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摘要 

近年來，在感知無線電網路(cognitive radio network)中的資源分配持續受到高度關注。

在之前的論文中，我們設計了一個運作在電視空白頻譜(TV white space)上的感知無線電

雲端網路。為了有效利用電視空白頻譜的資源，我們提出了一個適用於我們系統上的資

源管理架構。我們的資源管理架構主要分成三個部分，包括在雲端上的分群及資源管理、

在雲端上的功率控制及資源分配、以及在感知無線電存取點上的資源管理。這篇論文中，

我們集中在第三部分。具體來說，我們將使用者分成幾個群組、定義一些服務類別、並

將使用者的需求轉換成所需頻道數。再雲端完成資源管理前兩層的資源分配及功率控制

後，我們設計的演算法將進一步以時間區塊為單位分配資源給感知無線電使用者，並最

大化系統的效能。 

為了有效率地解決這個問題，我們提出了一個貪婪搜尋演算法，且這個演算化找出

的解幾乎近似於最佳解。除此之外，我們提出了優先權參數來達到相同服務類別之使用

者之間的公平性。最後，從模擬結果中可以看出，不論在效能上，或是同服務類別的使

用者之間的公平性，我們提出的演算法都能產生出色的成果。  
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Abstract 

Resource allocation in cognitive radio (CR) networks is highly concerned in 

recent years. We have designed cognitive radio cloud network (CRCN) in TV white 

space in previous works. To effectively use the resource, we proposed a resource 

management scheme for our CRCN. Our resource management scheme is separated to 

three parts, clustering and resource management in Cloud, power control and channel 

allocation in Cloud, and resource management in CR access points (CRAPs). This 

paper focuses on the third part. Specifically, we first allocate users to several groups, 

define several service classes, and map users’ requests to the numbers of required 

channels. After the first two-tiers channel allocation and power control mechanisms 

performed at the Cloud, the designed scheduling algorithm further allocates resources 

(in terms of time slots) to CR users to maximize the sum of throughout utilities. 

 

To solve the problem efficiently, we proposed a greedy search algorithm, and the 

scheduling results are almost close to optimal solutions. In addition, we proposed a 

priority factor to achieve the inner-class fairness even upon low channel availability. 

Finally, the simulation results show that no matter in throughput or inner-class fairness, 

our proposed algorithms can yield excellent results. 
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Chapter 1 Introduction 

 

1.1 Background 

In recent years, with the rapid development of wireless technologies, more and more 

technical products have the ability to use the wireless resource, and the new wireless 

communication systems, such as LTE, 4G, etc., need much more resource than old wireless 

systems. The requirements of wireless band become higher and higher, so under the finite 

wireless resource condition, how to use wireless band efficiently is a highly concerned issue. 

According to the investigation of Federal communications Commission (FCC) [1], the 

average usability of licensed spectrums is very low. To increase the usability of those 

spectrums, one of the resource sharing techniques, Cognitive Radio (CR) [2], which is 

proposed by Mitola and Gerald Q. Maguire, Jr in 1999 has been highly concerned during 

those years. 

The resource sharing technique of CR is that secondary users (referred as cognitive radio 

users, CR users) can temporarily borrow unused bands owned by licensed users (referred as 

primary users, PUs) for communication. When PUs get back to the bands borrowed by CR 

users, the CR users should release the bands immediately. To implement the CR resource 

sharing technique, CR systems should have the ability to sense and measure the 

characteristics and availabilities of licensed bands, and to know which channels and how long 

the CR users can occupy, so spectrum sensing is one of important issues in CR systems. 

Another important issue is resource management. The available resource in CR network 

may be changeful and fractional, so how to efficiently and effectively user the resource 

become difficult and challenging. If the resource management is not good enough, the CR 

network will become unstable. 

By the way to measure and manage the available resource for CR network, CR systems 
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are classified to two types of networks: distributed CR network, like [3], and centralized CR 

network, such as [4] [5]. In distributed CR networks, spectrum sensing is done by each CR 

user (or a CR pair). CR users sense channel respectively for several milliseconds, if the 

channel is still idle during the time, the CR user may operate on the channel. In centralized 

CR networks, the measurement of resource is done by cooperative spectrum sensing (CSS). 

Each CR user collect the information of several channels, and then sends them to the 

centralized units, such as wireless access points, base stations, etc., for resource measurement. 

CSS has higher accuracy and completeness than distribute spectrum sensing, but it also has 

higher complexity. To overcome the high complexity, in [6] [7], we combine the cloud and 

centralized CR network as Cognitive Radio Cloud Network (CRCN). 

 The CRCN is a prototype of CR systems which operate on TV White Space [8]. It 

contains network architecture, media access control (MAC) architecture, CSS algorithm, CR 

access point (CRAP) and CR user managements, messages exchange scheme, and so on. In 

the CRCN architecture, it can measure the available resource for each CRAP, and CR users 

can communicate with each other and connect to the Internet by the MAC and the network 

architecture. However, it doesn’t have a completed resource management scheme yet, so we 

want to develop our one in CRCN. 

 Before introduce our resource management scheme in CRCN, we will first introduce the 

CRCN architecture in the next section. 

 

1.2 CRCN architecture 

 CRCN consists of CR Cloud, CR APs, and CR users, as Figure 1. CR users associate 

with nearby CR APs, and communicate with associated APs by our MAC protocol. All 

communications between CR users or CR users and Internet are controlled by CR APs. No 

matter where CR users send packets to, the packets will first be sent to one CRAP, and then 
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the CRAP forwards the packets to the destination by Ethernet. For example, when SU2 wants 

to send a message to SU3, SU2 will send the message to CRAP1 which he associates. Then 

CRAP1 forwards the message to CRAP2, which the destination user, SU3, associates, and 

finally CRAP2 transmits the message to SU3. However, how does CRAP1 know where SU3 

is? Because all CRAPs and CR users’ information are managed by CR Cloud, when CRAP1 

receives a message which destination is SU3, CRAP1 will first ask CR Cloud for SU3’s 

location, and then forward the message to SU3’s associated CRAP. 

 

 

Figure 1 CRCN architecture from [8] 

 

 CR Cloud not only manages the CRAPs and CR users’ information, but also manages the 

available resource of wireless spectrum. Sensing devices (SD) periodically sense data 

channels, and then report the sensing results to CR Cloud by CRAPs. CR Cloud uses those 

results to calculate the available data channels in each area by doing CSS algorithm, and 

records the results in database. CRAPs periodically ask CR Cloud for available data channels, 
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and announce the information to CR users in common control channel (CCC). CR users use 

the available data channels for communications, and share the channels between CR users by 

time-divided media access (TDMA). In such CRCN architecture, CRAPs are not worried 

about which channels they can use. They only need to care about how they should allocate the 

resource to their associated CR users. 

 

 

Figure 2 CRCN MAC protocol from [8] 

 

 Figure 2 is our CRCN MAC protocol. In each frame, it contain several periods. There are 

beacon period (BP), association period (ASP), report collection period (RCP), and resource 

request period (RRP) in control channel, and quiet period (QP), downlink (DL), and uplink 

(UL) in data channels. CR users (called secondary users, SUs, here) and SDs send join/leave 

messages in ASP to associate/disassociate one CRAP, and confirm their successful 

association/disassociation by receiving beacon in BP. If they associate successfully, their host 

ID (host address) will be included in join list contained in beacon. After successful association, 

CR users send their resource requests in RRP, and do their communication in DL and UL 

according to the scheduling result contained in beacon. SDs sense data channels in QP, and 

report the sensing result in RCP. All SUs and SDs should receiving beacon during BP in 
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control, and all communication is forbidden in QP to help SDs can collect the correct sensing 

results, so the data channels should be idle in BP and QP. 

 With the CRCN architecture and MAC protocol, CR Cloud can correctly get the sensing 

results from SDs, and calculate the available resource for CRAPs. CRAPs announce the 

available resource and scheduling result in beacon, and then CR users can successfully do 

their communications. However, we have not designed realistic and implementable resource 

managements yet. Without such resource managements, CR users can’t use the available 

resource efficiently and reasonably. Thus, we design a novel resource management scheme, 

and separate it into several tiers. We will introduce the scheme in the next section. 

 

1.3 CRCN resource management scheme 

 

  

Figure 3 inter-cell interference 

 

In our CRCN architecture, CRAPs should ask CR Cloud for available resource, they 

can’t decide which channels to use by themselves, so CR Cloud can manage the resource for 
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each CRAP, deciding which channels each CRAP can uses. Thus, the intuitional idea is 

separating the resource management into two-tiers. The first tier is from CR Cloud to CRAPs, 

and the second tier is from CRAPs to CR users. 

After CR Cloud calculates the available channels for CRAPs, it allocates some of these 

channels to each CRAP according its requirements (the amount of data it should serve), and 

then each CRAP use its allocated channels to serve the CR users who associate with it. 

Because CRAPs do their resource allocations independently, nearby CRAPs may interfere 

with each other (referred as inter-cell interferences). Inter-cell interference may reduce the 

throughputs, so when CR Cloud allocates available channels to CRAPs, it should try to 

allocate different channels to nearby CRAPs as many as possible. However, the nearby 

CRAPs may use the same channels without inter-cell interferences by power control as figure 

3. Thus, the second idea is adding the power control issue into first tier resource allocation. 

 

 

Figure 4 power control examaple 
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Under the second idea, the first tier allocations not only allocate available channels to 

each CRAP, but limit the maximal power of each channel for each CRAP, so nearby CRAPs 

may share the same channels, increasing the channel reusability. Nevertheless, this way is not 

perfect enough. For example, as figure 4, under the second idea, CRAP1 and CRAP2 share 

the same channels, red and blue channels, by power control. However, if CRAP1 allocated the 

red channel to SU2 with smaller power, and SU2 can be satisfied with the power, CRAP2 can 

use larger power on red channel, so CRAP2 can have higher data rate to serve its associated 

SUs.  

 To optimize the efficiency of channels, doing power control based all users is essential. 

However, it is not realistic because of its high complexity. To conquer the problem, we 

propose a CRCN resource management scheme as Figure 5. In the scheme, we group some 

SUs with close locations into a super SU (referred as SSU), and then CR Cloud will only do 

power control based on SSUs. Also, we distribute CRAPs to several areas, and each area is 

controlled by one resource management virtual machine (called RM VM). Therefore, the 

complexity of doing power control based on SSUs can be reduced very much, so the third 

idea will be implementable. 

In addition, because each RMVM only control one area, RMVMs can’t take the CRAPs 

of nearby areas into considerations, so the boundary CRAPs of nearby areas may interfere 

with each other. Therefore, after main VM distribute CRAPs to several areas, main VM 

should allocate channels to the boundary CRAPs of nearby areas first to avoid inter-cell 

interference as best as possible. 
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Figure 5 CRCN resource management scheme 

 

 To avoid wasting resource, before CR Cloud allocates channels to CRAPs, CR Cloud 

needs to know the amount of resource each CRAP requires. Therefore, CRAPs should first 

classify their associated users to groups (as SSUs), collect their requests, and transform the 

requests to the form (such as the number of required channels) CR Cloud needs. Then the 

main VM distributes all CRAPs to several areas according to the amount of required resource, 

the number of associated users, and the cost between nearby CRAPs. The main VM will try to 

balance the workloads of each RMVM to let each RMVM can finish their jobs under the 

acceptable time. In Addition, after the main VM finish areas distributing, it will allocate 

available channels to boundary CRAPs. 

 Afterwards, each RMVM will do channel allocation and power control for the CRAPs in 

its managed area. The channel allocation and power control will be done based on the 

requirement of each SSU. RMVMs allocate each SSU several channels, and limit the 



 

9 
 

maximum power for each channel to meet the SINR demand. RMVMs will try to satisfy each 

SSU’s requirements, but not absolutely, so after RMVMs finish channel allocations, SSUs 

may not get the whole resource they required. 

 Finally, CRAPs will allocate channels and timeslots to each CR users by groups. If the 

resource is enough, CRAPs will satisfy each CR users’ requests. But when the resource is 

insufficient, CRAPs need to do their scheduling based on some regulations, such as 

throughput, and fairness. The scheduling will be done group by group, because the power 

control is based on the location and requirement of each group. If CRAPs arbitrarily allocate 

channels to discordant groups, it will cause inter-cell interferences, reducing the throughput of 

CRCN. 

 In conclusion, the CRCN resource management scheme separates the resource allocation 

to three tiers. The first one is the area distribution and interference avoidance for boundary 

CRAPs in main VM. The second one is resource allocation and power control for CRAPs in 

RMVMs. And the last one is grouping, request transforming and scheduling in CRAPs. 

 In this paper, we will focus on the third tier, the resource management in CRAPs. There 

are several challenges in the third tier. At first, how should we classify CR users into groups? 

The definition of one group is that all CR users in the group have the same or similar SINR in 

a specific channel, so locations of the CR users in the same group should be close enough. 

However, if we classify each group in a too small range, the number of SSUs will too many, 

causing the complexity of power control to become too high. Therefore, the first challenge is 

how to define a way to classify groups by considering the two issues. 

 Second, after classifying groups, we should collect the request of each group, and 

transform it to the number of channel the CRAP needs to serve the group. Because using 

larger powers will have higher SINRs (data rates), CRAPs should not only tell CR Cloud how 

many channels they need, but also the required SINR of each channel. Hence, transforming 

the CR users’ request to numbers of channels with specific data rates is the second challenge. 
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 At last, after CR Cloud finishes the resource allocation, CRAPs should allocate channels 

and timeslots to CR users group by group based on their request. If the resource is not enough, 

CRAPs will do scheduling based on the fairness. Because we assume each user only have one 

antenna, each user only can use one channel each frame. In such condition, the allocation will 

become a challenging problem. 

 The reset of this paper is organized as follows. The system models and assumptions are 

introduced in chapter 2, including the way to group CR users. The proposed transforming and 

scheduling algorithms are contained in chapter 3. The results and simulations of our 

algorithms are showed in chapter 4. And we summarize the conclusions in chapter 5. 
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Chapter 2 System Model and Request Mapping 

Method 

 

2.1 MAC frame architecture and assumptions 

 Considering one CRAP, there are several CR users which associate with it by CCC. Each 

CR user has one and only one request (the class of service it needs, defining latter). CRAPs 

have enough antennas (referred as CC1111 here), so CRAPs can operate on several channels 

simultaneously. But each CR users has only one antenna, so it should do hopping between 

control and data channels every frame. Besides, each CR users can’t operate on more than one 

channel at the same time, but it can hop to different channels timeslot by timeslot. 

 

 

Figure 6 proposed MAC frame 

 

The proposed MAC frame is as figure 6. The scheduling is done every frame, and we 

focus on the downlink allocation in this paper. Each frame has one downlink period, and each 

downlink period has L timeslots. The length of one timeslot is t seconds, and one frame is T 

seconds. 
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2.2 Group allocation 

For simplicity and efficiency, we distribute users to several groups as figure 7. We 

allocate all users associated with the CRAP into 12 groups, by considering the distance from 

CRAP and the direction relative to CRAP. The two factors are quite related to the received 

SINR from CRAP. Under the same power, the larger distance is larger, the received SINR is 

smaller. In addition, the direction is related to interferences and environment block. With the 

same direction, the effect of interferences and environment upon received SINR will be close. 

 

 

Figure 7 group allocation 

 

 Assume someone user’s location is (x, y), the CRAP’s location is (x0, y0), and the 

coverage radius of CRAP is R. Also, we define two vector v0 (0, 1) and v (x- x0, y- y0). Then 

we can calculate the distance between the user and CRAP and the direction from CRAP by (1), 

(2) and (3). 

 𝜃′ = cos−1 (
𝑣o ∙ 𝑣

|𝑣o||𝑣|
) ×

180

𝑃𝐼
 (1) 

 𝜃 = {
𝜃′                  , 𝑥 − 𝑥0 ≥ 0

360 − 𝜃′     , 𝑥 − 𝑥0 < 0
 (2) 
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 𝑑 = √(𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 (3) 

   

 With 𝜃 and 𝑑, we can distribute the user to one of the 12 groups by formula (4) 

 SU ∈ 𝐺i, 𝑖 = {
⌊
𝜃

90
⌋ + 1    , 𝑑 ≤

𝑅

2

⌊
𝜃

45
⌋ + 5    , 𝑑 >

𝑅

2

 (4) 

 After every user is allocated to one of the 12 groups, we should find a point for each 

group to represent the location of users who belong to the group. Assume there are M users, 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥M, 𝑦𝑀), in someone group. If M is more than 3, we will first do 

quickhull algorithm [9] to find a convex hull of the M users, and then find the barycenter with 

those users in the apexes of the convex hull. 

 The definition of a convex hull is that a convex polygon consisted by several points 

contained in a points set can surround all points in the points set, as figure 8. 

 

 

Figure 8 an example of convex hull 

 

The quickhull is an algorithm which can find a convex hull with minimal apexes. It finds 

two points with longest distance first, and separates the points to two parts which are above 

and below to the line which link the two points. For the above part, it finds a point with 

longest distance to the line, and then links the new point with the two points linked by the line, 

so two new lines are formed. Next, it finds a new points set above to one of the new lines, and 
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recursively do the procedure with the new line and new points set until no point above to the 

line in current recursion.  

 

 

Figure 9 quickhull algorithm procedures in above part 

 

The below part is very similar to the above part. The only one difference between the 

two parts is that below part always finds the below points to the line in the current recursion. 

The main procedure of quickhull algorithm is conceptually showed in figure 9, and the 

complexity of quickhull algorithm is O(nlogn) in average cases. 

After finishing quickhull algorithm, assume the convex hull is consisted by 𝑀h points, 

(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥Mh
, 𝑦𝑀ℎ

). Then we can calculate the barycenter (𝑥c, 𝑦𝑐) by formula 

(5). 
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{
 
 

 
 
𝑥c =

1

𝑀ℎ
∑𝑥𝑖

𝑀ℎ

𝑖=1

𝑦c =
1

𝑀ℎ
∑𝑦𝑖

𝑀ℎ

𝑖=1

 (5) 

  

The barycenter will represent the location of all users in the group, and it will be treated 

as a SSU’s coordinate in CR Cloud. 

 

2.3 Service classes 

 To classify network applications to several service classes, we collect some information 

about common network services, and summarize them to Table I, as following. 

 

Table I common network services 

 

 Web browsing, e-mail, telnet, and message exchanging applications, like MSN, are very 

common and low load services. They need less than 50K bps to keep going their services. 

FTP can be run on any bandwidth, but we assume that the users who use FTP are 

downloading large files, so low bandwidth is not suitable to FTP service. Hence, we define 

that FTP service needs high bandwidth to achieve a good quality of service (QoS). 
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 VoIP and video streaming are real time (RT) services. Including packet headers, VoIP 

service needs 80K bps. If VoIP service gets bandwidth less than 80K bps, the QoS of VoIP 

will become rough. The bandwidth video streaming service needs varies on video qualities 

and encoding technology. To watch a nice video, it always needs more than 1M bps 

bandwidth, and as same as VoIP, the quality will seriously affected when allocated bandwidth 

doesn’t match its requirement. 

 With the above information about common network applications, we classify those 

applications to four service classes, as Table II. 

 

 

Table II classified service classes 

 

 In the four service classes, NRT & high load services represent the NRT services which 

need high bandwidth, like FTP. RT & asymmetric services represent those RT services which 

need high bandwidth in downlink but low bandwidth in uplink. RT & symmetric service are 

like VoIP services which need the same bandwidth both in downlink and uplink. Finally, NRT 

& low load service contain all the services which needs low load service, such as web 

browsing, e-mail, telnet, MSN, and so on. 

 We assume the data rate each service class needs is 𝑅1
′ , 𝑅2

′ , 𝑅3
′ , and 𝑅4

′ , respectively, and 

𝑅1
′ > 𝑅2

′ > 𝑅3
′ > 𝑅4

′ . Each service is mapped to a physical rate which the transmission 
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devices can support, and the mapped physical rate Ri should larger than 
𝑅𝑖

′×𝑇

𝐿×𝑡
, so one user in 

i
th

 class can be satisfied within 𝐿 timeslots (maximal number of timeslots one user can use in 

one frame). 

 

2.4 Request mapping method 

 Before the tier-1 and tier-2 channel allocations, the Cloud must know how many 

resources each CRAP needs, so each CRAP have to mapping the user requests to numbers of 

channels 

 As the same assumptions in Table II, we classify users’ services to four classes, and i
th

 

class has a required data rate, 𝑅i
′, and a mapped channel quality, 𝑅i. Considering one group, 

there are fi users in i
th

 class, and we map the requests to four numbers of each mapped channel 

quality with the following method, as Table III. 

 

Channel quality  

(bps) 
Number of channels Remaining  requests 

𝑅1  𝑁1 = ⌊
  ×𝑅 

′×𝑇

𝑅 ×𝐿×𝑡
⌋  𝛿1 = 𝑓1𝑅1

′𝑇 − 𝑁1𝑅1𝐿𝑡 

𝑅2  𝑁2 = ⌊
  ×𝑅 

′×𝑇   

𝑅 ×𝐿×𝑡
⌋  𝛿2 = 𝑓2𝑅2

′𝑇 + 𝛿1 − 𝑁2𝑅2𝐿𝑡 

𝑅3  𝑁3 = ⌊
  ×𝑅 

′×𝑇   

𝑅 ×𝐿×𝑡
⌋  𝛿3 = 𝑓3𝑅3

′𝑇 + 𝛿2 − 𝑁3𝑅3𝐿𝑡 

𝑅4  𝑁4 = ⌈
  ×𝑅 

′×𝑇   

𝑅 ×𝐿×𝑡
⌉ 

 

Table III request mapping method 

 

N1 is the requested number of channels with R1 rate, N2 is the requested number of 

channels with R2 rate, and so on, and they are calculated in the order from N1 to N4. 
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𝑓𝑖 × 𝑅i
′ × 𝑇 is the total size of data needed to send in i

th
 class within one frame, and 

𝑅𝑖 × 𝐿 × 𝑡 is the total bits one Ri channel can transmit during downlink periods within one 

frame. Hence, 
 𝑖×𝑅 

′×𝑇

𝑅𝑖×𝐿×𝑡
 is the needed number of Ri channels to transmit all data in i

th
 class. 

The number of channels should be an integer, so we take the floor of the value as Ni. Because 

the value of 𝑁𝑖 × 𝑅i × 𝐿 × 𝑡 may be less than 𝑓𝑖 × 𝑅i
′ × 𝑇, so there may be some data which 

can’t be transmitted within Ni channels with rate Ri. Those data should be sent by followed 

type of channels, so the remaining size of data will be added to the followed class. Besides, R4 

is last type of rates, and we take the ceiling of the value, 
  ×𝑅 

′×𝑇   

𝑅 ×𝐿×𝑡
, as N4 to guarantee that 

all of the requested data can be transmitted. 

After N1 to N4 are calculated, we send the requests to CR Cloud, and wait for the results 

of tier-2 allocation. The results are showed as Table IV. Because there are may not be enough 

channels to satisfy each CRAP’s requirements, so the results of allocated channels, 𝑁1̂ to 𝑁4̂, 

may be less than the numbers of requested channels, 𝑁1 to 𝑁4. 

 

Channel Quality Number of allocated channels 

R
1
 𝑁1̂ ≤ 𝑁1 

R
2
 𝑁2̂ ≤ 𝑁2 

R
3
 𝑁3̂ ≤ 𝑁3 

R
4
 𝑁4̂ ≤ 𝑁4 

Table IV the results of tier-2 allocation 

 

2.5 Utility functions 

 Under such conditions, we face a challenge to do scheduling with insufficient resources. 

To evaluate the utility of each user under insufficient resources, we use the utility functions 
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proposed in [10], and [11] provide some ways to define the utility functions. The utility 

functions describe how good the service is with the allocated bandwidth (or data rate).  

Different services have different utility functions, because some services have the 

threshold but some haven’t. Those services which have no threshold are elastic services. 

Elastic services can keep going even when the allocated bandwidths are very low, and they 

will work better when then get higher bandwidths. The elastic services are NRT services in 

our works, and the utility function curves of elastic services are as Figure 10. 

 

 

Figure 10 the utility function of NRT services 

 

 

Figure 11 and 12, the utility function of video streaming and VoIP services 

 

Those services which have thresholds are RT services. They are almost out of going 

when the allocated bandwidths are under the thresholds, like VoIP services. Video streaming 
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and VoIP are RT services, but we use two different utility functions to describe the two 

services. We think that video streaming has more elasticity than VoIP, because video 

streaming services can adjust the quality of video basing on the allocated bandwidth. When 

the bandwidth is low, video streaming services can provide small video size to the user, and 

when the bandwidth is enough, it can provide the best to the user. The utility function curves 

of the two services are as Figure 11 and Figure 12. 

 The equations of the four utility functions are corresponding to the four service classes 

defined by formula (6) to (9), as following: 

 𝑈1(𝑟) = 1 − 𝑒
−

𝑎 𝑟

𝑅 
′𝑇 (6) 

 𝑈2(𝑟) = 1 − 𝑒
−

𝑎 𝑟 

𝑏  𝑟 (7) 

 𝑈3(𝑟) = {
𝑒𝑎 , 𝑟 𝑏 ,           , 𝑟 ≤ 𝑐3

1 − 𝑒𝑎 , 𝑟 𝑏 ,   ,  𝑟 > 𝑐3

 (8) 

 𝑈4(𝑟) = 1 − 𝑒
−

𝑎 𝑟

𝑅 
′𝑇 (9) 

   

 𝑈𝑖(𝑟) is the utility function which belong to i
th

 class, and 𝑎𝑖, 𝑏𝑖, and 𝑐𝑖 are constant 

values. 𝑈1 and 𝑈4 are utility functions of elastic services, and the values of 𝑎𝑖 are given to 

decide the curvatures of the utility functions. Larger curvatures mean that the services need 

less bandwidth to achieve a given value of utility. We use curvatures to differentiate high load 

and low load in NRT services. High load services needs less percentage of their requirements 

to get the same value of utility than low load services, because NRT & high load services are 

always background downloads, and users always care about whether the downloads are keep 

going or not. 

 The scheduling under insufficient resource is our primary problem in this paper. In next 

chapter, we will formulate our problem with the utility functions, and introduce our proposed 

scheduling algorithms to solve it. 

  



 

21 
 

Chapter 3  

Problem Setting and Scheduling Algorithms 

 

 In this chapter, we introduce our problem formulation to describe what scheduling 

problem we want to solve. Also, we introduce the optimal scheduling algorithm to solve the 

problem, but the complexity of optimal algorithm is too high, so it can’t be practically 

implemented in our system. Hence, we propose other scheduling algorithms with reasonable 

complexity, and we will compare the proposed algorithms and optimal algorithm in our 

simulations. 

 

3.1 Problem setting 

3.1.1 Motivation 

 In our assumption, the resources are not enough to satisfy each user’s requirement. In 

such case, the high priority users may be allocated more resources than low priority users. 

However, how to define the priorities between different services, and how much more 

resources should we allocate to high priority users? To define those are very difficult and 

indeterminate. 

The core idea is that RT users have higher priority than NRT users, but it is not always 

true. When the resources are very insufficient, even though we allocate most of the resources 

to RT users, RT users still not reach their threshold. In such case, allocating no resource to RT 

users is better, because the services of RT users remain out of going even if we allocate 

resources to them. Therefore, allocating resources by considering only the priorities is not 

appropriate. 

In such situations, the utility functions can help us to suitably define our problem. The 

utility of RT users will grow faster than NRT users when the allocated resources exceed the 



 

22 
 

threshold, so when resources are enough to serve RT users, RT users will get more resource 

than NRT users. Besides, when the resources are extremely insufficient, the allocated 

resources to RT users are hard to reach the threshold, so RT users will almost get no resource. 

 Thus, in our problem, the objective is to achieve the maximal summation of each user’s 

utility. If we achieve it, it means that we achieve the maximal throughput in our system. 

Moreover, we want to guarantee that (a) all users will get a minimal percentage of their 

requirements, and (b) the unused resources should be under a given percentage. 

The minimal rates guarantee is to prevent NRT users get no resource, and the minimal 

rates will be decided by channel request and channel allocation result. The usability guarantee 

is to prevent allocating too many resources to RT users, because redundant resources are 

useless for RT users. 

With the above consideration, we formulate our scheduling problem by utility functions 

in section 3.1.3. 

 

3.1.2 Related work 

 Utility maximization problem is discussed many years, and finding an optimal solution is 

proved as a NP-Hard problem [12]. No matter whether the long-term and short-term utility 

optimization in routing [13] [14], or one-hop scheduling in wireless networks [11], the 

problem is solved many times. 

 However, our problem has one much different from them. In our problem, the rate is not 

continuous value. Because our basic scheduling unit is one timeslot and the timeslots can’t be 

divided, so rates are restricted by timeslots and hence they are discrete values. 

 Because the rates are discrete values, most of previous works are not suitable in our 

problem. In addition, some of works may help us to solve the problem, but they don’t have 

the timeslots allocation issue. Therefore, we want to design a new scheduling algorithm by 

considering the timeslots and utility functions to solve the problem. 
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3.1.3 Problem formulation 

Notations and assumptions: 

 The scheduling is done every frame 

 L: number of downlink timeslots per frame 

 t: time of one timeslots (second) 

 T: time of one frame (second) 

 𝑓𝑖: number of users in i
th

 class 

 �̂�𝑚: number of 𝑅𝑚 channels 

 𝑅𝑖
′: requested rate for each user in i

th
 class (bits per frame, bpf) 

 𝑅𝑚: rate mapped to m
th

 class (bps) 

  𝑟𝑖,𝑗: rate allocated to j
th

 user in i
th

 class. (bps) 

 𝑦𝑖,𝑗,𝑚: number of 𝑅𝑚 timeslots allocated to user (i,j) 

The problem is formulated by equation (10) to (15). 

 

Objective: 

 𝑚𝑎𝑥 (∑ ∑ 𝑈𝑖(𝑟𝑖,𝑗)
 𝑖

𝑗=1

4

𝑖=1
) (10) 

 where 𝑟𝑖,𝑗 = ∑ (𝑦𝑖,𝑗,𝑚 × 𝑅𝑚 × 𝑡)4
𝑚=1  (11) 

 

Constraints: 

 ∑ ∑ 𝑟𝑖,𝑗
 𝑖

𝑗=1

4

𝑖=1
≤ ∑ �̂�𝑚 × 𝑅𝑚 × 𝐿 × 𝑡

4

𝑚=1
 (12) 

 
∀(𝑖, 𝑗), 

𝑟𝑖,𝑗

𝑅𝑖
′×𝑇

≥ 𝛼, 𝛼 =
∑ �̂�𝑚×𝑅𝑚×𝐿×𝑡 

𝑚= 

∑  𝑖×𝑅𝑖
′×𝑇 

𝑖= 

× 𝛾, 𝛾 < 1 (13) 

 
∀(𝑖, 𝑗), 

𝑅𝑖
′×𝑇

𝑟𝑖,𝑗
≥ 𝛽, 𝛽 < 1 (14) 

 
∀𝑖𝑗,  ∑ 𝑦𝑖,𝑗,𝑚

4

𝑚=1
≤ 𝐿 (15) 
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The objective is to maximize the summation of utilities, got by taking bandwidth (in our 

problem, called rate, bit per frame) into corresponding utility functions. The rate is calculated 

by the number of allocated timeslots and the rate of the channel. 

There are four constraints in our problem. Equation (12) means that the summation of 

allocated rates shouldn’t be larger than the amount total channels can provide. Equation (13) 

is the minimal rate guarantee. We guarantee α percentage requirement rate to users. The α 

is decided by the value of 
total resources

total requirements
× γ, and γ means that how many resources we 

want to release for minimal rate guarantee.  

Equation (14) is the usability guarantee, the value of 
requirement

allocated resources
 should be larger 

than a given value, β, and β means the minimal usability guarantee. If allocated resources 

are less than the requirement, the user will use all the resources, so the usability will be 1. 

Hence, equation (14) is meaningful only when the allocated resources are more than the 

requirement. 

Equation (15) is to guarantee the number of allocated timeslots to any user won’t be over 

the number of timeslots one user can use in one frame. Each user has only one antenna, so one 

user can’t use more than L timeslots. 

 

3.1.4 Quantization of utility functions 

 Because the rates in our system are not continuous values, we want to rewrite the utility 

functions by quantizing the utility functions with available rates. Because the rates is 

composed by types and numbers of timeslots, the available rate, r, can be calculated by 

equation (16) with various combination of 𝑐𝑚. 

 𝑟 = ∑ 𝑐𝑚𝑅𝑚𝑡4
𝑚=1 , 

where ∑ 𝑐𝑚
4
𝑚=1 ≤ 𝐿 

(16) 

 After calculating all possible rates, we remove iterant rates to one, sort them, and 
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represent them in equation (17). 

 𝐵 = (𝐵0, 𝐵1, 𝐵2, … , 𝐵𝐾) (17) 

 𝐵𝑙 is the l
th

 rate in the sorted set, and K is the number of different rates. With 𝐵𝑙, we can 

quantize the utility functions to 

 𝑈𝑖(𝐵) = (⟨𝐵0, 𝑢𝑖,0⟩, ⟨𝐵1, 𝑢𝑖,1⟩, ⟨𝐵2, 𝑢𝑖,2⟩, … , ⟨𝐵𝐾𝑖
, 𝑢𝑖,𝐾⟩) 

   where 𝑢𝑖,𝑙 = 𝑈𝑖(𝐵𝑙) 
(18) 

For example, assume there are two types of channels, one has 1 unit data rate each 

timeslot, and another one has 2 units data rate. Each frame has 2 timeslots. Then we can list 

all available data rates, as figure 13. 

 

 

Figure 13 an example of available rates 

 

Figure 14 an example of quantization 
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 Then we use the available rates to quantize the following two utility functions, as Figure 

14, and we can get the two quantized utility functions as (19) and (20). 

 

 𝑈1 = (〈0,0.00〉, 〈1,0.71〉, 〈2,0.92〉, 〈3,0.98〉, 〈4,0.99〉) (19) 

 𝑈1 = (〈0,0.00〉, 〈1,0.02〉, 〈2,0.50〉, 〈3,0.99〉, 〈4,1.00〉) (20) 

 

After quantizing the utility functions, we can rewrite the utility functions, as (21), to 

simplify the problem formulation and algorithm design. 

 

 𝑈𝑖
′(𝑙) = 𝑢𝑖,𝑙,  0 ≤ 𝑙 ≤ 𝐾𝑖 (21) 

 

3.1.5 Problem formulation with quantized utility functions 

New notations:  

  𝑙𝑖,𝑗: j
th

 user in i
th

 class is allocated with rate, 𝐵𝑙𝑖,𝑗
 

Objective: 

 
𝑚𝑎𝑥 (∑ ∑ 𝑈𝑖

′(𝑙𝑖,𝑗)
 𝑖

𝑗=1

4

𝑖=1
) (22) 

Constraints: 

 
∑ ∑ 𝐵𝑙𝑖,𝑗

 𝑖

𝑗=1

4

𝑖=1
≤ ∑ �̂�𝑚 × 𝑅𝑚 × 𝐿 × 𝑡

4

𝑚=1
 (23) 

 
∀(𝑖, 𝑗), 

𝐵𝑙𝑖,𝑗

𝑅𝑖
′×𝑇

≥ 𝛼, 𝛼 =
∑ �̂�𝑚×𝑅𝑚×𝐿×𝑡 

𝑚= 

∑  𝑖×𝑅𝑖
′×𝑇 

𝑖= 

× 𝛾, 𝛾 < 1 (24) 

 
∀(𝑖, 𝑗), 

𝑅𝑖
′×𝑇

𝐵𝑙𝑖,𝑗

≥ 𝛽, 𝛽 ≤ 1 (25) 

 
∀𝑖𝑗,  ∑ 𝑦𝑖,𝑗,𝑚

4

𝑚=1
≤ 𝐿 (26) 

 
∀𝑖𝑗,  ∑ 𝑦𝑖,𝑗,𝑚

4

𝑚=1
× 𝑅𝑚 × 𝑡 = 𝐵𝑙𝑖,𝑗

 (27) 

 

 The constraints (23), (24), (25), (26) are equal to (12), (13), (14), (15), and there 
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are a new constraint (27) for the timeslots allocation should match the allocated rate 

level. 

 Up to now, what our scheduling algorithm will do is clear. (a) Allocate a rate level 

to each user. (b) Allocate timeslots to match each level. 

 

3.2 Scheduling algorithms 

3.2.1 The optimal scheduling algorithm 

 Before doing scheduling, we should limit each user’s rate level to satisfy the 

constraint of minimal rate guarantee and minimal usability guarantee. Each user’s rate 

level is limited between 𝑆𝑖 and 𝐾𝑖. They can be calculated by equation (28) and (29). 

 

 𝐵𝑆𝑖
≥ 𝛼𝑅𝑖

′𝑇 => 𝑙𝑖,𝑗 ≥ 𝑆𝑖  (28) 

 𝐵𝐾𝑖
𝛽 ≤ 𝑅𝑖

′𝑇 => 𝑙𝑖,𝑗 ≤ 𝐾𝑖  (29) 

 

 For the same example, assume that 𝛼 = 0.3, 𝛽 = 1, and 𝑅1
′𝑇 = 4, 𝑅2

′𝑇 = 3. 

Then we can know 2 ≤ 𝑙1 ≤ 4 and 1 ≤ 𝑙2 ≤ 3 by (28) and (29). 

To find an optimal solution, we consider all possible rate levels allocation between 𝑆𝑖 

and 𝐾𝑖 for each user and all possible timeslots combination to match the allocated rate level. 

Because each rate may be composed by more than one timeslots combination, so we should 

find all possible timeslots combinations first. For example, the 2 unit rate can be composed by 

2 blue timeslots (1 unit) or 1 green timeslot (2 units), as Figure 15. 

 

 

Figure 15 an example of timeslots combinations 
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 Each scheduling result for each user should contain (a) a rate level to the user, and (b) a 

timeslots composition for the allocated rate. We use optimal search tree to find all cases of (a) 

and (b), excluding the invalid results, and find a solution with maximal summation of utilities 

from all valid results. The optimal search tree is showed in Figure 16. 

 

 

Figure 16 the optimal search tree 

 

 For the same example, assume there are one 1 unit channel and one 2 unit channel. Then 

the optimal algorithm can produce the following search tree, as Figure 17. In the example, we 

use a table to describe the current state. The number in parentheses is the current rate level 

allocated to the corresponding user, and the following two numbers in the same row are the 

number of allocated timeslots with two types of channels. 

 We can observe that user 1 with rate level 2 has two cases, because rate level 2 has two 

different timeslots combinations. Also, the case that user 2 is allocated with rate level 4 is 

excluded because the rate level of user 2 is limit between 1 and 3. 

 After find all possible allocations, we can find the best result from them. The best result 
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in the example is the two users are all allocated with one blue and one green timeslots. 

 

 

Figure 17 an example of optimal search tree 

 

 The complexity of optimal scheduling algorithm is O(𝐿𝐾𝑀) , where 𝑀 = ∑ 𝑓𝑖
4
𝑖=1 , 

because each user has maximal 𝐾 rate levels and the L timeslots combinations to compose 

𝐾 to select. Thus, each user has O(𝐾𝐿) possibilities. In addition, there are total M users, so 

there are O(𝐿𝐾𝑀) possible cases, and it is the complexity of optimal scheduling algorithm. 
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3.2.2 The proposed scheduling algorithm 

 Because the complexity of optimal algorithm is too high, we design a greedy search 

algorithm with related low complexity. The idea of greedy search algorithm is that we 

separate the algorithm to several rounds, and in each round we upgrade the rate level of one 

user who benefits most to the system. The same users can be upgrade many times, because the 

algorithm may not upgrade the user to maximal rate level once. The flow chart of greedy 

search is showed in Figure 18. 

 However, what is the definition of benefiting most to the system, and what is rate level 

the user should be upgraded to? 

 

 

Figure 18 the flow chart of greedy search 

 

 The definition of benefiting most to the system is that the most benefit to system each 

one unit resource. We use utility gradient function to valuate that how good the user benefits 

to system when he is upgraded from 𝑙 to 𝑙∗. The utility gradient functions are defined as 

equation (30). 
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𝐺𝑖(𝑙, 𝑙

∗) =
𝑈𝑖(𝑙

∗) − 𝑈𝑖(𝑙)

𝐵𝑙∗ − 𝐵𝑙
 (30) 

 

Before doing scheduling, we iteratively initialize a rate level between 𝑆𝑖 and 𝐾𝑖 to 

each user. We will try to allocate 𝑆𝑖 to each user, and when we can’t allocate 𝑆𝑖 to someone 

user, we will allocate a higher rate level to the user. 

After initialization, for each user who doesn’t reach the maximal rate level, Ki, there are 

lots of selections of the user to upgrade. We use utility gradient function to find the best rate 

level to upgrade for the user (the resources should be enough to upgrade the user to his best 

rate), and we find the best user who has the largest gradient value from all users with their 

best upgrade level. Then we upgraded the users, recheck the resources, and go to next round. 

The greedy search algorithm can be represented by greedy search tree, as Figure 19. 

 

 

Figure 19 the greedy search tree 
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 When we initialize a user to rate level l or upgrade a user from rate level 𝑙 to 𝑙∗, there 

may be more than one timeslots combinations, and which one should we use to upgrade the 

user? We propose two selection policies: 

(1) Maximal timeslots (MaxT) 

(2) Minimal timeslots (MinT) 

The MaxT means the combination with maximal number of timeslots, and MinT means 

the minimal. For example, the rate level 2 has two timeslots combinations. MaxT will select 

the combination with two blue timeslots (1 unit), and MinT will select the combination with 

one green timeslot (2 unit). 

 

 

Figure 20 an illustrative example – initialization 

 

Take the same example in section 3.2.1 for illustration, showed in Figure 20 and Figure 

21. In Figure 20, we can see that we allocate rate level 2 (not the minimal allowable rate level) 

to user 2 in MaxT policy, because we can’t allocate rate level 1 to him. Also, we can see that 

the results of initialization are different by MaxT and MinT policies. 
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Figure 21 an illustrative example – greedy search tree 

 

 In Figure 21, we can observe that in first round we don’t select the G2(2,3) which has the 

maximal gradient function value, because we can’t find a timeslots combination to allocate 

rate level 3 to user 2. Hence, we select the G1(2,3) to upgrade user 1 to level 3. Also, we can 

observe that the results of MaxT and MinT are same as the result of optimal algorithm, and 

we find the optimal solution with only 3 nodes (optimal search tree has 13 nodes). 

Up to now, our proposed algorithms are entirely introduced, but there are some issues we 

can take into consideration. 

The first one is long-term inner-class fairness. Because the users in the same class have 

the same requirements and utility function, letting anyone user has better treatment is not 

appropriate. Hence, we define a priority factor as below 

 

 
𝑝𝑖,𝑗 =

1

𝑈𝑖(𝑟𝑖,𝑗)̅̅ ̅̅ ̅̅ ̅̅ ̅
 (31) 
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The priority factor is defined as inverse of average utility. The user who has higher 

average utility will have lower priority than other users. When greedy algorithm selects one 

user to upgrade, there may be several users have the same gradient value, because those user 

belong to the same service class. In such case, we will select the user with highest priority to 

upgrade. 

 Another issue is speed up. When one user is upgraded in current round, the next user 

who will be upgraded is the user in the same class. With the idea, we can upgrade user by user 

without recalculating gradient values. The idea can be proved by Lemma 1, showed as below. 

 Lemma 1: If user (𝑖, 𝑗) is upgraded by l in current round, the next to be upgraded will 

be the user whose rate level is equal to (𝑙𝑖,𝑗 − 𝑙) in i
th

 class as long as the resource is enough 

to upgraded the user by l. 

 The Lemma can be proved by proving 

(a) The next user to upgraded will not be user (𝑖, 𝑗). 

(b) The next user to upgraded will not be in i
*th

 class. (𝑖∗ ≠ 𝑖) 

Proving (a) is trivial, because if next user to upgraded is not in i
th

 class, it means that the 

user’s gradient value is larger than user (i,j), the user should be upgraded before upgrading 

user (i,j). It is a contradiction. 

 (b) can be proved by following: 

Assume the next to upgraded is user (𝑖, 𝑗) by l
*
, and 𝑙𝑖,𝑗 is the level of user (𝑖, 𝑗) 

before previous upgrade. 

 
⟹ 𝐺𝑖(𝑙𝑖,𝑗 + 𝑙, 𝑙𝑖,𝑗 + 𝑙 + 𝑙∗) > 𝐺𝑖(𝑙𝑖,𝑗 , 𝑙𝑖,𝑗 + 𝑙) (32) 

 
⟹ 

𝑈𝑖(𝑙𝑖,𝑗 + 𝑙 + 𝑙∗) − 𝑈𝑖(𝑙𝑖,𝑗 + 𝑙)

𝑙∗
>

𝑈𝑖(𝑙𝑖,𝑗 + 𝑙) − 𝑈𝑖(𝑙𝑖,𝑗)

𝑙
 (33) 

 
⟹ 

𝑈𝑖(𝑙𝑖,𝑗 + 𝑙 + 𝑙∗) − 𝑈𝑖(𝑙𝑖,𝑗)

𝑙 + 𝑙∗
>

𝑈𝑖(𝑙𝑖,𝑗 + 𝑙) − 𝑈𝑖(𝑙𝑖,𝑗)

𝑙
  →← (34) 

 (33) to (34) can be proved correct by (35) and (36) 
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 ∵

𝑏

𝑎
>

𝑑

𝑐
⟹

𝑏𝑐

𝑎𝑑
> 1 ⟹ 𝑏𝑐 > 𝑎𝑑 (35) 

 
 ∴

𝑏𝑐 𝑐𝑑

𝑎𝑑 𝑐𝑑
> 1 ⟹

𝑐(𝑏 𝑑)

𝑑(𝑎 𝑐)
> 1 ⟹

𝑏 𝑑

𝑎 𝑐
>

𝑑

𝑐
 (36) 

Finally, the pseudo code of our proposed algorithm is showed below. 

 

// notations 

n
m
: the residual timeslots of R

m
 channels 

𝑙𝑖,𝑗: the initialized rate level of user (i,j) 

Sort the users in the same class by priority (higher first) 

// Each round 

while (there are remaining timeslots) { 

 for (each user(i,j)) { 

  if (𝑙𝑖,𝑗 < 𝐾𝑖) { 

   for (each level l from 1 to 𝐾i − 𝑙𝑖,𝑗) { 

    if (resouce is enough to upgrade user (i,j) by 𝑙) 

     calculate 𝐺𝑖(𝑙𝑖,𝑗 , 𝑙𝑖,𝑗 + 𝑙) 

   } 

  } 

  find the maximal value of G with (i
*

,j
*

,l
*

) 

  } 

 // upgrade user (i
*

,j
*

) by l
*

 

 find one timeslots combination to the user 

 update the values of n
m
 

 set 𝑙𝑖∗,𝑗∗ to 𝑙𝑖∗,𝑗∗ + 𝑙∗ 

 for (j from j
*

 + 1 to 𝑓𝑖∗) {  // the users with the same type 

  if (𝑙𝑖∗,𝑗∗ 1 = 𝑙𝑖∗,𝑗∗ − 𝑙∗ and resource is enough) { 

   find one allocation of timeslots to the user 

   update the values of n
m
 

   set 𝑙𝑖∗,𝑗∗ 1 to 𝑙𝑖∗,𝑗∗ 1 + 𝑙∗ 

  } 

 } 

} 
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Chapter 4 Performance Evaluation 

 

In this chapter, we will show the simulation results of our proposed algorithms. Due to the 

complexity of optimal algorithms, to run the optimal algorithms in large-scale will cost 

several days, even to several months. Hence we separate our simulation into two parts. 

 The first one is small-scale simulation for comparing optimal algorithm with our greedy 

search algorithm. Another one is large-scale simulation for evaluation of fairness and 

performance. The two parts of simulations will be separately showed in section 4.1 and 

section 4.2. 

 

4.1 Small-scale simulation 

4.1.1 Small-scale parameters and environments 

The parameters of MAC frame are showed in Figure 27, and the parameters of service 

types and utility function are showed in Table V and Table VI  

 

 

Figure 22 the MAC frame in small-scale 
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Service class 
Required data rate 

(bps) 

Matched channel 

quality (bps) 

NRT & high load 300 5000 

RT & asymmetric 150 2000 

RT & symmetric 80 1000 

NRT & low load 50 500 

Table V small-scale parameters of service types 

 

Service class a b c 

NRT & high load 5 
  

RT & asymmetric -0.013 -70.189 
 

RT & symmetric 
0.8275 

-0.8275 

-22.48 

23.86 
28 

NRT & low load 4 
  

Table VI small-scale parameters of utility functions 

 

 In small-scale simulations, we design two scenarios. One is that the four types of 

channels have the same granted probability, and another is that four types of channels have 

extremely granted probability. 

In first scenario, the numbers of user in each class are (1, 1, 2, 2), and we consider three 

different granted probability, 30%, 60%, and 90%. In second scenario, the numbers of user in 

each class are (3, 0, 3, 0). We assume that there are only two types of users. One is NRT 

service, and another is RT service. Than we consider two environments. One is that the 
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granted probability of high rate channels is extremely larger than low rate channels, and 

another is opposite. Thus, the granted probabilities of each type of channels in the two 

environments are (80%, 80%, 20%, 20%) and (20%, 20%, 80%, 80%). Each case we will 

run 20 times, and the averages as the results. 

 

4.1.2 Small-scale simulation results 

 In small-scale simulation, there are three simulation results. The first result is the 

comparison of optimal algorithm, our proposed algorithm with two different policies, and 

another make-sensed scheduling algorithm. 

 Consider a heuristic scheduling algorithm, named timeslots based greedy algorithm 

(TGreedy). The algorithm uses the same idea, always allocating resource to the most benefic 

user, as our proposed algorithm, but it only considers one timeslot each round. The flow chart 

of TGreedy is showed in Figure 23. 

 

 

Figure 23 the flow chard of timeslots based greedy algorithm 
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We set γ to 0 and β to 0.8 to find the best performance by each algorithm. The result is 

showed in Figure 24. From the result, we can see that in every scenario, the results of our 

proposed algorithm are very close to the optimal algorithms with both policies. It means that 

our proposed algorithm is able to find a good scheduling result.  

Besides, we can see that there are obvious gaps between the TGreedy algorithm and our 

proposed algorithm. That’s because TGreedy doesn’t consider the characteristics of different 

utility functions. RT utility functions always have a threshold, and only when the allocated 

rate reach the threshold, the utility of RT services will start growing. Thus, considering one 

timeslot each round, if the rate of the timeslot can’t reach the threshold, it won’t be allocated 

to the RT users. Thus, TGreedy considers less than our proposed algorithms, so its results are 

not good as our algorithms. 

 

  

Figure 24 the comparison of utilities with different algorithms 

 

The second result is to observe that the average utility and usability with decreasing β. 

The result is showed in Figure 25 and Figure 26. From the results, we can see that in first case, 

when the value of β is decreasing, the utility is upgraded from 0.5 to 0.75, but the usability is 

only degraded from 1 to 0.9, so it has significant utility improvement without serious usability 
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degradation. However, the phenomenon is not obvious in case2, because there are enough low 

rate channels to serve low rate users, and then we don’t need to serve low rate users by high 

rate channel. Hence, when β is less than 0.9, we can find the best performance in our system. 

 

 

Figure 25 the utility and usability with decreasing β in first case of scenario 2 

 

 

Figure 26 the utility and usability with decreasing β in second case of scenario 2 

 

The third result is to observe utility with increasing γ, and we set β to 0.4 in the 

simulation because when β is less than 0.4 it is always able to find a best result. The result is 
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showed in Figure 27 and Figure 28.  

 

 

Figure 27 the utility with increasing γ in first case of scenario 2 

 

 

Figure 28 the utility with increasing γ in second case of scenario 2 

 

 From the results, we can see that when γ is larger than 0.8, our proposed algorithms will 

have obvious degradation compared to the optimal algorithm. The problem occurs in 

initialization. When we can’t initialize a rate level to every user, the utility result will be set to 

0. The optimal algorithm can find a possible rate level allocation to satisfy every user, but our 
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proposed algorithm can’t. Therefore, the difference of our algorithms and optimal algorithm 

will appear. Besides, we can observe that the MinT policy works better than MaxT in 

initialization upon increasing γ, because it leaves as many as possible timeslots to initialize 

the following users. 

 

 

 

4.2 Large-scale simulation 

4.2.1 Large-scale parameters and environments 

 The parameters have some changes compared with small-scale simulation. The frame 

time and slot time are as same as small-scale MAC frame, but the number of timeslots in one 

frame is 15. The parameters of service types and utility function are showed in Table VII and 

Table VIII.  

 

Service class 
Required data rate 

(bps) 

Matched channel 

quality (bps) 

NRT & high load 2500 10000 

RT & asymmetric 1500 5000 

RT & symmetric 80 1000 

NRT & low load 50 500 

Table VII large-scale parameters of service types 
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Service class a b c 

NRT & high load 5 
  

RT & asymmetric -0.0013 -701.89 
 

RT & symmetric 
0.8275 

-0.8275 

-22.48 

23.86 
28 

NRT & low load 4 
  

Table VIII large-scale parameters of utility functions 

 

 In large-scale simulation, we consider only one scenario which is that the four types of 

channels have the same granted probability. We set number of users to 20, and randomly 

distribute the users to the four classes by uniform probability. We consider the case with 30% 

granted probability, because a system becomes unfair always when resource is extremely 

insufficient. 

 We use the Jain’s fairness index [15] to evaluate the fairness, and the definition of 

inner-class fairness index and whole fairness index are defined in (37) and (38), respectively. 

 

 

Finner =

∑

(

 
 

(∑
𝐵𝑙𝑖𝑗

𝑅𝑖
′𝑇

 𝑖
𝑗=1 )

2

𝑓𝑖 ∑ (
𝐵𝑙𝑖,𝑗

𝑅𝑖
′𝑇

)
 𝑖
𝑗=1

2

)

 
 

4
𝑖=1

4
 

(37) 

 

Fwhole =

(∑ ∑
𝐵𝑙𝑖𝑗

𝑅𝑖
′𝑇

 𝑖
𝑗=1

4
𝑖=1 )

2

(∑ 𝑓𝑖
4
𝑖=1 ) (∑ (

𝐵𝑙𝑖𝑗

𝑅𝑖
′𝑇

)

2
 𝑖

𝑗=1
)

 (38) 
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4.2.2 Large-scale simulation results 

 The result of large-scale simulation is showed in Figure 29. We compare the utility, the 

inner-class fairness index, and whole fairness index upon increasing γ, and we set β to 0.8. 

Because MinT is better than MaxT, we only use MinT in the simulation. 

 

 

Figure 29 the utility and fairness with increasing γ 

 

 From the result, we can observe that the inner-class fairness index is always very close to 

1. The purpose of priority factor is mainly for inner-class fairness and it proves that the 

priority factor is useful. Besides, we can see that the utility is seriously degraded upon 

increasing γ, but the whole fairness index is not significantly improved. Therefore, only when 

we want to guarantee base ratio of QoS to every user, we set γ to a specific value, or we will 

always set γ to 0 for the best performance in our system. 
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Chapter 5 Conclusion and future work 

 

 In this paper, we introduce the CRCN to implement a centralized CR network by Cloud. 

The CRCN has many abilities which a good CR network should have, like MAC frame 

formats, association/disassociation topology, CSS algorithm, and so on. However, the CRCN 

doesn’t have a complete resource management scheme, and we proposed a new resource 

management scheme for our CRCN system. 

 The CRCN resource management scheme is separated to three parts, and this paper focus 

on third part of resource management, the resource management in on CRAP. The works of 

third part contain group allocation, requests mapping, and timeslots allocation. 

 We proposed a simple way to allocate users to groups, classify common network services, 

map each classified service to a constant rate channel, and map the users’ request to the 

numbers of four types of channel for tier-2 resource allocation. 

 In timeslots allocation, we assume the allocated resources are not enough to satisfy all 

users, so we need to effectively use those resources. We introduce the utility functions, and 

use the utility functions to evaluate how good the services is with a given rate. With the utility 

functions, we want to maximize the summation of each user’s utility, and we proposed a 

greedy search algorithm to find a solution to solve the problem. 

 From simulations, we can see that the result of greedy search algorithm is much close to 

the result of optimal algorithm. It means that our proposed algorithm is good enough to 

implement in our system. In addition, we also achieve the inner-class long-term fairness by 

priority factor. 

 In future works, we will try to reduce the time complexity of proposed algorithm. 

Although our proposed algorithm is polynomial-time algorithms, it is not fast enough to do 

scheduling every 0.4 seconds. The works of CRAP are not only resource allocation, but user 
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management, communication between users and the Cloud, if the scheduling algorithm gives 

too many loads to a CRAP, the CRAP may be unstable. 

 In addition, to let our algorithms become implementable algorithms in real system, we 

will survey more related work about resource management in CR networks to review our 

resource management scheme and algorithms. 
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