

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

於資料串流上基於動態網格的分群演算法

Clustering Evolving Data Stream Based on Dynamic Grids

研 究 生：王偉任

指導教授：李素瑛 教授

中 華 民 國 １０１ 年 ６ 月

二

於資料串流上基於動態網格的分群演算法

Clustering Evolving Data Stream Based on Dynamic Grids

研 究 生：王偉任 Student：Wei-Jeng Wang

指導教授：李素瑛 Advisor：Suh-Yin Lee

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 6 月

i

於資料串流上基於動態網格的分群演算法

研究生：王偉任 指導教授：李素瑛

國立交通大學資訊科學與工程研究所

摘要

近年來，由於資訊科學的發展和相關設備的進步，資料串流已成為普遍的

資料型態。如何在無限且動態的資料串流上進行分群，並擷取出有意義的資料特

徵，此問題已經引起重大的關注。雖然在此議題上已有相當的研究發表，多數的

方法都需要在起始時給予適當的參數設定。然而在資料串流上，與一般靜態的資

料不同，其資料特徵與分群資訊是動態而不穩定的，因此在起始的參數設定相當

困難。處理資料串流是一個連續的程序，在不同時刻也可能需要不同的參數設定，

固定參數的方法往往在其資料特徵改變時無法正確的反映與處理。本篇提出一個

新穎的演算法，DGBC (動態網格分群法)，用來對資料流進行分群。在過程中，該

方法可以自動的調整所需要的參數，用以對應最新的資料與分群特徵。在合成資

料和真實資料兩者上所進行的實驗結果均顯示 DGBC 不僅擁有較快的執行速度，

所產生的分群結果也有較高的品質，同時對於起始參數的敏感度也較低。

ii

Clustering Evolving Data Stream Based on Dynamic Grids

Wei-Jeng Wang Suh-Yin Lee

Institute od Computer Science and information Engineering

National Chiao-Tung University

Abstract

Clustering multi-dimensional data stream is a difficult and important problem.

The goal is to cluster the objects within the stream continuously, to discover and

monitor the evolving up-to-dated events. Density grid based clustering algorithms are

fast, and can discover arbitrarily shaped clusters and deal with noise. However, the sizes

and borders of the grids easily influence Grid-based algorithms. We propose a Dynamic

Grid-Based Clustering algorithm for high-dimensional data streams. When new data

arrives, the grid structure is dynamically updated. Dynamic grid structures adjust its

range and boundary on each dimension over time to produce effective clustering results

with low memory usage. We used both synthetic and real data set for experiments, and

the experimental results show that our proposed algorithm has superior quality and

efficiency, can find clusters of arbitrary shapes, and can accurately recognize the

evolving behaviors of real-time data stream

iii

ACKNOWLEDGEMENT

 I greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. She

not only helps with my research but also takes care of me. Her graceful suggestion and

encouragement help me forward to complete this thesis.

 Besides, I want to give my thanks to all members in the Information System

Laboratory for their suggestion and instruction. Especially Mr. Yi-Cheng Chen, Mr.

Fan-Chung Lin, and Mr. Li-Yen Qua.

 Last but not least, I appreciate my parents. Without their support and

encouragement, I am not able to complete achievement. I devoutly dedicate this thesis

to them.

iv

Table of Contents

Abstract (Chinese)……..…………...…………………………………….……………..i

Abstract (English)..……..…….…………………………………………………….….ii

ACKNOWLEDGEMENT….………………………………………...……………….iii

Table of Contents……..…….………………………………………..……………….iv

List of Figures ……….…..…………………….….………………….……...………vi

List of Tables …………..…..……………………..…………………….……..……viii

Chapter 1 Introduction ……...….……………………………………………………..1

Chapter 2 Related Works …………….………………………………………………..3

2.1 Clustering Algorithm on Data Stream ….……………...……….……….……..3

2.2. Evolving Approach ……………..………………….…….…...……………… 4

2.2.1 Micro-Cluster Distance Factor …………..…...………………………… 4

2.2.2 Micro-Cluster Density Factor ……………………..……………………. 7

2.2.3 Density Grid Density Factor…… ……………….……………..…….…. 8

2.3 Indexing Structure...………………….……………………………….………. 12

2.3.1 R-tree ………………………………………………...................………. 12

2.3.2 R+ tree ……………………………………………………………….…. 12

Chapter 3 Notation and Problem Definition ………………………………………. 14

3.1 Notation and Symbol Definition …………………………………...…………. 14

3.2 Problem Statement ……………………………………………………………. 18

Chapter 4 Dynamic Grid-Based Clustering …………………………………….…. 19

4.1 Overview of DGBC ………………………………………………………..…. 19

4.2 Indexing …………………………………………………....………..………... 20

4.2.1 R+ Tree Based-Indexing ………………………………………………... 20

v

4.2.2 Dimensional Interval Based-Indexing …………………………….……. 22

4.3 Maintenance Step and Grid Resizing ……………….………...……………….24

4.4 Cluster Generation…………….……………………………………..….……. 26

4.5 Decay Factor, Threshold, and Time gap ………….…………………..………. 27

4.6 DGBC algorithm …………………………………………………...…………. 33

Chapter 5 Experimental Results …………………………….…………...………. 35

5.1 Cluster Quality …………………………………………………………..……. 35

5.2 Data Generator ………………………………………………………….……. 36

5.2.1 Performance on Synthetic Datasets …….………….…………………… 37

5.2.2 Scalability Studies ……………….…………………………………..…. 39

5.3 Network Intrusion Detection dataset …………………….……….…….……. 41

5.3.1 Performance on Network Intrusion Detection dataset ……….…….…… 42

5.4 Charitable Donation data set ………………………………………..………… 43

5.4.1 Performance on Charitable Donation dataset ………………...……...…. 44

5.5 Parameter Analyze ………………………………………….…………..…...... 45

Chapter 6 Conclusion ………………………………………………….…………… 49

Bibliography……………………………………………………………………… 50

vi

List of Figures

Figure 2.1 Process of distance-based micro-clusters method……...…….……………..5

Figure 2.2 Process of density-based micro-clusters methods……...…………………...7

Figure 2.3 Process of grid based method with density factor………………………..9

Figure 4.1 Illustration of DGBC……………………………………………………19

Figure 4.2 An example for R+ tree-based index……………………………………21

Figure 4.3 An example for dimensional interval-based index……………………...23

Figure 4.4 The pseudo code of DGBC……………………………………………...34

Figure 5.1 Example for compute purity…………………………………………….36

Figure 5.2 Quality comparison (Synthetic dataset)…………………………………38

Figure 5.3 Execution time comparison (Synthetic dataset)………………………...39

Figure 5.4 Scalability test with different number of dimensions (Synthetic dataset)40

Figure 5.5 Scalability test with different number of clusters (Synthetic dataset)…..41

Figure 5.6 Quality comparison (Network Intrusion dataset)……………………….42

Figure 5.7 Execution time comparisons (Network Intrusion dataset)…………..….43

Figure 5.8 Quality comparison (Charitable Donation dataset)…………………..…44

Figure 5.9 Execution time comparisons (Charitable Donation dataset)……………45

Figure 5.10 Cluster Quality with different initialization (Network Intrusion

dataset)…………………………………………………………………..46

Figure 5.11 Cluster Quality with different initialization (Charitable Donation

dataset)….……………………………………………………………….47

Figure 5.12 Execution time with different initialization (Network Intrusion

dataset)….……………………………………………………………….47

vii

Figure 5.13 Execution time with different initialization (Charitable Donation

dataset)…………………………………………………………………..48

viii

List of Table

Table 1 Parameters of synthetic data generator………………………………….37

1

Chapter 1

Introduction

In recent years, advances in hardware technology have allowed us to

automatically record transactions at a rapid rate. They are massive, fast changing, and

infinite. These data processes are referred to as data stream, data that is coming in a

continuous flow, is generated nonstop at a rapid rate from sensors and mobile

applications, log records, click-stream in web exploring, etc.

Clustering data streams posed additional challenges such as: single pass,

limited time and memory, and evolving clusters. The clustering result can be used to

gain insight into the distribution of data, to observe the characteristic of each cluster, or

a particular set for further analysis. The goal is to cluster the objects within a stream

continuously, and to discover and monitor the evolving up-to-dated result.

Many steam clustering algorithms have been proposed. Some of the methods

that developed are distance-based. They are suitable to find well convex clusters with

flexible memory requirement. However, for non-convex clusters, these methods have

trouble finding the true clusters, since two points from different clusters may be closer

than two points in the same cluster.

Another type of streaming clustering is the hybrid of density-based and

grid-based method [6] [9] [10] [20]. A Grid-based method maps data into corresponding

discretized density grid and the density factor connects the high density objects to

generate the clusters. It is a fast approach due to the low mapping cost. Nevertheless,

since the characteristics of data stream may change over time, a static grid boundary

may not be suitable for all the time points. When the data property is changed, different

2

setting is needed to produce effective and meaningful result.

We propose a Dynamic Grid-Based Clustering (DGBC), an algorithm for

clustering high-dimensional data streams. It is a density based algorithm for clustering

streaming data with the grid structure. It benefited by the density factor that can find

clusters with arbitrary shape, and can deal with outliners and is less sensitive to the

ordering by the density grid structure. Since data stream can change its property over

time, we may need different parameters at different time point to generate effective and

meaningful result. The grids are not partitioned at the start of process, but are adjusted

over time depending on the characteristic of data. At different time stamp, a different

grid size is computed and assigned to produce high quality result.

As the grids now are created and deleted over time, it cannot be directly access.

We use an indexing to keep and search the grid list efficiency. The index can help us not

only speed up the searching operation, but also reduce time when merging the grids at

the clustering stage.

We also use decay factor to address the evolving concept in stream data. We

put more weight on the current data without discarding the historical information. As a

fading window model, it is a popular method to deal with stream data.

The rest of this thesis is organized as follows. Chapter 2 provides the related

works. Chapter 3 presents the notation and problem definitions. Chapter 4 describes the

details of our proposed algorithm. Chapter 5 presents the experimental result and

performance study. The conclusion and the future work are in Chapter 6.

3

Chapter 2

Related Work

In this chapter, we introduced the related works of this thesis. In Section 2.1,

we classified the existing work on streaming clustering into several types by the

summary structure they use and the factor they choose to produce clustering result.

Section 2.2 describes the index structure we use in this thesis.

2.1 Clustering Algorithm on Data Streams

Based on the concept of processing data stream, previous algorithms on

clustering data streams can be classified into two categories: one-pass approach and

evolving approach. Here we will introduce the one-pass approach and focus on the

evolving approach in the following section.

The one-pass approach extends traditional clustering methods [5] [15] by

scanning data once only. These methods extended the k-means or k-median, and

maintained the intermediate results of clustering algorithms over all time points. Such

an approach is highly sensitive to the order of arrival of the data points, especially when

the characteristics of a stream evolve over time. BIRCH [25] uses a cluster feature

summarization methodology, STREAMLS [17] uses a modified LSEARCH to find the

center candidates for the clusters, and STREAM collects the result of k-median on every

time point.

DUC-Stream [10] is a single pass clustering algorithm for data streams. It is a

density grid based method. The data stream is read in chunks. Each chunk fits in the

memory and contains a number of data points. It partitions the data domain into units

4

and keeps only the units that have a large number of data. If a unit has more data points

than the threshold, the unit will be considered as a dense unit. A local dense unit is a

candidate for dense unit which may become a dense unit.

DUC-stream keeps the dense units and the current local dense units. In the

process, it takes a chunk of data points, map them into corresponding units, and then

find the local dense units at the current time point. It generates the clustering result in an

incremental manner. DUC-stream identifies the clusters as a connected component of a

graph in which vertices represent the local dense units and the edges are related to

common attributes between two vertices. After the current clusters are created, they are

merged with the result created before. For each added dense unit, if it has no common

dimension boundary with any existed clusters, a new cluster is generated and merges the

dense unit into it. Or if there are any clusters that have common dimension boundary

with the new dense unit, then merge the dense unit into the cluster. A cluster will be

deleted if it contains no dense unit.

2.2 Evolving Approach

 The evolving approach takes the streams as an evolving process over time.

They try to discover not only the cluster result at the last time point but also the data

evolving during the process. There are three types of algorithms according to the

similarity measurement and the summary structure they use: distance-based with

micro-clusters, density-based with micro-clusters, and density-based with density grids.

2.2.1 Distance-Based Micro-Clusters Methods

 This type of method uses micro-cluster as the summary structure to store the

data information. A distance based algorithm like K-means can be used to generate the

5

final clustering result. A micro-cluster contains the cluster feature vector as MC = {N,

LS, SS}, where N is the number of data in the micro-cluster, LS is the linear sum on

each dimension and SS is the square sum on each dimension.

Micro-cluster can provide a flexible memory usage by controlling the

maximum number of micro-clusters and can find well convex clusters, but can not

produce clusters with sharp shape due to the distance factor which always generate

circular clusters. Fig. 2.1 shows the process of this type of methods. Fig. 2.1(a) shows

the original data, and they will be inserted into the closest micro-cluster, as in Fig.

2.1(b). Clusters then will be generated form these micro-clusters, Fig. 2.1(c).

(a) (b) (c)

Figure 2.1: Process of distance-based micro-clusters method. (a) The original data (b)

Data are inserted into the closest micro cluster (c) The cluster result with K-means

where K=3.

CLUStream [3] is a clustering algorithm for streaming data. The clustering

process is divided into online component and offline component. The online component

stores summary information by micro-clusters and the offline component analyzes the

data streams over different horizons by using summary information which is stored in

online component. When a new data arrives, the algorithm will find the closest

6

micro-cluster, and insert the data if the distance between the data and the center of

micro-cluster is under the threshold. A new micro-cluster is created if the new data dose

not lie within the maximum boundary of the nearest micro-cluster. An old micro-cluster

will be deleted or the closest two micro-clusters will be merged to control the number of

micro-clusters. At the clustering step, micro-clusters are treated as pseudo-points, and a

modified k-means is used to generate the clustering result.

The micro-clusters are stored at snapshots in time which follow a pyramidal

pattern, to keep the cluster information at different points. The summary information is

used by offline component when a user required the clustering result in a time horizon

or granularity. CLUStream can find well convex clusters with flexible memory

requirement, and provides a wide variety of functionality in characterizing data stream

clusters over different time horizons in an evolving environment.

SWClustering [26] algorithm uses Exponential Histogram of Cluster Feature

(EHCF) to maintain the cluster features over a sliding window. Temporal Cluster

Feature (TCP) is used to keep the cluster feature vector at each time stamp, and a

micro-cluster here is a set of TCP that are close to each other. When more data come,

old TCPs are merged to generate TCP that keeps larger time interval data. The TCP

structures record the evolution of each cluster and capture the distribution of recent

records. TCP structure supports record-level clustering analysis since it creates a TCP

for every newly arrived record. As each EHCF has its own temporal feature, two

EHCFs can not be merged directly if two EHCFs are overlapping, i.e., the arrival time

of the record in two EHCFs are interleaved. It uses late merging to deal with the case. A

new EHCF is created conceptually to merge the interleaved EHCFs to keep all the

information. It has a better quality and higher time complexity since it has to process the

7

historical buffer.

2.2.2 Density-Based Micro-Clusters Methods

As the density measurement can not find sharp clusters, some algorithms

consider using the density based method instead of distance factor in cluster generating

step. These algorithms provide better quality with a higher time complexity as the

density-based method needs more data related information between micro-clusters. Fig.

2.2(a) and Fig. 2.2(b) shows the original data and the micro-clusters, and the clustering

result are generated from density method as shows in Fig.2.2(c).

(a) (b) (c)

Figure 2.2: Process of density-based micro-clusters methods. (a) The original data. (b)

Data are inserted into the closest micro cluster. (c) The algorithm merges the

micro-clusters by the distance and density.

In DenStream [6], instead of using the number of neighboring data points

stored in the micro-clusters, micro-cluster density is based on weighting areas of points

in the neighborhood. It has online-offline components. In evolving data streams, the role

of clusters and outliers may change over time. There are three types of micro-cluster:

p-micro-cluster, o-micro-cluster and c-micro-cluster. c-micro-cluster means

8

core-micro-cluster, a type of micro-cluster that their density weight is higher than the

threshold. o-micro-cluster means outlier-micro-clusters, their density weight is lower

than the threshold. p-micro-cluster means potential-c-micro-cluster, they are not core

micro-cluster now, but their density weights is higher than the low threshold and may

become a c-micro-cluster some time later.

When a new data comes, first the algorithm tries to merge with the closest

p-micro-cluster. Otherwise, the data will be merged with the closest o-micro-cluster or

new an o-micro-cluster for it. If the density weight of a p-micro-cluster is higher than

the threshold after the insertion, that p-micro-cluster becomes a c-micro-cluster. On the

clustering stage, a variant of DBSCAN algorithm is applied to the p-micro-clusters to

get the final result.

SDStream [14] algorithm is based on SWClustering algorithm and DenStream.

SDStream assigns a weight based on the number of data points in the c-micro-cluster,

p-micro-cluster, and o-micro-cluster. The micro-clusters are stored in the form of

EHCFs, like in SWClustering, recording the evolution of each cluster and capture the

distribution of recent records. The final clusters are generated based on these virtual

points using modified DBSCAN.

2.2.3 Density-Based Density Grids Methods

Density grid is a fast approach for recording the drift information. This type of methods

divides the data domain into grids and records the data that fit in each grid boundary.

These methods are insensitive to the outlines and noises, since the new data would not

change the grid structure and neither cause old structure deleted as we need to control

the maximum number of structure. This is also less sensitive to the incoming data order

9

since we do not update the grid center for every incoming data. By merging the grids,

these methods can find arbitrary shape clusters, and find boundary or outliner data fast.

Fig. 2.3(a) and Fig. 2.3(b) show the original data and the density grids. The method then

find high dense grid and generates clusters as shown in Fig. 2.3(c) and Fig. 2.3(d).

(a) (b) (c) (d)

Figure 2.3: Process of grid based method density factor. (a) The original data. (b) Data

are mapped into the density grid unit. (c) Find out and store the high density units. (d)

The neighboring high density grids are merged and three clusters are generated.

However, the number of grids easily increases especially when dealing with

high dimensional data. These methods partition the data domain in the initialization step,

a good result depends on a good partition setting, and in most of cases it is hard to

decide as there is no information about the data distribution and cluster features. Even if

we can get a good setting at the start stage, the data property may change over time

during the streaming process, and we may not always have a good parameter for every

time point.

Chen et al. proposed a framework called D-Stream [7] for clustering data

streams based on density. Density is defined as the number of data fall in a specific area.

10

D-Stream also has online-offline components. The online component reads new data

records and maps them into density grids and updates summary information about the

grids. Based on grid density, dense and sparse grids are introduced. Their difference is

referred to their density. A dense grid is that its density is higher than threshold, and a

sparse grid is a grid that its density lowers than the low threshold. It also uses a decay

function to express the concept of stream evolving, as we consider that the new data are

more important than the old ones. A grid that dose not receive data for a time period will

become sparse, and its density should be low even if it was a high dense grid before.

The offline component clusters the density grids by connecting each high-dense

neighboring grids. A grid cluster is a connected grid group, which has higher density

than the threshold. It is a fast approach due to the low mapping cost, and can find

arbitrary shape clusters.

In [24], Tu et al. improved the D-Stream by considering the positional

information about the data. When mapping data into grids, the gird structure keeps the

attraction information which shows how close a data to its neighbors. The clustering

procedure is the same as before. The difference is at the merging step. Two grids will be

connected only if they are both high-density grids and their attraction is higher than the

threshold. By considering the density and attraction, this algorithm has a better cluster

quality.

AGD-Stream [8] is a density grid based method which considers the idea of

activity and boundary data. A grid is active if it has received new data at some time

points, and the active grids should be kept. We need only check a grid if it is active

when it receives a new data, or when a user sends a query. Another idea is the boundary

grids. A data is a boundary point if it is located in the edge of dense data points, and it

11

has two or more characteristics of clustering. A grid with boundary data will be merged

into the connected dense grid, instead of just being deleted.

Ren et al. in [21] proposed an algorithm for clustering data streams based on

grid density for high dimensional data streams. They proposed an indexing structure

named PKs-tree in the grid-based clustering approach. There are many empty grids

especially for high dimensional data. It costs a lot of resource if we need to save all of

empty grids, but the relations between grids will lose if only non-empty grids are saved.

In Pks-tree, the algorithm divides the full data domain into different levels of grids and

stores them as Pks-tree. The data is stored in the leaf level grids, and a higher level grid

store lower level grids that the higher level grid contains. The new data record in the

data stream is continuously read and mapped to the related grid cells in the Pks-tree at

all levels, update their feature if needed. To improve the efficiency, the empty grids are

omitted by using K-cover concept. K-cover controls the number of non empty grids in

the neighboring of child level. By using Pks-tree for indexing, the efficiency of storage

and indexing are improved.

IGDLC [12] is a clustering algorithm based on irregular grids. It maintains the

grid structure dynamically. An irregular grid is a combination of intervals in each

dimension. When a new data comes, if it can not fit in the existing interval or girds, a

new interval or grid is created for it. On the maintain step, sparse grids and intervals are

removed to reduce, and two high-dense interval are merged into a large interval. After

several time points, the interval may become stable and the update time is reduced.

When a user requests, first it partitions each dimension with their intervals, and

connecting neighboring high-dense grids to generate the result. It reduces the number of

grids in use and has a low memory usage, however, a higher time complexity since it

12

has to maintain the dynamic structure over time.

2.3 Indexing Structure

 Many existing index structures can help in reducing the time cost. In the

following section, we describe the index structure we use in the thesis.

2.3.1 R-tree

R-trees [11] are tree data structures used for spatial access method and for

indexing multi-dimensional information such as geographical coordinates, rectangles or

polygons. The key idea of the tree structure is to group nearby items in the same or

close node. All data are kept in the leaf level and at higher levels the aggregation of an

increasing number of objects. As in B-tree, each node can contain a maximum number

of entries, which is often defined as M. The search step can be done simply by keeping

a bounding box to decide whether or not to search inside a sub-tree. Start from the root,

and most of the nodes do not need to be processed during the search operation. This

makes it suitable for large data set because it needs low time cost in searching and its

structure is independent of the number of dimensions in data. Sometimes R-tree has

overlapping interval nodes. In this case, multi entries need to be processed during the

search operation because we do not know where the data is.

2.3.2 R+ tree

R+ trees [23] are a compromise with R-trees; R+ trees avoid having

overlapping internal nodes by inserting an object into multiple leaves if necessary. In

R+ tree, nodes are not guaranteed to be at least half filled, and the entries of any internal

13

node do not overlap. Because the entries in nodes do not overlap, this reduces the search

time since all spatial regions are covered by at most one node. Only a single path and

hence fewer nodes are visited than in R-tree. Some extra storage is needed due to the

multiple insertions. R+ tree is more appropriate for processing data streams since it has

a lower time cost on searching and do not need to reinsert to keep the nodes half full.

14

Chapter 3

Notation and Problem Definition

 In this chapter, we formally introduce necessary notation and formulate the

problem. Section 3.1 describes the notations and the structure we use, and in Section 3.2

we define the problem statement.

3.1 Notation and Symbol definition

Definition 1 (Data Stream)

A data stream S consists of an infinite sequence of multi-dimension records, S

= { }, data arrive at time stamps { , , … … }, each is a

multidimensional record with d dimensions, denoted by =[
 ,

 ,
 , …

].

As we cannot store in memory all data information in a data stream, the

algorithm uses density grid structures to keep the data summary information.

Definition 2 (Density Grid)

A density grid G for a set of d-dimensional points is denoted as G = {r, n, t},

where

r = […], correspond to a vector of 2*d entries. For each

dimension, the upper boundary and lower boundary pairs are stored in r.

n is the number of data points maintained in G, and

t is the last updated time, the last time a data inserted into G.

We map the incoming data into the grid structure to generate summary information.

15

When a data record X is inserted into a grid G, it will support a density coefficient that

will be decreased over time. The density coefficient and the density of a grid are defined

as follows.

Definition 3 (Density Coefficient)

If a data X arrives at time stamp , and the current time is , we write that

T(X) = , and its density coefficient is defined as Eq(1)

 (X,) = λ = λ (1)

where λ∈(0, 1) is a constant named the decay factor.

Definition 4 (Density of a Grid)

A grid G at given time stamp , let G(x) denotes the set of data that are

mapped into G at or before time , its density score is the sum of the density

coefficients of all data records that are mapped into it. The density of G is

 (G,)= ∑ ∈G x (2)

The density of a grid changes over time, but we do not need to maintain it on

every time unit. The density of a grid increases only when data are inserting into it, so

we update it only when a data is mapped into. We keep the time of last update for each

grid so that the current density can be computed by the current time and the time of last

update.

Lemma 1 (Update Grid’s Density)

If a grid G receives a new data at time , and the last time it receives a data

is , > , then the current density of G at time can be updated with Eq(3),

 (G,)= 1 + λ * (G,). (3)

16

Proof:

Let G’(x) denotes the set of data that are mapped into G before time , and

is the new data arrives at time , by Eq.2

 (G,) = ∑ ∈G x ,

And we have that

 (X,) = λ = λ = λ * λ = λ * s(X,)

Therefore, we have:

 (G,) = ∑ ∈G x

= + ∑ ∈G x = λ + ∑ λ ∈G x

 = 1 + λ * (G,). (4)

And then here we can define three types of grids according to their density:

high dense grids, sparse grid and intermediate grid. Clusters are generated from the high

dense grid. They are the cores of clusters since their density is high. By the decay factor,

we can make sure that a high dense grid is significant at the time point, because an out

of dated high dense grid will be decayed over time and may become a sparse or

intermediate grid.

Definition 5 (High Dense Grid)

A high dense grid is a grid that its density is higher than the high threshold. If

G is a high dense grid at time , that means

 (G,) ≥ Dh, (5)

where Dh is the high threshold.

Definition 6 (Sparse Grid)

17

A sparse grid is a grid that its density is lower than the low threshold. If G is a

high dense grid at time , that means

 (G,) ≤ Dw, (6)

where Dw is the low threshold.

Definition 7 (Intermediate Grid)

An intermediate grid is a grid that its density is between the high threshold and

the low threshold. If G is a intermediate dense grid at time , that means

Dw ≤ (G,) ≤ Dh. (7)

In the clustering step, we connect the neighboring high dense grids to generate

grid clusters. The neighboring and the grid cluster are defined as follows

Definition 8 (Dimensional Overlapping)

For two grids, G1 and G2, at a dimension d’, their upper boundary and lower

boundary pairs are (
 ,

), (
 ,

),

 and

 . G1 and G2 are

dimensional overlapping in dimension d’ if and only if

 and

Definition 9 (Dimensional Connecting)

For two grids, G1 and G2, at a dimension d’, their upper boundary and lower

boundary pairs are (
 ,

), (
 ,

),

 and

 . G1 and G2 are

dimensional connecting in dimension d’ if and only if

18

Definition 10 (Neighboring Grids)

Two grids, G1 and G2, are neighboring if and only if their boundaries are

dimensional overlapping in at least d-1 dimensions, and the boundaries are dimensional

connecting in at most 1 dimension, denoted as G1~ G2.

Definition 11 (Grid Group)

A set of density grid list Lg = (G1, G2, G3 …, Gm) is a grid group if for any

two members Gi, Gj∈Lg there exists a sequence 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙𝑚 such that

𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝐺𝑙 𝑚 𝐺𝑙𝑚.

Definition 12 (Grid Cluster)

A set of density grid Cg is a grid cluster if it is a grid group and all members in

the set is a high dense grid.

3.2 Problem Statement

Given a data stream S = { }, the data record are mapped into the

density grid structure G = {G1, G2 … Gm}. Gird clusters are generated form the

density grid structure. For every grid cluster , the output is in the from of {i , },

where i∈[1,K], ∈G and ∩ = ∅ , i≠j, where K is the number of clusters.

19

Chapter.4

Dynamic Grid-Based Clustering

 In this chapter, we propose Dynamic Grid-Based Clustering (DGBC), a

clustering algorithm based on dynamic grid. Section 4.1 is the framework of DGBC.

Section 4.2 presents the indexing we use and how it works. The maintenance step in the

online component is described in Section 4.3, and the clustering generating stage is in

Section 4.4. We put some discussion on the decay factor and the related parameters are

in Section 4.5, the overall algorithm is in Section 4.6.

4.1 Framework of DGBC

Figure 4.1: Illustration of DGBC

20

We overview the overall architecture of DGBC. DGBC is an algorithm with

fading model. Like in CLUStream, our method has online and offline components. The

online component processes the incoming data and keeps the data summary, and the

offline component generates clustering result whenever a user sends a request, as shown

in Fig 4.1. The grid structure and the cluster are defined in Chapter 3, and more details

are described in the following sections.

4.2 Indexing

Grids are created and deleted during the process as we use dynamic grid

structure, so we cannot access them directly. To reduce the time cost on searching, here

we propose two types of indexing. One is based on R+ tree, and the other is based on

dimensional interval.

4.2.1 R+ Tree-Based Indexing

In an R+ tree based indexing, a node records a grid and the number of data had

mapped into it. When a new grid is created, we insert into grid and into the tree.

When a new data arrives, we start from the root node and search if any entry

can accept it. If any entry node does, we go down and repeat the process until there is no

entries that the data can fit in or the data can accepted by a grid in the leaf level. If the

incoming data falls in an existing grid, we simply insert the data into the grid and

maintain the grid’s feature vector.

In other case, there is no existing grid for the incoming data, which happens

when the incoming data belongs to a new cluster. We have to create a new grid for it

21

because we do not know if it is just an outlier or it is a start of a new cluster. A new grid

then is created, taking the current data as the center, and the grid is inserted into the R+

tree, at the last node we search in. The new inserted grid is in the leaf level, and has a

pointer to the last searched node. This allows us not need to update all the nodes in the

path, saving the updating time when building the index.

(a) (b)

(c) (d)

Figure 4.2: An example for R+ tree-based index, m= 5. (a) The view of grids and the

arrived data. (b) The index structure when the new data arrives. (c) The view of grids

after the new data is inserted (d) The index structure after the data is inserted.

Fig.4.2 is an example for search and insert a new data on two dimension

domain, where m, the capability, is 5. The cross is the incoming data, 1 to 5 is the

existing grid, and A, B are the intermediate nodes. When a new data comes in, first we

22

search it from the root node, in which there are two entries, A and B. It belongs to A

because it falls in the boundary of A in every dimension. Then we search the child

nodes under A. there is no grid that the data can fall into, so we create and insert a new

grid, named N, into the tree structure. Fig.4.2 (c) and (d) are the results after the

insertion.

R+ trees are good in handling high dimensional data, but sometime they need

extra processing time due to the ordering and outliers. A bust of noises may cause

several split operations, and the depth of trees are increases. After that, even the noises

are cleaned, the search path is longer than before and more time cost is needed to find

the data.

4.2.2 Dimensional Interval-Based Indexing

 Another type of indexing we use is based on dimensional intervals. For each

dimension, we keep an interval list that holds all grids intervals on this dimension. An

interval list keeps all grids’ intervals on its dimension in a sorting order. When a new

data is coming, we choose a dimension and do a binary search on the interval list to find

if the data can fit in any existing grids’ interval. If so, we pour out the grids that do not

match in the preview step, choose another dimension and repeat the process until there

are no grids. If there are no existing grids that the data can be mapped into, we create a

new grid, take the incoming data as the grid center and insert the data. Then we update

the interval list on every dimension. Any time if an interval contains no grid, the

interval will be deleted. This only happens right after a grid is deleted, so it needs only

to update or maintain the list when any grid is deleted.

23

(a) (b)

(c) (d)

Figure 4.3: An example for dimensional interval-based indexing. (a) The view of grids

and the arrived data. (b) The index structure when the new data arrive. (c) The view of

grids after the new data is inserted (d) The index structure after the data is inserted.

Fig. 4.3 is the same example as in Fig. 4.2 but in dimensional interval-based

indexing. The cross is the incoming data, 1 to 5 is the existing grid, and List(x) and

List(y) are the dimensional-interval indexing on axis x and y. When a new data coming,

first we search it from the x-dimension list, the grids in the list are 1 and 2. Then we

search the y-dimension list and the there is no interval for the new data. We can know

that there must be no existing grid which can accept the data because the intersections

of the search results are empty. The algorithm then creates a new grid, named N, for the

data and updates the grids list in every dimension. Fig.4.3 (c) and (d) are the result after

24

the data insertion.

When there are d dimensions, we need to keep d lists and may have to search in

all lists to discover the target grid. However in most of the cases, after doing search on

several dimensions, there are only a few grids remaining, so we can just check them and

find out the result we want. This happens more often especially in the high dimension

data. When the dimension increases, usually the data are being sparse except at the

cluster cores. We can get the target grid in checking only a few dimensions, hence it still

works well even for high dimensional data.

4.3 Maintenance Step and Grid Resizing

For every time period, we maintain the grid structure. In the maintenance step,

three parts need to be done: maintain grids, update index if needed, and resize the grids.

First, the sparse grids will be removed at the regulating step. A grid with too

low density means that it may be a noise or outlier, or it was a high dense unit far time

ago and is not meaningful anymore. As we use dynamic grid structure, this can also

control the number of grids in use and reduces the memory usage and time cost. When a

grid is deleted in this way, the passed information will be lost, so we have to make sure

that if a grid is safe to be deleted. We will make a discussion in the later section to show

that we can choose a suitable time gap to do it effectively without losing too much of

the data information, and also show that this is a necessary operation to keep the data

storage bounded.

If any grid is deleted in this way, then the algorithm also needs to update the

indexing if needed. For each deleted grid, the algorithm will check and update the index,

the node and entry in R+ tree, or its dimensional interval on every dimension. If the

25

deleted grid is the last object in the R+ tree node or interval, the corresponding index

structure will also be deleted.

In a dimensional interval based-indexing, this can be done by simply check if

the interval contains no object and should be removed at the same time. In an R+

tree-based index, first we remove the grid node, and then check if there are still any

other objects under its parent node. If not, the parent node is also deleted, and repeat

the process until the root node or a node that still has other objects. There is no need to

reinsert the object in the deleted entry node, since R+ tree does not require node to be

half filled. In a data stream, there is no information about the data property, so it is hard

to find a good parameter setting for every time point. As using a dynamic grid structure,

we can adjust the grid size according to the recent data distribution. We keep a global

data feature vector to record the information.

Definition 13 (Data feature vector)

The data feature vector is denoted as Dv = { �̅�, 𝑆 ⃑⃑ ⃑⃑ ⃑, 𝑆𝑆 ⃑⃑ ⃑⃑ ⃑} where

�̅� is the number of data in recent time stamp,

 𝑆 ⃑⃑ ⃑⃑ ⃑ is a d-dimension vector that stores the linear sum of data in each dimension

for the recent �̅� data, and

𝑆𝑆 ⃑⃑ ⃑⃑ ⃑ is a d-dimension vector that stores the square sum of data in each

dimension for the recent �̅� data.

By the data feature vector, the recent �̅� data’s distribution can be found and

computed from the information that is kept. We can resize the grid with the information

kept in the data feature vector. Some method resized the grid by merging or reset the

distance boundary, but the grid size or maximum boundary may continuously grow and

26

turn into a very large grid. A large grid may takes more data then others, losing meaning

and the clustering information. So we have to make sure that out method can work well

under the condition.

Definition 14 (Grid Resizing)

The algorithm assigns new grid boundary after the maintenance step. Let

𝐵 (T+1) denote the new grid boundary on the 𝑖𝑡ℎ dimension at time T+1, and 𝐵 (T)

denote the boundary currently used for the 𝑖𝑡ℎ dimension.

The new grid size on the 𝑖𝑡ℎ dimension is computed by

𝐵 (T+1) = 𝑅𝑎 𝑆𝑡(T, T+1) (8)

where Ra is a constant of ratio factor for the grid size, and

𝑆𝑡(T, T+1) is the root-mean-square deviations based on recent �̅� data arrived

between T and T+1

From Eq. (8), it clearly shows that the grid boundary at any time point is

bounded between [0, Ra*St]. As we resize the boundary depended on the data feature

and not the information stored in grids, the boundary can be expanded and reduced over

time. For a noisy data, we can update Eq. (8) by adding a weight factor to St and the old

boundary. This can provide a smooth changing boundary between the time stamps.

4.4 Cluster Generation

 At any time, a user can send a request and the offline component generates

clustering results from the online structure. First we find out all high dense grids, and

generate clusters by connecting them into grid groups as in Def. 11. Just like the method

27

in DUC-Stream [10], we treat the grid structure as a graph. The vertexes are the grids

and there is an edge between two grids if they are neighbor. A depth first search is used

to merge grids and generate grid clusters.

 The indexing can also reduce the merging time in generating clusters. By Def.

8 and Def. 9, usually we need to check all grids and find their neighbors, then to decide

to merge them or not. When the number of dimensions and the number of grids

increases, the time cost also increases not only because more objects need to be

processed, but also there are more possible neighbors to check. By the index, we can

partition all grids into unconnected sets. Only grids in the same set need to be checked

because grids in different sets are impossible to be neighboring.

In an R+ tree-based index, we check the nodes from the root, merge the

connected nodes and repeat to the child nodes they contain. In a dimensional

interval-based index, we choose a dimension and split it into unconnected parts, then

choose another dimension and repeat the process in each part. After the partition, we

check and merge the neighboring grids in the sets and generate the result, the cluster

label and the grids’ information with the same label.

4.5 Decay Factor, Threshold, and Time gap

 The algorithm maintains the grids and index structure to control the number of

grids and index by removing the spare grids. Some measures can help make a suitable

choice.

We define the data rate of a stream as Rx, the high threshold is Dh, the low

threshold is Ds, and the decay factor is λ. We can find a good setting that can handle the

grid and index structure effectively.

28

Lemma 2 (Grow Gap, TH)

 The grow gap, denoted as TH, is the minimum time needed for a sparse grid to

become a high dense grid.

TH = λ
 ℎ λ

 λ
 (9)

Proof:

A grid G is a sparse grid at time , by Def. 6,

 (G,) ≤ Dw,

If G becomes a high dense grid at time , let 𝐶 (x), 𝐶 (x) …𝐶 (x) denote

the sets of data that are inserted into G between time 1 to , and C(x) =

⋃ 𝐶𝑞 x 𝑞∈[] , if G becomes a high dense grid at time , by Def. 5,

 (G,) ≥ Dh

 (G,) = ∑ ∈ x + (G,) * λ

 = ∑ ∈ x + (G,) * λ

= ∑ ∑ ∈𝐶𝑞 x 𝐶𝑞 x ∈ x + (G,) * λ

We know that (G,) ≤ Ds, and since 𝐶 (x), 𝐶 (x) …𝐶 (x) ≤ Rx,

 (G,) ≤ λ * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ...+ 𝜆 * Rx + Ds* λ

Therefore,

λ ≥
 ℎ λ

 λ
 , δ ≥ λ

 ℎ λ

 λ
 . (10)

By Eq. (10), the minimum time for a spare grid to become a high dense grid is

TH = λ
 ℎ λ

 λ
 (11)

29

Lemma 3 (Decay Gap, TS)

The decay gap, denoted as TS, is the minimum time needed for a high dense grid to

become a sparse dense grid.

TS = λ

 ℎ
 (12)

Proof:

A grid G that is a high dense grid at time , by Def. 5,

 (G,) ≥ Dh

If G becomes a sparse grid at time , let C(x) denotes the sets of data that

are inserted into G between time 1 to , we want that G become a sparse grid

at time ,

 (G,) = ∑ X∈ x + (G,) * λ ≤ Dw,

We know that C(x) ≥ 0 , we have

 (G,) ≤ (G,) * λ ≤ Dw,

Therefore

λ ≥

 ℎ
 , λ

 ℎ
 (13)

By Eq(13), the minimum time for a high dense grid to become a sparse grid is

TS = λ

 ℎ
 (14)

Lemma 4 (Living Gap, TM)

The living gap, denoted as TM, is the minimum time needed for an empty grid

to become an intermediate grid.

TM = λ
 λ

 1 . (15)

Proof:

30

An empty grid G is a grid with no data inserted before time

 (G,) = 0

If G becomes an intermediate grid at time , let 𝐶 (x), 𝐶 (x) …𝐶 (x)

denotes the sets of data that are inserted into G between time 1 to , and C(x)

= ⋃ 𝐶𝑞 x 𝑞∈[] ,, we want that G becomes a high dense grid at time , by Def.7,

 (G,) ≥ Dw

 (G,) = ∑ ∈ x + (G,) * λ

= ∑ ∑ ∈𝐶𝑞 x 𝐶𝑞 x ∈ x + (G,) * λ

We know that (G,) = 0, and since 𝐶 (x), 𝐶 (x) …𝐶 (x) ≤ Rx,

 (G,) ≤ 𝜆 * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ...+ 𝜆 * Rx

λ ≥
 λ

 1, δ ≥ λ

 λ

 1 . (16)

By Eq(16), the minimum time for an empty grid to become an intermediate

grid is

TM = λ
 λ

 1 (17)

 Now we can decide the time gap, the period that the algorithm should check

and maintain the structure, from the above result.

The time gap we choose should not be too small. If we maintain the structure

every time when a new data comes, it will lead to a heavy overhead and slow down the

system. Also, most of the data information will be removed because we remove sparse

grids in the maintenance stage. Many of the grids do not receive enough data and are

deleted before they can reach the low threshold and become an intermediate grid.

 The time gap also should not be too large; otherwise the evolving of clusters

31

may be lost. The cluster features may change obviously during a large time gap. Some

of the clusters may show up and then disappear in the time gap. So the time gap we

choose need to be small enough to discover the change of cluster features. For an

intermediate node, we want to catch the changes that it becomes a high dense grid, or

becomes a sparse grid and be removed by the algorithm. Also if we choose a too large

time gap, the system will have to keep more grids and indexing information. These

storages will increase the search time since they increase the size of index and the

number of grids.

Definition 15 (Time Gap, TG)

 The Time gap, denoted as TG, defines how often we check and maintain the

grids and index structure.

TM< TG < Min (TS, TH) (18)

Another measure is to show how our method can work under a bounded

memory. Since the data stream is infinite, we need to limit the storage usage.

Lemma 5 (The Maximum Density, MD)

 The maximum density, denoted as MD, is the sum of density coefficients from

all data. It is bounded by

MD ≤

 (19)

Proof:

 Given a time T, Md = ∑ ∈T is the total density coefficient during the

time 0 to T 𝐶 (x), 𝐶 (x) …𝐶T(x) denote the sets of data arrived at time 0,1,2 …, T.

𝐶 (x), 𝐶 (x) …𝐶T(x) ≤ Rx, and C(x) = ⋃ 𝐶𝑞 x 𝑞∈[T]

For any T, we have that

32

∑ ∈ x = ∑ ∑ ∈𝐶𝑞 x 𝐶𝑞 x ∈ x

≤ 𝜆 * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ... +𝜆 * Rx

 ∑ ∈T ≤ o 𝜆 * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ... +𝜆 * Rx

= Rx *

 (20)

Therefore, from Eq(20),

MD = ∑ ∈ x ≤

 (21)

A living grid is a grid that needs to keep after the maintenance step. It is a high

dense grid or an intermediate grid. Since the maximum data density kept is bounded, we

know that the number of living grids is also bounded. And at any time point, the total

number of grids we need is also bounded by the number of living grids and the data

rate.

Lemma 6 (Maximum Living Grid, MA)

The maximum living grid, denoted as MA, is the maximum number of the sum

of intermediate grids and high density grids. MA is the number of grids that needs to

keep after any maintenance step.

MA ≤

 (22)

Proof:

From Eq. (19), we know that at any time point, that maximum density

coefficient from all data records is no more than MD. After the maintenance step, all

grids whose density lower than Ds will be removed, so all the living grids have density

at least Dw. Therefore, the maximum number of living grids is

.

33

Definition 13 (Maximum Grid, MG)

The number of maximum grids in use, denoted as MG, is the maximum number

of all the grids in the algorithm at any time.

MG ≤

 𝑅 (23)

The worst case shows up when a time point contains only noise or all of the

incoming data belong to a different grid. The case is rare in the real data streams, and

most of the grids will be deleted at next maintenance step.

4.6 DGBC algorithm

Fig 4.4 shows the overall algorithm of DGBC. For a data stream, the online

component continuously read a new data and searches the indexing to find a grid that

can accept the data. If so, we insert the data into the target grid. Otherwise, we create a

new grid that takes the current data as center and inserts the data into it, and then we

update the index for further use. For every period time step, TG, the algorithm

periodically removes the sparse grids, which have too low density scores. The algorithm

regulates the grids and index, computes the new grid size based on the recent data

distribution.

The offline component generates clustering result for the user. When a user

requests, the algorithm finds out all the high density grids, where their density score is

higher than the threshold. Then the system tries to merge the neighboring high density

grids together and assigns a cluster label for them.

34

Input: data stream S

Output: (Cluster label, grid list)

Variable: time_gap TG, grid ratio R, high threshold Dh, low threshold Dw

Initialize:

Current time tc= 0; An empty grid list Glist, index I, ;

Data feature vector Dv= 0, Initial grid size B(0).

While data stream is active:

 Read data record X= { , …, }.

 Target_grid = Search (Glist)

 if(Target_grid = NULL)

 Create a new grid Gn.

 I.insert(Gn).

 Target_grid = Gn.

 endif

 Target_grid.insert(X).

 Updata Dv.

 if(tc == time_gap TG)

 for all grid G in Glist

 if(G.density < Dw)

 remove G from Glist. Update I.

 else

 Decay G.density.

 Compute new grid size B(tc)=𝑅 𝑆𝑡

 endif

When requested:

 An empty grid list Gh.

 for all grid G

 if G.density > Dh.

 Gh.insert(G)

 endif

 Return cluster_result = generate_cluster(Gh)

Figure 4.4: The pseudo code of DGBC

35

Chapter.5

Experimental Results

We compare our method with CLUStream, DUC-Stream, D-stream,

AGD-stream and IGDLC. Two types of index are used, represent as DGBC(DI) and

DGBC(R+). The CLUStream algorithm is based on distance factor and the others are

based on density. All algorithms were implemented in C++ language and tested on an

i7-2600k 3.4 GHz with 16G memory running Microsoft Windows 7 Professional system.

The comprehensive performance study has been conducted on both synthetic and real

world datasets. To show the efficiency of DGBC, we perform three kinds of

experiments. First, we compare the execution time and clustering quality of DGBC with

other streaming clustering algorithms using synthetic datasets. Second, we investigate

the scalability of DGBC. Finally, we apply DGBC in some real datasets to compare the

performance and also discuss the effect of initial setting.

5.1 Clustering Quality

The clustering quality is measured by clustering purity. Purity is a simple and

transparent evaluation measure. To compute purity, each cluster is assigned to the class

which is most frequent in the cluster, and then the accuracy of this assignment is

measured by counting the number of correctly assigned members and divided by the

total number of members in this cluster. Eq. (25) shows the purity in one cluster, and

Eq(24) is the total purity from all clusters.

Purity = ∑
|𝐶𝑗|

𝑁
 𝑘

 = Pur ty 𝐶 , (24)

36

Purity (𝐶) =

|𝐶𝑗|
 |𝑛 𝑚𝑏𝑒𝑟 𝑓 𝑚𝑎𝑗 𝑟 𝑖𝑡𝑒𝑚 𝑖𝑛 𝐶 | (25)

where k is the number of clusters, N is the total number of data recorded.

For example, we generate two clusters as in Fig.5.1. There are two different types of

item in each group. By Eq(24) and Eq(25), the purity in each cluster are

Purity (C1) = 1/4 * max (3, 1) = 3/4

Purity (C2) = 1/11 * max (3, 8) = 8/11, and

the total purity = 4/15 * Purity (C1) + 11/15 * Purity (C2) = 11/15.

We say that the purity of the clustering result is 11/15. Notice that the purity is

bounded between 1 and 1/K, where K is the number of item types. The worst case

shows up only when the number of each type of items in a cluster is uniform.

Figure 5.1: Example for compute purity.

5.2 Data Generator

The synthetic data sets in the experiments are generated using synthetic

generation program proposed by Vennam et al. [18]. The parameter setting of data

generator is shown in Table 1.

37

Table 1: Parameters of synthetic data generator

Parameters Description

N Number of points to be created in the dataset (an integer)

C Number of clusters that should be present (an integer)

d Number of dimensions the dataset should have (an integer)

u The maximum data value for all the dimensions (a real number)

f Flag. 1 if subspace clusters are to be computed, 0 otherwise.

In all the following experiments, some parameters are fixed, i.e., |u|= 1000 and

f = 0. The data set is converted into data stream by taking the data input order as the

order of streaming data. The data rate is 1000 data per time unit; the high and low

threshold is 100 and 10, and the decay factor λ 0.98. We send a request and compute

the cluster purity every 10 time units.

5.2.1 Performance on Synthetic Datasets

The first experiment of the seven algorithms is on the dataset N70k–C15–d10k.

Fig.5.2 shows the quality result that our method is always better than others. When

clusters are created, deleted, and changing over time, according to the change of the

data property, the algorithm adjusts the generated and existing grids periodically, so it is

able to capture the evolution of the data stream and generates high quality clustering

result.

38

Figure 5.2: Quality comparison (Synthetic dataset N70k–C15–d10k)

Fig.5.3 shows the result of execution time. CLUStream needs the most time

because it needs a linear search on all micro-clusters for the insertion. IRGC also needs

a search on all grids, so when the number of grids increases over the process, the search

cost increases. At the start of the process, our method needs some time to set up the

index, after that it works effectively as the indexing provides a fast search and merge

operation.

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10 20 30 40 50 60 70

P
u

ri
ty

Time unit

D-Stream

AGD-Stream

CLU-Stream

DUC-Stream

IGDLC

DGBC(R+ , DI)

39

Figure 5.3: Execution time comparison (Synthetic dataset N70k–C15–d10k)

5.2.2 Scalability Study

In this section, we study the scalability of the DGBC algorithm. Then we test

the scalability with the synthetic datasets. We compare between two types of indexing

we proposed. The first series of datasets are generated by varying the dimensionality

from 10 to 100, while fixing the stream size (100k, the lower lines, and 1000k, the

upper lines) and the number of natural clusters (10). Fig.5.4 shows that the execution

time of our method is closest to linear with respect to the number of dimensions.

An R+-tree-based index ignored the number of dimensions, so it is ideal to deal

with high dimension data. However, it has a high time cost to maintain and update the

tree structure especially when the data property changes or the condition is noisy. In

these cases, some of the old grids need to be deleted and many new grids are created as

new core of clusters or noises, which leads to a heavy overhead since the R+ tree

indexing may need several node split operations.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

10 20 30 40 50 60 70

E
x
cu

ti
o
n

 t
im

e
 (

s
e
c)

Time unit

D-Stream

AGD-Stream

CLU-Stream

DUC-Stream

IGDLC

DGBC(DI)

DGBC(R+)

40

When the number of dimensions increases, the dimensional interval-based

index needs to keep more information for each dimension, but the search time and

merge time increases slowly as in higher dimension, the data become sparser. In the

usual case, we can find the grids within checking a few dimensions, and do not really

need to check on all dimensions to find the target grid.

Figure 5.4: Scalability test with different number of dimensions. (Synthetic datasets)

The other series of datasets are generated by varying the number of natural

clusters from 2 to 50, while fixing the stream size (100k, the lower lines, and 1000k, the

upper lines) and the number of dimensions (10). Fig.5.5 shows that the execution time

of our method is stable with respect to the number of clusters. When the number of

cluster increases, we need to be more careful not to merge data belonging to different

cluster together. The two scalability tests can show that our method is suitable for both

high dimensional data and dispersive data.

0

50

100

150

200

250

10 20 30 40 50 60 70 80 90 100

E
x
cu

ti
o
n

 t
im

e
(s

e
c)

Number of dimensions

R+ (1000K)

DI (1000K)

R+ (100K)

DI (100K)

41

Figure 5.5: Scalability test with different number of clusters. (Synthetic datasets)

5.3 Network Intrusion Detection dataset

The KDD-CUP’99 Network Intrusion Detection dataset [27] consists of raw

TCP connection records from a local area network. Each record in the dataset

corresponds to either a normal connection or an attack. There are four attack types:

DOS (denial of service), R2L (unauthorized access from a remote machine, e.g.,

guessing password), U2R (unauthorized access to root), and PROBING (surveillance

and other probing). As a result, the data contains five clusters including the class label

of normal, and the attack types are further classified into 24 types. Most of the

connections in this dataset are normal, but sometimes there may have burst of attacks at

certain times. The cluster property evolves significantly over time. We use the type of

connection as its cluster label. As in other experiments [4] [6], all 34 out of the total 42

continuous attributes available are used for clustering. The data rate is 1000 data per

time unit; the high and low threshold, Dh and Dw, is 100 and 10, and the decay

0

10

20

30

40

50

60

70

80

90

100

2 6 10 14 18 22 26 30 34 38 50

E
x
cu

ti
o
n

 t
im

e
(s

e
c)

Number of cluster

R+ (1000K)

DI (1000K)

R+ (100K)

DI (100K)

42

factor λ 0.98. We send a request and compute the cluster purity every 10 time units.

5.3.1 Performance on Network Intrusion Detection dataset

Fig.5.6 is the result of clustering quality. It shows that our proposed method

usually better than others. For all algorithms, the quality of clustering falls when the

cluster property changes, but our proposed method can adapt itself to catch the new data

property. Especially in a dataset that is noisy and evolves significantly during process as

in the Network Intrusion dataset, our method performs much better to find and generate

meaningful results. Our method works well on the Charitable Donation dataset even it

has less noises and the cluster property is stable.

Figure 5.6: Quality comparison (Network Intrusion dataset)

Fig. 5.7 shows the result of execution time. CLUStream spend most of the time

cost because it needs to do a liner search on all micro-clusters for the insertion for every

0.7

0.75

0.8

0.85

0.9

0.95

1

P
u

ri
ty

Time unit

D-Stream

AGD-Stream

CLU-Stream

DUC-Stream

IGDLC

DGBC(R+ , DI)

43

incoming data. IRGC also needs a liner search on all grids, so when the number of grids

increases over the process, the search cost increases in chorus. At the start of the process,

some time for building up the index is needed, and then our proposed method works

even more effectively than in synthetic dataset because the data order usually is not

completely random as in the synthetic data. In the Charitable Donation dataset, the

execution time is more stable as there are only a few noises in the dataset, and the

property of clusters is also stable.

Figure 5.7: Execution time comparisons (Network Intrusion dataset)

5.4 Charitable Donation dataset

Another real dataset is the KDD-CUP’98 [28]. It is a relatively stable real-life

data. It contains 95412 records about people who made donation in response to the

mailing requests. We used clustering to group donors with similar donation behaviors.

In total 56 out of 481 fields are used, and the dataset is converted into data stream by

taking the data input order as the order of streaming data. The data rate is 1000 data per

0

1000

2000

3000

4000

5000

6000

E
x
cu

ti
o
n

 t
im

e
 (

s
e
c)

Time unit

CLU-Stream

IGDLC

D-Stream

AGD-Stream

DUC-Stream

DGBC(R+)

DGBC(DI)

44

time unit; the high and low threshold is 100 and 10, and the decay factor λ 0.98. We

send a request and compute the cluster purity every 10 time units.

5.4.1 Performance on Charitable Donation dataset

Fig. 5.8 is the result of clustering quality on Charitable Donation dataset; they

show that our method always has a better clustering quality then others. For all

algorithms, the quality is high because there is only few noise and with a stable cluster

property, and our method works well under the condition of less noises and the data

property is stable.

Figure 5.8: Quality comparison (Charitable Donation dataset)

Fig.5.9 shows the result of execution time. CLUStream and IRGC still need

most of time to do a liner search for every insertion. The execution time is more stable

as there are only a few noises in the dataset, and the property of clustering is also stable.

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

10 20 30 40 50 60 70 80 90 100

P
u

ri
ty

Time unit

D-Stream

AGD-Stream

CLU-Stream

DUC-Stream

IGDLC

DGBC(R+ , DI)

45

Our algorithm benefits more than others under these conditions because it can build up

the proper indexing in short time and speed up for all over the process without rebuild.

Figure 5.9 Execution time comparisons (Charitable Donation dataset)

5.5 Parameter Analyze

Since there is no information about the data property at every time stamp, we

may not always have an optimal initial setting. The parameter here is defined as Ra, the

ratio of the grid size we assign for the algorithm, which defined in Def.14. The value of

R should be small enough to separates data that belong to different clusters, and detect

most of the new incoming points representing a new cluster or an outliner. At the same

time, it should not be too small that generates too many meaningless grids or outliners.

Fig. 5.10 and Fig. 5.11 is the quality result that if a different setting of grid size is

assume on the start of process, and Fig. 5.12 and Fig. 5.13 is the execution time with the

same condition as above.

Fig. 5.10 and Fig. 5.11 show that when we use a larger ratio factor for the grid

0

50

100

150

200

250

300

350

400

450

10 20 30 40 50 60 70 80 90 100

E
x
cu

ti
o
n

 t
im

e
(s

e
c)

Time unit

CLU-Stream

IGDLC

D-Stream

AGD-Stream

DUC-Stream

DBGC(R+)

DBGC(DI)

46

size, the execution time is reduced as there need fewer grids to summarize the data

points, hence the time cost becomes lower.

On the other hand, as revealed in Fig. 5.12 and Fig. 5.13, larger grid size means a larger

boundary distance to the grid center, more data will be collected, and the grids may be

merged up together more easier on the merge stage, the purity of clustering result

decrease. From all of these experiments, a choice of Ra = 5 resulted better, which has a

balance between the execution time and the clustering quality. Therefore, the value of

the factor R is set at 5 for all experiments in this thesis.

Figure 5.10: Cluster Quality with different initialization (Network Intrusion dataset)

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

P
u

ri
ty

Time unit

Ra2

Ra3

Ra5

Ra10

Ra50

Ra100

47

 Figure 5.11: Cluster Quality with different initialization (Charitable Donation dataset)

 Figure 5.12: Execution time with different initialization (Network Intrusion data set)

0.7

0.75

0.8

0.85

0.9

0.95

1

10 20 30 40 50 60 70 80 90 100

Ra2

Ra3

Ra5

Ra10

Ra50

Ra100

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10 400 800 1200160020002400280032003600400044004800

T
im

e
(s

e
c)

Time unit

Ra2

Ra3

Ra5

Ra10

Ra50

Ra100

48

Figure 5.13: Execution time with different initialization (Charitable Donation dataset)

0

100

200

300

400

500

600

700

800

10 20 30 40 50 60 70 80 90 100

T
im

e
 (

s
e
c)

Time unit

Ra2

Ra3

Ra5

Ra10

Ra50

Ra100

49

Chapter.6

Conclusion

We proposed a streaming clustering algorithm based on dynamic grid with

indexing. The algorithm maps the data into dynamic grids and generates clusters with

data summary structure. The grid structure can update its size to proper boundaries and

deal with the changing of an evolving data stream. We tried two kinds of indexing to

reduce the execution time, R+ tree-based and dimensional interval-based. It can produce

effective result, handle noise and find clusters with arbitrary shape. Also it is less

sensitive to initialization parameters because it can automatically adapt the property

itself. The experimental results show that our work is more effective and has better

quality in clustering result than others not only in a unstable data stream, but also in a

stable dataset.

Future work will focus on applying more indexing and adjusting methods and

providing more evolution analysis functionalities based on DAG-Stream. For some very

tight local clusters, the adjusting method sometimes fails because they may be merged

together. Another problem is it is hard to get the ground truth. So far there are no

convincing theories about how to measure the quality of streaming clustering, as it is

affected by the threshold setting, boundary setting, and the number of clusters. In real

world, how to correctly determine and present the needed information in a data stream

is still a challenging problem.

50

Bibliography

[1] Amineh Amini, Teh Ying Wah, Mahmoud Reza Saybani,and Saeed Reza

Aghabozorgi Sahaf Yazdi ,"A study of density-grid based clustering algorithms

on data streams", Fuzzy Systems and Knowledge Discovery (FSKD), 2011

Eighth International Conference on Date of Conference, vol.3, pp. 1652-1656.

[2] Amineh Amini, Teh Ying Wah, “Density Micro-Clustering Algorithms on Data

Streams: A Review", Proceedings of the International MultiConference of

Engineers and Computer Scientists 2011, vol.1, pp. 1652–1656.

[3] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu, “A

framework for clustering evolving data streams”, Proceedings of the 29th

international conference on Very large data bases, Very Large Data Base

Endowment, 2003, pp. 81-92.

[4] Charu C. Aggarwal, Jiawei Han, Jianyong Wang, and Philip S. Yu, "A

framework for projected clustering of high dimensional data streams", Very

Large Data Base Endowment '04, pp. 852-863.

[5] P. S. Bradley, O. L. Mangasarian, and W. N. Street, "Clustering via Concave

Minimization," in Advances in Neural Information Processing Systems, vol. 9,

1997, pp. 368–374.

[6] Feng Cao, Martin Ester, Weining Qian, and Aoying Zhou, “Density-based

clustering over an evolving data stream with noise,” in SIAM Conference on

Data Mining, 2006, pp. 328-339.

[7] Yixin Chen and Li Tu, “Density-based clustering for real-time stream data”,

Proceedings of the 13th ACM SIGKDD international conference on

Knowledge discovery and data mining, 2007, pp. 133-142.

51

[8] Wenxin Zhu, Jianpei Zhang, and Yue Yang, "Data Stream Clustering Algorithm

Based On Active Grid Density", Internet Computing for Science and

Engineering (ICICSE), 2010 Fifth International Conference on Date of

Conference, 2010, pp.97-101

[9] Kyungmin Cho, SungJae Jo, Hyukjae Jang, Su Myeon Kim, and Junehwa Song,

"DCF: An Efficient Data Stream Clustering Framework for Streaming

Applications". DEXA, 2006, pp. 114-122

[10] Jing Gao, Jianzhong Li, Zhaogong Zhang and Pang-Ning Tan, “An incremental

data stream clustering algorithm based on dense units detection”, Lecture Notes

in Computer Science, vol. 3518, 2005.

[11] Antonin Guttman,"R-trees: a dynamic index structure for spatial searching",

Proceedings of the 1984 ACM SIGMOD international conference on

Management of data, 1984, pp.47-57

[12] GuiBin Hou, RuiXia Yao, JiaDong Ren, and ChangZhen Hu , “Irregular

Grid-Based Clustering over High-Dimensional Data Streams”, 2010 First

International Conference on Pervasive Computing, Signal Processing and

Applications, 2010, pp.783-786.

[13] Chen Jia, ChengYu Tan, and Ai Yong,"A Grid and Density-Based Clustering

Algorithm for Processing Data Stream”, Proceeding WGEC '08 Proceedings of

the 2008 Second International Conference on Genetic and Evolutionary

Computing, 2008, pp. 517-521

[14] Philipp Kranen, Ira Assent, Corinna Baldauf and Thomas Seidl, "The ClusTree

indexing micro-clusters for anytime stream mining", Knowledge and

Information Systems , 2011, vol.29, pp. 249-272

52

[15] Yinzhao Li, and Jiadong Ren, "Clustering algorithm based on optimal intervals

division for high-dimension data streams", Computer Science & Education,

2009. ICCSE '09, pp. 783-787

[16] Lloyd., S. P. "Least squares quantization in PCM". IEEE Transactions on

Information Theory 28 (2), 1982, pp. 129–137.

[17] Liadan O'Callaghan , Nina Mishra , Adam Meyerson , Sudipto Guha ,and

Rajeev Motwani , "Streaming-Data Algorithms For High-Quality Clustering",

ICDE Conference, 2002.

[18] Jhansi Rani Vennam and Soujanya Vadapalli. “Syndeca: A tool to generate

synthetic datasets for evaluation of clustering algorithms”. In 11th International

Conference on Management of Data (COMAD 2005), Goa, India, January

2005.

[19] Jiadong Ren, and Ruiqing Ma, “Density-based data streams clustering over

sliding windows,” in Proceedings of the 6th International Conference on Fuzzy

systems and Knowledge Discovery (FSKD). Piscataway, NJ, USA: IEEE Press,

2009, pp. 248-252.

[20] Jiadong Ren, Shiyuan Cao, and Changzhen Hu, "Density-based Data Streams

Subspace Clustering over Weighted Sliding Windows", 2010 First ACIS

International Symposium on Cryptography, and Network Security, Data Mining

and Knowledge Discovery, E-Commerce and Its Applications, and Embedded

Systems, 2010, pp. 49-54

[21] Jiadong Ren, Binlei Cai, and Changzhen Hu, “Clustering over data streams

based on grid density and index tree”, Journal of Convergence Information

Technology, vol. 6, 2011, pp. 83 -93.

53

[22] Carlos Ruiz, Ernestina Menasalvas and Myra Spiliopoulou, "C-DenStream:

Using Domain Knowledge on a Data Stream", Proceeding DS '09 Proceedings

of the 12th International Conference on Discovery Science, 2009, pp. 287-301

[23] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos "The R+-Tree: A

Dynamic Index for Multi-Dimensional Objects", VLDB '87 Proceedings of the

13th International Conference on Very Large Data Bases, 1987, pp. 507- 518

[24] Li Tu and Yixin Chen, “Stream data clustering based on grid density and

attraction,” ACM Transactions on Knowledge Discovery Data, vol. 3, no. 3,

2009, pp.1-27

[25] Tian Zhang , Raghu Ramakrishnan ,and Miron Livny , “BIRCH: an efficient

data clustering method for very large databases”, in Proceedings of the 1996

ACM SIGMOD International Conference on Management of Data, J. Widom,

Ed. ACM Press, 1996, pp. 103-114.

[26] Aoying Zhou, Feng Cao, Weining Qian and Cheqing Jin, “Tracking clusters in

evolving data streams over sliding windows”, Knowledge and Information

Systems, vol. 15, 2008 , pp. 181-214.

[27] Irvine, KDD Cup 1999 Data, Information and Computer Science University of

California, http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

[28] Irvine, KDD Cup 1998 Data, Information and Computer Science University of

California, http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

http://kdd.ics.uci.edu/databases/kddcup98/kddcup98.html

