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Abstract 

Dynamic analysis is typically performed in a closed network environment to 

prevent malware under analysis from attacking machines on the Internet. However, 

many of today’s malware require Internet connections to operate. A closed network 

analysis environment will be of limited use for such malware as Internet bound 

connections are blocked. We propose a system to allow malware in a dynamic 

analysis environment to have seemingly unrestricted Internet access. Our system 

transparently retargets malicious network connections to compatible decoys within 

our system while allowing Internet access for harmless control traffic in unknown 

protocols. Among more than 2000 suspicious malwares, we first select 124 malwares 

that are flagged by all anti-virus scanners from 4 different vendors. Then, we exclude 

those malwares that exhibit no network activities or cannot connect to their designed 

machines on the Internet. Finally, we have 12 malware samples. The evaluation result 

shows that our system can allow the malware to exhibit more network activities than a 

closed network environment (3.35 times more on average) and even outperform a 

baseline open network environment for the case of spammer-type malwares. In the 

meantime, Internet security is significantly improved.  

Keywords: Dynamic Analysis, Closed Network, Open Network, Retarget 
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Chapter 1 Introduction 

Malware has been a major threat to computer security for years [1-3]. Defense 

against malware typically involves a three-stage process: the analysis of unknown 

malware, producing signature, and the detection of known malware [4]. The analysis 

of unknown malware is usually the most difficult part in the process of malware 

defense. In fact, both the production of signature and the detection of known malware 

depend on a successful analysis first. An obvious reason behind the difficulty of 

malware analysis is that malware has to be elusive by nature. A malware can be 

obfuscated [5], can be designed to subvert an analysis tool [6-9], can be purposely 

made to stay dormant until the “D-Day” has come [4], and etc. All the above can 

make the analysis of malware a really challenging task. 

Environment of Dynamic Malware Analysis 

Existing malware analysis procedure often involves a key technique called 

dynamic analysis [10-12], which basically is to execute an unknown malware in a 

closed environment (i.e. a sandbox) and observe its behavior during the runtime [6]. 

Ideally, the unknown malware should exhibit all its malicious behavior in the closed 

analysis environment exactly as it does in the real world. Unfortunately, this is not 

always the case. For example, the malware may detect the sandbox environment and 

refrain from showing its true behavior [6-9]. It may be designed to act only at a 

specific time (i.e. a logic bomb) [4]. When it comes to bot [13-14], a type of malware 

that takes commands from a controller on the Internet and usually attacks specific 

targets again on the Internet, the closed analysis environment often fails to capture the 

bot’s full behavior as network traffic with the outside world (including the bot’s 

communication with the controller) is totally blocked.  
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Luckily, some of the issues on the dynamic malware analysis environment are 

not very difficult to solve. For instance, to deal with a malware that is potentially 

sandbox-aware, one can try a different sandbox implementation that does not possess 

the signature the malware is looking for [15]. For logic bombs, one can tweak the 

machine clock to any dates that might be of interest to the malware [16]. A more 

difficult issue, as we can see, is when the malware’s operation depends on some 

communication with a controller on the Internet or when the malware is designed to 

attack a specific target on the Internet. With a completely closed network environment, 

the malware will simply quit working, and little of its behavior can be observed. On 

the other hand, if the analysis environment is openly connected to the Internet, there is 

a great concern that the malware may actually cause havoc to innocent victims on the 

Internet. 

To address the dilemma between an open and a closed network environments for 

dynamic malware analysis, we propose a framework for adaptive network traffic 

control. The framework allows the malware to communicate freely with its controller 

on the Internet, and at the same time, the framework can transparently redirect 

outgoing malicious traffic to decoys inside our framework. By doing so, we can 

achieve a good balance between open network and closed network: the malware will 

not quit prematurely due to network inaccessibility, and the security of the Internet is 

ensured as the malicious traffic never leaves the analysis environment in reality. 

The rest of the work is organized as follows. Chapter 2 talks about how modern 

malware leverages on the Internet for propagation and attack, and a survey of related 

works is also provided. Chapter 3 gives the problem statement and the details on the 

proposed framework. Chapter 4 describes our implementation details. Chapter 5 

presents the experiment results and discussions. Finally, Chapter 6 concludes this 

work with some words on potential future works. 
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Chapter 2 Background 

In the work, we focus on achieving a good balance between open network (the 

most transparent) and closed network (the most secure) for a dynamic malware 

analysis environment. Our system can be generally applied to any kind of malware. 

However, the benefit is most eminent when it is used on malware that exhibits some 

sort of network activities (e.g. propagation over the Internet). Among all the different 

types of malware, bot, a type of malware that takes commands from a controller on 

the Internet to achieve specific attack goals (e.g. denial-of-service attack to a specific 

target on the Internet) is the one that involves most network activities. In this chapter, 

we will give a brief overview of the network activities involved in a bot’s operation 

and mention how existing dynamic analysis systems deal with malware’s network 

activities and their shortcomings. 

2.1 Network Traffic of Botnet 

 

Figure 1: Botnet operations 

Typically, bots are designed to function in a collective manner as shown in 
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Figure 1, where a controller run by a malicious guy commands a herd of bots to carry 

out attack on a victim (i.e. Victim #2 in Figure 1). The whole system is often referred 

to as a ‘botnet’ [13-14], meaning a network of bots. A bot may attempt to proliferate 

itself onto other machines over the Internet (Bot #1→Victim #1 in Figure 1). This 

increases the number of bots in a botnet and can make a subsequent attack more 

powerful. Note that those machines infected by bots can be the target of attack as well. 

For instance, part of the purpose of a botnet may be to steal private personal 

information, such as passwords and credit card numbers, from the infected machines. 

As shown in Figure 1, a botnet involves a lot of network activities. The network 

activities of a botnet can be roughly categorized into three different types: 

propagation, C&C communication, and attack [13-14, 17]. Propagation is used for 

increasing the population of bots. C&C communication is for the controller to 

command the bots and for the bots to send information (e.g. credit card numbers) back 

to the controller. Finally, attack corresponds to those network traffic generated by the 

bots for the purpose of attacking the target victim. 

2.2 Related Works 

Since a lot of malware, especially the bot, involves network activities in their 

operations. In dynamic analysis, one will have to be able to provide a compatible 

network environment in order to get the malware run properly. On the other hand, the 

environment has to be secure so that the malware will not actually cause damages to 

the Internet. From here, there are two possible approaches for setting up the network 

environment for dynamic analysis. The first is to allow the malware to have full 

Internet access (i.e. open network) [11, 18]. This is obviously very dangerous. The 

second approach (the mainstream approach) is to use a closed network environment, 

in which the dynamic analysis environment is completely disconnected from the 
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Internet [12, 18-19]. While this approach is very secure, it is not very effective for 

capturing the full runtime behavior of a malware. 

The work that is most closely related to ours is the Honeypot project [20-21]. 

Although their goals are fundamentally different from ours, their system also involves 

traffic redirection. However, they did not address the state synchronization issue 

between the would-be victim and the honeypot that receives the redirected traffic. As 

a result, if the attack traffic is carried by a stateful connection (e.g. with TCP, or some 

upper layer stateful protocols), the abrupt redirection will cause the connection to be 

broken, and the full behavior of the malware is still unknown. 

To prevent a malware that had been implanted in a honeynet from leaking out 

attack traffic to the Internet, the Honeynet project proposed the payload rewriting 

technique that can nullify any attack effect in Internet-bound attack traffic [22]. Again, 

the payload rewriting will cause the attack to fail and the full behavior of the malware 

is left unknown. 

The work [23-24] by E. Alata et al. assumes C&C communication can be 

recognized and transparently relayed to the Internet. They also relay DNS traffic to 

the Internet and well-known ports of vulnerable services (e.g. TCP port 139 and 445) 

traffic to honeypots directly. Except them, all the other traffic from the analysis 

environment is filtered. Because they relay traffic for some specific ports directly, 

they have no protocol state synchronization issues between the would-be victim and 

the honeypot that receives the redirected traffic. Their design relies on the fact that bot 

C&C communication has been based on the well-known IRC protocol for a long time. 

However, nowadays, we have seen bot C&C communication running customized 

protocols. Some of them even involve encryption that is almost unbreakable [25-27]. 

In our system, we follow a different design, in which no assumption is made about 

C&C communication being recognizable. 
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The work [28] by G. Berger-Sabbatel et al. also assumes C&C communication 

can be recognized. They monitor plain text C&C communication for a few weeks, and 

simulate the C&C server. For cipher text C&C communication, they relay to real 

C&C servers on the Internet. They did not address the state synchronization issues 

when redirecting packets in the middle of a connection. However, we can handle the 

synchronization issues even if the redirection occurs in the middle of a connection. 
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Chapter 3 Network Traffic Replay, Redirect, and Relay in 

Dynamic Malware Analysis Environment 

Modern malware are often tightly coupled with network. They rely on the 

network to propagate to remote machines. Some of them are even designed to convey 

attacks over the network. Besides, we have also seen the botnet-type malware to 

leverage on the network to carry out an organized attack. For dynamic analysis of 

modern malware to be effective, it is necessary to ensure that the malware has a 

transparent view to the whole network, including the Internet outside the analysis 

environment. Otherwise, the malware may not exhibit all its behavior fully if it cannot 

receive commands from a remote controller or if it cannot reach the IP addresses of 

victim machines. On the other hand, it is also important to make sure that the malware 

cannot cause damage to innocent machines and jeopardize the security of the Internet. 

In this chapter, we will present a system that is designed to achieve both network 

transparency and Internet security for dynamic malware analysis. We give our 

problem statement to clarify the scope of the work and later the details on the 

proposed system in Section 3.1~3.4. 

Problem Statement 

Given a set of executable malware and a dynamic malware analysis environment, 

restructure the environment to improve the network transparency to the malware and 

the network security to the Internet. 

3.1 Approach Overview 

As mentioned earlier, the network traffic of a malware may consist of 

propagation, C&C communication, and attack. On one hand, we would like the traffic 



 

8 

 

to flow freely, at least from the malware’s perspective, so that the most behavior of 

the malware can be observed during dynamic analysis. On the other hand, we also 

want to make sure the whole environment is secure so that the malware cannot cause 

damage to machines on the Internet. 

 

Figure 2: An overview of our approach 

An overview of our approach is shown in Figure 2. On the left-hand side of 

Figure 2 is the Internet, where the malware controllers and would-be victim machines 

locate. On the right-hand side of Figure 2 is the dynamic malware analysis 

environment, where the malware runs in a sandbox that is capable of extracting 

runtime properties such as system calls invoked by the malware. Sitting in the middle 

is our system, which intercept (and retarget) the network traffic between the analysis 

environment and the Internet. 

In our system, propagation and attack traffic are transparently retargeted to 

decoys inside our system. Both of the traffic never reaches the Internet. The traffic 

retargeting is a three phase process, which we will detail in Section 3.2. One 

important aspect of the traffic retargeting is that it has to be transparent to the 

malware. The malware can hardly notice the traffic retargeting, so that its full network 

behavior can be observed. A key characteristic of propagation and attack traffic is that 

they tend to follow well-known protocols and target well-known services. This 
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maximizes the malware’s propagation and attack capability, a sensible design choice 

for malware. As a result, one can reasonably assume that both the propagation and 

attack traffic can be reliably identified so that they can be transparently retargeted. 

The decoys are machines running well-known vulnerable services that will be subject 

to attacks by the malware in the analysis environment. 

Some malware (notably the bot) require C&C communication with a remote 

controller on the Internet to operate. As each C&C controller is specifically designed 

to work with a corresponding malware, it is impractical to assume that one can always 

find the proper decoy to emulate a controller. Moreover, the C&C communication 

may rely on non-standard protocols [25-27], which can be difficult to detect for a 

subsequent retargeting. Due to the above reasons, in our system, we implicitly allow 

C&C traffic to flow onto the Internet. While this might first sound like a bad idea, we 

notice that this does constitute much security threat in practice. This is because, C&C 

communication, by definition, does not carry attack effect in itself. At best, it can be 

used to extract sensitive information from an infected machine. Fortunately, this is not 

an issue in our case, since the dynamic malware analysis environment would not 

contain such sensitive information. 

3.2 Design of Dispatcher 

Figure 3 shows the design of the dispatcher. The dispatcher runs on a machine 

with three network interfaces: NIC #1 connects to the dynamic malware analysis 

environment. NIC #2 connects to the Internet. NIC #3 connects to the decoys. When a 

packet from the analysis environment reaches NIC #1, it is forwarded to both the 

coordinator and the IDS (copy to the IDS, and intercept to the coordinator by packet 

filter). If the IP addresses and port numbers of the packet are blacklisted or if the 

packet triggers an IDS alert, the coordinator will consider the corresponding 
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connection as malicious and initiate the traffic retargeting process (detailed below). 

Otherwise, the packets will be forwarded to Internet via NIC #2. For the other 

direction, when a packet from the Internet reaches NIC #2, it is forwarded to the IDS 

and NIC #1 (i.e. the analysis environment). We also forward packets from the Internet 

to the IDS because the IDS may inspect packets in either flow direction in each 

connection. 

 

Figure 3: An overview of the dispatcher 

We have a packet queue design in the coordinator. The queue stores packets 

received from the analysis environment. The stored packets may be used in the traffic 

retargeting process. The design of the queue is a set of ordered lists. Each list (refer as 

a connection in Figure 3) consists of packets is ordered by the time of the packet 

arrived the dispatcher. Packets in the same ordered list have identical source and 

destination port numbers. We group the ordered lists by their source and destination 

IP addresses (refer as a session later and in Figure 3). The group design is archiving 

by hashing so that we can retrieve a group in the most efficient way. In the traffic 

retargeting process, the packets in the queue may be removed after used by the decoy 

communicator (detailed below). In fact, we use the packet queue to be a buffer 

between the coordinator and the decoy communicator (producer and consumer 
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model). 

Traffic Retargeting 

During traffic retargeting, all the connections bearing the same source and 

destination IP addresses are considered as a group, and all the connections in the 

group will be retargeted to the same destination decoy. We name the group of the IP 

connections as a session. Traffic retargeting can be initiated in two situations which 

are called retargeting decisions. The first situation is when the IP addresses or port 

numbers of a session are on the blacklist of known malicious connections. All the 

packets in the session are relayed to the decoy directly (by changing the MAC and IP 

addresses in the packets). This is similar to the approach used in [23-24].  

The other situation of traffic retargeting is when one of the connections in a 

session is flagged by the IDS as malicious. Unlike the first situation, the retargeting 

may occur in the middle of a session, when some connections are already closed, and 

some connections are still ongoing. Both types of connections cannot be simply 

relayed as this would result in state inconsistencies between a decoy and the running 

malware. In our system, we have to use a three-phase retargeting process that involves 

traffic replay, redirect, and relay to properly handle connections at different phases in 

a session. 

The first phase is the replay phase. At the time when retargeting decision occurs, 

some of the malware’s network connections may have been closed. Packets in closed 

connections may need to be replayed to the decoy, so that the decoy will have its 

states in consistency with the running malware. We store outgoing packets from the 

analysis environment in the packet queue (Figure 3). At the time when the retargeting 

decision occurs, the coordinator will instruct decoy communicator to replay packets 

corresponding to those closed connections from the packet queue to the decoy through 
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NIC #3. During the replay, the decoy may generate response packets such as TCP ack. 

All response packets from the decoy are filtered (they are not forwarded to the 

malware) since from the malware’s perspective of view, these connections have been 

closed. The replayed packets have the effect of reestablishing the corresponding states 

in the decoy so that the decoy can mimic the would-be victim and have states that are 

in consistency with the running malware. 

The second phase is the redirect phase. The phase deals with those ongoing 

connections in a session when retargeting decision occurs. Packets that have been 

transmitted in each ongoing connection are processed in the same way as in the replay 

phase. Decoy communicator takes those packets from the packet queue, adapts the 

packets to the retargeted traffic path with the stateful modules (Section 3.3) and sends 

the packets to decoy through NIC #3. If there are returning packets from the decoy 

during the replay, those returning packets are ignored. For subsequent packet 

transmissions, decoy communicator will again use the stateful modules to adapt the 

packets to the retargeted traffic path, and then forward the packets to the decoy. The 

returning packets from the decoy for subsequent packets are forward back to the 

analysis environment through NIC #1, because from the malware’s point of view 

these connections are still ongoing (the malware receives these packets just like from 

the would-be victim). 

The third phase is the relay phase. The phase changes the traffic path of future 

connections (connections that occur after retargeting decision) in a session to the 

decoy. The retargeted traffic in the relay phase only need to have the destination 

MAC and IP addresses in the packet headers replaced with the ones used by the 

decoys. These are also handled by the stateful modules. 

Through traffic retargeting, our system transparently replay, redirect, and relay 

the connections in a session that carry malicious traffic. From the malware’s point of 
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view, the connections are still with some victim machines on the Internet, though in 

reality the underlying traffic has been retargeted to decoys in the secure environment. 

During the traffic retargeting, there may be states in the upper layer protocols, which 

require additional processing. This is also taken care of by the stateful modules in our 

system, which will be detailed in Section 3.3. 

In addition to using IDS to flag malicious connections, we also have a blacklist 

of potentially malicious connections that may not be captured by the IDS. For 

instance, a stock IDS typically do not have a corresponding signature for detecting 

e-mail spam traffic. In our system, the blacklist contains a rule to match outbound 

SMTP traffic, so that the connection will be relayed to the decoy right from the very 

beginning. We also have rules in the blacklist that matches connections based on IP 

addresses and port numbers. For instance, if we see an outbound connection to 

140.113.40.35 (homepage of NCTU), the connection is much more likely to be part of 

the propagation or attack traffic instead of part of the C&C traffic. 

3.3 Maintaining Protocol States 

The fundamental goal of our work is to build a transparent network view for the 

malware in a secure dynamic analysis environment. In our system, we use traffic 

replay, redirect, and relay to achieve the aforementioned goal. The approach works 

well for stateless protocols, where the retargeted traffic will be valid for the decoy as 

long as the decoy has the corresponding services running on it. For stateful protocols, 

such as layer 4 TCP, just replaying the captured packets will not work. For TCP, we 

need to replace the sequence numbers and acknowledge numbers in the TCP packet 

headers, because the TCP stack on the decoy may choose random sequence numbers 

different from the ones previously used by the would-be victim machines.  

Essentially, when retargeting a connection, the decoy communicator has to 



 

14 

 

ensure that each packet conforms to the states on both the decoy and the running 

malware. This is taken care of by the stateful modules in the decoy communicator. 

Each stateful module is designed to maintain the states for each specific protocol. For 

instance, we have a MAC (media access control) stateful module to take care of the 

rewriting of MAC addresses. We also have an IP stateful module to replace IP 

addresses and recalculate IP checksums. Packets in retargeted traffic will have their 

destination MAC and IP addresses replaced with the ones of the decoy. At layer 4, we 

have a TCP stateful module to replace TCP sequence numbers, acknowledge numbers 

and TCP checksums. For upper layer protocols, we only implement the stateful 

modules for those protocols relevant to the malware samples used in our experiments. 

For instance, we have a stateful module for the NETBIOS protocol (layer 5) and a 

stateful module for SMB protocol (layer 7). 

01 Maintaining_Protocol_States (packet) 

02 { 

03  CASE packet.connection.retarget_to OF 

04   Replay: 

05   Redirect: 

06    layer7_stateful_modules (packet) 

07    layer5_stateful_modules (packet) 

08    layer4_stateful_modules (packet) 

09    layer3_stateful_modules (packet) 

10    layer2_stateful_modules (packet) 

11   Relay: 

12    layer3_stateful_modules (packet) 

13    layer2_stateful_modules (packet) 

14  ENDCASE 

15 } 

16 

17 layer4_stateful_modules (packet) 

18 { 

19  TCP_stateful_module (packet) 

20  UDP_stateful_module (packet) 

21 } 

22 

23 TCP_stateful_module (packet) 

24 { 

25  If packet is a TCP packet Then 

26   If packet is going to the decoy Then 

27    mseq = packet.tcp_ack_num 

28    mack = packet.tcp_seq_num + packet.tcp_data_len 

29    packet.tcp_seq_num = dseq 

30    If packet.tcp_ack_flag is set Then 

31     packet.tcp_ack_num = dack 
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32    Endif 

33   Else // from the decoy 

34    dseq = packet.tcp_ack_num 

35    dack = packet.tcp_seq_num + packet.tcp_data_len 

36    packet.tcp_seq_num = mseq 

37    If packet.tcp_ack_flag is set Then 

38     packet.tcp_ack_num = mack 

39    Endif 

40   Endif 

41 

42   Fix TCP checksum 

43  Endif 

44 } 

45 

46 UDP_stateful_module (packet) 

47 { 

48 } 

Figure 4: Pseudo code of selected stateful modules 

Figure 4 shows the pseudo code of selected stateful modules. When a packet is 

sent to the stateful modules through Maintaining_Protocol_States( ), the packet will 

be dispatched to stateful modules at each protocol layers (Line 03~14). Within each 

layer, the packet will continue to flow through the relevant stateful modules. For 

instance, at layer 4, depending on whether the packet is a TCP or UDP packet, the 

respective stateful module (Line 23 and Line 46) will be invoked to process the packet. 

Within TCP_stateful_module (in Figure 4), the module checks whether the given 

packet is a TCP packet, keeps next sequence number and acknowledge number for 

each direction (Line 27~28 and Line 34~35), and rewrites the corresponding value if 

needed (Line 29~32 and Line 36~39). During the connection established, the next 

acknowledge number is calculated by last received sequence number plus last 

received payload length (Line 28 and Line 35). In Figure 4, we just give a brief 

introduction to stateful modules. In fact, the sequence number calculation is different 

when connection establishment and closing. On the other hand, actually, UDP does 

not have any stateful issues. We just keep the UDP_stateful_module empty. 

The stateful modules are used to handle the stateful issues between the decoy and 

the would-be victim. Because in the redirect and relay phase, returning packets from 



 

16 

 

the decoy may forward back to the running malware, the decoy communicator applies 

layer 2, 3, 4, 5, and 7 stateful modules for the redirect phase and layer 2 and 3 for the 

relay phase. However, in the replay phase, since the connections have been finished, 

we simply ignore the returning packets from the decoy, so that the decoy 

communicator does not apply any stateful modules for it. 

3.4 Example of Traffic Replay, Redirect, and Relay 

 

Figure 5: An example of traffic replay, redirect, and relay 

Figure 5 shows an example of the network traffic retargeting, which consists of 

the three-phase process: replay phase, redirect phase, and relay phase, for a malicious 

session. 

First, the malware in the analysis environment makes some network connection 

(connection A) with some would-be victim machine on the Internet. The dispatcher 

forwards the packets of connection A in both directions and also keeps a copy of the 

forwarded packets in the packet queue. Later, the malware makes another connection 

(connection B) with the would-be victim. The dispatcher again forwards and keeps a 
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copy of the packets in connection B. Now, assume that in the middle of connection B, 

the malware transmits out packet M, which contains malicious exploits that trigger an 

IDS alert. At this time, the dispatcher will consider the corresponding session (based 

on source and destination IP addresses) as malicious and begin the traffic retargeting. 

We use A' and B' instead of A and B to represent the replayed and redirected 

connections because the replayed (or redirected) packets will have to have different 

headers from the original ones such as TCP sequence numbers or MAC addresses. 

Connection A, which has finished before the retargeting decision (i.e. IDS alerts), 

is replayed to the decoy as connection A'. Connection B, which is still ongoing, has to 

be redirected. For those packets in connection B transmitted before packet M, they are 

replayed as B'1 to the decoy. During the replay of B'1, the decoy may generate some 

corresponding response packets such as TCP ACK. We ignore these response packets 

from the decoy, because from the malware’s point of view, the response packets had 

been received (from the would-be victim). Subsequent packets (include M) in 

connection B are relayed to the decoy (such as B'2, B'4). Note that, for this part of 

connection B, we need to forward returning packets from the decoy, if any, back to 

the malware (e.g. B3), or the ongoing connection can get broken prematurely. 

Connection C is opened after the retargeting decision, so it will be simply relayed in 

each direction by the dispatcher. 
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Chapter 4 Implementation 

 

Figure 6: System Implementation 

Figure 6 shows the implementation of our system. We implement our system on 

Linux, and use bridge-util to bridge two network interface cards (NIC #1 and NIC #2). 

One is connected to the Internet (NIC #2) and another is connected to the analysis 

environment (NIC #1). Packets received on NIC #2 (i.e. the Internet) can also be seen 

on NIC #1 (i.e. analysis environment). We use Netfilter [29] to intercept packets from 

NIC #1 (by setting iptables rules) and use libnetfilter_queue to forward the packets to 

the dispatcher. Packet flow from the analysis environment has to go through the 

dispatcher in order to reach the Internet even though NIC #1 and NIC #2 are bridged. 

Dispatcher 

If the destination IP address and port number of the packet are blacklisted, the 

callback function of libnetfilter_queue will signal the decoy communicator to carry 

out the traffic retargeting. Otherwise, the packets will be forwarded to NIC #2. We 

use Snort [30] as the IDS to detect propagation and attack traffic. Both incoming and 

outgoing traffic of the analysis environment will be inspected by Snort. In our system, 

Snort is modified to use UNIX domain socket to communicate with the alert receiver 
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in the dispatcher. If the alert receiver receives an alert, it will instruct the decoy 

communicator to initiate the traffic retargeting for the corresponding session. 

To decrease the delay and increase efficiency of each component, we use 

concurrent programming model. Snort in our system is a standalone process while the 

alert receiver and the callback function of libnetfilter_queue run within two separate 

threads in the dispatcher process. We use UNIX domain socket for communication 

between Snort and the dispatcher. 

The decoy communicator maintains a pool of threads, each of which handles a 

replayed, redirected, relayed connection. For traffic replay, since the malware no 

longer cares about the connections (they had been closed), the decoy communicator 

just copies payloads from the stored packets in the packet queue and uses standard 

socket (TCP or UDP) to regenerate the packets for the replay. Notably, we should 

fake the malware’s IP address as the source IP address in these connections, because 

we should establish some states for the running malware. By setting the IP address of 

NIC #3 to the malware’s IP address, we can use standard TCP or UDP socket to bind 

on it, and fake the connections (seems from the malware) through the socket. For 

traffic redirect and relay, we use raw socket to create the corresponding packets, so 

that fields such as MAC address, IP address, and TCP acknowledge number can be 

properly set by the respective stateful modules. 

Stateful Modules 

The decoy communicator includes stateful modules for upper layer protocols that 

are used by the malware samples we used for the experiments. The protocols include 

Server Message Block (SMB) [31] and NT LAN Manager Security Support Provider 

(NTLMSSP) [31]. The SMB stateful module replaces the tree id, process id, user id, 

and multiplex id fields in a SMB packet [31] (Figure 7) during the redirect phase. The 
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NTLMSSP stateful module is used to fix states during a SMB logon process (Figure 

8), which relies on the NTLMSSP challenge-response authentication. 

 

Figure 7: SMB packet format 

As an example to show how a stateful module works, let’s consider that a 

malware is attempting a SMB logon to a would-be victim machine through 

brute-force password guessing. Assume that before the malware succeeds with its 

password guessing, the IDS generates an alert due to too many SMB logon failures 

(such as Figure 8). The dispatcher will now retarget connections in the corresponding 

session. Essentially, we want to redirect the SMB logon connection to the decoy, 

which include three transmitted packets (1), (3), and (5) in the packet queue. The 

dispatcher will first replay packet (1) to the decoy, which works perfectly. Then, it 

will replay (3) to the decoy, and the decoy will reply with a 

NTLM_CHALLENGE_MESSAGE (like packet (4)) that contains a challenge value. 

If we continue to replay packet (5), the logon process will fail, as the response in 

packet (5) corresponds to the original challenge in packet (4) from the would-be 

victim and does not match the challenge generated by the decoy. As a result, the 

NTLMSSP [32] stateful module needs to calculate a new response value for the 

challenge from the decoy so that the redirected logon process can continue to proceed. 
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Figure 8: A SMB logon failure process 

Decoy 

The implementation of the decoy is a virtual machine loaded with operating 

system or network services corresponding to the well-known protocols that will be 

subject to the attacks from the malware in the analysis environment. For example, we 

implement a SMTP decoy (with standard socket) to emulate a victim SMTP server for 

the spammer-type malware, which we use for evaluation in Section 5.2. The SMTP 

decoy accepts any SMTP request, but never sends the e-mails in actually. 
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Chapter 5 Experiment Studies 

We evaluate our system design with 12 real-world malware samples. In Section 

5.1, we describe the selection criteria for the malware samples and the experiment 

environment. In Section 5.2~5.3, we evaluate the effectiveness of our system by 

comparing the dynamic analysis results from three different environments: our secure 

and transparent network environment, a closed network environment, and an open 

network environment. In Section 5.4, we give a case study to show our system’s 

operations. In Section 5.5, we give another case study on those unexpected results 

observed from the experiment. 

5.1 Sample Selection and Experiment Environment 

We collect more than 2000 suspicious malware samples from different sources 

including P2P file sharing, e-mail attachments, phishing websites, and honeypots 

running with Nepenthes [33]. First, we scan the suspicious malwares with anti-virus 

software from four different vendors and keep only those flagged by all of the four 

scanners. This results in 124 malwares. Next, we execute the remaining malware 

samples in an open network environment for 2 minutes and observe if they exhibit 

any network activities. We exclude those samples that exhibit no network activities 

and also exclude those whose network connection attempt does not get through 

(presumably, the remote server is not operational). In the end, we have a total of 12 

malware samples. The 12 malwares are further separated into two groups: malware 

without C&C, and malware with C&C. 

The first group, malware without C&C, consists of worms and e-mail spammers. 

Worms in the first group (m10.exe, m11.exe, and m12.exe in Table 1) propagate by 

brute-force password guessing on SMB logon over NETBIOS. After a successful 



 

23 

 

logon, the worm binary is copied to the target machine and gets executed. The first 

group also includes a spammer (m7.exe) which attaches a copy of the spammer binary 

“Worm/NetSky.P” to the e-mail content. 

The second group consists of malware with C&C (also known as bots). In this 

group, we have spammers (m8.exe and m9.exe) whose spam e-mail content and target 

recipient lists can be updated from a C&C server. We also have malwares (m1.exe, 

m2.exe, m3.exe, m4.exe, m5.exe, and m6.exe) that await commands from the C&C 

server to carry out propagate or attack actions. For example, we observe that they 

receive propagation-related commands, and scan machines randomly and propagate 

via vulnerabilities of NETBIOS. 

The selected samples are summarized in Table 1 and the discovery time is based 

on [34]. 

Table 1: Selected samples 
Type Malware Scan Result Discovered Activities 
Malware 
Without 
C&C 

m7.exe Email-Worm.Win32.NetSky.q Mar 24 2004 09:02 GMT “Worm/NetSky.P” 
attachment 

m10.exe Worm.Win32.Fujack.aa Jul 02 2007 14:18 GMT SMB password 
guessing m11.exe Worm.Win32.Fujack.aa Jul 02 2007 14:18 GMT 

m12.exe Worm.Win32.Viking.n Aug 03 2006 22:09 GMT 
Malware 
With 
C&C 

m1.exe Trojan.Win32.Scar.bqfv Feb 25 2010 16:09 GMT SMB password 
guessing 
NETBIOS buffer 
overflow attempts 
 

m2.exe Packed.Win32.Black.d 
Backdoor.Win32.Rbot.gen 

Aug 06 2004 12:02 GMT 

m3.exe Trojan-PSW.Win32.Dybalom.bu Aug 15 2009 09:06 GMT 
m4.exe P2P-Worm.Win32.Palevo.vyc Mar 05 2010 12:11 GMT 
m5.exe Trojan-PSW.Win32.Dybalom.bu Aug 15 2009 09:06 GMT 
m6.exe Trojan-PSW.Win32.Dybalom.bu Aug 15 2009 09:06 GMT 
m8.exe Virus.Win32.Tenga.a Jul 22 2005 17:11 GMT Get e-mail content 

and recipient lists 
from the C&C 

m9.exe Trojan-PSW.Win32.LdPinch.gqo Feb 13 2009 15:42 GMT 

We set up an experiment environment following the architecture in Figure 2 

which is shown in Figure 9. For each experiment, a malware is executed for 10 

minutes. We use TCPDUMP [35] to record three types of traffic: the traffic that 

interacts with the analysis environment (A in Figure 9), the traffic that reaches the 

Internet (B in Figure 9), and the traffic that retargets to the decoys (C in Figure 9). We 

use the recorded traffic to evaluate both the improvement on network transparency 
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and security as provided by our proposed system. 

 

Figure 9: Basic experiment environment 

5.2 Effectiveness of Transparent Network Environment 

Our system gives 3.35 times more packets than closed network 

 By using our system, we can see 3.35 times more packets than using a closed 

network environment on average. Table 2 summaries the observed network activities 

from running malware without C&C in a closed network environment (no connection 

with Internet) and in our secure and transparent network environment. In the closed 

network environment, the majority of the packets are just TCP SYN as connections to 

the outside world are blocked. On the other hand, we can see a lot more network 

activities in our system. For instance, we observe that m7.exe attempts to initiate 

SMTP connections for sending spam e-mails. The malware m10.exe generates a lot 

more port 139 and 445 traffic (369199 packets) compared with the result from the 

closed network environment (707 packets). Because some of the traffic from m10.exe 

is flagged by the IDS (“NETBIOS SMB-DS repeated logon failure” alert message), 

we retarget the network paths as described in Section 3.2. As a result, the propagation 

activities of m10.exe can be completely observed (m11.exe and m12.exe are similar 

to m10.exe) and the spam e-mail content of m7.exe can also be completely observed 

if we provide a proper SMTP decoy (details in Section 5.3 and Section 5.4). 

In this group, some attack traffic (e.g. NETBIOS attack traffic from for m10.exe, 

m11.exe, and m12.exe) are LAN-based and do not require Internet access. The kind 
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of traffic can be observed in a closed network environment if a vulnerable server is 

present in the analysis environment. It is quite often seen that the same malware also 

involve Internet traffic. For instance, m10.exe, m11.exe, and m12.exe all make HTTP 

connections to advertising sites on the Internet. If we execute them in closed network 

environment, only a few TCP SYN packets for HTTP connections are observed. 

(Note: in our system, the HTTP traffic is allowed because they are deemed harmless 

as the IDS generates no alarms on them). 

Table 2: Network activities by malware without C&C (closed network vs. our system) 
Malware Closed Network Our system 
m7.exe No response for DNS MX record 9 spam e-mail attempts 
m10.exe 362 TCP port 139 SYN packets 

345 TCP port 445 SYN packets 
369199 packets for TCP port 139 and 445 
HTTP GET advertising HTML files 

m11.exe 407 TCP port 139 SYN packets 
388 TCP port 445 SYN packets 

23161 packets for TCP port 139 and 445 
HTTP GET advertising HTML files 

m12.exe Probe machines by ICMP echo request Probe machines by ICMP echo request 
60285 packets for TCP port 139 and 445 
HTTP GET advertising HTML files 

We notice that if we provide a vulnerable SMB in the closed network 

environment (Figure 10), the traffic of m10.exe, m11.exe, and m12.exe will not only 

contain TCP SYN packets. The running malware will inject into the vulnerable SMB 

server and generate lots of traffic. 

 

Figure 10: Additional experiment environment with closed network 

Table 3: Number of packets by m10.exe, m11.exe, and m12.exe (closed network vs. our system) 

Malware Closed Network Our System 
m10.exe 2750 10915 
m11.exe 8261 44692 
m12.exe 1018 21376 

Table 3 shows the results from doing this experiment. Notably, the numbers are 

different from Table 2 because we redo the experiment. We get 2.13 times more 
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packets than closed network on average. 

The results for malware with C&C are shown in Table 4. Again, we can only see 

those packets corresponding to unsuccessful connection attempts in the closed 

network environment. With our system, we can observe a lot more network activities. 

Malwares in this category heavily depend on interaction with the C&C server to 

operate. For instance, m4.exe needs to connect to an IRC server on port 47221 and 

waits for commands. During the experiment period, m4.exe received a HTTP 

downloading command that gets the malware “TR/Kazy.15451.21”. Malware m4.exe 

also received a propagation-related command (“.asc” command in Table 4 for m4.exe) 

and scanned machines for port 445 in order to initiate propagation actions. 

Unfortunately, the machines targeted by m4.exe were not running during the 

experiment period, thus the propagation traffic did not trigger the IDS alert. Similar to 

m4.exe, m3.exe received a propagation-related command (“.advscan” command in 

Table 4 for m3.exe), and scanned machines for port 445. At this time, the IDS issued 

an alert for “NETBIOS DCERPC NCACN-IP-TCP srvsvc NetrPathCanonicalize 

overflow attempt”. Then, we retargeted the network paths of m3.exe as described in 

Section 3.2. Malware m8.exe and m9.exe are spammers which target Yahoo e-mail 

service. They connect to a C&C server on port 80, and download some sentences 

(e-mail subjects) and e-mail addresses (recipients). After finishing the downloading, 

they start to send spam e-mails. These spam e-mails will not trigger the IDS alert 

which are actually sent to the victim recipients. Luckily, they are deemed harmless 

that we discuss in Section 5.3. 

Consequently, if we execute malwares of this group in a closed network 

environment, we may get few network activities due to the Internet inaccessible. 

Without a C&C server, the malware will not know how to take actions. However, in 

our system, since we allow the C&C traffic to access the Internet, the malware can get 
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the commands. 

Table 4: Network activities by malware with C&C (closed network vs. our system) 
Malware Closed Network Our system 
m1.exe No response for DNS A query 

No response for TCP SYN 
TCP C&C connection (60.165.98.198:8680) 

m2.exe No response for DNS A query TCP C&C connection (70.107.249.167:6668) 
TCP SYN flooding at port 139 after receiving “xvvv 
asn1smbnt 100 0 0 -b -r -s” command 

m3.exe 
m5.exe 
m6.exe 

No response for DNS A query TCP C&C connection (74.117.174.122:16667) 
TCP SYN flooding at port 445 after receiving 
“.advscan asn445 100 5 0 -b -r -s” command 
FTP connection with non-standard port 

m4.exe No response for DNS A query TCP C&C connection (46.161.29.202:47221) 
HTTP GET “TR/Kazy.15451.21” after receiving 
“.asc -S -s|.http http://black-cash.com/rep.exe|.asc 
exp_all 10 0 0 -b -s|.asc exp_all 20 0 0 -b -r -e –s” 
command 
HTTP GET status report from other bots in the C&C 
channel 
TCP SYN flooding at port 445 after receiving 
command 

m8.exe No response for DNS MX query 
TCP SYN flooding at port 139 

TCP C&C connection (208.77.45.146:80) 
TCP SYN flooding at port 139 
34 spam e-mails 

m9.exe No response for DNS MX query TCP C&C connection (208.77.45.146:80) 
179 spam e-mails 

Our system can be more transparent than open network 

We notice that in a few situations, with proper decoys, our system can 

outperform an open network environment in terms of network transparency.  

Since the number of all network activities is hard to count, we can focus on 

different types of activities to calculate the improvement rate (# of activities in our 

system / # of activities in open network environment).  

For NETBIOS-based propagation activities, we may count number of intruded 

machines. However, it is another concern if we allow the malware to propagate to 

machines on the Internet. One possible way to calculate the improvement rate is 

providing enough machines running vulnerable NETBIOS server within a closed 

network environment (isolated from the Internet). In our experiment, we have no such 

many machines, thus we do not show the evaluation for this. 

For spam e-mail activities, we may count number of e-mails that successfully be 
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sent out. Table 5 shows improvement rates for each spammer in our experiment. For 

m7.exe, SMTP servers on the Internet do not relay for the malware anymore, so that 

the number of e-mail in open network environment is zero. But in our system, the 

SMTP decoy will not refuse any SMTP request. We can still see 14 spam e-mails in 

this case. For m8.exe and m9.exe, both of their spam e-mails target the Yahoo e-mail 

service. We observe that some of spam e-mails of m8.exe and m9.exe are denied due 

to the anti-spam mechanism from Yahoo [36]. However, in our system, again, the 

SMTP decoy will not refuse any SMTP request. We can see even more number of 

spam e-mails than in open network environment. As a result, we get 170.32% 

improvement rate on average. (Note: in this experiment, we use our system with 

blacklist in order to relay SMTP traffic directly; the numbers are different from Table 

2 and Table 4 since we redo the experiment) 

Table 5: Number of spam e-mails (our system vs. open network) 
Malware Our System Open Network Improvement Rate 
m7.exe 14 0 N/A 
m8.exe 117 68 172.06% 
m9.exe 118 70 168.57% 

5.3 Effectiveness of Secure Network Environment 

Internet security is ensured 

We notice the Internet security face of the experiments in Section 5.2. Among all 

the packets in the experiments in Section 5.2, we retarget 80.66% packets on average. 

The retargeted packets trigger Snort 303 alert messages (from m1.exe, m2.exe, 

m3.exe, m4.exe, m5.exe, m6.exe, m10.exe, m11.exe, and m12.exe) and contain 222 

spam e-mails (from m7.exe, m8.exe, and m9.exe with blacklist). If we execute the 

malwares in an open network environment, the propagation or attack actions and 

spam e-mails will flow to the Internet.  

The dispatcher finds m10.exe, m11.exe, and m12.exe launching SMB password 
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guessing attack when the IDS issues “NETBIOS SMB-DS repeated logon failure” 

alert. The dispatcher will retarget the corresponding session of the malware, so that 

the would-be victim on the Internet can be secured. However, from the malware’s 

point of view, the victim still on the Internet (i.e. the decoy). The malware can easily 

logon to the decoy because the help from stateful modules. After the malware logons 

successfully, it will transmit itself to the decoy and register to the decoy’s system 

scheduler for executing. If we do not retarget the password guessing attack, the 

would-be victim will suffer from the same situation. Thus, it is dangerous to the 

Internet. 

Our system is able to retarget the password guessing attack at an early stage 

(about 10 attempts, depending on Snort rule setting). If a machine (vulnerable SMB 

server in Figure 11) on the Internet adopts a quite simple password (e.g. easily 

guessable after 3 attempts), our system can also protect it. Although the malware 

logon the vulnerable SMB server successfully, the IDS will issue an alert “NETBIOS 

SMB-DS ADMIN$ unicode share access” when the malware binary is copying into 

the SMB server. As a result, the dispatcher will retarget the traffic; the propagation 

traffic cannot completely reach the would-be victim (i.e. the vulnerable SMB server). 

For others malware, the Internet security is also ensured. For instance, m8.exe 

and m9.exe send spam e-mails. Although the e-mails may annoy users, the mail 

content actually harmless. Malware m7.exe produces spam e-mails with a malware 

attachment. However, the SMTP servers targeted by m7.exe refuse to relay e-mails 

for the malware. In this case, the spam e-mails cannot be sent out, making the Internet 

more secure. If a SMTP server (SMTP server in Figure 11) on the Internet relay 

e-mails for m7.exe, the IDS will produce an alert “SHELLCODE x86 inc ecx NOOP” 

when the IDS inspects the mail attachment (i.e. a malware attachment). The alert will 

trigger the dispatcher to retarget the traffic. Again, the would-be victim (i.e. the 
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Figure 16: An unexpected case 

Figure 16 shows a case where all phases of traffic retargeting fail. Every segment 

in Figure 16 represents a SMB logon connection, and x-axis represents time. When 

the number of failed SMB logons (A and B in Figure 16) reaches a threshold value, 

Snort will generate alert “NETBIOS SMB-DS repeated logon failure”. Then, our 

system will engage traffic retargeting (i.e. replay, redirect, and relay). Connection A 

and B are designed to replay, connection C is designed to redirect, and connection D 

and E are designed to relay. 

Each connection in the case is independent. That is, effectiveness of replaying 

connection A and B in the case may be nullified, because no states need to reestablish. 

Ideally, we can redirect connection C to the decoy. But we find that we always fail in 

this case. This is because the connection C almost finishes, from the malware’s 

perspective of view, the connection C is no longer useful. For instance, packets of 

connection C are like packets shown in Figure 8. When the IDS sees the packet (6) in 

Figure 8, it triggers an alert. Even though we try to redirect the connection C, from the 

malware’s point of view, the connection C already logon failure, and should be closed. 

As a result, we replace fields by stateful modules and the logon to the decoy 

successfully, the malware still send TCP RESET or TCP FIN. 

Finally, we consider that the logon should success in the relay phase. But it fails 

again. The most possible reason is that the decoy adopts an empty password and the 

empty password has been tried in the early stage of the password guessing. Once the 

malware find a password cannot logon success, it will not try it again. Connection A 
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Chapter 6 Conclusions and Future Works 

 Dynamic malware analysis traditionally runs in a closed network environment 

without Internet connection. This prevents the malware from causing damages to the 

outside world. However, for malware that involves significant amount of network 

activities, a closed network environment defeats the purpose of dynamic analysis, as 

much of the malware’s network behavior will not be exhibited and captured. 

 We propose a system to allow malware exhibiting network behavior in a 

dynamic malware analysis environment while also ensuring that the malware can do 

no harm beyond the boundary of the analysis environment. Our system transparently 

retargets propagation and attack traffic, instead of blocking them, to decoys inside the 

analysis environment. At the same time, we allow the malware’s control traffic, which 

is deemed to be harmless, to cross the boundary of the analysis environment. 

 The evaluation result shows that our system significantly increases the amount of 

observed network activities during dynamic malware analysis when compared with a 

traditional closed network environment. The overall effect is having a dynamic 

analysis environment, which is useful for those malware with lots of network 

activities. 

 The use of traffic retargeting and decoys in our system can improve the 

effectiveness of dynamic analysis beyond what an open network environment (with 

unrestricted Internet access) can offer. This happens when a malware requires 

accessing machines on the Internet, which for some reason are not accessible during 

the time of analysis. An example is a spam-ware sending spam e-mails through a 

hard-coded SMTP server that was known to accept public relays. If the hard-coded 

SMTP is no longer functioning, a dynamic analysis of the malware will fail to reveal 

the full picture of the malware’s behavior. In our experiments, we were able use our 
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system to retarget the SMTP traffic of such a spam-ware and extract both the recipient 

list and the mail content (including a backdoor program in the attachment part) from 

the spam-ware. 

 From the second case study, we can see some cases of malware may be 

unexpected in our design. In the future work, we will attempt to execute more 

malware samples and apply different stateful modules for each protocol in different 

case. Besides, in our experiment, we use a simple dynamic malware analysis. It may 

be observed more meaningful activities by using a sophisticated dynamic malware 

analysis environment. 
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