R
o
|-
?“i\
%

BDI 324 thi, B2

Intention Scheduling for BDI Agent Systems

3 OATTHRAR £
TES SRIER L 3

“’%E’\W{J‘i-&’\g

BDI I 4 13, Bl AR

Intention Scheduling for BDI Agent Systems

R R § VL Student : Zu-Nien Lin
hERE YT B2 Advisor : Dr. Feng-Jian Wang
B2+ 5

A Thesis
Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
In Partial Fulfillment of the Requirements
For the Degree of Master
In
Computer Science and Information Engineering
August 2004
HsinChu, Taiwan, Republic of China

PER R4 L E A

BDI #1312 X g B2
FiA ki B 2 ve gl

FR AR g e

Frew < FE 1001 50

EE

T {7 PR BDESRERS SRR - I - i BDI (R ¢ 0
P> A Bttt e (R RIS g -)
TR LS T T b R I DU e S PR R
PRI o RTEL S E PR AV PSR SR o 7 AR e
I RO [o T 7 IO T PR - PO N s H] Y
T R AR HE AR o e S

= [E SRR 2 2 S BDL AR R RVSE - fj BDI
REIR E[?J}k&*}@;_@ E[ﬁ’fljj‘f{\‘;@%ﬁfjfﬁ% 0

Keywords: BDI H32 4 | 3 Bl# 42

Intention Scheduling for BDI Agent Systems

Student: Zu-Nien Lin Advisor: Dr. Feng-Jian Wang
Institute of Computer Science and Information Engineering
National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

Among various agent architectures, BDI is.probably the most mature model.
Currently, most of the researches concerning BDI agents are focused on the ability for
agents to dynamically select plans in.order-to-achieve some goals, i.e. from Desire to
Intention. However, there are few discussions on the order in which these selected
plans should be executed. The problem might be called as Intention Scheduling. After
developing systems with multiple agents of mobility and intelligence, we have
discovered that these agents must adapt to dynamical and unpredictable changes.
Without a proper scheduling, agents may result in repeating unnecessary work,
wasting valuable resource or even failing the users’ expect altogether. Therefore, we
are going to study an effective intention-scheduling scheme and some useful
structures in BDI reasoning process, to make BDI agent more efficient and suitable

for dynamic environment.

Keywords: BDI Agents, Intention Scheduling

e

ApwmT R FARE A Dl B ¥R L B S AN 9
g EAFT T RGO AP B B0 F I K e -
LR 6 enmf S BB @ AR RRE R T Pm s R o T 2 R e
EErRF TR L ATL R L gl Ll REFIFROL L dpia &
B RihwmY LR d oo

BHX ABRBMIHRZONE P o A HR B I STERE L AFR 2 45
SETE Y A ?%:}ﬁ%éﬁé&?ﬁﬁﬁﬁ Fo REAHEL OB R RS F
EEERCK AR S REHAPEELESF D v 2 A B K D
WFST A hT pRler s @ SR BE PN E A ¥ L PG TR R o
B EEF S FAF R IR A T o

B fs o N R R B oA o R E Y

-
L
C
[y
A
fh-
| 3\
a%
e
~=ie
4
3
i
()
3\

L 45 4o }'i\:;;j—.gg e EoR] S 2 g—ﬁf@kﬁ%fg B A ,E’/_;flg o d ?\f"}i\:’gj’x’f’:—}\ ,F’/i;%

E - A H o

Table of Contents

(@8 T o) (T I [0 To 1 od 1 o ST 1
Chapter 2. BaCKGIrOUNGccuviiiiieiicie e saa e nns 3
2.1 BDIAQENT TNEOIY....cuviiiieieeie ettt sae e e e enee e 3

2.2 BDI ANt ArChItECIUIEecuviiiieieeie et 3
2.2.1 PRS (Procedural Reasoning SYStem).........cccocvviereerienienneerieseesieeeens 3

2.2.2 JAM ...ttt 4

2.3 AgentSpeak(XL), TEMS and DTC scheduler.........c.ccoevveveiiieiineie e, 6

2.4 Dynamic Discovery of Goals INteractionccccccevevvereeiesieennere e 7
Chapter 3. Intention Scheduling ConCePLcocveiiiieiiece e 9
3.1 Factors of Intention SCheduling..........ccccoveieiiiiieiic e 9
KT8 05 L U] 1RSSR 9

3. 1.2 TIME CONSIIAINT....ccuiiiiieiieiii e 10

3. L3 INTEIACTION ..ot 11

3.1.4 Degree Of COMPIEIENESSocveiveeieceerie e cee e 12

B L5 FAIMNESS ..ttt bbbt 13

3.2 INtention Treevvvvveeenee et e 13
3.2.1 Undecided Plan ProBlem e ool oo 13

3.2.2 Structure of INtENTION TreE ik it et 14

3.3 The SChedUliNg PrOCESS i aitestanaseesissemaeeseesseesseeeesseesseessessessesssesessses 16
Chapter 4. Design and Implementation il o 20
4.1 JAM Script constructs forIntention Scheduling...........cccoccoviveveiienvcceciee, 20
A.0.0 0081 e 20

A1 2 PlAN. ..ot rs 21

4.2 Construction of the INteNtion Treecccovvviiiiiiirieeee s 23
4.2.1 SEALIC SITUCTUIE ... e 23

4.2.2 BUIlding INtention TrEEvcvveiieieeieceesie et 23

4.3 Information Propagation in INtention Treecccocevveve e veece e 24
4.3.1 Information NEEAEMcoevvieiiieec e 24

4.3.2 Initialization and Updating of the Intention Tree.......c...ccccoevvvevveennne. 25

4.3.3 Computation Schemes of Updatingcccccevvvevvevevivenesiieseese e 25

4.4 The EXECULION CYCIE....ccuviiiiie et 27

4.5 INeNtioN SEIECTIONoviiiiiicicice e s 28
4.5.1 Computation of the Base Priorityccccccoovvieerrevesieere e 28

4.5.2 Applying the Time CONSIraintscccccvevveiesieeni e 28

4.5.3 Applying the INteraCtions..........cccccveveiieereeie e 28

4.5.4 Choosing the Best INtENLION..........c.cccevieieeieiiese e 29

Chapter 5. EVAIUBLION.........ccviiiiiieciece et re e sne e e 30

5.1 Our SIMUulation APProaChcccveiieeieeesee e 30

5.2 SIMUIALION RESUITSoveieiiiie e 31
5.2.1 Considering DeadliNg...........ccceeveieiiiiiieeie e 31

5.2.2 Considering INteraCtionS..........ccuevueveereeriesiieseerie e e esee e e see e 32

5.2.3 Considering both Deadline and Interactions............cccoccveveriverenennne. 33

Chapter 6. Conclusions & FULUIE WOTK..........cccoovueiieieiie e 35
RETEIBICE ...t bbbttt b bbb e ene s 36

List of Figures

Figure 2.1 PRS-like agent arChiteCtUreccvevveieeiieie e 4
Figure 2.2 a JAM intention structure in the middle of execution...........cccccevvvieiienns 5
Figure 2.3 an example TAMS task structure for tracking...........cccooevvvieiienieiieiiiennns 7
Figure 3.1 Shopping Agent’s intention structure in the middle of execution............... 14
Figure 3.2 Intention Tree of the Buying Shoes Intentionccccoeveveiieiieeseciene. 15
Figure 3.3 Shopping Agent’s intention structure in the middle of execution............... 16
Figure 3.4 Agent EXeCUtiON ACHIVITIESccvcveiieiiee e 17
Figure 3.5 an example of applying interactions between Intention Three................... 19
Figure 4.1 Example of Deadline Utility FUNCHIONccoviieiieiie e 21
Figure 4.2 The Class Diagram of INtention Treeccccevvevveiieerieiieseese e see e 23
Figure 5.1 Normal versus Time-limited — SU..........ccccooveviiiieiiiesi e 32
Figure 5.2 Normal versus Time-limited—FU, DU...........ccccooeviieiiieiiieese e 32
Figure 5.3 Normal versus INteraction — SUccccvviiieieiiesieeseeie e 33
Figure 5.4 SU of all schemes while Deadline Density changesccccocvvvververeenne. 34
Figure 5.5 SU of all schemes while Interaction Density changes...........cccccoevvevvenenne. 34

List of Codes

LiSt 4.1 NeW GOal FOIMALc.eeiiiiieiiiiiesicsiesiee et 20
List 4.2 NeW Plan FIeldS.........cooiiiiiiiiiiiiieeee s 21
List 4.3 New Plan Body FIeldsccccvvieiiiiiiiiiice e 22
LiSt 4.4 A PL EXAMPIE . .oiiiieiiee ettt neeee e ns 22
List 4.5 Pseudo-Code of Sequence SChEME.........cccveviieri i 26
List 4.6 Pseudo-Code of Branch SCheme ..o 26
List 4.7 Pseudo-Code of LOOP SChEME........ccvviiiiiei e 27
List 4.8 Pseudo-Code of Calculating the Base Prioritycccccccveveveevesiiesieesesiene 28
List 4.9 Pseudo-Code of Applying the Time Constraintsc.ccoccevvevesieesiveresiene 28
List 4.10 Pseudo-Code of Applying the INteractions...........cccccevvevevveiesiieseese e 29
List 4.11 Pseudo-Code of Choosing the Best INtention...........cccccvevevvevviiieseesesiee 29

Chapter 1. Introduction

Agent systems are currently one of the most active research fields in the
computer science community. Researchers generally agree that for a computer
program to be called a rational agent, it must show the characteristics such as
autonomy, social ability, reactivity and pro-activeness.[1] Among various agent
architectures, BDI (Belief-Desire-Intention)[2], standing for Beliefs, Desires and
Intentions, where each represents a mental state in practical reasoning process, is
probably the most mature model and has been adopted by many academic and

industrial applications.

Currently, most of the researches concerning BDI agents are focused on the
ability for agents to dynamically:select plans in erder to achieve some goals, i.e. from
Desire to Intention. There are few discussions on the order in which these selected
plans should be executed. The problem might ke called as Intention Scheduling.
After developing systems with multiple agents of mobility and intelligence [3], we
have discovered that these agents must adapt to dynamical and unpredictable changes.
Without a proper scheduling, agents may result in repeating unnecessary work,

wasting valuable resource or even failing the users’ expect altogether.

Take a shopping agent as example; the agent is designed to buy a suit at shop A,
buy a pair of shoes at shop B, and do some other tasks. If these two buying goals are
equally important to the user, the agent might end up going back and forth between
shop A and shop B without buying anything actually. In another case, the shop A and
shop B turn out to be the same shop, but the agent does not consider this point. The
agent might go to shop A to buy a suit, to shop B to do some other things and back to

shop A again to buy the shoes, etc. Moving twice while doing these jobs wastes the

1

valuable network bandwidth. Yet another situation might be that suit-buying task is
more important than shoe-buying task, but the shop B will be closed within five
minutes. Without awareness of this constraint, the agent cannot buy the shoes in time,

i.e., fail the user’s expectance.

A proper intention-scheduling scheme might greatly improve BDI agents’
performance by exploiting the positive interaction between the given tasks and
avoiding possible conflicts. From the example above, with a scheduling scheme to
avoid conflicts, the agent will not go back and forth between two shops, but finish one
task before doing another one. With the ability to exploiting the positive interaction,
the agent will do the common things once and save the system’s resources. With the

ability to take temporal constraints into_concern, the agent will not miss the deadline.

Therefore, we are going to study an effective intention-scheduling scheme and
some useful structures in BDI reasoning process, to:make BDI agent more efficient

and suitable for dynamic environment.

The remainder of this thesis is organized as follows. Chapter 2 surveys the state
of art BDI agent theories and architectures, as well as some related works on intention
scheduling. Chapter 3 discusses the basic concept on intention scheduling. Chapter 4
presents the implementation aspects of our theories. Chapter 5 shows the effectiveness

of our system. Chapter 6 concludes with our contribution and the future works.

Chapter 2. Background

2.1 BDI Agent Theory

The BDI (Belief-Desire-Intention) theory is a well-known model of rational
agents, based on practical reasoning theory proposed by philosopher Michael
Bratman[1]. Belief corresponds to the information that agent has about the world and
itself. Desire, or Goal, represents the world state that the agent is trying to achieve.
Intention is the desire that an agent has committed to achieve[4]. As Cohen and
Levesque[5] said, an agent could have many desires, like human beings, but these
desires may not all come true. Hence, an agent may choose some desires that seem
achievable, and commit its resources to achieve them. Those chosen desires are called
Intentions. An agent usually continues trying to achieve the intention, until the
intention is achieved or until the agent.-believes that the intention becomes

unachievable.

A typical BDI agent has a set of Plans[6][7], which defines sequences of actions
to be performed to achieve a certain goal. So Intentions could also be seen as the
plans an agent has chosen for eventual execution. Rao and Georgeff[8] have provided
some logics for the BDI architecture. This model is believed to be effective, and has
been used in a number of applications including air traffic control[9] and the handling
of malfunctions on NASA's Space Shuttle[10]. Wooldridge and Jennings[11] have

also done researches on intelligent agent theory.

2.2 BDI Agent Architecture

2.2.1 PRS (Procedural Reasoning System)

In this section, we are going to discusses a pioneer implementation of BDI theory,

PRS[6], which is an ascendant of various BDI agent systems such as UMPRS[12],

3

ACT[13], etc. Figure 2.1 depicts the major parts of PRS System. There are four
important components of a typical BDI agent, including Beliefs, Desires, Intensions

and Plans.

data input from sensors

WORLD

BELIEFS \ / PLANS

Interpreter

INTENTIONS

DESIRES

effector commands

Figure 2.1 PRS-like agent architecture

Beliefs correspond to the information that'an agent has about the world and itself.
Desires, or Goals, represent the world:state that:the agent is trying to achieve.
Intentions are the desires that an agent has committed to achieve. Plans define
sequences of actions to be performed to achieve acertain goal or react to a specific

situation.

The central part of this kind of agent systems is the interpreter. The interpreter
runs in cycles. In every cycle, it first updates the Beliefs after observing the world.
Next, it checks the Desires, finds those achievable ones that are not yet achieved, and
chooses the most suitable plan from the Plans. Then, it associates the chosen goals
(desires) and plans, and commits them into the Intentions. Finally, it executes the
actions of the plans in the Intention structure. The interpreter starts the whole cycle

over and over again until all the desires have been fulfilled.
2.2.2 JAM

JAM[7] is a modern BDI agent system derived from PRS. JAM supports rich

plan constructs, simple extension mechanisms, meta-level or utility-based reasoning
over multiple concurrent goals, and goal-driven or data-driven behaviors. Because of
these advance designs and Huber’s generosity of providing the source code of JAM
for non-profit development[14], we decide to construct our system based on JAM, and

further extend its capabilities.

Figure 2.2 shows an example of JAM’s Intention structure. JAM has two kinds
of goals, top-level goals and subgoals. Top-level goals are persistent. That is, they are
pursued until being satisfied. A JAM agent can have multiple top-level goals, and
pursues these goals at the same time. Subgoals are the goals that the agent creates
from the plans during plan execution. When a subgoal is issued, the current plan
execution is halted, and the interpreter, will try to find another plan that can achieve
the subgoal. After the subgoal.'is achieved;.the'.halted plan is resumed. JAM’s
Intention structure is a set of intention threads, and every thread’s head is a top-level
goal.

Intention Intention Intention Intention
Thread A Thread B Thread C Thread D

[Iop—levelgoalA] [IDp—Ievelgoalti] [IDp-IevelgualL,] [IDp-IevelgoalLJ]

Intention A Intention C Intention D
Ltility 10.9 Lty 306 Litility 1.1

v h 4
[Subgaal 1] [Subgoal D1]

Intention D1
utility 23.6

Subgoal D2

Intention D2
utility 2.2

Figure 2.2 a JAM intention structure in the middle of execution

Because there may be many intentions being pursued, here comes the problem of

intention scheduling. JAM uses a Utility function to decide which intention is more

important to the user for the execution order of intentions. However, the most
important intention does not need to have the highest priority of execution. There are
many things need to be considered further, which we are going to discuss in details in

Chapter 3.

Note that although user can set all the considerations in utility functions and
evaluated theme during runtime, doing this not only blurs the meaning of utility but

also makes the agent more difficult to design.

2.3 AgentSpeak(XL), TEMS and DTC scheduler

AgentSpeak(XL)[15] provides another kind of PRS-like BDI agents which deal
with the problem of intention scheduling with TAEMS[16]and DTC[17].(see [18] for

an overview of that approach to multi-agent systems.)

TAMS (Task Analysis, “Environment Modeling, and Simulation) is a task
modeling framework which describes.the characteristics of each task in an agent’s
problem solving process, including quality, cost, time and probability. It uses a tree
structure to model the relationships between tasks such as top-level task, subtask and
quality accumulation function. Moreover, TEMS also describes tasks’ temporal and
resources requirements and interactions between tasks. (Tasks here can be viewed as

instances of plans in PRS-like agent we’ve discussed above)

(Task2) —
_— g_frin
[Set-parameters [> (Track) —>—[enaess] Send-Resus
- q_rm x.\x_
~ /
|TracK_Low| |TracK_Medium| |TracK_High| //

0.0/ 10000 1000.0

Figure 2.3 an example TAMS task structure for tracking

DTC (Design to Criteria) scheduler uses the information provided by TAEMS to
generate a proper course of actions, categorized into two parts. First are the tasks that
must be performed to achieve the top-level goal. Second are the execution orders of
the tasks chosen. Together, DTC and TAMS accomplish a nice agent system that is

able to deal with temporal and resource constraints.

Nevertheless, there are still some shortcomings with this kind of agents. First of
all, it is not proper for these agents to be integrated into the current PRS-like agent
architecture, because it duplicates the “from Desire to Intention” part of the reasoning.
Second, DTC is a kind of “long term” scheduling. DTC considers too many things to
do the scheduling in every execution.cycles. Thus, the agent is more or less blunt to
the environmental changes. Furthermore, TAMS needs a lot of information long
before the task is actually beenexecuted. While sometimes an agent may acquire new
kinds of tasks by importing new plans, AgentSpeak(XL) doesn’t answer the question

how the TAMS is going to reflect these changes.

2.4 Dynamic Discovery of Goals Interaction

Padgham and Thangarajah have some great works discussed about dynamical
reasoning for the goals in BDI agent, including representation and reasoning for
goals[19], detecting resource conflicts[20], detecting similar goals[21], and detecting
interference between goals[22]. These works utilize the information provided from
“Goal-Plan-Tree” structure to detect positive or negative interactions between goals.
Although the algorithms they proposed can effectively avoid conflicts or combine the
similar plans, they do not take the importance of the goals and the time constrains into

consideration. This may result in inefficient behaviors.

Since intentions are only committed goals in the thesis, we will use these
techniques to discover interactions between intentions, and integrate them as factors

in the whole scheduling process dynamically.

Chapter 3. Intention Scheduling Concept

In this chapter, we first discuss the major factors of Intention Scheduling,
including utility, time constraints, interactions, degree of completeness and fairness.
Then we introduce the Intention Tree, the structure to gather these factors. Finally, we

propose our Intention Scheduling algorithm.

3.1 Factors of Intention Scheduling

3.1.1 Utility

Obviously, the most essential factor that affects the scheduling of intention is
their importance. More important tasks should be given more time and higher priority

to execute than less important ones.

JAM uses “Utility” to describe the importance of a goal and uses it as the only
factor to select an intention. However,-the-word -“Utility” in JAM has different
meanings in different contexts. For geals, JAM’s Utility means how important the
goal is for the user. For plans, JAM’s Utility means how good the plans will fulfill the
goal. For intentions, JAM’s Utility means how urgent the intention is. As we stated in

2.2.2, this is too restrictive and confusing for the agent designer.

Here, we define Utility to be “the importance of the goal for the user.” It can be a
real number or a simple function, whose value can be evaluated dynamically.
Applicability is “the extents the plan can fulfill the goal.” This value represents the
percentage of a goal’s Utility this plan will achieve. It can also be evaluated at runtime.
Priority is “the urgency the intention is,” and is basically computed from the
associated plan’s Applicability, goal’s Utility and some other factors we will stated

later.

With these distinct definitions, agent designers do not have to think of some
enigmatic functions to schedule the intentions. Instead, they can use simple values or
functions to specify the importance of goals and usability of plans, and let the Agent

System to compute the priority for intention automatically.
3.1.2 Time Constraint

Under a multi-agent environment, when agents cooperate with each other, they
usually need to finish some tasks before deadlines. For example, a bidding-agent must
place its bid before the auction-agent close the auction. To avoid missing the deadline,
the task should be given a higher priority when its deadline is approaching. Therefore,
the agent must know the deadline of the goal, how long the intention will cost on

running, and how the priority will be affected when the deadline is approaching.

Specifying a deadline of antintention-might be simplified as appending a value or
function to a goal. The exact_time will be computed when the goal is intended.
Calculating the running time of an intention is_not simple. There are two reasons at
least. First, the associated plan may contain subgoals. We do not know the running
time of a goal unless the plan is chosen to achieve it is selected. We called the
problem “Undecided Plan Problem.” Second, beside the subgoals, each step might
cost various amount of time, and the running time may depend on machine or network
speed. Here, a agent designer given modifier ERT (Estimated Running Time) is
chosen for describing how many logical time units a plan may need, excluding its
subgoals execution. These time units will be transformed into the real time units
during runtime with the running statistic of the agent platform. Together with the
Intention Tree, ERT helps the agent to calculate the possible minimum and maximum

running time of its intentions.

User can also specify a DUF (Deadline Utility Function), which formulates how

10

the priority of the intention will be affected when its deadline is approaching. The

format of this function is defined in Chapter 4.
3.1.3 Interaction

Executing an intention may result in some effects that will change the Belief of
the agent, and then affect other intentions. The relationship between two intentions
that one intention helps the other is called positive interaction. The one that one

intention hinders the other is called negative interaction.

Consider the shopping agent example in Chapter 1. When shops A and B are
different, the suit-buying task of the agent will forbid the agent pursuing the
shoe-buying task simultaneously because these two tasks must be done at different
places. Another case is that, during«runtime, once agent discovers that shop A and
shop B are the same, the suit-buying task-will facilitate the shoe-buying task because

the agent need not move twice.

With the interaction information;.an_agent can schedule its intention to avoid
conflicts or save system resources. In the above example, when the agent decides to
execute the suit-buying task, it will defer the execution of the shoe-buying task
because there is a negative interaction between them. When shop A and shop B are the
same, the agent will try to execute these two tasks together even there is another task,

say cleaning car, which is more important than the shoe-buying task.

Questions may arise regarding the importance of the tasks. For example, the
shoe-buying task may be too important to be deferred; on the other hand, the
car-cleaning task may be more critical so the agent should do it first. To solve this
problem, the interaction cannot merely indicate the relationships of the tasks but also

their magnitude of mutual influence. Obviously, if the interaction’s magnitude is not

11

strong enough to affect the existing priorities of the intentions, the agent will take the

original sequence of actions.

Here we present a tree type called Intention Tree. The interaction between the
tasks can be modeled as links between Intention Trees’ nodes. Each directed arc,
between two nodes representing two tasks, represents the direction of the interaction.

The value associated with the arc is the Utility of the affected intention.

The agent designer can specify interactions explicitly in the Plan. Still, some
interactions can be automatically discovered without explicit help from the designer.
For example, there should be a positive interaction between two intentions that
achieving the same goal, and negative interactions between two intentions whose
goals are incompatible. Besides achieving goals; plans may have side effects that may
affect the Belief, and some pre=conditions or.context must be kept before or during
execution. These may also cause interactions between intentions. However, how to
automatically discover interactions:between intentions is beyond the scope of this

thesis. More information on this topic can be found in the papers mentioned in 2.4.
3.1.4 Degree of completeness

When an intention is interrupted, it might lose the work it has done. For example,
the cost to interrupt an intention of 80% completeness with utility of 90 is much more
than the cost to interrupt an intention of 20% completeness with utility of 100.
Therefore, the DoC (degree of completeness) of the intention should be considered

when there are negative interactions between intentions.

The simplest way to indicate the DoC of an intention is to count how many lines
of code in a plan the intention has executed. However, each line of code in a plan has

a distinct contribution. Thus, a progress label (PL) is provided for the designer to

12

show how much work has been accomplished when reaching a position of code. Note
that the undecided plan problem still exists, so we need Intention Tree to compute the

DoC.
3.1.5 Fairness

Besides efficiency, the fairness need be considered. The low-utility intentions
may never get a chance to execute when there are high-utility ones keep executing. In
order to avoid this “starvation” problem, the priority of an intention that has not

executed for a long while should be raised.

However, if the low-utility intention has some negative interactions with other
intentions, raising the priority of this intention might cause the other intentions to fail
and waste the work that has been dene. Therefore, fairness will only be considered

when the intention has no interaction with: others:

3.2 Intention Tree

3.2.1 Undecided Plan Problem

Intention Trees are mainly used to solve the “Undecided Plan Problem.” The
problem results from the request of information providing by some execution, which

does not occurs yet. Here we use an example to show the “Undecided Plan Problem.”

Figure 3.1 shows a JAM shopping agent’s intention structure during execution.
The dotted-line box in Intention Thread B represents the activities not taken yet.
When the agent is executing the “Moving to Site A” activities in intention-thread A, it
doesn’t know that intention-thread B might have a “Moving to Site B” subgoal or not,
because the Buying-shoes goal has not chosen which plan to execute yet. The
Interaction cannot be discovered until the agent has decided to use “Buying Shoes’

Plan 1.” Currently, the “Moving to Site A” part of actions might be finished long

13

before. The situation gets nastier when the “Moving to Site B” is deep down in

intention-thread B.

Intention Thread A Intention Thread B
Buying Suit Buying Shoes
________ Yy

Buying Suit's Plan Buying Shoes’ Plan 1

F=====9

i

|
: Moving to Site B '
1

Figure 3.1 Shopping Agent’s intention structure in the middle of execution

-

Moving to Site A

“Undecided Plan Problem™ not only,obstructs the discovery of the Interaction,
but also hinders other calculation such as the”rur‘mi‘ng time and the DoC of a plan.
Choosing every plan for every goal before the execution really starts cannot solve this
problem. The approach results“i‘jn ndn-dynamic behavior because the environment

change will not reflect to the plan chosen process. Our approach extends the concept

of Intention Thread as Intention Tree to solve the “Undecided Plan Problem.”
3.2.2 Structure of Intention Tree

In the thesis, the Intention Tree is applied to model the possible behaviors of an
agent. Its nodes record not only static structure of the agent but also the runtime

information.

An Intention Tree mainly comprises two kinds of nodes, goal-node and
plan-node. A goal-node contains the information about a goal. The information
includes the goal’s type, name, utility, deadline, and etc. Plan-node contains the
information about a plan. The information includes the plan’s body, applicability,

estimated running time, and degree of completeness. The children of the goal-node

14

are those plans can achieve the goal, and the children of the plan-node are its subgoals.

Figure 3.2 shows the Intention Tree of the Buying Shoes Intention (Intention Thread

B in previous example.)

Goals ()
Plans I:l

Buying Shoes]

/\

Move and Buy
Plan

Moving to
shop X

) (o

Moving to
shop X plan

Buying plan

Remote Buy
Plan

[Remote Buyingj

Remote Buying
plan

Figure 3.2 Intention Tree of the Buying Shoes Intention

The information recorded on each.node-is applied for recursive computation till

the root of each intention tree, and kept update during runtime when actions are

performed, goals are achieved, plans are failed, or new plans are added. Thus, we can

“foresee” what the agent might do without the actual execution.

In figure 3.3, although the “Buying shoes” goal has not yet chosen which plan to

execute, the agent still knows that there is a “Moving to Site B” subgoal in

intention-tree B. Consequently, the agent can decide whether there is interaction or

not. Note that the Intention structure in figure 3.3 dose not contain Intention Thread

but the Intention Tree instead.

Intention Tree A Intention Tree B

-

Buying Suit Buying Shoes

Buying Suit's Plan

Moving to Site A

Figure 3.3 Shopping Agent’s intention structure in the middle of execution

The ability to “foresee” what the agent might do could also benefit BDI’s
choosing plan process. For example, the agent could choose the plan that will not
conflict with the already executing intention, or avoid the plan that definitely cannot
meet the goal’s deadline. Accordih{j;lyll‘, _trlie .t:lg:.éﬁnj.ques to construct and update the

Intention Tree described in thisffhesis”'c':'d:n":',aflléd b'e'-;,applied in other aspect of BDI

1 ; =
| b ‘l

agents. A\ o

3.3 The Scheduling Process Rl L

This section presents our scheduling process. Figure 3.3 shows the BDI agent’s
execution activities. The bolded rectangles are those new intention-scheduling related

activities.

16

Load Plan Files

v

Construct Intention Trees

v

Update Beliefs

v

Select Goal and Plan

v

=

Select Intention

Calculate Base Priority

v

Execution Cycle |

Apply time Constraints

-

New Activity

Original Activity

]

v

Apply Task Interactions

v

Choose the Best Intention

v

Plan Execution

Figure 3.4 Agent Execution Activities

After loading the plans, an agent constructs its Intention Tree. The block “Update
the Intention Tree” beside the” Execution Cycle” is not a separated execution thread.
In the figure, the “Update the Intention Tree” box is added to indicate the Intention

Tree is always kept updated and can be used in process other than Intention Selection.

The “Select Intention” is the process that chooses the intention to execute next. It

contains four major steps.

First, the agent calculates each Intention Tree’s Base Priority. The value is
defined as Utility of the top-level goal times Applicability of the top-level plan. (The

top-level plan is the current plan applied to achieve the top-level goal.) Here, only the

17

Update the Intention Tree

top-level goal is considered because its importance dose not change whether a subgoal
is added or deleted. For example, the importances of studying for midterm dose not
decrease because its subgoal, say, flipping the page of textbook, is not so important.
Subgoals’ Utility and their plans’ Applicability are considered when applying deadline

and interaction.

Second, the agent checks if the intention is approaching its deadlines. An
Intention Tree may have more than one deadline because its subgoal may have
deadlines too. The agent adjusts the priorities of the intention tree according to each

deadline’s DUF.

Third, the agent takes the interaction between intentions into account. This step
works with a help of graph. Each node in-this graph is an Intention Tree of the agent.
There are three kinds of links, Base Links, Interactions Links and Final Links. The
links with value N from nodes A to nodes'B means Achas higher priority than B by the
magnitude of N. A Base Link is associated with a'value, which is the difference of the
Base Priorities of both ends. Its direction is from the node of higher base priority to
another one. Interactions Links represents the interactions between the intention
trees, either specified by the user or automatically discovered. If there is no
interaction, the agent adjusts the base links of the node according to the time it waits
for execution. The agent consolidates these links between the nodes to produce the

Final Links.

Finally, the agent chooses the node of with input Final Links. An Intention tree
with no input Final Link has higher priority than others. When the tree does not exist,
the agent recursively deletes the Final Link with the lowest value until there is a node

with no input Final Links.

18

Figure 3.5 shows an example of activities 3 and 4. Although the Intention Tree C
has the lowest base priority among all three, its strong interaction to Intention Tree A
makes a Final Link from C to A. Because each node has at least one input Final Link,
the agent deletes the lowest-value Final Link, which is the link between C and B.
After that, there in no Final Links pointing to C. C becomes the next intention for

execution then.

@ Intention Tree
with priority x

—_— Base Links

Interactions
Links

—_— Final Links

|
|
| ——x—
|
|
|

Figure 3.5 an example of applying interactions between Intention Three

19

Chapter 4. Design and Implementation

4.1 JAM Script constructs for Intention Scheduling

In this section we are going to explain those new constructs added for intention

scheduling. The original Jam script specification can be found at[7].
4.1.1 goal

We modified JAM’s goal format to add functionality such as deadline and

timeout.

goal_type goal name parameterl

(:UTILITY expression)?

(:DEADLINE expression

(:DEADLINE_UTIL_FUNC expression, expression)?
| : TIMEOUT)?;

List 4.1 New/Goal Format

The DEADLINE field indicates “that this“goal must be finish before the time
specified with the expression. Optional " DEADLINE_UTIL_FUNC is the function,
computing how much the time factor affects the intention’s priority. A special variable
$delta can be used in the function to represent the difference between the current

time and the deadline.

The field DEADLINE_UTIL_FUNC has two functions. Figure 4.1 illustrates an
example. The maxERT and minERT showing in the figure indicate the time needed to
finish the intention. The first function is applied when delta is beyond the maxERT. It
should be set as a reverse function of $delta, because the priority should rise when
the time is approaching the deadline. The second function is applied when the
deadline is between the maxERT and minERT. In this case, the agent cannot guarantee

there is enough time to finish the job, so the user might define how the priority should

20

vary.

DUF2

Auoud jo o aseasou

DUF1

minERT maxERT

Delta

Figure 4.1 Example of Deadline Utility Function

When the delta is less than minERT, the Intention is timeout and considered fail.

For those intentions waiting too long and having:other applicable plans, they should

abandon current suspended plan-and choose another. Therefore, designer can append a

TIMEOUT to the goal (Note that-the second-kind of timeout is actually an “Intention

Reconsideration” problem, so we will not discussit in details.)

4.1.2 plan

We add these new fields in to JAM’s plan:

APPLICABILITY: numeric expression
ERT: numeric expression

FAIRFACTOR: numeric expression

INTERACTION: (goal_spec|plan_name), [numeric expression]

List 4.2 New Plan Fields

The APPLICABILITY is how the plan can fulfill the goal. It is specified with a

value ranging from 0.0 to 1.0. The original utility field in JAM no longer exists.

The ERT field represents how many time units a plan may cost, excluding its subgoals

execution time. Because of the “Undecided Plan Problem,” the subgoals execution

21

time should be gotten from the Intention Tree. The FAIRFACTOR field specifies the
factor using in fairness calculation. The INTERACTION field describes the user-defined
interaction between the plan and a kind of goals or plans. The magnitude of the

interaction is given as the numeric expression.

APL (progress label) and ELT (estimated loop time) are added to the plan body:

PL numeric expression:

ELT numeric expression:

List 4.3 New Plan Body Fields

PL (Progress Label) shows how much work has been accomplished when
reaching a position of the code. The field facilitates the calculation of DoC (Degree of

Completeness) and the running time of the:plan.

In the example shown in List4.4; the PL indicates that the plan will have 80%
completeness when Action2 is finished:“Also, together with ERT, it implies that

Actionl and Action2 might take 40 time units and-Action3 might take 20 time units to

execute.
Plan:{
ERT: 100s
Body:
EXECUTE Actionl;
EXECUTE Action2;
PL 80:
EXECUTE Action3;
}

List 4.4 APL Example

ELT are used when there are loop construct or possible recursive subgoaling,
where a plan for a particular goal can subgoal to the same goal. It gives an estimate
value of how many times the loop or recursive block are going to repeat, and therefore

22

the agent can calculate the running time and DoC accordingly.

4.2 Construction of the Intention Tree

4.2.1 static structure

Figure 4.2 shows the Class Diagram of Intention Tree. The agent’s Interpreter
access Intention Tree by its root, which is the GoalNode representing the top-level
goal. GoalNodes have several PlanNodes as children. The PlanNode is a tree, which
consist of one or more plan constructs. Various actions, including subgoaling actions,

are done is these plan construct.

Interpreter MNode
1
GoalNode +plan PlanNode PlanConstruct)
o]
+IntentionTres 1 * 1
/T AN 1
* +subgoal 1
Sequence Loop Brench

Figure 4.2 The Class Diagram of Intention Tree

4.2.2 Building Intention Tree

Whenever a top-level goal is issued, the corresponding Intention Tree must be
built. Interpreter will generate a new GoalNode to represent the top-level goal, and put
it into its Intention Structure. For each plan that can fulfill the goal, a PlanNode is
generated and appended under the GoalNode. The PlanNode consists of a tree of
PlanConstructs, which are built according to the plan’s body. The PlanCostrcut

with subgoaling action will generate GoalNodes and append them as its children. The

23

construction continues recursively until there is no subgoaling anymore.

The subgoaling can be recursive. The construction of the intention tree with
recursive subgoaling will continue indefinitely. Therefore, when the interpreter detects
recursive subgoaling, it marks the repeat part as recursive block, and generates this

part only once.

Building the Intention Tree at runtime is a time consuming process. We can
shorten the agent start-up time by compiling the agent before actual execution. The
compilation produces an Intention Tree Template for every possible top-level goal,
which can be used to generate Intention Tree rapidly in execution. For agents that can
dynamically import plan, which may contain new top-level goals without precompiled
template, we still can build the IntentionTree at runtime and cache it for the future

use.

4.3 Information Propagation in Intention Tree

4.3.1 Information needed

The information needed for computation in Intention Tree are listed below:

1. Interactions Info: Both the user specified interactions and the information
needed to discover the interactions automatically, such as possible effects,

guarding conditions, etc.
2. Deadlines Info: Deadlines, DUF (Deadline Utility Functions), and Timeout

3. Runtime Info: maximum ERT, minimum ERT, DoC (Degree of

Completeness), last execution time, and the runtime state of each node.

The runtime state of the node in the Intention Tree shows the current status of the

agent. It can be the following values:

24

UNTRIED: the node is not yet intended
ACTION: the node is executing
SUCCESS: the node is completed

FAILURE: the node is failed

When propagating in the tree, Interactions Info and Deadlines Info are stored in
lists, which contain links pointing back to the node that the interaction or the deadline
is applied on. Thus, other information that might be used in priority calculation such

as Utility or Applicability of the node can be easy access.
4.3.2 Initialization and Updating of the Intention Tree

After the Intention Tree is constructed, it will go through an initialization process,
which is done by updating each leaf.node of the:tree, to gather the information needed
for intention scheduling. The gathered information will be stored in the tree’s root for
future access. Note that the information-is not stored in its final value, because the
environment may change between the time the information is gathered and the time it
is needed. For example, the maxeRT will still in time units formats when stored in the
root, and will be transformed to real value (milliseconds) when the agent applies it to

the Deadline Utility Functions.

During the agent’s execution, the Information in the Intention Tree most be
updated whenever actions are performed, goals are achieved, plans are failed, or new

plans are added.
4.3.3 Computation Schemes of Updating

Three kinds of computation schemes are used to update the Intention Tree. They

are Sequence, Branch and Loop, each for different kinds of node.

Sequence is the scheme for the sequence plan construct. This kind of node will

25

succeed when all its children succeed but fail whenever any of its children fail.

if(every child node is In success state) state := success;
if(any child node is in failure state) state := failure;
(maxERT, minERT, interactions, deadlines):=
sum of the (maxERT, minERT, interactions, deadlines)
of every child in untried or action state;

DoC := the sum of (DoC of every child x the PL of child);

List 4.5 Pseudo-Code of Sequence Scheme

Branch is the scheme for the branch plan construct and the goal node. This kind

of node will succeed whenever any of its children succeed but fail when all of its

children fail.
if(any child node is in success state) state := success;
if(every child node is in . failureiistate) state := failure;

maxERT := the highest maxERT ofrevery- child;

mIiNERT := the lowest mInERT of every child;

if(no child is in action state) //branch undecided
(interactions, deadlines):=sumof (Interactions, deadlines)
of every child in untried or action state;
DoC := O;

else
(interactions, deadlines):= (interactions, deadlines) of the
child in action state;

DoC := DoC of the child in action state;
List 4.6 Pseudo-Code of Branch Scheme

Loop is the scheme for the loop plan construct and the recursive block. These

nodes have only one child, which will repeat the execution until it meets the boundary

condition.
state := child’s state
maxERT := maxERT of the child x estimated times of execution;

MIinNnERT := minERT of child;

(interactions, deadlines):=

26

(interactions, deadlines) of the child;

DoC :=
times of execution / estimated times of execution
+ DoC of the child;

List 4.7 Pseudo-Code of Loop Scheme

4.4 The Execution Cycle

This section describes how the Intention Tree updating process fits into the

execution cycle.

In every cycle, the interpreter first updates the Beliefs after observing the world.
Next, the plans of the pending goals are checked against the current Beliefs. The
pending goals are the goals that have no associated plan, but are waiting for
submission to be achieved. All top-level goals are pending when the agent starts. The
interpreter intends the best applicable: plans for the pending goals, according to
various selection schemes such:as ‘selection by applicability, or meta-level reasoning.
The information stored in the Intention‘Tree can also be used in this step. For example,
the interpreter could choose the plan that'will not conflict with the executing intention.
The intended plans are marked in ACTION state, and the information of these plans is

recursively updated to the top-level goals.

Next, the interpreter chooses an intention to execute from the Intention Structure.
The process is described in section 4.5. The interpreter traces the ACTION-state node
in the chosen Intention Tree to find the next action to execute. After the execution, the
Intention Tree must be updated accordingly. If the action is a subgoaling, the subgoal
node will be marked pending, and a plan will be chosen at the next cycle. If the action
is loading other plans, every Intention Tree with the goals which can be achieve by
these new plans must be updated. The interpreter starts the whole cycle recursively

until all the top-level goals have completes.

27

4.5 Intention Selection

4.5.1 Computation of the Base Priority

The agent produces a node for every Intention Tree that is not in the pending
state. The node contains the information gathered from the Intention Tree as described
in 4.2.2. Then it computes the base priority of each node. The top-level plan is the

plan that currently applied to achieve the top-level goal.

$base priority :=

top-level goal’s Utility x top-level plan’s Applicability;

List 4.8 Pseudo-Code of Calculating the Base Priority

4.5.2 Applying the Time Constraints

For each deadline a node has, agent adjusts the base priority according to its DUF.

Deadline’s Utility is the utility of the goal that the deadline applied on.

for (each node $n)
for (each deadline $d' ofi3n)
$delta := $d.deadline — current tikme;
if($delta => $n._maxERT) S$raise = $d.DFUl($delta);
iT($n.minERT <= $delta < $n.maxERT)$raise = $d.DFU2($delta);
if($delta < $n.minERT) $raise = 0;

$n._base_priority += $d.Utility x $raise;

List 4.9 Pseudo-Code of Applying the Time Constraints

4.5.3 Applying the Interactions

After uses interactions_discovery() to automatically discover the
interactions between the nodes, the agent can applied these interactions and produce
the interaction links. The fairness factor is a user specified value used in fairness

prioriy calculation.

interactions_discovery();

for (each node $n)

28

for(each interactions $i of $n)
if($i is a negative interaction)
$interaction_links($n,$i.node) +=
$i.value * (1 + $i.node.DoC);
else
$interaction_links($n,$i.node) += $i.value;
if ($n has no interaction with other node)
$n.base priority +=
(current — last execution time) x FAIRFACTOR;
for (each node $on other than $n)
$base links($n,$%on):=3$n.base priority - $on. base priority;
$final_links($n,%on):=

$base links($n,%on) + interaction_links($n,%on)

List 4.10 Pseudo-Code of Applying the Interactions

4.5.4 Choosing the Best Intention

Finally, the agent chooses the Best-Intention; which is the node with no Final
Links pointing to it. If there is no such node, the agent iteratively cancels out the Final

Links with the value closest to O:

for(each node $n)
if(for (each node $on other than $n) $final_links($n,$%on)=>0)
choose $n to execute;
while(no node is chosen)
final_links_set $fl_set:=
set of final_links whicah has value closest to O;
delete the final_links $fl
which has highest deadline-rasie in $fl_set;
$n = $Ffl;
if(for (each node $on other than $n) $Ffinal_links($n,$on)>0)

choose $n to execute;

List 4.11 Pseudo-Code of Choosing the Best Intention

29

Chapter 5. Evaluation

In this chapter, a simple simulation is conducted in order to show the

effectiveness of our approach.

5.1 Our Simulation Approach

Because the efficiency of the scheduling heavily depends on the tasks the agent
will receive, to show the effectiveness, we use a random task generator to issue
goals and plans to the agents. The generated goals have random utility, deadlines, and
applicable plans, etc. The generated plans have random applicability, actions, ERT,
level of subgoalings, and interactions, etc. The value ranges and descriptions of the

random parameters is shown in Table.5.1:

) Value
Parameter Description

range

SubGoalDegree Thesubgoalings of a plan 0~3

PlanDegree The plans.of a goal 1~4
TreeLevel The height of an Intention Tree 2,4,6,8

Step The steps in a plan 1~12
DeadlineTightness The times units before the goal timeout 10~100
Applicability The applicability of a plan 0.7~1.0
Utility The utility of a goal 10~100

Table 5.1 Parameters in the Random Task Generator

Two more controlling factors are applied to control the random process. The
Deadline Density factor is applied to control how many goals will have deadline. The
higher the factor, there will be more deadlines. The Interaction Density factor is
applied to control how many plans will have interaction to each other. The higher the

factor, the more interactions will be.

To focus on the scheduling algorithm, there are two kinds of interactions

30

considered only. First one is Forbid, which causes some other plans to fail. Second is

Promote, which causes some other plans to success without execution.

Each agent is given 50 top-level goals, and uses different scheduling schemes:

Normal: consider only the utility of the top-level goals

Time-limited: consider the utility of the top-level goals and the deadline

Interaction: consider the utility of the top-level goals and the interactions
between the goals

Interaction + Time-limited: consider the utility of the top-level goals, the

deadline and the interactions between the goals

After the execution, the agent will report three values, which are:

Su: the sum of utility of the goalsithat succeed / total utility.
FU: the sum of utility of the'goals that fail / total utility.
TU: the sum of utility of the goals that-are timeout / the sum of utility of the

goals with deadline.

The results are showed in following sections.

5.2 Simulation Results

5.2.1 Considering Deadline

Figure 5.1 shows the results of the agents using Normal and Deadline scheduling
schemes. The Interaction Density is held at 0.15, and the Deadline Density is changed
from 0.1 to 0.3. The figure shows that when there are more goals have deadline, the
performance of Normal scheme falls. On the other hand, the performance of

Time-limited scheme stays rather unchanged.

31

095 F — .
2 - ==~ Time-limited
e —— — — — Normal
09
0.85
0.1 0.15 0.2 0.25 0.3

Deadline Density

Figure 5.1 Normal versus Time-limited — SU

The results are also shown in figure 5.2. The Normal TU increases rapidly when
the Deadline Density increases. However, the performance gain in the Time-limited
has some side effect. In Figure 5.2, the Time-limited FU is slightly higher than the
Normal FU. That is, Time-limited scheme will cause more fail because it doesn’t

consider about interaction.

0.16
0.14 -

012 B //-_—
ol —_ e Normal FU

0.08 — Time-limited FU
0.06 — — — Normal TU

. T — - - —Time-limited TU
0.04 ~————

002
0 —_——— —] T 1"
0.1 015 02 025 03
Deadline Density

Figure 5.2 Normal versus Time-limited—-FU, DU

5.2.2 Considering Interactions

Figure 5.3 shows the result of the agents using Normal and Interaction

scheduling schemes. The Deadline Density is set to 0, that is, no goals will timeout.

32

The Interaction is changed form 0.1 to 0.3. The figure shows that when there are more

interactions between plans, the Normal scheme will fall drastically.

0.95 <

Interaction

SU

09 N

~ — — — Normal
0.85 | SN

0.8
0.1 0.15 0.2 0.25 0.3

Interaction Density

Figure 5.3 Normal versus Interaction — SU

5.2.3 Considering both Deadline and Interactions

Figure 5.4 shows the result-of all fours'kinds of schemes when the Deadline
Density is varied form 0.1 to 1 and the Interaction Density is set to 0.1. The SU of
Deadline and Interaction+Time=Hmited schemes. fall not quickly because they both
consider deadline. The Interaction scheme ‘has higher SU than Time-limited scheme
when the Deadline Density is low. However, when deadline starts to contribute more
fails than interaction, the SU of Time-limited scheme is better than the SU of
Interaction scheme. SU of Interaction+ Time-limited scheme remains the highest
among four until the Deadline Density is close to 0.9. Nevertheless, in the real
application, Deadline Density seldom reaches so high. Thus, the Interaction+

Time-limited scheme is generally good in most situations.

33

0.95
0.9

SU

0.85

0.75

Interaction+Time-
Limited
— — — Interaction

""" Time-Limited

— - —-Normal

0.1 02 03 04 05 0.6 0.7 0.8 09

Deadline Density

1

Figure 5.4 SU of all schemes while Deadline Density changes

Figure 5.4 shows the result of all four kinds of schemes when the Interaction

Density varies form 0.1 to 0.5 and the Deadline. Density is set to 0.3. The SU of

Interaction+ Time-limited scheme remains the-highest among the four.

0.95
0.9

0.85

0.8

=2 0.75
0.7

0.65
0.6

0.55

0.5

— - —-Normal

Interaction+Time-
Limited
— — — Interaction

""" Time-Limited

Interaction Density

0.1 0.15 0.2 0.25 0.3 0.35 04 045 05

Figure 5.5 SU of all schemes while Interaction Density changes

34

Chapter 6. Conclusions & Future Work

Many BDI agent theories have been focused on agent’s ability to choose
different plans for different situations. However, the problem, how to choose among
the intentions to execute, is seldom mentioned. In the systems with multiple agents of
mobility and intelligence, a good intention-scheduling scheme will greatly improve

BDI agents’ performance.

In this thesis, we aim at developing an effective intention-scheduling scheme. We
discuss the various factors affecting the intention scheduling. Moreover, we propose
an Intention Tree model to describe the structural and behavioral aspect of the agent,
and use this model to gather the information needed in the scheduling process. We
also give an intention-scheduling, algorithm, “wWhich consider the utility, time
constraints and task interactions at the same time. Some implementation issues and
major parts of the proposed algorithms-"are-explicitly addressed in pseudo-code.

Finally, we show the effectiveness of ourapproach in a simple simulation.

There are several problems not thoroughly discussed in this thesis, such as
automatic interaction discovery, usages of Intention Tree structure in intending
process, intention reconsideration, and other scheduling considerations in multi-agent
environment. In the future, we plan to delve into these problems and integrate them to

produce an efficient BDI agent system.

35

[1]

2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Reference

Paolo Busetta and Kotagiri Ramamohanarao. “An Architecture for mobile
BDI Agents.” Proceedings of the 1998 ACM symposium on Applied
Computing, Pages 445-452,1998.

Bratman, M.E(1987) : “Intentions, Plans, And Practical Reason.” Harvard
University Press, Cambridge, MA, US, 1987. ISBN (Paperback):
1575861925

Chia-Lin Hsu, Hwai-Jung Hsu, Da-Ly Yang and Feng-Jian Wang.
“Constructing a Multiple Mobile-BDI Agent System.” The 14th Workshop
on OOTA,2003.

Yoav Shoham. “Agent-Oriented Programming.” Atrtificial Intelligence,
60(1):51-92, March1993. ISSN 0004-3702

Philip R. Cohen and Hector J. kevesque. “Intention is Choice with
Commitment.” Artificial Intelligence,.42(2.3):213-261, March 1990.

Michael P. Georgeff and-Amy L. Lansky. “Reactive Reasoning and
Planning.” In Proceedings of the“Sixth-National Conference of the
American Association for"Arti_cial Intelligence (AAAI'87), volume 2, pages
677-682, Seattle, WA, July 1987:-Maorgan Kaufmann.

Marcus J. Huber. “JAM: A BDI-theoretic Mobile Agent Architecture.” In
Proceedings of the third annual conference on Autonomous Agents,
pages 236-243, Seattle, Washington, United States, 1999. ACM Press.
ISBN 1-58113-066-x.

Anand S. Rao and Michael P. Georgeff. “Modeling Rational Agents within
a BDI Architecture.” Proceedings of the Second International Conference
on Principles of Knowledge Representation and Reasoning (KR'91),
pages 473-484, San Mateo, CA, USA, 1991. Morgan Kaufmann. ISBN
1-55860-165-1.

Anand S. Rao and Michael P. Georgeff. “BDI-Agents: From Theory to
Practice.” In Proceedings of the First International Conference on
Multi-Agent Systems (ICMAS'95), San Francisco, USA, June 1995.

[10] Michael P. Georgeff and Francois F. Ingrand. “Decision-Making in an

Embedded Reasoning System.” In Eleventh International Joint

36

Conference on Atrtificial Intelligence (IJCAI' 89), volume 2, pages 972-978.
Morgan Kaufmann, August 1989.

[11] Michael J. Wooldridge and Nicholas R. Jennings. “Intelligent Agents:
Theory and Practice.” Knowledge Engineering Review, 10(2):115-152,
June 1995.

[12] Jaeho Lee, Marcus J. Huber, Edmund H. Durfee, and Patrick G. Kenny.
“UM-PRS: An Implementation of the Procedural Reasoning System for
Multirobot Applications.” In Conference on Intelligent Robotics in Field,
Factory, Service, and Space (CIRFFSS’94), pages 842-849, Houston,
Texas, March 1994.

[13] K. L. Myers and D. E. Wilkins, "The Act Formalism." Version 2.2, SRI
International Artificial Intelligence Center, Menlo Park, CA, September
1997.

[14] URL: http://www.marcush.net/IRS/irs_downloads.html

[15] Rafael H. Bordini, Ana L.C..Bazzan, Rafael de O. Jannone, Daniel M.
Basso, Rosa M. Vicari.” AgentSpeak(XL): Efficient Intention Selection in
BDI Agents via Decision-Theoretic Task Scheduling.” (AAMAS’02):
1294-1302, Bologna, Italy.

[16] K. S. Decker and V. R. Lesser. “Quantitative modeling of complex
environments.” International Journal of Intelligent Systems in Accounting,
Finance and Management, 2(4): 215-234, 1993.

[17] T. Wagner, A. Garvey, and V. Lesser. “Criteria-directed heuristic task
scheduling.” International Journal of Approximate Processing, Special
Issue on Scheduling,19(1-2):91-118, 1998.

[18] V. R. Lesser. “Reflections on the nature of multi-agent coordination and its
implications for agent architecture.” Autonomous Agents and Multi-Agent
Systems, 1(1): 89-111,1998.

[19] John Thangarajah, Lin Padgham and James Harland. “Representation
and Reasoning for Goals in BDI Agents,” In Twenty-Fifth Australasian
Computer Science Conference (ASCS2002), Melbourne, Australia.

[20] John Thangarajah, Michael Winikoff , Lin Padgham and Klaus Fischer.
“Avoiding Resource Conflicts in Intelligent Agents.” Proceedings of the
15th European Conference on Atrtificial Intelligence (ECAI 2002): 18-22,

37

http://www.marcush.net/IRS/irs_downloads.html

Lyon, France.

[21] John Thangarajah, Michael Winikoff and Lin Padgham. “Detecting &
Exploiting Positive Goal Interaction in Intelligent Agents.” In Proceedings
of the 2nd international joint conference on Autonomous agents and
multi-agent systems (AAMAS '03): 401-408, Melbourne, Australia.

[22] John Thangarajah, Lin Padhgam, Michael Winikoff. “Detecting and
Avoiding Interference Between Goals in Intelligent Agents.” In
Proceedings of the 18th International Joint Conference on Artificial
Intelligence (IJCAI 2003): 721-726, Acapulco, Maxcio.

38

