i
2
i
\m
fin
L
Hif
=N
)
;In_{

i
%ﬂ
=t

Public Key Searchable Encryption with Conjunctive Queries

SR O Y HBE M EEF Z R KR

Public Key Searchable Encryption with Conjunctive Queries

Bogod

fh g

FHET Student : Chai-Wen Hsieh

PR HE Advisor : Rong-Jaye Chen
B = 2 i < 7

A O S - R A

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

e 101 & <

Public Key Searchable Encryption with Conjunctive Queries

Student : Chai-Wen Hsieh Advisors : Dr. Rong-Jaye Chen

Institute of Computer Science and Engineering

College of Computer Science,
National Chiao Tung University

ABSTRACT

Currently, there has been a trend for users to store their encrypted pri-
vate data over the Internet on a data server. Most applications rely on the
data server with powerful computing power to perform searching on
those encrypted data under the circumstances that server cannot access
the plaintext of the data. The searchable encryption therefore becomes a
crucial technique that supports searching functionality over encrypted
data. Searchable encryption provides storage and computing efficiency
for searching on certain keywords without requiring the decryption key.
Researchers have been focused on the public key searchable encryption
since it supports for multi-user settings and is considered more suitable
for actual use than symmetric key searchable encryption. On the other
hand, improving the searching functionality such as supporting conjunc-
tive queries and other types of queries has been deeply studied. In this
thesis, we survey the prominent public key searchable encryption
schemes. Then we propose our design of public key searchable encryp-
tion with conjunctive queries that allows the users sharing the encrypted
data among multiple users without sharing the decryption keys, as well as
sending arbitrary conjunctive queries (KW A--- AKW,,) to the server
without leaking information of any individual conjuncts. Our design of
searchable encryption is based on bilinear pairing based cryptography,
which implies it requires shorter key size than the traditional RSA pub-
lic-key encryptions and implies improvement of efficiency.

B3 LT S MY Foe

B2 LSRR S AR A LT

PR e g\,gﬁzybo"ﬁ A liiﬁ’ﬂ'ﬁ 5% & iF B 4;
MAEF IR 4R~ 2 VIR 2 4o B L AT 2 5 £ B ahPis o #30
fep e Y HEAFEMAET P MR E G K e E S N B
BRI G A VIR 2 4R AR 27 o A ST D
FH2 AR hr o ﬁ%?ﬁgiﬁ‘%,f B AEAMAEMR FIH LIS
O EORBE AL T - SR HOF Ao S MAEF 2 B3 i
SARFENFT Bihw T Y o APMREHRE T ER OB £KT I
F2 R kMo BEAPRD - BORELVIEF FMEFTZ R R
“afb,ﬁf;;%g;g # .%1117; _;g;%ﬁ;%g%ﬁmﬁ-;m—r /,,\};4‘;@@ [EE A I
WA R RPIEB AR v 29 WF F BReEST (KW A AKW,) -
2 AR RE - MAET TN P 2 ek A A
Mpedtz BAg ko A= @ RSA 2B £k % A RE G (BB
AR F B ok o

BEMLHR hx R ,—‘;t_gj’g};-gi;\m;}lﬁgg_azﬁ;m R I
BIA LT A D F AL AEAEES R LR AE A M AL o
M EEE D AR T L - B SR EF o BEHT GOHE ~ 3R 0 IR
2 h RSB EAaT REf
WA WO - EGE 0 d RE

EHBBEHTRTAATEE RS L BESE P 0L W RS
E B W ATy A R A S NERRA LY R B B o

\!

\‘.fF o~ l—%%m;}ﬂ '”E",,;FL’—‘\-J, s

EMEFERS > 33 TS AE R AR T SRR

pLoh o BF R B R o B EEE R TE RE
ME A o > AR IR R AP ELAGE & E 378090 team o EeE A

BB RRHMANFARRA g rE A AN R TN L ARE
Bk ehflEt o 4 BEEER B Aol M enbl o o Rimene AN - 40 Bk HuB s

ERVE o[;k'/‘*\% §ERA LB EE G R s AEER £ o i B P

Contents

AB ST RACT ...ttt e et e st et e et e e e et e et e e r e e et e e reeanaeenree s I
B s]
o USSR Il
(O00] 011=] 01 £ PP ORI v
LISt OF TaBIES ... e e arae e \Y/
LISE OF FIGUIES ...ttt ettt VI
R 1011 0o [0 Tox 1 o OSSPSR 1
2 Mathematical BaCKGIrOUNGc.uiiiiiiiiieiiieiie e 3
2.1 EIPLC CUIVES ...ttt 3

2.2 Rational functions and DIVISOIS..........ceirureirireaiiieesieeesieeesieeesieeesiee e 4

2.3 The Tate PAIFING....c.cuiiiiiiiieiii ettt 6

2.4 Supersingular curves and DiStortion Mapscccocvereiiieniieniieenee s 8

3 Review of Searchable ENCryptions..........ccccoiiiiiieiiieiie e 11
3.1 Searchable ENCryption..........cccooiiiiiiiiiiiiieiieese e 11

3.2 Public Key Encryption with Keyword Search...........ccccocviiiiiiniiinnn, 14

3.3 Multi-user Searchable Data ENCYrptionccccccoovvevveeviiee e, 16
3.3.1 ElGamal Proxy ENCryptionccccocvvveviieeiiine e 19

3.3.2 Keyword ENCryption.........coeciiee e sea e 20

3.3.3 Multi-user Searchable Data ENCryption............ccccovvvvveviiveeiinnnnnn 22

3.4 Hidden-Vector ENCIYPLIONccoieeeiiiie e csiee e 24

N O 11| g @] 514 11 { (o] o [ST ROPRPP 28
4.1 Public Key Searchable Encryption with Conjunctive Queries............... 28

4.2 CoNJUNCLIVE QUETIES.....vvveeiieeeeiieeeeiee e sttt e s rite e stre e s sraa e rta e e saa e e snraeeaneas 36

4.3 EXPEIMENLS ..oiuiiiiiiiie ettt e st et et e e sraa e e e e et e e anneas 41
4.3.1 The Pairing-based Cryptography Libraryc..cccccceeviieeinnnnn 41

4.3.2 Experimental ResUltcccoooiiieiiie e, 44

5 CONCIUSION 1ottt ettt rae et nes 47
5.1 SUIMMIATY ..ttt et e e e e e s bbb e e e e e e s s s bbb b b e raeaeeesnns 47

5.2 FULUIE WOTK ...ttt 47
BIDHOGIapNY ..o 49
APPENAIX 2 SOUICE COUB.....ueiiiiiie ettt e e e et e e arne e 52
AL EPSE. N s 52

A2 EPSELESE.C ..ttt et 54

ALB EPSE.C.eiei et 57

List of Tables

Table 1.1 Comparison between Data Types on Cloud Storage 2
Table 2.1: Supersingular CUrVeS.oeviii e, 9
Table 4.1: NIST Recommended Key Sizes(bits)............................ 41
Table 4.2: Pairings inthe PBC library...................oooiiiiiii, 43
Table 4.3: Comparison of Speed of Different Pairings...................... 43

List of Figures

Figure 3.1

Figure 3.2
Figure 4.1

Figure 4.2
Figure 4.3

Searchable Encryption..............ocooiiiiii 11
Prominent Schemes of Searchable Encryption................ 13
Performance of Individual Operations 45
Performance of Proxy Part..................... iy 46
Performance of HVE Part................cooooiiiiiiiiiin.n. 46

VI

1 Introduction

In this era of information, several issues have been given utmost attention:
how data are stored, security of the data and information retrieval process;
that is, how to retrieve data of use after they have been stored to the stor-
age while remaining its’ secrecy. Many services have been carried out to
meet these needs. Recently, the most popular information technology vi-
sion, cloud computing, have risen with its numerous benefits: unlimited
computing resources on demands, the ease for cloud users to build up a
datacenter both publicly and privately, a hedge against data lost, and so
on. Cloud computing services such as Amazon Elastic Compute Cloud
can attract customers from enterprises to individual users who wish to
save the effort of deploying much hardware which requires the capital
outlays and human resources to maintain it.

Data Security has emerged from the issues which cloud storage ser-
vices are facing. Cloud users should be assured that their data are secure
against curious or malicious eavesdroppers who are not authorized by el-
igible users. Generally, cloud user stores plaintext on cloud storage server.
Cloud storage server is therefore capable of searching on full text in any
fashion. The cloud user then requests the server to return the data of in-
terest. However, in some cases, even the data server is restricted from
accessing full plaintext when the cloud users wish to store confidential
information on the cloud storage. A trivial solution to data security is to
have cloud users store encrypted data on the server. Upon receiving re-
quest for certain data, the server responded with the entire ciphertext back
to the cloud user. Cloud users with correct decryption key are authorized
users and have access to the plaintext. Table 1.1 compares the advantages

and disadvantages between different data types stored on cloud storage

Server.

Data type Advantages Disadvantages

Plaintext Message Server can easily perform operations Breach of security at the server side.
like sorting, searching, compressing to The confidential content of cloud user
optimize computing performance. could be leaked out by cloud server.

Encrypted Ciphertext Users are assured the security of private Unable to access the ciphertext for

data at server side. Only user-authorized server causes extra cost of storage and
party can decrypt the stored ciphertext. performance. Requires users to prepro-

cess plaintext beforehand.

Table 1.1 Comparison between Data Types on Cloud Storage

For users who require absolute data privacy, or say, private database,
adopting encrypted ciphertext as their cloud storage data type is inevita-
ble. Nevertheless, searching ability is magnified as the amount of data
grows. In this case, server should be able to search on encrypted data and
return exactly the data cipher which user is searching for. Traditional
public-key encryption scheme is incapable of providing this functionality.
Thus we need additional encryption scheme to accomplish this goal.

The term “searchable encryption” has been applied to represent en-
cryption algorithms that provide searching functionality over encrypted
data without possession of decryption key. Various forms of searchable
encryption have been widely discussed in the past few years [27].

The paper is structured as follows: Section 2 introduces the mathe-
matical background. Section 3 reviews the previous prominent public key
searchable encryptions. Section 4 covers our design of public key
searchable encryption with conjunctive queries. The paper concludes and
proposes some future work ideas in Section 5.

2 Mathematical Background

In this chapter, we review elliptic curves and bilinear pairings.

2.1 Elliptic Curves

Suppose that E:y? = x3 + ax + b is an elliptic curve defined over a fi-

nite field F, and g is power of aprimep > 3. E has g + 1 —t points

in Fg and —2,/g <t < 2\/6. These points plus O, an imaginary iden-
tity point at infinity, become a group with addition structure. The group is

denoted as E(F,). That is,

E(F) ={(x,y)u0|y*=x>4+ax+b, a,b€F,x,y€F}

The group addition operation is defined as follows. Given points
P =(xy,y,) and Q = (x,,y,) on the curve, we first draw the line
through P and Q. The line intersects the curve in S’ = (x3,y3"). We then
reflect S° over the x-asis to obtain S =P + Q = (x3,—y3) = (x3,¥3).
Suppose that A is the slope of the line through P and Q, then the coor-
dinates of P+Q = (x3,y3) are x3=A%>—x;—x, and y;=
A(xy — x3) — yq, Where

V2 —y1)/(x3 — x1) ifP#Q
/1 =
(3x,%2 4+ a)/2y, ifP=0Q

We also define E(F) ={(x,y)U0 |y =x3+ax+b, a,b €
Fg,x,y € Fja}. Suppose that F_q Is the algebraic closure of E,, then
E(F) S E(F,a) € E(F).

Suppose that r|#E(F,)=q+1—t, then we define E[r] =

{P e E(F,)|rP = 0}. E[r] are called the r-torsion points. The r-torsion

point plays an important role in pairing’s definitions.
We can also find a smallest positive integer k such that r | g% — 1. k
is called the embedding degree. There are two important facts about the

embedding degree. One is that E[r] C E (F,x) and then we can compute
the r-torsion points in E(F) rather than in E(IZ). The other fact is that

ur S F ke where u, ={x e F |x" =1}.

2.2 Rational functions and Divisors

Fx[X,Y] represents the ring of polynomials in two variables X, Y with
coefficients in F i« . A rational function h =f/g where f,gE€

Fx[X,Y] and f iscoprimeto g.
Given an elliptic curve E and a rational function h = f /g, we con-
sider the points that f(x,y) =0 and (x,y) € E(F,). We call those

points zeroes of h. We also consider the points that g(x,y) = 0 and

(x,y) € E(F). Those points are called poles of h. In addition, the ze-

roes are the points where £ and h intersect.

The divisor is a useful tool for keeping track of the zeros and poles
[28]. We use divisors to indicate which points are zeros or poles and their
orders for a rational function over an elliptic curve. A divisor D on and
elliptic curve E is the finite linear combination of the formal symbols
with integer coefficients:

D= z np[P].

PEE

If np > 0, it indicates that P is a zero, and if np < 0, it indicates that
P is a pole. We define Div(E) as the group of divisors. For a divisor
D = Y. np[P], we define supp(D) = {P € E | np # 0} as the support of
D, deg(D) = Y. np asthe degree of D, and sum(D) = Y. npP.

Now we consider only the set of divisors of degree zero. The set
forms a subgroup Div°(E) c Div(E). Let f be a rational function. The
evaluation of a rational function f on a divisor D =), np[P] is defined

by
fo= || rer

Pesupp(D)

The divisor of a rational function fis defined as div(f) = X np((P)

where np s is the zero or pole order of point P on f. The degree of

div(f) must be zero [3]. A divisor D € Div°(E) is principal if it is the
divisor of a function. The following is an important fact.

Theorem 2.1 [28]
Let E be an elliptic curve and D be a divisor on E with deg(D) = 0.
Then there is a function f on E with div(f) = D ifand only if

5

sum(D) = 0.

2.3 The Tate Pairing

The Tate pairing and the Weil pairing [28] are two well-studied pairings.
Under the same security level, The Tate pairing is generally considered
more efficient than the Weil pairing.

Let E be an elliptic curve defined over a finite field F, and q is

power of a prime p > 3. Let G be a cyclic subgroup of E(F,) of order

r which is coprime to g. The embedding degree is k such that
r | ¢ — 1. The Tate pairing is a map

< P,Q >p: E(F)[r] X E(F) /TE(F) — F;k/(F;k)T.

E(F)[r] is defined as E[r]NE(F) and rE(F) is {rS|S€
E(Fx)} and (F;k_)r is {a"|a€Fx}. The groups p,. and
F;k/(F;k)T are isomorphic.

Let P € E(Fy)[r] and let Q € E(F k). Q represents a coset in
E(Fqk)/T'E(Fqk). Let f be a rational function with divisors (f) =

r[P] —r[0]. Choose a S € E(F) suchthat S P,(P—Q),—Q or 0.

Let D be adivisorand D = [Q + S] — [S]. The Tate pairing is defined to
be

< P,Q >.= f(D).

6

f(D) € F(*]k represents a coset in F(*]k/ (F;k)r. In fact, we often want to

standardize the coset representative. Therefore the reduced Tate pairing is
defined to be

k_
t.= <P,Q>9"Vr

The Tate pairing has bilinearity property and other important proper-
ties. See Theorem 2.2 [3].

Theorem 2.2

Let E be an elliptic curve defined over a finite field F, and g is power

of a prime p > 3. Let G be a cyclic subgroup of E(F;) of order r

which is coprime to q. The embedding degree is k. The Tate pairing
satisfies:

1. Bilinearity: Forall P, P;, P, € E(F)[r] and Q, Q,

QZ (S E(Fqk),

t,(Py + P, Q) = t.(P,Q)t,(P,, Q) and
t.(P,Q; + Qz) = t.(P,Qt(P,Qy).

2. Non-degeneracy:
vP,t.(P,Q) =1 ifandonlyif Q = O and
vQ,t.(P,Q) =1 ifandonlyif P = 0.

To compute the Tate pairing, we need to evaluate a rational function f
that (f) = r[P] — r[O]. The Miller’s algorithm [24] can help us find the
function and compute the result of the Tate pairing.

2.4 Supersingular curves and Distortion Maps

Suppose that E:y? = x3 + ax + b is an elliptic curve defined over a fi-

nite field F, and q is power of a primep > 3. E has g + 1 —t points

in F;, and —2,/g <t < 2\/6. If p|t, then E is said to be supersingu-

lar. Otherwise, E is said to be ordinary. An important property of su-
persingular curves is that their embedding degrees are low. Their embed-
ding degrees are from 1 to 6. Low embedding degree is crucial for the ef-
ficiency of computing a pairing. Another important property of su-
persingular curves is the existence of distortion maps.

A distortion map ¢ maps a point P € E(F;) to a point ¢(P) €

E(F) such that P and ¢(P) are linearly independent. If E is su-

persingular and k > 1, the distortion map exists. If E is ordinary and
k > 1, then no distortion map exists for curve E [21]. By using the dis-
tortion map, we can define the modified Tate pairing.

Let E be a supersingular curve defined over a finite field F, and ¢

is power of a prime p > 3. Let G be a cyclic subgroup of E(F;) of or-

der r which is coprime to g. The embedding degree is k such that
r | g% — 1. A distortion map ¢ exists. The modified Tate pairing is a map
t.: G X G — u, and defined to be

(P, Q =t.(P, ¢ (Q).

We note that the first input and the second input of the modified Tate
pairing are from the same group. Therefore we say the modified Tate

8

pairing is symmetric.
Table 2.1 [3] contains some popular supersingular curves.

k Elliptic curve data

E:y? = x* + aover E,, where p isaprimeand p = 2 (mod 3)

E has p+ 1 points
Distortion map (x,y) — ({3x,y), where 3> = 1.

E:y? = x3 +xover E,, where p isaprimeand p = 3 (mod 4)

E has p + 1 points

Distortion map (x,y) — (—x,iy), where i? = —1.

Table 2.1: Supersingular curves

In the rest of this thesis, we usually treat pairings as “black boxes.” It can
help us focus on the design of the encryption scheme. Therefore, we now
give an abstract definition of the pairing.

Definition 2.3 (Bilinear Pairing)

Let G; and G, be two additive cyclic elliptic-curve groups and Gt be a
multiplicative cyclic group. G,, G,, and Gt are all of prime order p.
Let P be a generator of G; and Q be a generator of G,. A bilinear
pairing isa map: e: G, X G, — Gt that satisfies the following properties:

1. Bilinearity,
2. Non-degeneracy,
3. Computability.

These properties are further discussed as follows:

Bilinearity
VP €Gy,Q €G, and Va,b € Z,

e(aP,bQ) = e(P, Q)%

Non-degeneracy
VPEG,P+0
e(P,P) = g (gernerator of Gr)
That is,
P+0=e(P,Q)#1

Computability
3 A, a polynomial-time algorithm
VP €Gy,Q €EG,
A computes e(P, Q) efficiently.

If G, =G,, we have the non-degenerate symmetric bilinear pairing
e:G X G — Gr. Otherwise the pairing is called asymmetric. Tate pairing
are generally considered more efficient than Weil pairing[3][28]. We note
that symmetric pairing is usually realized as the modified Tate pairing
and the asymmetric pairing is usually realized as the reduced Tate pair-

ing.

10

3 Review of Searchable Encryptions

3.1 Searchable Encryption

Searchable encryption is a cryptosystem that enables the users to search
over ciphertext without requiring the decryption key. Let the data be the
documents which user wants to encrypt with; or in practice, the data is the
symmetric encryption key that encrypt the documents. Searchable en-
cryption transforms the data and a set of related keywords into the ci-
phertext. A trapdoor associated with a keyword is generated by the user
to search over the ciphertext for the keyword. After some computation, if
the user has legitimate decryption key, the trapdoor will match with the
ciphertext which contains the keyword. The idea of searchable encryption

Is illustrated in Figure 3.1.

y 2]

- =

I

User

Encrypt: kw : keyword

* Encrypted data
* SE(kw)s

raR .I

Search kw:
* Trapdoor(kw’)

N

Reply:
* Encrypted files tests SEs
which contains kw’

Test:
for each file

Figure 3.1 Searchable Encryption

11

Searchable encryption schemes can be categorized into symmetric
key or public-key searchable encryption. The searchable encryption in the
symmetric key setting allows only the owner of the secret key to create
searchable ciphertext, while anyone can create searchable ciphertext us-
ing the public parameters in the public key setting. However, the sym-
metric key setting is generally faster than the public key setting.

The security of a searchable encryption can be shown by proving that
a probabilistic polynomial-time algorithm A differentiates the encrypted
message and keywords from random data with negligible probability. The
security model shows how much computing power the adversary A can
have. Various security models offer a trade-off between efficiency and
security level. For symmetric key setting, a scheme must prove that
searchable ciphertext and trapdoor do not reveal any information to ad-
versary A. For public key setting, the searchable ciphertext and the
trapdoor that does not match must be proved to reveal nothing to the ad-
versary A. Two most-used models in the public key setting are the ran-
dom oracle model and the standard model. The random oracle model is
used when it comes to avoiding complications, while the standard model
Is stronger but more costly.

The efficiency of a searchable encryption scheme can be evaluated in the
following aspects:

Computational complexity

The complexity needed to create searchable ciphertext, to generate
trapdoor, and to search.

Communication complexity

The complexity needed for searchable ciphertext be send/returned
between the user and the server.

12

Storage complexity

The complexity needed to store public/private parameters, searchable

ciphertext and trapdoor, as well as the storage needed by the server

while performing search.

According to the key setting and the security models, Figure 3-1 depicts

the searchable encryption category along with the prominent schemes in

this category. In this paper, we focus on public key setting searchable en-

cryption schemes.

Symmetric key
settings

Searchable
Encryption
Schemes

Public key
settings

Symmetric key
model

Sl scheme [14]

SSE scheme[7]

Random oracle
model

PEKS scheme[5]

DGD scheme[9]

Standard model

IP scheme[17]

BW scheme|[6]

Figure 3.2 Prominent Schemes of Searchable Encryption

13

3.2 Public Key Encryption with Keyword Search

Public key encryption with Keyword Search (PEKS) is introduced by
Boneh et al. [5] It is the first asymmetric searchable encryption scheme
that can be applied to email gateway routing. The word “public-key”
points out that anyone can encrypt a message with its keywords using re-
ceiver’s public key. Suppose Bob wants to send Alice an email with

keywords Wy, ..., W, using Alice’s public key Ay,;,. Bob sends cipher-
text looked like this:
|Ea, , lemail], PEKS (Apup, W1), .., PEKS (Apu, Wi

where k is a relatively small number. Then Alice can send a trapdoor
Ty, to the email gateway server to search all the ciphertext containing
keyword W using her private key. The server gains no knowledge about
the encrypted emails except which ciphertext contains keyword W. The
server then sends back the set of ciphertext that contains keyword W to
Alice.

Definition 3.1 (Public-key Encryption with Keyword Search)

A public-key searchable encryption scheme that consists of the following
polynomial time randomized algorithms:
1. KeyGen(1%): takes a security parameter k and outputs public/private

keys Apup, Apriv-
2. PEKS(A,yp, W): takes a public key A,,, and a word W, outputs a

searchable encryption of /.
3. Trapdoor(Apyiy, W): takes user’s private key Ay, and a keyword

W, produces a trapdoor Ty, .

14

4. Test(Apyp, S, Ty): takes a public key A, a searchable encryption

S = PEKS(Ayyp, W), and a trapdoor Ty, outputs the test result: if

W = W', return ‘yes’; else return ‘no’.

The concrete construction of PEKS based on Decision Diffie-Hellman
assumption is as follows:

KeyGen(1%)
The input security parameter determines the size p of the groups G,
and G,, from the symmetric bilinear pairinge: G X G - Gy. Two
hash functions H,:{0,1}* = G and H,: G, — {0,1}°87 are defined.

Then randomly choose o € Z;, and a generator g € G. Then, output

public/private key pair A,,, = [g,h = g%] and Ay, = .

PEKS (A, W)
Randomly choose r € Z;, and then compute t = e(H; (W), h") € Gr.

Output PEKS(Apyp W) = [g7, Hy(1)].

Trapdoor(4,,;,, W)

Compute the trapdoor for keyword Was Ty, = H;(W)* € G.

Test(Ayup, S, Tw)

Here S = PEKS(Ap,p, W) . Let S=[4B] and test if

15

H,(e(Ty,A)) = B. If the ‘=" holds, return ‘yes’; else return ‘no’.

Due to the constraints of its design, PEKS scheme is applicable to search
on only small number of keywords instead of the entire file.

3.3 Multi-user Searchable Data Encyrption

A Multi-user Searchable Data Encryption scheme (DGD) proposed by
Dong et al.[9] is a cryptosystem that offers functionalities of sharing en-
crypted data on a untrusted server among a group of authorized user,
performing keyword search on encrypted data without decryption key,
and adding/revoking users without restarting the service. Users rely on
the data storage server to honestly perform searching calculation for them
but do not trust the server with data content — the server is considered to
be “honest but curious.” Three parties are involved in DGD system:

1. Users: The authorized users are able to read/write/search over en-
crypted data on untrusted server. The authorized users are fully
trusted. After revocation, the revoked user will no longer be able to
access the data.

2. Server: The server is responsible for processing the received en-
crypted data, storing the encrypted data, searching on receiving us-
er’s query and return the encrypted data that contains the query
keyword.

3. Key management server (KMS): The fully trusted KMS is respon-
sible for generating/revoking user keys. Compare to untrusted data
server, securing the KMS requires less effort. Also, the KMS can
be kept offline most of the time.

16

Before introducing the multi-user searchable data encryption, we first in-
troduce two definitions: negligible function and pseudorandom function.

Definition 3.2 (Negligible Function)

A function negl(x) is negligible if for every positive polynomial f(-)
L

f(x) *

there exists an integer N such that for all > N, negl(x) <

Definition 3.3 (Pseudorandom Function)
A function f:{0,1}* x {0,1}* - {0,1}" is a pseudorandom function if for
all probabilistic polynomial time algorithm A, there exists a negligible

function negl such that

|Pr[Afk(') = 1] — Pr[AF(') = 1]| < negl(n)

R R
where random key k « {0,1}" and function F:{0,1}* - {0,1}".

Now let’s see the definition of the DGD scheme.

Definition 3.4 (Multi-user Searchable Data Encryption)
A searchable encryption scheme that consists of the following probabilis-

tic polynomial time randomized algorithms:

1. Init(1%): The KMS takes the security parameter k and outputs pub-
lic key Params and a master key set MSK.

2. Keygen(MSK,i): The KMS takes the master key set MSK and a

user’s identity i, generates the secret key set K, , K . User side key

XKy, s then securely sent to the user i, and server side key X, is
sent to the server.

3. Enc (?Cul.,D, kw(D)): The user i uses his user side key ¢, to en-

17

crypt a document D with a set of associated keywords kw (D). The

output is user-side ciphertext c; (D, kw(D)).

4. Re —enc (i,JCSL_, ¢/ (D, kw(D))) : On receiving the ciphertext
ci(D,kw(D)) from user i, the server fetches the server side key
Xs,, and outputs re-encrypted ciphertext c(D, kw(D)).

5. Trapdoor(X,,w): The user i uses his user side key 7, to gen-
erate a trapdoor T;(w) related to a keyword w

6. Search(i, T;(w), E(D), K,): The server takes as input the trapdoor

T;(w) and user’s identity i, then test for each C(D, kW(D)) e E(D)

if keyword w € kw(D). If ‘yes’, the server invokes pre-decrypt al-
gorithm to obtain ¢;(D) and send c;(D) to the user i.

7. Dec (qui, c; (D)): The user takes his user key X , and decrypts

c;(D) to obtain data D.
8. Revoke(i): Given i, the data server updates the user-key mapping

set Ks = Ks \ (i, Ks,).

The DGD scheme is based on proxy cryptography. In the following sec-
tions, we will first review ElGamal encryption scheme &, then describe
the proxy encryption scheme using the algorithm in EIGamal encryption
scheme PE. Next, the keyword encryption scheme K& is defined. Fi-
nally, with PE and KE schemes, the Multi-user Searchable Data En-
cryption are presented.

18

3.3.1 ElIGamal Proxy Encryption

Before defining EIGamal proxy encryption scheme, the EIGamal encryp-
tion scheme £ is defined as follows:

£ — Init(1%)
Choose prime numbers p,q such that g |p — 1, a cyclic group G

with generator g such that G is the unique order g subgroup of Z.

R
Choose x «<Z, and compute h = g*. Outputs the public key
pk = (G, g,h,q) and private key sk = x.

€ — Enc(pk, m)

R
Choose r « Z, and output ciphertext c¢(m) = (g", h"m).

€ — Dec(pk,m)
Decrypt ciphertextas h"m-(g") ™ = g™ "™ m = m.

The proxy encryption scheme PE consists of 6 algorithms:

PE — Init(1%)
KMS runs € — Init(1%) to obtain (G, g, g, x), then it outputs public

parameters (G, g, q), and master key MSK = x.

PE — Keygen(MSK, i)
R
For each user i, KMS chooses x;; < Z, and computes x;; = x —

X;1. Then the KMS securely transmits x;; to the user i and (i, x;,)

19

to the proxy server.

PE — U — Enc(x;;, m)

R
The wuser chooses r<«Z, and outputs ciphertext c*(m) =

(g", g"*i*m). Then the user sends the ciphertext to the proxy server.

PE — P — Enc(i, x;3, c;(m))

In this proxy re-encryption algorithm, the proxy server finds (i, x;,)
where x;, is user‘s server side key, and computes (g")*i -
g™ am = g"™m. The stored ciphertext becomes c(m) = (g", g"™*m).

PE — P — Dec(j, xj, c(m))
In this proxy side decryption algorithm, the proxy server finds j’s
server side key x;; and computes g"™*m - (g")"*2 = g"**m. The

ciphertext is partially decrypted as c¢'(m) = (g",g"**m) and is
sent to user j.

PE — U — Dec(xj;, cj(m))

User fully decrypts the ciphertextas g"*itm - (g")™*t = m.

3.3.2 Keyword Encryption

Derived from the proxy encryption scheme, the keyword encryption
scheme is capable of securely encrypting keywords, allowing user to
search over the encrypted data by generating trapdoors. The keyword en-
cryption scheme K& is defined as follows:

20

KE — Init(1%)
The KMS runs PE — Init(1%) to obtain (G, g,q,x). Compute

h = g* and choose hash function H, a pseudorandom function f
and a random key s for f. Then the KMS outputs public parameters
(G,g9,q9,h,H,), and master key MSK = (x, s).

KE — Keygen(MSK, i)
For each user i, the KMS runs PE — Keygen(MSK, i) to obtain
Xi1,Xip. Then the KMS securely transmits (x;;,s) to the user i

and (i, x;,) to the proxy server.

HE — U — Enc(x;q, kw)
R
The user chooses r «Z, . The user side trapdoor for keyword kw

is encrypted as c*(kw) = (61,6, 6) = ("7, (6)*, H(h"))

where o = f,(kw). Then the user sends the ciphertext c*(kw) to
the proxy server.

KE — P — Enc(i, x;3, c; (kw))

The proxy server computes trapdoor c(kw) = (cq,c,) such that
¢ = (G- 6 = &% = (¢77)* = h™ and c; = H(R").

Because the keyword encryption scheme is used to generate searchable
encryption which does not need to be decrypted, hence there is no de-
crypting algorithm.

21

3.3.3 Multi-user Searchable Data Encryption

Combining the previous PE and K& algorithms, the Multi-user
Searchable Data Encryption SE is described as the following 8 algo-
rithms.
Init(1%)

The KMS runs K& —Init(1%¥) to obtain public parameters

(G,g,q9,h,H,), and master key MSK = (x, s).

Keygen(MSK, i)
For each user i, the KMS runs K& — Keygen(MSK,i) to obtain

Koy K, Then the KMS securely transmits ¥, to the user i

and (i, Xs,) to the proxy server. The server side user-key mapping

set is updated as K's = Ks U (i, K,).

Enc(%X,,, D, kw(D))
The user calls ¢;(D) = P€ — U —Enc(i,X,, D) to encrypt data

D, and compute ¢ (kw) = KE — U — Enc(x;y, kw(D)) for each
for keyword kw € kw(D). The user side ciphertext is
cf(D, kw(D)) = (c{‘(D),c{‘(kwl), ...,c{‘(kwk))

where k = |kw(D)|.

Re — enc (i, X, c;(D, kw(D)))

22

The proxy server finds ¥, = (i, x;3), the server side key of user i.
Then the server invokes c¢(D) = PE — P — Enc (i,JCSi, c;-*(m)) ,

and the server calls c(kwy) = K€ — P — Enc (i,?(si, c;-*(kwk)) for
each c; (kwy) : The re-encrypted data

c(D, kw(D)) = (c(D), c(kw,), ..., c(kwy)) is then inserted into the

data storage E(D) = E(D) U c¢(D, kw(D)).

Trapdoor (%u]_, w)

R
The user j chooses random number r < Z, and uses his user side
key ¥, = (xj1,5) to compute a trapdoor T;(w) = (ty,t,) for a

keyword w , where t;=g""g° , t,=h"g 1" g*i1ow =
g*i2tg*nov, and oy, = f(w).

Search (j, T;(w), E(D), JCSI,)

The server perform search on receiving trapdoor T;(w) =

(tq,t,) from the user j with Ks; = xj2. The server first compute
T = tf"z-t2 = g*°w . Then for each keyword cipher c(kw) =

(c1,¢2) = ("9, H(h™)) in every ciphertext c(D,kw(D)) € E(D),

test if ¢, = H(cy - T™1); ‘true’ implies w = kw great probability,
or say, a match is found. The server then partially decrypt all

matched encrypted data c(D) by invoking c¢j(D) =PE—P—

Dec (j, K, c(D)). Note that c(kw,) does not need to be decrypted.

23

Pre — dec (j, K, ¢(D))
The server runs c;(D) = PE — P — Dec (j, Jcsj,c(D)) to partially

decrypt the encrypted ciphertext and sends c]f (D) touser j.

Dec (il(u]_, c}(D))
User j fully decrypts the pre-decrypted ciphertext c]f (D) by calling

D = PE - U - Dec(K,, cj(D)).

Revoke(i)
To revoke user i, the data server simply updates the user-key map-

ping set K's = Ks \ (i, K,).

The correctness of the searching algorithm depends on the collision re-
sistance of hash function H. Hence, there exists a negligible function
such that

Pr[Search algorithm returns "true’with w # kw] < negl(k)

3.4 Hidden-Vector Encryption

Boneh and Waters[6] proposed a public-key encryption system that uti-
lized Hidden Vector Encryption (HVE) such that conjunctive equality,
comparison, range, and subset queries are allowed. We call it "HVE”
scheme. In HVE scheme, the ciphertext C is related to a vector
x € {0,1}", and the key is related to a vector y € {0,1,¥}" where the no-

24

tation “ * ” represents “don’t care”. Both x and y are “hidden vector”
that contain keywords implicitly. A ciphertext can be decipher once all
entries of y except * (don’t care) on a private key match the corre-
sponding entries of the vector x on the ciphertext. Symmetric pairing
setting with composite group order is used to construct HVE. Here we in-
troduce the latter scheme, Hidden-Vector encryption with groups of
prime order (IP scheme), introduced by lovino and Persiano[17]. The IP
scheme apply the reductions of the original HVE to its construction to
obtain a more efficient scheme supporting conjunctions of equality que-
ries, range queries and subset queries.

Definition 3.2 (Hidden Vector Encryption Scheme)

Let x and y are strings of length n where x € {0,1}" and y €

{0,1,}™. Define a predicate P.(y) =1 ifand only if x; =y; or y; =

« ,for i=1,---,n; P.(y) =0 otherwise. An HVE is a set of probabil-

istic polynomial-time algorithms (Setup,Enc,KeyGeneration,Dec) :

1. Setup(1%,n): Take the i security parameter k and the attribute
length n = poly(k) and output the public key set Pk and a master
key set MSK.

2. Enc(Pk,M, x): Take as input the public key set Pk, the plaintext
M € Gr, and the attribute vector x € {0,1}". Output the ciphertext

C,..

X

3. KeyGeneration(Msk,y): Take as input the master key set MSK

and string y € {0,1,+}". Output the decryption key K,,.
4. Dec(Pk, Ky, C;): Take as input the public key set Pk, the ciphertext

Ct,, and the secret key K,,. Output the message M.

The concrete construction of the IP scheme is stated as follows:

25

Setup (1%, n)
Take the input security parameter k and the attribute length
R
n = poly(k). Choose an instance I = {q, G, Gr,g,e} and y < Z,,
where q is the group order of G and Gy, e is a symmetric biline-
ar pairing e:GxG —» Gy and g is a generator of G. Set
R
Y =e(g,g)Y. Choose random numbers t;, v;,1;,m; < Z, and set

T, =gh, Vi=g"i, Ry =g", M;=g™ for i =1,---,n. Then output
the public key set

Pk =[L1Y,(T;,V;, R, M),]
and the master key set

MSK = [y, (t;, vy, 7 mydi=q |

Enc(Pk,M, x)
Take as input the public key set Pk, the plaintext M € Gy, and the

R R
attribute vector x € {0,1}". Choose random s «Zg; and s; < Zg

for i=1,-,n and compute the ciphertext

Ce, = [0, Co, (X, W=y 1, where 2 =M Y9, C, = g° and

T,575, if x; = 1; VS, if x; =1;
Xi:{ls—si l-f l_ . Wiz{ls lf l_ :
Ri , lf X = 0, Mi , lf Xi = 0,

Then, return the ciphertext C;_ .
KeyGeneration(Msk, y)
Take as input the master key set MSK and string y € {0,1,+}". De-

note Sy and S) to be the set of indices i such that y; = 1 and

26

yi=0.Let S, =S, US) be the set of indices i for which y; # *.
If S, =@, thatis, y = (x,..,%), let K, = g¥. Else, for each i € S,

R
choose o; « Z; at random such that Ziesy a; =y, where y is from

the MSK.Compute K, = (Y;,L;)j—; Where

gt_l , if Yy = 1; gv_l , if Y = 1,'
Y, = X _ L; = & _

g, if y;,=0; gmi, if y; =0;

k@ ,ifyi:*; k® ;ifyi:*;

Then, output the decryption key K, relative to attribute vector y.

Dec(Pk,K,,C;)
Take as input the public key set Pk, the ciphertext C; , and the se-
cretkey K,.If S, = @, then K, = g¥, decrypt the ciphertext C; as

Dec(Pk, Ky, C;.) = 2 - e(Cy, Ky)

Else, decrypt the ciphertext C; as

Dec(Pk,K,,C;) = Q- 1_[e(X;,Y,)e(W,L;)

lESy

If predicate P.(y) = 1, then the decryption result is the plaintext M.

27

4 Our Construction

In Section 4.1 we described our construction in detail. We then introduce
query applications of our design in Section 4.2. We give an simplified
example with smaller numbers to our construction in Section 4.3. In sec-
tion 4.4 we further discuss some related issues. And finally in Section 4.5,
we give out our experiment results.

4.1 Public Key Searchable Encryption with

Conjunctive Queries

We construct a searchable encryption scheme on elliptic curve groups,
based on ElI Gamal Proxy Re-encryption and Hidden Vector Encryption.
Users can share encrypted data among all authorized users while users are
able to perform conjunctive keyword search. In our construction, author-
ized user share encrypted data over the data server that supports the fol-
lowing operations:

Get — The user requests the shared data with its id.

Search — The user asks the data server to perform conjunctive keyword
search by sending a query trapdoor associated with the keywords.

Insert — The user inserts new data into the data server by running the data
encryption algorithm to encrypt the data and the keywords.

Remove — The user requests the data server to remove encrypted data of
certain id and its related keyword encryptions.

28

Since the data server — or called the proxy server since it stand as a proxy
between users - is considered to be “honest and curious” which points out
that the server will perform the search operation honestly but is curious
about the data content. While performing the search operation for users, it
Is important that the data server gains no other information except:

1. which user sent the query, and
2. the set of encrypted documents which contain the queried keywords
That is, the data server will learn nothing about the data content, key-
words to be queried and other information.

In our design, the authorized users are able to:

Encrypt — Users encrypt data with the associating keywords and pass it
to the data server.

Query — Users query for keywords conjunctively over the encrypted
data on the data server by producing a trapdoor related to the keywords.
Decrypt — Users decrypt the encrypted data that is returned from the
data server.

Note that only authorized users in possession of a secret key can do the
above operations. The user’s secret key is called user side key, which is
generated and distributed securely to the users by a Key Management
Server (KMS), while the corresponding server side key is securely trans-
mits to the data sever by the KMS. Two keys — the user side key and the
server side key — are related with a master key that is held secretly by the
KMS. Hence, the KMS should keep the master key secure in order to
keep the entire system free from attack.

We assume no authorized user reveals his user side key to the data
server; otherwise the data server can reconstruct the master key by multi-
plying the user side key with the server side key related to it. We also as-
sume there is an impartial KMS which keeps master key secret and re-
veals nothing but the public parameters. Under these assumptions, we
build up our construction for authorized users to store and share data on

29

untrusted server without revealing the data content to the data server,
while conjunctive queries over the encrypted data is supported by the data
server.

Each algorithm in our searchable encryption scheme consists of two
parts: an elliptic curve proxy encryption part to encrypt the symmetric
session key that encrypts the data, and a hidden-vector encryption part to
generate the conjunctive query searchable encryptions related the key-
words of data. We give the definition of our construction as follows:

Definition 4.1
(Public Key Searchable Encryption with Conjunctive Queries)

Let x and y be strings of length n where x € {0,1}" and y €
{0,1,#}™. Let x(D) be the attribute vector related to data D € G, and
E(D) be encrypted data on data server. Define a predicate P.(y) =1 if
and only if x; =y; or y; =+ , for i=1,---,n; P.(y) = 0 otherwise.
We construct a searchable encryption scheme consisting of the following
nine algorithms:

1. Init(1%,n): The KMS takes the security parameter k and attribute
length n = poly(k), then outputs public key Params and a master
key set MSK.

2. Keygen(MSK,i): The KMS takes the master key set MSK and a

user’s identity i, generates the secret key set K, , K . User side key

Xy, s then securely sent to the user i, and server side key K, is
sent to the server.
3. User Encrypt(%,,, D, xp): The user i uses his user side key %, to

encrypt a document D with a set of associated attribute vector xp,.
The output is user-side ciphertext ¢ (D, xp).

4. Server Re — encrypt (i,?(si, ci*(D,xD)): On receiving the ciphertext

30

c;(D,xp) from user i, the server fetches the server side key K,
and outputs re-encrypted ciphertext c(D, xp).

Trapdoor(%,,, ¥): On input the attribute y, the user i uses his user
side key ¥, to generate a trapdoor T;(y).

Search(Ti(y),E(D),JCsi): The server takes as input the trapdoor
T;(y) and user’s server side key X, then test for each c(D,xp) €

E(D) if predicate P, (y) =1. If ‘yes’, the server invokes
pre-decrypt algorithm to obtain ¢;(D) and send c¢;(D) to the user i.
Server Pre — decrypt(i, K, c(D)): The server takes the encrypted

data that contains queried keyword from the trapdoor and user’s
identity i as input, pre-decrypt the encrypted data with its server

side key X, as c;(D). Send c;(D) to user i.

Dec (Kui, c; (D)): The user takes his user key X , and decrypts

c;(D) to obtain data D.
Revoke(i): Given i, the data server updates the user-key mapping

set Ks = Ks \ (i, K,).

The following is the concrete construction of our searchable encryption.

Note that both the data encryption and attribute vector (keyword related)

encryption are based on pairing-based cryptography.

Init(1%,n)

The KMS first takes the input security parameter k and the attribute
length n =poly(k) . The KMS chooses an instance

31

R
I ={q,G,Gr,g,e} and K < Z,, where q is the group order of G

and G, e is a symmetric bilinear pairing e:GX G —» Gt and g
is a generator of G. Set Y = e(g, g)*. Then the KMS chooses ran-

dom numbers t;, v;, r;, m; & Z4 and computes
T, =g"% Vi=g" Ry=g", Mj=g™

and
Ti=97"% Vi =g Ri=g7" Mj=g™™

for i =1,---,n. The public parameters is published by the KMS as
Params = [I1,Y,(T;, V;, R;, M)T=4, (T}, V{, R;, M{)7-,],

and the the master key is kept secret as

MSK = [TK, (¢, Vi;Ti;mi)?ﬂ]-

Keygen(MSK,j)
On input the MSK, for each user i, the KMS randomly chooses

R
Ky, < Zq, and compute Ks; =X /JCuj. Then the KMS securely
transmits ¥y, t0 the user j and (j,?(sj) to the data server. The

server side key mapping set Ks is updated as Ks = Ks U (j, JCS].).

User Encrypt(%X,,, D, xp)
The user takes as input the data D € Z,, where Z, is the base filed

of G, the user side key X, and attribute vector xj, € {0,1}"™. The

R
user chooses random number r < Z, and computes S = g". Let

D=d,lld, and S =(x5,y). Then he computes C = [cy,c,]

where ¢; =x,-dy, ¢ =y, d, and Quzsx“f. Next, the user

32

R R
chooses s<Z; and s;<Z; for i=1,---,n, and computes

0, =Y ¢, = g5 and

¥ = T,°7%, if xp; =1, W, = V¥, if xpi=1;
i TRt if x. — 0. =W I xe = 0
i , if xp; ; i, if Xp; ;

for i=1,--,n. Finally, ¢;(D,xp) = [¢j(D),c}(xp)] is sent to the
data server where ¢;(D) =[C,Q,] as ciphertext and c;(xp) =

[24, Co, (X;, WP,] as searchable encryption.

Server Re — encrypt (j, s, c; (D, xD))
The proxy server finds the server side key of user j, X, = (j, x;2). It
then re-encrypts the ciphertext ¢;(D,xp) = [cj(D),cj(xp)] by

computing Q = 0”9 =S¥ and 2 =0, =Y"%5 _ Finally,
(D,xp) = [e(D),c(xp)] , where c(D)=[C,Q] and c(xp) =
[2, Co, (X, WP,] is inserted into the data storage E(D) =

E(D) U c(D,xp).

Trapdoor(%,,,y)
The user h takes as input his user side key X, and string
y € {0,1,+}". Denote S; and S; to be the set of indices i such that

Sy={ilyi=1} and S) ={i|y; =0}. Let S, =S;US) be the

33

set of indices i for which y; # . If S, = @, that is, y = (x,...,%),

Ku

R
let T, =g “». Else, for each i €S, choose a number o; «Zjg;

such that Y;es, o; = 3, Compute T, = (Y;, L;)?, where

TiIO(i , lf yl — 1’ Vil(Xi’ lf yl — 1,
o, ify;= *; o ,ify;= *;

Then, the user sends the trapdoor T,, relative to attribute vector y
to the data server.

Search(T,, X,)

Take as input X the server side key of user h, and the trapdoor
T,,, the data server perform search by calculating whether Test = 1
for each c(D,xp) € E(D). If S, =@, then T, = g™, the data
server calculates Test as

Test = () - e(CO,ﬂCShTu)

=1
Else, the data server calculates Test as

Xsh

Test =1 - He(Xi;Yi)e(Wi:Li)

lESy

If predicate P.(y) =1, then Test =1 since

34

Xsh

Test = (- ﬂe(xi,me(wi,m

_lESy

Xsh

-0 :e(g,g)ziesy ai(S—Si)+Ziesy“iSi]

Xsh

=0 _e(g,g)Zi“Y“is]

=(- [e(g’g)xuhs]xsh
=e(g,9)™ e(g,9)"
=1

Server Pre — decrypt (j, JCsj, c(D))
On inputs user id j and encrypted data c(D) = [C, Q], the data

server pre-decrypt c(D) to cj(D) in order for user j to decrypt the

encrypted data. The data server computes Q, = Q_%Sf. ¢j(D) =

[C,Q,] Iis then sent to the user j.

Dec (JCu]_, c}(D))
User j fully decrypts the pre-decrypted ciphertext c;(D) = [C, Q]
where C = [cq,c,] . He computes S = QuK”f and D=d, Il d,

where d; = ¢y x,71, dy, = ¢, - y,~1 to obtain the plaintext data D.

Revoke(i)
To revoke user i, the data server simply updates the user-key map-

ping set Ks = Ks \ (i, Xs,).

Thus we complete the construction of our public key searchable encryp-

35

tion with conjunctive queries. We will further discuss the experimental
performance of each function in section 4.3.

4.2 Conjunctive Queries

In this section we show how conjunctive queries can be applied on our
scheme. Let I = (m4,---,m,,) be a keyword set to be encrypted for
future search. Let x € {0,1}" and y € {0,1,x}" be attribute vectors that
are related to the data and the trapdoor respectively. Let X =
(x4,++,x,) and Y = (y, -+, y,,) be a vector of consecutive attribute
vector x or y, and n be the length of attribute vector. Define a predi-

cate Px(Y) =1 ifandonlyif x;; =y;; or y;; == ,for i=1,---,w

and j=1,--,n; P, (y;) =0 otherwise. Note that in the hidden vector

encryptions we described in Chapters 2 and 3, for simplicity we take only
one attribute vector x € {0,1}" or y € {0,1,%}" as an input. In fact, the
actual input is the hidden vectors X and Y consisting of w attribute
vectors. In the following we will describe the design the attribute vectors
in order to perform conjunctive comparison queries, conjunctive range
queries, and conjunctive subset queries.

Conjunctive Comparison Queries

Suppose there are w conjunctive queries, then the width of the hidden
vector encryption is £ = nw. Let I = (mq,+--,m,,) € (1,---,n)", that is,
m; Is a number ranging from 1 to n. Build an attribute vector X as:

i _{1, if j > m,,
L1710, otherwise.

36

For example, let w = 2, then X € {0,1}?™ such that

1 my n 1 m, n
X Of(.../0j2{2.../1Y40 }...;j0 |2 |2 ... |1

To test whether if a; >m; for any query keyword a; in
A= (a4, -,a,) € (1,-,n)", we build an attribute vector Y as:

.__{1, ifj = a,
Yij = %, otherwise.

For example, assign w = 2, then Y € {0,1,x}*" looks like

Attribute vector X is then hidden in the searchable encryption that is
generated in User Encrypt step, and attribute vectors Y is then hidden in
the trapdoor generated by user in Trapdoor step. In Search step, the pred-
icate Px(Y) is tested to see if a ciphertext contains keywords that
match/satisfy the trapdoor. The predicate Px(Y) =1 if and only if
a; =m; for i =1,---,w. If Px(Y) =1, then the data with keyword set
I = (mq,--,m,,) is considered to be containing keywords such that

m <a AN---Amy, <a,.

Conjunctive Range Queries
A system that supports conjunctive comparison queries also supports
conjunctive range queries. Let I be a set of w keywords I =

37

(my,--,m,) € (1,---,n)". A range query searches for plaintexts where
keyword m € [a, b]. For example, let w = 1. To do conjuctive range
queries, build the attribute vector X € {0,1}" as:

X 0O .../0 |1 1 |...|1

The predicate Py(Y) =1 ifand only if m > a and m < b. To do con-
junctive range queries, attach more attribute vectors to X and Y for
different m;’s.

Conjunctive Subset Queries

Here we show how to design attribute vectors so the subset queries is
searchable. Let = (mq,---,m,,) € T , where T is a size-n set of all pos-
sible m. Let an attribute vector X be:

x~—{L if j = m,,
b7 10, otherwise.

To test whether if m; €A; for any query set A; €T in
A=(Ay-,A,) for i =1,---,w, build an attribute vector Y as:

”_{a if j ¢ 4,
Yij = % otherwise.

38

The predicate Px(Y) =1 if and only if m; € 4; for all i=1,---,w.
That is, Px(Y) =1, m; in I = (my,---,m,,) satisfies that m, € 4; A
~+Am, €A, . For example, let w =1, build the attribute wvector
X € {0,1}" as:

X 0O |.../0 |1 |0 |.../0

Build the attribute vector Y € {0,x}" according to set A = {2,3,n} as:

1 2 3 4 5 n
Y O*|*]0]0]...]0]=

Note that Px(Y) =1 if and only if m € A. Arbitrary number of con-
junctive subset queries are also allowed by setting larger w.

Subset queries using Bloom filters

We notice that in the subset queries, the space needed increases signifi-
cantly as n, the size of T of all possible keywords, increases. The hid-
den attribute vector X is of size nw, with the same size for Y. We give
a design using the Bloom filters to reduce the space requirement as the
size of T is large.

Bloom filters[4] utilizes multiple functions H,,---H;:{0,1}* > T. A
bloom filter B is a vector of size n, such that B € {0,1}". For a key-
word m of arbitrary length, the bloom filter of this word is B € {0,1}"
that contains 1’ at positions H,(m),-:-, H;(m). With I = (m4,---,m,,),
we have bloom filter B € {0,1}" that contains ‘1’ at positions H(m;),
for k=1,---,d, i =1,---,w We design the attribute vectors X as:

. {1, if j = H,(my),
b 0, otherwise.

39

In another word, the attribute vector X is set to be the bloom filter B of
keyword set I = (m4,--+,m,,). Then for a set A = (m'y,---,m’y), build
an attribute vector Y as:

“_{1, if j = H,(m")),
Yij = 1« . otherwise.

That is, the attribute vector Y is set to be the bloom filter B’ of key-
word set A. The predicate Px(Y) =1 if and only if set A€ I. The
predicate Px(Y) indicates whether all words m’ in set A are contained
in set . If yes, then the bloom filter B is marked ‘1’ at the correspond-
ing position, so does the bloom filter B’. If no, then B’ “could” contains
‘I’s not in B with very high probability (small collision probability). By
choosing d, number of functions H,,::-Hy, and n, the size of a bloom
filter B, the false positive probability can be very small. Say,

Pr(Px(Y) = 1with A ¢ I] < negl(k)

40

4.3 Experiments

In this section we describe the implementation of our public key searcha-
ble encryption. First we describe the pairing library used in our program
in section 4.3.1. Then we have performance evaluation in section 4.3.2.

4.3.1 The Pairing-based Cryptography Library

The pairing-based cryptography (PBC) library [23] is an open source li-
brary that is released under the GNU Lesser General Public License. The
PBC library is written in C and provides routines such as elliptic curve
generation, elliptic curve arithmetic and pairing computation.

We have tested the speed of the PBC library. We performed our ex-
periments on a 2.4 GHz Intel Xeon E5620 processor running Ubuntu
11.10. The security level we choose is 128-bit. Table 4.1 is the key size
comparison under different security levels [29].

Date Minimun | Symmetric | RSA and Elliptic
of Strength | Key DH Curve

2010 80 80 1024 160

2011-2030 | 112 112 2048 224

> 2030 128 128 3072 256

Table 4.1: NIST Recommended Key Sizes(bits)

There are seven types of pairings defined in the PBC library. The seven
types are type A, type B, type C, type D, type E, type F and type G. Type
A, type B and Type C are supersingular curves. Type D, type E, type F
and type G are based on complex multiplication (CM) method[28].

41

However, type B and type C are not implemented yet.
The CM equation is
DV? = 4q — t?,
where the discriminant D is positive. We omit the details of the CM
method here.

iri v vl — 3
Type A pairings are constructed on the curve E:y~ = x° + xover F,

where q is a prime and q = 3 (mod 4). E is a supersingular curve, so
this pairing is a symmetric pairing e: G; X G; = Ggp. Gp is a subgroup

of F,z because the embedding degree is 2. Therefore we choose the

group order r to be 256-bit long and q to be 1536-bit long, because g2
must be 3072-bit long to achieve the same security level as 256-bit long
in elliptic curve.

Type D pairings are constructed on the MNT curves of embedding
degree 6 [25]. This pairing is an asymmetric pairing e:G; X G, = Gr.

Gr is a subgroup of Fge because the embedding degree is 6. Given dif-

ferent discriminant in the CM equation, the bits in q and the bits in r
are determined. Therefore we choose two suitable type D pairings. One is
that the discriminant is 31387, q is 522-bit long and r is 514-bit long.
The other is that discriminant is 873867, q is 486-bit long and r is
442-bit long

Type E pairings are constructed on the curves of embedding 1 [21].
The pairing is a symmetric pairing e:G; X G; = Gy. Gy IS a subgroup
of F, because the embedding degree is 1. Therefore we choose the
group order r to be 256-bit long and q to be 3072-bit long, because q
must be 3072-bit long to achieve the same security level as 256-bit long
in elliptic curve.

Type F pairings are constructed on the curves of embedding 12. This
pairing is an asymmetric pairing e:G; X G, = Gg. Gp is a subgroup of

42

Fq1z because the embedding degree is 12. Therefore we choose the group

order r to be 256-bit long and g to be 256-bit long.

Type G pairings are constructed on the curves of embedding 10 which
Freeman suggests [11]. Given different discriminant in the CM equation,
the bits in q and the bits in r are determined. Therefore we choose one
suitable type G pairings. The curve is that the discriminant is 35707, q is
301-bit long and r is 279-bit long. Table 4.2 is a comparison of the pair-
ings in the PBC library.

Embedding | Symmetric | Supersingular
Degree Pairing

Type A 2 yes yes

Type D 6 no no

Type E 1 yes no

Type F 12 no no

Type G 10 no no

Table 4.2: Pairings in the PBC library

Pairing | Multiplication Addition Addition
Time Time in Gp Timein G; |Timein G,
(ms) | (ms) (ms) (ms)
Type A 38 0.009 0.042 0.042
Type D-311387 | 48 0.023 0.011 0.078
Type D-873867 | 35 0.020 0.010 0.068
Type E 87 0.009 0.108 0.108
Type F 49 0.037 0.006 0.009
Type G-35707 |45 0.036 0.006 0.090

Table 4.3: Comparison of Speed of Different Pairings

For each type, we choose 10 random inputs to the pairing function and
compute the average time. We also choose 100 random elements for G,
G, and G; for each type and compute the average time of an addition or
an multiplication. The result of our test is shown in Table 4.3. We note

43

that in our encryption scheme, we need a symmetric pairing. And the
Type E pairing is the slowest pairing. Therefore, in our implementation,
we choose the Type A pairing.

4.3.2 Experimental Result

We implemented our algorithms on a 2.4 GHz Intel Xeon E5620 proces-
sor running Ubuntu 11.10. We used 1536-bit prime g for pairing. In the
first experiment, we measured the execution time of each of the following
operations:

Initialization — KMS outputs public key and a master key set.

Key Generation — KMS generates user side key and server side key.
User Encryption — the user side proxy and searchable encryption.
Server Re-encryption — the server side proxy re-encryption
Trapdoor — the user side trapdoor generation.

Search — the trapdoor/searchable encryption matching test.

Server Pre-decryption — the server side proxy decryption.

User Decryption — the user side proxy decryption.

© 0 N o g~ wDdhPE

Revocation — the server side revocation of the user.

Figure 4.1 shows the results. Our test data are 2011 eprint pdf files. Note
that the pdf data were encrypted with symmetric key encryption AES128.
Then we took the session key of AES128 encryption as our plaintext. The
user who successfully decrypts the ciphertext will retrieve the session key
of the encrypted pdf file. We did not calculate the AES128 encrypting
time, so the size of the pdf files was irrelevant. The time was measured in
milliseconds, and it is the average of 10000 executions. We set the size
hidden vectors N=10. We can now see that the Initialization took up
most of the time. The main cause is that it needs 4N times pairing ele-

44

ment powers. So are the user encryption and search algorithms, which
both need 2N element powers. The Search and Trapdoor algorithm are
significantly influenced by the number of = (don’t care) appears in the
attribute vector Y. The more * , the less computation is needed, which
happens in most of the application where don’t care term is much more
than ‘0’s and “1’s.

Initialization T 1224312

Key Generation | 0.536
User Encyrption [N 341.131

Server Re-encryption 2.039

Trapdoor 30.06

M time (ms)
Search 258/541
Server Pre-decryption 0.001
User Decryption | 0.009
Revocation | 0.009
' time (ms)

0 200 400 600 800 1000 1200 1400

Figure 4.1 Performance of Individual Operations

It is obvious that all algorithms that spend longer time are searchable en-
cryption related. So the second and third experiments came as follows:
we measured the algorithms by two parts: the proxy encryption part and
hidden vector encryption part.

Figure 4.2 showed the result of 10000 executions of proxy encryption
part algorithms. We showed that under N=10, N=100, N=1000, we had
similar execution time for the proxy encryption part. Hence, the number
of keywords does not affect the encryption of the data but only affect the
searchable encryption in our algorithm. As to the result of 10000 execu-
tions of HVE encryption part, under N=10, N=100, N=1000, we had

45

the execution time of Initialization, User Encryption, Trapdoor and
Search algorithms in direct proportional with the size of hidden attribute
vector N. Hence, it is crucial to optimize the size of hidden vector since
it causes significant increases in computing time.

Initilization (proxy)

User Encyrption (proxy)

= N=1000
H N=100

0.001
Server Pre-decryption | 0.001 m N=10
0.001

0.01
User Decryption 0.009

0.009

time (ms)
0 10 20 30 40

Figure 1.2 Performance of Proxy Part

115685.352

Initialization (hve) 1656.867

912

29055.083
User Encyrption (hve) 2920

301.114

1.882 = N=1000
Server Re-encryption | 3.098

2.039 m N=100

m N=10
5781.282

Trapdoor | 588.767
30.06

18147.775
Search 1923.714
258.541

0 20000 40000 60000 80000 100000 120000 140000

time (ms)

Figure 4.3 Performance of HVE Part

46

5 Conclusion

5.1Summary

We introduced the idea of searchable encryption that is used to solve the
problem of how to efficiently search on encrypted data. In Chapter 2, we
introduced the mathematical background including elliptic curve and bi-
linear pairings. In Chapter 3, we reviewed three prominent public key
searchable encryptions: public key encryption with keyword search, mul-
ti-user searchable data encryption, and hidden-vector encryption. We de-
scribed the scheme, and then gave out its definition as well as its concrete
construction. In Chapter 4, we described our design of searchable encryp-
tion, providing a solution to sharing data on untrusted server with con-
junctive keyword search. After describing our construction in detail, we
introduced several applications of our scheme, including conjunctive
comparison queries, range queries, and subset queries. We mentioned an
interesting application that can reduce the space needed by conjunctive
subset queries by apply Bloom filters on the hidden vectors. Then we de-
scribed our implementation and evaluated the performance of our algo-
rithms.

5.2 Future Work

For further research, we recommend for the following topics:
1. Multi-user searchable data encryption without key management
center: In our design and DGD scheme, we need a key management

47

center to hold the master key. Generating user side and server side
keys of all users with a single master key implies the risk of collusion
attack. Also, renewing master keys requires the user to encrypt his
previous encrypted data and searchable encryption again. We expect
there is a multi-user searchable encryption scheme that runs without
key management center.

Improve the performance of HVE encryption. As we can see in
the performance evaluation in Chapter 4.3, most computation are cost
by pairing computation. By redesigning the algorithms, we expect the
precompile pairing comes in handy while, if possible, consecutive
pairing computes with the same first argument. Precompile pairing
improves performance significantly on a type A pairing.
Applications of HVE. By designing the hidden vector X and Y
properly, the hidden vector encryption provides can do many opera-
tions while the vectors are hidden. We look for more applications of
HVE.

48

Bibliography

[1] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange, J.

[2]

(3]

[4]

[5]

[6]

[7]

8]

Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable encryption revisited:

consistency properties, relation to anonymous IBE, and extensions,” Journal of
Cryptology, vol. 21, no. 3, pp. 350-391, 2008.

G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy
re-encryption schemes with applications to secure distributed storage,” in Pro-
ceedings of the 12th Annual Network and Distributed System Security Symposi-
um, 2005, pp. 29-44.

I. F. Blake, G. Seroussi, and N. P. Smart, Advances in elliptic curve cryptog-
raphy. Cambridge Univ Pr, 2005.

B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422-426, 1970.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public key encryp-
tion with keyword search,” in Advances in Cryptology-Eurocrypt 2004, 2004, pp.
506-522.

D. Boneh and B. Waters, “Conjunctive, subset, and range queries on encrypted
data,” Theory of Cryptography, pp. 535-554, 2007.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable symmetric en-
cryption: improved definitions and efficient constructions,” in Proceedings of the
13th ACM Conference on Computer and Communications Security, 2006, pp.
79-88.

A. De Caro, V. lovino, and G. Persiano, “Fully secure anonymous hibe and se-

cret-key anonymous ibe with short ciphertexts,” Pairing-Based Cryptog-
raphy-Pairing 2010, pp. 347-366, 2010.

49

[9] C. Dong, G. Russello, and N. Dulay, “Shared and searchable encrypted data for
untrusted servers,” Journal of Computer Security, vol. 19, no. 3, pp. 367-397,
2011.

[10] T. ElGamal, “A public key cryptosystem and a signature scheme based on dis-
crete logarithms,” in Advances in Cryptology, 1985, pp. 10-18.

[11] D. Freeman, “Constructing pairing-friendly elliptic curves with embedding de-
gree 10,” Algorithmic Number Theory, pp. 452-465, 2006.

[12] D. Freeman, “Converting pairing-based cryptosystems from composite-order
groups to prime-order groups,” Advances in Cryptology—EUROCRYPT 2010, pp.
44-61, 2010.

[13] M. Green and G. Ateniese, “Identity-based proxy re-encryption,” in Applied
Cryptography and Network Security, 2007, pp. 288—306.

[14] E. J. Goh, “Secure indexes,” Technical Report 2003/216, IACR ePrint Cryptog-
raphy Archive (2003), http://eprint.iacr.org/2003/216

[15] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search over
encrypted data,” in Applied Cryptography and Network Security, 2004, pp. 31—
45,

[16] J. Hoffstein, J. C. Pipher, and J. H. Silverman, An introduction to mathematical
cryptography. Springer Verlag, 2008.

[17] V. lovino and G. Persiano, “Hidden-vector encryption with groups of prime
order,” Pairing-Based Cryptography—Pairing 2008, pp. 75-88, 2008.

[18] A. Ivan and Y. Dodis, “Proxy cryptography revisited,” in Proceedings of the
Network and Distributed System Security Symposium (NDSS), 2003.

[19] M. Jakobsson, “On quorum controlled asymmetric proxy re-encryption,” in Pub-
lic Key Cryptography, 1999, pp. 632-632.

[20] J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting disjunctions,
polynomial equations, and inner products,” in Proceedings of the Theory and

50

http://eprint.iacr.org/2003/216

Applications of Cryptographic Techniques 27th Annual International Conference
on Advances in Cryptology, 2008, pp. 146-162.

[21]N. Koblitz and A. Menezes, “Pairing-based cryptography at high security levels,”
Cryptography and Coding, pp. 13-36, 2005.

[22] A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully secure
functional encryption: attribute-based encryption and (hierarchical) inner product
encryption,” Advances in Cryptology-EUROCRYPT 2010, pp. 62-91, 2010.

[23] B. Lynn, “PBC library-the pairing-based cryptography library,”
http://crypto.stanford.edu/pbc/

[24] V. Miller, “Short programs for functions on curves,” Unpublished manuscript,
vol. 97, pp. 101-102, 1986.

[25] A. Miyaji, M. Nakabayashi, and S. Takano, “New explicit conditions of elliptic
curve traces for FR-reduction,” IEICE Transactions on Fundamentals of Elec-
tronics, Communications and Computer Sciences, 2001.

[26] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” Advances in Cryp-
tology—EUROCRYPT 2005, pp. 557-557, 2005.

[27] S. Sedghi, J. Doumen, P. Hartel, and W. Jonker, “Towards an information theo-
retic analysis of searchable encryption,” Information and Communications Secu-

rity, pp. 345-360, 2008.

[28] L. C. Washington, Elliptic curves: number theory and cryptography, vol. 50.
Chapman & Hall, 2008.

[29] “NIST Recommended Key Sizes.”
http://www.nsa.gov/business/programs/elliptic_curve.shtml.

51

http://crypto.stanford.edu/pbc/

Appendix : Source Code

We call our construction as EPSE, where E stands for Elliptic curve
cryptography, P for Proxy Encryption, SE stands for Searchable Encryp-
tion. The following is our C code for our construction: A.1 gives our
header file, A.2 gives an example test file of using our construction head-
er file, and A.3 is our EPSE.c code.

A.1 EPSE.h

#ifndef SELIB_EPSE_H_
#define SELIB_EPSE_H_
#include <pbc/pbc.h>
#include <openssl/sha.h>
#include "./pairingio.h™
#include <libgen.h>
#include <omp.h>
#include <dirent.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <fcntl.h>
#define EPSEPARAM "EPSE.pairing"
#define N 10
#define NUM_OF_USER 100
typedef struct {
element_t g;
element tY;
pairing_t pairing;
element_t T[N], V[N], R[N], M[N];
element_t Ti[N], Vi[N], Ri[N], Mi[N];
}PUB_PARAM;
typedef struct {
element_t k;
element_t t[N], V[N], r[N], m[N];

52

}PRIV_PARAM;
typedef struct {
int id;
element_t ku;
JUSER;
typedef struct {
element_t ks[NUM_OF_USERY];
}SERVER;
typedef struct {
char attry[N];
element_t tr_of allstar;
element_t Y[N], L[N];
}TRAPDOOR;
typedef struct {
char path[80];
char attrx[N];
}PTEXT,;
typedef struct {
char path[80];
element t R;
mpz_t cl, c2;
element_t Sigma;
element_t CO;
element_t X[N], W[N];
IHVE;
/* The following are the 8 EPSE functions
return O if succeed, -1 if failed*/
int epse_init(PUB_PARAM pub, PRIV_PARAM prv);
int epse_keygen(USER user, SERVER server, PUB_PARAM pub, PRIV_PARAM
prv);
int epse_u_enc(USER user, PTEXT *pt, HVE *hve, SERVER server, PUB_PARAM
pub);
int epse_u_dec(USER user, PTEXT *decipher, HVE *hve, SERVER server,
PUB_PARAM pu
int epse_s_enc(int userid, SERVER server, HVE *hve, PUB_PARAM pub);
int epse_s_dec(int userid, SERVER server, HVE *hve, PUB_PARAM pub);
int epse_u_trapdoor(USER user, TRAPDOOR *tr, PUB_PARAM pub);
int epse_s_search(int userid, TRAPDOOR *tr, SERVER server, PUB_PARAM pub);

53

void hve_to_file(HVE *hve, char* path);

int comparebyte(char* c1, char* c2, int len);

/I following two functions transcode/detranscode a char string message to a big num-
ber of type mpz_t

void transcode(unsigned char* message,mpz_t crypt);

void detranscode(mpz_t crypt,unsigned char * message);

#endif

A.2 EPSEtest.c

#include "../selib/EPSE.h"
#include <pbc/pbc.h>
inti;

int main(){

/I Initialize public parameters
PUB_PARAM pub;
PRIV_PARAM prv;
/I Load in a.param
pbc_param_t pairing_param;
/Ipairing_string_from_file(pairing,PAIRING_PARAM);
pbc_param_init_a_gen(pairing_param, 256, 1536);
pairing_init_pbc_param(pub.pairing,pairing_param);
pairing_param_to_file(pairing_param, EPSEPARAM);

element_init_G1(pub.g,pub.pairing);;
element_init_GT(pub.Y,pub.pairing);;

for(i=0;i<N;i++){
element_init_G1(pub.T[i],pub.pairing);
element_init_G1(pub.V[i],pub.pairing);
element_init_G1(pub.R[i],pub.pairing);
element_init_G1(pub.M[i],pub.pairing);
element_init_G1(pub.Ti[i],pub.pairing);
element_init_G1(pub.Vi[i],pub.pairing);
element_init_G1(pub.Ri[i],pub.pairing);
element_init_G1(pub.Mi[i],pub.pairing);

54

/I Initialize private parameters
element_init_Zr(prv.k,pub.pairing);
for(i=0;i<N;i++){

element_init_Zr(prv.t[i],pub.pairing);

element_init_Zr(prv.v[i],pub.pairing);

element_init_Zr(prv.r[i],pub.pairing);

element_init_Zr(prv.m[i],pub.pairing);
}

/Il Create server and userl , user2

SERVER server;

USER user01, user02;

user0l.id = 1;

user02.id = 2;
element_init_Zr(user01.ku,pub.pairing);
element_init_Zr(user02.ku,pub.pairing);
element_init_Zr(server.ks[user01.id],pub.pairing);
element_init_Zr(server.ks[user02.id],pub.pairing);
epse_keygen(user01,server,pub,prv);
epse_keygen(user02,server,pub,prv);

/I Create a plaintext
PTEXT pt;
strcpy(pt.attrx,”"000111111");

Il Create a hve
HVE hve;
strcpy(hve.path, "test");
element_init_G1(hve.R,pub.pairing);
mpz_inits(hve.c1,hve.c2,NULL);
element_init_GT(hve.Sigma,pub.pairing);
element_init_G1(hve.CO,pub.pairing);
for(i=0; i<N; i++){

element_init_G1(hve.X[i],pub.pairing);
element_init_G1(hve.W[i],pub.pairing);
}
element_t test;
element_init_GT/(test,pub.pairing);
element_t s, exp;

55

element_init_Zr(s,pub.pairing);
element_init_Zr(exp,pub.pairing);
char buf[1024];
DIR *dir;
struct dirent *ent;
dir = opendir ("epse2011/");
if (dir 1= NULL) {
/* print all the files and directories within directory */
while ((ent = readdir (dir)) '= NULL) {
if(ent->d_name[0] !=""){
[lprintf ("%s\n", ent->d_name);
sprintf(buf,"epse2011/%s",ent->d_name);
strcpy(pt.path, buf);
sprintf(buf,"epsetest/%s.se",ent->d_name);
hve_to_file(&hve,buf);
epse_s_enc(user0l.id,server,&hve,pub);
}
}
closedir (dir);
}else {
/* could not open directory */
perror (");
return;
}
/I Create a deciphertext
PTEXT decipher;
strcpy(decipher.path,"plaintext.decipher™);
/I Create a trapdoor
TRAPDOOR tr;
strepy(tr.attry, "> **Q***1**").
element_init_G1(tr.tr_of allstar,pub.pairing);
for(i=0;i<N;i++){
element_init_G2(tr.Y[i],pub.pairing);
element_init_G2(tr.L[i],pub.pairing);
}
epse_u_trapdoor(user02,&tr,pub);
epse_s_search(user02.id,&tr,server,pub);
epse_u_dec(user02,&decipher,&hve,server,pub);

56

/I user encrypt
element_t R,RS;
mpz_t c1, c2;
mpz_inits(c1,c2,NULL);
element_init_G1(R,pairing);
element_init_G1(RS,pairing);
ece_u_enc(g,kuj,R,c1,c2,"plaintext.txt","ece",pairing);
ece_s_enc(RS,R,ksj,pairing);
ece_s_enc(RS,R,ksh,pairing);

I user decrypt
ece_u_dec(g,kuh,R,c1,c2,"ece.aes128","plain.decipher”,pairing);
element_clear(g);
element_clear(k);
return 1,

A.3 EPSE.c

Here we provide only the essential functions of EPSE.c: keygen, user en-
crypt, server re-encrypt, trapdoor, search, server pre-decryt, and user de-

crypt.

int epse_keygen(USER user, SERVER server, PUB_PARAM pub, PRIV_PARAM
prv{

element_random(user.ku);

element_div(server.ks[user.id],prv.k,user.ku);

return O;
}
int epse_u_enc(USER user, PTEXT *pt, HVE *hve, SERVER server, PUB_PARAM
pub){
Il Proxy Encryption Part

element _tr,S;

element_init_Zr(r,pub.pairing);

element_init_G1(S,pub.pairing);

element_random(r);

element_mul(S,r,pub.g);

57

element_mul(hve->R,user.ku,S);

char command[1024] = {0},

Il generate session key

sprintf(command, "openssl rand 16 > session_key");

system(command);

Il encrypt file using AES-cbc under session key

sprintf(command, "openss| aes-128-cbc -e -salt -in %s -out %s.aes128 -pass pas
system(command);

FILE *sessionkey = fopen("session_key","r");
unsigned char aeskey[16], key1[9], key2[9];
fread(aeskey,1,16,sessionkey);
fclose(sessionkey);

for(i=0;i<8;i++) keyl[i]=aeskey[i];
keyl1[8]="0";

for(i=0;i<8;i++) key2[i]=aeskey[i+8];
key2[8]="0";

mpz_t m1, m2;
mpz_inits(m1,m2,NULL);
transcodage(keyl,ml);
transcodage(key2,m2);

mpz_t xs,ys;

mpz_inits(xs,ys,NULL);

element_to_mpz(xs,element_x(S));
element_to_mpz(ys,element_y(S));

mpz_add(hve->c1,xs,m1);

mpz_add(hve->c2,ys,m2);

Il encrypt session key under RSA and then remove the session key
sprintf(command, "rm -f session_key");

system(command);

/l HVE Part
element_t s,si[N];
element_init_Zr(s,pub.pairing);
element_t exp, negs, S_si;
element_init_Zr(exp,pub.pairing);

58

element_init_Zr(negs,pub.pairing);

element_init_Zr(s_si,pub.pairing);

/I Choose s, si at random

element_random(s);

for (i=0; i<N; i++){
element_init_Zr(si[i],pub.pairing);
element_random(si[i]);

}

/l Compute Sigma

element_neg(negs,s);

element_mul(exp,user.ku,negs);

element_pow_zn(hve->Sigma,pub.Y,exp);

/I Compute CO

element_mul(hve->CO0,pub.g,s);

/I Compute Xi, Wi

for (i=0; i<N; i++){
element_init_G1(hve->X[i],pub.pairing);
element_init_G1(hve->W[i],pub.pairing);
element_sub(s_si,s,si[i]);

if (pt->attrx[i] =='0){
element_pow_zn(hve->X[i],pub.R[i],s_si);
element_pow_zn(hve->WT[i],pub.M[i],si[i]);

Yelse if (pt->attrx[i] =="1"){
element_pow_zn(hve->X([i],pub.T[i],s_si);
element_pow_zn(hve->W[i],pub.V[i],si[i]);

}

}
return O;

}

int epse_s_enc(int userid, SERVER server, HVE *hve, PUB_PARAM pub){
element_mul(hve->R,hve->R,server.ks[userid]);
element_pow_zn(hve->Sigma,hve->Sigma,server.ks[userid]);
return O;

}

int epse_u_trapdoor(USER user, TRAPDOOR *tr, PUB_PARAM pub){
/I Check if all ystr are * (don't care), if yes, write 1 and Ky = gy to outfi
int allstar = 1;
for (i=0; i<N; i++){

59

if(tr->attry[i] '="*"){
allstar = 0;
break;

¥
¥

/I Initialize and assign a according to ystr
element_t a[N], sum, diff;
element_init_Zr(sum,pub.pairing);
element_init_Zr(diff,pub.pairing);
for (i=0; i<N; i++){
element_init_Zr(a[i],pub.pairing);
if (tr->attry[i] '="*"){
element_random(a[i]);
element_add(sum,sum,a[i]);
}
else{
element_set0(a[i]);
}

}
/I Modified the first randomed a[i] s.t. sum(ai)=y

for (i=0; i<N; i++){

if (tr->attry[i] 1="*"){
element_sub(diff,sum,user.ku);
element_sub(a[i],a[i],diff);
break;

}

}
/I Compute Key Ky = [Y, L]
for (i=0; i<N; i++){

if (tr->attry[i] == "*"){
element_setO(tr->YTi]);
element_setO(tr->L[i]);

Yelse if (tr->attry[i] == "1"){
element_pow_zn(tr->Y[i],pub.Ti[i],a[i]);
element_pow_zn(tr->L[i],pub.Vi[i],a[i]);

Yelse if (tr->attry[i] =="'0"){
element_pow_zn(tr->Y[i],pub.Ri[i],a[i]);
element_pow_zn(tr->L[i],pub.Mi[i],a[i]);

60

}

}

if (allstar == 1){
element_pow_zn(tr->tr_of_allstar,pub.g,user.ku);

Yelse{

element_setO(tr->tr_of_allstar);

¥

return O;
}
int epse_s_search(int userid, TRAPDOOR *tr, SERVER server, PUB_PARAM pub){
if(element_isO(tr->tr_of _allstar)){
printf(" Searching allstar\n");
Yelse{
element_t result, tmp;
element_init_GT/(result,pub.pairing);
element_init_GT(tmp,pub.pairing);
/I Createa tmp hve
HVE hve;
strcpy(hve.path, "test™);
element_init_G1(hve.R,pub.pairing);
mpz_inits(hve.c1,hve.c2,NULL);
element_init_GT(hve.Sigma,pub.pairing);
element_init_G1(hve.CO,pub.pairing);
for(i=0; i<N; i++){
element_init_G1(hve.X[i],pub.pairing);
element_init_G1(hve.W[i],pub.pairing);
}
FILE *ftr;
char buf[1024];
DIR *dir;
struct dirent *ent;
dir = opendir (“epsetest/");
if (dir 1= NULL) {
while ((ent = readdir (dir)) '= NULL) {
if(ent->d_name[0] !'=""){
sprintf(buf,"epsetest/%s",ent->d_name);
ftr = fopen(buf,"r");
elements_string_from_file(ftr,hve.Sigma);

61

elements_string_from_file(ftr,hve.CO0);
for(i=0;i<N;i++){
elements_string_from_file(ftr,hve. X[i]);
elements_string_from_file(ftr,hve.W[i]);
}
fclose(ftr);
element_set1(result);
for(i=0;i<N;i++){
if(tr->attry[i] '="*"){
pairing_apply(tmp,hve. X[i],tr->Y[i],pub.pairing);
element_mul(result,result,tmp);
pairing_apply(tmp,hve.W[i],tr->L[i],pub.pairing);
element_mul(result,result,tmp);
}
}

element_pow_zn(result,result,server.ks[userid]);
element_mul(result,result,hve.Sigma);

}
}
closedir (dir);
}else {
/* could not open directory */
perror ("Error, no such directory\n™);
return -1,

¥

return O;
}
int epse_s_dec(int userid, SERVER server, HVE *hve, PUB_PARAM pub){
element_div(hve->R,hve->R,server.ks[userid]);
return O;
}
int epse_u_dec(USER user, PTEXT *decipher, HVE *hve, SERVER server,
PUB_PARAM pu
element_t S;
element_init_G1(S,pub.pairing);
element_div(S,hve->R,user.ku);
mpz_t m1, m2, xs, ys;
mpz_inits(m1,m2,xs,ys,NULL);

62

element_to_mpz(xs,element_x(S));
element_to_mpz(ys,element_y(S));
mpz_sub(m1,hve->c1,xs);
mpz_sub(m2,hve->c2,ys);
unsigned char buf{80];
unsigned aeskey[16];
detranscodage(m1,buf);
for(i=0;i<8;i++) aeskey[i]=buf[i];
detranscodage(m2,buf);
for(i=0;i<8;i++) aeskey[i+8]=buf[i];

I put aeskey to session_key
FILE *sessionkey = fopen("session_key","w");
for(i=0;i<16;i++){

fputc(aeskey[i],sessionkey);

}
fclose(sessionkey);
char command[1024] = {0};
sprintf(command, "od -x session_key");
system(command);
sprintf(command, "openssl aes-128-cbc -d -in %s.aes128 -out %s -pass pass:\"'c
printf(*"system: %s\n",command);
system(command);
return O;

63

