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A Flexible Analysis and Prediction Framework
on Resource Usage in Public Clouds

Student: Chia-Yu Lin Advisor: Prof. Yu-Chee Tseng
Prof. Li-Chun Wang

Department of Computer Science, National Chiao Tung University

ABSTRACT

In cloud computing environments, users can rent virtual machines (VMs) from cloud
providers to execute their programs or provide network services. While using this kind of
cloud service, one of the biggest problems for the users is that how many VMs are needed
to complete the jobs without spending too much money and time. In this paper, we
propose a resource prediction framework (RPF) which can help users rent the minimum
number of virtual machines and complete their jobs within a user specified time constraint.
In order to verify the feasibility of RPF, we have done 3 case studies, parallel frequent
pattern growth (FP-Growth), parallel K-means and Particle Swarm Optimization (PSO),
on the proposed framework. FP-growth, K-means and PSO are data intensive algorithms.
These algorithms may be executed repeatedly with different execution parameters to find
the optimal results. When evaluating RPF by these algorithms in cloud environments,
we have to modify them to parallel versions. The evaluation results indicate that RPF
can successfully obtain the minimum number of VMs with acceptable errors. According
to the results of case studies, the proposed RPF can be adopted by data intensive jobs,

which is flexible and useful for users and cloud system providers.

Keywords: resource prediction framework, virtual machines, parallel FP-growth,

parallel K-means
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Chapter 1

Introduction

Cloud computing provides the users with a large number of computing and storage re-
sources. By renting the resource from cloud provider, the users could avoid the hardware
investment and maintenance cost. The services of cloud computing is generally classified
into 3 service types, software as a service (SaaS), platform as a service (PaaS) and in-
frastructure as a service (IaaS). Amazon Elastic Compute Cloud (Amazon EC2), which
is an laaS provider, provides many types of VMs with different EC2 computing units and
memory sizes. The billing method is based on chosen VM capabilities and the rented time
period. MapReduce is a parallel programming platform for users to develop parallel pro-
grams in cloud environments. While users analyze the massive data in a cloud database,
the parallel execution can reduce the execution time intensively. However, users usually
do not know how many VMs they really need to execute a job. There is a trade-off be-
tween the rented VM numbers and the execution time of a job. Therefore, we propose a
resource prediction framework (RPF) which predicts the minimum number of VMs for a
MapReduce job under a user specified time constraint.

The proposed RPF consists of training and prediction algorithms. In training algo-
rithm, users execute their parallel jobs with different execution parameters and the system
records the execution parameters, execution time and allocated VM numbers. After col-
lecting enough information, the training algorithm analyzes the collected information and
computes a model for prediction. When the job is executed with a new execution param-
eters and an expected response time, the prediction algorithm computes the minimum
number of VMs, which is based on the trained model, while considering the expected

response time.



In this paper, we introduce 3 case studies, parallel frequent pattern growth (parallel
FP-growth), parallel K-means and Particle Swarm Optimization (PSO), to verify the
performance of RPF. Since these algorithms are data intensive, the execution times can
be reduced intensively while executing in parallel. We modify them to parallel versions
by referring to [5][15][7] and execute them on RPF. The evaluation results show that RPF
can predict the minimum number of VMs with small root mean square errors (RMSE).

The contribution of this paper are as follows:

e A novel job-oriented resource prediction framework.
e The proposed training and prediction algorithms.

e The regression functions in prediction algorithms.

The rest of the paper is organized as follows: Chapter 2 details the related work of
resource provisioning in cloud datacenters. Chapter 3 describes the system design. The
algorithms of RPF includes training and prediction algorithm are discussed in Chapter
4. Chapter 5 describes the case which is demonstrated on RPF and the performance

evaluation. Finally, Chapter 6 concludes the paper.



Chapter 2
Related Work

The recent research of cloud computing has been focused on SLA-based resource pro-
visioning. [3] proposed a model to manage the VMs in the datacenter dynamically to
fit SLA. The model monitors the resource demand during the current time window in
order to make decisions about the server allocations and job admissions during the next
time window. Therefore, the model can adjust the number of execution VMs of high
performance computing (HPC) jobs and web jobs dynamically to conform with SLA.
In [14] and [11], they meet SLA by resource prediction. The prediction results are the
utilizations of CPU and memory. Users cannot easily realize the needed VM numbers
from this estimation result. The framework we proposed output the minimum number of
VMs, which is more intuitive for users. [13] proposed an optimal resource provisioning
for MapReduce programs. They analyze the execution time of mapper and reducer pro-
cess and use regression methods to estimate the execution time of a MapReduce job with
different numbers of VM. The analyzing process they proposed is only suitable for simple
MapReduce job such as WordCount and PageRank. Therefore, we propose a framework
which can estimate the number of VM and execution time for any kind of MapReduce

job.



Chapter 3
SYSTEM DESIGN

In this section, we introduce the architecture of RPF which can predict the minimum
number of VM for a MapReduce job within the expected execution time. We assume that
the MapReduce platform of training process and prediction process is the same.

The input of this framework is a set of execution parameters of the new MapReduce
job, P = {p1,p2,...,pn_1} and users’ expected execution time, EPF. The RPF output
the minimum number of VM which can complete the new MapReduce job within the
users’ expected time. The system architecture of this framework is shown in Fig. 3.1.

In service level agreement (SLA) module, users have to input the new input file, the
execution parameters and the response time they expected. This information is sent to
prediction model.

In training model, the system collects the historical resource usage data including the
number of VM, execution parameters and execution time of old input files. In addition,
regression-based model are adopted to train the historical usage data. The training model
will output the model which has smallest RMSE to prediction model.

The historical resource usage data, the execution parameters of new jobs, the expected
response time and the model which is output by training model are the input of prediction
model. In prediction model, regression-based methods are adopted to predict the number

of VM and execution time.



Training Model

Prediction Model

Figure 3.1: System architecture.



Chapter 4
RPF Algorithms

We propose two algorithms to predict the minimum number of VM of a MapReduce job.

The details of two algorithms are shown in Section 4.1 and Section 4.2.

Algorithm 1 Training Algorithm

Input: S : {(s11,. -, 81, 21)s - (Sk1s- - Skn, 2k) },a set of execution parameters and
execution time.
Output: A: {ay,...,an} coefficient set of regression equation.

if Linear Model then
Fill the set S in f(xy1,...,Zn, A) = @123 + ... + @22 + App1T1 + . . . + Q2n Ty + Ay
Find out A to minimize Zle[zi — f(Si1y -+ 5 Sin, A)]2

f(8117 <+ Sln, A) - a18%1 S oo o a/ns%n = An+1S511 + ...+ A9 S1n -+ A
f(521> <oy S2n, A) N a18§1 Sl <+ ansgn + apt1521 + ...+ Ao Son + A
F(Sk1s -y Skny A) = @185, + ... + apSt, + Qpi1Sk1 + - - - + A2nSkn + A
else
if Non — linear Model then
Fill the set S in f(z1,...,2,) = a1€™™ + ... 4 ag,_1€"2""" + ay,

Find out A to minimize S5 [z — f(si1, . - ., 8in, A)].

21 = f(S11,. .., S1n) = @1€"° 4 ...+ a9y 1P 4+ ay,
zo = [(Sa1, -, 820) = @1 + ..+ Agp €77 +
2k = f(Sk1y -0 Skn) = @1€W2 4 L agy €9+ ay,
end if
end if




4.1 Training Algorithm

Users have to execute the jobs whose input file is time-related or same with the new
MapReduce job’s input file before executing RPF prediction process. The input of
training algorithm are a set of execution parameters and execution time of these jobs,
S A{(s11,- 815 21), - -+, (Sk1y - - Sknsy 2) }. Because we use regression-based methods
to predict the minimum number of VM, the output of training algorithm is the coef-
ficient set of regression equation, A : {ai,...,a,}. There are linear and non-linear
regression model. In linear model, the set S is filled in f(z1,...,2,) = @122 + ... +
anZ2 + Apy171 + ... + A2pTy + A,y to find out the set A. Otherwise, the set S is filled in

flzr,. . x,) = €™ + ...+ agp_1€**" +a,, to find out the set A in non-linear model.

4.2 Prediction Algorithm

Algorithm 2 Prediction Algorithm 1
1: Input: P : {p1,...,pn-1},a set of execution parameters, Regression Model, A :
{ai,...,an}, the set of coefficient of regression model, £ PT"expected execution time
2: Output: N:number of execution VMs
3: for i :=1to r do
4. if RegressionModel = Linear M odel then

5: Fill the set A,set P and EPT in

6: flxe, . o xn) = a2 + o 4 an 2 + a1 + oot Q2T + A

7: Use the following function to predict the number of execution VMs N.

8: N = f(p1,--,Pu1, EPT) = a183+.. .+ ap 152 |+ a0} +api1p1+- . .+ a2 1pn+

A2p VT + Gy

9: else
10: if Non — linear M odel then
11: Fill the set A ,set P and EPT in

12: flzr, o xn) = @€ + ...+ agp_1€™""" + apy,

13: Use the following function to predict the number of execution VMs N.

14: N = f(p1,--,Pn1, EPT) = a1€%P* 4+ ... + a9, _9en—1Pr=1 + a9, %% + q,,
15: end if
16:  end if

17: end for

After training procedure, the system predicts the minimum number of VM of the
new job by prediction algorithm. The input are a set of execution parameters, P :
{p1,-..,Pn_1}, regression model, a set of coefficient of regression model which is the

output of training algorithm, A : {ai,...,a,} and the expected execution time, EPT.
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The output is the minimum number of VM, N. The set of new execution parameters and
the expected execution time are set to be the input of the regression model. After the
regression process, the model outputs the minimum number of VM. The pseudo code of

prediction algorithm is shown in Algorithm 2.

Algorithm 3 Prediction Algorithm 2
1: Input: P : {p1,...,pn_1},a set of execution parameters, Regression Model, A :
{ai,...,an}, the set of coefficient of regression model,V : {v],...,v.} a set of testing
number of VM, E PT:expected execution time
2: Output: N:number of execution VMs

3: Let T : {t1,...,t.} be the set of predicted execution time responding to set V.
4: Let PRT': be the time in set T which is smaller than EPT and is the largest one in
T.
5: for i :=1to r do
6: if RegressionModel = Linear Model then
7: Fill the set A,set P and set in
8: flxy, ..o xn) = @@ + .. 4 ap 22 + @11 + -+ Q2T + A
9: Use the following function to predict the execution time t;.
10: t; = f(pl, ey Pn—1, UZ') = als% s B an_lsi_l + anvi2 +apt1p1+ ...+ agp—1pn +
A2n V1 +
11: else
12: if Non — linear M odel then
13: Fill the set A and set X in f(xy,...,2,) = a1€™™ + ... + ag,_1€"""" + a,,
14: Use the following function to predict the execution time ¢;.
15: ti = f(P1,- s Pno1,Vi) = @1€"P* + ...+ ag, o™ 1Pl 4 gy 20V 4 q,,
16: end if
17.  end if

18:  Find the time PRT in set T which is smaller than EPT and is the largest one in T.
19:  After finding PRT, we can know the index i and get the corresponding VM number.
20: end for

In some programs, the parallelization is not achieved very well. It causes that the
number of VM is only related with the set of execution parameters or expected execution
time. Therefore, we cannot predict the number of VM directly. We propose another
methods to solve this problem. There are two steps in this proposed prediction algorithm.
First of all, we use regression model to predict the execution time of the new job executed
by different number of VM and make up the set 7' : {¢;,...,t,}. The second step is
comparing every execution time we predict with the FPT and find out the time which is
called PRT. PRT is smaller than EFPT and is the largest one in T". After finding PRT,
we can output the VM number which is corresponding to PRT. The VM number, named



N is the minimum number which can complete the new job with P : {py,...,p,_1} within
the EPT. The pseudo code of prediction algorithm is shown in Algorithm 3.

The input are a set of execution parameters, P : {p1,...,pn_1}, regression model,
a set of coefficient of regression model which is the output of training algorithm,A :
{ai,...,an}, the expected execution time, EPT and a set of testing number of VMs,V :
{v{,...,v.}. The output is the minimum number of VMs,N. There are two steps in
proposed prediction algorithm. First of all, we use regression model to predict the exe-
cution time of the new job executed by different number of VMs and make up the set
T :{ty,...,t.}. The second step is comparing every execution time we predict with the
EPT and find out the time which is called PRT. PRT is smaller than EPT and is the
largest one in T'. After finding PRT, we can output the VM number which is correspond-
ing to PRT. The VM number, named N is the minimum number which can complete

the new job with P : {py,...,p,_1} within the EPT.



Chapter 5

Case Study

The data intensive jobs such as data mining jobs usually execute repeatedly by the same
input files with different arguments. If users execute jobs in parallel, the execution time
can be reduced intensively. While users rent the VMs to execute jobs in parallel, RPF
enables users to use the least resource to execute parallel jobs. We demonstrate parallel
frequent pattern growth (FP-growth) and parallel K-means on RPF to evaluate the per-
formance of RPF. FP-growth is the most popular algorithm to analyze association rules
from a lot of data. We modify FP-growth algorithm to parallel FP-growth algorithm
which can execute on Hadoop platforms and collect the historical job usage data to esti-
mate the fewest VM number of a new FP-growth jobs. The introduction of FP-growth is

in Section 5.1.

5.1 FP-growth

A retailer such as Walmart may analyze the purchase relationship of products for product
arrangement. They can execute FP-growth algorithm with different support which is the
appearance frequency of products to find out the association rules of products. Therefore,
the resource prediction of executing FP-growth with different support is really important.
In addition, the input data of FP-growth such as the sales information of Walmart is
huge. Executing FP-growth in parallel can reduce execution time massively. Therefore,
we use FP-growth to be the example of RPF. Fig. 5.1 (a) shows the example of FP-
growth. FP-growth can find out that whether they buy diapers if customers have already
bought beers and bread. Fig. 5.1 (b) shows the execution process of FP-growth on RPF.

While we are executing parallel FP-growth to find out the association rules, RPF records

10
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Case :
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Support=1200 800 sec ‘ 2 A i,
Support=1500 600sec P P, The number

; E of VMs
Expected execution time = N ]

(b) The execution example of FP-growth on RPF

Figure 5.1: The execution scenario of FP-growth.

min_support =3

Customer ID Items bought Ordered
1 {a,cd, f,g,i,m, p} {f,c,a, m, p}
2 {a,b, ¢ f i, m o} {f,c,a, m}
3 {b,f, h, j, o} {f, b}
4 {b. ¢ ks p} {c, b, p}
5 {a,c,efl,mn,p} {f.c,a, m, p}

Figure 5.2: Constructing FP-trees.

the execution time and execution status such as the number of VMs and support. This

historical resource usage data can be used to predict the execution number of VMs.

5.1.1 Parallel FP-growth

FP-growth uses the divide and conquer strategy to find the frequent items. There are two
phases in FP-Growth algorithm. First phase is constructing FP-tree. In this phase, we
find frequent items whose appearance frequency is larger than minimum support and sort
items in frequency descending order, Fig. 5.2. And then we construct a root node which is
marked by null and add the branch of each traction. The second phase is FP-Growth. In
this phase, we find out conditional pattern bases which are associated with every frequent

item in FP-tree. The conditional bases whose frequency are larger than minimum support

11
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Item | Cond. Pattern base | Cond. FP-tree | Frequent patterns
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a fc:3 fc:3 fca:3,fa:3,ca:3

b fca:1,f:1,c:1

m fca:2,fcab:1 fca:3 fm:3,cm:3,am:3,
fcm:3,fam:3,cam:3,
fcam:3

P fcam:2,cb:1 c:3 cp:3

* (b) The result of FP-growth.

Figure 5.3: Conditional tree and result of FP-growth.

facdglmp Support=3 fcamp
abcflmo 2 fcabm

bfhjo map reduce counting) 3 ¢p,

bcksp 4 cbp

afcelpmn 5 fcamp

(€ YR

Figure 5.4: MapReduce counting in Parallel FP-growth.

are put in conditional FP-trees. After constructing conditional FP-tree of every frequent
item, we can output the frequent patterns, Fig. 5.3.

In parallel FP-growth, we execute MapReduce counting to find frequent items whose
appearance frequency is larger than minimum support and sort items in frequency de-
scending orderFig. 5.4. After MapReduce counting, frequent items are separated into
many parts for every mapper to execute. Every mapper output the conditional patterns
according to input files and send the result to the reducers. The reducers have two step to
execute. First, the reducers collect the conditional patterns from every mapper and com-
bine these patterns which are associated with same frequent item. Second, the reducers
construct the conditional FP-tree of every frequent item and output the frequent patterns
Fig. 5.5. The execution time of parallel FP-growth is much shorter than the execution

time of FP-growth.

12
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Figure 5.5: The execution process of parallel FP-growth.
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(2000, 6707 sec , 1 VMs) FO0A) = @+ a,257 + ag0g + 4,0, + a5
(2000, 3184 sec , 2 VMs) X, A) = aq e taze®™2 +a
(2000, 2129 sec , 3 VMs)

(2000, 1011 sec , 4 VMs) {f(X,A) =a; 2000 + a, * 6707 + a;

FO) = 0y » 2000) 41, + (6707)+ay + 2000+ 0,6707 +
f(X,A) =0y 6“2*Z°°°+a3e“4*5707 +(15

(11000, 288 sec , 1 VMs)
(11000, 178 sec , 2 VMs)
(11000, 166 sec , 3 VMs )

(11000, 198 sec , 4 VMs) Set A=(ay,az,23)
. Find out A to minimize ¥M_,[z,—f(X,4)]* . J EEESCrmnmes
Set A:(al,aZsa_‘”a'-haS)

Figure 5.6: The example of training algorithm by FP-growth.

5.1.2 Parallel FP-growth on RPF

We execute parallel FP-growth on map-reduce platform with different support. Therefore,
we can collect different execution parameters, such as support and execution time to be
the input of training algorithm. In Fig. 5.6, we input support 2000 to 11000 and the
historical execution time in the training algorithm. After executing training algorithm,
we can obtain an regression model whose root mean square error (RMSE) is the smallest.
We use this regression model to predict the number of execution VMs for the new jobs.
The new job’s support which is 5000 and expected response time 750 second which is set
by users is the input of prediction algorithm. We put the support, the expected response

time and the regression coefficient set A which is the output of training algorithm into the

13



Input:(5000,750 sec)+

Set A:{aj,a,,a3a4a5}={6.2883¢-008, 2.7878e-007 , -0.0011 , -0.0026 , 8.1528}

X={(5000,750 sec)} f(X,A) = 6.2883e-008 * (5000)2 + 2.7878e-00 * (750)% + HM

(—0.0011) * 5000 + (-0.0026) * 750 + 8.1528

Figure 5.7: The example of prediction algorithm 1 by FP-growth.

Input:(5000,750 sec)+

0000039843, 1552, -1 ,-1111.2 , 5853.3}

(IR (X 4) = 4y, *azxy® + agg +aut, + 05
X={(5000,1) U8, 4) = 0000059843 (5000 +155.2¢ 1 +(-1) 5000 + (~1111.) 1+ 5853 3=13899

5000, 3VMs)->409.2 sec

(5000, 1VMs)->1389.9 sec
(5000, 2VMs)>744.3 sec |70 sec

( g

( Iz

(30004} J(8,4)= 0000059843 » (0007 +1852 47 +(-1) 5000 + (-1111.2) 44 58533 = 3944

5000, 4VMs)->3844 sec

Figure 5.8: The example of prediction algorithm 2 by FP-growth.

prediction equation. The equation outputs the fewest number of VMs. The example of
prediction algorithm is shown in Fig. 5.7. If the prediction result is not accurate enough,
we can try to use prediction algorithm 3 to estimate the number of execution VMs. We
put the support, the number of VMs and the regression coefficient set A which is the
output of training algorithm into the prediction equation. The equation outputs the
execution time of every situation. We can use the expected execution time and the result
of prediction algorithm to decide the fewest number of VMs of the new job. Fig. 5.8 shows

the example of prediction execution time methods.

5.1.3 Parallel FP-growth on RPF Experiment Setup

We construct two physical machines as the platform. The CPU of physical machines is
Intel(R) Core(TM) i7-2600 CPU 3.40GHz and 4G ram. There are four virtual machines
in each physical machine. There are 1 core and 1G memory in each virtual machine.
Hadoop is installed in virtual machines. We refer to [5] and Apache Mahout project [10]
to modify the Fp-growth in parallel. The dataset is from [8]. We choose the dataset which
consists of 10 million ratings and 100,000 tag applications applied to 10,000 movies by
72,000 users.
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Figure 5.9: The prediction curve of FP-growth by prediction algorithm 1.

5.1.4 Evaluation

In prediction algorithm 1, we use linear and non-linear regression to predict the number
of VM. The linear and non-linear prediction curves are shown in Fig. 5.9.

In prediction algorithm 2, we use linear and non-linear regression to predict the exe-
cution time. The linear and non-linear prediction curves are shown in Fig. 5.10. Fig. 5.11
shows the RMSE of prediction algorithm 1 and prediction algorithm 2. We can see that the
prediction result of exponential function is the most accurate and the result of quadratic
function has the maximum error. Overall, the regression methods we propose can output

the fewest number of execution VMs to users accurately.

5.2 K-means

K-means is the simplest cluster algorithm to find clusters from a lot of data. We modify
K-means algorithm to parallel K-means, execute it on Hadoop platforms to collect the
historical job usage data and estimate the fewest VM number of a new K-means jobs.

The scenario and introduction of K-means is in Section 5.2.1.
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Figure 5.10: The prediction curve of FP-growth by prediction algorithm 2.

5.2.1 Parallel K-means

K-means clustering algorithm is a well known unsupervised clustering algorithm and it
partitions objects into groups by analyzing the relationship or similarity of objects. Usu-
ally, the input data of K-means called dataset is intensive. For example, the BigCross
dataset [1] which is 11,620,300 points in 57-dimensional space and the Census1990 dataset
[2] which is 2,458,285 points in 68 dimensions are used in [12]. Furthermore, analyzing
the relationship between objects could be processed in parallel. The sequential K-means
algorithm could be modified to a parallel K-means algorithm. Then, we use the parallel
K-means to be a case study of RPF.

K-means is used to partition the data into K clusters. The input of K-means are
the cluster number K and the data which is used to cluster. The output is K clusters.
There are four steps of K-means. First step is choosing K data to be the central node of
every cluster. Every node compute the distance between it and the central node is second
step. The third step is assign every node to the cluster according to the distance result
in second step. The fourth step is recompute the central node of every cluster according

to the average value of the data in the clusters. The second, third and fourth steps are
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Figure 5.11: RMSE of prediction algorithm.

repeated until the the clusters are not changed anymore. The example of K-means is
shown in Fig. 5.12.

Fig. 5.13 shows the execution process of parallel K-means. The input data node
A.,B and D is allotted into different mapper to compute the distance between it and
every central node C1, C2. After mappers output the distance result of A,B and D, the
reducers have two step to execute. First, the reducers find the closest cluster for A,B
and D according to the distance result. Therefore, B is changed to cluster 2. Second,the
reducers recompute the central node of every cluster according to the average value of the
data node in the clusters. The central node of cluster 2 is changed to D. The mapper and

reducer process are iterative executed until the clusters are not changed anymore.

5.2.2 Parallel K-means on RPF

We execute parallel K-means on map-reduce platform with different K. Therefore, we
can collect different execution parameters, such as K and execution time to be the input
of training algorithm. In Fig. 5.14, we input k£ = 1,3...,21 and the historical execution

time in the training algorithm. After executing training algorithm, we can obtain an
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Figure 5.12: The example of K-means.

regression model whose root mean square error (RMSE) is the smallest. We use this
regression model to predict the number of execution VMs for the new jobs. We input
the new job’s K which is 10 and expected response time 2000 which is set by users in
the prediction algorithm. We put the K, the expected response time and the regression
coefficient set A which is the output of training algorithm into the prediction equation.
The equation outputs the fewest number of VMs. The example of prediction algorithm
is shown in Fig. 5.15. If the prediction result is not accurate enough, we can try to use
prediction algorithm 3 to estimate the number of execution VMs. Fig. 5.16 shows the
example of prediction execution time methods. We put the K, the number of VMs and the
regression coefficient set A which is the output of training algorithm into the prediction
equation. The equation outputs the execution time of every situation. Finally, we can use
the expected execution time and the result of prediction algorithm to decide the fewest

number of VMs of the new jobs.
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Figure 5.13: The execution example of parallel K-means.

5.2.3 Parallel K-menas on RPF Experiment Setup

The experiment environment is same with the FP-growth experiment. We refer to [15]
and Apache Mahout project [10] to modify the K-means in parallel. The dataset is also
same with FP-growth dataset which is rating data sets from the MovieLens web site [8].
We choose the dataset which consists of 10 million ratings and 100,000 tag applications
applied to 10,000 movies by 72,000 users. We use K-means to cluster the users who have

the same interest of movies.

5.2.4 Evaluation

In prediction algorithm 1, we use linear and non-linear regression to predict the number
of VM. The linear and non-linear prediction curves are shown in Fig. 5.17.

In prediction algorithm 2, we use linear and non-linear regression to predict the exe-
cution time. The linear and non-linear prediction curves are shown in Fig. 5.18. Fig. 5.19
shows the RMSE of prediction algorithm 1 and prediction algorithm 2. We can see that

the prediction result of quadratic function is the most accurate and the result of linear
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Figure 5.14: The example of training algorithm by K-means.

Input:(10,2000 sec)+
Set A:{a;,ay,a3a4a5}={-0.0061, 1.7929¢-007 , 0.2494 , -0.0019 , 3.3953}

X={(10,2000 sec)} F(A) = (—0.0061) * 102 + 1.7929 — 007 * (2000)7 + m_.

(0.2494) + 10 + (—0.0019) = 2000 + 3.3953 = 2.19
Figure 5.15: The example of prediction algorithm 1 by K-means.

function has the maximum error. We also can find that the RMSE of RPF is no more than

1.5. In brief, RPF can predict the fewest number of execution VMs to users accurately.

5.3 PSO

Particle Swarm Optimization (PSO), an optimization algorithm that was inspired by bird
and fish foraging social behavior [4]. In the beginning, the birds have no idea about the
food location. They guess and fly to better location by their experience and intuition.
When a bird finds the food, it broadcasts the location to other birds. Other birds fly to
the food location. Bird foraging behavior is the concept of mutual influence in society
which can lead all individual bird toward the location of the optimal solution. PSO has
become popular because it is simple, requires little tuning, and has been found to be
effective for a wide range of problems. Since every node in PSO can compute the local
best value by itself, PSO is suitable for MapReduce framework. In this paper, we refer to
[7] to modify PSO in parallel and demonstrate parallel PSO on RPF.
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Figure 5.16: The example of prediction algorithm 2 by K-means.
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Figure 5.17: The prediction curve of K-means by prediction algorithm 1.

5.3.1 Parallel PSO on RPF

The steps of resource prediction of parallel PSO is same with parallel FP-growth and
parallel K-means. We execute parallel PSO with Rosenbrocks test function [9] which is

defined following by different dimension d.

Fa) =2 (1= + 100(zis = )]

x; € [—100, 100].

We collect the different parameter d and execution time to be the input of training
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Figure 5.18: The prediction curve of K-means by prediction algorithm 2.

algorithm. After the process of training, we predict the minimum number of VMs of a
new job with different d by algorithm 2 or algorithm 3. The performance of parallel on
RPF is shown below.

5.3.2 Parallel PSO on RPF Experiment Setup

The experiment environment is same with the FP-growth and K-means experiment. The
input dataset is generated by latin hypercube sampling [6] with different domain. The
optimization function of PSO is Rosenbrocks test function and z; € [—100, 100]. We use

PSO to find optimal solution of Rosenbrocks function.

5.3.3 Evaluation

We use linear and non-linear to predict the number of VM in prediction algorithm 2. The
curve of linear and non-linear prediction are shown in Fig. 5.20.

We use linear and non-linear regression to predict the execution time. The linear and
non-linear prediction curves are shown in Fig. 5.21. The RMSE of prediction algorithm 1

and prediction algorithm 2 is shown in Fig. 5.22. We can see that the prediction result of
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Figure 5.19: RMSE of prediction algorithm.

algorithm 2 is more accurate than algorithm 1. The reason is that parallel PSO program
is not thorough parallel. That is, while users’ program is not fully parallel, algorithm 3

can provide better solution.
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Figure 5.20: The prediction curve of PSO by prediction algorithm 1.
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Figure 5.21: The prediction curve of PSO by prediction algorithm 2.
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Figure 5.22: RMSE of prediction algorithm.
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Chapter 6
CONCLUSION

In this paper, we proposed a resource prediction framework (RPF) to predict the mini-
mum number of execution VMs which can execute the users’ jobs within a user specified
response time. We not only proposed RPF but also demonstrated parallel FP-growth,
parallel K-means and parallel PSO on RPF to evaluate the performance of RPF. The
evaluation results showed that RPF can predict the number of VM accurately and can
be adopted by data intensive algorithms. This is a big progress in resource provisioning
field. In the future, we will propose a VM allocation model to combine with RPF which

can make resource provisioning more accurately.
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