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Secure and Transparent Network Traffic Replay,
Redirect and Relay in a Dynamic Malware Analysis

Environment

Student: Tzung-Bi Shih Advisor: Dr. gubar Lin

Institutes of Computer Science and Engineering
National Chiao Tung University

Abstract

Dynamic analysis is typically performed in a closeetwork environment to
prevent malware under analysis from attacking nmahion the Internet. However,
many of today’s malware require Internet conneditm operate. A closed network
analysis environment will be of limited use for Bumalware as Internet bound
connections are blocked. We propose a system tavathalware in a dynamic
analysis environment to have seemingly unrestridtedrnet access. Our system
transparently retargets malicious network connestitb compatible decoys within
our system while allowing Internet access for hasslcontrol traffic in unknown
protocols. Among more than 2000 suspicious malwavesfirst select 124 malwares
that are flagged by all anti-virus scanners froghfterent vendors. Then, we exclude
those malwares that exhibit no network activitiec@annot connect to their designed
machines on the Internet. Finally, we have 12 madvgamples. The evaluation result
shows that our system can allow the malware tolkgtxtmore network activities than a
closed network environment (3.35 times more on ay&r and even outperform a
baseline open network environment for the casepafmsner-type malwares. In the
meantime, Internet security is significantly impeov
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Chapter 1 Introduction

Malware has been a major threat to computer sgcimityears [1-3]. Defense
against malware typically involves a three-stagecess: the analysis of unknown
malware, producing signature, and the detectioknofvn malware [4]. The analysis
of unknown malware is usually the most difficultrpan the process of malware
defense. In fact, both the production of signaamd the detection of known malware
depend on a successful analysis first. An obviaasaon behind the difficulty of
malware analysis is that malware has to be elusyweaature. A malware can be
obfuscated [5], can be designed to subvert an sisatgol [6-9], can be purposely
made to stay dormant until the “D-Day” has come pijd etc. All the above can

make the analysis of malware a really challengasi.t
Environment of Dynamic M alware Analysis

Existing malware analysis procedure often involhaeskey technique called
dynamic analysis [10-12], which basically is to exte an unknown malware in a
closed environment (i.e. a sandbox) and observieeltmvior during the runtime [6].
Ideally, the unknown malware should exhibit allmslicious behavior in the closed
analysis environment exactly as it does in the veald. Unfortunately, this is not
always the case. For example, the malware may tdgtesandbox environment and
refrain from showing its true behavior [6-9]. It ynée designed to act only at a
specific time (i.e. a logic bomb) [4]. When it cosn® bot [13-14], a type of malware
that takes commands from a controller on the leteemd usually attacks specific
targets again on the Internet, the closed anagysigonment often fails to capture the
bot’s full behavior as network traffic with the side world (including the bot’s

communication with the controller) is totally blck
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Luckily, some of the issues on the dynamic malwamalysis environment are
not very difficult to solve. For instance, to deeith a malware that is potentially
sandbox-aware, one can try a different sandboxamphtation that does not possess
the signature the malware is looking for [15]. Fagic bombs, one can tweak the
machine clock to any dates that might be of intetegthe malware [16]. A more
difficult issue, as we can see, is when the malisaoperation depends on some
communication with a controller on the Internetwdren the malware is designed to
attack a specific target on the Internet. With mpletely closed network environment,
the malware will simply quit working, and little @& behavior can be observed. On
the other hand, if the analysis environment is gpeonnected to the Internet, there is
a great concern that the malware may actually chagec to innocent victims on the
Internet.

To address the dilemma between an open and a alesedrk environments for
dynamic malware analysis, we propose a frameworkaftaptive network traffic
control. The framework allows the malware to comroate freely with its controller
on the Internet, and at the same time, the framlewan transparently redirect
outgoing malicious traffic to decoys inside ournfigwvork. By doing so, we can
achieve a good balance between open network asédcdloetwork: the malwanill
not quit prematurelydue to network inaccessibility, and thecurity of the Internet is
ensuredas the malicious traffic never leaves the analgsisronment in reality.

The rest of the work is organized as follows. Chagttalks about how modern
malware leverages on the Internet for propagatiahaitack, and a survey of related
works is also provided. Chapter 3 gives the probétmtement and the details on the
proposed framework. Chapter 4 describes our imphamtien details. Chapter 5
presents the experiment results and discussionsllyi Chapter 6 concludes this

work with some words on potential future works.
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Chapter 2 Background

In the work, we focus on achieving a good balanetsvben open network (the
most transparent) and closed network (the mostreedor a dynamic malware
analysis environment. Our system can be generplhiead to any kind of malware.
However, the benefit is most eminent when it isduge malware that exhibits some
sort of network activities (e.g. propagation oves tnternet). Among all the different
types of malware, bot, a type of malware that tat@mmands from a controller on
the Internet to achieve specific attack goals (eemial-of-service attack to a specific
target on the Internet) is the one that involvestnmetwork activities. In this chapter,
we will give a brief overview of the network actigis involved in a bot’s operation
and mention how existing dynamic analysis systees @vith malware’s network

activities and their shortcomings.

2.1 Network Traffic of Botnet

@ Victim #2 is the attack target
>

Bot Controller

C&C Communication Propagation Attack

Figure 1: Botnet operations

Typically, bots are designed to function in a odide manner as shown in
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Figure 1, where a controller run by a malicious gaynmands a herd of bots to carry
out attack on a victim (i.e. Victim #2 in Figure. The whole system is often referred
to as a botnet [13-14], meaning a network of bots. A bot mayeaipt to proliferate
itself onto other machines over the Internet (Bbt=#ictim #1 in Figure 1). This
increases the number of bots in a botnet and cadte masubsequent attack more
powerful. Note that those machines infected by batsbe the target of attack as well.
For instance, part of the purpose of a botnet maytd steal private personal
information, such as passwords and credit card reusnfrom the infected machines.
As shown in Figure 1, a botnet involves a lot ofiweek activities. The network
activities of a botnet can be roughly categorizedo ithree different types:
propagation C&C communicationandattack [13-14, 17]. Propagation is used for
increasing the population of bots. C&C communiagatis for the controller to
command the bots and for the bots to send infoonde.g. credit card numbers) back
to the controller. Finally, attack correspondshtose network traffic generated by the

bots for the purpose of attacking the target victim

2.2 Related Works

Since a lot of malware, especially the bot, invelvetwork activities in their
operations. In dynamic analysis, one will have &dble to provide a compatible
network environment in order to get the malware pruoperly. On the other hand, the
environment has to be secure so that the malwdleetiactually cause damages to
the Internet. From here, there are two possibleagmhes for setting up the network
environment for dynamic analysis. The first is fow the malware to have full
Internet access (i.e. open network) [11, 18]. Tikisbviously very dangerous. The
second approach (the mainstream approach) is ta gkesed network environment,

in which the dynamic analysis environment is cortgde disconnected from the
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Internet [12, 18-19]. While this approach is veecwre, it is not very effective for
capturing the full runtime behavior of a malware.

The work that is most closely related to ours B8 Honeypot project [20-21].
Although their goals are fundamentally differernfr ours, their system also involves
traffic redirection. However, they did not addrdbg state synchronization issue
between the would-be victim and the honeypot thetives the redirected traffic. As
a result, if the attack traffic is carried by atstal connection (e.g. with TCP, or some
upper layer stateful protocols), the abrupt redioscwill cause the connection to be
broken, and the full behavior of the malware i8 gtiknown.

To prevent a malware that had been implanted ioreeynet from leaking out
attack traffic to the Internet, the Honeynet projpooposed the payload rewriting
technique that can nullify any attack effect inelmtet-bound attack traffic [22]. Again,
the payload rewriting will cause the attack to &ald the full behavior of the malware
is left unknown.

The work [23-24] by E. Alata et al. assumes C&C ommication can be
recognized and transparently relayed to the Inteffieey also relay DNS traffic to
the Internet and well-known ports of vulnerablevgass (e.g. TCP port 139 and 445)
traffic to honeypots directly. Except them, all tbhéher traffic from the analysis
environment is filtered. Because they relay trafoic some specific ports directly,
they have no protocol state synchronization ishst&een the would-be victim and
the honeypot that receives the redirected traffneir design relies on the fact that bot
C&C communication has been based on the well-kniB@ protocol for a long time.
However, nowadays, we have seen bot C&C commuoitatinning customized
protocols. Some of them even involve encryption thalmost unbreakable [25-27].
In our system, we follow a different design, in alino assumption is made about

C&C communication being recognizable.
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The work [28] by G. Berger-Sabbatel et al. alscuasss C&C communication
can be recognized. They monitor plain text C&C camioation for a few weeks, and
simulate the C&C server. For cipher text C&C comiation, they relay to real
C&C servers on the Internet. They did not addréssstate synchronization issues
when redirecting packets in the middle of a conoactHowever, we can handle the

synchronization issues even if the redirection ee@uthe middle of a connection.



Chapter 3 Network Traffic Replay, Redirect, and Relay in

Dynamic Malware Analysis Environment

Modern malware are often tightly coupled with netwwoThey rely on the
network to propagate to remote machines. Someeof thre even designed to convey
attacks over the network. Besides, we have alsa e botnet-type malware to
leverage on the network to carry out an organiztacla For dynamic analysis of
modern malware to be effective, it is necessargnsure that the malware has a
transparent view to the whole network, including tinternet outside the analysis
environment. Otherwise, the malware may not exfabits behavior fully if it cannot
receive commands from a remote controller or gabhnot reach the IP addresses of
victim machines. On the other hand, it is also ingot to make sure that the malware
cannot cause damage to innocent machines and geopéne security of the Internet.

In this chapter, we will present a system thateisighed to achieve both network
transparency and Internet security for dynamic rasdwanalysis. We give our
problem statement to clarify the scope of the warld later the details on the

proposed system in Section 3.1~3.4.
Problem Statement

Given a set of executable malware and a dynamiwaralanalysis environment,
restructure the environment to improve the netwaaksparency to the malware and

the network security to the Internet.

3.1 Approach Overview

As mentioned earlier, the network traffic of a matey may consist of

propagation, C&C communication, and attack. On loared, we would like the traffic

7



to flow freely, at least from the malware’s pergpex; so that the most behavior of
the malware can be observed during dynamic anal@sisthe other hand, we also
want to make sure the whole environment is secuttha the malware cannot cause

damage to machines on the Internet.

Internet Our System i Dynamic Malware
i Analysis Environment
Malware Allow C&C communication
Controller | g >
i| Gateway Dispatcher Malware
wouldbe [T — — —¥¥— — x >
Victim : :
\J i~ Alter network paths of
5 Block Decoy(s) propagation and attack
i action

Figure 2: An overview of our approach

An overview of our approach is shown in Figure 2 e left-hand side of
Figure 2 is the Internet, where the malware col@rsland would-be victim machines
locate. On the right-hand side of Figure 2 is thgamnic malware analysis
environment, where the malware runs in a sandbax i#h capable of extracting
runtime properties such as system calls invokethbymalware. Sitting in the middle
is our system, which intercept (and retarget) teivork traffic between the analysis
environment and the Internet.

In our system, propagation and attack traffic asndparently retargeted to
decoys inside our system. Both of the traffic nene&rches the Internet. The traffic
retargeting is a three phase process, which we da@thil in Section 3.2. One
important aspect of the traffic retargeting is thiahas to be transparent to the
malware. The malware can hardly notice the tra#ftargeting, so that its full network
behavior can be observed. A key characteristic@bggation and attack traffic is that

they tend to follow well-known protocols and targeell-known services. This
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maximizes the malware’s propagation and attack lmifya a sensible design choice
for malware. As a result, one can reasonably asdtateboth the propagation and
attack traffic can be reliably identified so thhey can be transparently retargeted.
The decoys are machines running well-known vulrerabrvices that will be subject
to attacks by the malware in the analysis envirartme
Some malware (notably the bot) require C&C commativn with a remote

controller on the Internet to operate. As each G&@troller is specifically designed
to work with a corresponding malware, it is imprealtto assume that one can always
find the proper decoy to emulate a controller. Meex, the C&C communication
may rely on non-standard protocols [25-27], whiem de difficult to detect for a
subsequent retargeting. Due to the above reasomsirisystem, we implicitly allow
C&C traffic to flow onto the Internet. While thisigit first sound like a bad idea, we
notice that this does constitute much securityahne practice. This is because, C&C
communication, by definition, does not carry attaflect in itself. At best, it can be
used to extract sensitive information from an itddamachine. Fortunately, this is not
an issue in our case, since the dynamic malwarg/saseenvironment would not

contain such sensitive information.

3.2 Design of Dispatcher

Figure 3 shows the design of the dispatcher. Thpatitcher runs on a machine
with three network interfaces: NIC #1 connects e tlynamic malware analysis
environment. NIC #2 connects to the Internet. NBXgnnects to the decoys. When a
packet from the analysis environment reaches NICit#is forwarded to both the
coordinator and the IDS (copy to the IDS, and tdpt to the coordinator by packet
filter). If the IP addresses and port numbers @f placket are blacklisted or if the

packet triggers an IDS alert, the coordinator withnsider the corresponding
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connection as malicious and initiate the trafficargeting process (detailed below).
Otherwise, the packets will be forwarded to Interm@ NIC #2. For the other
direction, when a packet from the Internet readkks #2, it is forwarded to the IDS
and NIC #1 (i.e. the analysis environment). We &sward packets from the Internet

to the IDS because the IDS may inspect packetstiereflow direction in each

connection.
e |
|
IDS | _glet ______ L Alert Receiver  1928Mand  Decoy |
i koo | 1 Communicator |||
sniff »  Blackiist | Traffic |
| — .
‘ v Retargeting |
‘ |
1 session + * ‘
' | connections Stateful Modules | |,
i N
Packet Filter } ‘ + + ‘ |
| 1 |
Il |/session
| connections
| N
. ‘ N
|
Erﬁ/?r?)IIXrSTIIZnt | Packet Queue
} Coordinator

Figure 3: An overview of the dispatcher

We have a packet queue design in the coordinatwe. gueue stores packets
received from the analysis environment. The stpaatkets may be used in the traffic
retargeting process. The design of the queueés af ®rdered lists. Each list (refer as
a connection in Figure 3) consists of packets gexmd by the time of the packet
arrived the dispatcher. Packets in the same ordéstdhave identical source and
destination port numbers. We group the ordered hsttheir source and destination
IP addresses (refer asassiorlater and in Figure 3). The group design is arctyvi
by hashing so that we can retrieve a group in thstrefficient way. In the traffic
retargeting process, the packets in the queue magrbhoved after used by the decoy
communicator (detailed below). In fact, we use pazket queue to be a buffer

between the coordinator and the decoy communicgiosducer and consumer
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model).

Traffic Retargeting

During traffic retargeting, all the connections lheg the same source and
destination IP addresses are considered as a gandpall the connections in the
group will be retargeted to the same destinatiamogeWe name the group of the IP
connections as session Traffic retargeting can be initiated in two siioas which
are called retargeting decisions. The first sitiratis when the IP addresses or port
numbers of a session are on the blacklist of knavaticious connections. All the
packets in the session are relayed to the deceygttir(by changing the MAC and IP
addresses in the packets). This is similar to gpgaach used in [23-24].

The other situation of traffic retargeting is whene of the connections in a
session is flagged by the IDS as malicious. Unthe first situation, the retargeting
may occur in the middle of a session, when somaacions are already closed, and
some connections are still ongoing. Both types @finections cannot be simply
relayed as this would result in state inconsisentietween a decoy and the running
malware. In our system, we have to use a threeeptedargeting process that involves
traffic replay, redirect, and relay to properly denconnections at different phases in
a session.

The first phase is the replay phase. At the timemwfetargeting decision occurs,
some of the malware’s network connections may heeen closed. Packets in closed
connections may need to be replayed to the demmyha the decoy will have its
states in consistency with the running malware. 3i¢ee outgoing packets from the
analysis environment in the packet queue (FigurédB8)he time when the retargeting
decision occurs, the coordinator will instruct de@mmmunicator to replay packets

corresponding to those closed connections fronp#oet queue to the decoy through
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NIC #3. During the replay, the decoy may generagponse packets such as TCP ack.
All response packets from the decoy are filterdteytare not forwarded to the
malware) since from the malware’s perspective efwithese connections have been
closed. The replayed packets have the effect stabbshing the corresponding states
in the decoy so that the decoy can mimic the waad@ddctim and have states that are
in consistency with the running malware.

The second phase is the redirect phase. The plesde @With those ongoing
connections in a session when retargeting decisamurs. Packets that have been
transmitted in each ongoing connection are proceissthe same way as in the replay
phase. Decoy communicator takes those packets tinenpacket queue, adapts the
packets to the retargeted traffic path with théesth modules (Section 3.3) and sends
the packets to decoy through NIC #3. If there atarning packets from the decoy
during the replay, those returning packets are rgpho For subsequent packet
transmissions, decoy communicator will again usestateful modules to adapt the
packets to the retargeted traffic path, and thewdal the packets to the decoy. The
returning packets from the decoy for subsequenkgiacare forward back to the
analysis environment through NIC #1, because from malware’s point of view
these connections are still ongoing (the malwaceives these packets just like from
the would-be victim).

The third phase is the relay phase. The phase ekaheg traffic path of future
connections (connections that occur after retamgetlecision) in a session to the
decoy. The retargeted traffic in the relay phask meed to have the destination
MAC and IP addresses in the packet headers rephadbdthe ones used by the
decoys. These are also handled by the stateful leedu

Through traffic retargeting, our system transpdyergplay, redirect, and relay

the connections in a session that carry malicicaffid. From the malware’s point of
12



view, the connections are still with some victimahni@es on the Internet, though in
reality the underlying traffic has been retargdtedecoys in the secure environment.
During the traffic retargeting, there may be statethe upper layer protocols, which
require additional processing. This is also takam ©f by the stateful modules in our
system, which will be detailed in Section 3.3.

In addition to using IDS to flag malicious conneas, we also have a blacklist
of potentially malicious connections that may na& btaptured by the IDS. For
instance, a stock IDS typically do not have a @poading signature for detecting
e-mail spam traffic. In our system, the blacklishtains a rule to match outbound
SMTP traffic, so that the connection will be reldyte the decoy right from the very
beginning. We also have rules in the blacklist thatches connections based on IP
addresses and port numbers. For instance, if weaseeutbound connection to
140.113.40.35 (homepage of NCTU), the connectionush more likely to be part of

the propagation or attack traffic instead of pathe C&C traffic.

3.3 Maintaining Protocol States

The fundamental goal of our work is to build a sarent network view for the
malware in a secure dynamic analysis environmentour system, we use traffic
replay, redirect, and relay to achieve the aford¢roeed goal. The approach works
well for stateless protocols, where the retargétaific will be valid for the decoy as
long as the decoy has the corresponding serviggsng on it. For stateful protocols,
such as layer 4 TCP, just replaying the capturedtgia will not work. For TCP, we
need to replace the sequence numbers and ackneameagbers in the TCP packet
headers, because the TCP stack on the decoy magehandom sequence numbers
different from the ones previously used by the wleag victim machines.

Essentially, when retargeting a connection, theogecommunicator has to

13



ensure that each packet conforms to the statesotintbe decoy and the running
malware. This is taken care of by the stateful neglin the decoy communicator.
Each stateful module is designed to maintain thtestfor each specific protocol. For
instance, we have a MAC (media access control¢fsiamodule to take care of the
rewriting of MAC addresses. We also have an |Pefthtmodule to replace IP

addresses and recalculate IP checksuraskets in retargeted traffic will have their
destination MAC and IP addresses replaced witlottes of the decoy. At layer 4, we
have a TCP stateful module to replace TCP sequamtders, acknowledge numbers
and TCP checksums. For upper layer protocols, wg mnplement the stateful

modules for those protocols relevant to the malvgaraples used in our experiments.
For instance, we have a stateful module for the BIES protocol (layer 5) and a

stateful module for SMB protocol (layer 7).

01 Maintaining_Protocol_States (packet)

02 {

03 CASE packet.connection.retarget_to OF

04 Replay:

05 Redirect:

06 layer7_stateful modules (packet)
o7 layer5_stateful modules (packet)
08 layer4_stateful modules (packet)
09 layer3_stateful modules (packet)
10 layer2_stateful_modules (packet)
11 Relay:

12 layer3 stateful modules (packet)
13 layer2_stateful_modules (packet)
14 ENDCASE

15}

16

17 1layerd_stateful_modules (packet)

18 {

19 TCP_stateful _module (packet)

20 UDP_stateful_module (packet)

21}

22

23 TCP_stateful_module (packet)

24 {

25 If packet is a TCP packet Then

26 If packet is going to the decoy Then
27 mseq = packet.tcp_ack_num

28 mack = packet.tcp_seq_num + packet.tcp_data_len
29 packet.tcp_seq_num = dseq

30 If packet.tcp_ack_flag is set Then
31 packet.tcp_ack_num = dack

14



32 Endif

33 Else // from the decoy

34 dseq = packet.tcp_ack_num

35 dack = packet.tcp_seq_num + packet.tcp_data_len
36 packet.tcp_seq_num = mseq

37 If packet.tcp_ack_flag is set Then
38 packet.tcp_ack_num = mack

39 Endif

40 Endif

41

42 Fix TCP checksum

43 Endif

4 }

45

46 UDP_stateful_module (packet)

47 {

48 }

Figure 4: Pseudo code of selected stateful modules

Figure 4 shows the pseudo code of selected statefdlles. When a packet is
sent to the stateful modules through Maintainingtétol_States( ), the packet will
be dispatched to stateful modules at each protagels (Line 03~14). Within each
layer, the packet will continue to flow through thelevant stateful modules. For
instance, at layer 4, depending on whether thegiaska TCP or UDP packet, the
respective stateful module (Line 23 and Line 48) me invoked to process the packet.
Within TCP_stateful_module (in Figure 4), the madwhecks whether the given
packet is a TCP packet, keeps next sequence nuanideacknowledge number for
each direction (Line 27~28 and Line 34~35), andrites the corresponding value if
needed (Line 29~32 and Line 36~39). During the ection established, the next
acknowledge number is calculated by last receivequesnce number plus last
received payload length (Line 28 and Line 35). Igufe 4, we just give a brief
introduction to stateful modules. In fact, the saage number calculation is different
when connection establishment and closing. On therdand, actually, UDP does
not have any stateful issues. We just keep the Wieful_module empty.

The stateful modules are used to handle the stassfues between the decoy and
the would-be victim. Because in the redirect andyr@hase, returning packets from
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the decoy may forward back to the running malwtre , decoy communicator applies
layer 2, 3, 4, 5, and 7 stateful modules for tltbreet phase and layer 2 and 3 for the
relay phase. However, in the replay phase, sineedmnections have been finished,
we simply ignore the returning packets from the ogecso that the decoy

communicator does not apply any stateful moduleg.fo

3.4 Example of Traffic Replay, Redirect, and Relay

Malware Dispatcher would-be Victim Decoy

A1. connection A, start

\

ongoing

» | malicious
connection is
immediately
cut from the
Internet

A2. connection A, finish

B1. connection B, start

B2. connection B,
packet M(IDS alert)

retransmit M or reset %

B3. connection B, ————— .| B2 redirected B', packet M'
returning packet N' | —  —a— B'3. returning packet N

B4. connectionB | —— i
T ————————— .| B'4. redirected B’

-l
-
-l
-
-
-
I —

A'1. replayed A', start

\
\/

>
N

. replayed A', finish

. redirected B', start

A
\J
W

P | W
B5. connection B, finish |- - » B'5. redirected B, finish
C1. connection C, start = - - » C1. relayed C, start
C2. connection C, finish - i L p C2. relayed C, finish

Y

\ \
Figure 5: An example of traffic replay, redireatdarelay

Figure 5 shows an example of the network trafftangeting, which consists of
the three-phase process: replay phase, rediresephad relay phase, for a malicious
session.

First, the malware in the analysis environment read@me network connection
(connection A) with some would-be victim machine the Internet. The dispatcher
forwards the packets of connection A in both ditetwt and also keeps a copy of the
forwarded packets in the packet queue. Later, thlevare makes another connection

(connection B) with the would-be victim. The disgatr again forwards and keeps a
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copy of the packets in connection B. Now, assuratiththe middle of connection B,
the malware transmits out packet M, which contamadicious exploits that trigger an
IDS alert. At this time, the dispatcher will considhe corresponding session (based
on source and destination IP addresses) as maieiod begin the traffic retargeting.
We use A' and B' instead of A and B to represeet riplayed and redirected
connections because the replayed (or redirectetRepa will have to have different
headers from the original ones such as TCP sequemibers or MAC addresses.
Connection A, which has finished before the rettingedecision (i.e. IDS alerts),
is replayed to the decoy as connection A'. Conardsi, which is still ongoing, has to
be redirected. For those packets in connectioraBstnitted before packet M, they are
replayed as B'l to the decoy. During the repla'af the decoy may generate some
corresponding response packets such as TCP ACKgidee these response packets
from the decoy, because from the malware’s pointi@iv, the response packets had
been received (from the would-be victim). Subseguesckets (include M) in
connection B are relayed to the decoy (such asB4%), Note that, for this part of
connection B, we need to forward returning packets the decoy, if any, back to
the malware (e.g. B3), or the ongoing connection gat broken prematurely.
Connection C is opened after the retargeting datiso it will be simply relayed in

each direction by the dispatcher.
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Chapter 4 Implementation

Dispatcher
alert .
Snort UNIX domain socke t—)b Alert Receiver
A o Callback function
I libnetfilter_queue _T. of libnetfilter_queue
! |
I i Thread Pool
user space ! | : A
kernel space : ¥
Netfilter raw socket
(iptables FORWARD chain) | i '
| v
NIC#2]  [NIC#3]

Figure 6: System Implementation

Figure 6 shows the implementation of our system.if@ement our system on
Linux, and use bridge-util to bridge two networkeriace cards (NIC #1 and NIC #2).
One is connected to the Internet (NIC #2) and aoih connected to the analysis
environment (NIC #1). Packets received on NIC #2 (he Internet) can also be seen
on NIC #1 (i.e. analysis environment). We use Metf[29] to intercept packets from
NIC #1 (by setting iptables rules) and use libiitetfi queue to forward the packets to
the dispatcher. Packet flow from the analysis emritent has to go through the

dispatcher in order to reach the Internet evenghduIiC #1 and NIC #2 are bridged.

Dispatcher

If the destination IP address and port number efgacket are blacklisted, the
callback function of libnetfilter_queue will sign#ie decoy communicator to carry
out the traffic retargeting. Otherwise, the packeil$ be forwarded to NIC #2. We
use Snort [30] as the IDS to detect propagationadtatk traffic. Both incoming and
outgoing traffic of the analysis environment wi# lmspected by Snort. In our system,

Snort is modified to use UNIX domain socket to coumigate with the alert receiver
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in the dispatcher. If the alert receiver receivesatert, it will instruct the decoy
communicator to initiate the traffic retargeting fbe corresponding session.

To decrease the delay and increase efficiency oh eamponent, we use
concurrent programming model. Snort in our system standalone process while the
alert receiver and the callback function of libri&tf _queue run within two separate
threads in the dispatcher process. We use UNIX dosacket for communication
between Snort and the dispatcher.

The decoy communicator maintains a pool of threadsh of which handles a
replayed, redirected, relayed connection. For itraféplay, since the malware no
longer cares about the connections (they had blesed), the decoy communicator
just copies payloads from the stored packets inpteket queue and uses standard
socket (TCP or UDP) to regenerate the packetshierréplay. Notably, we should
fake the malware’s IP address as the source |IResslain these connections, because
we should establish some states for the runningvaral By setting the IP address of
NIC #3 to the malware’s IP address, we can uselatdnTCP or UDP socket to bind
on it, and fake the connections (seems from thevaral) through the socket. For
traffic redirect and relay, we use raw socket teate the corresponding packets, so
that fields such as MAC address, IP address, arfd dé&knowledge number can be

properly set by the respective stateful modules.

Stateful M odules

The decoy communicator includes stateful modulesifiper layer protocols that
are used by the malware samples we used for theriexgnts. The protocols include
Server Message Block (SMB) [31] and NT LAN Mana§excurity Support Provider
(NTLMSSP) [31]. The SMB stateful module replaces tree id, process id, user id,

and multiplex id fields in a SMB packet [31] (Figur) during the redirect phase. The
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NTLMSSP stateful module is used to fix states du@nSMB logon process (Figure

8), which relies on the NTLMSSP challenge-respangbentication.

8 16 24 32 bits
Command RCLS Reserved ERR
ERR REB/FLG Reserved
Reserved
Reserved
Reserved
Tree ID Process ID
User ID Multiplex ID
WCT \ VWV
BCC \ BUF

Figure 7: SMB packet format

As an example to show how a stateful module woléss consider that a
malware is attempting a SMB logon to a would-betinic machine through
brute-force password guessing. Assume that befwrentalware succeeds with its
password guessing, the IDS generates an alertadt@tmany SMB logon failures
(such as Figure 8). The dispatcher will now retapg@nections in the corresponding
session. Essentially, we want to redirect the SM&oh connection to the decoy,
which include three transmitted packets (1), (3)d 5) in the packet queue. The
dispatcher will first replay packet (1) to the decwhich works perfectly. Then, it
will replay (3) to the decoy, and the decoy wil plke with a
NTLM_CHALLENGE_MESSAGE (like packet (4)) that coma a challenge value.
If we continue to replay packet (5), the logon msx will fail, as the response in
packet (5) corresponds to the original challengeacket (4) from the would-be
victim and does not match the challenge generajethé decoy. As a result, the
NTLMSSP [32] stateful module needs to calculateeav mesponse value for the

challenge from the decoy so that the redirectedriqocess can continue to proceed.
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malware | would-be victim |

(1) SMB_COM_NEGOTIATE Request

(2) SMB_COM_NEGOTIATE Response

(3) SMB_COM_SESSION_SETUP_ANDX Request 1
[NTLM NEGOTIATE_MESSAGE]

*»
(4) SMB_COM_SESSION_SETUP_ANDX Response 1
[NTLM CHALLENGE_MESSAGE]

4*
(5) SMB_COM_SESSION_SETUP_ANDX Request 2
[NTLM AUTHENTICATE_MESSAGE]

—»
(6) SMB_COM_SESSION_SETUP_ANDX Response 2
Error: STATUS_LOGON_FAILURE

-

Figure 8: A SMB logon failure process

Decoy

The implementation of the decoy is a virtual maehinaded with operating
system or network services corresponding to thd-kmelwn protocols that will be
subject to the attacks from the malware in theyamslenvironment. For example, we
implement a SMTP decoy (with standard socket) talate a victim SMTP server for
the spammer-type malware, which we use for evalnatn Section 5.2. The SMTP

decoy accepts any SMTP request, but never sendsrtials in actually.
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Chapter 5 Experiment Studies

We evaluate our system design with 12 real-worldivage samples. In Section
5.1, we describe the selection criteria for thewaaé samples and the experiment
environment. In Section 5.2~5.3, we evaluate tHec@Veness of our system by
comparing the dynamic analysis results from thiéferént environments: our secure
and transparent network environment, a closed n&twavironment, and an open
network environment. In Section 5.4, we give a csiggly to show our system’s
operations. In Section 5.5, we give another casdysbn those unexpected results

observed from the experiment.

5.1 Sample Selection and Experiment Environment

We collect more than 2000 suspicious malware sasnipten different sources
including P2P file sharing, e-mail attachments,shhig websites, and honeypots
running with Nepenthes [33]. First, we scan thepmigus malwares with anti-virus
software from four different vendors and keep athigse flagged by all of the four
scanners. This results in 124 malwares. Next, wece the remaining malware
samples in an open network environment for 2 mmated observe if they exhibit
any network activities. We exclude those samplas$ éxhibit no network activities
and also exclude those whose network connecticgmatt does not get through
(presumably, the remote server is not operatiotral)he end, we have a total of 12
malware samples. The 12 malwares are further stegphnato two groupsmalware
without C&C andmalware with C&C

The first group, malware without C&C, consists ajfrms and e-mail spammers.
Worms in the first group (m10.exe, mll.exe, and .ede in Table 1) propagate by

brute-force password guessing on SMB logon over BIPB. After a successful

22



logon, the worm binary is copied to the target nraeland gets executed. The first
group also includes a spammer (m7.exe) which atalcopy of the spammer binary
“Worm/NetSky.P” to the e-mail content.

The second group consists of malware with C&C (&isown as bots). In this
group, we have spammers (m8.exe and m9.exe) wpase a-mail content and target
recipient lists can be updated from a C&C servee. 860 have malwares (ml.exe,
m2.exe, m3.exe, m4.exe, m5.exe, and m6.exe) thait aammands from the C&C
server to carry out propagate or attack actions.dxample, we observe that they
receive propagation-related commands, and scaningschandomly and propagate
via vulnerabilities of NETBIOS.

The selected samples are summarized in Table thandiscovery time is based

on [34].
Table 1: Selected samples
Type Malware | Scan Result Discovered Activities
Malware [ m7.exe | Email-Worm.Win32.NetSky.q Mar 24 2004 09:02 GMT| “Worm/NetSky.P”
Without attachment
C&C m10.exe [ Worm.Win32.Fujack.aa Jul 02 2007 14:18 GMTSMB password
mll.exe [ Worm.Win32.Fujack.aa Jul 02 2007 14:18 GMT | guessing
ml2.exe [ Worm.Win32.Viking.n Aug 03 2006 22:09 GNIT
Malware | ml.exe [ Trojan.Win32.Scar.bgfv Feb 25 2010 16:09 GMT| SMB password
With m2.exe Packed.Win32.Black.d Aug 06 2004 12:02 GMT| guessing
C&C Backdoor.Win32.Rbot.gen NETBIOS buffer
m3.exe | Trojan-PSW.Win32.Dybalom.bul Aug 15 2009 09:06 GMT overflow attempts
m4.exe P2P-Worm.Win32.Palevo.vyc Mar 05 2010 125MT
mb5.exe | Trojan-PSW.Win32.Dybalom.bu| Aug 15 2009 09:06 GMT,
m6.exe Trojan-PSW.Win32.Dybalom.by Aug 15 2009 09:06 GMT
m8.exe [ Virus.Win32.Tenga.a Jul 22 2005 17:11 GMT | Get e-mail content
m9.exe | Trojan-PSW.Win32.LdPinch.gcoFeb 13 2009 15:42 GMT| and recipient lists
from the C&C

We set up an experiment environment following thehidecture in Figure 2

which is shown in Figure 9. For each experimentpnaware is executed for 10
minutes. We use TCPDUMP [35] to record three typkdraffic: the traffic that

interacts with the analysis environment (A in FE®), the traffic that reaches the
Internet (B in Figure 9), and the traffic that regets to the decoys (C in Figure 9). We

use the recorded traffic to evaluate both the im@moent on network transparency
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and security as provided by our proposed system.

Analysis

Dispatcher Environment

C

Figure 9: Basic experiment environment

5.2 Effectiveness of Transparent Network Environment
Our system gives 3.35 times mor e packets than closed networ k

By using our system, we can see 3.35 times motkes than using a closed
network environment on average. Table 2 summahnesobserved network activities
from running malware without C&C in a closed netiwenvironment (no connection
with Internet) and in our secure and transparetwar& environment. In the closed
network environment, the majority of the packetsjast TCP SYN as connections to
the outside world are blocked. On the other hanel,can see a lot more network
activities in our system. For instance, we obsdha m7.exe attempts to initiate
SMTP connections for sending spam e-mails. The arawnl0.exe generates a lot
more port 139 and 445 traffic (369199 packets) canegp with the result from the
closed network environment (707 packets). Becaose f the traffic from m10.exe
is flagged by the IDS (“NETBIOS SMB-DS repeateddongailure” alert message),
we retarget the network paths as described in &e8t2. As a result, the propagation
activities of m10.exe can be completely observetil(exe and m12.exe are similar
to m10.exe) and the spam e-mail content of m7.axeatso be completely observed
if we provide a proper SMTP decoy (details in Seth.3 and Section 5.4).

In this group, some attack traffic (e.g. NETBIO&ek traffic from for m10.exe,

mll.exe, and ml12.exe) are LAN-based and do noireetnternet access. The kind
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of traffic can be observed in a closed network emment if a vulnerable server is
present in the analysis environment. It is quiterfeen that the same malware also
involve Internet traffic. For instance, m10.exe,Ineke, and m12.exe all make HTTP
connections to advertising sites on the Interrietiel execute them in closed network
environment, only a few TCP SYN packets for HTThhreections are observed.
(Note: in our system, the HTTP traffic is alloweechuse they are deemed harmless

as the IDS generates no alarms on them).

Table 2: Network activities by malware without C&€osed network vs. our system)

Malware | Closed Network Our system
m7.exe No response for DNS MX record 9 spam e-mail attempts
m10.exe 362 TCP port 139 SYN packets 369199 packets for TCP port 139 and 445
345 TCP port 445 SYN packets HTTP GET advertising HTML files
mll.exe 407 TCP port 139 SYN packets 23161 packets for TCP port 139 and 445
388 TCP port 445 SYN packets HTTP GET advertising HTML files
ml2.exe Probe machines by ICMP echo request Probe machinE3MP echo request
60285 packets for TCP port 139 and 445
HTTP GET advertising HTML files

We notice that if we provide a vulnerable SMB ire titlosed network
environment (Figure 10), the traffic of m10.exe,Ingke, and m12.exe will not only
contain TCP SYN packets. The running malware wajiect into the vulnerable SMB

server and generate lots of traffic.

Analysis

Dispatcher Environment

Vulnerable
SMB server

Figure 10: Additional experiment environment witbsed network

Table 3: Number of packets by m10.exe, m11.exenatlexe (closed network vs. our system)

Malware | Closed Network | Our System
m10.exe 2750 10915
mll.exe 8261 44692
m12.exe 1018 21376

Table 3 shows the results from doing this experimiotably, the numbers are
different from Table 2 because we redo the expaerimé/e get 2.13 times more
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packets than closed network on average.

The results for malware with C&C are shown in Tahlégain, we can only see
those packets corresponding to unsuccessful caoneettempts in the closed
network environment. With our system, we can olesernlot more network activities.
Malwares in this category heavily depend on intioacwith the C&C server to
operate. For instance, m4.exe needs to connect tR@ server on port 47221 and
waits for commands. During the experiment period.are received a HTTP
downloading command that gets the malware “TR/KE#451.21". Malware m4.exe
also received a propagation-related command (“.essfmand in Table 4 for m4.exe)
and scanned machines for port 445 in order to aieitipropagation actions.
Unfortunately, the machines targeted by m4.exe waoe running during the
experiment period, thus the propagation trafficmid trigger the IDS alert. Similar to
m4.exe, m3.exe received a propagation-related ceomnfaadvscan” command in
Table 4 for m3.exe), and scanned machines for4t5t At this time, the IDS issued
an alert for “NETBIOS DCERPC NCACN-IP-TCP srvsvc tNRathCanonicalize
overflow attempt”. Then, we retargeted the netwpoakhs of m3.exe as described in
Section 3.2. Malware m8.exe and m9.exe are spamwiach target Yahoo e-mail
service. They connect to a C&C server on port 8@ download some sentences
(e-mail subjects) and e-mail addresses (recipieAf$gr finishing the downloading,
they start to send spam e-mails. These spam e-mdilsiot trigger the IDS alert
which are actually sent to the victim recipientsickily, they are deemed harmless
that we discuss in Section 5.3.

Consequently, if we execute malwares of this grawupa closed network
environment, we may get few network activities doethe Internet inaccessible.
Without a C&C server, the malware will not know htovtake actions. However, in

our system, since we allow the C&C traffic to accdee Internet, the malware can get
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the commands.

Table 4: Network activities by malware with C&Cdskd network vs. our system)

Malware | Closed Network Our system

ml.exe No response for DNS A query | TCP C&C connection (60.165.98.198:8680)
No response for TCP SYN

m2.exe No response for DNS A query TCP C&C connection10@.249.167:6668)
TCP SYN flooding at port 139 after receiving “xvv
asnlsmbnt 100 0 O -b -r -s” command

m3.exe No response for DNS A query | TCP C&C connection (74.117.174.122:16667)
mb5.exe TCP SYN flooding at port 445 after receiving
m6.exe “.advscan asn445 100 5 0 -b -r -s” command
FTP connection with non-standard port

m4.exe No response for DNS A query TCP C&C connection186.29.202:47221)
HTTP GET “TR/Kazy.15451.21" after receiving
“.asc -S -s|.http http://black-cash.com/rep.exe|.as
exp_all 1000 -b -s|.asc exp_all 2000 -b -rse —
command

HTTP GET status report from other bots in the C&C
channel

TCP SYN flooding at port 445 after receiving
command

m8.exe No response for DNS MX quer| TCP C&C connection (208.77.45.146:80)
TCP SYN flooding at port 139 | TCP SYN flooding at port 139
34 spam e-mails

m9.exe No response for DNS MX-query TCP C&C connection (208.77.45.146:80)
179 spam e-mails

Our system can be mor etransparent than open network

We notice that in a few situations, with proper @e; our system can
outperform an open network environment in termsegfvork transparency.

Since the number of all network activities is hamdcount, we can focus on
different types of activities to calculate the ipement rate (# of activities in our
system / # of activities in open network environten

For NETBIOS-based propagation activities, we mayntaaumber of intruded
machines. However, it is another concern if wevaltbe malware to propagate to
machines on the Internet. One possible way to takwthe improvement rate is
providing enough machines running vulnerable NETBIServer within a closed
network environment (isolated from the Internet)olr experiment, we have no such
many machines, thus we do not show the evaluatiothis.

For spam e-mail activities, we may count numbeeg-afiails that successfully be
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sent out. Table 5 shows improvement rates for saelmmer in our experiment. For
m7.exe, SMTP servers on the Internet do not radayhe malware anymore, so that
the number of e-mail in open network environmentzeso. But in our system, the
SMTP decoy will not refuse any SMTP request. We silhsee 14 spam e-mails in
this case. For m8.exe and m9.exe, both of themspanails target the Yahoo e-mail
service. We observe that some of spam e-mails oéxe8nd m9.exe are denied due
to the anti-spam mechanism from Yahoo [36]. Howgewerour system, again, the
SMTP decoy will not refuse any SMTP request. We sa@ even more number of
spam e-mails than in open network environment. Aseesult, we get 170.32%
improvement rate on average. (Note: in this expemitinwe use our system with
blacklist in order to relay SMTP traffic directlihe numbers are different from Table

2 and Table 4 since we redo the experiment)

Table 5: Number of spam e-mails (our system vsnaydwork)

Malware Our System | Open Network | Improvement Rate
m7.exe 14 0 N/A

ma8.exe 117 68 172.06%

m9.exe 118 70 168.57%

5.3 Effectiveness of Secure Networ k Environment

Internet security isensured

We notice the Internet security face of the expenta in Section 5.2. Among all
the packets in the experiments in Section 5.2,eterget 80.66% packets on average.
The retargeted packets trigger Snort 303 alert agess (from ml.exe, m2.exe,
m3.exe, m4.exe, m5.exe, m6.exe, m10.exe, mll.exemd2.exe) and contain 222
spam e-mails (from m7.exe, m8.exe, and m9.exe hlakklist). If we execute the
malwares in an open network environment, the prapag or attack actions and
spam e-mails will flow to the Internet.

The dispatcher finds m10.exe, ml1ll.exe, and ml2axehing SMB password
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guessing attack when the IDS issues “NETBIOS SMB+Bgeated logon failure”
alert. The dispatcher will retarget the correspongdession of the malware, so that
the would-be victim on the Internet can be secukéowever, from the malware’s
point of view, the victim still on the Internetdi.the decoy). The malware can easily
logon to the decoy because the help from statebdules. After the malware logons
successfully, it will transmit itself to the decayd register to the decoy’s system
scheduler for executing. If we do not retarget geassword guessing attack, the
would-be victim will suffer from the same situatiomhus, it is dangerous to the
Internet.

Our system is able to retarget the password gupsdiack at an early stage
(about 10 attempts, depending on Snort rule séttihg@ machine (vulnerable SMB
server in Figure 11) on the Internet adopts a qsiteple password (e.g. easily
guessable after 3 attempts), our system can als@qgbrit. Although the malware
logon the vulnerable SMB server successfully, D8 will issue an alert “NETBIOS
SMB-DS ADMIN$ unicode share access” when the maiwanary is copying into
the SMB server. As a result, the dispatcher wilmget the traffic; the propagation
traffic cannot completely reach the would-be vic{ira. the vulnerable SMB server).

For others malware, the Internet security is alssueed. For instance, m8.exe
and m9.exe send spam e-mails. Although the e-nmaglg annoy users, the mail
content actually harmless. Malware m7.exe prodspssn e-mails with a malware
attachment. However, the SMTP servers targeted bexe refuse to relay e-mails
for the malware. In this case, the spam e-mailsaibe sent out, making the Internet
more secure. If a SMTP server (SMTP server in [glt) on the Internet relay
e-mails for m7.exe, the IDS will produce an alSHELLCODE x86 inc ecx NOOP”
when the IDS inspects the mail attachment (i.eabuare attachment). The alert will

trigger the dispatcher to retarget the traffic. lkgahe would-be victim (i.e. the
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SMTP server) on the Internet is secured.

I //*\/'*'\
Vulnerable Int t ) A (" Analysis D
SMB server \ nterne Dispatcher Environmey

N

-

SMTP (f S
server
q Decoys j

Figure 11: Additional experiment environment

5.4 Case Study: A normal case

In this case study, we select m7.exe to be the malware that runs in the dynamic
analysis environment. Notably, m7.exe is a spammer; however, the SMTP servers
targeted by m7.exe refuse to relay e-mails for it. We setup a SMTP server on the
Internet that relays e-mails for the malware (as shown in Figure 11). This seems very
insecure, but actually in our system, we can retarget the malicious traffic of m7.exe
and ensure that the spam e-mails never reach the victim’s mailbox.

First, the malware tries to query DNS MX records (packet #1 and #4 in Figure
12). Then, the DNS servers will reply with the MX results (packet #2 and #5 in Figure
12) that also include A records in DNS additional records. Actually, we modify
%SystemRoot%\system32\drivers\etc\hosts configuration file, so that the malware
will connect to our designed machine (i.e. SMTP server in Figure 11) and the A
record is unused. Upon receiving the responses, the malware starts to connect to the
remote SMTP servers (packet #3 in Figure 12). Note that the malware may
simultaneously connect to multiple SMTP servers, in order to increase the efficiency
of the spammer (packet #1 and #3 in Figure 12 are for different targets).

1 Standard query MX sexnet.com
2 Standard query response MX 10 mailstorel.secureserver.net MX 0 smtp.secureserver.net
3 1035 > 25 [SYN] Seq=0 Win=64860 Len=0 MSS=1410 SACK_PERM=1

4 Standard query MX domain.com
S Standard query response MX 10 sentry.domainbank.com

Figure 12: DNS queries for spam e-mails
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9 S: 250-smtp.emu.org | 250-8BITMIME | 250-SIZE 41943040 | 250 PIPELINING
10 C: MAIL FROM: <austria@msdirectservices.com>

11 S: 250 sender <austria@msdirectservices.com> ok

12 C: RCPT TO:<user@domain.com>

13 S: 250 recipient <user@domain.com> ok

14 C: DATA

15 S: 354 go ahead

16 C: From: austria@msdirectservices.com

17 C: DATA fragment, 1444 bytes

18 25 > 1036 [ACK] Seq=196 Ack=1537 Win=8460 Len=0
19 C: DATA fragment, 325 bytes

20 C: DATA fragment, 1410 bytes

21 C: DATA fragment, 1410 bytes

Figure 13: A SMTP session for a spam e-mail
Afterwards the malware initiates a SMTP session in order to send spam e-mails
(Figure 13). Due to the Snort alert (Figure 14) triggered by the packet #20 in Figure
13, the dispatcher in our system will retarget the whole session. Finally, we can
extract the entire content of e-mails (Figure 15) and also ensure Internet security

through traffic retargeting.

Figure 14: Snort issues an alert for e-mail content

From: austria@msdirectservices.com

To: user@domain.com

Subject: Mail Delivery (failure user@domain.com)
Date: Thu, 21 Apr 2011 22:40:07 -0700
MIME-Version: 1.0

Content-Type: multipart/related;
.type="multipart/alternative";
.boundary="----=_NextPart_000_001B_01COCA80.6B015D10"
X-Priority: 3

X-MSMail-Priority: Normal

This is a multi-part message in MIME format.

------ =_NextPart_000_001B_01C0CA80.6B015D10

Figure 15: Partial content of the spam e-mail

5.5 Case Study: An unexpected case

Before this case study, we have confirmed that our implementation of relaying
connections with blacklist works. Suppose in the worst case, our system may fail to
function in replay and redirect phases, it should work in the relay phase. Interestingly,

we still fail in the relay phase in the following case.
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| —-——-replayed connection
redirected connection
i ccccccae ====- relayed connection

Figure 16: An unexpected case

Figure 16 shows a case where all phases of traffézgeting fail. Every segment
in Figure 16 represents a SMB logon connection, >aadis represents time. When
the number of failed SMB logons (A and B in Figd®) reaches a threshold value,
Snort will generate alert “NETBIOS SMB-DS repeatedon failure”. Then, our
system will engage traffic retargeting (i.e. replesdirect, and relay). Connection A
and B are designed to replay, connection C is desdigo redirect, and connection D
and E are designed to relay.

Each connection in the case is independent. Thagffisctiveness of replaying
connection A and B in the case may be nullifiedidnse no states need to reestablish.
Ideally, we can redirect connection C to the de@&t. we find that we always fail in
this case. This is because the connection C alimuishes, from the malware’s
perspective of view, the connection C is no longseful. For instance, packets of
connection C are like packets shown in Figure 8elMtihe IDS sees the packet (6) in
Figure 8, it triggers an alert. Even though wetdryedirect the connection C, from the
malware’s point of view, the connection C alreaolydn failure, and should be closed.
As a result, we replace fields by stateful modutewl the logon to the decoy
successfully, the malware still send TCP RESETOPFIN.

Finally, we consider that the logon should suceedke relay phase. But it fails
again. The most possible reason is that the dedogta an empty password and the
empty password has been tried in the early stagleeopassword guessing. Once the

malware find a password cannot logon success|llinei try it again. Connection A
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and B in Figure 16 are mostly about an empty password. Consequently, it makes
logon still fail in connection E and F.

In our original design, we only apply layer 2 and 3 stateful modules for the relay
phase. In this case, we try to additionally apply a layer 7 stateful module for the relay
phase. The module replaces the challenge-response fields to help the malware to
logon to the decoy. By doing so, we can see a successful logon, malware binary
transmission (packet #1 in Figure 17), and scheduler registration (packet #146 in

Figure 18).

1 NT Create AndX Request, FID: 0x4001, Path: \Games.exe

2 NT Create AndX Response, FID: 0x4001

3 Trans2 Request, QUERY_FILE_INFO, FID: 0x4001, Query File Internal Info
4 Trans2 Response, FID: 0x4001, QUERY_FILE_INFO

5 Trans2 Request, QUERY_FS_INFO, Query FS Attribute Info

6 Trans2 Response, QUERY_FS_INFO

7 Trans2 Request, SET_FILE_INFO, FID: 0x4001

8 Trans2 Response, FID: 0x4001, SET_FILE_INFO

9 [TCP segment of a reassembled PDU]

Figure 17: Transfer the malware binary via SMB
146 JobAdd request
147 Tree Disconnect Request
148 445 > 1073 [ACK] Seq=3172 Ack=73164 Win=62965 Len=0

149 Tree Disconnect Response
150 JobAdd response

Figure 18: Using ‘at’ scheduler
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Chapter 6 Conclusions and Future Works

Dynamic malware analysis traditionally runs inlased network environment
without Internet connection. This prevents the namevfrom causing damages to the
outside world. However, for malware that involvegngicant amount of network
activities, a closed network environment defeaéesphrpose of dynamic analysis, as
much of the malware’s network behavior will notéénibited and captured.

We propose a system to allow malware exhibitingwoek behavior in a
dynamic malware analysis environment while alsaugng that the malware can do
no harm beyond the boundary of the analysis enmgort. Our system transparently
retargets propagation and attack traffic, instefdolacking them, to decoys inside the
analysis environment. At the same time, we allosvrttalware’s control traffic, which
is deemed to be harmless, to cross the boundahe@alysis environment.

The evaluation result shows that our system saanitly increases the amount of
observed network activities during dynamic malwan@lysis when compared with a
traditional closed network environment. The overmifect is having a dynamic
analysis environment, which is useful for those waaé with lots of network
activities.

The use of traffic retargeting and decoys in oystam can improve the
effectiveness of dynamic analysis beyond what anapetwork environment (with
unrestricted Internet access) can offer. This happ&hen a malware requires
accessing machines on the Internet, which for saason are not accessible during
the time of analysis. An example is a spam-waralisgnspam e-mails through a
hard-coded SMTP server that was known to acceplicptddays. If the hard-coded
SMTP is no longer functioning, a dynamic analydishe malware will fail to reveal

the full picture of the malware’s behavior. In @xperiments, we were able use our
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system to retarget the SMTP traffic of such a spaare and extract both the recipient
list and the mail content (including a backdoorgsemn in the attachment part) from
the spam-ware.

From the second case study, we can see some ohseslware may be
unexpected in our design. In the future work, wél aitempt to execute more
malware samples and apply different stateful maxlfte each protocol in different
case. Besides, in our experiment, we use a simplamic malware analysis. It may
be observed more meaningful activities by usingphssticated dynamic malware

analysis environment.
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