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利用少量慣性感測器監控人物動作之研究 

 

  學生：林世祐 指導教授：林奕成 

  

國立交通大學資訊科學與工程研究所 

摘   要 

 

  利用從感測器取得的資料來重建動作已經是一個相當普遍的研究技術。在這篇

論文當中，我們呈現一個流程圖是藉由綁在使用者四肢跟軀幹上的四到五隻慣性

感測器來重建整個人體動作。基於這些收集的資料，我們建立一個包含著十多萬

幀線上ｋ元樹的架構並從中取得最適當的動作片斷來決定目前使用者的全身動作。

然而由於少量且有雜訊的感測資料通常會造成我們判斷動作的誤差，因此有著發

生動作之間不連續的可能性。為了防止這項限制，我們將運動領域概念來避免發

生此情況，並能達到更為合體的動作轉換，我們利用即時的動作合成機制將多個

動作候補依據其比重關係來混和，使其能夠重現出更為自然且平順的動作，我們

的主要目的是利用少量的慣性控制器來達到運用高昂儀器所作出的準確度，並且

有著不受環境影響和自我屏蔽的限制。 

關鍵字：動作重建、感測器、ｋ元樹、Wii 控制器 
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Action Surveillance Using Sparse Wearable Inertial Sensors 

 

  Student：Shih-Yu Lin Advisor：Dr. I-Chen Lin 

 

Institute of Computer Science and Engineering 

National Chiao Tung University 

Abstract 

  

 

  Motion reconstruction from sensor data is a notable research field. In this thesis, we 

present a framework to reconstruct full-body human motion by four to five inertial 

sensors that attached to the user’s four limbs and torso. Based on the gathered data, we 

construct an online k-dimensional tree (kd-tree) index structure which consists of 

hundred thousands of frames, and find the most appropriate motion fragment as user’s 

current full-body motion. However, the sparse and noisy sensing data cause high 

ambiguity for our motion estimation. It then results in gaps between poses continuous. 

Consequently, we include the concept of motion fields for more reasonable motion 

transition. This run-time motion synthesis mechanism merges the candidates of the 

motion sequences by weighted combination, and generates natural and smooth motions. 

Keyword: Motion reconstruction 、Sensors、kd-tree、Wii remotes 
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Chapter 1. 

Introduction 

__________________________________________ 

The whole world is gradually moving towards an aging society now. Therefore, 

health care becomes an essential and unavoidable topic. However, to care for the elders 

needs to spend a lot of time and labor. For example, to apply for a dedicated nursing 

work to care elders, etc. To alleviate the burden, we propose an approach to remotely 

survey user’s motion from sensing device for caring elders or other monitoring issue.  

  Motion reconstruction using pre-record motion capture data is an important topic 

in computer animation. However, the most popular technique to reconstruct full-body 

motion is through vision or magnetic-based motion capture device which is high-cost, 

time-consuming for setup, and applicable only in constrained environment. The 

technique does not meet our primitive goal. Therefore, we prefer to choose the sensing 

devices which are low-cost, portable and fewer environment constraints. 

  In our system, we use Wii Remotes with MotionPlus as our motion sensor (Figure 

1.1, Figure 1.2), where accelerometer and the gyroscope inside provide us information 

of 3D accelerations, and angular velocities. This motion capture device is the primary 

controller for Nintendo’s Wii console. A main feature of the Wii Remote is its motion 

sensing capability, which allows the users to interact with objects on screen via gesture 

recognition and pointing through accelerometer and optical sensor technology. The 

accelerometer captures net forces on Wiimote in the range from -3g to 3g, where g is 

gravitational acceleration. 
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The Wii Remote assumes a one-hand remote-control-based design instead of the 

traditional gamepad controllers in previous gaming consoles. The controller 

communicates wirelessly with the console through short-range Bluetooth radio up to 10 

meters away from console. 

 

 

 

 

These inertia sensors can easily be worn by users as input, and it does not affect the 

daily lives. Inertia controllers provide us accelerations and angular velocities, and can 

be used to deduce the motion of user at present. We have implemented an approach 

[Tautges et al 2011] to match the most appropriate result by gathered data. This 

data-driven technique is built up a Lazy Neighborhood Graph in an online fashion based 

on the sparse accelerometer input. However, an obvious limitation of this method is that 

occasionally jumps between poses may occur. The problem often occurs when we 

receive ambiguous sensing data sequences.  

  In [Lee et al 2010], a technique called motion field is proposed. This novel 

run-time motion synthesis mechanism allows a natural handling of several ambiguous 

candidate sequences by calculating the distance between candidate sequences and 

synthesizing with weighted average. Therefore, we can modify Online Lazy 

Neighborhood Graph achieve motion transition rapidly by the concept of this technique, 

we solve above limitation and make the result appear smooth for better action 

Figure 1.1: Wii Remote Figure 1.2: Wii Remote with 

MotionPlus 
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surveillance. (Figures 1.3) 

  We focus on the daily behavior like walking, lifting, sitting, etc, and plan to 

recognize the abnormal behaviors of user. In order to achieve the goal of monitoring, we 

use the Bluetooth to transfer data, and it can transmit sensing data more than dozens 

meters. Our approach takes advantage of the inexpensive and portable motion capture 

device and can still provide comparable accuracy to other technique using high-cost 

devices.  
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Figure 1.3: Overview of system 
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Chapter 2. 

Related Work 

__________________________________________ 

In last decades, various motion capture devices and techniques have been proposed. 

Each motion capture technique has its own advantages and weaknesses. Take [SH08a] 

for example, they attached low-cost inertial sensors on user’s limbs. By measuring the 

acceleration from human motion, they can match the closet motion clip in their database. 

However, the acceleration computed from full-body pose is often disturbed by noise.  

  Another technique like optical marked-based MoCap systems can typically provide 

accurate positional information for joint coordinates or rotational information of joints 

in [PhaseSpace10]. However, the method requires an array of calibrated high-resolution 

cameras as well as high-cost garment equipment. They usually need manual data 

clearing for occlusion and ambiguity problems. 

  Low-dimensional sensor input is often used for acquiring full-body information in 

computer animation [BHG93]. Siratori, T. [SH08b] introduces using inertial-based 

control data to evaluate a small number of parameters in physically-based character 

animation. Data-driven approaches show promising results to generate high-dimension 

character motion with limited-dimensional control data. Feng, W. –W. [FKY08] 

proposed an approach using sparse control points and an example-based model to 

deform complex geometries. The above mentioned techniques reconstruct virtual 

character pose through pre-record mocap data. The data in mocap database usually have 

huge dimension to represent full-body human of one frame. It is time-consuming to 
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search high dimensional data. Therefore, how to use the low-dimensional sensors input 

to retrieve suitable motion sequences from a database which contains of 

high-dimensional data is main issue of our method. 

  Andoni, A. [AI06] stated the kd-tree is well suited for nearest-neighbor searches. 

By kd-tree structure, they can efficiently identify the pose in the pre-record database. 

The technique inspires us to retrieve the full-body human pose from high-dimensional 

knowledge database with a given sensing input. Kruger, B. [KTW10] extended above 

technique and introduced Lazy Neighborhood Graph(LNG). This method is used in the 

reconstruction step to compute the current frame of the outputted animation. However, 

we want to identify optimal subsequences from the knowledge database for every point 

in time. To construct LNG for every frame of sensing data is of high computation cost 

and do not improve the visual quality. 

  Tautges, J. [TZK11] improved LNG. LNG can be built up incrementally making its 

construction efficient and online capable, which called Online Lazy Neighborhood 

Graph(OLNG). Therefore, the technique allows us for handling the newest sensor 

readings and updating the LNG immediately.  

  In addition to motion reconstruction, we have to deal with the problem of 

discontinuous gaps between poses caused by ambiguous data streams. OLNG finds the 

best K nodes of the current time by K-nearest neighbor algorithm(KNN) and uses them 

to calculate energy minimization. It is possible to have several diverse sequences with 

similar low energy cost. To reconstruct motion with smooth transition, there are some 

methods that use nonparametric methods to learn the dynamics of character motion in a 

fully continuous space. Arikan, O. [AFO03] presented an algorithm synthesizing 

motions by users specifying what actions should occur during the motion as well as 

specifying modifiers on the actions. However, when this method anticipates some types 

of upper-body pushes, the character may not react at all to hand pulls or lower-body 
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pushes. Another group of methods use nonparametric models to learn the dynamics of 

character motion in a fully continuous space [YL10, CH05]. These techniques are able 

to synthesize character motions starting from the initial states and make themselves 

apply physical disturbances. These models are used to estimate the most likely character 

motion from a number of possible candidate postures. As a result, we can utilize above 

concepts to construct smooth motion transition without jitter. 

  In the thesis, we incorporate temporal coherence by Online Lazy Neighborhood 

Graph(OLNG) and attempt to overcome its shortcoming. We extend the concept of 

motion field proposed by [LWB10] to do motion blending to avoid jittering. The 

difference between motion field and [YWB10, CH05] is that instead of building a model 

of the most possible single motion, they attempt to model the set of possible motions at 

each character state and select the single state at run time by calculating the value 

function. Their work combines the concepts of near-optimal character control presented 

in graph-based methods with those of nonparametric motion estimation techniques. 

Simply, we propose Online Lazy Neighborhood Interpolation Graph by extending the 

concept of motion field into original Online Lazy Neighborhood Graph.  

  In out thesis, we gather acceleration data by sparse inertial sensors worn on the 

user’s body instead of using those high-cost optical motion capture devices for input. 

The advantages of Wii Remote are portable to not hinder daily behavior and adaptable 

in constraint environments. Our approach is capable of handling variations that are not 

explicitly specified in the given database.  
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Chapter 3. 

Pre-processing 

 3.1 Motion Capture Database 

__________________________________________ 

In this system, we select motion capture data as our training data from CMU 

Mocap Lab. The database consists of various motions including sport motions and 

common behaviors. To focus on everyday life of users, we choose the action like 

walking, jumping, sitting, and lifting as our training input. Every motion is in the 

Biovision Hierarchy(BVH) format and consists of thousands and even ten thousands of 

frames. In the following, we rename the different knowledge bases by the same naming 

pattern that group the database simply. 

         {Motion}{Index}.bvh 

  At first, we use unprocessed database as input to construct Online Lazy 

Neighborhood Graph. However, it is time-consuming to clip motion sequences from 

such a large database. To deal with this problem, we calculate the distance between two 

frames in each motion by Euclidean distance. If two poses are too close to each other, 

they are then considered as redundant data. We skip the frame whose distance between 

itself and the next frame is smaller than a threshold. The threshold is 0.3 cm that can 

reduce up to 14 ten thousand to 7 ten thousand frames. 
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 3.2 Motion Clips 

__________________________________________ 

 In our work, training data is a huge database that we need a lot of time to construct 

OLNG for every frame. Therefore, we clip the training data into several sequences to 

mitigate the time of construction of OLNG. A sequence consists of n frames, 31 joint 

angles, and root positions. It is intriguing to define the number of a clipped sequence. In 

our system, we decide n is 10 to 15. First of all, we divide whole set of motions into 

several parts evenly. Each clip has n frame. n is user-defined. In the second step, it 

selects the first frame of each clip as training data that constructs kd-tree structure. By 

only using one frame of motion clip, we can substantially make the system speed up.  

Therefore, sensor readings find out the appropriate output through kd-tree structure that 

the output belongs to a first frame of motion sequence. The motion sequence becomes 

the candidate of motion synthesis. As a result, we only process nearly one-tenth training 

data to construct OLNG. 

 When one index is chosen, we synthesize the whole motion clip belonging to the 

index. In addition, we use OLNG to choose coherent index to avoid ambiguity problem. 

Because we use clip-based motion reconstruction, our overall animation is smoother 

than the per-frame-based motion reconstruction.   

 

 

 

 



 

9 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6 Frame n … 

Training motion data 

Motion sequence 1 Motion sequence 2 Motion sequence x … 

Online Lazy 

Neighborhood 

Graph 

Motion Synthesis 

Figure 3.1 We clip the data to several parts and let the first frame of each clip be 

index. We use index to construct OLNG. Each index presents n frames. 
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3.3 Sensor Reading Collection 

__________________________________________ 

 We ask a user to wear Wii remotes with MotionPlus on two wrists, legs, and chest. 

By WiiYourself library, we can gather the acceleration from Wii remotes via Bluetooth 

technology. This library supports multiple Wii remotes and provides us UI for 

convenient management as shown in Figure 3.2. Wii remotes send and receive various 

data, and all of them are 22 bytes in length. WiiYourself has a FileStream to 

communicate with and read or write to the Wii remote. In addition, because data are 

sent and received almost constantly, asynchronous I/O operations are used. To 

implement in .NET, the process is to start an asynchronous read operation and provide a 

callback method to be run when the buffer is full. When the callback function is run, the 

data from Wii remote is handled and the process is repeated. 

 For initialization, we require a user to stand in a T pose to do calibration before 

motion capture as shown in Figure 3.3. Inappropriate initial state usually cause biased 

reconstruction results. Then, a user moves freely within the range of Bluetooth can be 

reach transmission. Wii remotes worn on user’s two wrists and legs, send 3D 

accelerations and angular velocities to the system. However, the Wii remote worn on 

user’s chest only send orientation without 3D accelerations. We use the chest Wii 

Remote to determine root orientations, it makes estimated full-body pose smoother. 

Because the acceleration signal is noisy, we apply a low pass filter to denoise before the 

following data analysis. 
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Figure 3.2 WiiYourself UI 

Figure 3.3 Wii remotes worn on user’s body 
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Chapter 4. 

Implementation of Online Lazy Neighborhood 

Graph 

 4.1 Overview 

__________________________________________ 

 In our work, we mainly divide the whole system into four stages. In the first stage, 

we construct online lazy neighborhood graph with acquiring fixed-length sequences of 

training data. Second stage is to use sparse low-dimensional control input to infer 

full-body motion. We formulate the motion reconstruction as an energy minimization 

problem and acquire the most possible candidate from training data. However, defect of 

the data-driven best-match approach is that occasional jumps between poses may occur. 

To deal with this drawback, we combine the motion field into our original approach to 

achieve rapid motion transition in the third stage. At the final stage, we do 

post-processing to make the character smooth. First, we handle the problem by 

detecting heights of two feet and keep supporting points stationary at ground plane. 

Furthermore, we use Gaussian filter to diminish unnatural full-body motion. The main 

advantage of our sensor-based approach is that we can still acquire reliable results in 

constraint environment like obstacle or dark environment, and keep connection up to 10 

meters away from consoles. Consequently, our approach has higher applicability than 

those using calibrated high-resolution cameras as well as high-cost garment equipment. 
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4.2 Clip-based Online Lazy Neighborhood 

Graph 

__________________________________________ 

 In this stage, we use 3D accelerations of four Wii remotes as the input of our 

reconstruction framework. The sensing data are represented in the unit m/s
2
.
 
Before 

constructing OLNG, we would use the training database to build kd-tree structure. As 

section 3.2 mentioned, we use the first frame of motion sequence as one node and 

calculate the 3D acceleration and angle velocities of two twists and legs. The 3D 

accelerations of each joint are then placed in kd-tree structure. The dimensions of 

kd-tree is 4(Wii Remotes) ∙3(xyz) ∙t(time)=12t. The kd-trees are well suited for last 

nearest neighbor searches. (Figure 4.1) 

 Now, we assume that the control input consists of continuous stream of sensor 

accelerations ,...),,,(..., 112  tttt  , where t  denotes the current frame of 3D 

accelerations at time t, and t is an integer. We fix the number K of nearest neighbors and 

let tS  be the storages of the K nearest neighbors of t . We consider the last M 

sensing data ),...,,( 21 tMtMt    for a fixed number M . In our work, we 

choose M is 4. Then, the nodes of OLNG can be presented by M x K array. If there are 

two nodes in adjacent column, we should connect them as a path. Suppose that the 

OLNG has been constructed for the reading ),...,,( 21 tMtMt    and a new data 

1t  arrives. First, we should construct the path of last M column by the above concept. 

Then, we acquire the K nearest neighbors and store in 1tS . We search whether the last 

frame of node is adjacent to the new node and form a connection. Finally, the nodes are 

corresponding to 1Mt  as well as the involved edges are removed to obtain the 

updated OLNG. (Figure 4.2a, Figure 4.2b)  



 

14 
 

 During real-time updating, our approach can process the newest sensing data. 

However, the K nearest neighbors of initial sensing data will bias the connection of path 

of following sensing data. So we take T pose as our initial sensing data to make result 

reliable.  

   In summary, the OLNG allows for various adjustments to speed up whole approach. 

Take the sliding window M for example, we can linearly speed up by changing M. 

Moreover, we reduce the operation of OLNG substantially by clipping the motion and 

only choosing the first frame of motion sequence as input. The space complexity of 

kd-tree is O(N) and OLNG is O(KM). Furthermore, each update step requires only 

O( NK log ) operation. Therefore, OLNG with kd-tree is well suitable to huge datasets. 
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Figure 4.1 The resulting 3D kd tree 



 

15 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

 

Frame 1 

St-3 

Frame 5 

Frame 58 

Frame 35 

Frame 40 

Frame 44 

Frame 82 

Frame 83 

 

Frame 2 

St-2 

Frame 36 

Frame 77 

Frame 3 

Frame 48 

Frame 83 

Frame 84 

Frame 89 

 

Frame 4 

St-1 

Frame 3 

Frame 59 

Frame 37 

Frame 78 

Frame 90 

Frame 85 

Frame 50 

 

Frame 6 

St 

Frame 4 

Frame 38 

Frame 60 

Frame 47 

Frame 38 

Frame 88 

Frame 89 

Figure 4.2a: Implementation of the OLNG 

We search whether the last frame of node is adjacent to 

the new node and form a connection 
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Figure 4.2b: Implementation of the OLNG 

The nodes are corresponding to  as well as the 

involved edges are removed to obtain the updated OLNG 
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4.3 Motion Reconstruction 

__________________________________________ 

In this stage, we use a low-dimensional input to infer high-dimensional motions.  

We introduce the concept as follows. OLNG is proposed by Tautges, J. [TZK11]. The 

notations are the same as OLNG paper. When the new sensing data arrives, we connect 

I paths with existing paths. Then we consider how much those I paths cost. We denote 

},...,{ 1

t

I

tt CCC   to be the cost of these I paths at time t. The cost of one path is 

calculated by the sum of Euclidean distance between two frames in this path. As 

mentioned above, we denote },...,{ 1

t

I

tt qqQ   as the set of joint angles given by all 

these paths at time t, },...,{ 1

t

I

t xxtX   as the positions, },...,{ 1

t

I

t vvtV   as the 

velocities, and },...,{ 1

t

I

t aatA   as the accelerations of the joints with respect to the root 

coordinate system. These parameters were already computed in the Section 3.1. Then, 

based on the costs },...,{ 1

t

I

tt CCC  , we calculate normalized weights denoted by 

},...,{ 1

t

I

tt wwW  , where the value of each weight t

iw  is given by  

 

                         .                                           (1) 

 Now, we acquire the costs of these I paths at frame t. When a new sensing data 

input 
1t  arrives from sensors, we formulate the motion reconstruction as an energy 

minimization problem to choose the suitable pose. First, the OLNG is updated and we 

would acquire 
1tQ  and 

1tW  from updated OLNG. Furthermore, we attempt to find a 

pose bestq  that optimally satisfies constraints imposed by the observation, and the pose 

must be consistent with similar motion clips retrieved from the database.  
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                   )).()((minarg qEqEq contrcontrpriorprior
q

best              (2) 

  The two weights prior  and contr  are user-defined parameters, priorE  is energy 

minimization of prior term, and 
contrE  is energy minimization of control term. First, we 

discuss the prior term. The prior term is composed of three components as pose prior, 

motion prior, and smooth prior. In addition, for a huge database, a data-driven approach 

uses a-prior likelihood based on the motions given by knowledge base. Therefore, the 

method is used which can avoid implausible result. Now, we analyze those three terms 

one by one. First, the pose prior according to joint angles to characterizes the 

probability of a pose. Second, the motion prior according to joint positions of a pose to 

regards the temporal evolution of a motion. Last, the smooth prior according to 

accelerations to calculate continuity between two poses to reduce jerkiness. Using above 

three terms, we can compute priorE  with three weights pose , motion , and smooth  

            
                                                         

(3)
 

 

Here, the cost of pose prior is computed by a kernel based approach. We approximate 

the likelihood posep  of a synthesized pose candidate q. 

                     
                               

(4) 

where   is a symmetric kernel function. In our work, we suppose that posep  is 

maximized for poses that are likely according to the training motion input and 

re-formulates posep  to suitable for energy minimization. 

                     
                                      

(5) 

Then, we discuss the cost of motion prior. Besides being plausible on a pose level, the 

motion reconstruction should be consistent with motions in reality. In other word, our 

reconstructed pose should be within the feasible space of human posture. The 

movement of joint would be natural and convincing. When the new sensing data arrives, 
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we can measure the angle velocities 
1tV  and 3D accelerations 

1tA  from database 

poses included in 1tQ . By second order Taylor expansion, we estimate a probability 

density distribution for 
1tx  with 

1tV  and 1tA . For the i -th sample ( },...,1{ ni ) 

the estimated position 1t
ix  are then given by 

                   2111

2

1
tatvxx t

i

t

i

tt

i   .          (6) 

Like posep  function, we use a kernel-based approach to present motionp . Moreover, we 

substitute joint position x  for joint angle q  because of the energy minimization. 

                    
                               

(7) 

Last, we discuss the cost of smooth prior. Energy minimization would acquire plausible 

results and is high frequency jitter may occur between two poses. To reduce this 

situation, we attempt to enforce smoothness by minimizing joint accelerations and make 

use of a-prior knowledge provide by training database. A pose q is assumed to be 

plausible, if its joint accelerations are consistent with the joint accelerations of 

neighboring database samples. Like posep  function, the likelihood of a pose candidate 

is measured by kernel based density estimation 

                     
                               

(8) 

where 

                     )2( 12   tt xxxta  

Through pose prior, motion prior, and smooth prior, we can infer high-dimensional 

full-body pose by a-prior likelihood using low-dimensional acceleration space.  

 Next, we discuss the control term. In our work, we use 3D accelerations to retrieve 

the most appropriate motion sequence as result. However, in the control term, a direct 

use of 3D accelerations as input is not suitable because accelerations are not powerful 

enough to reconstruct motion. Therefore, the control term is computed based on joint 
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positions that acquired by Wii remotes. 

  First, we let  y  be the projection of a vector y to the subspace formed by the 

components related to those joints which are next to the sensors. Assuming we know the 

proper positions 
tx  at frame t. We can estimate the probability density distribution of 

the next joint position at frame t+1 by the set of velocities 
tV  at time t

 

                  
21 ˆ

2

1~ tatvxx tt

i

tt

i 

          
(9)

 

where 
tâ  is computed by transforming control signal reading 

ta  at to root frame 

coordinates by using the local frames induced by the previously synthesized pose tq  

and subtracting gravity. We use ]}:1[|~{ 1 Iix t

i 
 to derive the energy term to be 

minimized 

                                                   
(10)

 
we can avoid overshooting effects and synthesize smooth motion transition by using 

velocities.  

 

Last, we incorporate prior term and control term into energy minimization problem. 

The function is in Equation 2. We define the weights for energy minimization: 

2.0,2.0,6.0,5,1  smoothmotionposepriorcontr  . We can slightly change those 

weights to adjust the reconstruction results. The motion clip with highest probability can 

be extracted by our energy minimization. Through the concept of OLNG from [TZK11] 

we attempt to add motion blending into OLNG to avoid jitter. 
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We also consider the continuity of velocity between the first frame and the central 

frame of one motion clip and attempt to modify the energy minimization. The modified 

energy minimization algorithm is as follow: 

)).()()((minarg qEqEqEq velocveloccontrcontrpriorprior
q

best    

1veloc  




 
I

i

t

i

t

iveloc vvqE
1

11 ||)( 
                                           

(11)

 

However, the continuity of velocity does not increase the accuracy through our 

experimental result as shown in Figure. 4.3. 
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Chapter 5. 

Interpolated Clip-based OLNG 

5.1 Overview 

__________________________________________ 

 In this chapter, we attempt to modify OLNG to handle a smooth motion transition 

with noise disturbed motion. We adopt a structure called a motion state and attempt to 

let the first frame of all candidate motion clips be one state. After the OLNG step, we 

find the highest priority of character pose, but there are other candidates of motion clips 

from the newest sensing data. To reconstruct motion without jitter, we make use of all 

valid candidates to synthesize output motion. By estimating the distance between the 

pose of highest priority candidate and the other candidates of motion clip, we synthesize 

output motion by weighted combination and make the animation look natural. Therefore, 

this approach prevents the character from replaying training data of database and allows 

the character to perform more flexible pose that are not explicitly specified in the given 

database. Furthermore, because there are always multiple candidates of motion clips to 

be considered, the character constantly has a variety of paths to perform rapid motion 

transitions. In this chapter, we utilize the concept of motion field to modify Online Lazy 

Neighborhood Graph, we would reconstruct more variety of character animation to 

achieve natural posture. 
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5.2 Interpolated Motion State 

__________________________________________ 

  We let the first frame of motion clips as shown in chapter 3.2 be one state. The 

state consists of 3D root positions and joint orientations at top frame. A pose 

),...,,,( 10 nroot pppxx   represents this state, where rootx  is 3D root position vector, 

0p  is root orientation, and npp ,...,1  are joint orientations. Then, we define a motion 

state xm   as a pose. After OLNG step, we connect the closest paths and have I 

candidates of motion clips. We construct a set of motion states I

iim 1}{   termed a motion 

database as shown in Figure 5.1. 

 

 

 

 

 

 

 

 

 

Figure 5.1: A set of motion state 
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Now, we should calculate the distance between two motion states. Given a motion 

database, we computer a neighborhood I

iimmN 1}{)(   of the I most similar motion 

states via a k-nearest neighbor query from the database. We choose the highest priority 

of candidate as motion state priortyhighestm _  and the other candidates as motion state m . 

In our approach, we use KI   by 8K . We calculate the similarity by 

                                                                     

(12) 

where N is the number of joints, û  is the distance between two joints of angle, rootv  is 

the velocity of root, )ˆ(up  means the rotation of û  by p , and the weights 

Iroot  ,...,, 1  as user-defined scalar parameters. We set root  as 1000 and i  as 

bone lengths of the body at the joint i. The bone length is computed by the difference of 

3D absolute coordinates between the current bone and its previous hierarchy of bone. 

  Since we allow the character to deviate from motion states in the database, we 

frequently have to interpolate data from our neighborhood )(mN . We use the similarity 

weights ],...,,[ 10 Iwww  since they measure similarity to the current state m 

{
_2

_

_

,
),(4

11

,75.0

ipriortyhighest

ipriortyhighest

ipriortyhighest

mmif
mmd

mmif
iw




 

(13) 

where im  is the i-th candidate of m and 
i ipriortyhighest mmd 2

_ ),(4

1
  is a 

normalization factor to ensure the weights sum to 0.25. We set the weight as 0.75 if this 

motion state is the highest priority of candidate because the synthesized motion should 

be similar to our result of energy minimization problem. In other words, we attempt to 

adjust the pose of the highest priority by other candidates to match user’s real pose. 
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Finally, we weighted combine the set of all candidates of motion clips via similarity 

weights. 

                                                                    (14) 

where jp  is the j-th joint angle of pose. (Figure 5.2) 
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Figure 5.2 Framework of blending motion 
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5.3 Post-processing 

__________________________________________ 

 Although we synthesize smooth transition motion by modifying Online Lazy 

Neighborhood Graph. However, we still have to deal with foot contact and unusual high 

frequency motion to make our result more natural. In this section, we discuss foot 

skating and low-pass filter problem. First, since we blend a variety of path of motion 

clips, the result occasionally have visual artifacts. For example, if we blend motion clips 

of walking and climbing, the character may look like walking in the air. However, the 

two actions are visually similar to each other but y-axes of those are different. Therefore, 

we attempt to fix the contact foot on the ground if the user stands on the ground.  

  In the beginning, we acquire the 3D coordinates of two tiptoes from synthesized 

motion. Then, we determine which tiptoe is lower and record the 3D world coordinates. 

If the y-axis coordinate is below the ground plane, we raise the full-body character pose 

until the height of tiptoe is identical to ground plane. Otherwise, if the y-axis of 

coordinate is above the ground plane, we estimate the character action and determine 

whether we move the synthesized motion to ground plane. By this technique, our 

reconstruct motion would be smoother without ups and downs. (Figure 5.3) 

  Finally, after removing the foot skating, we attempt to make the set of synthesized 

character motion smoother. Although our candidates of motion clips are continuous with 

last frame, we mix them into a new pose by similarity weights and let them be visually 

discontinuous in velocity changes. To make two adjacent frame of synthesized pose 

look natural, we use low-pass filter to temporally blend poses with convoluted filtering.  

                                                                   (15) 
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where )(ip  is the pose at frame I and w  is the set of ],...,,[ 610 www . We set 

383.0,242.0,061.0,006.0 3425160  wwwwwww . The temporal blending 

technique is a kind of Gaussian filter and it alleviates the discontinuous motions in 

real-time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: left: motion without dealing foot-skating 

    right: motion with dealing foot-skating 
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Figure 5.3: Framework of foot-skating removal and low-pass filter 
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Chapter 6. 

Experiments and Results   

__________________________________________ 

 Our system is implemented by using C++ language and built based on Visual 

Studio 2008. OpenGL, MATLAB, and WiiYourself libraries are also used in our system. 

There are seven motions which totally have 135942 frames in training database, which 

are climbing, jumping, lying, lifting, boxing, sitting, and walking. Our approach needs 

to spend about 200 seconds producing 3600 frames animation.   

 Figure 6.1 is the screenshot of our system. The synthesized motion is shown on the 

screen and estimated what the motion to be. Our system is composed of two tab page, 

which are BVH page and Wii controller page as shown in Figure 6.2 and Figure 6.3. In 

BVH page, the user-defined parameter can be adjusted here. Moreover, we can detect 

the information of Wii Remote in Wii Controller page. 
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 Frame Number Joint Number 

Climbing 30219 31 

Jumping 3062 31 

Lying 3625 31 

Lifting 13964 31 

Sitting 39882 31 

Boxing 16556 31 

Walking 28634 31 

Table 6.1 Training Database Detail 

Figure 6.1 screenshot of our system 
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Figure 6.2 Tab Page of BVH 

Figure 6.3 Tab Page of Wii Controller 
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Figure 6.4 Reconstructing boxing motion  

Figure 6.5 Reconstructing sitting motion  
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Figure 6.6 Reconstructing walking motion  

Figure 6.7 Reconstructing lifting motion  



 

33 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8 Reconstructing motion by Online Lazy Neighborhood Graph 

Figure 6.9 Reconstructing motion with Online Lazy Neighborhood Interpolation Graph 
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As shown in Figure 6.8 and Figure 6.9, we can see the difference between Online 

Lazy Neighborhood Graph and our Interpolated Clip-based Online Lazy Neighborhood 

Graph. The former looks unnatural because its transition would not be smooth and rapid. 

The pose of Figure 6.9 is convergence because we synthesize a variety of similar 

motion and make the result natural. Finally, we use low-pass filter to diminish unnatural 

full-body motion. 

   Our accuracy is shown in Table 6.1. We let users see the result video and point out 

the inaccurate sequences. Then, we calculate the proportion of accurate clips to total 

clips. Finally, the accuracy is almost over 80%. We can say our approach provides 

reliable result. 
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Figure 6.10 A sequences of walking  

Table 6.3 Ground truth BVH with random noise(-0.01 ~ 0.01 𝑚/𝑠2) 
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Table 6.3, 6.4 and 6.5 are the average reconstruction errors of our system. We can 

find that our approach is generally more accurate than Online Lazy Neighborhood 

Graph. We attempt to use the training data which is not explicitly specified in the given 

database as our input. In addition, to simulate the situation of motion capture device 

with noise, we add noise into our input. In the Table 6.4, because sitting is a static pose, 

there are a small amount of severe motion transitions. Therefore, the differences of three 

approaches are not obvious. In general, our approach is less reconstruction errors and 

less inaccurate sequence, compared with the other two methods.  

 

 

 

 

 

 

 

 

 

 

Figure 6.12 The difference between our 

approach and Online Lazy 

Neighborhood Graph  

Figure 6.11 We can use the fifth Wii Remote to detect the 

orientation of user   
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Because of the limitation of hardware, we use the CMU database as input to 

simulate the experiment with 2 to 10 sensors. Table 6.6 is the sensor joint which we 

defined.  

 Sensor joints 

2 Sensor Right hand, Right foot 

4 Sensor Hands, Foots 

6 Sensor(upper) Hands, Foots, Clavicles 

6 Sensor(lower) Hands, Foots, Hip joints 

8 Sensor Hands, Foots, Clavicles, Hip joints 

10 Sensor Hands, Foots, Clavicles, Hip joints, Radiuses 
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Table 6.6 Sensor joints   

Figure 6.13 Accuracy of sensor number with noise(-0.01 ~ 0.01 𝑚/𝑠2) 
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We can infer that the more sensors, the result is more accurate.  

We also change the performer to play motion and prove our approach is general. Our 

experimental result is as shown in Figure 6.17. We can infer our approach is still above 

70% accuracy with different actor. 
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Figure 6.14 Accuracy of sensor number without noise 

Table 6.7 Accuracy of different actor 
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Moreover, we try to take the accelerations of half body to our system for shorting the 

cost time. However, we only have the acceleration of two sensors, the system cannot 

determine the motion transition easily. The accuracy would be lower when rapid motion 

transition as shown in Table 6.8. 

   

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

80

90

100

Lifting, Boxing and Walking

4 Sensors

2 Sensors

Table 6.8 Accuracy of 4 sensors and 2 sensors 



 

42 
 

Chapter 7 

Conclusion 

__________________________________________ 

 Our system is performed on a desktop with Intel®  Core™2 Duo CPU, 4GB main 

memory, and NVIDIA GeForce 9800 GT graphic card. In our system, we successfully 

improve Online Lazy Neighborhood Graph with the concept of motion blending and 

using clip as operating unit. By constructing kd-tree, we can efficiently search the match 

training data in a large database. Then, we receive the newest data from Wii Remote to 

update Clip-based Online Lazy Neighborhood Graph and find the highest priority of 

candidate motion clip as our result. We solve the jitter problem by using interpolated 

and weighted combining motions to achieve rapid motion transition. The reconstruction 

motion is reliable and capable of handling variations that are not explicitly specified in 

the given database. 

 Wii Remote is as our sensing device whose advantage is portable, does not hinder 

daily behavior and adaptable in constraint environments. Finally, our approach is able to 

monitor user’s motion and provide reliable accuracy and natural synthesized motion. 

Although acceleration data of motions contains less information, we use the concept of 

motion field to extend Online Lazy Neighborhood Graph and overcome its limitation to 

provide the reliable accuracy like other techniques using high-cost devices.  
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