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Abstract

Motion reconstruction from sensor data is a notable research field. In this thesis, we
present a framework to reconstruct full-body -human motion by four to five inertial
sensors. that attached to the user’s four limbs and torso. Based on the gathered data, we
construct an online k-dimensional tree (kd-tree) index structure which consists of
hundred. thousands of frames, and find the most appropriate motion fragment as user’s
current full-body motion. However, the sparse and noisy sensing data cause high
ambiguity for our motion estimation. It then results-in gaps between poses continuous.
Consequently, we include the concept of motion fields for more reasonable motion
transition. This run-time motion synthesis mechanism merges the candidates of the

motion sequences by weighted combination, and generates natural and smooth motions.

Keyword: Motion reconstruction -~ Sensors ~ kd-tree ~ Wii remotes
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K : the number of nearest neighborhood
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Chapter 1.

Introduction

The whole world is gradually moving towards an aging society now. Therefore,
health care becomes an essential and unavoidable topic. However, to care for the elders
needs to spend a lot of time and labor. For example, to apply for a dedicated nursing
work to care elders, etc. To alleviate the burden, we propose an approach to remotely
survey user’s motion from sensing device for caring elders or other monitoring issue.

Motion reconstruction using pre-record motion capture data is an important topic
in computer animation. However, the most popular technique to reconstruct full-body
motion.is through vision or magnetic-based motion capture device which is high-cost,
time-consuming for setup, and applicable only in constrained environment. The
technique does not meet our primitive goal. Therefore, we prefer to choose the sensing
devices which are low-cost, portable and fewer environment constraints.

In our system, we use Wil Remotes with MotionPlus as our motion sensor (Figure
1.1, Figure 1.2), where accelerometer and the gyroscope inside provide us information
of 3D accelerations, and angular velocities. This motion capture device is the primary
controller for Nintendo’s Wii console. A main feature of the Wii Remote is its motion
sensing capability, which allows the users to interact with objects on screen via gesture
recognition and pointing through accelerometer and optical sensor technology. The
accelerometer captures net forces on Wiimote in the range from -3g to 3g, where g is

gravitational acceleration.



The Wii Remote assumes a one-hand remote-control-based design instead of the
traditional gamepad controllers in previous gaming consoles. The controller
communicates wirelessly with the console through short-range Bluetooth radio up to 10

meters away from console.

Figure 1.1: Wii Remote Figure 1.2: Wii Remote with
MotionPlus

These inertia sensors can easily be worn by users as input, and it does not affect the
daily lives. Inertia controllers provide us accelerations and angular velocities, and can
be used to deduce the motion of user at present. We have implemented an approach
[Tautges et al 2011] to match the most appropriate result by gathered data. This
data-driven technique is built up a Lazy Neighborhood Graph in an online fashion based
on the sparse accelerometer input. However, an obvious limitation of this method is that
occasionally jumps. between. poses-may_occur.- The problem often occurs when we
receive ambiguous sensing data sequences.

In [Lee et al 2010], a technique called motion field is proposed. This novel
run-time motion synthesis mechanism allows a natural handling of several ambiguous
candidate sequences by calculating the distance between candidate sequences and
synthesizing with weighted average. Therefore, we can modify Online Lazy
Neighborhood Graph achieve motion transition rapidly by the concept of this technique,

we solve above limitation and make the result appear smooth for better action



surveillance. (Figures 1.3)

We focus on the daily behavior like walking, lifting, sitting, etc, and plan to
recognize the abnormal behaviors of user. In order to achieve the goal of monitoring, we
use the Bluetooth to transfer data, and it can transmit sensing data more than dozens
meters. Our approach takes advantage of the inexpensive and portable motion capture
device and can still provide comparable accuracy to other technique using high-cost

devices.

KD-tree Clip-based OLNG
Sensor Data

Preprocessing '

Interpolated Motion

Motion Capture '

Database

Post-processing

Online Motion

Reconstruction

Figure 1.3: Overview of system



Chapter 2.

Related Work

In last decades, various mation capture devices and techniques have been proposed.
Each motion capture technique has its own advantages and weaknesses. Take [SH08a]
for example, they attached low-cost inertial sensors on user’s limbs. By measuring the
acceleration from human motion, they can match the closet motion clip in their database.
However, the acceleration computed from full-body pose is often disturbed by noise.

Another technigue like optical marked-based MoCap systems can typically provide
accurate positional information for joint coordinates or rotational information of joints
in [PhaseSpace10]. However, the method requires an array of calibrated high-resolution
cameras as well as high-cost garment equipment. They usually need manual data
clearing for occlusion and ambiguity problems.

Low-dimensional sensor input is often used for acquiring full-body information in
computer animation [BHG93]. Siratori, T. [SHO08b] introduces using inertial-based
control data to evaluate a small number of parameters in physically-based character
animation. Data-driven approaches show promising results to generate high-dimension
character motion with limited-dimensional control data. Feng, W. —W. [FKYO08]
proposed an approach using sparse control points and an example-based model to
deform complex geometries. The above mentioned techniques reconstruct virtual
character pose through pre-record mocap data. The data in mocap database usually have

huge dimension to represent full-body human of one frame. It is time-consuming to



search high dimensional data. Therefore, how to use the low-dimensional sensors input
to retrieve suitable motion sequences from a database which contains of
high-dimensional data is main issue of our method.

Andoni, A. [AIO6] stated the kd-tree is well suited for nearest-neighbor searches.
By kd-tree structure, they can efficiently identify the pose in the pre-record database.
The technique inspires us to retrieve the full-body human pose from high-dimensional
knowledge database with a given sensing input. Kruger, B. [KTW10] extended above
technique and introduced Lazy Neighborhood Graph(LNG). This method is used in the
reconstruction step to compute the current frame of the outputted animation. However,
we want to identify optimal subsequences from the knowledge database for every point
in time. To construct LNG for every frame of sensing data is of high computation cost
and do not improve the visual quality.

Tautges, J. [TZK11] improved LNG. LNG can be built up incrementally making its
construction efficient and online capable, which called Online Lazy Neighborhood
Graph(OLNG). Therefore, the technique allows us for handling the newest sensor
readings and updating the LNG immediately.

In addition to motion reconstruction, we have to deal with the problem of
discontinuous gaps between poses caused by ambiguous data streams. OLNG finds the
best K nodes of the current time by K-nearest neighbor algorithm(KNN) and uses them
to calculate energy minimization. It is possible to have several diverse sequences with
similar low energy cost. To reconstruct motion with smooth transition, there are some
methods that use nonparametric methods to learn the dynamics of character motion in a
fully continuous space. Arikan, O. [AFOO03] presented an algorithm synthesizing
motions by users specifying what actions should occur during the motion as well as
specifying modifiers on the actions. However, when this method anticipates some types

of upper-body pushes, the character may not react at all to hand pulls or lower-body
5



pushes. Another group of methods use nonparametric models to learn the dynamics of
character motion in a fully continuous space [YL10, CHO5]. These techniques are able
to synthesize character motions starting from the initial states and make themselves
apply physical disturbances. These models are used to estimate the most likely character
motion from a number of possible candidate postures. As a result, we can utilize above
concepts to construct smooth motion transition without jitter.

In the thesis, we incorporate temporal coherence by Online Lazy Neighborhood
Graph(OLNG) and attempt to overcome its shortcoming. \We extend the concept of
motion field proposed by [LWB10] to do motion blending to avoid jittering. The
difference between motion field-and [ YWB10, CHO5] is that instead of building a model
of the most possible single motion, they attempt to model the set of possible motions at
each character state and select the single state at run time by calculating the value
function. Their work combines the concepts of near-optimal character control presented
in graph-based methods with those of nonparametric motion estimation techniques.
Simply, we propose Online Lazy Neighborhood Interpolation Graph by extending the
concept of motion field into original Online Lazy Neighborhood Graph.

In out thesis, we gather acceleration data by sparse inertial sensors worn on the
user’s body instead of using those high-cost optical motion capture devices for input.
The advantages of Wii Remote are portable to not hinder daily behavior and adaptable
in constraint environments. Our approach is capable of handling variations that are not

explicitly specified in the given database.



Chapter 3.

Pre-processing

3.1 Motion Capture Database

In this system, we select motion capture data as our training data from CMU
Mocap Lab. The database consists of various motions including sport motions and
common behaviors. To focus on everyday life of users, we choose the action like
walking, jumping, sitting,-and. lifting as our training input. Every motion.is in the
Biovision Hierarchy(BVH) format and consists of thousands and even ten thousands of
frames. In the following, we rename the different knowledge bases by the same naming
pattern that group the database simply:.

{Motion}{Index}.bvh

At first, we use unprocessed database as input to construct Online Lazy
Neighborhood Graph. However, it is time-consuming to clip motion sequences from
such a large database. To deal with this problem, we calculate the distance between two
frames in each motion by Euclidean distance. If two poses are too close to each other,
they are then considered as redundant data. We skip the frame whose distance between
itself and the next frame is smaller than a threshold. The threshold is 0.3 c¢cm that can

reduce up to 14 ten thousand to 7 ten thousand frames.



3.2 Motion Clips

In our work, training data is a huge database that we need a lot of time to construct
OLNG for every frame. Therefore, we clip the training data into several sequences to
mitigate the time of construction of OLNG. A sequence consists of n frames, 31 joint
angles, and root positions. It is intriguing to define the number of a clipped sequence. In
our system, we decide n is 10 to 15. First of all, we divide whole set of motions into
several parts evenly. Each clip has n frame. n is user-defined. In the second step, it
selects the first frame of each clip as training data that constructs kd-tree structure. By
only using one frame of motion. clip, we can substantially make the system speed up.
Therefore, sensor readings find out the appropriate output through kd-tree structure that
the output belongs to a first frame of motion sequence. The motion sequence becomes
the candidate of motion synthesis. As a result, we only process nearly one-tenth training
data to construct OLNG.

When one index is chosen, we synthesize the whole motion clip belonging to the
index. In addition, we use OLNG to choose coherent index to avoid ambiguity problem.
Because we use clip-based motion reconstruction, our overall animation is smoother

than the per-frame-based motion reconstruction.



Training motion data

Motion sequence 1 Motion sequence 2 Motion sequence x

Frame 1 Frame 2 Frame 3 Frame 4 Frame 5 Frame 6

Online Lazy
Neighborhood Motion Synthesis
Graph

——

Figure 3.1 We clip the data to several parts and let the first frame of each clip be
index. We use index to construct OLNG. Each i_rldex presents n frames.



3.3 Sensor Reading Collection

We ask a user to wear Wii remotes with MotionPlus on two wrists, legs, and chest.
By WiiYourself library, we can gather the acceleration from Wii remotes via Bluetooth
technology. This library supports multiple Wii remotes and provides us Ul for
convenient management as shown in Figure 3.2. Wii remotes send and receive various
data, and all of them are 22 bytes in length. WiiYourself has a FileStream to
communicate with and read or write to the Wii remote. In addition, because data are
sent and received almost constantly, asynchronous /O operations are used. To
implement in .NET, the process.is to start an asynchronous read operation and provide a
callback method to be run when the buffer is full. When the callback function is run, the
data from Wii remote is handled and the process is repeated.

For initialization, we require a user to stand in a T pose to do calibration before
motion capture as shown in Figure 3.3. Inappropriate initial state usually cause biased
reconstruction results. Then, a user moves freely within the range of Bluetooth can be
reach transmission. Wii remotes worn on user’s two wrists and legs, send 3D
accelerations and angular velocities to the system. However, the Wii remote worn on
user’s chest only send orientation without 3D accelerations. We use the chest Wii
Remote to determine root orientations, it makes estimated full-body pose smoother.
Because the acceleration signal is noisy, we apply a low pass filter to denoise before the

following data analysis.

10



r T ™

oy Multipie Wiimote Tester (S ] & )
Wimote 1
Wiimote Wiimote Accel IR Oassc Controller Balance Board
A | {X=0. Y=0. Z=0} IR1 1A | Left Joystick 0.1142217 1937322
B IR2 B 0.6462547
- IR3 X Right Joystick 09227139 -0.3892387
Home IR4 Y Pounds
+ Nunchuk IR1Raw £ - 1
1 Accel Values IR2Raw "] Home gger L
B IR3Raw + Pagec
mn wn
Leht SOk \aies R1 ]R3 ! Lef
Right Ic JIR2 [']IR4 | Right
. ZL
|4 Battery P
P | 9836 |7 LTngger
) | RTrigger
Outputs
LED1 Gutar
LED2 [ Green | Joystick Values
LED3 | Red
LED4 Yelow | Whammy
| Biue
Rumble ] Orange
| StrumUp
StrumDown
Figure 3.2 WiiYourself Ul

Figure 3.3 Wii remotes worn on user’s body

11



Chapter 4.

Implementation of Online Lazy Neighborhood

Graph

4.1 Overview

In our work, we mainly-divide the whole system into four stages. In the first stage,
we construct online lazy neighborhood graph with acquiring fixed-length sequences of
training data. Second stage is to use sparse low-dimensional control input to infer
full-body motion. We formulate the motion reconstruction as an energy minimization
problem and acquire the most possible candidate from training data. However, defect of
the data-driven best-match approach is that occasional jJumps between poses may occur.
To deal with this drawback, we combine the motion field into our original approach to
achieve rapid motion transition in the third stage. At the final stage, we do
post-processing to make the character smooth. First, we handle the problem by
detecting heights of two feet and keep supporting points stationary at ground plane.
Furthermore, we use Gaussian filter to diminish unnatural full-body motion. The main
advantage of our sensor-based approach is that we can still acquire reliable results in
constraint environment like obstacle or dark environment, and keep connection up to 10
meters away from consoles. Consequently, our approach has higher applicability than

those using calibrated high-resolution cameras as well as high-cost garment equipment.
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4.2 Clip-based Online Lazy Neighborhood
Graph

In this stage, we use 3D accelerations of four Wii remotes as the input of our
reconstruction framework. The sensing data are represented in the unit m/s®. Before
constructing OLNG, we would use the training database to build kd-tree structure. As
section 3.2 mentioned, we use the first frame of motion sequence as one node and
calculate the 3D acceleration and angle velocities of two twists and legs. The 3D
accelerations of each joint are then placed in kd-tree structure. The dimensions of
kd-tree is 4(Wii Remotes). - 3(xyz) - t(time)=12t. The kd-trees are well suited for last
nearest neighbor searches. (Figure 4.1)

Now, we assume that the control input consists of continuous stream of sensor
accelerations (...,.a'?, ™", a',a'™,..), where «' denotes the current frame of 3D
accelerations at time t, and t is an integer. We fix the-number K of nearest neighbors and
let S' be the storages of the K nearest neighbors of «'. We consider the last M
sensing data (e"M™,a"™ ..., a") for a fixed number M eN. In our work, we
choose M is 4. Then, the nodes of OLNG can be presented by M x K array. If there are
two nodes in adjacent column, we should connect them as a path. Suppose that the
OLNG has been constructed for the reading ("™, a'™*,...,a') and a new data
o' arrives. First, we should construct the path of last M column by the above concept.
Then, we acquire the K nearest neighbors and store in S™*. We search whether the last
frame of node is adjacent to the new node and form a connection. Finally, the nodes are

t-M+1

corresponding t0 « as well as the involved edges are removed to obtain the

updated OLNG. (Figure 4.2a, Figure 4.2b)

13



During real-time updating, our approach can process the newest sensing data.
However, the K nearest neighbors of initial sensing data will bias the connection of path
of following sensing data. So we take T pose as our initial sensing data to make result
reliable.

In summary, the OLNG allows for various adjustments to speed up whole approach.
Take the sliding window M for example, we can linearly speed up by changing M.
Moreover, we reduce the operation of OLNG substantially by clipping the motion and
only choosing the first frame of motion sequence as input. The space complexity of
kd-tree is O(N) and OLNG is O(KM). Furthermore, each update step requires only

O( K log N ') operation. Therefore, OLNG with kd-tree is well suitable to huge datasets.

X Sort

Y Sort @ @
ZSort @ @@ @

Figure 4.1 The resulting 3D kd tree
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4.3 Motion Reconstruction

In this stage, we use a low-dimensional input to infer high-dimensional motions.
We introduce the concept as follows. OLNG is proposed by Tautges, J. [TZK11]. The
notations are the same as OLNG paper. When the new sensing data arrives, we connect
| paths with existing paths. Then we consider how much those | paths cost. We denote
C'={C,,..,C/} to be the cost of these | paths at time t. The cost of one path is
calculated by the sum of Euclidean distance between two frames in this path. As

mentioned above, we denote Q' ={q;,...,q;} as the set of joint angles given by all
these paths at time ft, th{x{,...,x}} as the positions, V! ={V;,....V|} as the

velocities, and Al ={a,,..,a;} as the accelerations of the joints with respect to the root

coordinate system. These parameters were already computed in the Section 3.1. Then,

based on the costs C'={C;,..,C;}, we calculate normalized weights denoted by

W' ={w;,..,; W}, where the value of each weight w: is given by

-
e max(C) =G,

T IV C,. _C,
X (maxey=C) o

Now, we acquire the costs of these | paths at frame t. When a new sensing data

+1

input ™ arrives from sensors, we formulate the motion reconstruction as an energy

minimization problem to choose the suitable pose. First, the OLNG is updated and we

t+1

would acquire Q™" and W"* from updated OLNG. Furthermore, we attempt to find a

pose q,., thatoptimally satisfies constraints imposed by the observation, and the pose

must be consistent with similar motion clips retrieved from the database.

17



Opest =29 min (a)prior ' Eprior(q) T Oy Econtr (q)) (2)
q

and w

contr

The two weights @ are user-defined parameters, E IS energy

prior prior

minimization of prior term, and E IS energy minimization of control term. First, we

contr
discuss the prior term. The prior term is composed of three components as pose prior,
motion prior, and smooth prior. In addition, for a huge database, a data-driven approach
uses a-prior likelihood based on the motions given by knowledge base. Therefore, the
method is used which can avoid implausible result. Now, we analyze those three terms
one by one. First, the pose prior according to joint angles to. characterizes the
probability of a pose. Second, the maotion prior according to joint positions of a pose to

regards the temporal evolution of a motion. Last, the smooth prior according to

accelerations to calculate continuity between two poses to reduce jerkiness. Using above

and o

smooth

three terms, we can compute E 1)

motion?

orior With three weights @,

Epi'irh" (q) = (UPU\'(.’ ;. E.DOSQ(Q) + a)mrmon 2 Emotr‘on (Q) + a)\‘f}i(lm'f? ' Ewmnﬂ'r (q) (3)

Here, the cost of pose prior is computed by a kernel based approach. We approximate

the likelihood  p,,. of a synthesized pose candidate g.

!
P @ o Y 0" k(g —q) (4)

i=1

where x is a symmetric kernel function. In-our work, we suppose that p,, is

maximized for poses that are likely according to the training motion input and

re-formulates p . to suitable for energy minimization.

!
Epe(@)=2 0" 1" 4 )
i-1

Then, we discuss the cost of motion prior. Besides being plausible on a pose level, the
motion reconstruction should be consistent with motions in reality. In other word, our
reconstructed pose should be within the feasible space of human posture. The

movement of joint would be natural and convincing. When the new sensing data arrives,
18



we can measure the angle velocities V'™ and 3D accelerations A" from database

t+1

poses included in Q™. By second order Taylor expansion, we estimate a probability

density distribution for x"* with V' and A"'. For the i-th sample (i e{L...,n})

rt+l
i

the estimated position x ™ are then given by

1
X" =x vt AL+ =at A, (6)
Like p,. function, we use a kernel-based approach to present p,,,- Moreover, we

substitute joint position X for joint angle q because of the energy minimization.

E ion (X) = Z[:,w,-”' 1 x| @)
Last, we discuss the cost of smooth prior. Energy minimization would acquire plausible
results_and is high frequency jitter may occur between two poses. To reduce this
situation, we attempt to enforce smoothness by minimizing joint accelerations and make
use of a-prior knowledge provide by training database. A pose q is assumed to be

plausible, If its joint accelerations. are consistent with the joint accelerations of

neighboring database samples. Like p,,. function, the likelihood of a pose candidate

is measured by kernel based density estimation
B (4) = Zw Jia" —al ®)
where 7
a=At?-(x=2x"+x"")

Through pose prior, motion prior, and smooth prior, we can infer high-dimensional
full-body pose by a-prior likelihood using low-dimensional acceleration space.

Next, we discuss the control term. In our work, we use 3D accelerations to retrieve
the most appropriate motion sequence as result. However, in the control term, a direct
use of 3D accelerations as input is not suitable because accelerations are not powerful

enough to reconstruct motion. Therefore, the control term is computed based on joint
19



positions that acquired by Wii remotes.

First, we let (y) be the projection of a vector y to the subspace formed by the
components related to those joints which are next to the sensors. Assuming we know the
proper positions x' at frame t. We can estimate the probability density distribution of

the next joint position at frame t+1 by the set of velocities V' attimet

%H=<%+vﬁAw+%éﬂAﬁ 9)

where &'

is computed by transforming control signal reading a' at to root frame
coordinates by using the local frames induced by the previously synthesized pose q'

t+1

and subtracting gravity. We use {X " |ie[l:1]} to derive the energy term to be

minimized

F2 Yort i ()
i=1

we can avoid overshooting effects and synthesize smooth motion transition by using

(10)

velocities.
Last, we incorporate prior term and control term into energy minimization problem.

The function is in Equation 2. We define the weights for energy minimization:

5 ..=0.6w 0.2, =0.2. We can slightly change those

11wprior: 1= pose motion — ~*&1 Wemaoth

a)contr =

weights to adjust the reconstruction results. The motion clip with highest probability can
be extracted by our energy minimization. Through the concept of OLNG from [TZK11]

we attempt to add motion blending into OLNG to avoid jitter.
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We also consider the continuity of velocity between the first frame and the central
frame of one motion clip and attempt to modify the energy minimization. The modified

energy minimization algorithm is as follow:

qbest = arg min (a)prior ’ Eprior(q) + a)contr ’ Econtr(q) + wveloc ’ Eveloc (q))
q

0] 1

\eloc —
I 1 1 ‘ N
Eveioc(A) = D ™ |V =] (11)

i=1

However, the continuity of velocity does not increase the accuracy through our

experimental result as shown in Figure. 4.3.

100

90 -
80 -
70 -
60 -
50 - M Clip-based OLNG
40 - B Clip-based OLNG + Velocity
30 -
20 -

10 -+

0 -

Lifting, Boxing and Walking

Figure 4.3 : A set of motion state
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Chapter 5.

Interpolated Clip-based OLNG

5.1 Overview

In this chapter, we attempt to modify OLNG to handle a smooth motion transition
with noise disturbed motion. We adopt a structure called a motion state and attempt to
let the first frame of all candidate motion clips:be one state. After the OLNG step, we
find the highest priority of character pose, but there are other candidates of motion clips
from the newest sensing data. To reconstruct motion without jitter, we make use of all
valid candidates to synthesize output motion. By estimating the distance between the
pose of highest priority candidate and the other candidates of motion clip, we synthesize
output motion by weighted combination and make the animation look natural. Therefore,
this approach prevents the character from replaying training data of database and allows
the character to perform more flexible pose that are not explicitly specified in the given
database. Furthermore, because there are always multiple candidates of motion clips to
be considered, the character constantly has a variety of paths to perform rapid motion
transitions. In this chapter, we utilize the concept of motion field to modify Online Lazy
Neighborhood Graph, we would reconstruct more variety of character animation to

achieve natural posture.
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5.2 Interpolated Motion State

We let the first frame of motion clips as shown in chapter 3.2 be one state. The
state consists of 3D root positions and joint orientations at top frame. A pose
X =(X,00tr Po» Prs-s P,,) EPresents this state, where x,,,, is 3D root position vector,

p, Is root orientation, and p,,..., p, are joint orientations. Then, we define a motion

state m=Xx as a pose. After OLNG step, we connect the closest paths and have |

candidates of motion clips. We construct a set of motion states {m.}_; termed a motion

database as shown in Figure 5.1.

| states connect
Last frame states

K state — X

these states which

called motion states
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Figure 5.1: A set of motion state



Now, we should calculate the distance between two motion states. Given a motion

database, we computer a neighborhood N(m)={m}, of the I most similar motion

states via a k-nearest neighbor query from the database. We choose the highest priority

of candidate as motion state m and the other candidates as motion state m’.

highest_ priorty

In our approach, we use | <<K by K =8.We calculate the similarity by

b
i z B,
i

'
highest__ priorty poor B mor|

2
|pi (Itl'?t';.,’h(.’\‘.'7‘D.'“"Ut‘[v) - p:(u)H

(Mot priory M) = \/ Boor | v
(12)

where N is the number of joints, U is the distance between two joints of angle, v, is
the velocity of root, P(U) means the rotation of 4 by p, and the weights

Broos Pures By @S user-defined scalar parameters. We set g .. as 1000 and g as

root

bone lengths of the body at the joint i. The bone length is computed by the difference of

3D absolute coordinates between the current bone and its previous hierarchy of bone.
Since we allow the character to deviate from motion states in the database, we

frequently have to interpolate data from our neighborhood N(m). We use the similarity

weights [wg, w,,...,w,] since they measure similarity to the current state m

; : A Mhighest priory M
WI —27 4d(mhigh93t_priortysmi)2 ghest_p
75,1t Myighest priory =
(13)
where m, is the i-th candidate of m and ’7:2 1 <

2
i 4d (mhighest_ priorty? mi)

normalization factor to ensure the weights sum to 0.25. We set the weight as 0.75 if this
motion state is the highest priority of candidate because the synthesized motion should
be similar to our result of energy minimization problem. In other words, we attempt to

adjust the pose of the highest priority by other candidates to match user’s real pose.
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Finally, we weighted combine the set of all candidates of motion clips via similarity

weights.
Peombine = Z W p,f (14)

1 i
i=1 J=1

where p; is the j-th joint angle of pose. (Figure 5.2)

Priority2

Priority3

Priority4
Motion
Synthesis

Priority5

—————

Similarity
Weights

l-d(mhighestmi) L

Figure 5.2 Framework of blending motion

Similarity
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5.3 Post-processing

Although we synthesize smooth transition motion by modifying Online Lazy
Neighborhood Graph. However, we still have to deal with foot contact and unusual high
frequency motion to make our result more natural. In this section, we discuss foot
skating and low-pass filter problem. First, since we blend a variety of path of motion
clips, the result occasionally have visual artifacts. For example, if we blend motion clips
of walking and climbing, the character may look like walking in the air. However, the
two actions are visually similar to each other but y-axes of those are different. Therefore,
we attempt to fix the contact foot on the ground if the user stands on the ground.

In_the beginning, we acquire the 3D coordinates of two tiptoes from synthesized
motion. Then, we determine which tiptoe is lower and record the 3D world coordinates.
If the y-axis coordinate is below the ground plane, we raise the full-body character pose
until the height of tiptoe is identical to ground plane. Otherwise, if the y-axis of
coordinate is above the ground plane, we estimate the character action and determine
whether we move the synthesized motion to ground plane. By this technique, our
reconstruct motion would be smoother without ups and downs. (Figure 5.3)

Finally, after removing the foot skating, we attempt to make the set of synthesized
character motion smoother. Although our candidates of motion clips are continuous with
last frame, we mix them into a new pose by similarity weights and let them be visually
discontinuous in velocity changes. To make two adjacent frame of synthesized pose
look natural, we use low-pass filter to temporally blend poses with convoluted filtering.

i=n+3 . 15
p!'uw—pu.\x filter (n) = Z M"’.'—n+3 p(l) ( )

i=n-3
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where p(i) is the pose at frame | and w is the set of [w,,w,...,w;]. We set
w, =W, =0.006,w, =w, =0.061,w, =w, =0.242,w, =0.383 . The temporal blending
technique is a kind of Gaussian filter and it alleviates the discontinuous motions in

real-time.

Synthesized
Motion

Plane

‘ Above Ground SR
‘ the ground Unchanged ’

in real world

Foot

——

Low-pass Filter
Position

S

)

pon oot | — | i
Plane

Character Pose

—— -_—

Figure 5.3: Framework of foot-skating removal and low-pass filter
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Chapter 6.

Experiments and Results

Our system is implemented by wusing C++ language and built based on Visual
Studio 2008. OpenGL, MATLAB, and WiiYourself libraries are also used in our system.
There are seven maotions which totally have 135942 frames in training database, which
are climbing, jumping, lying, lifting, boxing, sitting, and walking. Our approach needs
to spend about 200 seconds producing 3600 frames animation.

Figure 6.1 is the screenshot of our system. The synthesized motion is shown on the
screen and estimated what the motion to be. Our system IS composed of two tab page,
which. are BVH page and Wii controller page as shown in Figure 6.2 and Figure 6.3. In
BVH page, the user-defined parameter can be adjusted here. Moreover, we can detect

the information of Wii Remote in Wii Controller page.
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Frame Number Joint Number

Climbing 30219 31
Jumping 3062 31
Lying 3625 31
Lifting 13964 31
Sitting 39882 31
Boxing 16556 31
Walking 28634 31

Table 6.1 Training Database Detail

o M""“’"‘i
I File
TIME : 0.00 BYH | Wi Contioller

Test BYH cimb 13 2]

Lock_Root  [¥] Lock_Rotation

o
Tol WiiRemotes | 4 [+ wo [5F
iing [ 5 2]
o |
o
Motion Clip Length KDtee Thosstont | 200 2] @ [UF

Record Frame State Number upstair | O E

Control Term O mrtem walk |
i
|

Pose Term 06 [ Motion Term |

Smooth Term 02 E Play Test Result Replay Clip Number

G———— °

E:\Thesis\program\now\TestD. Ik01.bvh

Figure 6.1 screenshot of our system
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BYVH Wi Controller

Lock_Raot Lock_Fotation
jmp f =
[ Construct OLNG ] Total WiiEemotes 1 = Loy [ 2
lifting T
| StrtPredicton |
bozing 3 =
Motion Clip Length | ~° |+ KDtee Thesshold | © 0 [+ @ TR
4 [= a - )
Record Frame - State Number - upstair 0 [=
Control Term 10 - Prior Termm »0 - walk 6 [=
Pose Term ng = Motion Term nz 2
Brooth Term 0z = Playr Test Result Replay Clip Number | 1 -
[ Post-Produnction ] Replay Speed | 33 =
Figure 6.2 Tab Page of BVH
BEVH Wi Contoller |
Wi Remotel : Right Hand Train Frame
Wi Bemoted: Left Hand
Wi Remote3: Right Leg
Wi Eemoted: Left Leg Error

Mesmge  Wii Remotes: BackBone

Statns Not Tradning...

Text

Batery 47 36 47 42
hec¥ 052 053 056 056
hec¥ 004 000 004 004
hecZ 057 063 060 06D

OriPitch 219 000 233 -211
OriRell 658 457 220 634

Vel Pich S-90 905 3430 335

VelEoll

Vel Vaw 425 545 4770 1235

-31.10 2880 -685 -1.10

[ Connect ]

[ DisComnect ]

Figure 6.3 Tab Page of Wii Controller

30




- Figure 6.4 Reconstructing boxing motion

Figure 6.5 Reconstructing sitting motion
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Figure 6.6 Reconstructihg walking motion

Figure 6.7 Reconstructing lifting motion
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Figure 6.9 Reconstructing motion with Online Lazy Neighborhood Interpolation Graph
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As shown in Figure 6.8 and Figure 6.9, we can see the difference between Online
Lazy Neighborhood Graph and our Interpolated Clip-based Online Lazy Neighborhood
Graph. The former looks unnatural because its transition would not be smooth and rapid.
The pose of Figure 6.9 is convergence because we synthesize a variety of similar
motion and make the result natural. Finally, we use low-pass filter to diminish unnatural
full-body motion.

Our accuracy is shown in Table 61 We let users ’-se'gthe result video and point out
the inaccurate sequerjc_e‘s‘. Then., we calculate the proportion of accurate clips to total
clips. Finally, the ‘accuracy is almost over 80%. We caﬁ say BUr',épproach provides

reliable result.

100

mKNN
B OLNG

i Interpolated Clip-based OLNG

Walking Lifting, Lying and Jumping, Boxing
Boxing, and Sitting Sitting, and
Walking Walking

5500 Frames 15000 Frames 5000 Frames 1500 Frames 1000 Frames

Table 6.2 Accuracy of our approach
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Flgure 6 10A sequences of Walklng

30
KNN
25 -
5500 Frames
20 -
15 | Our approach = KNN
B OLNG
M Our approach
10 -
5 -
0 -
Walking [cm]
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145

14

13.5

13

12.5

12

11.5

11

10.5

10

OLNG Our approach 5000 Frames

mKNN
B OLNG

= Our approach

Lying and Sitting [cm]

Table 6.4 Ground truth BVH with random noise(-0.01 ~ 0.01 m/s?)
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KNN
21.5 A
21 15000 Frames
20.5 A B KNN
B OLNG
20 ~
Our approach = Our approach
19.5 -
19 -
18.5 -

Lifting, Boxing, and Walking [cm]

Table 6.5 Ground truth BVH with random noise(-0.01 ~ 0.01 m/s?)
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Table 6.3, 6.4 and 6.5 are the average reconstruction errors of our system. We can
find that our approach is generally more accurate than Online Lazy Neighborhood
Graph. We attempt to use the training data which is not explicitly specified in the given
database as our input. In addition, to simulate the situation of motion capture device
with noise, we add noise into our input. In the Table 6.4, because sitting is a static pose,
there are a small amount of severe motion transitions. Therefore, the differences of three
approaches are not obvious. In general, our approach is less reconstruction errors and

less inaccurate sequence, compared with the other two methods.

Our approach

Figure 6.12 The difference between our
approach and Online Lazy
Neighborhood Graph

Figure 6.11 We can use the fifth Wii Remote to detect the

) . 38
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Because of the limitation of hardware, we use the CMU database as input to

simulate the experiment with 2 to 10 sensors. Table 6.6 is the sensor joint which we

defined.
Sensor joints
2 Sensor Right hand, Right foot
4 Sensor Hands, Foots
6 Sensor(upper) Hands, Foots, Clavicles
6 Sensor(lower) Hands, Foots, Hip joints
8 Sensor Hands, Foots, Clavicles, Hip joints
10 Sensor Hands, Foots, Clavicles, Hip joints, Radiuses
Table 6.6 Sensor joints
90
80 —
60 /
40 — KNN
30 OLNG
20 Clip-based OLNG
10
O T T T T T 1
N \y Q Q \ L
eo"’o e&o QQQ} N 3 e&o z&o
,1,‘—) b“—) o&} O&Q Cb‘—) \9‘1
& &
o o

Figure 6.13 Accuracy of sensor number with noise(-0.01 ~ 0.01 m/s?)
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100

90

80 -

70 -

60 -
W Actorl

50 -
W Actor2

W Actor3
30 -

10 ~

Walking Lifting and Walking Sitting Sitting and Jumping

Table 6.7 Accuracy of different actor
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Moreover, we try to take the accelerations of half body to our system for shorting the

cost time. However, we only have the acceleration of two sensors, the system cannot

determine the motion transition easily. The accuracy would be lower when rapid motion

transition as shown in Table 6.8.

100

90

80

70

60

50

40

30

20

10

Lifting, Boxing and Walking

M 4 Sensors

M 2 Sensors

Table 6.8 Accuracy of 4 sensors and 2 sensors
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Chapter 7

Conclusion

Our system is performed on a desktop with Intel® Core™2 Duo CPU, 4GB main
memory, and NVIDIA GeForce 9800 GT graphic card. In our system, we successfully
improve Online Lazy Neighborhood Graph with the concept of motion blending and
using clip as operating unit. By constructing kd-tree, we can efficiently search the match
training data in a large database. Then, we receive the newest data from Wii Remote to
update Clip-based Online Lazy Neighborhood Graph and find the highest priority of
candidate motion clip as-our result. We solve the jitter problem by using interpolated
and weighted combining motions to achieve rapid motion transition. The reconstruction
motion.is reliable and capable of handling variations that are not explicitly specified in
the given database.

Wii-Remote is as our sensing device whose advantage is portable, does not hinder
daily behavior and adaptable in constraint environments. Finally, our approach is able to
monitor user’s motion and provide reliable accuracy and natural synthesized motion.
Although acceleration data of motions contains less information, we use the concept of
motion field to extend Online Lazy Neighborhood Graph and overcome its limitation to

provide the reliable accuracy like other techniques using high-cost devices.
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