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Public Key Searchable Encryption with Conjunctive Queries 

 

Student：Chai-Wen Hsieh    Advisors：Dr. Rong-Jaye Chen 

Institute of Computer Science and Engineering 

College of Computer Science, 

National Chiao Tung University 

 

ABSTRACT 

Currently, there has been a trend for users to store their encrypted pri-

vate data over the Internet on a data server. Most applications rely on the 

data server with powerful computing power to perform searching on 

those encrypted data under the circumstances that server cannot access 

the plaintext of the data. The searchable encryption therefore becomes a 

crucial technique that supports searching functionality over encrypted 

data. Searchable encryption provides storage and computing efficiency 

for searching on certain keywords without requiring the decryption key. 

Researchers have been focused on the public key searchable encryption 

since it supports for multi-user settings and is considered more suitable 

for actual use than symmetric key searchable encryption. On the other 

hand, improving the searching functionality such as supporting conjunc-

tive queries and other types of queries has been deeply studied. In this 

thesis, we survey the prominent public key searchable encryption 

schemes. Then we propose our design of public key searchable encryp-

tion with conjunctive queries that allows the users sharing the encrypted 

data among multiple users without sharing the decryption keys, as well as 

sending arbitrary conjunctive queries (         ) to the server 

without leaking information of any individual conjuncts. Our design of 

searchable encryption is based on bilinear pairing based cryptography, 

which implies it requires shorter key size than the traditional RSA pub-

lic-key encryptions and implies improvement of efficiency. 
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公 開 金 鑰 可 搜 尋 多 關 鍵 字 之 加 密 系 統 

學生：謝嘉雯        指導教授：陳榮傑 教授 

國立交通大學資訊科學與工程研究所碩士班 

 

摘要 

使用者將加密後的私密資料儲存至位於網際網路上的資料儲存

伺服器已成為趨勢。有很多應用依賴具有強大運算能力的伺服器根據

關鍵字搜尋加密文件，可搜尋之加密系統因此成為重要的技術。對於

加密文件中搜尋關鍵字，此系統提供有效率的儲存與計算方式，並且

無需解密金鑰。在可搜尋之加密系統的研究之中，比起對稱金鑰可搜

尋之加密系統，公開金鑰可搜尋之加密系統較為被重視，因其支持多

使用者的環境設定。另一方面，搜尋功能如多關鍵字之查詢的改進也

已被深入探討。在這篇論文中，我們概括論述了重要的公開金鑰可搜

尋之加密系統。接著我們提出一個公開金鑰可搜尋多關鍵字之加密系

統，提供讓使用者在不透漏解密金鑰的情況下分享加密文件之功能，

以及要求伺服器在加密之文件中搜尋多個關鍵字(         )，

並且不洩漏任何單一關鍵字的資訊。我們的搜尋之加密系統基於雙線

性配對之密碼系統，比起傳統 RSA 公開金鑰加密系統具有更短的密

鑰長度，提高計算上的效能。 
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1 Introduction 

 

 

In this era of information, several issues have been given utmost attention: 

how data are stored, security of the data and information retrieval process; 

that is, how to retrieve data of use after they have been stored to the stor-

age while remaining its’ secrecy. Many services have been carried out to 

meet these needs. Recently, the most popular information technology vi-

sion, cloud computing, have risen with its numerous benefits: unlimited 

computing resources on demands, the ease for cloud users to build up a 

datacenter both publicly and privately, a hedge against data lost, and so 

on. Cloud computing services such as Amazon Elastic Compute Cloud 

can attract customers from enterprises to individual users who wish to 

save the effort of deploying much hardware which requires the capital 

outlays and human resources to maintain it. 

 Data Security has emerged from the issues which cloud storage ser-

vices are facing. Cloud users should be assured that their data are secure 

against curious or malicious eavesdroppers who are not authorized by el-

igible users. Generally, cloud user stores plaintext on cloud storage server. 

Cloud storage server is therefore capable of searching on full text in any 

fashion. The cloud user then requests the server to return the data of in-

terest. However, in some cases, even the data server is restricted from 

accessing full plaintext when the cloud users wish to store confidential 

information on the cloud storage. A trivial solution to data security is to 

have cloud users store encrypted data on the server. Upon receiving re-

quest for certain data, the server responded with the entire ciphertext back 

to the cloud user. Cloud users with correct decryption key are authorized 

users and have access to the plaintext. Table 1.1 compares the advantages 
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and disadvantages between different data types stored on cloud storage 

server. 

 

Data type Advantages Disadvantages 

Plaintext Message Server can easily perform operations 

like sorting, searching, compressing to 

optimize computing performance.  

Breach of security at the server side. 

The confidential content of cloud user 

could be leaked out by cloud server. 

Encrypted Ciphertext Users are assured the security of private 

data at server side. Only user-authorized 

party can decrypt the stored ciphertext. 

 

Unable to access the ciphertext for 

server causes extra cost of storage and 

performance. Requires users to prepro-

cess plaintext beforehand.  

 

Table 1.1 Comparison between Data Types on Cloud Storage 

 

For users who require absolute data privacy, or say, private database, 

adopting encrypted ciphertext as their cloud storage data type is inevita-

ble. Nevertheless, searching ability is magnified as the amount of data 

grows. In this case, server should be able to search on encrypted data and 

return exactly the data cipher which user is searching for. Traditional 

public-key encryption scheme is incapable of providing this functionality. 

Thus we need additional encryption scheme to accomplish this goal.  

The term “searchable encryption” has been applied to represent en-

cryption algorithms that provide searching functionality over encrypted 

data without possession of decryption key. Various forms of searchable 

encryption have been widely discussed in the past few years [27].  

The paper is structured as follows: Section 2 introduces the mathe-

matical background. Section 3 reviews the previous prominent public key 

searchable encryptions. Section 4 covers our design of public key 

searchable encryption with conjunctive queries. The paper concludes and 

proposes some future work ideas in Section 5. 
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2 Mathematical Background 
 

In this chapter, we review elliptic curves and bilinear pairings.  

 

2.1  Elliptic Curves 

 

Suppose that               is an elliptic curve defined over a fi-

nite field    and   is power of a prime    .   has       points 

in    and   √     √ . These points plus  , an imaginary iden-

tity point at infinity, become a group with addition structure. The group is 

denoted as  (  ). That is,  

 

 (  )  {(   )    |                          . 

 

The group addition operation is defined as follows. Given points 

  (     ) and   (     )  on the curve, we first draw the line 

through   and  . The line intersects the curve in    (      ). We then 

reflect    over the x-asis to obtain       (      
 )  (     ). 

Suppose that   is the slope of the line through   and  , then the coor-

dinates of     (     )  are              and    

 (     )    , where 

 

  {

(     ) (     )               ⁄

(   
   )    ⁄                       
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   We also define  (   )  {(   )    |                

             Suppose that   
̅̅ ̅ is the algebraic closure of   , then 

 (  )   (   )   (  ̅). 

   Suppose that   |   (  )       , then we define  [ ]  

{   (  ̅)|    }.  [ ] are called the r-torsion points. The r-torsion 

point plays an important role in pairing’s definitions. 

   We can also find a smallest positive integer   such that   |     . k 

is called the embedding degree. There are two important facts about the 

embedding degree. One is that  [ ]   (   ) and then we can compute 

the r-torsion points in  (   ) rather than in  (  ̅). The other fact is that  

       where    {    ̅  |  
    . 

 

 

2.2  Rational functions and Divisors 

 

   [   ] represents the ring of polynomials in two variables  ,   with 

coefficients in    . A rational function     ⁄  where     

   [   ] and   is coprime to  .  

Given an elliptic curve   and a rational function     ⁄ , we con-

sider the points that  (   )    and (   )   (   ). We call those 

points zeroes of h. We also consider the points that  (   )    and 

(   )   (   ). Those points are called poles of  . In addition, the ze-
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roes are the points where    and    intersect. 

The divisor is a useful tool for keeping track of the zeros and poles 

[28]. We use divisors to indicate which points are zeros or poles and their 

orders for a rational function over an elliptic curve. A divisor   on and 

elliptic curve   is the finite linear combination of the formal symbols 

with integer coefficients: 

 

  ∑   [ ]

   

  

 

If     , it indicates that   is a zero, and if     , it indicates that 

  is a pole. We define    ( ) as the group of divisors. For a divisor 

  ∑  [ ], we define     ( )  {    |       as the support of 

 ,    ( )  ∑   as the degree of  , and    ( )  ∑   . 

   Now we consider only the set of divisors of degree zero. The set 

forms a subgroup     ( )     ( ). Let   be a rational function. The 

evaluation of a rational function   on a divisor   ∑  [ ] is defined 

by  

 ( )  ∏  ( )  

      ( )

  

    

The divisor of a rational function   is defined as    ( )  ∑    ( ) 

where      is the zero or pole order of point   on  . The degree of 

   ( ) must be zero [3]. A divisor        ( ) is principal if it is the 

divisor of a function. The following is an important fact. 

 

Theorem 2.1 [28] 

Let   be an elliptic curve and   be a divisor on   with    ( )   . 

Then there is a function   on   with    ( )      if and only if 
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   ( )     

   

2.3  The Tate Pairing 

 

The Tate pairing and the Weil pairing [28] are two well-studied pairings. 

Under the same security level, The Tate pairing is generally considered 

more efficient than the Weil pairing.  

Let    be an elliptic curve defined over a finite field    and   is 

power of a prime    . Let   be a cyclic subgroup of  (  ) of order 

  which is coprime to  . The embedding degree is   such that 

  |     . The Tate pairing is a map  

 

         (   )[ ]   (   )   (   )   
  
 ( 

  
 )  ⁄⁄  

 

 (   )[ ]  is defined as  [ ]   (   )  and   (   )  is {    |   

 (   )   and ( 
  
 )  is {    |        . The groups    and 

 
  
 ( 

  
 ) ⁄  are isomorphic.  

   Let    (   )[ ] and let    (   ). Q represents a coset in 

 (   )   (   )⁄ . Let    be a rational function with divisors ( )  

 [ ]   [ ]. Choose a    (   ) such that     (   )        . 

Let   be a divisor and   [   ]  [ ]. The Tate pairing is defined to 

be 

 

        ( )  
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 ( )   
  
  represents a coset in  

  
 ( 

  
 ) ⁄   In fact, we often want to 

standardize the coset representative. Therefore the reduced Tate pairing is 

defined to be 

 

          
     ⁄   

 

The Tate pairing has bilinearity property and other important proper-

ties. See Theorem 2.2 [3]. 

 

Theorem 2.2 

Let    be an elliptic curve defined over a finite field    and   is power 

of a prime    . Let   be a cyclic subgroup of  (  ) of order   

which is coprime to  . The embedding degree is  . The Tate pairing 

satisfies: 

1. Bilinearity: For all  ,   ,     (   )[ ] and  ,   , 

    (   ),   

  (       )    (    )  (    ) and 

            (       )    (    )  (    )  

2. Non-degeneracy: 

               (   )    if and only if      and 

     (   )    if and only if     . 

 

To compute the Tate pairing, we need to evaluate a rational function f  

that ( )   [ ]   [ ]. The Miller’s algorithm [24] can help us find the 

function and compute the result of the Tate pairing. 

  



 

8 

 

2.4  Supersingular curves and Distortion Maps 

 

Suppose that               is an elliptic curve defined over a fi-

nite field    and   is power of a prime    .   has       points 

in    and   √     √ . If   |  , then   is said to be supersingu-

lar. Otherwise,   is said to be ordinary. An important property of su-

persingular curves is that their embedding degrees are low. Their embed-

ding degrees are from 1 to 6. Low embedding degree is crucial for the ef-

ficiency of computing a pairing. Another important property of su-

persingular curves is the existence of distortion maps.    

A distortion map    maps a point    (  ) to a point  ( )  

 (   ) such that   and  ( ) are linearly independent. If   is su-

persingular and    , the distortion map exists. If E is ordinary and 

     , then no distortion map exists for curve E [21]. By using the dis-

tortion map, we can define the modified Tate pairing. 

Let    be a supersingular curve defined over a finite field    and   

is power of a prime    . Let   be a cyclic subgroup of  (  ) of or-

der   which is coprime to  . The embedding degree is   such that 

  |     . A distortion map   exists. The modified Tate pairing is a map 

  ̂         and defined to be 

 

  ̂(   )    (    ( ))  

 

We note that the first input and the second input of the modified Tate 

pairing are from the same group. Therefore we say the modified Tate 
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pairing is symmetric.  

   Table 2.1 [3] contains some popular supersingular curves. 

 

 

 

k Elliptic curve data 

2           over   , where   is a prime and     (     ) 

  has     points 

Distortion map (   )  (     ), where   
   . 

2           over   , where   is a prime and     (     ) 

  has     points 

Distortion map (   )  (     ), where      . 

Table 2.1: Supersingular curves 

 

 

In the rest of this thesis, we usually treat pairings as “black boxes.” It can 

help us focus on the design of the encryption scheme. Therefore, we now 

give an abstract definition of the pairing. 

 

Definition 2.3 (Bilinear Pairing) 

Let    and    be two additive cyclic elliptic-curve groups and    be a 

multiplicative cyclic group.   ,   , and    are all of prime order  . 

Let   be a generator of    and   be a generator of   . A bilinear 

pairing is a map:              that satisfies the following properties: 

 

1. Bilinearity, 

2. Non-degeneracy, 

3. Computability. 
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These properties are further discussed as follows: 

 

Bilinearity   

                           
  

 (     )   (   )    

 

Non-degeneracy   

           

           (   )    (                ) 

That is, 

               (   )    

 

Computability  

∃ 𝐴 , a polynomial-time algorithm  

               

𝐴 computes  (   ) efficiently. 

 

If      , we have the non-degenerate symmetric bilinear pairing 

          . Otherwise the pairing is called asymmetric. Tate pairing 

are generally considered more efficient than Weil pairing[3][28]. We note 

that symmetric pairing is usually realized as the modified Tate pairing 

and the asymmetric pairing is usually realized as the reduced Tate pair-

ing. 
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3 Review of Searchable Encryptions 

 

 

3.1   Searchable Encryption 

 

Searchable encryption is a cryptosystem that enables the users to search 

over ciphertext without requiring the decryption key. Let the data be the 

documents which user wants to encrypt with; or in practice, the data is the 

symmetric encryption key that encrypt the documents. Searchable en-

cryption transforms the data and a set of related keywords into the ci-

phertext. A trapdoor associated with a keyword is generated by the user 

to search over the ciphertext for the keyword. After some computation, if 

the user has legitimate decryption key, the trapdoor will match with the 

ciphertext which contains the keyword. The idea of searchable encryption 

is illustrated in Figure 3.1. 

 

Figure 3.1 Searchable Encryption 
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Searchable encryption schemes can be categorized into symmetric 

key or public-key searchable encryption. The searchable encryption in the 

symmetric key setting allows only the owner of the secret key to create 

searchable ciphertext, while anyone can create searchable ciphertext us-

ing the public parameters in the public key setting. However, the sym-

metric key setting is generally faster than the public key setting. 

The security of a searchable encryption can be shown by proving that 

a probabilistic polynomial-time algorithm   differentiates the encrypted 

message and keywords from random data with negligible probability. The 

security model shows how much computing power the adversary   can 

have. Various security models offer a trade-off between efficiency and 

security level. For symmetric key setting, a scheme must prove that 

searchable ciphertext and trapdoor do not reveal any information to ad-

versary   . For public key setting, the searchable ciphertext and the 

trapdoor that does not match must be proved to reveal nothing to the ad-

versary  . Two most-used models in the public key setting are the ran-

dom oracle model and the standard model. The random oracle model is 

used when it comes to avoiding complications, while the standard model 

is stronger but more costly. 

 

The efficiency of a searchable encryption scheme can be evaluated in the 

following aspects: 

 

Computational complexity 

The complexity needed to create searchable ciphertext, to generate 

trapdoor, and to search. 

 

Communication complexity 

The complexity needed for searchable ciphertext be send/returned 

between the user and the server. 
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Storage complexity 

The complexity needed to store public/private parameters, searchable 

ciphertext and trapdoor, as well as the storage needed by the server 

while performing search. 

 

According to the key setting and the security models, Figure 3-1 depicts 

the searchable encryption category along with the prominent schemes in 

this category. In this paper, we focus on public key setting searchable en-

cryption schemes. 

 

 

 

  

Searchable 
Encryption 
Schemes 

Symmetric key 
settings 

Symmetric key 
model 

SI scheme [14] 

SSE scheme[7] 

Public key 
settings 

Random oracle 
model 

PEKS scheme[5] 

DGD scheme[9] 

Standard model 

IP scheme[17] 

BW scheme[6] 

Figure 3.2 Prominent Schemes of Searchable Encryption  
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3.2   Public Key Encryption with Keyword Search 

 

Public key encryption with Keyword Search (PEKS) is introduced by  

Boneh et al. [5] It is the first asymmetric searchable encryption scheme 

that can be applied to email gateway routing. The word “public-key” 

points out that anyone can encrypt a message with its keywords using re-

ceiver’s public key. Suppose Bob wants to send Alice an email with 

keywords         using Alice’s public key  𝐴   . Bob sends cipher-

text looked like this: 

[     
[     ]     (𝐴      )       (𝐴      )] 

where   is a relatively small number. Then Alice can send a trapdoor 

   to the email gateway server to search all the ciphertext containing 

keyword   using her private key. The server gains no knowledge about 

the encrypted emails except which ciphertext contains keyword  . The 

server then sends back the set of ciphertext that contains keyword   to 

Alice.  

 

Definition 3.1 (Public-key Encryption with Keyword Search) 

A public-key searchable encryption scheme that consists of the following 

polynomial time randomized algorithms: 

1.       (  ): takes a security parameter   and outputs public/private 

keys 𝐴    𝐴    . 

2.     (𝐴     ): takes a public key 𝐴    and a word  , outputs a 

searchable encryption of  . 

3.         (𝐴      ): takes user’s private key 𝐴     and a keyword 

 , produces a trapdoor   . 
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4.     (𝐴         ): takes a public key 𝐴   , a searchable encryption 

      (𝐴     ), and a trapdoor    , outputs the test result: if 

    , return ‘yes’; else return ‘no’. 

 

 

The concrete construction of PEKS based on Decision Diffie-Hellman 

assumption is as follows: 

 

      (  ) 

The input security parameter determines the size   of the groups    

and   , from the symmetric bilinear pairing           . Two 

hash functions    {    
    and       {         are defined. 

Then randomly choose     
  and a generator    . Then, output 

public/private key pair 𝐴    [      ] and 𝐴      . 

 

    (      )  

Randomly choose     
 , and then compute    (  ( )   )    . 

Output     (𝐴     )  [     ( )]. 

 

        (       ) 

Compute the trapdoor for keyword W as      ( )   . 

 

    (         ) 

Here       (𝐴     ) . Let   [𝐴  ]  and test if 
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  ( (   𝐴))   . If the ‘=’ holds, return ‘yes’; else return ‘no’. 

 

Due to the constraints of its design, PEKS scheme is applicable to search 

on only small number of keywords instead of the entire file.  

 

 

3.3   Multi-user Searchable Data Encyrption  

 

A Multi-user Searchable Data Encryption scheme (DGD) proposed by 

Dong et al.[9] is a cryptosystem that offers functionalities of sharing en-

crypted data on a untrusted server among a group of authorized user, 

performing keyword search on encrypted data without decryption key, 

and adding/revoking users without restarting the service. Users rely on 

the data storage server to honestly perform searching calculation for them 

but do not trust the server with data content – the server is considered to 

be “honest but curious.” Three parties are involved in DGD system: 

1. Users: The authorized users are able to read/write/search over en-

crypted data on untrusted server. The authorized users are fully 

trusted. After revocation, the revoked user will no longer be able to 

access the data. 

2. Server: The server is responsible for processing the received en-

crypted data, storing the encrypted data, searching on receiving us-

er’s query and return the encrypted data that contains the query 

keyword. 

3. Key management server (KMS): The fully trusted KMS is respon-

sible for generating/revoking user keys. Compare to untrusted data 

server, securing the KMS requires less effort. Also, the KMS can 

be kept offline most of the time. 
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Before introducing the multi-user searchable data encryption, we first in-

troduce two definitions: negligible function and pseudorandom function. 

 

Definition 3.2 (Negligible Function) 

A function     ( ) is negligible if for every positive polynomial  ( ) 

there exists an integer   such that for all           ( )  
 

 ( )
 . 

 

Definition 3.3 (Pseudorandom Function) 

A function   {      {      {      is a pseudorandom function if for 

all probabilistic polynomial time algorithm  , there exists a negligible 

function      such that 

|  [   ( )   ]    [  ( )   ]|      ( ) 

where random key  
 
← {      and function   {     

 
 {     . 

 

Now let’s see the definition of the DGD scheme. 

 

 

Definition 3.4 (Multi-user Searchable Data Encryption) 

A searchable encryption scheme that consists of the following probabilis-

tic polynomial time randomized algorithms: 

1.     (  ): The KMS takes the security parameter   and outputs pub-

lic key        and a master key set    . 

2.       (     ): The KMS takes the master key set     and a 

user’s identity  , generates the secret key set    
    

. User side key 

   
 is then securely sent to the user  , and server side key     is 

sent to the server. 

3.    (   
     ( )): The user   uses his user side key    

 to en-
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crypt a document   with a set of associated keywords   ( ). The 

output is user-side ciphertext   
 (    ( )). 

4.       (        
 (    ( ))) : On receiving the ciphertext 

  
 (    ( )) from user  , the server fetches the server side key 

   , and outputs re-encrypted ciphertext  (    ( )). 

5.         (   
  ): The user    uses his user side key    

 to gen-

erate a trapdoor   ( ) related to a keyword    

6.       (    ( )  ( )    ): The server takes as input the trapdoor 

  ( ) and user’s identity  , then test for each  (    ( ))   ( ) 

if keyword     ( ). If ‘yes’, the server invokes pre-decrypt al-

gorithm to obtain   
 ( ) and send   

 ( ) to the user  . 

7.    (   
   

 ( )): The user takes his user key    
 , and decrypts 

  
 ( ) to obtain data  . 

8.       ( ): Given  , the data server updates the user-key mapping 

set       (     ). 

 

The DGD scheme is based on proxy cryptography. In the following sec-

tions, we will first review ElGamal encryption scheme  , then describe 

the proxy encryption scheme using the algorithm in ElGamal encryption 

scheme   . Next, the keyword encryption scheme    is defined. Fi-

nally, with    and    schemes, the Multi-user Searchable Data En-

cryption are presented. 
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3.3.1 ElGamal Proxy Encryption  

 

Before defining ElGamal proxy encryption scheme, the ElGamal encryp-

tion scheme   is defined as follows: 

 

      (  ) 

Choose prime numbers     such that   |    , a cyclic group   

with generator   such that   is the unique order   subgroup of   
 . 

Choose  
 
←   and compute     . Outputs the public key 

   (       ) and private key     . 

 

     (    ) 

Choose  
 
←   and output ciphertext  ( )  (      ). 

 

     (    ) 

Decrypt ciphertext as     (  )            . 

 

 

The proxy encryption scheme     consists of 6 algorithms: 

 

       (  ) 

KMS runs        (  ) to obtain (       ), then it outputs public 

parameters (     ), and master key      . 

 

         (     )  

For each user        chooses    

 
←   and computes       

   . Then the KMS securely transmits     to the user   and (     ) 
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to the proxy server. 

 

        (     )   

The user chooses  
 
←   and outputs ciphertext   ( )  

(         ). Then the user sends the ciphertext to the proxy server. 

 

        (        
 ( ))  

In this proxy re-encryption algorithm, the proxy server finds (     ) 

where     is user‘s server side key, and computes (  )    

           . The stored ciphertext becomes  ( )  (       ). 

 

        (       ( ))  

In this proxy side decryption algorithm, the proxy server finds  ’s 

server side key     and computes      (  )           . The 

ciphertext is partially decrypted as   ( )  (         )  and is 

sent to user  . 

 

        (      
 ( ))  

User fully decrypts the ciphertext as        (  )      . 

 

 

3.3.2 Keyword Encryption  

 

Derived from the proxy encryption scheme, the keyword encryption 

scheme is capable of securely encrypting keywords, allowing user to 

search over the encrypted data by generating trapdoors. The keyword en-

cryption scheme    is defined as follows: 



 

21 

 

       (  ) 

The KMS runs          (  )  to obtain (       ) . Compute 

     and choose hash function  , a pseudorandom function   

and a random key   for  . Then the KMS outputs public parameters 

(           ), and master key     (   ). 

 

         (     )  

For each user  , the KMS runs          (     ) to obtain 

       . Then the KMS securely transmits (     ) to the user   

and (     ) to the proxy server. 

 

        (      )   

The user chooses  
 
←   . The user side trapdoor for keyword    

is encrypted as   (  )  (  ̂   ̂   ̂)  (     (  ̂)
     (  )) 

where     (  ). Then the user sends the ciphertext   (  ) to 

the proxy server. 

 

        (        
 (  ))  

The proxy server computes trapdoor  (  )  (     )  such that 

   (  ̂)
      ̂    ̂

  (    )       and     (  ). 

 

Because the keyword encryption scheme is used to generate searchable 

encryption which does not need to be decrypted, hence there is no de-

crypting algorithm. 
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3.3.3 Multi-user Searchable Data Encryption  

 

Combining the previous     and    algorithms, the Multi-user 

Searchable Data Encryption    is described as the following 8 algo-

rithms. 

 

    (  ) 

The KMS runs         (  )  to obtain public parameters 

(           ), and master key     (   ). 

 

      (     )  

For each user  , the KMS runs          (     ) to obtain 

   
    . Then the KMS securely transmits    

 to the user   

and (     ) to the proxy server. The server side user-key mapping 

set is updated as       (     ). 

 

   (   
     ( ))   

The user calls   
 ( )          (     

  ) to encrypt data 

 , and compute   
 (  )          (      ( )) for each 

for keyword      ( ). The user side ciphertext is 

  
 (    ( ))  (  

 ( )   
 (   )     

 (   )) 

where   |  ( )|  

 

      (     
   

 (    ( )))  
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The proxy server finds      (     ), the server side key of user  . 

Then the server invokes  ( )          (     
   

 ( )) , 

and the server calls  (   )          (     
   

 (   )) for 

each   
 (   ) . The re-encrypted data 

 (    ( ))  ( ( )  (   )    (   )) is then inserted into the 

data storage  ( )   ( )   (    ( )). 

 

        (   
  )  

The user   chooses random number  
 
←   and uses his user side 

key    
 (     ) to compute a trapdoor   ( )  (     ) for a 

keyword  , where          ,                   

           , and      ( ). 

 

      (    ( )  ( )    
)  

The server perform search on receiving trapdoor   ( )  

(     ) from the user   with        . The server first compute 

    
           . Then for each keyword cipher  (  )  

(     )  (      (  )) in every ciphertext  (    ( ))   ( ), 

test if     (      ); ‘true’ implies      great probability, 

or say, a match is found. The server then partially decrypt all 

matched encrypted data  ( )  by invoking   
 ( )       

   (     
  ( )). Note that  (   ) does not need to be decrypted. 
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       (     
  ( ))  

The server runs   
 ( )          (     

  ( )) to partially 

decrypt the encrypted ciphertext and sends   
 ( ) to user  . 

 

   (   
   

 ( ))  

User   fully decrypts the pre-decrypted ciphertext   
 ( ) by calling 

          (   
   

 ( )). 

 

      ( )  

To revoke user  , the data server simply updates the user-key map-

ping set       (     ). 

 

The correctness of the searching algorithm depends on the collision re-

sistance of hash function  . Hence, there exists a negligible function 

such that 

  [                                        ]      ( ) 

 

 

3.4   Hidden-Vector Encryption  

 

Boneh and Waters[6] proposed a public-key encryption system that uti-

lized Hidden Vector Encryption (HVE) such that conjunctive equality, 

comparison, range, and subset queries are allowed. We call it ”HVE” 

scheme. In HVE scheme, the ciphertext   is related to a vector 

  {     , and the key is related to a vector   {        where the no-
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tation “ * ” represents “don’t care”. Both   and   are “hidden vector” 

that contain keywords implicitly. A ciphertext can be decipher once all 

entries of   except * (don’t care) on a private key match the corre-

sponding entries of the vector   on the ciphertext. Symmetric pairing 

setting with composite group order is used to construct HVE. Here we in-

troduce the latter scheme, Hidden-Vector encryption with groups of 

prime order (IP scheme), introduced by Iovino and Persiano[17]. The IP 

scheme apply the reductions of the original HVE to its construction to 

obtain a more efficient scheme supporting conjunctions of equality que-

ries, range queries and subset queries.  

 

Definition 3.2 (Hidden Vector Encryption Scheme) 

Let   and   are strings of length   where   {      and   

{       . Define a predicate   ( )    if and only if       or    

   , for        ;   ( )    otherwise. An HVE is a set of probabil-

istic polynomial-time algorithms (Setup,Enc,KeyGeneration,Dec) : 

1.      (    ) : Take the i security parameter   and the attribute 

length       ( ) and output the public key set    and a master 

key set    . 

2.    (      ): Take as input the public key set   , the plaintext 

    , and the attribute vector   {     . Output the ciphertext 

   
. 

3.              (     ): Take as input the master key set     

and string   {       . Output the decryption key   . 

4.    (         ): Take as input the public key set   , the ciphertext 

   , and the secret key   . Output the message  . 

 

The concrete construction of the IP scheme is stated as follows: 
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     (    ) 

Take the input security parameter   and the attribute length 

      ( ). Choose an instance   {            and  
 
←  , 

where   is the group order of   and   ,   is a symmetric biline-

ar pairing            and   is a generator of  . Set 

   (   ) . Choose random numbers            

 
←   and set 

                            for        . Then output 

the public key set  

   [     (           )   
  ] 

and the master key set  

    [    (           )   
  ]. 

 

 

   (      )  

Take as input the public key set   , the plaintext     , and the 

attribute vector   {     . Choose random  
 
←  

  and   

 
←  

  

for         and compute the ciphertext 

    [       (     )   
  ], where      (  ),        and 

 

   {
  

                

  
                

     {
  

             

  
            

 

 

Then, return the ciphertext    . 

 

             (     ) 

Take as input the master key set     and string   {       . De-

note   
  and   

  to be the set of indices   such that      and   
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    . Let      
    

  be the set of indices   for which       . 

If     , that is,   (     ), let      . Else, for each     , 

choose   

 
←  

  at random such that ∑       
  , where   is from 

the    . Compute    (     )   
  where 

 

   

{
 

  
  
              

 
  
              

                  

     

{
 

  
  
              

 
  
              

                   

 

 

Then, output the decryption key    relative to attribute vector  .  

 

   (         ) 

Take as input the public key set   , the ciphertext    , and the se-

cret key   . If     , then      , decrypt the ciphertext     as 

   (         )     (     ) 

 

Else, decrypt the ciphertext     as 

   (         
)     ∏ (     )

    

 (     ) 

If predicate   ( )   , then the decryption result is the plaintext  . 
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4 Our Construction 

 

 

In Section 4.1 we described our construction in detail. We then introduce 

query applications of our design in Section 4.2. We give an simplified 

example with smaller numbers to our construction in Section 4.3. In sec-

tion 4.4 we further discuss some related issues. And finally in Section 4.5, 

we give out our experiment results. 

 

 

4.1   Public Key Searchable Encryption with 

Conjunctive Queries 

 

We construct a searchable encryption scheme on elliptic curve groups, 

based on El Gamal Proxy Re-encryption and Hidden Vector Encryption. 

Users can share encrypted data among all authorized users while users are 

able to perform conjunctive keyword search. In our construction, author-

ized user share encrypted data over the data server that supports the fol-

lowing operations:  

 

Get – The user requests the shared data with its id. 

Search – The user asks the data server to perform conjunctive keyword 

search by sending a query trapdoor associated with the keywords. 

Insert – The user inserts new data into the data server by running the data 

encryption algorithm to encrypt the data and the keywords. 

Remove – The user requests the data server to remove encrypted data of 

certain id and its related keyword encryptions. 
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Since the data server – or called the proxy server since it stand as a proxy 

between users - is considered to be “honest and curious” which points out 

that the server will perform the search operation honestly but is curious 

about the data content. While performing the search operation for users, it 

is important that the data server gains no other information except: 

1. which user sent the query, and 

2. the set of encrypted documents which contain the queried keywords 

That is, the data server will learn nothing about the data content, key-

words to be queried and other information. 

In our design, the authorized users are able to: 

 

Encrypt – Users encrypt data with the associating keywords and pass it 

to the data server. 

Query –  Users query for keywords conjunctively over the encrypted 

data on the data server by producing a trapdoor related to the keywords. 

Decrypt –  Users decrypt the encrypted data that is returned from the 

data server. 

 

Note that only authorized users in possession of a secret key can do the 

above operations. The user’s secret key is called user side key, which is 

generated and distributed securely to the users by a Key Management 

Server (KMS), while the corresponding server side key is securely trans-

mits to the data sever by the KMS. Two keys – the user side key and the 

server side key – are related with a master key that is held secretly by the 

KMS. Hence, the KMS should keep the master key secure in order to 

keep the entire system free from attack.  

 We assume no authorized user reveals his user side key to the data 

server; otherwise the data server can reconstruct the master key by multi-

plying the user side key with the server side key related to it. We also as-

sume there is an impartial KMS which keeps master key secret and re-

veals nothing but the public parameters. Under these assumptions, we 

build up our construction for authorized users to store and share data on 
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untrusted server without revealing the data content to the data server, 

while conjunctive queries over the encrypted data is supported by the data 

server. 

 Each algorithm in our searchable encryption scheme consists of two 

parts: an elliptic curve proxy encryption part to encrypt the symmetric 

session key that encrypts the data, and a hidden-vector encryption part to 

generate the conjunctive query searchable encryptions related the key-

words of data. We give the definition of our construction as follows: 

 

Definition 4.1  

(Public Key Searchable Encryption with Conjunctive Queries) 

Let   and   be strings of length   where   {      and   

{       . Let  ( ) be the attribute vector related to data     , and 

 ( ) be encrypted data on data server. Define a predicate   ( )    if 

and only if       or       , for        ;   ( )    otherwise. 

We construct a searchable encryption scheme consisting of the following 

nine algorithms: 

1.     (    ): The KMS takes the security parameter   and attribute 

length       ( ), then outputs public key        and a master 

key set    . 

2.       (     ): The KMS takes the master key set     and a 

user’s identity  , generates the secret key set    
    . User side key 

   
 is then securely sent to the user  , and server side key     is 

sent to the server. 

3.             (   
     ): The user   uses his user side key    

 to 

encrypt a document   with a set of associated attribute vector   . 

The output is user-side ciphertext   
 (    ). 

4.                  (     
   

 (    )): On receiving the ciphertext 
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 (    ) from user  , the server fetches the server side key    , 

and outputs re-encrypted ciphertext  (    ). 

5.         (   
  ): On input the attribute y, the user    uses his user 

side key    
 to generate a trapdoor   ( ). 

6.       (  ( )  ( )    ): The server takes as input the trapdoor 

  ( ) and user’s server side key    , then test for each  (    )  

 ( )  if predicate    
( )   . If ‘yes’, the server invokes 

pre-decrypt algorithm to obtain   
 ( ) and send   

 ( ) to the user  . 

7.                   (       ( )): The server takes the encrypted 

data that contains queried keyword from the trapdoor and user’s 

identity   as input, pre-decrypt the encrypted data with its server 

side key     as   
 ( ). Send   

 ( ) to user  . 

8.    (   
   

 ( )): The user takes his user key    
 , and decrypts 

  
 ( ) to obtain data  . 

9.       ( ): Given  , the data server updates the user-key mapping 

set       (     ). 

 

The following is the concrete construction of our searchable encryption. 

Note that both the data encryption and attribute vector (keyword related) 

encryption are based on pairing-based cryptography. 

 

    (    ) 

The KMS first takes the input security parameter   and the attribute 

length       ( ) . The KMS chooses an instance 
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  {            and  
 
←  , where   is the group order of   

and   ,   is a symmetric bilinear pairing            and   

is a generator of  . Set    (   ) . Then the KMS chooses ran-

dom numbers            

 
←   and computes 

                             

and  

  
           

           
           

       

for        .  The public parameters is published by the KMS as 

       [    (           )   
  (  

    
    

    
 )   

 ], 

and the the master key is kept secret as 

    [    (           )   
  ]. 

 

      (     )  

On input the    , for each user  , the KMS randomly chooses 

   

 
←  , and compute         

⁄ . Then the KMS securely 

transmits    
 to the user   and (     ) to the data server. The 

server side key mapping set    is updated as       (     ). 

 

            (   
     )   

The user takes as input the data      where    is the base filed 

of  , the user side key    
 and attribute vector    {     . The 

user chooses random number  
 
←   and computes      . Let 

        and   (     ) . Then he computes   [     ] 

where         ,          and     
   . Next, the user 
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chooses  
 
←  

  and   

 
←  

  for        , and computes 

       (  ),      , and  

 

   {
  

                 

  
                 

     {
  

              

  
             

 

 

for        .  Finally,   
 (    )  [  

 ( )   
 (  )] is sent to the 

data server where    
 ( )  [    ]  as ciphertext and   

 (  )  

[         (     )   
  ] as searchable encryption. 

 

                 (     
   

 (    ))  

The proxy server finds the server side key of user j,    
 (     ). It 

then re-encrypts the ciphertext   
 (    )  [  

 ( )   
 (  )]  by 

computing     
       and     

        . Finally, 

(    )  [ ( )  (  )]  , where  ( )  [   ]  and  (  )  

[        (     )   
  ]  is inserted into the data storage  ( )  

 ( )   (    ). 

 

        (   
  )  

The user   takes as input his user side key    
 and string 

  {       . Denote   
  and   

  to be the set of indices   such that 

  
  {  |       and   

  {  |      . Let      
    

  be the 
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set of indices   for which       . If     , that is,   (     ), 

let        . Else, for each     , choose a number   

 
←  

  

such that ∑       
    

. Compute    (     )   
  where 

 

   {

  
                 

  
                 

                          

       {

  
               

  
               

                          

 

 

Then, the user sends the trapdoor    relative to attribute vector   

to the data server.  

 

      (      
)  

Take as input     the server side key of user  , and the trapdoor 

  , the data server perform search by calculating whether        

for each  (    )   ( ) . If     , then        , the data 

server calculates      as 

        (      
  )

   

Else, the data server calculates      as 

        [∏ (     )

    

 (     )]

   

 

If predicate   ( )   , then         since  
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        [∏ (     )

    

 (     )]

   

   [ (   )
∑       

(    ) ∑         ]
   

   [ (   )
∑        

 ]
   

   [ (   )     ]   

  (   )     (   )  

   

 

                  (     
  ( ))  

On inputs user id    and encrypted data  ( )  [   ], the data 

server pre-decrypt  ( ) to   
 ( ) in order for user   to decrypt the 

encrypted data. The data server computes     
    .   

 ( )  

[    ] is then sent to the user  . 

 

   (   
   

 ( ))  

User   fully decrypts the pre-decrypted ciphertext   
 ( )  [    ]  

where   [     ] . He computes      
    and         

where         
  ,         

   to obtain the plaintext data  . 

 

      ( )  

To revoke user  , the data server simply updates the user-key map-

ping set       (     ). 

 

Thus we complete the construction of our public key searchable encryp-
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tion with conjunctive queries. We will further discuss the experimental 

performance of each function in section 4.3. 

 

 

4.2   Conjunctive Queries 

 

In this section we show how conjunctive queries can be applied on our 

scheme.  Let   (       ) be a keyword set to be encrypted for 

future search. Let   {      and   {        be attribute vectors that 

are related to the data and the trapdoor respectively. Let    

(       ) and   (       ) be a vector of consecutive attribute 

vector   or  , and   be the length of attribute vector. Define a predi-

cate   ( )    if and only if           or         , for          

and         ;    
(  )    otherwise. Note that in the hidden vector 

encryptions we described in Chapters 2 and 3, for simplicity we take only 

one attribute vector   {      or   {        as an input. In fact, the 

actual input is the hidden vectors   and   consisting of   attribute 

vectors. In the following we will describe the design the attribute vectors 

in order to perform conjunctive comparison queries, conjunctive range 

queries, and conjunctive subset queries. 

 

 

Conjunctive Comparison Queries 

Suppose there are   conjunctive queries, then the width of the hidden 

vector encryption is     . Let   (       )  (     ) , that is, 

   is a number ranging from 1 to n. Build an attribute vector   as:  

 

     {
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For example, let    , then   {       such that 

 

      1                 n  1                 n 

                                   

 

To test whether if      for any query keyword    in 

𝐴  (       )  (     ) , we build an attribute vector   as: 

 

     {
                   
                

 

 

For example, assign    , then   {         looks like 

 

      1                 n  1                  n 

                                   

 

 

Attribute vector   is then hidden in the searchable encryption that is 

generated in User Encrypt step, and attribute vectors   is then hidden in 

the trapdoor generated by user in Trapdoor step. In Search step, the pred-

icate   ( )  is tested to see if a ciphertext contains keywords that 

match/satisfy the trapdoor. The predicate   ( )    if and only if 

      for        . If   ( )   , then the data with keyword set 

  (       ) is considered to be containing keywords such that 

             . 

 

 

Conjunctive Range Queries 

A system that supports conjunctive comparison queries also supports 

conjunctive range queries. Let   be a set of   keywords   

0 … 0 1 1 … 1 0 … 0 1 1 … 1 

  …   1   …     …   1   …   
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(       )  (     ) . A range query searches for plaintexts where 

keyword   [   ]. For example, let    . To do conjuctive range 

queries, build the attribute vector   {      as: 

 

           1                  n    

                                   

 

Let the attribute vector   {        be: 

 

          1                               n 

                                   

 

The predicate   ( )    if and only if     and    . To do con-

junctive range queries, attach more attribute vectors to   and   for 

different   ’s. 

 

 

Conjunctive Subset Queries 

Here we show how to design attribute vectors so the subset queries is 

searchable. Let  (       )    , where   is a size-n set of all pos-

sible  . Let an attribute vector   be:  

 

     {
                    
                 

 

 

To test whether if    𝐴  for any query set 𝐴    in 

𝐴  (𝐴    𝐴 ) for        , build an attribute vector   as: 

 

     {
                 𝐴  
                

 

 

0 … 0 1 1 … 1 

0 … 0 0   …   1 1 … 1 
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The predicate   ( )    if and only if    𝐴  for all        . 

That is,   ( )   ,    in   (       ) satisfies that    𝐴  

     𝐴 . For example, let    , build the attribute vector 

  {      as: 

           1                  n    

                                   

 

Build the attribute vector   {      according to set 𝐴  {       as: 

 

      1  2  3  4  5        n    

                                   

 

Note that   ( )    if and only if   𝐴. Arbitrary number of con-

junctive subset queries are also allowed by setting larger  . 

 

 

Subset queries using Bloom filters 

We notice that in the subset queries, the space needed increases signifi-

cantly as  , the size of   of all possible keywords, increases. The hid-

den attribute vector   is of size   , with the same size for  . We give 

a design using the Bloom filters to reduce the space requirement as the 

size of   is large. 

 Bloom filters[4] utilizes multiple functions        {    
   . A 

bloom filter   is a vector of size  , such that   {     . For a key-

word   of arbitrary length, the bloom filter of this word is   {      

that contains ‘1’ at positions   ( )     ( ). With   (       ), 

we have bloom filter   {      that contains ‘1’ at positions   (  ), 

for        ,         We design the attribute vectors   as: 

 

     {
                   (  ) 
                            

 

0 … 0 1 0 … 0 

0     0 0 … 0   
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In another word, the attribute vector   is set to be the bloom filter   of 

keyword set   (       ). Then for a set 𝐴  (  
      

 ), build 

an attribute vector   as: 

 

     {
                   ( 

 
 ) 

                            
 

 

That is, the attribute vector   is set to be the bloom filter    of key-

word set 𝐴. The predicate   ( )    if and only if set 𝐴    . The 

predicate   ( ) indicates whether all words    in set 𝐴 are contained 

in set  . If yes, then the bloom filter   is marked ‘1’ at the correspond-

ing position, so does the bloom filter   . If no, then    “could” contains 

‘1’s not in   with very high probability (small collision probability). By 

choosing  , number of functions       , and   , the size of a bloom 

filter  , the false positive probability can be very small. Say, 

 

  [  ( )         𝐴    ]      ( ) 
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4.3   Experiments 

 

In this section we describe the implementation of our public key searcha-

ble encryption. First we describe the pairing library used in our program 

in section 4.3.1. Then we have performance evaluation in section 4.3.2. 

 

4.3.1 The Pairing-based Cryptography Library 

 

The pairing-based cryptography (PBC) library [23] is an open source li-

brary that is released under the GNU Lesser General Public License. The 

PBC library is written in C and provides routines such as elliptic curve 

generation, elliptic curve arithmetic and pairing computation.  

We have tested the speed of the PBC library. We performed our ex-

periments on a 2.4 GHz Intel Xeon E5620 processor running Ubuntu 

11.10. The security level we choose is 128-bit. Table 4.1 is the key size 

comparison under different security levels [29]. 

 

Date Minimun 

of Strength 

Symmetric 

Key 

RSA and 

DH 

Elliptic 

Curve 

2010 80 80 1024 160 

2011-2030 112 112 2048 224 

> 2030 128 128 3072 256 

Table 4.1: NIST Recommended Key Sizes(bits) 

 

There are seven types of pairings defined in the PBC library. The seven 

types are type A, type B, type C, type D, type E, type F and type G. Type 

A, type B and Type C are supersingular curves. Type D, type E, type F 

and type G are based on complex multiplication (CM) method[28]. 
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However, type B and type C are not implemented yet. 

The CM equation is 

           

where the discriminant   is positive. We omit the details of the CM 

method here. 

Type A pairings are constructed on the curve           over   , 

where   is a prime and     (     ). E is a supersingular curve, so 

this pairing is a symmetric pairing             .    is a subgroup 

of     because the embedding degree is 2. Therefore we choose the 

group order   to be 256-bit long and   to be 1536-bit long, because    

must be 3072-bit long to achieve the same security level as 256-bit long 

in elliptic curve.  

Type D pairings are constructed on the MNT curves of embedding 

degree 6 [25]. This pairing is an asymmetric pairing             . 

   is a subgroup of     because the embedding degree is 6. Given dif-

ferent discriminant in the CM equation, the bits in   and the bits in   

are determined. Therefore we choose two suitable type D pairings. One is 

that the discriminant is 31387,   is 522-bit long and   is 514-bit long. 

The other is that discriminant is 873867,   is 486-bit long and   is 

442-bit long 

Type E pairings are constructed on the curves of embedding 1 [21]. 

The pairing is a symmetric pairing             .    is a subgroup 

of    because the embedding degree is 1. Therefore we choose the 

group order   to be 256-bit long and   to be 3072-bit long, because   

must be 3072-bit long to achieve the same security level as 256-bit long 

in elliptic curve. 

Type F pairings are constructed on the curves of embedding 12. This 

pairing is an asymmetric pairing             .    is a subgroup of 
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     because the embedding degree is 12. Therefore we choose the group 

order   to be 256-bit long and   to be 256-bit long.  

Type G pairings are constructed on the curves of embedding 10 which 

Freeman suggests [11]. Given different discriminant in the CM equation, 

the bits in   and the bits in   are determined. Therefore we choose one 

suitable type G pairings. The curve is that the discriminant is 35707,   is 

301-bit long and   is 279-bit long. Table 4.2 is a comparison of the pair-

ings in the PBC library. 

 

 Embedding 

Degree 

Symmetric 

Pairing 

Supersingular 

Type A 2 yes yes 

Type D 6 no no 

Type E 1 yes no 

Type F 12 no no 

Type G 10 no no 

Table 4.2: Pairings in the PBC library 

 

Table 4.3: Comparison of Speed of Different Pairings 

 

For each type, we choose 10 random inputs to the pairing function and 

compute the average time. We also choose 100 random elements for   , 

   and    for each type and compute the average time of an addition or 

an multiplication. The result of our test is shown in Table 4.3. We note 

 Pairing 

Time 

(ms) 

Multiplication 

Time in    

(ms) 

Addition 

Time in    

(ms) 

Addition 

Time in    

(ms) 

Type A 38 0.009 0.042 0.042 

Type D-311387 48 0.023 0.011 0.078 

Type D-873867 35 0.020 0.010 0.068 

Type E 87 0.009 0.108 0.108 

Type F 49 0.037 0.006 0.009 

Type G-35707 45 0.036 0.006 0.090 
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that in our encryption scheme, we need a symmetric pairing. And the 

Type E pairing is the slowest pairing. Therefore, in our implementation, 

we choose the Type A pairing. 

 

 

4.3.2 Experimental Result 

 

We implemented our algorithms on a 2.4 GHz Intel Xeon E5620 proces-

sor running Ubuntu 11.10. We used 1536-bit prime   for pairing. In the 

first experiment, we measured the execution time of each of the following 

operations: 

 

1. Initialization – KMS outputs public key and a master key set. 

2. Key Generation – KMS generates user side key and server side key. 

3. User Encryption – the user side proxy and searchable encryption. 

4. Server Re-encryption – the server side proxy re-encryption 

5. Trapdoor – the user side trapdoor generation. 

6. Search – the trapdoor/searchable encryption matching test. 

7. Server Pre-decryption – the server side proxy decryption. 

8. User Decryption – the user side proxy decryption. 

9. Revocation – the server side revocation of the user. 

 

Figure 4.1 shows the results. Our test data are 2011 eprint pdf files. Note 

that the pdf data were encrypted with symmetric key encryption AES128. 

Then we took the session key of AES128 encryption as our plaintext. The 

user who successfully decrypts the ciphertext will retrieve the session key 

of the encrypted pdf file. We did not calculate the AES128 encrypting 

time, so the size of the pdf files was irrelevant. The time was measured in 

milliseconds, and it is the average of 10000 executions. We set the size 

hidden vectors  =10. We can now see that the Initialization took up 

most of the time. The main cause is that it needs    times pairing ele-
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ment powers. So are the user encryption and search algorithms, which 

both need    element powers. The Search and Trapdoor algorithm are 

significantly influenced by the number of   (don’t care) appears in the 

attribute vector  . The more   , the less computation is needed, which 

happens in most of the application where don’t care term is much more 

than ‘0’s and ‘1’s.  

 

 

Figure 4.1   Performance of Individual Operations  

 

 

It is obvious that all algorithms that spend longer time are searchable en-

cryption related. So the second and third experiments came as follows: 

we measured the algorithms by two parts: the proxy encryption part and 

hidden vector encryption part. 

 Figure 4.2 showed the result of 10000 executions of proxy encryption 

part algorithms. We showed that under  =10,  =100,  =1000, we had 

similar execution time for the proxy encryption part. Hence, the number 

of keywords does not affect the encryption of the data but only affect the 

searchable encryption in our algorithm. As to the result of 10000 execu-

tions of HVE encryption part, under  =10,  =100,  =1000, we had 
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the execution time of Initialization, User Encryption, Trapdoor and 

Search algorithms in direct proportional with the size of hidden attribute 

vector  . Hence, it is crucial to optimize the size of hidden vector since 

it causes significant increases in computing time. 

 

Figure 1.2   Performance of Proxy Part 

 

 

 

Figure 4.3    Performance of HVE Part 
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5 Conclusion 

 

5.1 Summary 

 

We introduced the idea of searchable encryption that is used to solve the 

problem of how to efficiently search on encrypted data. In Chapter 2, we 

introduced the mathematical background including elliptic curve and bi-

linear pairings. In Chapter 3, we reviewed three prominent public key 

searchable encryptions: public key encryption with keyword search, mul-

ti-user searchable data encryption, and hidden-vector encryption. We de-

scribed the scheme, and then gave out its definition as well as its concrete 

construction. In Chapter 4, we described our design of searchable encryp-

tion, providing a solution to sharing data on untrusted server with con-

junctive keyword search. After describing our construction in detail, we 

introduced several applications of our scheme, including conjunctive 

comparison queries, range queries, and subset queries. We mentioned an 

interesting application that can reduce the space needed by conjunctive 

subset queries by apply Bloom filters on the hidden vectors. Then we de-

scribed our implementation and evaluated the performance of our algo-

rithms. 

 

5.2 Future Work 

 

For further research, we recommend for the following topics: 

1. Multi-user searchable data encryption without key management 

center: In our design and DGD scheme, we need a key management 
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center to hold the master key. Generating user side and server side 

keys of all users with a single master key implies the risk of collusion 

attack. Also, renewing master keys requires the user to encrypt his 

previous encrypted data and searchable encryption again. We expect 

there is a multi-user searchable encryption scheme that runs without 

key management center. 

2. Improve the performance of HVE encryption. As we can see in 

the performance evaluation in Chapter 4.3, most computation are cost 

by pairing computation. By redesigning the algorithms, we expect the 

precompile pairing comes in handy while, if possible, consecutive 

pairing computes with the same first argument. Precompile pairing 

improves performance significantly on a type A pairing. 

3. Applications of HVE. By designing the hidden vector   and   

properly, the hidden vector encryption provides can do many opera-

tions while the vectors are hidden. We look for more applications of 

HVE. 
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Appendix : Source Code 

 

We call our construction as EPSE, where E stands for Elliptic curve 

cryptography, P for Proxy Encryption, SE stands for Searchable Encryp-

tion. The following is our C code for our construction: A.1 gives our 

header file, A.2 gives an example test file of using our construction head-

er file, and A.3 is our EPSE.c code. 

 

A.1 EPSE.h 

 

#ifndef SELIB_EPSE_H_ 

#define SELIB_EPSE_H_ 

#include <pbc/pbc.h> 

#include <openssl/sha.h> 

#include "./pairingio.h" 

#include <libgen.h> 

#include <omp.h> 

#include <dirent.h> 

#include <sys/mman.h> 

#include <sys/stat.h> 

#include <fcntl.h> 

#define EPSEPARAM "EPSE.pairing" 

#define N 10 

#define NUM_OF_USER 100 

typedef struct { 

  element_t g; 

  element_t Y; 

  pairing_t pairing; 

  element_t T[N], V[N], R[N], M[N]; 

  element_t Ti[N], Vi[N], Ri[N], Mi[N]; 

}PUB_PARAM; 

typedef struct { 

  element_t k; 

  element_t t[N], v[N], r[N], m[N]; 
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}PRIV_PARAM; 

typedef struct { 

  int id; 

  element_t ku; 

}USER; 

typedef struct { 

  element_t ks[NUM_OF_USER]; 

}SERVER; 

typedef struct { 

  char attry[N]; 

  element_t tr_of_allstar; 

  element_t Y[N], L[N]; 

}TRAPDOOR; 

typedef struct { 

  char path[80]; 

  char attrx[N]; 

}PTEXT; 

typedef struct { 

  char path[80]; 

  element_t R; 

  mpz_t c1, c2; 

  element_t Sigma; 

  element_t C0; 

  element_t X[N], W[N]; 

}HVE; 

/* The following are the 8 EPSE functions  

  return 0 if succeed, -1 if failed*/ 

int epse_init(PUB_PARAM pub, PRIV_PARAM prv); 

int epse_keygen(USER user, SERVER server, PUB_PARAM pub, PRIV_PARAM 

prv); 

int epse_u_enc(USER user, PTEXT *pt, HVE *hve, SERVER server, PUB_PARAM 

pub); 

int epse_u_dec(USER user, PTEXT *decipher, HVE *hve, SERVER server, 

PUB_PARAM pu 

int epse_s_enc(int userid, SERVER server, HVE *hve, PUB_PARAM pub); 

int epse_s_dec(int userid, SERVER server, HVE *hve, PUB_PARAM pub); 

int epse_u_trapdoor(USER user, TRAPDOOR *tr, PUB_PARAM pub); 

int epse_s_search(int userid, TRAPDOOR *tr, SERVER server, PUB_PARAM pub); 
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void hve_to_file(HVE *hve, char* path); 

int comparebyte(char* c1, char* c2, int len); 

// following two functions transcode/detranscode a char string message to a big num-

ber of type mpz_t  

void transcode(unsigned char* message,mpz_t crypt); 

void detranscode(mpz_t crypt,unsigned char * message); 

#endif 

 

A.2 EPSEtest.c 

 

#include "../selib/EPSE.h" 

#include <pbc/pbc.h> 

int i; 

int main(){ 

 

// Initialize public parameters 

  PUB_PARAM pub; 

  PRIV_PARAM prv; 

  // Load in a.param 

  pbc_param_t pairing_param; 

  //pairing_string_from_file(pairing,PAIRING_PARAM); 

  pbc_param_init_a_gen(pairing_param, 256, 1536); 

  pairing_init_pbc_param(pub.pairing,pairing_param); 

  pairing_param_to_file(pairing_param, EPSEPARAM); 

 

  element_init_G1(pub.g,pub.pairing);; 

  element_init_GT(pub.Y,pub.pairing);; 

 

  for(i=0;i<N;i++){ 

    element_init_G1(pub.T[i],pub.pairing); 

    element_init_G1(pub.V[i],pub.pairing); 

    element_init_G1(pub.R[i],pub.pairing); 

    element_init_G1(pub.M[i],pub.pairing); 

    element_init_G1(pub.Ti[i],pub.pairing); 

    element_init_G1(pub.Vi[i],pub.pairing); 

    element_init_G1(pub.Ri[i],pub.pairing); 

    element_init_G1(pub.Mi[i],pub.pairing); 
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  } 

 

// Initialize private parameters 

  element_init_Zr(prv.k,pub.pairing); 

  for(i=0;i<N;i++){ 

    element_init_Zr(prv.t[i],pub.pairing); 

    element_init_Zr(prv.v[i],pub.pairing); 

    element_init_Zr(prv.r[i],pub.pairing); 

    element_init_Zr(prv.m[i],pub.pairing); 

  } 

// Create server and user1 , user2 

  SERVER server; 

  USER user01, user02; 

  user01.id = 1; 

  user02.id = 2; 

  element_init_Zr(user01.ku,pub.pairing); 

  element_init_Zr(user02.ku,pub.pairing); 

  element_init_Zr(server.ks[user01.id],pub.pairing); 

  element_init_Zr(server.ks[user02.id],pub.pairing); 

  epse_keygen(user01,server,pub,prv); 

  epse_keygen(user02,server,pub,prv); 

// Create a plaintext 

  PTEXT pt; 

  strcpy(pt.attrx,"000111111"); 

// Create a hve 

  HVE hve; 

  strcpy(hve.path, "test"); 

  element_init_G1(hve.R,pub.pairing); 

  mpz_inits(hve.c1,hve.c2,NULL); 

  element_init_GT(hve.Sigma,pub.pairing); 

  element_init_G1(hve.C0,pub.pairing); 

  for(i=0; i<N; i++){ 

    element_init_G1(hve.X[i],pub.pairing); 

    element_init_G1(hve.W[i],pub.pairing); 

  } 

  element_t test; 

  element_init_GT(test,pub.pairing); 

  element_t s, exp; 
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  element_init_Zr(s,pub.pairing); 

  element_init_Zr(exp,pub.pairing); 

  char buf[1024]; 

  DIR *dir; 

  struct dirent *ent; 

  dir = opendir ("epse2011/"); 

  if (dir != NULL) { 

    /* print all the files and directories within directory */ 

    while ((ent = readdir (dir)) != NULL) { 

      if(ent->d_name[0] != '.'){ 

        //printf ("%s\n", ent->d_name); 

        sprintf(buf,"epse2011/%s",ent->d_name); 

        strcpy(pt.path, buf); 

        sprintf(buf,"epsetest/%s.se",ent->d_name); 

        hve_to_file(&hve,buf); 

        epse_s_enc(user01.id,server,&hve,pub); 

      } 

    } 

    closedir (dir); 

  } else { 

    /* could not open directory */ 

    perror (""); 

    return; 

  } 

// Create a deciphertext 

  PTEXT decipher; 

  strcpy(decipher.path,"plaintext.decipher"); 

// Create a trapdoor 

  TRAPDOOR tr; 

  strcpy(tr.attry,"***0***1**"); 

  element_init_G1(tr.tr_of_allstar,pub.pairing); 

  for(i=0;i<N;i++){ 

    element_init_G2(tr.Y[i],pub.pairing); 

    element_init_G2(tr.L[i],pub.pairing); 

  } 

  epse_u_trapdoor(user02,&tr,pub); 

  epse_s_search(user02.id,&tr,server,pub); 

  epse_u_dec(user02,&decipher,&hve,server,pub); 
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// user encrypt 

  element_t R,RS; 

  mpz_t c1, c2; 

  mpz_inits(c1,c2,NULL); 

  element_init_G1(R,pairing); 

  element_init_G1(RS,pairing); 

  ece_u_enc(g,kuj,R,c1,c2,"plaintext.txt","ece",pairing); 

  ece_s_enc(RS,R,ksj,pairing); 

  ece_s_enc(RS,R,ksh,pairing); 

// user decrypt 

  ece_u_dec(g,kuh,R,c1,c2,"ece.aes128","plain.decipher",pairing); 

  element_clear(g); 

  element_clear(k); 

  return 1; 

} 

 

A.3 EPSE.c 

 

Here we provide only the essential functions of EPSE.c: keygen, user en-

crypt, server re-encrypt, trapdoor, search, server pre-decryt, and user de-

crypt. 

  

int epse_keygen(USER user, SERVER server, PUB_PARAM pub, PRIV_PARAM 

prv){ 

  element_random(user.ku); 

  element_div(server.ks[user.id],prv.k,user.ku); 

  return 0; 

} 

int epse_u_enc(USER user, PTEXT *pt, HVE *hve, SERVER server, PUB_PARAM 

pub){ 

// Proxy Encryption Part 

  element_t r,S; 

  element_init_Zr(r,pub.pairing); 

  element_init_G1(S,pub.pairing); 

  element_random(r); 

  element_mul(S,r,pub.g); 
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  element_mul(hve->R,user.ku,S); 

  char command[1024] = {0}; 

  // generate session key 

  sprintf(command, "openssl rand 16 > session_key"); 

  system(command); 

  // encrypt file using AES-cbc under session key 

  sprintf(command, "openssl aes-128-cbc -e -salt -in %s -out %s.aes128 -pass pas 

  system(command); 

 

  FILE *sessionkey = fopen("session_key","r"); 

  unsigned char aeskey[16], key1[9], key2[9]; 

  fread(aeskey,1,16,sessionkey); 

  fclose(sessionkey); 

  for(i=0;i<8;i++) key1[i]=aeskey[i]; 

  key1[8]='\0'; 

  for(i=0;i<8;i++) key2[i]=aeskey[i+8]; 

  key2[8]='\0'; 

 

  mpz_t m1, m2; 

  mpz_inits(m1,m2,NULL); 

  transcodage(key1,m1); 

  transcodage(key2,m2); 

 

  mpz_t xs,ys; 

  mpz_inits(xs,ys,NULL); 

  element_to_mpz(xs,element_x(S)); 

  element_to_mpz(ys,element_y(S)); 

  mpz_add(hve->c1,xs,m1); 

  mpz_add(hve->c2,ys,m2); 

  // encrypt session key under RSA and then remove the session key 

  sprintf(command, "rm -f session_key"); 

  system(command); 

 

// HVE Part 

  element_t s,si[N]; 

  element_init_Zr(s,pub.pairing); 

  element_t exp, negs, s_si; 

  element_init_Zr(exp,pub.pairing); 
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  element_init_Zr(negs,pub.pairing); 

  element_init_Zr(s_si,pub.pairing); 

  // Choose s, si at random 

  element_random(s); 

  for (i=0; i<N; i++){ 

    element_init_Zr(si[i],pub.pairing); 

    element_random(si[i]); 

  } 

  // Compute Sigma 

  element_neg(negs,s); 

  element_mul(exp,user.ku,negs); 

  element_pow_zn(hve->Sigma,pub.Y,exp); 

// Compute C0 

  element_mul(hve->C0,pub.g,s); 

  // Compute Xi, Wi 

  for (i=0; i<N; i++){ 

    element_init_G1(hve->X[i],pub.pairing); 

    element_init_G1(hve->W[i],pub.pairing); 

    element_sub(s_si,s,si[i]); 

    if (pt->attrx[i] == '0'){ 

      element_pow_zn(hve->X[i],pub.R[i],s_si); 

      element_pow_zn(hve->W[i],pub.M[i],si[i]); 

    }else if (pt->attrx[i] == '1'){ 

      element_pow_zn(hve->X[i],pub.T[i],s_si); 

      element_pow_zn(hve->W[i],pub.V[i],si[i]); 

    } 

  } 

  return 0; 

} 

int epse_s_enc(int userid, SERVER server, HVE *hve, PUB_PARAM pub){ 

  element_mul(hve->R,hve->R,server.ks[userid]); 

  element_pow_zn(hve->Sigma,hve->Sigma,server.ks[userid]); 

  return 0; 

} 

int epse_u_trapdoor(USER user, TRAPDOOR *tr, PUB_PARAM pub){ 

  // Check if all ystr are * (don't care), if yes, write 1 and Ky = g^y to outfi 

  int allstar = 1; 

  for (i=0; i<N; i++){ 
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    if(tr->attry[i] != '*'){ 

      allstar = 0; 

      break; 

    } 

  } 

  // Initialize and assign a according to ystr 

  element_t a[N], sum, diff; 

  element_init_Zr(sum,pub.pairing); 

  element_init_Zr(diff,pub.pairing); 

  for (i=0; i<N; i++){ 

    element_init_Zr(a[i],pub.pairing); 

    if ( tr->attry[i] != '*' ){ 

      element_random(a[i]); 

      element_add(sum,sum,a[i]); 

    } 

    else{ 

      element_set0(a[i]); 

    } 

  } 

  // Modified the first randomed a[i] s.t. sum(ai)=y 

  for (i=0; i<N; i++){ 

    if ( tr->attry[i] != '*' ){ 

      element_sub(diff,sum,user.ku); 

      element_sub(a[i],a[i],diff); 

      break; 

    } 

  } 

  // Compute Key Ky = [Y, L] 

  for (i=0; i<N; i++){ 

    if (tr->attry[i] == '*'){ 

      element_set0(tr->Y[i]); 

      element_set0(tr->L[i]); 

    }else if (tr->attry[i] == '1'){ 

      element_pow_zn(tr->Y[i],pub.Ti[i],a[i]); 

      element_pow_zn(tr->L[i],pub.Vi[i],a[i]); 

    }else if (tr->attry[i] == '0'){ 

      element_pow_zn(tr->Y[i],pub.Ri[i],a[i]); 

      element_pow_zn(tr->L[i],pub.Mi[i],a[i]); 
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    } 

  } 

  if (allstar == 1){ 

    element_pow_zn(tr->tr_of_allstar,pub.g,user.ku); 

  }else{ 

    element_set0(tr->tr_of_allstar); 

  } 

  return 0; 

} 

int epse_s_search(int userid, TRAPDOOR *tr, SERVER server, PUB_PARAM pub){ 

  if(!element_is0(tr->tr_of_allstar)){ 

    printf(" Searching allstar\n"); 

  }else{ 

    element_t result, tmp; 

    element_init_GT(result,pub.pairing); 

    element_init_GT(tmp,pub.pairing); 

    // Createa tmp hve 

    HVE hve; 

    strcpy(hve.path, "test"); 

    element_init_G1(hve.R,pub.pairing); 

    mpz_inits(hve.c1,hve.c2,NULL); 

    element_init_GT(hve.Sigma,pub.pairing); 

    element_init_G1(hve.C0,pub.pairing); 

    for(i=0; i<N; i++){ 

            element_init_G1(hve.X[i],pub.pairing); 

            element_init_G1(hve.W[i],pub.pairing); 

    } 

    FILE *ftr; 

    char buf[1024]; 

    DIR *dir; 

    struct dirent *ent; 

    dir = opendir ("epsetest/"); 

    if (dir != NULL) { 

      while ((ent = readdir (dir)) != NULL) { 

        if(ent->d_name[0] != '.'){ 

          sprintf(buf,"epsetest/%s",ent->d_name); 

          ftr = fopen(buf,"r"); 

          elements_string_from_file(ftr,hve.Sigma); 
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          elements_string_from_file(ftr,hve.C0); 

          for(i=0;i<N;i++){ 

            elements_string_from_file(ftr,hve.X[i]); 

            elements_string_from_file(ftr,hve.W[i]); 

          } 

          fclose(ftr); 

          element_set1(result); 

          for(i=0;i<N;i++){ 

            if( tr->attry[i] != '*' ){ 

              pairing_apply(tmp,hve.X[i],tr->Y[i],pub.pairing); 

              element_mul(result,result,tmp); 

              pairing_apply(tmp,hve.W[i],tr->L[i],pub.pairing); 

              element_mul(result,result,tmp); 

            } 

          } 

          element_pow_zn(result,result,server.ks[userid]); 

          element_mul(result,result,hve.Sigma); 

        } 

      } 

      closedir (dir); 

    } else { 

      /* could not open directory */ 

      perror ("Error, no such directory\n"); 

      return -1; 

  } 

return 0; 

} 

int epse_s_dec(int userid, SERVER server, HVE *hve, PUB_PARAM pub){ 

  element_div(hve->R,hve->R,server.ks[userid]); 

  return 0; 

} 

int epse_u_dec(USER user, PTEXT *decipher, HVE *hve, SERVER server, 

PUB_PARAM pu 

  element_t S; 

  element_init_G1(S,pub.pairing); 

  element_div(S,hve->R,user.ku); 

  mpz_t m1, m2, xs, ys; 

  mpz_inits(m1,m2,xs,ys,NULL); 
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  element_to_mpz(xs,element_x(S)); 

  element_to_mpz(ys,element_y(S)); 

  mpz_sub(m1,hve->c1,xs); 

  mpz_sub(m2,hve->c2,ys); 

  unsigned char buf[80]; 

  unsigned aeskey[16]; 

  detranscodage(m1,buf); 

  for(i=0;i<8;i++) aeskey[i]=buf[i]; 

  detranscodage(m2,buf); 

  for(i=0;i<8;i++) aeskey[i+8]=buf[i]; 

// put aeskey to session_key 

  FILE *sessionkey = fopen("session_key","w"); 

  for(i=0;i<16;i++){ 

    fputc(aeskey[i],sessionkey); 

  } 

  fclose(sessionkey); 

  char command[1024] = {0}; 

  sprintf(command, "od -x session_key"); 

  system(command); 

  sprintf(command, "openssl aes-128-cbc -d -in %s.aes128 -out %s -pass pass:\"`c 

  printf("system: %s\n",command); 

  system(command); 

  return 0; 

} 


