
 

 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 

 

 

 

於資料串流上基於動態網格的分群演算法 

 

Clustering Evolving Data Stream Based on Dynamic Grids 

 

 

 

研 究 生：王偉任 

指導教授：李素瑛  教授 

 

 

中 華 民 國  １０１  年  ６  月 



 

二 

 

於資料串流上基於動態網格的分群演算法 

Clustering Evolving Data Stream Based on Dynamic Grids 

 

 

研 究 生：王偉任          Student：Wei-Jeng Wang 

指導教授：李素瑛          Advisor：Suh-Yin Lee 

 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

 

A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

June 2012 

 

Hsinchu, Taiwan, Republic of China 

 

中華民國 101 年 6 月



 

i 

 

於資料串流上基於動態網格的分群演算法 

 

研究生：王偉任    指導教授：李素瑛 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

近年來，由於資訊科學的發展和相關設備的進步，資料串流已成為普遍的

資料型態。如何在無限且動態的資料串流上進行分群，並擷取出有意義的資料特

徵，此問題已經引起重大的關注。雖然在此議題上已有相當的研究發表，多數的

方法都需要在起始時給予適當的參數設定。然而在資料串流上，與一般靜態的資

料不同，其資料特徵與分群資訊是動態而不穩定的，因此在起始的參數設定相當

困難。處理資料串流是一個連續的程序，在不同時刻也可能需要不同的參數設定，

固定參數的方法往往在其資料特徵改變時無法正確的反映與處理。本篇提出一個

新穎的演算法，DGBC (動態網格分群法)，用來對資料流進行分群。在過程中，該

方法可以自動的調整所需要的參數，用以對應最新的資料與分群特徵。在合成資

料和真實資料兩者上所進行的實驗結果均顯示 DGBC 不僅擁有較快的執行速度，

所產生的分群結果也有較高的品質，同時對於起始參數的敏感度也較低。
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Clustering Evolving Data Stream Based on Dynamic Grids 

Wei-Jeng Wang      Suh-Yin Lee  

 

Institute od Computer Science and information Engineering 

National Chiao-Tung University 

 

Abstract 

Clustering multi-dimensional data stream is a difficult and important problem. 

The goal is to cluster the objects within the stream continuously, to discover and 

monitor the evolving up-to-dated events. Density grid based clustering algorithms are 

fast, and can discover arbitrarily shaped clusters and deal with noise. However, the sizes 

and borders of the grids easily influence Grid-based algorithms. We propose a Dynamic 

Grid-Based Clustering algorithm for high-dimensional data streams. When new data 

arrives, the grid structure is dynamically updated. Dynamic grid structures adjust its 

range and boundary on each dimension over time to produce effective clustering results 

with low memory usage. We used both synthetic and real data set for experiments, and 

the experimental results show that our proposed algorithm has superior quality and 

efficiency, can find clusters of arbitrary shapes, and can accurately recognize the 

evolving behaviors of real-time data stream 
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Chapter 1 

Introduction 

In recent years, advances in hardware technology have allowed us to 

automatically record transactions at a rapid rate. They are massive, fast changing, and 

infinite. These data processes are referred to as data stream, data that is coming in a 

continuous flow, is generated nonstop at a rapid rate from sensors and mobile 

applications, log records, click-stream in web exploring, etc.  

Clustering data streams posed additional challenges such as: single pass, 

limited time and memory, and evolving clusters. The clustering result can be used to 

gain insight into the distribution of data, to observe the characteristic of each cluster, or 

a particular set for further analysis. The goal is to cluster the objects within a stream 

continuously, and to discover and monitor the evolving up-to-dated result. 

Many steam clustering algorithms have been proposed. Some of the methods 

that developed are distance-based. They are suitable to find well convex clusters with 

flexible memory requirement. However, for non-convex clusters, these methods have 

trouble finding the true clusters, since two points from different clusters may be closer 

than two points in the same cluster. 

Another type of streaming clustering is the hybrid of density-based and 

grid-based method [6] [9] [10] [20]. A Grid-based method maps data into corresponding 

discretized density grid and the density factor connects the high density objects to 

generate the clusters. It is a fast approach due to the low mapping cost. Nevertheless, 

since the characteristics of data stream may change over time, a static grid boundary 

may not be suitable for all the time points. When the data property is changed, different 
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setting is needed to produce effective and meaningful result. 

We propose a Dynamic Grid-Based Clustering (DGBC), an algorithm for 

clustering high-dimensional data streams. It is a density based algorithm for clustering 

streaming data with the grid structure. It benefited by the density factor that can find 

clusters with arbitrary shape, and can deal with outliners and is less sensitive to the 

ordering by the density grid structure. Since data stream can change its property over 

time, we may need different parameters at different time point to generate effective and 

meaningful result. The grids are not partitioned at the start of process, but are adjusted 

over time depending on the characteristic of data. At different time stamp, a different 

grid size is computed and assigned to produce high quality result. 

As the grids now are created and deleted over time, it cannot be directly access. 

We use an indexing to keep and search the grid list efficiency. The index can help us not 

only speed up the searching operation, but also reduce time when merging the grids at 

the clustering stage. 

We also use decay factor to address the evolving concept in stream data. We 

put more weight on the current data without discarding the historical information. As a 

fading window model, it is a popular method to deal with stream data. 

The rest of this thesis is organized as follows. Chapter 2 provides the related 

works. Chapter 3 presents the notation and problem definitions. Chapter 4 describes the 

details of our proposed algorithm. Chapter 5 presents the experimental result and 

performance study. The conclusion and the future work are in Chapter 6.  
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Chapter 2 

Related Work 

In this chapter, we introduced the related works of this thesis. In Section 2.1, 

we classified the existing work on streaming clustering into several types by the 

summary structure they use and the factor they choose to produce clustering result. 

Section 2.2 describes the index structure we use in this thesis. 

 

2.1 Clustering Algorithm on Data Streams 

Based on the concept of processing data stream, previous algorithms on 

clustering data streams can be classified into two categories: one-pass approach and 

evolving approach. Here we will introduce the one-pass approach and focus on the 

evolving approach in the following section. 

The one-pass approach extends traditional clustering methods [5] [15] by 

scanning data once only. These methods extended the k-means or k-median, and 

maintained the intermediate results of clustering algorithms over all time points. Such 

an approach is highly sensitive to the order of arrival of the data points, especially when 

the characteristics of a stream evolve over time. BIRCH [25] uses a cluster feature 

summarization methodology, STREAMLS [17] uses a modified LSEARCH to find the 

center candidates for the clusters, and STREAM collects the result of k-median on every 

time point. 

DUC-Stream [10] is a single pass clustering algorithm for data streams. It is a 

density grid based method. The data stream is read in chunks. Each chunk fits in the 

memory and contains a number of data points. It partitions the data domain into units 
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and keeps only the units that have a large number of data. If a unit has more data points 

than the threshold, the unit will be considered as a dense unit. A local dense unit is a 

candidate for dense unit which may become a dense unit.  

DUC-stream keeps the dense units and the current local dense units. In the 

process, it takes a chunk of data points, map them into corresponding units, and then 

find the local dense units at the current time point. It generates the clustering result in an 

incremental manner. DUC-stream identifies the clusters as a connected component of a 

graph in which vertices represent the local dense units and the edges are related to 

common attributes between two vertices. After the current clusters are created, they are 

merged with the result created before. For each added dense unit, if it has no common 

dimension boundary with any existed clusters, a new cluster is generated and merges the 

dense unit into it. Or if there are any clusters that have common dimension boundary 

with the new dense unit, then merge the dense unit into the cluster. A cluster will be 

deleted if it contains no dense unit. 

2.2 Evolving Approach 

 The evolving approach takes the streams as an evolving process over time. 

They try to discover not only the cluster result at the last time point but also the data 

evolving during the process. There are three types of algorithms according to the 

similarity measurement and the summary structure they use: distance-based with 

micro-clusters, density-based with micro-clusters, and density-based with density grids. 

2.2.1 Distance-Based Micro-Clusters Methods 

 This type of method uses micro-cluster as the summary structure to store the 

data information. A distance based algorithm like K-means can be used to generate the 
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final clustering result. A micro-cluster contains the cluster feature vector as MC = {N, 

LS, SS}, where N is the number of data in the micro-cluster, LS is the linear sum on 

each dimension and SS is the square sum on each dimension.  

Micro-cluster can provide a flexible memory usage by controlling the 

maximum number of micro-clusters and can find well convex clusters, but can not 

produce clusters with sharp shape due to the distance factor which always generate 

circular clusters. Fig. 2.1 shows the process of this type of methods. Fig. 2.1(a) shows 

the original data, and they will be inserted into the closest micro-cluster, as in Fig. 

2.1(b). Clusters then will be generated form these micro-clusters, Fig. 2.1(c). 

 

(a)                       (b)                       (c) 

Figure 2.1: Process of distance-based micro-clusters method. (a) The original data (b) 

Data are inserted into the closest micro cluster (c) The cluster result with K-means 

where K=3. 

 

CLUStream [3] is a clustering algorithm for streaming data. The clustering 

process is divided into online component and offline component. The online component 

stores summary information by micro-clusters and the offline component analyzes the 

data streams over different horizons by using summary information which is stored in 

online component. When a new data arrives, the algorithm will find the closest 
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micro-cluster, and insert the data if the distance between the data and the center of 

micro-cluster is under the threshold. A new micro-cluster is created if the new data dose 

not lie within the maximum boundary of the nearest micro-cluster. An old micro-cluster 

will be deleted or the closest two micro-clusters will be merged to control the number of 

micro-clusters. At the clustering step, micro-clusters are treated as pseudo-points, and a 

modified k-means is used to generate the clustering result.  

The micro-clusters are stored at snapshots in time which follow a pyramidal 

pattern, to keep the cluster information at different points. The summary information is 

used by offline component when a user required the clustering result in a time horizon 

or granularity. CLUStream can find well convex clusters with flexible memory 

requirement, and provides a wide variety of functionality in characterizing data stream 

clusters over different time horizons in an evolving environment. 

SWClustering [26] algorithm uses Exponential Histogram of Cluster Feature 

(EHCF) to maintain the cluster features over a sliding window. Temporal Cluster 

Feature (TCP) is used to keep the cluster feature vector at each time stamp, and a 

micro-cluster here is a set of TCP that are close to each other. When more data come, 

old TCPs are merged to generate TCP that keeps larger time interval data. The TCP 

structures record the evolution of each cluster and capture the distribution of recent 

records. TCP structure supports record-level clustering analysis since it creates a TCP 

for every newly arrived record. As each EHCF has its own temporal feature, two 

EHCFs can not be merged directly if two EHCFs are overlapping, i.e., the arrival time 

of the record in two EHCFs are interleaved. It uses late merging to deal with the case. A 

new EHCF is created conceptually to merge the interleaved EHCFs to keep all the 

information. It has a better quality and higher time complexity since it has to process the 
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historical buffer.  

 

2.2.2 Density-Based Micro-Clusters Methods 

As the density measurement can not find sharp clusters, some algorithms 

consider using the density based method instead of distance factor in cluster generating 

step. These algorithms provide better quality with a higher time complexity as the 

density-based method needs more data related information between micro-clusters. Fig. 

2.2(a) and Fig. 2.2(b) shows the original data and the micro-clusters, and the clustering 

result are generated from density method as shows in Fig.2.2(c). 

 

(a)                    (b)                      (c) 

Figure 2.2: Process of density-based micro-clusters methods. (a) The original data. (b) 

Data are inserted into the closest micro cluster. (c) The algorithm merges the 

micro-clusters by the distance and density. 

 

In DenStream [6], instead of using the number of neighboring data points 

stored in the micro-clusters, micro-cluster density is based on weighting areas of points 

in the neighborhood. It has online-offline components. In evolving data streams, the role 

of clusters and outliers may change over time. There are three types of micro-cluster: 

p-micro-cluster, o-micro-cluster and c-micro-cluster. c-micro-cluster means 
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core-micro-cluster, a type of micro-cluster that their density weight is higher than the 

threshold. o-micro-cluster means outlier-micro-clusters, their density weight is lower 

than the threshold. p-micro-cluster means potential-c-micro-cluster, they are not core 

micro-cluster now, but their density weights is higher than the low threshold and may 

become a c-micro-cluster some time later. 

When a new data comes, first the algorithm tries to merge with the closest 

p-micro-cluster. Otherwise, the data will be merged with the closest o-micro-cluster or 

new an o-micro-cluster for it. If the density weight of a p-micro-cluster is higher than 

the threshold after the insertion, that p-micro-cluster becomes a c-micro-cluster. On the 

clustering stage, a variant of DBSCAN algorithm is applied to the p-micro-clusters to 

get the final result. 

SDStream [14] algorithm is based on SWClustering algorithm and DenStream. 

SDStream assigns a weight based on the number of data points in the c-micro-cluster, 

p-micro-cluster, and o-micro-cluster. The micro-clusters are stored in the form of 

EHCFs, like in SWClustering, recording the evolution of each cluster and capture the 

distribution of recent records. The final clusters are generated based on these virtual 

points using modified DBSCAN. 

 

2.2.3 Density-Based Density Grids Methods 

Density grid is a fast approach for recording the drift information. This type of methods 

divides the data domain into grids and records the data that fit in each grid boundary. 

These methods are insensitive to the outlines and noises, since the new data would not 

change the grid structure and neither cause old structure deleted as we need to control 

the maximum number of structure. This is also less sensitive to the incoming data order 
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since we do not update the grid center for every incoming data. By merging the grids, 

these methods can find arbitrary shape clusters, and find boundary or outliner data fast. 

Fig. 2.3(a) and Fig. 2.3(b) show the original data and the density grids. The method then 

find high dense grid and generates clusters as shown in Fig. 2.3(c) and Fig. 2.3(d). 

 

(a)             (b)               (c)               (d) 

Figure 2.3: Process of grid based method density factor. (a) The original data. (b) Data 

are mapped into the density grid unit. (c) Find out and store the high density units.  (d) 

The neighboring high density grids are merged and three clusters are generated. 

 

However, the number of grids easily increases especially when dealing with 

high dimensional data. These methods partition the data domain in the initialization step, 

a good result depends on a good partition setting, and in most of cases it is hard to 

decide as there is no information about the data distribution and cluster features. Even if 

we can get a good setting at the start stage, the data property may change over time 

during the streaming process, and we may not always have a good parameter for every 

time point.  

Chen et al. proposed a framework called D-Stream [7] for clustering data 

streams based on density. Density is defined as the number of data fall in a specific area. 
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D-Stream also has online-offline components. The online component reads new data 

records and maps them into density grids and updates summary information about the 

grids. Based on grid density, dense and sparse grids are introduced. Their difference is 

referred to their density. A dense grid is that its density is higher than threshold, and a 

sparse grid is a grid that its density lowers than the low threshold. It also uses a decay 

function to express the concept of stream evolving, as we consider that the new data are 

more important than the old ones. A grid that dose not receive data for a time period will 

become sparse, and its density should be low even if it was a high dense grid before. 

The offline component clusters the density grids by connecting each high-dense 

neighboring grids. A grid cluster is a connected grid group, which has higher density 

than the threshold. It is a fast approach due to the low mapping cost, and can find 

arbitrary shape clusters. 

In [24], Tu et al. improved the D-Stream by considering the positional 

information about the data. When mapping data into grids, the gird structure keeps the 

attraction information which shows how close a data to its neighbors. The clustering 

procedure is the same as before. The difference is at the merging step. Two grids will be 

connected only if they are both high-density grids and their attraction is higher than the 

threshold. By considering the density and attraction, this algorithm has a better cluster 

quality. 

AGD-Stream [8] is a density grid based method which considers the idea of 

activity and boundary data. A grid is active if it has received new data at some time 

points, and the active grids should be kept. We need only check a grid if it is active 

when it receives a new data, or when a user sends a query. Another idea is the boundary 

grids. A data is a boundary point if it is located in the edge of dense data points, and it 
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has two or more characteristics of clustering. A grid with boundary data will be merged 

into the connected dense grid, instead of just being deleted. 

Ren et al. in [21] proposed an algorithm for clustering data streams based on 

grid density for high dimensional data streams. They proposed an indexing structure 

named PKs-tree in the grid-based clustering approach. There are many empty grids 

especially for high dimensional data. It costs a lot of resource if we need to save all of 

empty grids, but the relations between grids will lose if only non-empty grids are saved. 

In Pks-tree, the algorithm divides the full data domain into different levels of grids and 

stores them as Pks-tree. The data is stored in the leaf level grids, and a higher level grid 

store lower level grids that the higher level grid contains. The new data record in the 

data stream is continuously read and mapped to the related grid cells in the Pks-tree at 

all levels, update their feature if needed. To improve the efficiency, the empty grids are 

omitted by using K-cover concept. K-cover controls the number of non empty grids in 

the neighboring of child level. By using Pks-tree for indexing, the efficiency of storage 

and indexing are improved.  

IGDLC [12] is a clustering algorithm based on irregular grids. It maintains the 

grid structure dynamically. An irregular grid is a combination of intervals in each 

dimension. When a new data comes, if it can not fit in the existing interval or girds, a 

new interval or grid is created for it. On the maintain step, sparse grids and intervals are 

removed to reduce, and two high-dense interval are merged into a large interval. After 

several time points, the interval may become stable and the update time is reduced. 

When a user requests, first it partitions each dimension with their intervals, and 

connecting neighboring high-dense grids to generate the result. It reduces the number of 

grids in use and has a low memory usage, however, a higher time complexity since it 
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has to maintain the dynamic structure over time.  

 

2.3 Indexing Structure 

 Many existing index structures can help in reducing the time cost. In the 

following section, we describe the index structure we use in the thesis. 

2.3.1 R-tree 

R-trees [11] are tree data structures used for spatial access method and for 

indexing multi-dimensional information such as geographical coordinates, rectangles or 

polygons. The key idea of the tree structure is to group nearby items in the same or 

close node. All data are kept in the leaf level and at higher levels the aggregation of an 

increasing number of objects. As in B-tree, each node can contain a maximum number 

of entries, which is often defined as M. The search step can be done simply by keeping 

a bounding box to decide whether or not to search inside a sub-tree. Start from the root, 

and most of the nodes do not need to be processed during the search operation. This 

makes it suitable for large data set because it needs low time cost in searching and its 

structure is independent of the number of dimensions in data. Sometimes R-tree has 

overlapping interval nodes. In this case, multi entries need to be processed during the 

search operation because we do not know where the data is. 

 

2.3.2 R+ tree 

R+ trees [23] are a compromise with R-trees; R+ trees avoid having 

overlapping internal nodes by inserting an object into multiple leaves if necessary. In 

R+ tree, nodes are not guaranteed to be at least half filled, and the entries of any internal 
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node do not overlap. Because the entries in nodes do not overlap, this reduces the search 

time since all spatial regions are covered by at most one node. Only a single path and 

hence fewer nodes are visited than in R-tree. Some extra storage is needed due to the 

multiple insertions. R+ tree is more appropriate for processing data streams since it has 

a lower time cost on searching and do not need to reinsert to keep the nodes half full. 
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Chapter 3 

Notation and Problem Definition 

 In this chapter, we formally introduce necessary notation and formulate the 

problem. Section 3.1 describes the notations and the structure we use, and in Section 3.2 

we define the problem statement. 

 

3.1 Notation and Symbol definition 

Definition 1 (Data Stream) 

A data stream S consists of an infinite sequence of multi-dimension records, S 

= {                }, data arrive at time stamps {  ,   ,   …  … }, each    is a 

multidimensional record with d dimensions, denoted by   =[  
 ,   

 ,   
 , …  

 ]. 

 

As we cannot store in memory all data information in a data stream, the 

algorithm uses density grid structures to keep the data summary information. 

Definition 2 (Density Grid) 

A density grid G for a set of d-dimensional points is denoted as G = {r, n, t}, 

where  

r = [              …     ], correspond to a vector of 2*d entries. For each 

dimension, the upper boundary and lower boundary pairs are stored in r.  

n is the number of data points maintained in G, and  

t is the last updated time, the last time a data inserted into G. 

 

We map the incoming data into the grid structure to generate summary information. 
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When a data record X is inserted into a grid G, it will support a density coefficient that 

will be decreased over time. The density coefficient and the density of a grid are defined 

as follows. 

Definition 3 (Density Coefficient) 

If a data X arrives at time stamp    , and the current time is   , we write that 

T(X) =   , and its density coefficient is defined as Eq(1) 

  (X,   ) = λ         = λ          (1) 

where λ∈(0, 1) is a constant named the decay factor. 

 

Definition 4 (Density of a Grid) 

A grid G at given time stamp   , let G(x) denotes the set of data that are 

mapped into G at or before time    , its density score is the sum of the density 

coefficients of all data records that are mapped into it. The density of G is 

 (G,  )= ∑          ∈G x     (2) 

 

The density of a grid changes over time, but we do not need to maintain it on 

every time unit. The density of a grid increases only when data are inserting into it, so 

we update it only when a data is mapped into. We keep the time of last update for each 

grid so that the current density can be computed by the current time and the time of last 

update. 

Lemma 1 (Update Grid’s Density) 

If a grid G receives a new data at time   , and the last time it receives a data 

is   ,   >  , then the current density of G at time    can be updated with Eq(3), 

 (G,  )= 1 + λ        *  (G,  ).    (3) 
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Proof: 

Let G’(x) denotes the set of data that are mapped into G before time   , and    

is the new data arrives at time   , by Eq.2 

 (G,  ) = ∑          ∈G  x , 

And we have that 

  (X,   ) = λ         = λ        = λ        * λ        =  λ        * s(X,   ) 

Therefore, we have: 

 (G,  ) = ∑          ∈G x          

=           + ∑          ∈G  x  = λ       + ∑ λ                  ∈G  x  

    = 1 + λ        *  (G,  ).       (4) 

 

And then here we can define three types of grids according to their density: 

high dense grids, sparse grid and intermediate grid. Clusters are generated from the high 

dense grid. They are the cores of clusters since their density is high. By the decay factor, 

we can make sure that a high dense grid is significant at the time point, because an out 

of dated high dense grid will be decayed over time and may become a sparse or 

intermediate grid. 

Definition 5 (High Dense Grid) 

A high dense grid is a grid that its density is higher than the high threshold. If 

G is a high dense grid at time   , that means 

 (G,  ) ≥ Dh,     (5) 

where Dh is the high threshold. 

 

Definition 6 (Sparse Grid) 
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A sparse grid is a grid that its density is lower than the low threshold. If G is a 

high dense grid at time   , that means 

 (G,  ) ≤ Dw,     (6) 

where Dw is the low threshold. 

 

Definition 7 (Intermediate Grid) 

An intermediate grid is a grid that its density is between the high threshold and 

the low threshold. If G is a intermediate dense grid at time   , that means 

Dw ≤  (G,  ) ≤ Dh.     (7) 

 

In the clustering step, we connect the neighboring high dense grids to generate 

grid clusters. The neighboring and the grid cluster are defined as follows 

 

Definition 8 (Dimensional Overlapping) 

For two grids, G1 and G2, at a dimension d’, their upper boundary and lower 

boundary pairs are (   
  ,   

  ), (   
  ,   

  ),    
      

   and    
      

  . G1 and G2 are 

dimensional overlapping in dimension d’ if and only if 

   
      

      
   and    

      
      

   

 

Definition 9 (Dimensional Connecting) 

For two grids, G1 and G2, at a dimension d’, their upper boundary and lower 

boundary pairs are (   
  ,   

  ), (   
  ,   

  ),    
      

   and    
      

  . G1 and G2 are 

dimensional connecting in dimension d’ if and only if 
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Definition 10 (Neighboring Grids) 

Two grids, G1 and G2, are neighboring if and only if their boundaries are 

dimensional overlapping in at least d-1 dimensions, and the boundaries are dimensional 

connecting in at most 1 dimension, denoted as G1~ G2. 

 

Definition 11 (Grid Group) 

A set of density grid list Lg = (G1, G2, G3 …, Gm) is a grid group if for any 

two members Gi, Gj∈Lg there exists a sequence 𝐺𝑙   𝐺𝑙   𝐺𝑙   𝐺𝑙𝑚  such that 

𝐺𝑙  𝐺𝑙   𝐺𝑙  𝐺𝑙   𝐺𝑙 𝑚    𝐺𝑙𝑚. 

 

Definition 12 (Grid Cluster) 

A set of density grid Cg is a grid cluster if it is a grid group and all members in 

the set is a high dense grid. 

 

3.2 Problem Statement 

Given a data stream S = {            }, the data record are mapped into the 

density grid structure G = {G1, G2 … Gm}. Gird clusters are generated form the 

density grid structure. For every grid cluster    , the output is in the from of {i ,    }, 

where i∈[1,K],    ∈G and    ∩   = ∅ , i≠j, where K is the number of clusters. 
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Chapter.4 

Dynamic Grid-Based Clustering 

 In this chapter, we propose Dynamic Grid-Based Clustering (DGBC), a 

clustering algorithm based on dynamic grid. Section 4.1 is the framework of DGBC. 

Section 4.2 presents the indexing we use and how it works. The maintenance step in the 

online component is described in Section 4.3, and the clustering generating stage is in 

Section 4.4. We put some discussion on the decay factor and the related parameters are 

in Section 4.5, the overall algorithm is in Section 4.6. 

 

4.1 Framework of DGBC 

 

Figure 4.1: Illustration of DGBC 
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We overview the overall architecture of DGBC. DGBC is an algorithm with 

fading model. Like in CLUStream, our method has online and offline components. The 

online component processes the incoming data and keeps the data summary, and the 

offline component generates clustering result whenever a user sends a request, as shown 

in Fig 4.1. The grid structure and the cluster are defined in Chapter 3, and more details 

are described in the following sections. 

 

4.2 Indexing 

Grids are created and deleted during the process as we use dynamic grid 

structure, so we cannot access them directly. To reduce the time cost on searching, here 

we propose two types of indexing. One is based on R+ tree, and the other is based on 

dimensional interval. 

 

4.2.1 R+ Tree-Based Indexing 

In an R+ tree based indexing, a node records a grid and the number of data had 

mapped into it. When a new grid is created, we insert into grid and into the tree. 

When a new data arrives, we start from the root node and search if any entry 

can accept it. If any entry node does, we go down and repeat the process until there is no 

entries that the data can fit in or the data can accepted by a grid in the leaf level. If the 

incoming data falls in an existing grid, we simply insert the data into the grid and 

maintain the grid’s feature vector. 

In other case, there is no existing grid for the incoming data, which happens 

when the incoming data belongs to a new cluster. We have to create a new grid for it 
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because we do not know if it is just an outlier or it is a start of a new cluster. A new grid 

then is created, taking the current data as the center, and the grid is inserted into the R+ 

tree, at the last node we search in. The new inserted grid is in the leaf level, and has a 

pointer to the last searched node. This allows us not need to update all the nodes in the 

path, saving the updating time when building the index. 

 

(a)      (b) 

 

(c)      (d) 

Figure 4.2: An example for R+ tree-based index, m= 5. (a) The view of grids and the 

arrived data. (b) The index structure when the new data arrives. (c) The view of grids 

after the new data is inserted (d) The index structure after the data is inserted. 

 

Fig.4.2 is an example for search and insert a new data on two dimension 

domain, where m, the capability, is 5. The cross is the incoming data, 1 to 5 is the 

existing grid, and A, B are the intermediate nodes. When a new data comes in, first we 
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search it from the root node, in which there are two entries, A and B. It belongs to A 

because it falls in the boundary of A in every dimension. Then we search the child 

nodes under A. there is no grid that the data can fall into, so we create and insert a new 

grid, named N, into the tree structure. Fig.4.2 (c) and (d) are the results after the 

insertion. 

R+ trees are good in handling high dimensional data, but sometime they need 

extra processing time due to the ordering and outliers. A bust of noises may cause 

several split operations, and the depth of trees are increases. After that, even the noises 

are cleaned, the search path is longer than before and more time cost is needed to find 

the data. 

 

4.2.2 Dimensional Interval-Based Indexing 

 Another type of indexing we use is based on dimensional intervals. For each 

dimension, we keep an interval list that holds all grids intervals on this dimension. An 

interval list keeps all grids’ intervals on its dimension in a sorting order. When a new 

data is coming, we choose a dimension and do a binary search on the interval list to find 

if the data can fit in any existing grids’ interval. If so, we pour out the grids that do not 

match in the preview step, choose another dimension and repeat the process until there 

are no grids. If there are no existing grids that the data can be mapped into, we create a 

new grid, take the incoming data as the grid center and insert the data. Then we update 

the interval list on every dimension. Any time if an interval contains no grid, the 

interval will be deleted. This only happens right after a grid is deleted, so it needs only 

to update or maintain the list when any grid is deleted. 
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(a)     (b) 

 

(c)       (d) 

Figure 4.3: An example for dimensional interval-based indexing. (a) The view of grids 

and the arrived data. (b) The index structure when the new data arrive. (c) The view of 

grids after the new data is inserted (d) The index structure after the data is inserted. 

 

Fig. 4.3 is the same example as in Fig. 4.2 but in dimensional interval-based 

indexing. The cross is the incoming data, 1 to 5 is the existing grid, and List(x) and 

List(y) are the dimensional-interval indexing on axis x and y. When a new data coming, 

first we search it from the x-dimension list, the grids in the list are 1 and 2. Then we 

search the y-dimension list and the there is no interval for the new data. We can know 

that there must be no existing grid which can accept the data because the intersections 

of the search results are empty. The algorithm then creates a new grid, named N, for the 

data and updates the grids list in every dimension. Fig.4.3 (c) and (d) are the result after 
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the data insertion. 

When there are d dimensions, we need to keep d lists and may have to search in 

all lists to discover the target grid. However in most of the cases, after doing search on 

several dimensions, there are only a few grids remaining, so we can just check them and 

find out the result we want. This happens more often especially in the high dimension 

data. When the dimension increases, usually the data are being sparse except at the 

cluster cores. We can get the target grid in checking only a few dimensions, hence it still 

works well even for high dimensional data. 

 

4.3 Maintenance Step and Grid Resizing 

For every time period, we maintain the grid structure. In the maintenance step, 

three parts need to be done: maintain grids, update index if needed, and resize the grids. 

First, the sparse grids will be removed at the regulating step. A grid with too 

low density means that it may be a noise or outlier, or it was a high dense unit far time 

ago and is not meaningful anymore. As we use dynamic grid structure, this can also 

control the number of grids in use and reduces the memory usage and time cost. When a 

grid is deleted in this way, the passed information will be lost, so we have to make sure 

that if a grid is safe to be deleted. We will make a discussion in the later section to show 

that we can choose a suitable time gap to do it effectively without losing too much of 

the data information, and also show that this is a necessary operation to keep the data 

storage bounded. 

If any grid is deleted in this way, then the algorithm also needs to update the 

indexing if needed. For each deleted grid, the algorithm will check and update the index, 

the node and entry in R+ tree, or its dimensional interval on every dimension. If the 



 

25 

 

deleted grid is the last object in the R+ tree node or interval, the corresponding index 

structure will also be deleted.  

In a dimensional interval based-indexing, this can be done by simply check if 

the interval contains no object and should be removed at the same time. In an R+ 

tree-based index, first we remove the grid node, and then check if there are still any 

other objects under its parent node. If not, the parent node is also deleted, and repeat  

the process until the root node or a node that still has other objects. There is no need to 

reinsert the object in the deleted entry node, since R+ tree does not require node to be 

half filled. In a data stream, there is no information about the data property, so it is hard 

to find a good parameter setting for every time point. As using a dynamic grid structure, 

we can adjust the grid size according to the recent data distribution. We keep a global 

data feature vector to record the information. 

Definition 13 (Data feature vector) 

The data feature vector is denoted as Dv = { 𝐴̅,  𝑆 ⃑⃑ ⃑⃑  ⃑, 𝑆𝑆 ⃑⃑ ⃑⃑  ⃑} where 

𝐴̅ is the number of data in recent time stamp, 

 𝑆 ⃑⃑ ⃑⃑  ⃑ is a d-dimension vector that stores the linear sum of data in each dimension 

for the recent 𝐴̅ data, and 

𝑆𝑆 ⃑⃑ ⃑⃑  ⃑ is a d-dimension vector that stores the square sum of data in each 

dimension for the recent 𝐴̅ data. 

 

By the data feature vector, the recent 𝐴̅ data’s distribution can be found and 

computed from the information that is kept. We can resize the grid with the information 

kept in the data feature vector. Some method resized the grid by merging or reset the 

distance boundary, but the grid size or maximum boundary may continuously grow and 
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turn into a very large grid. A large grid may takes more data then others, losing meaning 

and the clustering information. So we have to make sure that out method can work well 

under the condition. 

 

Definition 14 (Grid Resizing) 

The algorithm assigns new grid boundary after the maintenance step. Let 

𝐵 (T+1) denote the new grid boundary on the 𝑖𝑡ℎ dimension at time T+1, and 𝐵 (T) 

denote the boundary currently used for the 𝑖𝑡ℎ dimension. 

The new grid size on the 𝑖𝑡ℎ dimension is computed by  

𝐵 (T+1) = 𝑅𝑎  𝑆𝑡(T, T+1)   (8) 

where Ra is a constant of ratio factor for the grid size, and 

𝑆𝑡(T, T+1) is the root-mean-square deviations based on recent 𝐴̅ data arrived 

between T and T+1 

 

From Eq. (8), it clearly shows that the grid boundary at any time point is 

bounded between [0, Ra*St]. As we resize the boundary depended on the data feature 

and not the information stored in grids, the boundary can be expanded and reduced over 

time. For a noisy data, we can update Eq. (8) by adding a weight factor to St and the old 

boundary. This can provide a smooth changing boundary between the time stamps. 

 

4.4 Cluster Generation 

 At any time, a user can send a request and the offline component generates 

clustering results from the online structure. First we find out all high dense grids, and 

generate clusters by connecting them into grid groups as in Def. 11. Just like the method 
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in DUC-Stream [10], we treat the grid structure as a graph. The vertexes are the grids 

and there is an edge between two grids if they are neighbor. A depth first search is used 

to merge grids and generate grid clusters.  

 The indexing can also reduce the merging time in generating clusters. By Def. 

8 and Def. 9, usually we need to check all grids and find their neighbors, then to decide 

to merge them or not. When the number of dimensions and the number of grids 

increases, the time cost also increases not only because more objects need to be 

processed, but also there are more possible neighbors to check. By the index, we can 

partition all grids into unconnected sets. Only grids in the same set need to be checked 

because grids in different sets are impossible to be neighboring.  

In an R+ tree-based index, we check the nodes from the root, merge the 

connected nodes and repeat to the child nodes they contain. In a dimensional 

interval-based index, we choose a dimension and split it into unconnected parts, then 

choose another dimension and repeat the process in each part. After the partition, we 

check and merge the neighboring grids in the sets and generate the result, the cluster 

label and the grids’ information with the same label. 

 

4.5 Decay Factor, Threshold, and Time gap 

 The algorithm maintains the grids and index structure to control the number of 

grids and index by removing the spare grids. Some measures can help make a suitable 

choice. 

We define the data rate of a stream as Rx, the high threshold is Dh, the low 

threshold is Ds, and the decay factor is λ. We can find a good setting that can handle the 

grid and index structure effectively. 
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Lemma 2 (Grow Gap, TH) 

 The grow gap, denoted as TH, is the minimum time needed for a sparse grid to 

become a high dense grid. 

TH =    λ   
 ℎ    λ    

      λ    
      (9) 

Proof: 

A grid G is a sparse grid at time    , by Def. 6, 

 (G,  ) ≤ Dw, 

If G becomes a high dense grid at time     , let 𝐶 (x), 𝐶 (x) …𝐶 (x) denote 

the sets of data that are inserted into G between time    1 to      , and C(x) = 

⋃ 𝐶𝑞 x 𝑞∈[   ] , if G becomes a high dense grid at time     , by Def. 5, 

 (G,     ) ≥ Dh 

 (G,     ) = ∑             ∈  x  +  (G,   ) * λ             

    = ∑             ∈  x  +  (G,   ) * λ        

= ∑ ∑             ∈𝐶𝑞 x 𝐶𝑞 x ∈  x  +  (G,   ) * λ       

We know that  (G,  ) ≤ Ds, and since 𝐶 (x), 𝐶 (x) …𝐶 (x) ≤ Rx, 

 (G,     )  ≤ λ  * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ...+ 𝜆   * Rx + Ds* λ  

Therefore,  

λ   ≥  
 ℎ    λ    

      λ    
 ,  δ ≥    λ   

 ℎ    λ    

      λ    
  .   (10) 

By Eq. (10), the minimum time for a spare grid to become a high dense grid is  

TH =    λ   
 ℎ    λ    

      λ    
      (11) 
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Lemma 3 (Decay Gap, TS) 

The decay gap, denoted as TS, is the minimum time needed for a high dense grid to 

become a sparse dense grid. 

TS =     λ  
  

 ℎ
     (12) 

Proof: 

A grid G that is a high dense grid at time   , by Def. 5, 

 (G,  ) ≥ Dh 

If G becomes a sparse grid at time     , let C(x) denotes the sets of data that 

are inserted into G between time    1 to      , we want that G become a sparse grid 

at time     , 

 (G,     ) = ∑            X∈  x  +  (G,   ) * λ             ≤ Dw, 

We know that C(x) ≥ 0 , we have 

 (G,     ) ≤  (G,   ) * λ              ≤ Dw, 

Therefore 

λ  ≥ 
  

 ℎ
 ,        λ  

  

 ℎ
    (13) 

By Eq(13), the minimum time for a high dense grid to become a sparse grid is  

TS =     λ  
  

 ℎ
    (14) 

 

Lemma 4 (Living Gap, TM) 

The living gap, denoted as TM, is the minimum time needed for an empty grid 

to become an intermediate grid. 

TM =    λ   
    λ   

  
 1  .     (15) 

Proof: 
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An empty grid G is a grid with no data inserted before time    

 (G,   ) = 0 

If G becomes an intermediate grid at time     , let 𝐶 (x), 𝐶 (x) …𝐶 (x) 

denotes the sets of data that are inserted into G between time    1 to      , and C(x) 

= ⋃ 𝐶𝑞 x 𝑞∈[   ] ,, we want that G becomes a high dense grid at time     , by Def.7,  

 (G,     ) ≥ Dw        

 (G,     ) = ∑             ∈  x  +  (G,   ) * λ               

= ∑ ∑             ∈𝐶𝑞 x 𝐶𝑞 x ∈  x  +  (G,   ) * λ       

We know that  (G,   ) = 0, and since 𝐶 (x), 𝐶 (x) …𝐶 (x) ≤ Rx, 

 (G,     ) ≤ 𝜆  * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ...+ 𝜆   * Rx 

λ   ≥  
    λ   

  
 1,  δ ≥    λ   

    λ   

  
 1  .    (16) 

By Eq(16), the minimum time for an empty grid to become an intermediate 

grid is  

TM =    λ   
    λ   

  
 1     (17) 

 

 Now we can decide the time gap, the period that the algorithm should check 

and maintain the structure, from the above result. 

The time gap we choose should not be too small. If we maintain the structure 

every time when a new data comes, it will lead to a heavy overhead and slow down the 

system. Also, most of the data information will be removed because we remove sparse 

grids in the maintenance stage. Many of the grids do not receive enough data and are 

deleted before they can reach the low threshold and become an intermediate grid. 

 The time gap also should not be too large; otherwise the evolving of clusters 
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may be lost. The cluster features may change obviously during a large time gap. Some 

of the clusters may show up and then disappear in the time gap. So the time gap we 

choose need to be small enough to discover the change of cluster features. For an 

intermediate node, we want to catch the changes that it becomes a high dense grid, or 

becomes a sparse grid and be removed by the algorithm. Also if we choose a too large 

time gap, the system will have to keep more grids and indexing information. These 

storages will increase the search time since they increase the size of index and the 

number of grids. 

Definition 15 (Time Gap, TG) 

 The Time gap, denoted as TG, defines how often we check and maintain the 

grids and index structure. 

TM< TG < Min (TS, TH)     (18) 

 

Another measure is to show how our method can work under a bounded 

memory. Since the data stream is infinite, we need to limit the storage usage. 

Lemma 5 (The Maximum Density, MD) 

 The maximum density, denoted as MD, is the sum of density coefficients from 

all data. It is bounded by 

MD ≤ 
  

       
      (19) 

Proof: 

 Given a time T, Md = ∑         ∈T  is the total density coefficient during the 

time 0 to T     𝐶 (x), 𝐶 (x) …𝐶T(x) denote the sets of data arrived at time 0,1,2 …, T. 

𝐶 (x), 𝐶 (x) …𝐶T(x) ≤ Rx, and C(x) = ⋃ 𝐶𝑞 x 𝑞∈[  T]  

For any T, we have that 
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∑         ∈  x  = ∑ ∑         ∈𝐶𝑞 x 𝐶𝑞 x ∈  x      

≤  𝜆  * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ... +𝜆 * Rx    

      ∑         ∈T  ≤  o     𝜆  * Rx+ 𝜆 * Rx+ 𝜆 * Rx+ ... +𝜆 * Rx      

= Rx * 
 

       
  

  

       
          (20) 

Therefore, from Eq(20), 

MD = ∑         ∈  x  ≤ 
  

       
    (21) 

  

A living grid is a grid that needs to keep after the maintenance step. It is a high 

dense grid or an intermediate grid. Since the maximum data density kept is bounded, we 

know that the number of living grids is also bounded. And at any time point, the total 

number of grids we need is also bounded by the number of living grids and the data 

rate. 

Lemma 6 (Maximum Living Grid, MA) 

The maximum living grid, denoted as MA, is the maximum number of the sum 

of intermediate grids and high density grids. MA is the number of grids that needs to 

keep after any maintenance step. 

MA ≤ 
  

  
    (22) 

Proof: 

From Eq. (19), we know that at any time point, that maximum density 

coefficient from all data records is no more than MD. After the maintenance step, all 

grids whose density lower than Ds will be removed, so all the living grids have density 

at least Dw. Therefore, the maximum number of living grids is 
  

  
. 
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Definition 13 (Maximum Grid, MG) 

The number of maximum grids in use, denoted as MG, is the maximum number 

of all the grids in the algorithm at any time.  

MG ≤ 
  

  
 𝑅     (23) 

The worst case shows up when a time point contains only noise or all of the 

incoming data belong to a different grid. The case is rare in the real data streams, and 

most of the grids will be deleted at next maintenance step. 

 

4.6 DGBC algorithm 

Fig 4.4 shows the overall algorithm of DGBC. For a data stream, the online 

component continuously read a new data and searches the indexing to find a grid that 

can accept the data. If so, we insert the data into the target grid. Otherwise, we create a 

new grid that takes the current data as center and inserts the data into it, and then we 

update the index for further use. For every period time step, TG, the algorithm 

periodically removes the sparse grids, which have too low density scores. The algorithm 

regulates the grids and index, computes the new grid size based on the recent data 

distribution.  

The offline component generates clustering result for the user. When a user 

requests, the algorithm finds out all the high density grids, where their density score is 

higher than the threshold. Then the system tries to merge the neighboring high density 

grids together and assigns a cluster label for them. 
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Input: data stream S 

Output: (Cluster label, grid list) 

Variable: time_gap TG, grid ratio R, high threshold Dh, low threshold Dw 

Initialize: 

Current time tc= 0; An empty grid list Glist, index I, ; 

Data feature vector Dv= 0, Initial grid size B(0). 

 

While data stream is active: 

 Read data record X= {   ,    …,   }. 

 Target_grid = Search (Glist) 

  if(Target_grid = NULL)  

  Create a new grid Gn. 

  I.insert(Gn). 

  Target_grid = Gn. 

  endif 

 Target_grid.insert(X). 

 Updata Dv. 

 if( tc == time_gap TG) 

  for all grid G in Glist 

   if( G.density < Dw ) 

    remove G from Glist. Update I. 

   else 

    Decay G.density.  

                Compute new grid size B(tc)=𝑅  𝑆𝑡 

 endif 

When requested: 

 An empty grid list Gh. 

 for all grid G 

 if G.density > Dh. 

    Gh.insert(G) 

 endif 

 Return cluster_result = generate_cluster(Gh) 

Figure 4.4: The pseudo code of DGBC 
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Chapter.5 

Experimental Results 

We compare our method with CLUStream, DUC-Stream, D-stream, 

AGD-stream and IGDLC. Two types of index are used, represent as DGBC(DI) and 

DGBC(R+). The CLUStream algorithm is based on distance factor and the others are 

based on density. All algorithms were implemented in C++ language and tested on an 

i7-2600k 3.4 GHz with 16G memory running Microsoft Windows 7 Professional system. 

The comprehensive performance study has been conducted on both synthetic and real 

world datasets. To show the efficiency of DGBC, we perform three kinds of 

experiments. First, we compare the execution time and clustering quality of DGBC with 

other streaming clustering algorithms using synthetic datasets. Second, we investigate 

the scalability of DGBC. Finally, we apply DGBC in some real datasets to compare the 

performance and also discuss the effect of initial setting.  

 

5.1 Clustering Quality 

The clustering quality is measured by clustering purity. Purity is a simple and 

transparent evaluation measure. To compute purity, each cluster is assigned to the class 

which is most frequent in the cluster, and then the accuracy of this assignment is 

measured by counting the number of correctly assigned members and divided by the 

total number of members in this cluster. Eq. (25) shows the purity in one cluster, and 

Eq(24) is the total purity from all clusters. 

Purity = ∑
|𝐶𝑗|

𝑁
  𝑘

 = Pur ty 𝐶   ,     (24) 
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Purity (𝐶 ) = 
 

|𝐶𝑗|
  |𝑛 𝑚𝑏𝑒𝑟  𝑓 𝑚𝑎𝑗 𝑟 𝑖𝑡𝑒𝑚 𝑖𝑛 𝐶 |  (25) 

where k is the number of clusters, N is the total number of data recorded. 

For example, we generate two clusters as in Fig.5.1. There are two different types of 

item in each group. By Eq(24) and Eq(25), the purity in each cluster are  

Purity (C1) = 1/4 * max (3, 1) = 3/4  

Purity (C2) = 1/11 * max (3, 8) = 8/11, and  

the total purity = 4/15 * Purity (C1) + 11/15 * Purity (C2) = 11/15. 

 

We say that the purity of the clustering result is 11/15. Notice that the purity is 

bounded between 1 and 1/K, where K is the number of item types. The worst case 

shows up only when the number of each type of items in a cluster is uniform. 

 

Figure 5.1: Example for compute purity. 

 

5.2 Data Generator  

The synthetic data sets in the experiments are generated using synthetic 

generation program proposed by Vennam et al. [18]. The parameter setting of data 

generator is shown in Table 1. 
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Table 1: Parameters of synthetic data generator  

Parameters Description 

N Number of points to be created in the dataset (an integer) 

C Number of clusters that should be present (an integer) 

d Number of dimensions the dataset should have (an integer) 

u The maximum data value for all the dimensions (a real number) 

f Flag. 1 if subspace clusters are to be computed, 0 otherwise. 

 

In all the following experiments, some parameters are fixed, i.e., |u|= 1000 and 

f = 0. The data set is converted into data stream by taking the data input order as the 

order of streaming data. The data rate is 1000 data per time unit; the high and low 

threshold is 100 and 10, and the decay factor λ  0.98. We send a request and compute 

the cluster purity every 10 time units. 

 

5.2.1 Performance on Synthetic Datasets 

The first experiment of the seven algorithms is on the dataset N70k–C15–d10k. 

Fig.5.2 shows the quality result that our method is always better than others. When 

clusters are created, deleted, and changing over time, according to the change of the 

data property, the algorithm adjusts the generated and existing grids periodically, so it is 

able to capture the evolution of the data stream and generates high quality clustering 

result. 



 

38 

 

 

Figure 5.2: Quality comparison (Synthetic dataset N70k–C15–d10k) 

 

Fig.5.3 shows the result of execution time. CLUStream needs the most time 

because it needs a linear search on all micro-clusters for the insertion. IRGC also needs 

a search on all grids, so when the number of grids increases over the process, the search 

cost increases. At the start of the process, our method needs some time to set up the 

index, after that it works effectively as the indexing provides a fast search and merge 

operation. 
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Figure 5.3: Execution time comparison (Synthetic dataset N70k–C15–d10k) 

 

5.2.2 Scalability Study 

In this section, we study the scalability of the DGBC algorithm. Then we test 

the scalability with the synthetic datasets. We compare between two types of indexing 

we proposed. The first series of datasets are generated by varying the dimensionality 

from 10 to 100, while fixing the stream size (100k, the lower lines, and 1000k, the 

upper lines) and the number of natural clusters (10). Fig.5.4 shows that the execution 

time of our method is closest to linear with respect to the number of dimensions.  

An R+-tree-based index ignored the number of dimensions, so it is ideal to deal 

with high dimension data. However, it has a high time cost to maintain and update the 

tree structure especially when the data property changes or the condition is noisy. In 

these cases, some of the old grids need to be deleted and many new grids are created as 

new core of clusters or noises, which leads to a heavy overhead since the R+ tree 

indexing may need several node split operations. 
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When the number of dimensions increases, the dimensional interval-based 

index needs to keep more information for each dimension, but the search time and 

merge time increases slowly as in higher dimension, the data become sparser. In the 

usual case, we can find the grids within checking a few dimensions, and do not really 

need to check on all dimensions to find the target grid.  

 

Figure 5.4: Scalability test with different number of dimensions. (Synthetic datasets) 

 

The other series of datasets are generated by varying the number of natural 

clusters from 2 to 50, while fixing the stream size (100k, the lower lines, and 1000k, the 

upper lines) and the number of dimensions (10). Fig.5.5 shows that the execution time 

of our method is stable with respect to the number of clusters. When the number of 

cluster increases, we need to be more careful not to merge data belonging to different 

cluster together. The two scalability tests can show that our method is suitable for both 

high dimensional data and dispersive data. 
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Figure 5.5: Scalability test with different number of clusters. (Synthetic datasets) 

 

5.3 Network Intrusion Detection dataset 

The KDD-CUP’99 Network Intrusion Detection dataset [27] consists of raw 

TCP connection records from a local area network. Each record in the dataset 

corresponds to either a normal connection or an attack. There are four attack types: 

DOS (denial of service), R2L (unauthorized access from a remote machine, e.g., 

guessing password), U2R (unauthorized access to root), and PROBING (surveillance 

and other probing). As a result, the data contains five clusters including the class label 

of normal, and the attack types are further classified into 24 types. Most of the 

connections in this dataset are normal, but sometimes there may have burst of attacks at 

certain times. The cluster property evolves significantly over time. We use the type of 

connection as its cluster label. As in other experiments [4] [6], all 34 out of the total 42 

continuous attributes available are used for clustering. The data rate is 1000 data per 

time unit; the high and low threshold, Dh and Dw, is 100 and 10, and the decay 
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factor λ  0.98. We send a request and compute the cluster purity every 10 time units. 

 

5.3.1 Performance on Network Intrusion Detection dataset 

Fig.5.6 is the result of clustering quality. It shows that our proposed method 

usually better than others. For all algorithms, the quality of clustering falls when the 

cluster property changes, but our proposed method can adapt itself to catch the new data 

property. Especially in a dataset that is noisy and evolves significantly during process as 

in the Network Intrusion dataset, our method performs much better to find and generate 

meaningful results. Our method works well on the Charitable Donation dataset even it 

has less noises and the cluster property is stable. 

 

Figure 5.6: Quality comparison (Network Intrusion dataset) 

 

Fig. 5.7 shows the result of execution time. CLUStream spend most of the time 
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incoming data. IRGC also needs a liner search on all grids, so when the number of grids 

increases over the process, the search cost increases in chorus. At the start of the process, 

some time for building up the index is needed, and then our proposed method works 

even more effectively than in synthetic dataset because the data order usually is not 

completely random as in the synthetic data. In the Charitable Donation dataset, the 

execution time is more stable as there are only a few noises in the dataset, and the 

property of clusters is also stable. 

 

Figure 5.7: Execution time comparisons (Network Intrusion dataset) 

 

5.4 Charitable Donation dataset 

Another real dataset is the KDD-CUP’98 [28]. It is a relatively stable real-life 

data. It contains 95412 records about people who made donation in response to the 

mailing requests. We used clustering to group donors with similar donation behaviors. 

In total 56 out of 481 fields are used, and the dataset is converted into data stream by 

taking the data input order as the order of streaming data. The data rate is 1000 data per 
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time unit; the high and low threshold is 100 and 10, and the decay factor λ  0.98. We 

send a request and compute the cluster purity every 10 time units. 

 

5.4.1 Performance on Charitable Donation dataset 

Fig. 5.8 is the result of clustering quality on Charitable Donation dataset; they 

show that our method always has a better clustering quality then others. For all 

algorithms, the quality is high because there is only few noise and with a stable cluster 

property, and our method works well under the condition of less noises and the data 

property is stable. 

 

Figure 5.8: Quality comparison (Charitable Donation dataset) 

 

Fig.5.9 shows the result of execution time. CLUStream and IRGC still need 

most of time to do a liner search for every insertion. The execution time is more stable 

as there are only a few noises in the dataset, and the property of clustering is also stable. 
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Our algorithm benefits more than others under these conditions because it can build up 

the proper indexing in short time and speed up for all over the process without rebuild.  

 

Figure 5.9 Execution time comparisons (Charitable Donation dataset) 

 

5.5 Parameter Analyze 

Since there is no information about the data property at every time stamp, we 
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time, it should not be too small that generates too many meaningless grids or outliners. 

Fig. 5.10 and Fig. 5.11 is the quality result that if a different setting of grid size is 
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same condition as above. 
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size, the execution time is reduced as there need fewer grids to summarize the data 

points, hence the time cost becomes lower.  

On the other hand, as revealed in Fig. 5.12 and Fig. 5.13, larger grid size means a larger 

boundary distance to the grid center, more data will be collected, and the grids may be 

merged up together more easier on the merge stage, the purity of clustering result 

decrease. From all of these experiments, a choice of Ra = 5 resulted better, which has a 

balance between the execution time and the clustering quality. Therefore, the value of 

the factor R is set at 5 for all experiments in this thesis. 

 

Figure 5.10: Cluster Quality with different initialization (Network Intrusion dataset) 
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 Figure 5.11: Cluster Quality with different initialization (Charitable Donation dataset) 

 

 Figure 5.12: Execution time with different initialization (Network Intrusion data set) 
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Figure 5.13: Execution time with different initialization (Charitable Donation dataset) 
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Chapter.6 

Conclusion 

We proposed a streaming clustering algorithm based on dynamic grid with 

indexing. The algorithm maps the data into dynamic grids and generates clusters with 

data summary structure. The grid structure can update its size to proper boundaries and 

deal with the changing of an evolving data stream. We tried two kinds of indexing to 

reduce the execution time, R+ tree-based and dimensional interval-based. It can produce 

effective result, handle noise and find clusters with arbitrary shape. Also it is less 

sensitive to initialization parameters because it can automatically adapt the property 

itself. The experimental results show that our work is more effective and has better 

quality in clustering result than others not only in a unstable data stream, but also in a 

stable dataset.  

Future work will focus on applying more indexing and adjusting methods and 

providing more evolution analysis functionalities based on DAG-Stream. For some very 

tight local clusters, the adjusting method sometimes fails because they may be merged 

together. Another problem is it is hard to get the ground truth. So far there are no 

convincing theories about how to measure the quality of streaming clustering, as it is 

affected by the threshold setting, boundary setting, and the number of clusters. In real 

world, how to correctly determine and present the needed information in a data stream 

is still a challenging problem. 
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