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摘要 

 
在各種代理人架構中， BDI 是最成熟的模型。 目前，關於 BDI 代理人的

研究，大多數集中於代理人動態選擇計畫的能力， 即從欲望到意圖的能力。 而

在這些被選擇的計畫應該被執行順序上，卻有很少有討論。 我們稱此問題為「意

圖排程」。 在開發具有移動力和多重代理人的系統時，我們發現這些代理人必

須能適應動態的變化。在缺乏適當的意圖排程時，代理人可能導致重複不必要的

工作，浪費有價值的資源或者甚至導致使用者的計劃失敗。 因此，我們要研究

一個有效的意圖排程方式，並且提出 BDI 推理過程裡一些有用的架構，使 BDI 

代理人更有效率並且更適用於動態的環境。  
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Abstract 

 
Among various agent architectures, BDI is probably the most mature model. 

Currently, most of the researches concerning BDI agents are focused on the ability for 

agents to dynamically select plans in order to achieve some goals, i.e. from Desire to 

Intention. However, there are few discussions on the order in which these selected 

plans should be executed. The problem might be called as Intention Scheduling. After 

developing systems with multiple agents of mobility and intelligence, we have 

discovered that these agents must adapt to dynamical and unpredictable changes. 

Without a proper scheduling, agents may result in repeating unnecessary work, 

wasting valuable resource or even failing the users’ expect altogether.  Therefore, we 

are going to study an effective intention-scheduling scheme and some useful 

structures in BDI reasoning process, to make BDI agent more efficient and suitable 

for dynamic environment. 
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Chapter 1. Introduction 

Agent systems are currently one of the most active research fields in the 

computer science community. Researchers generally agree that for a computer 

program to be called a rational agent, it must show the characteristics such as 

autonomy, social ability, reactivity and pro-activeness.[1] Among various agent 

architectures, BDI (Belief-Desire-Intention)[2], standing for Beliefs, Desires and 

Intentions, where each represents a mental state in practical reasoning process, is 

probably the most mature model and has been adopted by many academic and 

industrial applications.  

Currently, most of the researches concerning BDI agents are focused on the 

ability for agents to dynamically select plans in order to achieve some goals, i.e. from 

Desire to Intention. There are few discussions on the order in which these selected 

plans should be executed. The problem might be called as Intention Scheduling. 

After developing systems with multiple agents of mobility and intelligence [3], we 

have discovered that these agents must adapt to dynamical and unpredictable changes. 

Without a proper scheduling, agents may result in repeating unnecessary work, 

wasting valuable resource or even failing the users’ expect altogether.  

Take a shopping agent as example; the agent is designed to buy a suit at shop A, 

buy a pair of shoes at shop B, and do some other tasks. If these two buying goals are 

equally important to the user, the agent might end up going back and forth between 

shop A and shop B without buying anything actually. In another case, the shop A and 

shop B turn out to be the same shop, but the agent does not consider this point. The 

agent might go to shop A to buy a suit, to shop B to do some other things and back to 

shop A again to buy the shoes, etc. Moving twice while doing these jobs wastes the 

 1



valuable network bandwidth. Yet another situation might be that suit-buying task is 

more important than shoe-buying task, but the shop B will be closed within five 

minutes. Without awareness of this constraint, the agent cannot buy the shoes in time, 

i.e., fail the user’s expectance.  

A proper intention-scheduling scheme might greatly improve BDI agents’ 

performance by exploiting the positive interaction between the given tasks and 

avoiding possible conflicts. From the example above, with a scheduling scheme to 

avoid conflicts, the agent will not go back and forth between two shops, but finish one 

task before doing another one. With the ability to exploiting the positive interaction, 

the agent will do the common things once and save the system’s resources. With the 

ability to take temporal constraints into concern, the agent will not miss the deadline. 

Therefore, we are going to study an effective intention-scheduling scheme and 

some useful structures in BDI reasoning process, to make BDI agent more efficient 

and suitable for dynamic environment. 

The remainder of this thesis is organized as follows. Chapter 2 surveys the state 

of art BDI agent theories and architectures, as well as some related works on intention 

scheduling. Chapter 3 discusses the basic concept on intention scheduling. Chapter 4 

presents the implementation aspects of our theories. Chapter 5 shows the effectiveness 

of our system. Chapter 6 concludes with our contribution and the future works. 
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Chapter 2. Background 

2.1 BDI Agent Theory 

The BDI (Belief-Desire-Intention) theory is a well-known model of rational 

agents, based on practical reasoning theory proposed by philosopher Michael 

Bratman[1]. Belief corresponds to the information that agent has about the world and 

itself. Desire, or Goal, represents the world state that the agent is trying to achieve. 

Intention is the desire that an agent has committed to achieve[4]. As Cohen and 

Levesque[5] said, an agent could have many desires, like human beings, but these 

desires may not all come true. Hence, an agent may choose some desires that seem 

achievable, and commit its resources to achieve them. Those chosen desires are called 

Intentions. An agent usually continues trying to achieve the intention, until the 

intention is achieved or until the agent believes that the intention becomes 

unachievable. 

A typical BDI agent has a set of Plans[6][7], which defines sequences of actions 

to be performed to achieve a certain goal. So Intentions could also be seen as the 

plans an agent has chosen for eventual execution. Rao and Georgeff[8] have provided 

some logics for the BDI architecture. This model is believed to be effective, and has 

been used in a number of applications including air traffic control[9] and the handling 

of malfunctions on NASA's Space Shuttle[10]. Wooldridge and Jennings[11] have 

also done researches on intelligent agent theory. 

2.2 BDI Agent Architecture 

2.2.1 PRS (Procedural Reasoning System) 

In this section, we are going to discusses a pioneer implementation of BDI theory, 

PRS[6], which is an ascendant of various BDI agent systems such as UMPRS[12], 
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ACT[13], etc. Figure 2.1 depicts the major parts of PRS System. There are four 

important components of a typical BDI agent, including Beliefs, Desires, Intensions 

and Plans. 

 

 
Figure 2.1 PRS-like agent architecture 

Beliefs correspond to the information that an agent has about the world and itself. 

Desires, or Goals, represent the world state that the agent is trying to achieve. 

Intentions are the desires that an agent has committed to achieve. Plans define 

sequences of actions to be performed to achieve a certain goal or react to a specific 

situation. 

The central part of this kind of agent systems is the interpreter. The interpreter 

runs in cycles. In every cycle, it first updates the Beliefs after observing the world. 

Next, it checks the Desires, finds those achievable ones that are not yet achieved, and 

chooses the most suitable plan from the Plans. Then, it associates the chosen goals 

(desires) and plans, and commits them into the Intentions. Finally, it executes the 

actions of the plans in the Intention structure. The interpreter starts the whole cycle 

over and over again until all the desires have been fulfilled. 

2.2.2 JAM 

JAM[7] is a modern BDI agent system derived from PRS. JAM supports rich 
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plan constructs, simple extension mechanisms, meta-level or utility-based reasoning 

over multiple concurrent goals, and goal-driven or data-driven behaviors. Because of 

these advance designs and Huber’s generosity of providing the source code of JAM 

for non-profit development[14], we decide to construct our system based on JAM, and 

further extend its capabilities. 

Figure 2.2 shows an example of JAM’s Intention structure. JAM has two kinds 

of goals, top-level goals and subgoals. Top-level goals are persistent. That is, they are 

pursued until being satisfied. A JAM agent can have multiple top-level goals, and 

pursues these goals at the same time. Subgoals are the goals that the agent creates 

from the plans during plan execution. When a subgoal is issued, the current plan 

execution is halted, and the interpreter will try to find another plan that can achieve 

the subgoal. After the subgoal is achieved, the halted plan is resumed. JAM’s 

Intention structure is a set of intention threads, and every thread’s head is a top-level 

goal. 

 
Figure 2.2 a JAM intention structure in the middle of execution 

Because there may be many intentions being pursued, here comes the problem of 

intention scheduling. JAM uses a Utility function to decide which intention is more 
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important to the user for the execution order of intentions. However, the most 

important intention does not need to have the highest priority of execution. There are 

many things need to be considered further, which we are going to discuss in details in 

Chapter 3.  

Note that although user can set all the considerations in utility functions and 

evaluated theme during runtime, doing this not only blurs the meaning of utility but 

also makes the agent more difficult to design. 

2.3 AgentSpeak(XL), TÆMS and DTC scheduler 

AgentSpeak(XL)[15] provides another kind of PRS-like BDI agents which deal 

with the problem of intention scheduling with TÆMS[16]and DTC[17].(see [18] for 

an overview of that approach to multi-agent systems.) 

TÆMS (Task Analysis, Environment Modeling, and Simulation) is a task 

modeling framework which describes the characteristics of each task in an agent’s 

problem solving process, including quality, cost, time and probability. It uses a tree 

structure to model the relationships between tasks such as top-level task, subtask and 

quality accumulation function. Moreover, TÆMS also describes tasks’ temporal and 

resources requirements and interactions between tasks. (Tasks here can be viewed as 

instances of plans in PRS-like agent we’ve discussed above) 
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Figure 2.3 an example TÆMS task structure for tracking 

DTC (Design to Criteria) scheduler uses the information provided by TÆMS to 

generate a proper course of actions, categorized into two parts. First are the tasks that 

must be performed to achieve the top-level goal. Second are the execution orders of 

the tasks chosen. Together, DTC and TÆMS accomplish a nice agent system that is 

able to deal with temporal and resource constraints.  

Nevertheless, there are still some shortcomings with this kind of agents. First of 

all, it is not proper for these agents to be integrated into the current PRS-like agent 

architecture, because it duplicates the “from Desire to Intention” part of the reasoning. 

Second, DTC is a kind of “long term” scheduling. DTC considers too many things to 

do the scheduling in every execution cycles. Thus, the agent is more or less blunt to 

the environmental changes. Furthermore, TÆMS needs a lot of information long 

before the task is actually been executed. While sometimes an agent may acquire new 

kinds of tasks by importing new plans, AgentSpeak(XL) doesn’t answer the question 

how the TÆMS is going to reflect these changes.  

2.4 Dynamic Discovery of Goals Interaction 

Padgham and Thangarajah have some great works discussed about dynamical 

reasoning for the goals in BDI agent, including representation and reasoning for 

goals[19], detecting resource conflicts[20], detecting similar goals[21], and detecting 

interference between goals[22]. These works utilize the information provided from 

“Goal-Plan-Tree” structure to detect positive or negative interactions between goals. 

Although the algorithms they proposed can effectively avoid conflicts or combine the 

similar plans, they do not take the importance of the goals and the time constrains into 

consideration. This may result in inefficient behaviors. 
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Since intentions are only committed goals in the thesis, we will use these 

techniques to discover interactions between intentions, and integrate them as factors 

in the whole scheduling process dynamically. 
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Chapter 3. Intention Scheduling Concept 

In this chapter, we first discuss the major factors of Intention Scheduling, 

including utility, time constraints, interactions, degree of completeness and fairness. 

Then we introduce the Intention Tree, the structure to gather these factors. Finally, we 

propose our Intention Scheduling algorithm. 

3.1 Factors of Intention Scheduling 

3.1.1 Utility 

Obviously, the most essential factor that affects the scheduling of intention is 

their importance. More important tasks should be given more time and higher priority 

to execute than less important ones.  

JAM uses “Utility” to describe the importance of a goal and uses it as the only 

factor to select an intention. However, the word “Utility” in JAM has different 

meanings in different contexts. For goals, JAM’s Utility means how important the 

goal is for the user. For plans, JAM’s Utility means how good the plans will fulfill the 

goal. For intentions, JAM’s Utility means how urgent the intention is. As we stated in 

2.2.2, this is too restrictive and confusing for the agent designer. 

Here, we define Utility to be “the importance of the goal for the user.” It can be a 

real number or a simple function, whose value can be evaluated dynamically. 

Applicability is “the extents the plan can fulfill the goal.” This value represents the 

percentage of a goal’s Utility this plan will achieve. It can also be evaluated at runtime. 

Priority is “the urgency the intention is,” and is basically computed from the 

associated plan’s Applicability, goal’s Utility and some other factors we will stated 

later. 
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With these distinct definitions, agent designers do not have to think of some 

enigmatic functions to schedule the intentions. Instead, they can use simple values or 

functions to specify the importance of goals and usability of plans, and let the Agent 

System to compute the priority for intention automatically. 

3.1.2 Time Constraint 

Under a multi-agent environment, when agents cooperate with each other, they 

usually need to finish some tasks before deadlines. For example, a bidding-agent must 

place its bid before the auction-agent close the auction. To avoid missing the deadline, 

the task should be given a higher priority when its deadline is approaching. Therefore, 

the agent must know the deadline of the goal, how long the intention will cost on 

running, and how the priority will be affected when the deadline is approaching. 

Specifying a deadline of an intention might be simplified as appending a value or 

function to a goal. The exact time will be computed when the goal is intended. 

Calculating the running time of an intention is not simple. There are two reasons at 

least. First, the associated plan may contain subgoals. We do not know the running 

time of a goal unless the plan is chosen to achieve it is selected. We called the 

problem “Undecided Plan Problem.” Second, beside the subgoals, each step might 

cost various amount of time, and the running time may depend on machine or network 

speed. Here, a agent designer given modifier ERT (Estimated Running Time) is 

chosen for describing how many logical time units a plan may need, excluding its 

subgoals execution. These time units will be transformed into the real time units 

during runtime with the running statistic of the agent platform. Together with the 

Intention Tree, ERT helps the agent to calculate the possible minimum and maximum 

running time of its intentions. 

User can also specify a DUF (Deadline Utility Function), which formulates how 
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the priority of the intention will be affected when its deadline is approaching. The 

format of this function is defined in Chapter 4. 

3.1.3 Interaction 

Executing an intention may result in some effects that will change the Belief of 

the agent, and then affect other intentions. The relationship between two intentions 

that one intention helps the other is called positive interaction. The one that one 

intention hinders the other is called negative interaction. 

Consider the shopping agent example in Chapter 1. When shops A and B are 

different, the suit-buying task of the agent will forbid the agent pursuing the 

shoe-buying task simultaneously because these two tasks must be done at different 

places. Another case is that, during runtime, once agent discovers that shop A and 

shop B are the same, the suit-buying task will facilitate the shoe-buying task because 

the agent need not move twice. 

With the interaction information, an agent can schedule its intention to avoid 

conflicts or save system resources. In the above example, when the agent decides to 

execute the suit-buying task, it will defer the execution of the shoe-buying task 

because there is a negative interaction between them. When shop A and shop B are the 

same, the agent will try to execute these two tasks together even there is another task, 

say cleaning car, which is more important than the shoe-buying task. 

Questions may arise regarding the importance of the tasks.  For example, the 

shoe-buying task may be too important to be deferred; on the other hand, the 

car-cleaning task may be more critical so the agent should do it first. To solve this 

problem, the interaction cannot merely indicate the relationships of the tasks but also 

their magnitude of mutual influence. Obviously, if the interaction’s magnitude is not 
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strong enough to affect the existing priorities of the intentions, the agent will take the 

original sequence of actions. 

Here we present a tree type called Intention Tree. The interaction between the 

tasks can be modeled as links between Intention Trees’ nodes. Each directed arc, 

between two nodes representing two tasks, represents the direction of the interaction. 

The value associated with the arc is the Utility of the affected intention. 

The agent designer can specify interactions explicitly in the Plan. Still, some 

interactions can be automatically discovered without explicit help from the designer. 

For example, there should be a positive interaction between two intentions that 

achieving the same goal, and negative interactions between two intentions whose 

goals are incompatible. Besides achieving goals, plans may have side effects that may 

affect the Belief, and some pre-conditions or context must be kept before or during 

execution. These may also cause interactions between intentions. However, how to 

automatically discover interactions between intentions is beyond the scope of this 

thesis. More information on this topic can be found in the papers mentioned in 2.4. 

3.1.4 Degree of completeness 

When an intention is interrupted, it might lose the work it has done. For example, 

the cost to interrupt an intention of 80% completeness with utility of 90 is much more 

than the cost to interrupt an intention of 20% completeness with utility of 100. 

Therefore, the DoC (degree of completeness) of the intention should be considered 

when there are negative interactions between intentions. 

The simplest way to indicate the DoC of an intention is to count how many lines 

of code in a plan the intention has executed. However, each line of code in a plan has 

a distinct contribution. Thus, a progress label (PL) is provided for the designer to 
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show how much work has been accomplished when reaching a position of code. Note 

that the undecided plan problem still exists, so we need Intention Tree to compute the 

DoC. 

3.1.5 Fairness 

Besides efficiency, the fairness need be considered. The low-utility intentions 

may never get a chance to execute when there are high-utility ones keep executing. In 

order to avoid this “starvation” problem, the priority of an intention that has not 

executed for a long while should be raised. 

However, if the low-utility intention has some negative interactions with other 

intentions, raising the priority of this intention might cause the other intentions to fail 

and waste the work that has been done. Therefore, fairness will only be considered 

when the intention has no interaction with others. 

3.2 Intention Tree 

3.2.1 Undecided Plan Problem 

Intention Trees are mainly used to solve the “Undecided Plan Problem.” The 

problem results from the request of information providing by some execution, which 

does not occurs yet. Here we use an example to show the “Undecided Plan Problem.” 

Figure 3.1 shows a JAM shopping agent’s intention structure during execution. 

The dotted-line box in Intention Thread B represents the activities not taken yet. 

When the agent is executing the “Moving to Site A” activities in intention-thread A, it 

doesn’t know that intention-thread B might have a “Moving to Site B” subgoal or not, 

because the Buying-shoes goal has not chosen which plan to execute yet. The 

Interaction cannot be discovered until the agent has decided to use “Buying Shoes’ 

Plan 1.” Currently, the “Moving to Site A” part of actions might be finished long 
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before. The situation gets nastier when the “Moving to Site B” is deep down in 

intention-thread B. 

 
Figure 3.1 Shopping Agent’s intention structure in the middle of execution 

“Undecided Plan Problem” not only obstructs the discovery of the Interaction, 

but also hinders other calculation such as the running time and the DoC of a plan. 

Choosing every plan for every goal before the execution really starts cannot solve this 

problem. The approach results in non-dynamic behavior because the environment 

change will not reflect to the plan chosen process. Our approach extends the concept 

of Intention Thread as Intention Tree to solve the “Undecided Plan Problem.” 

3.2.2 Structure of Intention Tree 

In the thesis, the Intention Tree is applied to model the possible behaviors of an 

agent. Its nodes record not only static structure of the agent but also the runtime 

information.  

An Intention Tree mainly comprises two kinds of nodes, goal-node and 

plan-node. A goal-node contains the information about a goal. The information 

includes the goal’s type, name, utility, deadline, and etc. Plan-node contains the 

information about a plan. The information includes the plan’s body, applicability, 

estimated running time, and degree of completeness. The children of the goal-node 
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are those plans can achieve the goal, and the children of the plan-node are its subgoals. 

Figure 3.2 shows the Intention Tree of the Buying Shoes Intention (Intention Thread 

B in previous example.) 

 
Figure 3.2 Intention Tree of the Buying Shoes Intention 

The information recorded on each node is applied for recursive computation till 

the root of each intention tree, and kept update during runtime when actions are 

performed, goals are achieved, plans are failed, or new plans are added. Thus, we can 

“foresee” what the agent might do without the actual execution. 

In figure 3.3, although the “Buying shoes” goal has not yet chosen which plan to 

execute, the agent still knows that there is a “Moving to Site B” subgoal in 

intention-tree B. Consequently, the agent can decide whether there is interaction or 

not. Note that the Intention structure in figure 3.3 dose not contain Intention Thread 

but the Intention Tree instead. 
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Figure 3.3 Shopping Agent’s intention structure in the middle of execution 

The ability to “foresee” what the agent might do could also benefit BDI’s 

choosing plan process. For example, the agent could choose the plan that will not 

conflict with the already executing intention, or avoid the plan that definitely cannot 

meet the goal’s deadline. Accordingly, the techniques to construct and update the 

Intention Tree described in this thesis can also be applied in other aspect of BDI 

agents. 

3.3 The Scheduling Process 

This section presents our scheduling process. Figure 3.3 shows the BDI agent’s 

execution activities. The bolded rectangles are those new intention-scheduling related 

activities. 
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Figure 3.4 Agent Execution Activities 

After loading the plans, an agent constructs its Intention Tree. The block “Update 

the Intention Tree” beside the” Execution Cycle” is not a separated execution thread. 

In the figure, the “Update the Intention Tree” box is added to indicate the Intention 

Tree is always kept updated and can be used in process other than Intention Selection. 

The “Select Intention” is the process that chooses the intention to execute next. It 

contains four major steps.  

First, the agent calculates each Intention Tree’s Base Priority. The value is 

defined as Utility of the top-level goal times Applicability of the top-level plan. (The 

top-level plan is the current plan applied to achieve the top-level goal.) Here, only the 

 17



top-level goal is considered because its importance dose not change whether a subgoal 

is added or deleted. For example, the importances of studying for midterm dose not 

decrease because its subgoal, say, flipping the page of textbook, is not so important. 

Subgoals’ Utility and their plans’ Applicability are considered when applying deadline 

and interaction. 

Second, the agent checks if the intention is approaching its deadlines. An 

Intention Tree may have more than one deadline because its subgoal may have 

deadlines too. The agent adjusts the priorities of the intention tree according to each 

deadline’s DUF. 

Third, the agent takes the interaction between intentions into account. This step 

works with a help of graph. Each node in this graph is an Intention Tree of the agent. 

There are three kinds of links, Base Links, Interactions Links and Final Links. The 

links with value N from nodes A to nodes B means A has higher priority than B by the 

magnitude of N. A Base Link is associated with a value, which is the difference of the 

Base Priorities of both ends. Its direction is from the node of higher base priority to 

another one. Interactions Links represents the interactions between the intention 

trees, either specified by the user or automatically discovered. If there is no 

interaction, the agent adjusts the base links of the node according to the time it waits 

for execution. The agent consolidates these links between the nodes to produce the 

Final Links. 

Finally, the agent chooses the node of with input Final Links. An Intention tree 

with no input Final Link has higher priority than others. When the tree does not exist, 

the agent recursively deletes the Final Link with the lowest value until there is a node 

with no input Final Links. 
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Figure 3.5 shows an example of activities 3 and 4. Although the Intention Tree C 

has the lowest base priority among all three, its strong interaction to Intention Tree A 

makes a Final Link from C to A. Because each node has at least one input Final Link, 

the agent deletes the lowest-value Final Link, which is the link between C and B. 

After that, there in no Final Links pointing to C. C becomes the next intention for 

execution then. 

 

Figure 3.5 an example of applying interactions between Intention Three 
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Chapter 4. Design and Implementation 

4.1 JAM Script constructs for Intention Scheduling 

In this section we are going to explain those new constructs added for intention 

scheduling. The original Jam script specification can be found at[7]. 

4.1.1 goal 

We modified JAM’s goal format to add functionality such as deadline and 

timeout. 

goal_type goal_name parameter1  

(:UTILITY expression)? 

(:DEADLINE expression  

(:DEADLINE_UTIL_FUNC expression, expression)? 

|:TIMEOUT)?; 

List 4.1 New Goal Format 

The DEADLINE field indicates that this goal must be finish before the time 

specified with the expression. Optional DEADLINE_UTIL_FUNC is the function, 

computing how much the time factor affects the intention’s priority. A special variable 

$delta can be used in the function to represent the difference between the current 

time and the deadline.  

The field DEADLINE_UTIL_FUNC has two functions. Figure 4.1 illustrates an 

example. The maxERT and minERT showing in the figure indicate the time needed to 

finish the intention. The first function is applied when delta is beyond the maxERT. It 

should be set as a reverse function of $delta, because the priority should rise when 

the time is approaching the deadline. The second function is applied when the 

deadline is between the maxERT and minERT. In this case, the agent cannot guarantee 

there is enough time to finish the job, so the user might define how the priority should 
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vary. 

 
Figure 4.1 Example of Deadline Utility Function 

When the delta is less than minERT, the Intention is timeout and considered fail. 

For those intentions waiting too long and having other applicable plans, they should 

abandon current suspended plan and choose another. Therefore, designer can append a 

TIMEOUT to the goal (Note that the second kind of timeout is actually an “Intention 

Reconsideration” problem, so we will not discuss it in details.) 

4.1.2 plan 

We add these new fields in to JAM’s plan: 

APPLICABILITY: numeric expression 

ERT: numeric expression 

FAIRFACTOR:  numeric expression 

INTERACTION: (goal_spec|plan_name), [numeric expression] 

List 4.2 New Plan Fields 

The APPLICABILITY is how the plan can fulfill the goal. It is specified with a 

value ranging from 0.0 to 1.0. The original Utility field in JAM no longer exists. 

The ERT field represents how many time units a plan may cost, excluding its subgoals 

execution time. Because of the “Undecided Plan Problem,” the subgoals execution 
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time should be gotten from the Intention Tree. The FAIRFACTOR field specifies the 

factor using in fairness calculation. The INTERACTION field describes the user-defined 

interaction between the plan and a kind of goals or plans. The magnitude of the 

interaction is given as the numeric expression. 

A PL (progress label) and ELT (estimated loop time) are added to the plan body: 

PL numeric expression: 

ELT numeric expression: 

List 4.3 New Plan Body Fields 

PL (Progress Label) shows how much work has been accomplished when 

reaching a position of the code. The field facilitates the calculation of DoC (Degree of 

Completeness) and the running time of the plan. 

In the example shown in List4.4, the PL indicates that the plan will have 80% 

completeness when Action2 is finished. Also, together with ERT, it implies that 

Action1 and Action2 might take 40 time units and Action3 might take 20 time units to 

execute. 

Plan:{ 

  ERT: 100s 

 Body: 

   EXECUTE Action1; 

  EXECUTE Action2; 

    PL 80: 

   EXECUTE Action3; 

 } 

List 4.4 A PL Example 

ELT are used when there are loop construct or possible recursive subgoaling, 

where a plan for a particular goal can subgoal to the same goal. It gives an estimate 

value of how many times the loop or recursive block are going to repeat, and therefore 
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the agent can calculate the running time and DoC accordingly. 

4.2 Construction of the Intention Tree 

4.2.1 static structure 

Figure 4.2 shows the Class Diagram of Intention Tree. The agent’s Interpreter 

access Intention Tree by its root, which is the GoalNode representing the top-level 

goal. GoalNodes have several PlanNodes as children. The PlanNode is a tree, which 

consist of one or more plan constructs. Various actions, including subgoaling actions, 

are done is these plan construct. 

 
Figure 4.2 The Class Diagram of Intention Tree 

4.2.2 Building Intention Tree 

Whenever a top-level goal is issued, the corresponding Intention Tree must be 

built. Interpreter will generate a new GoalNode to represent the top-level goal, and put 

it into its Intention Structure. For each plan that can fulfill the goal, a PlanNode is 

generated and appended under the GoalNode. The PlanNode consists of a tree of 

PlanConstructs, which are built according to the plan’s body. The PlanCostrcut 

with subgoaling action will generate GoalNodes and append them as its children. The 
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construction continues recursively until there is no subgoaling anymore. 

The subgoaling can be recursive. The construction of the intention tree with 

recursive subgoaling will continue indefinitely. Therefore, when the interpreter detects 

recursive subgoaling, it marks the repeat part as recursive block, and generates this 

part only once. 

Building the Intention Tree at runtime is a time consuming process. We can 

shorten the agent start-up time by compiling the agent before actual execution. The 

compilation produces an Intention Tree Template for every possible top-level goal, 

which can be used to generate Intention Tree rapidly in execution. For agents that can 

dynamically import plan, which may contain new top-level goals without precompiled 

template, we still can build the Intention Tree at runtime and cache it for the future 

use. 

4.3 Information Propagation in Intention Tree  

4.3.1 Information needed 

The information needed for computation in Intention Tree are listed below: 

1. Interactions Info: Both the user specified interactions and the information 

needed to discover the interactions automatically, such as possible effects, 

guarding conditions, etc. 

2. Deadlines Info: Deadlines, DUF (Deadline Utility Functions), and Timeout 

3. Runtime Info: maximum ERT, minimum ERT, DoC (Degree of 

Completeness), last execution time, and the runtime state of each node. 

The runtime state of the node in the Intention Tree shows the current status of the 

agent. It can be the following values: 
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UNTRIED: the node is not yet intended 

ACTION: the node is executing 

SUCCESS: the node is completed 

FAILURE: the node is failed 

When propagating in the tree, Interactions Info and Deadlines Info are stored in 

lists, which contain links pointing back to the node that the interaction or the deadline 

is applied on. Thus, other information that might be used in priority calculation such 

as Utility or Applicability of the node can be easy access. 

4.3.2 Initialization and Updating of the Intention Tree 

After the Intention Tree is constructed, it will go through an initialization process, 

which is done by updating each leaf node of the tree, to gather the information needed 

for intention scheduling. The gathered information will be stored in the tree’s root for 

future access. Note that the information is not stored in its final value, because the 

environment may change between the time the information is gathered and the time it 

is needed. For example, the maxERT will still in time units formats when stored in the 

root, and will be transformed to real value (milliseconds) when the agent applies it to 

the Deadline Utility Functions. 

During the agent’s execution, the Information in the Intention Tree most be 

updated whenever actions are performed, goals are achieved, plans are failed, or new 

plans are added.  

4.3.3 Computation Schemes of Updating 

Three kinds of computation schemes are used to update the Intention Tree. They 

are Sequence, Branch and Loop, each for different kinds of node. 

Sequence is the scheme for the sequence plan construct. This kind of node will 
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succeed when all its children succeed but fail whenever any of its children fail. 

if(every child node is in success state) state := success; 

if(any child node is in failure state) state := failure; 

(maxERT, minERT, interactions, deadlines):=  

sum of the (maxERT, minERT, interactions, deadlines)  

of every child in untried or action state; 

DoC := the sum of (DoC of every child × the PL of child); 

List 4.5 Pseudo-Code of Sequence Scheme 

Branch is the scheme for the branch plan construct and the goal node. This kind 

of node will succeed whenever any of its children succeed but fail when all of its 

children fail. 

if(any child node is in success state) state := success; 

if(every child node is in failure state) state := failure; 

maxERT := the highest maxERT of every child; 

minERT := the lowest minERT of every child; 

if(no child is in action state) //branch undecided 

(interactions, deadlines):= sum of (interactions, deadlines) 

of every child in untried or action state; 

 DoC := 0; 

else 

 (interactions, deadlines):= (interactions, deadlines) of the 

child in action state; 

 DoC := DoC of the child in action state; 

List 4.6 Pseudo-Code of Branch Scheme 

Loop is the scheme for the loop plan construct and the recursive block. These 

nodes have only one child, which will repeat the execution until it meets the boundary 

condition. 

state := child’s state 

maxERT := maxERT of the child × estimated times of execution; 

minERT := minERT of child; 

(interactions, deadlines):=  
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(interactions, deadlines) of the child; 

DoC :=  

times of execution / estimated times of execution 

+ DoC of the child; 

List 4.7 Pseudo-Code of Loop Scheme 

4.4 The Execution Cycle 

This section describes how the Intention Tree updating process fits into the 

execution cycle.  

In every cycle, the interpreter first updates the Beliefs after observing the world. 

Next, the plans of the pending goals are checked against the current Beliefs. The 

pending goals are the goals that have no associated plan, but are waiting for 

submission to be achieved. All top-level goals are pending when the agent starts. The 

interpreter intends the best applicable plans for the pending goals, according to 

various selection schemes such as selection by applicability, or meta-level reasoning. 

The information stored in the Intention Tree can also be used in this step. For example, 

the interpreter could choose the plan that will not conflict with the executing intention. 

The intended plans are marked in ACTION state, and the information of these plans is 

recursively updated to the top-level goals. 

Next, the interpreter chooses an intention to execute from the Intention Structure. 

The process is described in section 4.5. The interpreter traces the ACTION-state node 

in the chosen Intention Tree to find the next action to execute. After the execution, the 

Intention Tree must be updated accordingly. If the action is a subgoaling, the subgoal 

node will be marked pending, and a plan will be chosen at the next cycle. If the action 

is loading other plans, every Intention Tree with the goals which can be achieve by 

these new plans must be updated. The interpreter starts the whole cycle recursively 

until all the top-level goals have completes. 
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4.5 Intention Selection 

4.5.1 Computation of the Base Priority 

The agent produces a node for every Intention Tree that is not in the pending 

state. The node contains the information gathered from the Intention Tree as described 

in 4.2.2. Then it computes the base priority of each node. The top-level plan is the 

plan that currently applied to achieve the top-level goal. 

$base_priority :=  

   top-level goal’s Utility × top-level plan’s Applicability; 

List 4.8 Pseudo-Code of Calculating the Base Priority 

4.5.2 Applying the Time Constraints 

For each deadline a node has, agent adjusts the base priority according to its DUF. 

Deadline’s Utility is the utility of the goal that the deadline applied on. 

for (each node $n) 

for (each deadline $d of $n) 

$delta := $d.deadline – current time; 

if($delta => $n.maxERT) $raise = $d.DFU1($delta); 

if( $n.minERT <= $delta < $n.maxERT)$raise = $d.DFU2($delta); 

if( $delta < $n.minERT) $raise = 0; 

$n.base_priority +=  $d.Utility × $raise; 

List 4.9 Pseudo-Code of Applying the Time Constraints 

4.5.3 Applying the Interactions 

After uses interactions_discovery() to automatically discover the 

interactions between the nodes, the agent can applied these interactions and produce 

the interaction links. The fairness factor is a user specified value used in fairness 

prioriy calculation. 

interactions_discovery(); 

for (each node $n) 
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for( each interactions $i of $n) 

 if($i is a negative interaction) 

$interaction_links($n,$i.node) +=   

$i.value * (1 + $i.node.DoC); 

 else 

$interaction_links($n,$i.node) +=  $i.value; 

  if ($n has no interaction with other node) 

 $n.base_priority +=  

(current – last execution time) × FAIRFACTOR; 

for (each node $on other than $n ) 

    $base_links($n,$on):= $n.base_priority - $on. base_priority; 

    $final_links($n,$on):=  

$base_links($n,$on) + interaction_links($n,$on) 

List 4.10 Pseudo-Code of Applying the Interactions 

4.5.4 Choosing the Best Intention 

Finally, the agent chooses the Best Intention, which is the node with no Final 

Links pointing to it. If there is no such node, the agent iteratively cancels out the Final 

Links with the value closest to 0. 

for(each node $n) 

  if(for (each node $on other than $n) $final_links($n,$on)=>0) 

    choose $n to execute; 

  while(no node is chosen) 

    final_links_set $fl_set:=  

      set of final_links whicah has value closest to 0; 

  delete the final_links $fl  

      which has highest deadline-rasie in $fl_set; 

  $n = $fl; 

  if(for (each node $on other than $n) $final_links($n,$on)>0) 

 choose $n to execute; 

List 4.11 Pseudo-Code of Choosing the Best Intention 
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Chapter 5. Evaluation 

In this chapter, a simple simulation is conducted in order to show the 

effectiveness of our approach.  

5.1 Our Simulation Approach 

Because the efficiency of the scheduling heavily depends on the tasks the agent 

will receive, to show the effectiveness, we use a random task generator to issue 

goals and plans to the agents. The generated goals have random utility, deadlines, and 

applicable plans, etc. The generated plans have random applicability, actions, ERT, 

level of subgoalings, and interactions, etc. The value ranges and descriptions of the 

random parameters is shown in Table 5.1: 

Parameter Description 
Value 
range 

SubGoalDegree  The subgoalings of a plan 0~3 
PlanDegree  The plans of a goal 1~4 

TreeLevel  The height of an Intention Tree 2,4,6,8 
Step  The steps in a plan 1~12 

DeadlineTightness  The times units before the goal timeout 10~100 
Applicability  The applicability of a plan 0.7~1.0 

Utility  The utility of a goal 10~100 
Table 5.1 Parameters in the Random Task Generator 

Two more controlling factors are applied to control the random process. The 

Deadline Density factor is applied to control how many goals will have deadline. The 

higher the factor, there will be more deadlines. The Interaction Density factor is 

applied to control how many plans will have interaction to each other. The higher the 

factor, the more interactions will be. 

To focus on the scheduling algorithm, there are two kinds of interactions 
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considered only. First one is Forbid, which causes some other plans to fail. Second is 

Promote, which causes some other plans to success without execution. 

Each agent is given 50 top-level goals, and uses different scheduling schemes: 

Normal:  consider only the utility of the top-level goals 

Time-limited: consider the utility of the top-level goals and the deadline 

Interaction:  consider the utility of the top-level goals and the interactions 

between the goals 

Interaction + Time-limited: consider the utility of the top-level goals, the 

deadline and the interactions between the goals 

After the execution, the agent will report three values, which are: 

SU :  the sum of utility of the goals that succeed / total utility. 

FU :  the sum of utility of the goals that fail / total utility. 

TU:  the sum of utility of the goals that are timeout / the sum of utility of the 

goals with deadline. 

The results are showed in following sections. 

5.2 Simulation Results 

5.2.1 Considering Deadline 

Figure 5.1 shows the results of the agents using Normal and Deadline scheduling 

schemes. The Interaction Density is held at 0.15, and the Deadline Density is changed 

from 0.1 to 0.3. The figure shows that when there are more goals have deadline, the 

performance of Normal scheme falls. On the other hand, the performance of 

Time-limited scheme stays rather unchanged. 
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Figure 5.1 Normal versus Time-limited – SU 

The results are also shown in figure 5.2. The Normal TU increases rapidly when 

the Deadline Density increases. However, the performance gain in the Time-limited 

has some side effect. In Figure 5.2, the Time-limited FU is slightly higher than the 

Normal FU. That is, Time-limited scheme will cause more fail because it doesn’t 

consider about interaction. 
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Figure 5.2 Normal versus Time-limited–FU, DU 

5.2.2 Considering Interactions 

Figure 5.3 shows the result of the agents using Normal and Interaction 

scheduling schemes. The Deadline Density is set to 0, that is, no goals will timeout. 
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The Interaction is changed form 0.1 to 0.3. The figure shows that when there are more 

interactions between plans, the Normal scheme will fall drastically. 
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Figure 5.3 Normal versus Interaction – SU 

5.2.3 Considering both Deadline and Interactions 

Figure 5.4 shows the result of all fours kinds of schemes when the Deadline 

Density is varied form 0.1 to 1 and the Interaction Density is set to 0.1. The SU of 

Deadline and Interaction+Time-limited schemes fall not quickly because they both 

consider deadline. The Interaction scheme has higher SU than Time-limited scheme 

when the Deadline Density is low. However, when deadline starts to contribute more 

fails than interaction, the SU of Time-limited scheme is better than the SU of 

Interaction scheme. SU of Interaction+ Time-limited scheme remains the highest 

among four until the Deadline Density is close to 0.9. Nevertheless, in the real 

application, Deadline Density seldom reaches so high. Thus, the Interaction+ 

Time-limited scheme is generally good in most situations. 
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Figure 5.4 SU of all schemes while Deadline Density changes  

Figure 5.4 shows the result of all four kinds of schemes when the Interaction 

Density varies form 0.1 to 0.5 and the Deadline Density is set to 0.3. The SU of 

Interaction+ Time-limited scheme remains the highest among the four.  
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Figure 5.5 SU of all schemes while Interaction Density changes 
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Chapter 6. Conclusions & Future Work 

Many BDI agent theories have been focused on agent’s ability to choose 

different plans for different situations. However, the problem, how to choose among 

the intentions to execute, is seldom mentioned. In the systems with multiple agents of 

mobility and intelligence, a good intention-scheduling scheme will greatly improve 

BDI agents’ performance.  

In this thesis, we aim at developing an effective intention-scheduling scheme. We 

discuss the various factors affecting the intention scheduling. Moreover, we propose 

an Intention Tree model to describe the structural and behavioral aspect of the agent, 

and use this model to gather the information needed in the scheduling process. We 

also give an intention-scheduling algorithm, which consider the utility, time 

constraints and task interactions at the same time. Some implementation issues and 

major parts of the proposed algorithms are explicitly addressed in pseudo-code. 

Finally, we show the effectiveness of our approach in a simple simulation. 

There are several problems not thoroughly discussed in this thesis, such as 

automatic interaction discovery, usages of Intention Tree structure in intending 

process, intention reconsideration, and other scheduling considerations in multi-agent 

environment. In the future, we plan to delve into these problems and integrate them to 

produce an efficient BDI agent system. 
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