detailed designs of our

system for these two phases will be described clearly in the later two sections.

 11

3.2 System Architecture ─ Design Phase

UsesUses<<subsystem>>
Artifact Designer Environment

<<subsystem>>
Organization Designer Environment

Artifact
Set

Role
Model

<<subsystem>>
Script Generator

Artifact Script Process Script Person Script

Script
Repository

Designer

Process
Definition

Uses

1 1..*1..*

1

GeneratesGenerates

RefersRefers

1..*1..*

Refers

<<subsystem>>
Process Designer Environment

Generates

Templates

Figure 3. System Architecture ─ Design Phase

The activities in the design phase of our entire system are shown in Figure 3. The

top half of the figure is primarily referred to the PLAN (Process LANguage) Model

[12] [13] and the system design of AgentFlow [11]. In this thesis, we extend the

PLAN model and divide it into three sub-models called process, role and artifact

individually. The process sub-model describes the functional and behavioral

perspectives of a software process (i.e. workflow). It includes the methods of

workflow initiation, completion and termination. It also models various workflow

behaviors during workflow enactment. Besides, we add the time constraints for design

 12

into the process sub-model: workflow designers can destine the time about the

accomplishment or initiation of workflows and replacement of newer version

workflows. The role sub-model illustrates the organizational perspective of a software

process. It consists of the organization hierarchy, personnel property and

communication among the roles. The artifact sub-model illustrates the informational

perspective of a software process. It demonstrates the reference materials such as

forms, documents and programs and the lifecycle (described in states) of an artifact.

An artifact is defined as a product referred or generated by a workflow.

There are also three corresponding tools in our system: the Process Designer

Environment, Organization Designer Environment and Artifact Designer Environment.

Process Designer Environment facilitates the definitions of the states, paths, trigger

events, rules, constraints, and documents allocation etc. of workflows. Organization

Designer Environment provides tools, which can represent organization chart

hierarchically, for defining the organization duties for the departments and roles inside

a company. Artifact Designer Environment helps designers to arrange and edit the

documents or e-forms of the workflow by collocating with off-the-shelf GUI

components, attribute editors and script editors. By using these graphics modules and

visualization tools, workflow designers can specify and design a workflow more

flexibly and efficiently.

When the definitions of the entire workflow are completed, supporting

environment would gather the documents, e-forms and organizational information and

stockpile them into the Role Model and Artifact Set individually. In addition, it also

groups the information about the workflow enactment, such as rules, events,

constraints and allocations into the Process Definition. These three models are all

described with the XML format for its easy understanding and compiling. With XML,

 13

our system is more convenient and feasible to integrate external applications and

agent systems, or to interchange process definitions with other process model

languages such as XPDL (XML Process Definition Language) [3] [15] advised by

WfMC. Subsequently, the Script Generator is responsible for analyzing these

workflow definitions and then generating the agent script files, which are stockpiled

into the Script Repository. The generation is done by referring to the pre-designed

templates and using respective components. And the Script Generator and Templates

are constructed according to the agent platform adopted. Hence, the information about

the workflow enactment is independent of the agent platform. These modules

designed increase the extensibility of our system. Therefore, an application workflow

designed inside this phase is translated into executable agent script files.

3.3 System Architecture ─ Execution Phase

Script Repository

<<subsystem>>
Client Tools

User Administrator

<<subsystem>>
Administration Tools

Person
Agent

Process
Agent

Artifact
Agent

Databases

UseUse

Login / Logout Login / Logout

Refer

Supervisor
Agent

Refer / Update
Create / Delete

Process / Artifact / Person Agents
Handle
Tasks

Instantiate / Destroy

Refer / Update

Monitor
& Control

Start / Stop
Workflows

Monitor & Control
Tasks Results Report

▲

▲

Interactions to Accomplish Tasks

<<subsystem>>
Workflow Manager

<<subsystem>>
Agent Manager

▲

▲

Monitor & Control
Flow Status Report

Figure 4. System Architecture ─ Execution Phase

 14

The execution phase inside our system is shown in Figure 4. The primary four

components in an application workflow system include the Person Agent, Artifact

Agent, Process Agent and Workflow Manager and they will collaborate on the

workflow enactment services. There are still some important components, such as the

Script Repository for storing scripts and the Agent Manager for instantiating,

destroying and monitoring agents also shown in the figure. The primary reason for

separating the agent manager from the workflow manager is for flexibility. That is, the

agent manager is constructed dependent on the agent platform adopted. It provides not

only the services, such as naming, instantiation, destruction and location etc., but also

a common set of API calls for the workflow manager.

Operators, which include users and administrators, use the Client Tool or

Administration Tool to login our system. There are two implements provided for the

interface manipulation and states monitor respectively. The former includes system

logging, workflows starting and task handlings for operators. The latter provides the

states of current enacted workflows and handling function such as restarting or

stopping the running workflows. Besides, a supervisor can monitor and manage all

running workflows by the Administration Tools, but an employee can only watch the

workflows he instantiates or handles. In the next subsections, we will describe the

person agent, artifact agent, process agent and workflow manager thoroughly with

their designs and cooperation.

3.3.1 Person Agent

A person agent is an intelligent agent that acts as an interface between the system

and the user. It represents the user interface function in a workflow system and

facilitates related workflow operations. A person agent is instantiated by the agent

 15

manager when the user is online, and destroyed when the user leaves. On the other

hand, the Supervisor Agent in Figure 4 is actually similar to the person agent; it is

instantiated by the agent manager when the administrator logins our system by the

Administration Tool. Such a naming method is adopted for reducing the confusion

possibility. Figure 5 below depicts the instantiation of a person agent.

CT WMUser AM

PeA

1.use
2.login

3.create PeA

Client Tool Workflow
Manager

Person
Agent

Agent
Manager

9.refresh

DB

Database

6.send user info
& role definitions

6.send work list & flow list
& flow states report

7.return
success msg

13.success
& show UI

4.instantiate

5.request data5.request data

12.send info needed to prepare UI

8.report

10.report
11.request data

Figure 5. Instantiation of a Person Agent

The profile of a person agent is based on the Role Model. The information

retrieved for a person agent includes contents and capabilities when the person agent

is instantiated. The information is described below:

1. Contents

z Internal-record

It contains an agent-id and the information about the corresponding user,

which includes name, phone, email and customized configurations etc. The

 16

information is stored in the databases.

z Role

The role represents a position where a user occupies in the organization. The

user/role relationships are also defined in the Role Model.

2. Capabilities

z Role-specific user interface

A person agent provides a role-specific interface according to the customized

configurations of a corresponding role. It is decided by reasoning the related

rules in a company’s policy.

z Work list management

A work list is a set of tasks derived from the workflow manager and needs to

be accomplished by a user. The tasks may be properly scheduled, i.e., can be

sorted by priority, resource, deliver time or something else based on the user’s

requests. With this viewpoint, a person agent can act as a work list handler.

When a user takes a task, the corresponding person agent can provide a proper

user interface such as e-forms [11], which are carried by artifact agents. At the

same time, the person agent communicates with artifact agents to report the

user’s decisions. Once the user is getting out of line, the corresponding person

agent would send the logout messages to all artifact agents in its work list.

z Flow list management

A flow list is a set of workflows that can be worked by the user. It can be got

from the workflow manager. And it is also dependent on the user’s role(s) and

related workflow enactment constraints. When a user wants to enact a

workflow, he picks it from the flow list in the user interface and sends an

instantiation request to the workflow manager through his corresponding

person agent. The workflow manager then asks the agent manager to

 17

instantiate a respective process agent.

z Flow states report management

The report records the states of each workflow which has been worked by the

user. The workflow states can be got from the workflow manager. The report

includes the flow state such as finish, waiting, running, suspended. With the

aids of reports, a user can monitor the workflow progress he worked. Besides,

he also can cancel a workflow which has not finished.

z Communication

The communication targets are the process agent, artifact agent and workflow

manager. Firstly, a person agent needs to interact with a process agent to

retrieve the necessary data for detailed workflow progress representation.

Secondly, a person agent interacts with an artifact agent for user interface

representations. Lastly, a person agent retrieves the relevant data such as work

list and flow list from the workflow manager.

3.3.2 Artifact Agent

An artifact agent is a mobile agent that acts as a data carrier, which migrates

between sites and interacts with its process agent and person agents to accomplish the

task. An artifact agent is instantiated by the agent manager when the process agent

prepares to execute the tasks of a workflow, and destroyed when all tasks are

accomplished. There may be more than one artifact agent, and the number of artifact

agents of a workflow depends on the route. If there is a parallel (spilt) node in the

route, the process agent has to duplicate enough artifact agents to complete the route.

Besides, in the join node, the process agent will collect all necessary data to determine

the next node and maintain the number of artifact agents to fit the route.

 18

Figure 6 below depicts the lifecycle of an artifact agent clearly. And an artifact

agent can repeat the actions numbered 8 to 10 before being destroyed. Furthermore,

before receiving the request of a person agent, an artifact agent usually resides at the

site it is generated for being together with the process agent, or locates itself in the

task list owned by the workflow manager.

WM AMPrA PrA

AA

1.handle tasks
2.create AA

5.report

Person
Agent

Workflow
Manager

Artifact
Agent

Agent
Manager

6.refresh

DB

Database

6.send e-form
or document

10.report task results

Process
Agent

4.return success

7.report

8.receive dest. info & state transition

9.interact based on state
transitions to accomplish task

3.instantiate

5.request data

Figure 6. Lifecycle of an Artifact Agent

The profile of an artifact agent is retrieved from the Artifact Set and/or databases

when the artifact agent is instantiated. The information contained in the profile can be

divided into two parts:

1. Contents

z Internal-record

It contains an agent-id and the carried artifacts such as e-forms, documents or

other data, which are necessary to accomplish the task. The data can be got

from the databases and Artifact Set.

z State transition

 19

It contains the rules to interact with person agents to accomplish the task. The

rules can be obtained from its process agent. Note that the information about

the lifecycle of an artifact agent is kept in its process agent. The state transition

here is also helpful to the artifact representation.

2. Capabilities

z Communication

The communication targets are its process agent, person agents and the

workflow manager. Firstly, an artifact agent needs to report task results and get

the next route data from its process agent. Secondly, an artifact agent provides

necessary artifacts to a person agent for user interface representations and

receives the user’s decisions from his person agent. Lastly, an artifact agent

asks the workflow manage to report an online agent-id satisfied the conditions

for executing the task.

z Mobility

An artifact agent could migrate between the sites indicated by its process

agent.

z Offline handling

If the target person agent does not exist (i.e. user is offline), an artifact agent

returns and reports to its process agent. If there exists another choice, the

artifact agent would migrate to the new destination accordingly. Otherwise, the

artifact agent will queue itself into the task list of the workflow manager.

3.3.3 Process Agent

In our model, a process agent is an intelligent agent that acts as a workflow

enactment service executor in the traditional WfMS. For example, a process agent is

instantiated by the agent manager when a workflow is enacted by the user or the

 20

system, and destroyed when the workflow is accomplished or canceled. And the

detailed sequence diagram of the instantiation of a process agent will be described in

Chapter 4.

The profile of a process agent is based on the Process Definition when the

process agent is instantiated. The information contained in the profile can be divided

into two parts:

1. Contents

z Internal-record

It contains an agent-id and the workflow data including name, description,

starter, state time and due time etc. These data can be got primarily from the

Process Definition.

z Rules

The rules contain the information needed to enact the workflow respectively.

The information can be obtained from the Process Definition.

2. Capabilities

z Artifact agent management

A process agent can instantiate and maintain enough artifact agents to work

along the route. In the meanwhile, the process agent will monitor and interact

with its artifact agents. When the workflow associated with an artifact agent is

accomplished or canceled, the process agent then destroys the agent.

z Routing decision

A process agent can determine the routing paths based on the internal

predefined rules, previous task results and by perceiving related external

environment changes.

z Communication

 21

The communication targets are the workflow manager, its artifact agent and

person agent. Firstly, a process agent reports the workflow states to the

workflow manager after its artifact agent(s) migrates to next node. Secondly, a

process agent gives the next route data including roles and constraints etc., and

state transition to its artifact agent according to current workflow state, and

receives enacted task results from its artifact agent. Lastly, a process agent

needs to interact with a person agent for preparing detailed workflow

execution progress shown on the client tool.

3.3.4 Workflow Manager

The workflow manager, as implied by the name, is a component that manages all

executable workflows in our system. It also maintains records of all running workflow

instances in the system and updates them persistently. Besides, both the instantiation

and destruction of process agents, artifact agents or person agents rely on the

instructions of the workflow manager. Figure 7 below depicts the interactions of the

workflow manager with other system components clearly.

PrA WMAA PrAAM

queue self into task list

instantiate / destroy agents

Person
Agent

Process
Agent

Agent
Manager

Workflow
Manager

refresh or
start

workflows

DB

DatabaseArtifact
Agent

monitor & control

report flow states

retrieve executable flow info.

give flow list & work list & flow states report

start / stop workflows

Figure 7. Interactions of the Workflow Manager

 22

The profile of the workflow manager is loaded from the database when the

system is started and would be persistently updated. It can be divided into two parts:

1. Contents

z Executable flow

It contains all available workflow definition for enactment in the system

currently. The data are stored in the database.

z Flow state

It contains the states of all enacted workflow instances (i.e. process agents) in

the system currently. The data are obtained from the reports of process agents.

z Task list

It contains the work list of all users in the system, i.e., the relationship of

artifact agents and person agents.

z Agent list

It maintains a record of agent-id of all running artifact agents and person

agents.

2. Capabilities

z Process agent management

All the instantiation and destruction of workflows are monitored and

maintained by the workflow manager. After completing the work in one site,

the process agent reports its workflow state to the workflow manager. Besides,

when a user’s request for enacting or stopping a workflow is accepted, the

workflow manager is responsible for instantiating or destroying the

corresponding process agent. On the other hand, the workflow manager can

also enact a scheduled workflow, where the timing constraints decide whether

to continue the workflow itself or not.

z Task list management

 23

There exist two situations for updating the task list. When the designated

person agent of an artifact agent is offline, the artifact agent will queue itself

into the task list. When the user appears to logout the system, those artifact

agents, whose tasks have not completed yet, will queue themselves into the

task list. In both cases the workflow manager will gather the agent-id of these

artifact agents when they are queued into the task list.

z Agent list management

Both the instantiation and destruction of artifact agents and person agents are

settled by the workflow manager. That is, requests from the process agent or

client tool will be propagated to the agent manager by the workflow manager.

So the workflow manager can keep and maintain the lists of artifact agents and

person agents. Afterwards, the auxiliary relationship between the process agent

and artifact agents can be classified. Besides, the problems of re-login or

multi-login can be solved.

z Communication

The communication targets can be the process agent, person agent, agent

manager and artifact agent. Firstly, the workflow manager gets flow states

from reports of process agents and persistently updates them. Secondly, the

workflow manager gives flow list, work list and flow states report to a person

agent. Thirdly, the workflow manager would ask the agent manager to

instantiate or destroy agents. Lastly, the workflow manager reports the satisfied

agent-id to an artifact agent for executing the task.

3.4 An Example

The contexts mentioned above are emphasized on the description of individual

component, and lack of global illustration of the actual works among these

 24

components during the workflow execution. Here we use a simple ask-for-leave

workflow as the scenario example to describe the handing of a workflow instance

being enacted.

1 2 3fill
ok

initial
ok

Y Y

N N

start

fill form manager
verify

failure

success

personnel
inspect

(green)

(red)

(red)

Figure 8. A Simple Model of Ask-for-leave Workflow

The ask-for-leave workflow has three process nodes as shown in Figure 8, and

the green-circled node represents the start state and the red-circled ones represent the

final states. The remaining three nodes according to the sequence number are the

filling form, manager verification and personnel inspection. Assume there is an

employee called Aaron who wants to ask for leave. Following operations represent the

sequence to create a workflow instance in our system. Firstly, Aaron must login our

system to use the client tool, and his corresponding person agent (we call it as

PeA_Aaron in the following context) is instantiated in the agent platform after

password authentication. Secondly, he enacts the ask-for-leave workflow from the

flow list provided by the client tools. Once PeA_Aaron receives the enactment

instruction, it asks the workflow manager to create the corresponding workflow

instance. Subsequently, the process agent (we call it as PrA_leave in the following

context) will be instantiated to take charge of the enactment of the ask-for-leave

workflow. So far, an ask-for-leave workflow instance has been created successfully in

our system.

 25

When PrA_leave is successfully instantiated, it begins to analyze the workflow

definition according to the predefined rules and detects that the workflow is in the

start node now. Then it prepares to handle the first task, i.e., the filling form stage.

First of all, it asks the workflow manager to create an artifact agent to carry the

required workflow data. When the artifact agent (we call it as AA_leave in the

following context) is instantiated successfully, it then retrieves the data objects from

the database. In this example, these data objects compose an e-form. According to the

workflow definition, the operator of the filling form task is the workflow starter, i.e.,

Aaron, and Aaron’s person-id is sent to AA_leave by PrA_leave. Next, AA_leave asks

the workflow manager to report corresponding agent-id. If Aaron is still online, then

PeA_Aaron will be notified about the new item added to the work list and ask the

client tool to show the change.

Assume Aaron is online and picks up the ask-for-leave to execute.

Simultaneously, PeA_Aaron notifies AA_leave to migrate to this site and interacts to

decide how the data objects should be shown. In this stage, Aaron needs only the first

part of the e-form, i.e., the verification, and inspection parts need not to be shown to

Aaron now. So, the client tool receives the e-form and shows it on the screen for

Aaron to fill. After Aaron completes the filling, AA_leave migrates back to report the

new state to PrA_leave. Next, PrA_leave analyzes the state and determines the next

route. According to the workflow definition, the next stage is the manager verification

and its target operator is the manager of the form writer. So, AA_leave receives the

corresponding role-id from PrA_leave and then asks the workflow manager to report

an agent-id of the person agent of Aaron’s Manager. Assume that there are two

candidates called Bob and Cindy, but Cindy is offline currently. Then AA_leave will

receive the agent-id of Bob’s person agent.

 26

Again, there will be a new item called ask-for-leave added on Bob’s work list.

When Bob executes this task, AA_leave receives the notice of Bob’s person agent and

migrates to this site to interact for adequate artifact representation. Now the first and

second parts of the e-form need to be shown (i.e. the inspection part not shown here)

and the first part is now read-only. When Bob completes the task, no matter what the

decision is, AA_leave migrates back to report the result to PrA_leave. If the decision

is "rejection", according to the workflow definition, PrA_leave detects the flow is

going to complete. It sends the rejection result message to the workflow manager to

notify the flow is going to complete. Subsequently, the workflow manager notifies

PeA_Aaron the rejection result and asks the agent manager to destroy AA_leave and

PrA_leave. Assume Bob’s decision is "acceptance". According to the workflow

definition, PrA_leave confirms that the route can be proceeded and the next stage is

the personnel inspection. The target operator is restricted to the members of personnel

department only. And AA_leave receives the corresponding role-id and asks the

workflow manager to report an appropriate agent-id. Except the artifact representation,

the following sequences are similar to the previous stage mentioned above. Now the

e-form shown to the operator includes all three parts and the first two parts cannot be

modified.

Assume the task of personnel inspection is completed, and the decision is

"acceptance". PrA_leave receives the result and detects the flow is going to complete.

Then, it sends the acceptance result to the workflow manager and notifies the latter

that flow is going to complete. Subsequently, the workflow manager notifies

PeA_Aaron about the acceptance result and then asks the agent manager to destroy

AA_leave and PrA_leave. Finally, Aaron gets the result of the ask-for-leave workflow

and the whole execution of an ask-for-leave workflow instance terminates here.

 27

Chapter 4. Flow Behaviors

In this chapter, we will present the interactions among the Process Agent,

Artifact Agent, Person Agent, and Workflow Manager with typical workflow

behaviors, and use corresponding sequence diagrams to illustrate their responsibilities

and relationships thoroughly in our system.

4.1 Workflow Enactment

There are two ways to enact a workflow in our system. They are called automatic

and manual. The former means that our system enacts a scheduled workflow

automatically at the expected time; the latter means that a workflow can be enacted by

a user with aids of the client tool. Then, the detailed processes of these two ways will

be described individually below.

4.1.1 Automatic

AMWM SP

PrA

2.create PrA
3.refer

4.instantiate

Script
Repository

Process
Agent

Workflow
Manager

Agent
Manager

5.return success msg
6.report

1.start

7.refresh

Figure 9. Interactions of Enacting a Workflow Automatically

 28

As shown in Figure 9, when the workflow manager is noticed to enact a

scheduled workflow, it asks the agent manager to create the related process agent. The

agent manager then retrieves necessary script files from the Script Repository,

instantiates the corresponding process agent, and reports results to the workflow

manager. Next, the workflow manager refreshes its flow states and stores the

information about the starter (now is the system), start-up time and states to the

database simultaneously. Moreover, the workflow manager keeps monitoring the

running workflow instance.

4.1.2 Manual

CT / AT PeAU / A AMWM SP

PrA

1.select

2.receive
3.start flow

4.create
5.refer

6.instantiate

User /
Admin.

Client Tool /
Admin Tool

Person
Agent

Script
Repository

Process
Agent

Workflow
Manager

Agent
Manager

12.send

14.show

7.return success msg
8.report

10.receive

11.refresh

13.refresh

9.refresh

Figure 10. Interactions of Enacting a Workflow Manually

 29

As shown in Figure 10, with aids of the client tool, a user knows the workflows

worked by him. When a workflow was selected and enacted by a user, the

corresponding person agent will receive the instruction through the client tool and

inform the workflow manager to create the corresponding process agent. Besides,

until the step where workflow manager refreshes its flow states, the subsequent

actions are similar to the automatic one aforementioned. Then, the person agent

receives the modifications of the flow states and updates its flow states report

simultaneously. Afterwards, the client tool receives the messages from the person

agent and refreshes its views to notify the user that the workflow is started

successfully.

4.2 Workflow Termination

There are two ways for the termination of a workflow in our system. One

workflow is terminated by external force and the other is to complete automatically.

One example for the former is done by human involvements, such as canceling a

workflow; the latter means that a workflow completes the work successfully. The

detailed designs of these two ways would be described individually below.

 30

4.2.1 Forced by External Power

CT / AT PeAU / A AMWM PrA AA

1.select

2.receive
3.stop flow

4.check

5.delete AA

5.delete PrA

6.<<destroy>>

User /
Admin.

Client Tool /
Admin Tool

Person
Agent

Process
Agent

Artifact
Agent

Workflow
Manager

Agent
Manager

6.<<destroy>>
X

X

11.send

13.show

7.return

9.receive

8.refresh

10.refresh

12.refresh

Figure 11. Interactions of Stopping a Workflow

As shown in Figure 11, with aids of the client tool, a user wants to issue an

exceptional command to cancel a running workflow. When the person agent receives

the cancel instruction, it informs the workflow manager to do the work. A successful

way is followed as: in case the user is authorized the power, the workflow manager

will check the workflow state with the corresponding process agent first. Then, the

workflow manager asks the agent manager to destroy this process agent and its

artifact agents. No matter the termination request succeeds, the person agent will send

back a notice of result.

 31

4.2.2 Complete

CT / AT PeAU / A AMWM PrA AA

6.<<destroy>>

User /
Admin.

Client Tool /
Admin Tool

Person
Agent

Process
Agent

Artifact
Agent

Workflow
Manager

Agent
Manager

6.<<destroy>>

X

X7.send

9.show

7.return

5.receive

1.report

2.reason

3.complete

5.delete AA

4.refresh

5.delete PrA6.refresh

8.refresh

8.refresh

Figure 12. Interactions of Completing a Workflow

As shown in Figure 12, a process agent analyzes the results reported by artifact

agent(s) and detects that the workflow has completed. It then informs the workflow

manager the termination message. Next, the workflow manager asks the agent

manager to delete the corresponding process and artifact agents. Besides, the

workflow starter shall receive the termination reported by his person agent.

4.3 The Detailed Interactions of Workflow Enactment

In our system, the enactment of a workflow can be primarily fulfilled by the

interactions of three agents. Tasks are accomplished based on interactions of the

person agents and artifact agents. Basically, a task is similar to an activity, which is an

atomic work unit to be completed in a workflow. On the other hand, the artifact

 32

routing and task dispatching can be determined and monitored by the process agent,

which owns the flow graph of each artifact. Artifact agents will obey these routing

changes. Then, the detailed designs of these behaviors will be described individually

below.

4.3.1 Accomplish a Task

CT PeAUser PrAAA

1.select
2.receive

3.request

8.fill

11.report

13.send

Client Tool Person
Agent

Artifact
Agent

Process
Agent

6.send
7.show

11.send

5.reply

12.refresh

10.return

4.check

9.retrieve

14.refresh

15.show

12.reason

13.send dest.

Figure 13. Interactions of Accomplishing a Task

Figure 13 depicts the running sequence of agents when the agents collaborate

with each other to accomplish a task. First of all, the client tool shows the work list

for a user and the work list is obtained from the person agent. A user can select a task

from the list to perform. Then, the person agent receives the instruction from the

client tool, and sends requests to the corresponding artifact agent for interactions.

 33

Once receiving the request, the artifact agent migrates to this site, and starts to

communicate with the person agent. Among the interoperations, the artifact agent

determines the required data objects for manipulation, and sends them to the person

agent. The person agent then undertakes to compose an adequate e-form and layout,

and ask the client tool to layout. Now far the user can manipulate these artifact data.

Subsequently, the person agent will retrieve the filled e-form and send it back to

the artifact agent for validation. If artifact is validated, the artifact agent sends the

accomplishment message to the person agent, and then migrates back to the site where

the process agent resides for reporting task results. Simultaneously, the person agent

updates the work list of the user, and finally shows them to the client tool. A cycle of

accomplishing an essential task is now complete.

4.3.2 Split a Task

PrA WM AA1AM

5.duplicate

3.ask

Process
Agent

Agent
Manager

Workflow
Manager

2.reason

1.report tasks results

Artifact
Agent

6.instantiate

4.create

AA2

Artifact
Agent

8.return

9.refresh

10.return

7.return success msg

Figure 14. Interactions of Tasks Splitting

 34

A general sequence route can be realized by repeating the actions depicted in

Figure 13. And Figure 14 depicts the running sequence of agents and managers when

they collaborate with each other to fulfill a parallel node in the route. First of all, the

process agent keeps analyzing the results reported by the artifact agent. When a

process agent detects the route is to be split (i.e. one to many), it determines to create

more artifact agents to fit the route. The process agent then asks the workflow

manager to create the artifact agents needed. There are two steps for the agent

manager to instantiate the artifact agents. Firstly, it captures and saves the current

states and data objects of the running artifact agent. Secondly, it instantiates new

artifact agents with the same states and data objects, so that each new artifact agent is

identical to the original one, except for the agent-id. A generated artifact agent is

associated with a route, and a cycle of splitting an essential task is now complete.

 35

4.3.3 Merge Tasks

PrA WM AA1AM

12.report

7.capture

8.update

Process
Agent

Agent
Manager

Workflow
Manager

4.reason

1.report

Artifact
Agent

9.destroy

6.merge

AA3

Artifact
Agent

AA2

Artifact
Agent

2.report

X
9.destroy

X

10.return

11.refresh

5.ask

3.report

7.capture

7.capture

Figure 15. Interactions of Tasks Merging

A join node usually appears in the following workflows after a parallel node.

Figure 15 depicts the running sequence of agents and managers when they collaborate

with each other to fulfill a join node in the route. First of all, a process agent keeps

analyzing the results reported by these artifact agents and checking for the satisfaction

of merging conditions. If the conditions are satisfied, the process agent asks the

workflow manager to handle the merge case. Again the workflow manager propagates

the request to the agent manager. The detailed actions of the merge instruction include:

firstly, the agent manager captures all the states and data objects of artifact agents

being merged. Secondly, it chooses an arbitrary artifact agent and updates its contents

with the merged results. Thirdly, it destroys other remaining artifact agents. So far the

 36

number of effective artifact agents of the process agent is reduced to one, and a cycle

of merging essential tasks is now complete.

 37

Chapter 5. Implementation Issues

5.1 ISE Mobile Agent System

ISE Mobile Agent System (ISE stands for Internet Software Engineering Lab.) is

the agent platform adopted in our system, which is based on JAM [23] architecture.

JAM is a recent agent architecture implementation derived from PRS [22] (Procedural

Reasoning System) and PRS is the first implemented general agent architecture

modeled from BDI agent theory. In the original design of JAM architecture, an agent

has no built-in method to find out other agents in the system. Nor does JAM have the

infrastructure that facilitates communications between agents. All that JAM agents

have is the TCP/IP network supports built in Java, and the mobility capability

inherited from JAVA serialization mechanism. Hence, the ISE Mobile Agent System

extends JAM architecture to construct a multi-agent system and improves the power

by adding location tracking and inter-communication mechanisms. Then, it can

provide many services for the Agent Manager, such as naming, instantiation,

messaging, location tracking and destruction.

5.2 Interfaces of Workflow Manager

Although the whole enactment of a workflow depends on the cooperation of

process agents, artifact agents and person agents, the workflow manager actually still

plays a requisite and important role in our system architecture. It is responsible for

recording, maintaining and associating proper agents in the workflow execution. Here

we describe the interfaces provided by the workflow manager. They can be classified

into four categories.

z For the client tool

 38

‧ String login (String userID, String passwd, String CTid)

‧ boolean logout (String CTid)

The method login()is called by the client tool when an end user logins our

system. It will identify the user’s identity and instantiate the corresponding

person agent if the password authentication succeeds. The method logout()

is called when the user logouts our system. The workflow manager interacts

with the person agent, obtains the latest relevant data, such as work list and

flow list, and stores them back to the database. Then the workflow manager

will ask the agent manager to destroy the person agent.

z For the person agent

‧ Map getFlowList (String personID)

‧ Map getStatesList (String personID)

‧ Map getWorkList (String personID)

‧ boolean stopWf (String wfinstID)

‧ void startWf (String personID, String wfID)

These methods are called by the person agent when an end user successfully

logins our system. The method getFlowList() returns the flow list that the

current user can start. The method getStatesList() returns the states of

each workflow, which has been started by the user. The method

getWorkList() returns the work list that needed be accomplished by this

user. The method stopWf() will firstly check and make sure the stop

operation is allowed. If authorized, the workflow manager asks the agent

manager to destroy the corresponding process agent and artifact agents

properly. Lastly, the method startWf(), which is called when the user picks

up a workflow to start from the work list, instantiates the corresponding

process agent to take charge of the execution of the workflow instance.

 39

z For the process agent

‧ String newAA (String PrAid, String wfinstID)

‧ String handleAA (boolean type, String PrAid, String wfinstID)

‧ void reportState (String wfinstID, String state)

These methods are called by the process agent for workflow enactment. The

method newAA() instantiates required artifact agents for task accomplishment

of the workflow, so it is usually called at the time when the process agent was

instantiated successfully. The method handleAA() is responsible for

merging or splitting tasks, according to the argument type. The method

reportState() is used to report the workflow state kept by the process

agent, so that the workflow manager can track and record the status of each

workflow instance.

z For the artifact agent

‧ String queryPeA (String type, String ID)

‧ void addList (String AAid, String wfinstID, String personID)

These methods are called by the artifact agent for task accomplishment. If the

target person agent is available, the method queryPeA() returns the agent-id

of an online person agent according to the incoming arguments. The method

addList() is used to queue the artifact agent itself into the task list of the

workflow manager if the designated person agent is offline.

The interfaces mentioned above are all implemented with the JAVA RMI

technology for the distributed environment. Besides those interfaces, there are still

many other methods, such as the one for automatically starting a scheduled workflow,

and other needed function calls, which are supported by the agent manager.

 40

5.3 Agent Script Format

Except the person agent, the Script Generator in our system needs different script

template of the artifact agent and process agent for each workflow to generate

corresponding agent script files. Because of the ISE Mobile Agent System is based on

JAM architecture, the script language will refer to the one used in JAM [24]. A script

file is primarily composed of three major factors called goal, fact and plan. A goal

means the behavior that the agent needs to achieve, perform or maintain. A fact

contains the information to represent its beliefs. A plan defines a procedural

specification for accomplishing a goal. There may be a number of alternative plans for

accomplishing the same goal. We will describe some points about each agent script

format in the next three sub-sections. And the uppercase words appeared in the

subsequent figures represent the preserve words defined in the script language.

5.3.1 Script Format of the Person Agent

GOALS:

 MAINTAIN personal_work;

Program 1. Goal of Person Agent

Program 1 shows the goal of the person agent. The goal is to maintain the

personal work of the corresponding user.

FACTS:

 clientToolID "cbF19ckE";

 roleID "1079";

 personID "765/1079";

Program 2. Fact of Person Agent

Program 2 shows the fact of the person agent. It includes the clientToolID,

 41

personID and roleID.

TEST (&& (== $queryType "startFlow") (== $sender $client_ID));

ASSIGN $process_Instance_ID (createAgent $message_body);

EXECUTE sendMessage $clientID "startFlowOK" $process_Instance_ID;

Program 3. Procedure of Starting a Workflow

Program 3 describes the procedure of starting a workflow. The meaning of the

first line is to check the satisfaction of the action type. If matched, the program goes

on. Otherwise, it jumps to next procedure to check the satisfaction of the action type.

In the second line, we use a primitive-action interface createAgent to create a

corresponding Process Agent. It can be transformed to the method startWf()

mentioned in section 5.2. To simplify the explanation, the process of parsing the string

$message_body into the two incoming arguments format of the method

startWf()is omitted. The third line’s work is to return the result and the agent-id of

the process agent to the client tool. The method sendMessage() is the primitive

function for communication provided by the ISE Mobile Agent System. Its prototype

is shown below and the first incoming argument represents the target agent to

communicate with.

[Result: String result] sendMessage ([In: String agent_name] [In: String

queryType] [In: String message_body])

TEST (&& (== $queryType "queryProgress") (== $sender $client_ID));

EXECUTE sendMessage $message_body "queryProgress" "";

Program 4. Procedure of Querying a Workflow Progress

Program 4 is the procedure of querying a workflow progress. Once the person

agent receives the instruction and the action type is matched, it asks the process agent

to report the workflow execution progress. Note that now the content of the string

 42

$message_body is the agent-id of the process agent.

TEST (== $queryType "replyQueryProgress");

ASSIGN $message_body (+ $sender " " $message_body);

EXECUTE sendMessage $client_ID "replyQueryProgress" $message_body;

Program 5. Procedure of Replying a Workflow Progress

Program 5 is the procedure of replying a workflow progress. It happens when the

person agent receiving the results reported by the process agent. In the second line, we

prefix the string $sender (here is the agent-id of the process agent) to the string

$message_body (here is the received workflow progress). It facilitates the client

tool to distinguish return results.

A plan is composed of one or more procedures shown above. The plan of the

person agent can be represented as Program 6 and each {… …} pair will be exactly

mapped to a particular procedure mentioned above. And the number of plans in an

agent can be more than one.

Plan: {

GOAL:

 MAINTAIN personal_work;

BODY:

 RETRIEVE clientToolID $client_ID;

 ASSIGN $waiting "TRUE";

 WHILE: TEST (== $waiting "TRUE"){

 WAIT: TEST (FACT MESSAGE $sender $queryType $message_body);

 RETRACT MESSAGE $sender $queryType $message_body;

 OR {… …

 }{… …

 }{… …

 };

 ASSIGN $queryType "";

 ASSIGN $sender "";

 43

 ASSIGN $message_body "";

};

Program 6. Plan of Person Agent

5.3.2 Script Format of the Artifact Agent

The goal of the artifact agent is to maintain the workflow data objects and related

handlings of the corresponding artifact. The fact of the artifact agent contains the

agent-id of its leading process agent and the states, such as "filled", "audited",

"logged" and "over". These states are initialized to FALSE. The fact also includes the

data objects of the artifact carried by this agent, such as the field name, type, value

and related filling constraints. Hence, the fact and plan of each artifact vary. Program

7 below gives a simple plan example of filling a form.

Plan: {

GOAL:

MAINTAIN artifact_work;

PRECONDITION:

FACT filled "FALSE";

FACT audited "FALSE";

FACT logged "FALSE";

BODY:

RETRIEVE processInstanceID $prAID;

ASSIGN $waiting "TRUE";

WHILE: TEST (== $waiting "TRUE"){

WAIT: TEST (FACT MESSAGE $sender $queryType $message_body);

RETRACT MESSAGE $sender $queryType $message_body;

OR {

01 TEST (&& (== $queryType "routeDecision") (== $sender $prAID));

02 ASSIGN $pID (parseMessage $message_body "/");

03 OR {

04 TEST (== $pID "0");

05 EXECUTE connectToAgent "RoleID" $message_body $pID;

 44

06 ASSIGN $resultType (interactWith $pID);

07 }{

08 EXECUTE connectToAgent "PersonID" $pID $p;

09 ASSIGN $resultType (interactWith $pID);

10 };

11 WHEN: TEST (== $resultType "taskCompleted"){

12 UPDATE (filled) (filled "TRUE");

13 };

14 ASSIGN $waiting "FALSE";

15 EXECUTE sendQuery $prAID $resultType "";

 };

ASSIGN $queryType "";

ASSIGN $sender "";

ASSIGN $message_body "";

 };

}

Program 7. Plan of Artifact Agent

Note that in this plan we use PRECONDITION to assure the triggered conditions.

Line 01 means that the artifact agent only accepts the route decision sent by the

leading process agent, whose agent-id is in its fact. The work of Line 02 is to parse

the string $message_body to get a particular roleID or designated personID, so

lines 03 to 10 can take corresponding handlings respectively. The primitive-action

interface connectToAgent will be transformed to the method queryPeA()

mentioned in section 5.2. And the method interactWith handles the agent

migration, representation and manipulation of data objects. Lines 11 to 15 mean that if

the string $resultType is taskCompleted, then the filled state in the fact will be

changed to TRUE (i.e. the form has been filled) and the string $waiting is changed

to FALSE. This plan finishes here since the while loop condition cannot be satisfied

any more.

 45

5.3.3 Script Format of the Process Agent

The goal of the process agent is to guide the enactment and related handlings of

the corresponding workflow routine. The fact of the process agent contains the states,

such as "initialized", "filled", "audited" and "logged", and information of the starter

and corresponding artifact agents (i.e. agent-id). These states are initialized to FALSE.

The fact also includes a derived list for recording the workflow execution progress.

Again, the fact and plan of each workflow vary according to different workflow

definitions. Program 8 below gives a simple plan example of handling an essential

task. For simplicity, here we use PRECONDITION to determine the plan sequence.

And the method findAgent is used to determine the target person agent according

to the incoming argument $CONDITION. In fact, the plan sequence and routing

decision approach can be greatly enhanced, so that the process agent will behave more

dynamically and intelligently.

Plan: {

GOAL:

ACHIEVE test_flow;

PRECONDITION:

FACT INITIALIZED "TRUE";

FACT FILLED "FALSE";

BODY:

RETRIEVE artifactInstanceID_1 $artInsID_1;

RETRIEVE findCond_1 $CONDITION;

ASSIGN $personID (findAgent $CONDITION);

EXECUTE sendMessage $artInsID_1 "routeDecision" $personID;

ASSIGN $waiting "TRUE";

WHILE: TEST (== $waiting "TRUE"){

WAIT: TEST (FACT MESSAGE $sender $queryType $message_body);

RETRACT MESSAGE $sender $queryType $message_body;

OR {

 46

 Procedure 1

TEST (== $queryType "queryProgress");

RETRIEVE derivNow $now;

RETRIEVE derivLast $last;

 ASSIGN $message_body (+ $now "/" $last);

 EXECUTE sendMessage $sender "replyQueryProgress" $message_body;

}{

 Procedure 2

 TEST (== $queryType "taskCompleted");

 OR {

 TEST (== $sender $artInsID_1);

 ASSERT artIns_1 "TRUE";

};

 WHEN: TEST (&& (FACT artIns_1 "TRUE")){

 ASSIGN $waiting "FALSE";

 UPDATE (FILLED) (FILLED "TRUE");

 RETRIEVE derivLast $Last;

 RETRIEVE derivNow $Now;

 UPDATE (derivNow) (derivNow (first $Last));

 UPDATE (derivLast) (derivLast (rest $Last));

 };

 }{

 Procedure 3

 TEST (== $queryType "taskFailed");

OR {

 TEST (== $sender $artInsID_1);

 ASSIGN $personID (findAgent $CONDITION);

 EXECUTE sendMessage $artInsID_1 "routeDecision" $personID;

 };

 }{

 Procedure 4

 TEST (== $queryType "flowCancelled");

 EXECUTE deleteAgent $artInsID_1;

 UNPOST MAINTAIN test_flow;

 ASSIGN $waiting "FALSE";

 };

 ASSIGN $queryType "";

 47

 ASSIGN $sender "";

 ASSIGN $message_body "";

 };

};

}

Program 8. Plan of Process Agent

The code segment in procedure 1 shows that the process agent reports current

workflow progress to the person agent. It responds to the one mentioned in

sub-section 5.3.1. The code segment in procedure 2 is activated when the result

reported by the artifact agent is taskCompleted. The operations include updating the

filled state and changing the string $waiting to FALSE. The plan finishes

afterwards and another plan may be activated to determine the next routing decision.

Besides, according to the reported result, splitting or merging tasks may be triggered.

The code segment in procedure 3 is activated when the reported result is taskFailed. It

will try to determine the next route and send the new target personID to the artifact

agent again. Lastly, the code segment in procedure 4 is activated when one user

cancels this flow. The way we used here is to stop the goal. Actually, there are many

things needed to be further considered. Examples include as the stop authorization

checking, logging, notification policy and the rollback manipulation etc.

 48

Chapter 6. Conclusion & Future Work

Many related research works have focused on the agent-assisted conceptual

models of B2B or B2C workflows, however, the primitive agent model, operational

behavior and collaborations are seldom detailed. In this thesis, we aim at designing an

agent-based system architecture for primitive workflows. We model the business

process scenarios as the interactions among the system components, users, and

software agents, and exploit the design from the agent’s viewpoints to cope with the

inappropriateness appeared in traditional WfMSs.

Besides, the system components and software agents with their contents and

capabilities are all clearly illustrated. The interactions among them to fulfill the

typical workflow behaviors are also shown with sequence diagrams. Furthermore,

some implementation issues, such as the interfaces between components and agent

script templates, about the realization of our system, are addressed explicitly.

In the future, we plan to investigate the design of the workflow definition tools

from the agent’s viewpoints, since our goal is to utilize the properties and capabilities

of software agents to enhance the development process of workflow-based

applications. In addition, we are looking at the structure of the client tool for

introducing the concept of active agents for better interface representations and

manipulations.

 49

Reference

[1] [URL] The Workflow Management Coalition, http://www.wfmc.org

[2] The Workflow Management Coalition, “Workflow Management Coalition The

Workflow Reference Model”, Document Number TC00-1003, January 1995.

[3] The Workflow Management Coalition, “Workflow Management Coalition

Workflow Standard Workflow Process Definition Interface – XML Process

Definition Language”, Document Number WFMC-TC-1025, October 2002.

[4] Nicholas R. Jennings and Michael J. Wooldridge, Agent Technology:

Foundations, Applications, and Markets, Springer-Verlag, February 1998.

[5] Nicholas R. Jennings and Michael J. Wooldridge, “Intelligent agents: Theory and

practice”, Knowledge Engineering Review, Volume 10, Number. 2, pp.115-152,

Cambridge University Press, June 1995.

[6] Nicholas R. Jennings and Michael J. Wooldridge, “Agent Theories, Architectures,

and Languages: A Survey”, Workshop on Agent Theories, Architectures and

Languages (ECAI'94), Volume 890 of Lecture Notes in Artificial Intelligence, pp.

1-22, Amsterdam, Netherlands, Springer-Verlag, January 1995.

[7] Nicholas R. Jennings, Timothy J. Norman and Peyman Faratin, “ADEPT: an

agent-based approach to business process management”, ACM SIGMOD Record,

Volume 27, Issue 4, pp.32-39, ACM Press, New York, December 1998.

[8] Yuhong Yan, Maamar Z. and Weiming Shen, “Integration of workflow and agent

technology for business process management”, The Sixth International

Conference on Computer Supported Cooperative Work in Design, pp.420-426,

London, Ontario, Canada, 12 - 14 July 2001.

[9] Weishuai Yang, Shanping Li and Ming Guo, “Mobile agent: enhancing workflow

interoperability”, International Conferences on Info-tech and Info-net, Beijing,

 50

China, Volume 5, pp.276-282, 29 October – 1 November 2001.

[10] Liangzhao Zeng, Ngu Anne, Benatallah Boualem and O'Dell, Milton, “An

agent-based approach for supporting cross-enterprise workflows”, 12th

Australasian Database Conference, pp.123-130, Gold Coast, Queensland,

Australia, 29 January – 2 February 2001.

[11] [URL] Flowring Corp., http://www.flowring.com

[12] Chen, M. -F., Liang, B. -S., Lin, J. -R., and Wang, F. -J., “Enacting a Software

Development Process,” IEEE ICSCCS’97, pp. 3-12.

[13] Chen, M. -F., Liang, B. -S., and Wang, F. -J., “A Process Centered Software

Engineering Environment with Network Centric Computing,” IEEE FTDCS’97,

pp. 234-239.

[14] Gregory Alan Bolcer and Richard N. Taylor, “Advanced Workflow Management

Technologies”, Software Process: Improvement and Practice, Volume 4, Number

3, pp.125-171, September 1998.

[15] Layna Fischer, Workflow Handbook 2003, Future Strategies, Lighthouse Point,

Florida, April 2003.

[16] Danny B. Lange and Mitsuru Oshima, “Seven good reasons for mobile agents”,

Communications of the ACM, Volume 42, Issue 3, pp.88-89, ACM Press, New

York, March 1999.

[17] Michael E. Bratman, Intention, Plans and Practical Reason. Harvard University

Press, Cambridge, Massachusetts, 1987.

[18] [URL] FIPA ACL Specifications, http://www.fipa.org/repository/aclspecs.html

[19] [URL] Simple Object Access Protocol, http://www.w3.org/TR/soap/

[20] Tim Finin, Yanis Labrou and James Mayfield, “KQML as an agent

communication language”, Software agents, pp. 291-316, MIT Press, Cambridge,

Massachusetts, 1997.

 51

[21] Jin W. Chang and Colin T. Scott, “Agent-based workflow: TRP Support

Environment (TSE)”, Computer Networks and ISDN Systems, Volume 28,

Issues 7-11, pp. 1501, May 1996

[22] M. P. Georgeff and A. L. Lansky, “Reactive reasoning and planning”. In

Proceedings of the Sixth National Conference on Artificial Intelligence, pp.

677-682, Seattle, 1987.

[23] M. J. Huber, “JAM: A BDI-theoretic mobile agent architecture”. In Proceedings

of the Third International Conference on Autonomous Agents, pp. 236-243, May

1999.

[24] http://www.marcush.net/IRS/Jam/Jam-man-01Nov01.doc

M. J. Huber, “JAM Agents in a Nutshell”, 2001

 52

