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Student：Li-Ting Tsai    Advisors：Dr. Rong-Jaye Chen 

Institute of Computer Science and Engineering 

College of Computer Science, 

National Chiao Tung University 

ABSTRACT 

The Attribute-based encryption (ABE) scheme provides a fine-grained access 

control mechanism which is better than traditional public-key encryption 

schemes such as RSA and ElGamal. In an ABE scheme, the encryptor can 

specify an access formula that controls which private keys have the ability to 

decrypt the ciphertext. In most ABE schemes, there is only one authority who 

issues all private keys and public keys. If there are many authorities who issues 

their own private keys and public keys in an ABE scheme, the scheme is called 

ABE with multiple authorities. The access control mechanism in ABE schemes 

is from secret sharing schemes. In this thesis, we proposed an algorithm which is 

used both in secret sharing schemes and ABE schemes. Our algorithm provides 

more expressiveness in the access formula. Compared to the previous algorithm, 

our algorithm can handle more types of access formulae. Also, the algorithm 

and an ABE scheme with multiple authorities are implemented. Finally, we 

discuss applications that are highly related to our implementation. 

 

  



 

ii 
 

 

多授權中心的屬性加密及其實現 

 

 

學生：蔡禮鼎        指導教授：陳榮傑 教授 

國立交通大學資訊科學與工程研究所碩士班 

 

摘要 

屬性加密系統提供了細粒度的存取控制，這是傳統的公開金鑰加密系統，

如 RSA 或 ElGamal 所做不到的。在屬性加密系統裡，加密者可以決定一個

存取公式，這個存取公式控制了哪些私鑰可以解開密文。在大多數的屬性

加密系統中，只有單一授權中心負責發放所有的公鑰和私鑰，假如有許多

個授權中心可以發放自己的公鑰和私鑰，這樣的屬性加密系統稱為多授權

中心的屬性加密系統。屬性加密系統裡的存取控制是來自於秘密分享機制。

在這篇論文中，我們提出了一個用在屬性加密系統和秘密分享機制的演算

法，這個演算法增加了存取公式的表達性，跟之前的演算法比較，我們的

演算法可以處理更多種類的存取公式。我們並實現了上述的演算法和一個

多授權中心的屬性加密系統。最後，我們討論了許多可行的應用，這些應

用和我們的實現都有高度的相關。 
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Chapter 1  

Introduction 

Prior to the invention of public-key cryptography, encryption algorithm and 

decryption algorithm employ the same secret key. This means when two parties 

want to communicate securely, they must first find a way to share an mutual 

secret key. This inconvenience of symmetry makes people to think about the 

possibility of asymmetric cryptosystems. Asymmetric cryptosystems allow 

encryption and decryption algorithm employ different keys. And we can make 

the encryption key public and keep the decryption key secret to avoid the 

inconvenience of symmetric cryptosystems. Therefore, asymmetric 

cryptosystems are also referred to as public-key cryptosystems.  

In 1977, Rivest, Shamir and Adleman proposed a public-key encryption 

scheme based on the factoring problem [30]. Since then many other public-key 

schemes have been developed, such as the ElGamal encryption [13] and the 

NTRU encryption [17]. Today public-key cryptography is ubiquitous. When we 

want to send confidential information such as the credit card number to a trusted 

service provider over the Internet, we often encrypt the credit card number under 

the service provider’s public key. Many Internet protocols such as IPsec and 

TLS which provide communication security are based on the public-key 

cryptography. 

Recently, cloud computing is consider as a new turning point in information 

technology. Cloud computing has become more and more popular due to its 



 

2 
 

characteristics such as low cost, reliability, scalability and performance. Many 

countries is investing cloud computing. In Taiwan, the government has budgeted 

NT$ 24 billion for 5 years to develop cloud computing.  

A lot of users upload their data to the cloud. They enjoy the benefits of cloud 

computing but they also care about privacy and security. For example, the 

government might want to outsource their information services to a cloud 

service provider. Therefore, the government can reduce their maintenance cost 

and have a better performance environment, so they can do their work more 

efficiently. However, the government does not want the cloud service provider 

to watch sensitive information. The data in cloud must be stored in encrypted 

form.  

Traditional public-key cryptography has its limits in the cloud environment. 

If a party wants to share a file with other parties in the cloud, he must encrypt 

the file under each party’s public key. Suppose that there are thousands of 

receivers in the cloud, and then there will thousands of encrypted files. This 

coarse-grained approach is not economical. 

Many encryption schemes has been developed in recent years such as 

searchable encryptions [8, 10], broadcast encryptions [9, 22], and attribute-based 

encryptions [3, 6, 11, 12, 15, 16, 23, 28, 31, 34]. Those new encryptions can 

help us not only keep our data in secret but also enjoy the advantages from the 

cloud. 

In this thesis, we will focus on the attribute-based encryptions (ABE). The 

ABE is first proposed by Sahai and Waters [31]. In subsequent research, the 

concept of key-policy ABE (KP-ABE) and cipher-policy ABE (CP-ABE) are 

developed in [6, 15, 16]. The CP-ABE scheme is described in the below. 

In our daily life, we all have some attributes associated with us. For example, 

everyone has his or her age, his or her gender and his or her location. In a 

chatroom in the Internet, if we want to send a message to anyone who is below 
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30 and is male, we can write our access formula down “Age < 30” AND “Male.” 

In a CP-ABE scheme, we can encrypt our message under this access formula. 

And anyone who is male and is below 30 can decrypt our messages. The above 

example shows that we do not need to specify exactly who can read our message. 

We just describe the attributes the decryptor should have, and then the person 

who has the corresponding private keys can decrypt our message. In addition, 

we just produce one ciphertext. That is economical compared to the traditional 

public-key encryption. 

The rest of this thesis is organized as follows. In Chapter 2, we first review 

some important background in elliptic curves and introduce the divisors on a 

curve, the Tate pairing, supersingular curves, and so on. The divisor plays an 

important role in defining the Tate pairing. 

In Chapter 3, secret sharing schemes which have close relationships to ABE 

schemes are discussed. Shamir’s secret sharing scheme and monotone span 

program (MSP) construction are introduced. An important issue of the MSP is 

that how to convert from an access formula to an MSP matrix. We will design an 

algorithm in Chapter 5. 

In Chapter 4, several prominence ABE schemes are discussed. We will 

discuss their construction, their relation to secret sharing schemes and how to 

avoid collusion attack. 

In Chapter 5, our implementation of a CP-ABE scheme with multiple 

authorities is first discussed. Then we will give an algorithm of converting from 

an access formula to an MSP matrix. Finally, we discuss applications based on 

our implementation. The conclusion is given in Chapter 6. 

  



 

4 
 

 

 

 

Chapter 2  

Mathematical Background 

 

In this chapter, we review elliptic curves and bilinear pairings.  

 

2.1  Elliptic Curves 

Suppose that 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 is an elliptic curve defined over a finite 

field 𝐹𝑞 and 𝑞 is power of a prime 𝑝 > 3. 𝐸 has 𝑞 + 1 − 𝑡 points in 𝐹𝑞 and 

−2√𝑞 ≤ 𝑡 ≤ 2√𝑞. These points plus 𝒪, an imaginary identity point at infinity, 

become a group with addition structure. The group is denoted as 𝐸(𝐹𝑞). That is,  

 

𝐸(𝐹𝑞) = {(𝑥, 𝑦) ∪ 𝒪 | 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐹𝑞 , 𝑥, 𝑦 ∈ 𝐹𝑞}. 

 

The group addition operation is defined as follows. Given points 𝑃 =

(𝑥1, 𝑦1) and 𝑄 = (𝑥2, 𝑦2) on the curve, we first draw the line through 𝑃 and 

𝑄. The line intersects the curve in 𝑆’ = (𝑥3, 𝑦3′). We then reflect 𝑆’ over the 

x-asis to obtain 𝑆 = 𝑃 + 𝑄 = (𝑥3, −𝑦3
′) = (𝑥3, 𝑦3). Suppose that 𝜆 is the slope 

of the line through 𝑃 and 𝑄, then the coordinates of 𝑃 + 𝑄 = (𝑥3, 𝑦3) are 

𝑥3 = 𝜆
2 − 𝑥1 − 𝑥2  and 𝑦3 = 𝜆(𝑥1 − 𝑥3) − 𝑦1, where 
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                                      (𝑦2 − 𝑦1) (𝑥2 − 𝑥1)  𝑖𝑓 𝑃 ≠ 𝑄⁄   

                 𝜆 =     

                                             (3𝑥1
2 + 𝑎) 2𝑦1⁄           𝑖𝑓 𝑃 = 𝑄  

 

   We also define 𝐸(𝐹𝑞𝑑) = {(𝑥, 𝑦) ∪ 𝒪 | 𝑦
2 = 𝑥3 + 𝑎𝑥 + 𝑏, 𝑎, 𝑏 ∈ 𝐹𝑞 , 𝑥, 𝑦 ∈

𝐹𝑞𝑑}. Suppose that 𝐹𝑞̅ is the algebraic closure of 𝐹𝑞, then 𝐸(𝐹𝑞) ⊆ 𝐸(𝐹𝑞𝑑) ⊆

𝐸(𝐹𝑞̅). 

   Suppose that 𝑟 | #𝐸(𝐹𝑞) = 𝑞 + 1 − 𝑡, then we define  

𝐸[𝑟] = {𝑃 ∈ 𝐸(𝐹𝑞̅)|𝑟𝑃 = 𝒪}. 𝐸[𝑟] are called the r-torsion points. The r-torsion 

point plays an important role in pairing’s definitions. 

   We can also find a smallest positive integer 𝑘 such that 𝑟 | 𝑞𝑘 − 1. k is 

called the embedding degree. There are two important facts about the 

embedding degree. One is that 𝐸[𝑟] ⊆ 𝐸(𝐹𝑞𝑘) and then we can compute the 

r-torsion points in 𝐸(𝐹𝑞𝑘) rather than in 𝐸(𝐹𝑞̅). The other fact is that  

𝜇𝑟 ⊆ 𝐹𝑞𝑘  where 𝜇𝑟 = {𝑥 ∈ 𝐹𝑞̅  | 𝑥
𝑟 = 1}. 

 

2.2  Rational Functions and Divisors 

𝐹𝑞𝑘[𝑋, 𝑌]  represents the ring of polynomials in two variables 𝑋 , 𝑌  with 

coefficients in 𝐹𝑞𝑘. A rational function ℎ = 𝑓 𝑔⁄  where 𝑓, 𝑔 ∈ 𝐹𝑞𝑘[𝑋, 𝑌] and 

𝑓 is coprime to 𝑔.  

Given an elliptic curve 𝐸 and a rational function ℎ = 𝑓 𝑔⁄ , we consider the 

points that 𝑓(𝑥, 𝑦) = 0 and (𝑥, 𝑦) ∈ 𝐸(𝐹𝑞𝑘). We call those points zeroes of ℎ. 

We also consider the points that 𝑔(𝑥, 𝑦) = 0  and (𝑥, 𝑦) ∈ 𝐸(𝐹𝑞𝑘) . Those 

points are called poles of E. 

The divisor is a useful tool for keeping track of the zeros and poles [33]. We 
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use divisors to indicate which points are zeros or poles and their orders for a 

rational function over an elliptic curve. A divisor 𝐷 on and elliptic curve 𝐸 is 

the finite linear combination of the formal symbols with integer coefficients: 

 

𝐷 = ∑𝑛𝑃[𝑃]

𝑃∈𝐸

. 

 

If 𝑛𝑃 > 0, it indicates that 𝑃 is a zero, and if 𝑛𝑃 < 0, it indicates that 𝑃 is a 

pole. We define 𝐷𝑖𝑣(𝐸) as the group of divisors. For a divisor 𝐷 = ∑𝑛𝑃[𝑃], 

we define 𝑠𝑢𝑝𝑝(𝐷) = {𝑃 ∈ 𝐸 | 𝑛𝑃 ≠ 0} as the support of 𝐷, 𝑑𝑒𝑔(𝐷) = ∑𝑛𝑃 

as the degree of D, and 𝑠𝑢𝑚(𝐷) = ∑𝑛𝑃𝑃. 

   Now we consider only the set of divisors of degree zero. The set forms a 

subgroup 𝐷𝑖𝑣0(𝐸) ⊂ 𝐷𝑖𝑣(𝐸). Let 𝑓 be a rational function. The evaluation of a 

rational function 𝑓 on a divisor 𝐷 = ∑𝑛𝑃[𝑃] is defined by  

 

𝑓(𝐷) = ∏ 𝑓(𝑃)𝑛𝑝

𝑃𝜖𝑠𝑢𝑝𝑝(𝐷)

. 

    

The divisor of a rational function 𝑓 is defined as 𝑑𝑖𝑣(𝑓) = ∑𝑛𝑃,𝑓(𝑃) where 

𝑛𝑃,𝑓 is the zero or pole order of point 𝑃 on 𝑓. The degree of 𝑑𝑖𝑣(𝑓) must be 

zero [7]. A divisor 𝐷 ∈  𝐷𝑖𝑣0(𝐸) is principal if it is the divisor of a function. 

The following is an important fact. 

 

Theorem 2.1 [33]. Let 𝐸 be an elliptic curve and 𝐷 be a divisor on E with 

𝑑𝑒𝑔(𝐷) = 0. Then there is a function 𝑓 on 𝐸 with 𝑑𝑖𝑣(𝑓)  =  𝐷 if and only 

if 

 

𝑠𝑢𝑚(𝐷) = 𝒪. 
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2.3  The Tate Pairing 

The Tate pairing and the Weil pairing are two well-studied pairings. Under the 

same security level, The Tate pairing is generally considered more efficient than 

the Weil pairing.  

Let 𝐸  be an elliptic curve defined over a finite field 𝐹𝑞 and 𝑞 is power of 

a prime 𝑝 > 3. Let 𝐺 be a cyclic subgroup of 𝐸(𝐹𝑞) of order 𝑟 which is 

coprime to 𝑞. The embedding degree is 𝑘  such that 𝑟 | 𝑞𝑘 − 1. The Tate 

pairing is a map  

 

< 𝑃,𝑄 >𝑟: 𝐸(𝐹𝑞𝑘)[𝑟] × 𝐸(𝐹𝑞𝑘) 𝑟𝐸(𝐹𝑞𝑘) → 𝐹𝑞𝑘
∗ (𝐹

𝑞𝑘
∗ )𝑟.⁄⁄  

 

𝐸(𝐹𝑞𝑘)[𝑟]  is defined as 𝐸[𝑟] ∩ 𝐸(𝐹𝑞𝑘) and 𝑟𝐸(𝐹𝑞𝑘) is { 𝑟𝑆 | 𝑆 ∈ 𝐸(𝐹𝑞𝑘) } 

and (𝐹
𝑞𝑘
∗ )𝑟  is { 𝛼𝑟  | 𝛼 ∈ 𝐹𝑞𝑘  } . The groups 𝜇𝑟  and 𝐹

𝑞𝑘
∗ (𝐹

𝑞𝑘
∗ )𝑟⁄  are 

isomorphic.  

   Let 𝑃 ∈ 𝐸(𝐹𝑞𝑘)[𝑟]  and let 𝑄 ∈ 𝐸(𝐹𝑞𝑘) . Q represents a coset in 

𝐸(𝐹𝑞𝑘) 𝑟𝐸(𝐹𝑞𝑘)⁄ . Let 𝑓  be a rational function with divisors (𝑓) = 𝑟[𝑃] −

𝑟[𝒪]. Choose a 𝑆 ∈ 𝐸(𝐹𝑞𝑘) such that 𝑆 ≠ 𝑃, (𝑃 − 𝑄),−𝑄 𝑜𝑟 𝒪. Let 𝐷 be a 

divisor and 𝐷 = [𝑄 + 𝑆] − [𝑆]. The Tate pairing is defined to be 

 

< 𝑃, 𝑄 >𝑟= 𝑓(𝐷). 

 

𝑓(𝐷) ∈ 𝐹
𝑞𝑘
∗  represents a coset in 𝐹

𝑞𝑘
∗ (𝐹

𝑞𝑘
∗ )𝑟⁄ .  In fact, we often want to 

standardize the coset representative. Therefore the reduced Tate pairing is 
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defined to be 

 

𝑡𝑟 =  < 𝑃,𝑄 >𝑟
𝑞𝑘−1 𝑟⁄ . 

 

The Tate pairing has bilinearity property and other important properties. See 

Theorem 2.2. 

    

Theorem 2.2 [7]. Let 𝐸  be an elliptic curve defined over a finite field 𝐹𝑞 and 

𝑞 is power of a prime 𝑝 > 3. Let 𝐺 be a cyclic subgroup of 𝐸(𝐹𝑞) of order 𝑟 

which is coprime to 𝑞. The embedding degree is 𝑘. The Tate pairing satisfies: 

1. Bilinearity: For all 𝑃, 𝑃1, 𝑃2 ∈ 𝐸(𝐹𝑞𝑘)[𝑟] and 𝑄, 𝑄1, 𝑄2 ∈ 𝐸(𝐹𝑞𝑘),   

𝑡𝑟(𝑃1 + 𝑃2, 𝑄) = 𝑡𝑟(𝑃1, 𝑄)𝑡𝑟(𝑃2, 𝑄) and 

          𝑡𝑟(𝑃, 𝑄1 + 𝑄2) = 𝑡𝑟(𝑃, 𝑄1)𝑡𝑟(𝑃, 𝑄2). 

2. Non-degeneracy: 

          ∀𝑃, 𝑡𝑟(𝑃, 𝑄) = 1 if and only if 𝑄 =  𝒪 and 

∀𝑄, 𝑡𝑟(𝑃, 𝑄) = 1 if and only if 𝑃 =  𝒪. 

 

To compute the Tate pairing, we need to evaluate a rational function f that 

(𝑓) = 𝑟[𝑃] − 𝑟[𝒪]. The Miller’s algorithm [26] can help us find the function 

and compute the result of the Tate pairing. 

 

2.4  Supersingular Curves and Distortion Maps 

Suppose that 𝐸: 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏 is an elliptic curve defined over a finite 

field 𝐹𝑞 and 𝑞 is power of a prime 𝑝 > 3. 𝐸 has 𝑞 + 1 − 𝑡 points in 𝐹𝑞 and 

−2√𝑞 ≤ 𝑡 ≤ 2√𝑞. If 𝑝 | 𝑡, then 𝐸 is said to be supersingular. Otherwise, E is 

said to be ordinary. An important property of supersingular curves is that their 
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embedding degrees are low. Their embedding degrees are from 1 to 6. Low 

embedding degree is crucial for the efficiency of computing a pairing. Another 

important property of supersingular curves is the existence of distortion maps.    

A distortion map ϕ maps a point 𝑃 ∈ 𝐸(𝐹𝑞) to a point 𝜙(𝑃) ∈ 𝐸(𝐹𝑞𝑘) 

such that 𝑃 and 𝜙(𝑃) are linearly independent. If 𝐸  is supersingular and 

𝑘 > 1, the distortion map exists. If E is ordinary and 𝑘 >  1, then no distortion 

map exists [21]. By using the distortion map, we can define the modified Tate 

pairing. 

Let E  be a supersingular curve defined over a finite field 𝐹𝑞  and 𝑞 is 

power of a prime 𝑝 > 3. Let 𝐺 be a cyclic subgroup of 𝐸(𝐹𝑞) of order 𝑟 

which is coprime to 𝑞. The embedding degree is 𝑘 such that 𝑟 | 𝑞𝑘 − 1. A 

distortion map 𝜙 exists. The modified Tate pairing is a map 𝑡𝑟̂: 𝐺 × 𝐺 ⟶ 𝜇𝑟 

and defined to be 

 

𝑡𝑟̂(𝑃, 𝑄) = 𝑡𝑟(𝑃, 𝜙 (𝑄)). 

 

We note that the first input and the second input of the modified Tate pairing are 

from the same group. Therefore we say the modified Tate pairing is symmetric.  

   Table 2.1 [7] contains some popular supersingular curves. 

 

k Elliptic curve data 

2 𝐸: 𝑦2 = 𝑥3 + 𝑎 over 𝐹𝑝, where 𝑝 is a prime and 𝑝 ≡ 2 (𝑚𝑜𝑑 3) 

𝐸 has 𝑝 + 1 points 

Distortion map (𝑥, 𝑦) ⟼ (𝜁3𝑥, 𝑦), where 𝜁3
3 = 1. 

2 𝐸: 𝑦2 = 𝑥3 + 𝑥 over 𝐹𝑝, where 𝑝 is a prime and 𝑝 ≡ 3 (𝑚𝑜𝑑 4) 

𝐸 has 𝑝 + 1 points 

Distortion map (𝑥, 𝑦) ⟼ (−𝑥, 𝑖𝑦), where 𝑖2 = −1. 

Table 2.1: Supersingular curves 
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In the rest of this thesis, we usually treat pairings as “black boxes.” It can 

help us focus on the design of the encryption scheme. Therefore, we now give 

an abstract definition of the pairing. 

 

Definition 2.3 (Pairing). Let 𝐺1 and 𝐺2 be two additive cyclic groups and 𝐺𝑇 

be a multiplicative cyclic group. 𝐺1, 𝐺2, and 𝐺𝑇 are all of prime order 𝑝. Let 

𝑃 be a generator of 𝐺1 and 𝑄 be a generator of 𝐺2. A pairing is a map: 

𝑒: 𝐺1 × 𝐺2  →  𝐺𝑇. The map 𝑒 has the following properties: 

1. Bilinearity: 𝑒(𝑎𝑃, 𝑏𝑄) = 𝑒(𝑃, 𝑄)𝑎𝑏 ∀ 𝑎, 𝑏 ∈ 𝑍𝑝.  

2. Non-degeneracy: 𝑒(𝑃, 𝑄) ≠ 1. 

3. Computability: ∃𝐴, a polynomial-time algorithm, ∀ 𝑃 ∈ 𝐺1, 𝑄 ∈ 𝐺2  

 𝐴 computes 𝑒(𝑃, 𝑄) efficiently. 

If 𝐺1 = 𝐺2, the pairing is called symmetric. Symmetric pairings are widely used 

in cryptography [6, 8, 11, 28, 31]. Otherwise the pairing is called asymmetric. 

 

We note that symmetric pairing is usually realized as the modified Tate 

pairing and the asymmetric pairing is usually realized as the reduced Tate 

pairing. 

 

2.5  Complex Multiplication Method 

In the previous Section, we know that the embedding degrees of supersingular 

curves are small. But there are also ordinary curves with low embedding degrees. 

All known techniques for generating ordinary curves with low embedding 

degrees are based on the Complex Multiplication (CM) method. 

Let 𝑞 be a prime. The CM method is an algorithm for finding an elliptic 

curve 𝐸 over 𝐹𝑞   that 𝐸 has 𝑞 + 1 − 𝑡 points in 𝐹𝑞 and −2√𝑞 ≤ 𝑡 ≤ 2√𝑞. 
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The CM equation is 

 

𝐷𝑉2 = 4𝑞 − 𝑡2, 

 

where the discriminant 𝐷 is positive. We omit the details of the CM method 

here. The algorithm is described in [33]. 

   Miyaji et al. construct a method for finding ordinary curves with embedding 

degree 3, 4 or 6 [27]. Freeman shows a method for finding ordinary curves with 

embedding degree 10 [14]. The above works are all based on the CM method.   
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Chapter 3  

Secret Sharing Schemes 

A secret sharing scheme is composite of a dealer, a set of 𝑛 parties, and a 

collection 𝛢 of subsets of parties. We call 𝛢 the access structure. The dealer 

has a secret, and he distributes the shares of the secret to the parties. The scheme 

ensures two things. First any subset in 𝛢 can reconstruct the secret from its 

shares. Secondly, any subset not in 𝛢 cannot get any partial information on the 

secret. The first property is called correctness and the second is called perfect 

privacy. 

 

Definition 3.1 (Monotone Access Structure). [5] Let {𝑃1, 𝑃2, … , 𝑃𝑛} be a set 

of parties. A collection 𝛢 ⊆ 2{𝑃1,𝑃2,…,𝑃𝑛} is monotone if 𝐵 ∈ 𝐴 and 𝐵 ⊆  𝐶 

then  𝐶 ∈ 𝐴 . A monotone access structure is a monotone collection  𝐴  of 

non-empty subsets of 2{𝑃1,𝑃2,…,𝑃𝑛}. The sets in 𝐴 are called the authorized sets, 

and the sets not in 𝐴 are called the unauthorized sets. 

 

Most well-known secret-sharing schemes are linear. In a linear secret sharing 

scheme, the secret is an element of a finite field and the generation of shares is 

done by a linear combination of the secret and some random numbers. In the 

following, we present two important linear secret sharing schemes. 
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3.1  Shamir’s Threshold Secret Sharing Scheme 

Consider the  𝑡 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛  access structure 

𝐴𝑡 = {𝑠 ⊆ {𝑃1, 𝑃2, … , 𝑃𝑛} | |𝑠| <  𝑡}  where 𝑠, 𝑡 ∈ 𝑁  and 1 ≤  𝑡 ≤  𝑛 . If a 

secret sharing scheme’s access structure is 𝑡 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛, we define it as 

threshold secret sharing scheme. Shamir gave an elegant construction based on 

the well-known fact that it takes d points to define a polynomial of d − 1 

degree where 𝑑 ∈ 𝑁 and 𝑑 ≥ 1 [32]. 

   Suppose the dealer has a secret 𝑠 ∈ 𝐹𝑞 and he wants to use a 𝑡 − 𝑜𝑢𝑡 −

𝑜𝑓 − 𝑛 access structure 𝐴𝑡 to share the secret. The dealer chooses a random 

polynomial 𝑝(𝑥) of degree t and set 𝑝(0) = 𝑠. The shares of party 𝑃𝑗 is 𝑝(𝑗). 

Any authorized sets can reconstruct the secret by using Lagrange’s interpolation. 

 

Theorem 3.2 (Lagrange interpolation). Given 𝑡  distinct points (𝑥𝑖 , 𝑦𝑖) , 

where 𝑦𝑖  is of the form 𝑓(𝑥𝑖) and 𝑓(𝑥) is a polynomial of degree less than 𝑡, 

then f(x) is determined by  

 

𝑓(𝑥) =∑𝑦𝑖 ∏
𝑥− 𝑥𝑗
𝑥𝑖 − 𝑥𝑗1≤𝑗≤𝑡

𝑖≠𝑗

𝑡

𝑖=1

. 

And we call ∏
𝑥−𝑥𝑗

𝑥𝑖−𝑥𝑗
1≤𝑗≤𝑡
𝑖≠𝑗

 Lagrange coefficient. 

 

For example, the dealer wants a 3 − 𝑜𝑢𝑡 − 𝑜𝑓 − 5 access structure to share 

the secret 100 ∈ 𝐹101. The dealer choose a random polynomial 𝑝(𝑥) = 23𝑥2 +

65𝑥 + 100 𝑚𝑜𝑑 101. 𝑃1 will receive 𝑝(1) ≡ 87, 𝑃2 will receive 𝑝(2) ≡ 19, 

𝑃3 will receive 𝑝(3) ≡ 98, 𝑃4 will receive 𝑝(4) ≡ 21, and 𝑃5 will receive 



 

14 
 

𝑝(5) ≡ 91. If 𝑃1, 𝑃3, and 𝑃4 want to reconstruct the secret, they will first 

compute the Lagrange coefficients: 

 𝑙1  =  (0 − 3)(0 − 4) (1 − 3)(1 − 4)⁄  ≡  2 𝑚𝑜𝑑 101,  

 𝑙3  =  (0 − 1)(0 − 4) (3 − 1)(3 − 4)⁄  ≡  99 𝑚𝑜𝑑 101, and 

                 𝑙4  =  (0 − 1)(0 − 3) (4 − 1)(4 − 3)⁄  ≡  1 𝑚𝑜𝑑 101. 

Then they get 𝑠  after computing ∑  𝑦𝑖 𝑙𝑖 = 87 × 2 + 98 × 99 + 1 × 21 =

9897 ≡ 101 𝑚𝑜𝑑 100. 

      Shamir’s secret sharing scheme is a key technique to many 

attribute-based encryption schemes [16, 31]. In [16], Goyal et al. construct an 

access tree based on Shamir’s secret sharing scheme. We will discuss their 

construction in Chapter 4. 

           

3.2  Monotone Span Program Construction 

Definition 3.3 (Monotone Span Program) [20]. A monotone span program 

(MSP) is a quadruple ℳ =  (𝐹,𝑀, 𝜋, 𝑒), where 𝐹 is a field and 𝑀 is a 𝑟 × 𝑐 

matrix over F. 𝜋: {1,… , 𝑟}  →  {𝑃1, … , 𝑃1} maps each row of 𝑀 to a party, and 

𝑒 =  (1, 0, 0, … ) ∈ 𝐹𝑐 is called target vector. The size of ℳ is the number 𝑟 

of rows and is denoted as 𝑠𝑖𝑧𝑒(ℳ). Let 𝐵 be a set of parties, we denote 𝑀𝐵 

by restricting 𝑀 to the rows labeled by parties in 𝐵. We define that 𝑀 accepts 

𝐵 if rows of 𝑀𝐵 span the vector 𝑒. We also define that 𝑀 accepts an access 

structure 𝐴 if 𝑀 accepts a set 𝐵 if and only if 𝐵 ∈ 𝐴. 

 

We now describe how to use the MSP to construct a secret sharing scheme [5]. 

First we have an MSP ℳ = (𝐹,𝑀, 𝜋, 𝑒) corresponding to an access structure 

𝐴. Then we consider the column vector 𝑣 =  (𝑠, 𝑟2. . . 𝑟𝑐), where 𝑠 is the secret 

and 𝑟2. . . 𝑟𝑐 are randomly chosen. Then we compute 𝑀𝑣. 𝑀𝑣 is the vector of 

𝑟 shares according to ℳ. The shares (𝑀𝑣)𝑖 belongs to the party π(i). 
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For example, consider the following MSP ℳ = (𝐹101, 𝑀, 𝜋, (1,0,0))  

 

where 𝑀 =  

(

 
 

1 1 1
1 2 4
1 3 9
1 4 16
1 5 25)

 
 

 

 

and 𝜋(1) = 𝑃1 , 𝜋(2) = 𝑃2 , 𝜋(3) = 𝑃3 , 𝜋(4) = 𝑃4 , and 𝜋(5) = 𝑃5 . If the 

secret 𝑠 = 100  and we set 𝑣 = (100, 5,37) . Then we compute 𝑀𝑣 =

(41, 56, 44,5,40)𝑇. After that, 𝑃1 gets 41, 𝑃2 gets 56, 𝑃3 gets 44, 𝑃4 gets 

5, and 𝑃5 gets 40. We note that it is a 3 − 𝑜𝑢𝑡 − 𝑜𝑓 − 5 threshold secret 

sharing, because any 3 rows of  𝑀 can form a full rank matrix. If 𝑃1, 𝑃2, and 

𝑃3 wants reconstruct the secret, they first apply Gauss-Jordan elimination to the 

following matrix: 

 

(
1 1 1 
1 2 4
1 3 9

 |
 1 0 0
 0 1 0
 0 0 1

). 

 

And they will get 

(
1 0 0
0 1 0
0 0 1

 | 
3 98 1
48 4 49
51 100 51

). 

 

After the Gauss-Jordan elimination, they could compute the secret s by 

3 × 41 + 98 × 56 + 1 × 44 = 5655 ≡ 100 mod 101 

The above example is a 3 − 𝑜𝑢𝑡 − 𝑜𝑓 − 5 threshold secret sharing. On the 

other hand, MSP is not limited to threshold secret sharing. It can describe a 

boolean formula directly. For example, consider the following MSP matrix: 
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(

  
 

1 1 1 0
0 −1 0 0
0 0 −1 0
1 0 0 1
1 0 0 2
1 0 0 3)

  
 
. 

 

And we set 𝜋(𝑖) = 𝑃𝑖  ∀𝑖 ≤ 6, 𝑖 ∈ 𝑁 . The MSP describes the boolean 

formula  (𝑃1 𝐴𝑁𝐷 𝑃2 𝐴𝑁𝐷 𝑃3) 𝑂𝑅  2 𝑂𝐹 (𝑃4, 𝑃5, 𝑃6) . We can verify that by 

examining if the parties’ corresponding rows can span (1,0,0,0).  

   Although an MSP can describe a boolean formula, the conversion from a 

boolean formula to an MSP is not trivial. In Chapter 5, we give an algorithm 

which converts any monotone boolean formula to an MSP. 
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Chapter 4  

Attribute-Based Encryption 

 

In this chapter, we will review the variants of attribute-based encryption (ABE) 

in recent researches.  

 

4.1  Threshold ABE 

In a threshold ABE scheme [31], the authority will publish the set 𝑈 of 

attributes it controls and the set of public keys 𝑃𝐾 in which every public key 

corresponds to an attribute. The authority also decides the threshold 𝑡 ∈  𝑁. The 

encryptor can choose a subset 𝜔 ⊆ 𝑈  and encrypt the plaintext 𝑀  under 

corresponding public keys. The decryptor will receive his private keys 

corresponding to a subset 𝜔′ ⊆ 𝑈 from the authority. If |𝜔 ∩  𝜔′|  ≥  𝑡, then 

the ciphertext can be recovered.  

We will discuss their construction in details and the relationship between 

Shamir’s secret sharing scheme and Threshold ABE. 

 

Setup  First, the authority chooses a symmetric pairing 𝑒: 𝐺1 × 𝐺1  →  𝐺𝑇. The 

order of 𝐺1 is a prime 𝑟 and 𝑔 is a generator of  𝐺1. 

   Next, the authority decides the set U of attributes. Each attribute is labeled 

form 1 to |𝑈| and the number is used to index the attributes. The authority 



 

18 
 

then choose 𝑡1…𝑡|𝑈| uniformly at random from 𝑍𝑟 and choose 𝑦 uniformly 

at random from 𝑍𝑟. 

   Finally, the public parameters are: 

 

𝑇1 = 𝑡1𝑔,… , 𝑇|𝑈| = 𝑡|𝑈|𝑔, 𝑌 = 𝑒(𝑔, 𝑔)
𝑦 . 

    

Each 𝑇𝑖  represents an attribute’s public key and each 𝑡𝑖  represents an 

attribute’s secret key. The authority keeps 𝑡1…𝑡|𝑈|, 𝑦 in secret. 

 

Encryption  If Alice wants to encrypt a message 𝑀 ∈ 𝐺𝑇 under attribute set 

𝜔′ ⊆ 𝑈, she first chooses a random 𝑠 ∈ 𝑍𝑟. The ciphertext is 

 

𝐸 = (𝜔′,𝑀𝑌𝑠, (𝑠𝑇𝑖)𝑖∈𝜔′). 

 

Key Generation  If Bob wants apply his private keys for his attribute set 

𝜔 ⊆ 𝑈, the authority first chooses a (𝑡 − 1) degree polynomial 𝑝 and sets  

𝑝(0) = 𝑦. The authority then computes 𝑝(𝑗) ∀ 𝑗 ∈ 𝜔. The private key consists 

of  

 

(𝐷𝑗)𝑗∈𝜔 =
𝑝(𝑗)

𝑡𝑗
𝑔  ∀ 𝑗 ∈ 𝜔. 

 

   We note that this procedure is similar to Shamir’s threshold secret scheme as 

described in Section 3.1. The difference is that each share is binding to an 

attribute rather than a party and each share is represented as an element in 𝐺1.  

 

Decryption If Bob wants to decrypt Alice’s ciphertext 

𝐸 = (𝜔′,𝑀𝑌𝑠, (𝑠𝑇𝑖)𝑖∈𝜔′)  with his private keys associated with 𝜔 ⊆ 𝑈 . 
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Suppose that 𝑆 = 𝜔 ∩ 𝜔′ and |𝑆| ≥ 𝑡. In the view of secret sharing, this means 

Bob has authorized sets. Therefore, Bob has the ability to decrypt the ciphertext. 

First he chooses an arbitrary subset 𝑆′ ⊆ 𝑆  where |𝑆′| = 𝑡  and computes 

Lagrange’s coefficient 𝑙𝑖 ∀ 𝑖 ∈ 𝑆′. Then he computes  

 

∏𝑒(𝑠𝑇𝑖
𝑖∈ 𝑆′

, 𝐷𝑖)
𝑙𝑖 = ∏𝑒(𝑠𝑡𝑖𝑔

𝑖∈ 𝑆′

,
𝑝(𝑖)

𝑡𝑖
𝑔)𝑙𝑖 = 𝑒(𝑔, 𝑔)𝑠 ∑ 𝑝(𝑖)𝑖∈ 𝑆′ 𝑙𝑖 = 𝑒(𝑔, 𝑔)𝑠𝑦 . 

 

Finally he gets 𝑀 by computing 𝑀𝑌𝑠 𝑒(𝑔, 𝑔)𝑠𝑦⁄ = 𝑀.  

 

   Different users cannot collude to decrypt a ciphertext when neither of them 

can decrypt the ciphertext. In this scheme, the collusion is not allowed because 

each user’s private keys corresponding to a different polynomials. For example, 

if Eve has private keys associated with attribute set 𝑠 = {1,2} and Alice has 

private keys associated with attribute set 𝑠′ = {3} . There is a ciphertext 

associated with attribute set 𝜔 = {1,2,3} and the threshold 𝑡 is 3. Suppose that  

Eve steals Alice’ private keys, she cannot decrypt the ciphertext because Alice’s 

keys are binding to another polynomial from Eve’s. Therefore she cannot 

interpolate the secret 𝑒(𝑔, 𝑔)𝑠𝑦. 

     

4.2  Key-Policy ABE 

In a key-policy ABE (KP-ABE) [16] scheme, each ciphertext is associated with 

a set of attributes and each private key is associated with an access formula. The 

access formula describes which type of ciphertexts the key can decrypt. 

For example, a stream video online may be encrypted with the attributes: 

“NBA”, “Season2012”, and “Playoffs”. If Alice receives her private key for the 
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access formula “NBA” AND “Season2012” AND “Regular Season”, then Alice 

can only watch the regular season games of NBA 2012 but not the playoffs. 

Therefore she cannot decrypt the encrypted stream. On the other hand, If Bob 

receives his private key for the access formula “NBA” AND “Season=2012”, 

which means Bob can watch all NBA games in 2012 no matter regular season or 

playoffs.  

Goyal et al. (GPSW) constructs the scheme based on the access tree 

technique. Given an access formula, we can easily construct an access tree 

represents the access formula. Every non-leaf node of the tree represents a 

𝑡 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 threshold gate. We note that when 𝑡 = 1 and 𝑛 = 2, the 

threshold gate is an OR gate. And when 𝑡 = 2 and 𝑛 = 2, the threshold gate is 

an AND gate. Each leaf node 𝑥 of the tree represents an attribute. We define the 

function 𝑝𝑎𝑟𝑒𝑛𝑡(𝑥)  as returning the parent of the node 𝑥 . The function 

𝑎𝑡𝑡𝑟(𝑥) is defined only if x is a leaf node and returns the attribute the leaf 

node represents. 

We also define an ordering between the children of every node, i.e., the 

children of a node are numbered from 1  to 𝑛 . Therefore, the function 

𝑖𝑛𝑑𝑒𝑥(𝑥) is defined as returning the number associated with the node 𝑥.  

 Figure 4.1 is an example of access tree 𝑇. In this example, 𝑇 describes an 

access formula: (𝐴1 𝑂𝑅 𝐴2) 𝐴𝑁𝐷 2 𝑂𝐹 (𝐴3, 𝐴4, 𝐴5). The access formula and 

the access tree can be easily transformed to each other. The access structure is 

{ (𝐴1, 𝐴3, 𝐴4), (𝐴1, 𝐴3, 𝐴5), (𝐴1, 𝐴4, 𝐴5), (𝐴2, 𝐴3, 𝐴4), (𝐴2, 𝐴3, 𝐴5), (𝐴2, 𝐴4, 𝐴5),  

(𝐴1, 𝐴2, 𝐴3, 𝐴4), (𝐴1, 𝐴2, 𝐴3, 𝐴5), (𝐴1, 𝐴2, 𝐴4, 𝐴5), (𝐴1, 𝐴3, 𝐴4, 𝐴5),  

(𝐴2, 𝐴3, 𝐴4, 𝐴5), (𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5) }. 
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We now give GPSW construction in the below. 

 

Setup  First, the authority chooses a symmetric pairing 𝑒: 𝐺1 × 𝐺1  →  𝐺𝑇. The 

order of 𝐺1 is a prime 𝑟 and 𝑔 is a generator of  𝐺1. 

   Next, the authority decides the set 𝑈 of attributes. Each attribute is a string 

and labeled form 1 to |𝑈| and the number is used to index the attributes. The 

authority then choose 𝑡1…𝑡|𝑈| uniformly at random from 𝑍𝑟 and choose 𝑦 

uniformly at random from 𝑍𝑟. 

   Finally, the public parameters are: 

 

𝑇1 = 𝑡1𝑔,… , 𝑇|𝑈| = 𝑡|𝑈|𝑔, 𝑌 = 𝑒(𝑔, 𝑔)
𝑦 . 

 

   The authority keeps 𝑡1…𝑡|𝑈|, 𝑦 in secret. 

 

Encryption  If Alice wants to encrypt a message 𝑀 ∈ 𝐺𝑇 under attribute set 

𝜔′ ⊆ 𝑈, she first chooses a random 𝑠 ∈ 𝑍𝑟. The ciphertext is 

AND 

OR 2 OF 3 

A2 A1 A5 A4 A3 
2 

2 

1 2 1 3 

1 

Figure 4.1: An example of access tree 
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𝐸 = (𝜔′,𝑀𝑌𝑠, (𝑠𝑇𝑖)𝑖∈𝜔′). 

 

Key Generation  If Bob wants apply his private keys for his access formula, 

the authority first coverts the formula to an access tree 𝑇. 

Then for each node 𝑥  in the tree 𝑇, the authority chooses a random 

polynomial 𝑝𝑥  and the degree 𝑑𝑥  of 𝑝𝑥  is 𝑡 − 1. For the root node 𝑘, the 

authority sets 𝑝𝑘(0) = 𝑠  and for any other node  𝑥 , he sets 

𝑝𝑥(0) =  𝑝𝑝𝑎𝑟𝑒𝑛𝑡(𝑥)(𝑖𝑛𝑑𝑒𝑥(𝑥)).  

Finally, for each leaf node 𝑥, the authority gives the following private key to 

Bob: 

 

𝐷𝑥 =
𝑝𝑥(0)

𝑡𝑗
𝑔  𝑤ℎ𝑒𝑟𝑒 𝑗 = 𝑎𝑡𝑡𝑟(𝑥). 

 

Decryption If Bob wants to decrypt Alice’s ciphertext 𝐸 = (𝜔′, 𝑀𝑌𝑠, (𝑠𝑇𝑖)𝑖∈𝜔′) 

with his private key associated with access tree T. Suppose that 𝜔′ can satisfy 

the access tree 𝑇, then Bob has the ability to decrypt the ciphertext. For each 

leaf node 𝑥, he computes 

 

𝑒(𝐷𝑥, 𝑠𝑇𝑖) = 𝑒 (
𝑝𝑥(0)

𝑡𝑖
𝑔, 𝑠𝑡𝑖𝑔) = 𝑒(𝑔, 𝑔)

𝑠𝑝𝑥(0)  𝑓𝑜𝑟 𝑎𝑡𝑡𝑟(𝑥) = 𝑖. 

    

   Because 𝑝𝑥(0) = 𝑝𝑝𝑎𝑟𝑒𝑛𝑡(𝑥)(𝑖𝑛𝑑𝑒𝑥(𝑥)) . As a result, Bob can then 

interpolate 𝑒(𝑔, 𝑔)𝑠𝑝𝑝𝑎𝑟𝑒𝑛𝑡(𝑥)(0) for node 𝑥. Bob repeats this approach until he 

meets root node 𝑘. Therefore, 𝑒(𝑔, 𝑔)𝑠𝑝𝑟(0) = 𝑒(𝑔, 𝑔)𝑠𝑦 is computed and he 

gets 𝑀𝑌𝑠 𝑒(𝑔, 𝑔)𝑠𝑦⁄ = 𝑀. 

   We can view threshold ABE as a special case of KP-ABE, because in a 
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Threshold ABE scheme the private key is associated with an access tree having 

just one threshold gate. 

   We also note that the access tree can be replaced with an MSP. If the MSP is 

used, we only need to apply Gauss-Jordan elimination one time rather than 

interpolate the polynomials multiple times. Therefore, in subsequent research 

[23, 34], the MSP is used in place of the access tree. 

 

4.3  Ciphertext-Policy ABE 

The concept of ciphertext-policy ABE (CP-ABE) is introduced in [16] and 

Bethencourt et al. (BSW) give the first construction [6]. The roles of ciphertexts 

and keys are reversed. Each ciphertext is associated with an access formula and 

each private key is associated with a set of attributes. 

   For example, a job posting may be encrypted under the access formula: 

“master degree” and “two years’ work experience”. Suppose Alice has two 

private keys. One is for attribute “master degree”. The other is for attribute “two 

years’ work experience”. Therefore Alice can decrypt the job posting.     

The security of BSW construction is argued in the generic group model. 

Subsequently Waters [34] proposed ciphertext-policy ABE constructions in the 

standard model. We now give Water’s construction in the below.  

 

Setup  First, the authority chooses a symmetric pairing 𝑒: 𝐺1 × 𝐺1  →  𝐺𝑇. The 

order of 𝐺1 is a prime 𝑟 and 𝑔 is a generator of  𝐺1. Next, the authority 

decides the set 𝑈 of attributes. Each attribute is a string and labeled form 1 to 

|𝑈| and the number is used to index the attributes. The authority then choose 

ℎ1…ℎ|𝑈|  uniformly at random from 𝐺1 . In addition he chooses random 

exponents 𝛼, 𝑎 ∈ 𝑍𝑟. 
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   Finally, the public parameters are: 

 

ℎ1, … , ℎ|𝑈|, 𝑔, 𝑒(𝑔, 𝑔)
𝛼 , 𝑎𝑔. 

 

   The authority keep 𝛼𝑔 in secret. 

 

Encryption  If Alice wants to encrypt a message 𝑀 ∈ 𝐺𝑇 associated with an 

access formula, she first converts the access formula to the MSP ℳ. Assume 

that the MSP matrix 𝑁 of ℳ is a 𝑛 × 𝑐 matrix and 𝜋 mapping its rows to 

attributes.  

She then choose a random 𝑠 ∈ 𝑍𝑟, and computes the shares of 𝑠 by using 

the MSP ℳ. The shares of 𝑠 is the set {𝜆1, 𝜆2, … , 𝜆𝑛 }. In addition, she chooses 

a set of n random numbers {𝑟1, 𝑟2, … , 𝑟𝑛} where each 𝑟𝑖 ∈ 𝑍𝑟. 

   For each {𝜆𝑖 , 𝑟𝑖}, Alice computes 𝐶1,𝑖 = 𝜆𝑖𝑎𝑔 + (−𝑟𝑖ℎ𝜋(𝑖)), 𝐶2,𝑖 = 𝑟𝑖𝑔. We 

note that 𝑎𝑔 and ℎ𝜋(𝑖) are public keys. 

   Finally, the ciphertext is: 

 

𝐶 = {𝐶0 = 𝑀𝑒(𝑔, 𝑔)
𝛼𝑠, 𝐶′ = 𝑠𝑔, { 𝐶1,𝑖 , 𝐶2,𝑖  ∀𝑖},ℳ}. 

 

Key Generation  If Bob wants to apply his private keys for his attribute set 

𝜔 ⊆ 𝑈, then the authority first chooses a random 𝑡 ∈  𝑍𝑟. Next, it creates the 

private key as  

 

{𝐾 = 𝛼𝑔 + 𝑎𝑡𝑔, 𝐿 = 𝑡𝑔, {𝐾𝑗 = 𝑡ℎ𝑗}  ∀ 𝑗 ∈ 𝜔}. 

 

Decryption  Suppose that Bob has enough private keys to decrypt C. That is, 

he has the private keys {𝐾𝜋(𝑖)} for a subset of rows 𝑁𝑖  of 𝑁  such that 

(1,0,… ,0) can be spanned by these rows. Recall that 𝜆𝑖’s are shares of secret 𝑠. 
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Therefore, Bob can compute a set of 𝑐𝑖 ’s ∈ 𝑍𝑟  by applying Gauss-Jordan 

elimination such that ∑𝑐𝑖 𝜆𝑖 = 𝑠. Bob first computes: 

 

𝑒(𝐶′, 𝐾) ∏(𝑒(𝐶1,𝑖 , 𝐿)𝑒(𝐶2,𝑖 , 𝐾𝜋(𝑖)))
𝑐𝑖

𝑖

⁄ = 

𝑒(𝑔, 𝑔)𝛼𝑠𝑒(𝑔, 𝑔)𝑎𝑠𝑡 ∏(𝑒(𝑔, 𝑔)𝑡𝑎𝜆𝑖)
𝑐𝑖
=

𝑖

⁄ 𝑒(𝑔, 𝑔)𝛼𝑠. 

 

Then the plaintext 𝑀 can be obtained as 𝑀 = 𝐶0 𝑒(𝑔, 𝑔)
𝛼𝑠⁄ . 

In a CP-ABE scheme, the key technique to avoid collusion attack is that 

each user’s private keys are binding to a random exponent 𝑡. Therefore different 

users cannot collude. This is different from the threshold ABE scheme. In the 

threshold ABE scheme, the technique to avoid collusion is that each user’s key 

is binding to different random numbers in the linear secret sharing scheme. So 

each user actually solves different secret sharing problems. But in the CP-ABE 

scheme, the random numbers in the secret sharing scheme are decided by the 

encryptor and those random numbers are binding to the ciphertext, so each user 

tries to solve the same secret sharing problem. Therefore we must choose 

another random number t to “personalize” the private keys.  

 

4.4  Dual-Policy ABE 

Dual-policy ABE (DP-ABE) conjunctively combines KP-ABE with 

CP-ABE. The ciphertext is associated with an access formula and a set of 

attributes simultaneously. The private key is also associated with an access 

formula and a set of attributes. The decryption can be done if and only if the 

ciphertext’s attributes satisfies the private key’s access formula and the private 

key’s attributes satisfies the ciphertext’s access formula in the same time.  
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   The trivial construction is that we encrypt the plaintext twice. First we 

encrypt the plaintext using CP-ABE, and then we encrypt the previous result 

again using KP-ABE. The decryption is also two-step. First we decrypt the 

ciphertext under KP-ABE private keys, and then we decrypt again under 

CP-ABE private keys. 

   Attrapadung et al. [3] proposed a non-trivial DP-ABE construction. Their 

construction combines [16] with [34]. In their construction, the encryption and 

the decryption can be done in one step.       

 

4.5  ABE with Multiple Authorities 

[16, 28, 31, 34] are all single authority constructions. However, in real world, 

there are many authorities who control their own attributes. For example, two 

universities may have a joint research project. But the two universities do not 

want a third single authority is responsible for their attributes and issues private 

keys for them. They want to control their attributes themselves. Therefore, they 

need a multi-authority scheme. 

   Chase [11] presents a KP-ABE scheme with multi authorities. In Chase’s 

scheme, global identifiers (GID) are introduced and every user is binding to a 

unique GID. The GID is used to “link” private keys from different authorities 

together. There is also a central authority (CA) in Chase’s scheme. The CA is 

responsible for choosing the system master key and controlling all the other 

authorities’ authority secret key. Therefore, in Chase’s system, we still need to 

trust a single authority. In addition, the number of authorities is decided in CA’s 

setup procedure. After CA’s setup, no more authorities can join the system. 

Moreover, her system is restricted to express a conjunctive access formula 

across the set of authorities. That is, the access tree of Chase’s scheme will be 
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like Figure 4.2. Each subtree represents an authority’s access tree. The 

decryption is permitted if and only if all subtrees are satisfied. We also note that 

one authority’s attributes can just appear in its own subtree.  

 

 

 

 

 

     

     

  

 

Figure 4.2: An example of access tree in Chase’s scheme 

 

   Chase and Chow [12] modified the above construction. They remove the CA 

by using distributed pseudo random functions. But the restriction of 

expressiveness and the pre-determined set of authorities still remained. 

   Lewko and Waters (LW) [23] propose a multi-authority CP-ABE scheme. 

Their system does not require any CAs. In addition, any party can become an 

authority after the system’s setup. Moreover, the plaintext can be encrypted 

under any monotone boolean formulas over attributes. 

   LW construction requires global identifiers (GID) as [11] suggested. We will 

show our implementation of LW scheme in Chapter 5.  

  

AND 

subtree subtree subtree 
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Chapter 5 

Implementation and Applications 

In this chapter, we first discuss our implementation of CP-ABE with multiple 

authorities. Next we give an algorithm that can convert an access formula to an 

MSP. Finally we discuss many applications of CP-ABE with multiple 

authorities. 

  

5.1 Implementation of CP-ABE with Multiple Authorities 

The implementation is based on the scheme described in [23]. We will first 

discuss the library we use and then describe the algorithms in the scheme in 

detail. And the experiment result will be given in the end.  

 

5.1.1  The Pairing-based Cryptography Library 

 

The pairing-based cryptography (PBC) library [25] is an open source library 

that is released under the GNU Lesser General Public License. The PBC library 

is written in C and provides routines such as elliptic curve generation, elliptic 

curve arithmetic and pairing computation. Many projects are based on the PBC 

library, such as [1, 2, 28]. 
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We have tested the speed of the PBC library. We performed our experiments 

on a 2.4 GHz Intel Xeon E5620 processor running Ubuntu 11.10. The security 

level we choose is 128-bit. Table 5.1 is the key size comparison under different 

security levels [36]. 

 

Date Minimun 

of Strength 

Symmetric 

Key 

RSA and 

DH 

Elliptic 

Curve 

2010 80 80 1024 160 

2011-2030 112 112 2048 224 

> 2030 128 128 3072 256 

Table 5.1: NIST recommended key sizes (bits) 

 

   There are seven types of pairings defined in the PBC library. The seven 

types are type A, type B, type C, type D, type E, type F and type G. Type A, type 

B and Type C are supersingular curves. Type D, type E, type F and type G are 

based on the complex multiplication (CM) method. However, type B and type C 

are not implemented yet. 

Type A pairings are constructed on the curve 𝐸: 𝑦2 = 𝑥3 + 𝑥 over 𝐹𝑞 , 

where 𝑞 is a prime and 𝑞 ≡ 3 (𝑚𝑜𝑑 4). E is a supersingular curve, so this 

pairing is a symmetric pairing 𝑒: 𝐺1 × 𝐺1  →  𝐺𝑇. 𝐺𝑇  is a subgroup of 𝐹𝑞2 

because the embedding degree is 2. Therefore we choose the group order 𝑟 to 

be 256-bit long and 𝑞 to be 1536-bit long, because 𝑞2 must be 3072-bit long 

to achieve the same security level as 256-bit long in elliptic curve.  

Type D pairings are constructed on the MNT curves of embedding degree 6 

[27]. This pairing is an asymmetric pairing 𝑒: 𝐺1 × 𝐺2  →  𝐺𝑇 . 𝐺𝑇  is a 

subgroup of 𝐹𝑞6  because the embedding degree is 6. Given different 

discriminant in the CM equation, the bits in 𝑞 and the bits in 𝑟 are determined. 
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Therefore we choose two suitable type D pairings. One is that the discriminant 

is 31387, 𝑞 is 522-bit long and 𝑟 is 514-bit long. The other is that discriminant 

is 873867, 𝑞 is 486-bit long and 𝑟 is 442-bit long 

Type E pairings are constructed on the curves of embedding 1 [21]. The 

pairing is a symmetric pairing e: G1 × G1  →  GT . GT  is a subgroup of Fq 

because the embedding degree is 1. Therefore we choose the group order 𝑟 to 

be 256-bit long and 𝑞 to be 3072-bit long, because 𝑞 must be 3072-bit long to 

achieve the same security level as 256-bit long in elliptic curve. 

Type F pairings are constructed on the curves of embedding 12 [4]. This 

pairing is an asymmetric pairing 𝑒: 𝐺1 × 𝐺2  →  𝐺𝑇. 𝐺𝑇 is a subgroup of 𝐹𝑞12 

because the embedding degree is 12. Therefore we choose the group order 𝑟 to 

be 256-bit long and 𝑞 to be 256-bit long.  

Type G pairings are constructed on the curves of embedding 10 which 

Freeman suggests [14]. Given different discriminant in the CM equation, the bits 

in 𝑞 and the bits in 𝑟 are determined. Therefore we choose one suitable type G 

pairings. The curve is that the discriminant is 35707, 𝑞 is 301-bit long and 𝑟 is 

279-bit long. Table 5.2 is a comparison of the pairings in the PBC library. 

 

 Embedding 

Degree 

Symmetric 

Pairing 

Supersingular 

Type A 2 yes yes 

Type D 6 no no 

Type E 1 yes no 

Type F 12 no no 

Type G 10 no no 

Table 5.2: Pairings in the PBC library 
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Table 5.3: Comparison of speed of different pairings 

 

   For each type, we choose 10 random inputs of the pairing function and 

compute the average time. We also choose 100 random elements for G1, G2 

and G3 for each type and compute the average time of an addition or an 

multiplication. The result of our test is shown in Table 5.3. We note that in our 

encryption scheme, we need a symmetric pairing. Therefore, in our 

implementation, we choose the type A pairing, because the type E pairing is the 

slowest pairing. 

 

 

5.1.2  Implementation 

 

We first proposed the CP-ABE with multiple authorities scheme described in 

[23] and discuss our implementation later. 

 

Global Setup  In the global setup, a pairing 𝑒: 𝐺1 × 𝐺1  →  𝐺𝑇 is chosen. The 

order of 𝐺1  is a prime 𝑟  and 𝑔  is a generator of  𝐺1 . A hash function 

 Pairing 

Time 

(ms) 

Multiplication 

Time in GT 

(ms) 

Addition 

Time in G1 

(ms) 

Addition 

Time in G2 

(ms) 

Type A 38 0.009 0.042 0.042 

Type D-311387 48 0.023 0.011 0.078 

Type D-873867 35 0.020 0.010 0.068 

Type E 87 0.009 0.108 0.108 

Type F 49 0.037 0.006 0.009 

Type G-35707 45 0.036 0.006 0.090 



 

32 
 

𝐻: {0,1}∗  →  𝐺1 is also decided. Pairing 𝑒, generator 𝑔 and 𝐻 are all public 

after the global setup. 

    

Authority Setup  If a party wants to be an authority, for each attribute the 

party controls, the party chooses two random numbers 𝛼𝑖 , 𝑦𝑖 ∈ 𝑍𝑟 . The 

authority’s secret key is the set {𝛼𝑖 , 𝑦𝑖  ∀𝑖} and the authority’s public key is the 

set {𝑒(𝑔, 𝑔)𝛼𝑖 , 𝑦𝑖𝑔 ∀𝑖} 

 

Encryption  If Alice wants to encrypt a plaintext 𝑀 ∈ 𝐺𝑇 under an access 

formula 𝐴. She first converts 𝐴 to an MSP ℳ. Suppose that the MSP matrix 

𝑁 of ℳ is a 𝑛 × 𝑐 matrix with 𝜋 mapping its rows to attributes.  

Alice then chooses a random 𝑠 ∈ 𝑍𝑟 and computes the shares of 𝑠 and the 

shares of 0 by using the MSP ℳ. The shares of 𝑠 is the set {𝜆1, 𝜆2, … , 𝜆𝑛 } 

and the shares of 0 is the set {𝑤1, 𝑤2, … , 𝑤𝑛 }. In addition, she chooses a set of 

𝑛 random numbers {𝑟1, 𝑟2, … , 𝑟𝑛} and each 𝑟𝑖 ∈ 𝑍𝑟. 

   For each { 𝜆𝑖 , 𝑤𝑖 , 𝑟𝑖} , Alice computes 𝐶1,𝑖 = 𝑒(𝑔, 𝑔)
𝜆𝑖𝑒(𝑔, 𝑔)𝛼𝜋(𝑖)𝑟𝑖 , 

𝐶2,𝑖 = 𝑟𝑖𝑔  and 𝐶3,𝑖 = 𝑟𝑖𝑦𝜋(𝑖)𝑔 + 𝑤𝑖𝑔 . We note that 𝑒(𝑔, 𝑔)𝛼𝜋(𝑖)  and 𝑦𝜋(𝑖)𝑔 

are public keys. 

   Finally, the ciphertext is: 

 

𝐶 = {𝐶0 = 𝑀𝑒(𝑔, 𝑔)
𝑠, { 𝐶1,𝑖 , 𝐶2,𝑖  , 𝐶3,𝑖∀𝑖},ℳ}. 

 

Key Generation  Every user is binding to a unique GID. Suppose that Bob’s 

GID is 𝐺𝐼𝐷𝐵𝑜𝑏 . To issue a private for Bob for attribute 𝑥 , the authority 

responsible for 𝑥 computes: 

 

𝐾𝑥,𝐺𝐼𝐷𝐵𝑜𝑏 = 𝛼𝑥𝑔+𝑦𝑥𝐻(𝐺𝐼𝐷𝐵𝑜𝑏). 
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Decryption  Suppose that Bob has enough private keys to decrypt 𝐶. That is, 

he has the private keys {𝐾𝜋(𝑖),𝐺𝐼𝐷𝐵𝑜𝑏} for a subset of rows 𝑁𝑖 of 𝑁 such that 

(1,0,… ,0) can be spanned by these rows. For each 𝑖, Bob computes: 

 

𝐶1,𝑖 ∙ 𝑒(𝐻(𝐺𝐼𝐷𝐵𝑜𝑏), 𝐶3,𝑖) 𝑒(𝐾𝜋(𝑖),𝐺𝐼𝐷𝐵𝑜𝑏 , 𝐶2,𝑖)⁄ = 𝑒(𝑔, 𝑔)𝜆𝑖𝑒(𝐻(𝐺𝐼𝐷𝐵𝑜𝑏), 𝑔)
𝑤𝑖 . 

 

   Recall that 𝜆𝑖’s are shares of secret 𝑠 and 𝑤𝑖’s are shares of secret 0. 

Therefore, Bob can compute a set of 𝑐𝑖 ’s ∈ 𝑍𝑟  by applying Gauss-Jordan 

elimination such that ∑𝑐𝑖 𝜆𝑖 = 𝑠 and ∑𝑐𝑖 𝑤𝑖 = 0. Bob then computes  

 

∏(𝑒(𝑔, 𝑔)𝜆𝑖𝑒(𝐻(𝐺𝐼𝐷𝐵𝑜𝑏), 𝑔)
𝑤𝑖)𝑐𝑖

𝑖

= 𝑒(𝑔, 𝑔)𝑠. 

 

And the plaintext 𝑀 can be obtained as 𝑀 = 𝐶0 𝑒(𝑔, 𝑔)
𝑠⁄ . 

 

   We have implemented the above scheme. The implementation contains six 

programs. 

 

global-setup 

   Generates a pairing 𝑒 and the generator 𝑔. 

user-register 

   Given a user’s name, generates a GID for the user. 

authority-setup 

   Given the list of attributes the authority controls, generates the public key 

and the secret key for each attribute. 

authority-keygen 

   Given the user’s GID and the list of user’s attributes the authority controls, 

generates the private keys for the GID for each attribute. 
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encrypt 

   Given an access formula and a file, generates the encrypted file under the 

access formula. 

decrypt 

   Given an encrypted file and private keys, decrypts the file if satisfying the 

access formula. 

 

   We also construct a graphical user interface program to demonstrate our 

implementation. See Figure 5.1 and Figure 5.2. 

 

 

Figure 5.1: A demonstration of encryption in CP-ABE scheme 

 

 

Figure 5.2: A demonstration of decryption in CP-ABE scheme  
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5.1.3  Evaluation 

 

We have tested the speed of the encryption and decryption of our 

implementation. We performed our experiments on a 2.4 GHz Intel Xeon E5620 

processor running Ubuntu 11.10. The security level we choose is 128-bit. We 

use the type A pairing in which r is 256-bit long and q is 1536-bit long. Our 

plaintext is 3072-bit long. 

Figure 5.3 and Figure 5.4 summarize our measurements. In each figure the 

x-axis represents the number of rows in the MSP matrix and y-axis shows the 

time required to complete an encryption or a decryption. The figures show that 

the processing time and the complexity of the access formula are in direct 

proportion. In addition, the processing time shows that the scheme is practical 

on a workstation or a personal computer. 

 

 

Figure 5.3: Encryption time 
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Figure 5.4: Decryption time 

 

5.2  Converting form the Access Formula to the MSP 

   Lewko and Waters (LW) describe an algorithm in [24]. The algorithm’s input 

is an access tree and the output is an MSP ℳ where size(ℳ) equals the 

number of leaf nodes. However, the algorithm cannot handle threshold gates. 

The all nodes of the input access tree must be AND gates and OR gates and leaf 

node gates but not threshold gates.  

   The idea of LW algorithm is that we first convert the access formula to an 

access tree and then we label each node with a vector determined by the vector 

assigned to its parent node. We first set an initial vector (1) and label the root 

node with (1) and set counter 𝑐 = 1. Then we use queue-based level order 

traversal from the root. If the node is an OR gate labeled with the vector 𝑣, we 

also label its two children with 𝑣. If the node is an AND gate, we label one of its 

two children with (𝑣|1) where | denotes concatenation and we label the other 

with the vector (0,… ,0| − 1) where (0,… ,0) denotes the zero vector which 

has length c. In addition we set 𝑐 = 𝑐 + 1 Therefore, the two vectors sum to 

(𝑣|0). We have implemented the above algorithm. Table 5.4 is the pseudo code.  
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LW Algorithm 

Input: an access tree T which has no threshold gates 

Output: An MSP ℳ 

1. r = number of leaf nodes of T  

2 l = (number of AND gates of T) + 1 

3 M = a r × l matrix in which all entries are 0s. 

4 v =  (1, 0, 0, … ) ∈ Zl 

5 ℳ =  (F,M, π, e) in which π is empty 

6 count = 1 

7 node = T’s root  

8 q = empty queue  

9 q.enqueue((node, v)) 

10  

11 while q is not empty do 

12   (node, v) = q.dequeue   

13   if node is an OR gate then 

14     queue.enqueue((node’s left child, v)) 

15     queue.enqueue((node’s right child, v)) 

16 else if node is an AND gate then  

17   l_v = v 

18     set l_v[count+1] = 1 

19     r_v = v – l_v 

20     count = count + 1 

21     queue.enqueue((node’s left child, l_v)) 

22     queue.enqueue((node’s right child, r_v)) 

23 else if node is a leaf node then 
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24     Mi = find a row whose entries are all zeros from M 

25     set Mi = v 

26     set π(i) = party(node) 

27   end if 

28 end while 

29 return ℳ 

Table 5.4: Pseudo code of LW algorithm 

 

For example, consider the access tree 𝑇  represents the formula 

𝑃1 𝐴𝑁𝐷 (𝑃2 𝐴𝑁𝐷 (𝑃3 𝑂𝑅 𝑃4)).  We will first construct the 4 × 3  matrix 𝑀 

which is zero-filled. 𝑀 is 4 × 3 because there are 4 parties and 2 AND gates. 

The vector 𝑣 is (1,0,0). Then we meet the root node which is an AND gate. 

We split v into (1,1,0) and (0,−1,0) and set 𝑀1 = (1,1,0) and 𝜋(1) =  𝑃1. 

The (0,−1,0) goes to the other subtree. Because we meet an AND gate in the 

subtree, we split the (0,−1,0) into (0,−1,1) and (0,0, −1). We then set 

𝑀2 = (0,−1,1)  and 𝜋(2) =  𝑃2 . The (0,0,−1)  goes to the other subtree. 

Because we meet an OR gate there, we set 𝑀3 = (0,0,−1) , 𝜋(3) =  𝑃3 , 

𝑀4 = (0,0,−1) and 𝜋(4) =  𝑃4. Therefore 

 

𝑀 = (

1 1 0
0 −1 1
0 0 −1
0 0 −1

). 

 

We now use 𝑀  to share a secret 𝑠 . That is, construct a vector 𝑢 =

(𝑠, 𝑟1, 𝑟2)  where 𝑟1, 𝑟2  are randomly chosen. And compute  𝑀𝑢 = (𝑠 +

𝑟1, −𝑟1 + 𝑟2, −𝑟2, −𝑟2). 𝑃1  will receive 𝑠 + 𝑟1 , 𝑃2  will receive −𝑟1 + 𝑟2  and 

𝑃3 and 𝑃4 will both receive −𝑟2. 
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   LW algorithm has advantages when reconstructing the secret. When we want 

to reconstruct the secret, we just sum the shares we have. We do not need to 

multiply each share’s coefficient first because each share’s coefficient is always 

one. But the limitation of the algorithm is the disability of handling threshold 

gates. Therefore, we design an algorithm that can handle threshold gates and 

have the advantages of LW algorithm when reconstructing the secret. 

 

5.2.1  Our Algorithm 

 

   The idea of our algorithm is from the Vandermonde matrix. A Vandermonde 

matrix is an matrix of the form 

 

(

1 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛−1

1 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑛−1

⋮ ⋮ ⋮ ⋱ ⋮
1 𝑥𝑚 𝑥𝑚

2 ⋯ 𝑥𝑚
𝑛−1

), 

 

where 𝑥1, 𝑥2, …, 𝑥𝑚 are all distinct. The row vectors of the Vandermonde 

matrix are all linearly independent. If 𝑚 ≥ 𝑛, any n row vectors of the matrix 

can span (1 0 ⋯0) ∈ 𝑍𝑛.  

   We extend the concept by defining an matrix of the form 

 

(

𝑣 
𝑣
⋮
𝑣

 ||

 𝑥1 𝑥1
2 ⋯ 𝑥1

𝑛−1

 𝑥2 𝑥2
2 ⋯ 𝑥2

𝑛−1

⋮ ⋮ ⋱ ⋮
 𝑥𝑚 𝑥𝑚

2 ⋯ 𝑥𝑚
𝑛−1

) 

 

where 𝑥1, 𝑥2, …, 𝑥𝑚 are all distinct and 𝑣 is a vector. If 𝑚 ≥ 𝑛, any n row 
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vectors of the matrix can span 𝑣 | (0 ⋯0). 

   Now back to our algorithm of converting form the access formula to the 

MSP. We first convert the access formula to an access tree and we model the 

AND gate as a 2 − out − of − 2 gate and model the OR gate as a 1 − out −

of − 2 gate. Then we label each node with a vector determined by the vector 

assigned to its parent node. We first set an initial vector (1) and label the root 

node with (1) and set counter 𝑐 = 1. Then we use queue-based level order 

traversal from the root. Given a 𝑡 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 threshold gate labeled by 𝑣. 

We construct the following matrix  

 

(

𝑣 
𝑣
⋮
𝑣

 |

 0 ⋯ 0  1 1 ⋯ 1
 0 ⋯ 0 2 22 ⋯ 2𝑡−1

 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮
 0 ⋯ 0 𝑛 𝑛2 ⋯ 𝑛𝑡−1

) 

 

We can now label the child nodes with the row vectors one by one. The 

(0,… ,0) denotes the zero vector has size (𝑐 –  𝑣’s length). Adding the (0,… ,0) 

is to make sure that the vectors of same level nodes are linearly independent. In 

addition we set 𝑐 = 𝑐 + (𝑡 − 1). 

   We can modify the above procedure when we meet a 1 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 

threshold gate or a 𝑛 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛  threshold gate. When we meet a 

1 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 gate labeled with 𝑣, we just label the gate’s child nodes all 

with 𝑣. When we meet a 𝑛 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 gate labeled with 𝑣, we construct 

the following matrix. 

 

(

 
 

𝑣 
𝟎
𝟎
⋮
𝟎

 |
|

 0 ⋯ 0  1 1 ⋯ 1
 0 ⋯ 0 −1 0 ⋯ 0
0 ⋯ 0 0 −1 ⋯ 0
 0 ⋯ 0 ⋮ ⋮ ⋱ ⋮
 0 ⋯ 0 0 0 ⋯ −1)

 
 
. 
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𝟎 represents the zero vector of the same length of v. We note that all rows of 

the matrix sum to (𝑣|0,… ,0). The pseudo code is given in Table 5.5. 

For example, consider the access tree T  represents the formula 

3 𝑂𝐹 (𝐴, 𝐵 ,3 𝑂𝐹 (𝐶, 𝐷, 𝐸), 1 𝑂𝐹 (𝐹, 𝐺, 𝐻)). We will first construct the 8 × 5 

matrix 𝑀 which is zero-filled. 𝑀 is 8 × 5 because there are 8 parties and 

∑(𝑡𝑖 − 1) + 1 = 5 for each threshold 𝑡𝑖. We also set 𝑐 = 1. The vector 𝑣 is 

(1,0,0,0,0). Then we meet the root node which is a 3 − 𝑜𝑢𝑡 − 𝑜𝑓 − 4 gate. We 

generate (1,1,1,0,0 ), (1,2,4,0,0 ),  (1,3,9,0,0)  and (1,4,16,0,0)  and set 

𝑐 =  𝑐 + 2 = 3. Now we set 𝑀1 = (1,1,1,0,0)  and 𝜋(1) =  𝐴  and set 

𝑀2 = (1,2,4,0,0)  and 𝜋(2) =  𝐵 . The (1,3,9,0,0)  goes to the 3 − 𝑜𝑢𝑡 −

𝑜𝑓 − 3 gate, then we generate (1,3,9,1,1), (0,0,0,−1,0) and (0,0,0,0,−1). 

Now we set 𝑀3 = (1,3,9,1,1) , 𝜋(3) =  𝐶  and set 𝑀4 = (0,0,0,−1,0) , 

𝜋(4) =  𝐷  and set 𝑀5 = (0,0,0,0,−1), π(5) =  𝐸 . Finally the (1,4,16,0,0) 

goes to the 1 − out − of − 3 gate. Now we set 𝑀6 = 𝑀7 = 𝑀8 = (1,4,16,0,0) 

and 𝜋(6) = 𝐹, 𝜋(7) = 𝐺, 𝜋(8) = 𝐻. Therefore  

 

𝑀 =

(

 
 
 
 
 

1 1 1 0 0
1 2 4 0 0
1 3 9 1 1
0 0 0 −1 0
0 0 0 0 −1
1 4 16 0 0
1 4 16 0 0
1 4 16 0 0 )

 
 
 
 
 

. 

 

Our algorithm can handle the threshold gate. In addition, because we treat 

the 𝑛 − 𝑜𝑢𝑡 − 𝑜𝑓 − 𝑛 gate as a special case, we can reconstruct the vector v 

the gate labeled with by just sum the vectors its child nodes labeled with. It is 

efficient because we do not need to multiply the vectors some coefficients first. 
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Our MSP Algorithm 

Input: an access tree T 

Output: An MSP ℳ 

1 r = number of leaf nodes of T  

2 c = ∑(ti − 1) + 1   ( ti is each non-leaf node’s threshold value) 

3 M = a r × c matrix in which all entries are 0s. 

4 v =  (1, 0, 0, … ) ∈ Zc 

5 ℳ =  (F,M, π, e) in which π is empty 

6 count = 1 

7 node = T’s root  

8 q = empty queue  

9 q.enqueue((node, v)) 

10  

11 while q is not empty do 

12   (node, v) = q.dequeue   

13   if node is a 1 − out − of − n gate then 

14     for each child i of node do 

15 queue.enqueue((i, v)) 

16     end for 

17 else if node is a n − out − of − n gate then 

18   child_node = the first child of node 

19     l_v = v 

20     for i = 1 to n – 1 do 

21       set l_v[count+i] = 1 

22     end for 

23     queue.enqueue((child_node, l_v)) 
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24     for i = 2 to n do  

25       child_node = the ith child of node 

26       r_v = (0, 0, 0, … ) ∈ Fc 

27     set r_v[count+i–1] = –1 

28       queue.enqueue((child_node, r_v)) 

29     end for 

30     count = count + (n – 1) 

31 else if node is a t − out − of − n gate then 

32     for i = 1 to n do 

33       child_node = the ith child of node 

34       l_v = v 

35       for j = 1 to t – 1 do 

37         set l_v[count+i] = ij 

38       end 

39       queue.enqueue((child_node, l_v)) 

40   end 

41 else if node is a leaf node then 

42   Mi = find a row whose entries are all zeros from M 

43     set Mi = v 

44     set π(i) = party(node) 

45   end if 

46 end while 

47 return ℳ 

Table 5.5: Pseudo code of our algorithm 
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5.3  Applications 

   Many applications can be designed based on ABE. Here we first briefly show 

some of them, and then give a design of patient-controlled EMR system. 

   We can apply the KP-ABE scheme to the pay-tv system [16]. A broadcaster 

broadcasts some ciphertexts, each one labeled with a set of attributes. Each user 

has a private key associated with an access formula. For instance, a television 

broadcaster labels its programs with the name of the program, the date of the 

program and the season of the program. And each subscriber has a private key 

with an access formula and she can use the key to decrypt the programs she 

subscribed to. 

   The CP-ABE scheme with multiple authorities is often applied to an online 

social network [19]. Suppose that Alice has some photos she wants to share with 

her friends. She can encrypt the photos under an access policy: “Alice” AND 

“Alice’s friends.” Her friends can get their private keys from Alice and then 

decrypt the encrypted photos. Our implementation can be backbone to this 

application. 

   Recently, some electronic medical record (EMR) systems have been 

designed using the ABE [1, 18]. We will review them and design an EMR 

system in the next section. 

 

5.3.1  EMR systems using ABE 

    

In Taiwan, the Department of Health has promoted electronic medical record 

(EMR) in recent years. The government has budgeted NT$ 60.4 hundred 

millions from 2010 to 2012 due to its advantages over the traditional 

paper-based records. Moving to EHRs is an important national goal. 

The cost of sharing paper-based records is expensive. If a patient wants to 
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transfer to another health provider or she wants a copy of her own health record 

for health insurance purpose. She is likely to go to her health provider in person 

and runs the procedure of applying a patient’s own heath record. The procedure 

consumes a lot of manpower and material resource. Imagine that if the EMR is 

used, the cost due to paper-based record can be eliminated. The Taiwan 

Government estimated that cost of healthcare can be reduced by 10%. Therefore, 

the health provider reduces its total cost and it can promote healthcare quality. 

On the patient’s side, the convenience of transfer to another healthcare provider 

increases the chance of receiving better treatment.   

For researchers, more patients’ information can be recorded, analyzed, and 

shared by digitalized health records. Researchers can mine EHRs for the 

information they are interested. This can speed up the application of new 

medical research. Therefore, all human beings can benefit from sharing their 

own health records.     

   However, people care about privacy. If a patient’s personal health record 

contains sensitive information, e.g., AIDS, this information could result in 

employment discrimination. Recently in Taiwan, the personal health record of 

candidate was exposed as blackmail in elections. That paper-based record was 

revealed by medical staff. As a result, people want more security control when 

they digitalize their records and upload all data to the medical cloud. 

Consequently, patient-controlled EMR systems have been designed in recent 

years [29]. In a patient-controlled EMR system, the patient decides who can 

access his medical data. Most approaches employ techniques based on 

smartcards (“chip” and “pin”). The record is produced or edited by some health 

professionals and is encrypted by the patients’ secret key which is in the 

smartcard. In addition, the encrypted records are stored in a medical cloud. 

When a health professional wants to read a patient’s medical data, the patient 

use his smartcard to decrypt the encrypted record in the cloud. The approach is 
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described in Figure 5.5. 

 

 

Figure 5.5: Common patient-controlled EMR system 

 

This approach ensures strong privacy. However it has two drawbacks. First, 

the access control is coarse-grained. The patient needs to decrypt many times for 

anyone is authorized to read the record. Secondly, in emergency cases, the 

record needs to be decrypted as soon as possible. We need some mechanism to 

break the glass in emergency cases. 

Akinyele et al. proposed a construction using the CP-ABE [1]. They 

implement the scheme described in [22] and [34]. However their construction is 

not patient-controlled. The records are encrypted by the hospital rather than by 

the patients. In addition, all patients’ private keys are issued by one authority. If 

the authority is compromised, all records are exposed to danger.  

   Hupperich et al. construct a flexible patient-controlled EMR system using the 
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CP-ABE [18]. In their construction, the medical record is encrypted under the 

patient’s ID (𝑃𝐼𝐷) and a transaction code 𝑇𝐴𝐶1. The access formula is “𝑃𝐼𝐷” OR 

“𝑇𝐴𝐶1.” If a doctor wants to read the patient’s record, the patient give the doctor 

a private key for attribute 𝑇𝐴𝐶1. Therefore, the doctor can use this key to 

decrypt the patient’s record. Suppose that the doctor edit something in the record 

and she wants to submit the changes. The patient will ask the TAC server to 

generate another transaction code 𝑇𝐴𝐶2 and the TAC server will give a public 

key for 𝑇𝐴𝐶2 and a private key for TAC2 to the patient. The patient now sends 

the public key to the doctor. And the doctor can encrypt the record under the 

access formula “𝑃𝐼𝐷” OR “𝑇𝐴𝐶2.” Figure 5.6 summarizes their approach. 

 

 

Figure 5.6: Flexible patient-controlled EMR system 

 

However, in their construction, the TAC server is the single authority. 

Therefore all patients must trust the TAC server. Moreover, records are 
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encrypted by medical professionals rather than by patients. It may be dangerous, 

because we cannot make sure what access formula the professional choose. For 

instance, the professional can replace TAC with an attribute of her own. The 

access formula now provides a trapdoor that allows the professional decrypt the 

record. 

   Here we design a patient-controlled EMR system based on our 

implementation. There are many authorities in the systems such as the hospitals, 

the research institutes, and the patients themselves. The authorities will publish 

their public keys associated with the attributes they control. The patient can then 

encrypt his record under the access formula he chooses. The doctor gets her 

private keys from the authorities. After the doctor finishes her editing, she sends 

back the record encrypted under the patient’s RSA public key. The patient then 

decrypts it and encrypts the record again under an access formula. We note that 

the patient is the only one allowed to upload his record to the medical cloud. 

And he can change his access formula by encrypting his record under a different 

access formula and re-upload it to the cloud. 

   Our system is patient-controlled because the patient can encrypt his record 

under the access formula he chooses. And the patient can generate the public 

keys and private keys himself. If he does not trust any other authorities in the 

system, he can encrypt his record only under the attribute he controls and give 

the corresponding private keys to the medical professional.  

Another application is that the patient can generate attributes for his medical 

agent. By giving the private key of the attributes to his medical agent, his 

medical agent can now have the ability to read his records. 

   Our access control is fine-grained naturally. And we can handle the 

emergency case by adding an attribute named “emergency.” Every record is 

encrypted under the access formula: …OR “emergency.” Then the medical 

professionals can decrypt the recodes in the emergency case. The attribute 
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“emergency” is controlled by a trusted party and the use of the private key of the 

attribute “emergency” must be strictly recorded to avoid abuse. Figure 5.7 

summarizes our approach 

   .         

 

Figure 5.7: Our patient-controlled EMR system 
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Chapter 6  

Conclusion and Future Work 

In this thesis, we propose an algorithm that converts a monotone boolean 

formula to a monotone span program. The monotone span program is used in the 

secret sharing scheme and the ABE scheme. The algorithm can handle the 

threshold gate which is unable to handle in the previous algorithm. Therefore we 

expand the expressiveness of the access formula. 

A scheme of CP-ABE with multiple authorities is implemented and some 

applications can be built upon our implementation are discussed in this thesis. 

According to the result of the experiment, the implemented scheme is practical 

run in an Intel-based computer. Our implementation can be backbone to those 

applications based on the CP-ABE scheme.  

There are some issues we can improve in the ABE scheme. An existing issue 

of the ABE scheme is that we cannot verify that the ciphertext is really 

encrypted under the access formula it claims. It becomes a problem when we 

want others to encrypt for us. If this problem can be overcome, more 

applications can be designed based on the ABE. Another issue is that sometimes 

we want a non-monotonic access structure in the CP-ABE scheme. [22] is a 

KP-ABE with non-monotonic access structure. But researchers are still looking 

for a practical solution to CP-ABE scheme with non-monotonic access structure. 

In the future, we would like to port our programs to smartphone platforms. 

Also we will research on the issues described in this Section. 
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Appendix A: Source Code 

This Appendix includes the core C code for the implementation in this thesis. 

A.1 is the code of the access tree, A.2 is the code of the linear secret sharing 

scheme and A.3 is the code of the CP-ABE. 

 

A.1  attr_tree.h 

#ifndef _ATTR_TREE_H 

#define _ATTR_TREE_H 

typedef enum _ATTR_NODE_TYPE { 

   ATTR_NODE_NULL = 0, 

   ATTR_NODE_LEAF, 

   ATTR_NODE_AND, 

   ATTR_NODE_OR, 

   ATTR_NODE_THRESHOLD 

} ATTR_NODE_TYPE; 

typedef struct _attr_tree_node { 

   char * attribute; 

   ATTR_NODE_TYPE node_type; 

   unsigned int num_subnodes; 

   unsigned int threshold_k; 

   struct _attr_tree_node ** subnode; 

} attr_tree_node; 

 

typedef struct _attr_tree { 
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   attr_tree_node * root; 

   char * string; 

} attr_tree; 

typedef struct 

{ 

   int num_components; 

   attr_tree_node** components; 

}attr_array; 

/* Create a policy leaf subnode from an attribute string. 

 * @param attribute_str         Attribute string. 

 * @return                      Allocated policy subnode. 

 */ 

attr_tree_node* create_leaf(char *attr_str); 

 /* Create a policy subnode from an array of subnodes. 

 * @param node_type             ATTR_NODE_TYPE value. 

 * @param num_subnodes          Number of subnodes in the array. 

 * @param threshold_k           Threshold value k. 

 * @param subnodes              Array of attr_tree_node pointers 

 * @return                      Allocated policy subnode. 

 */ 

attr_tree_node* create_node(ATTR_NODE_TYPE node_type, int num_subnodes, int threshold_k, 

attr_tree_node** subnodes); 

 /* Recursive the tree in preorder, for each node, run func(node,param) 

 * @param node          the root of the subtree 

 * @param func          callback function 

 * @param param         param for callback function 

 */ 

int traverse_tree_preorder(attr_tree_node* node, int(*func)(attr_tree_node*, void*), void* param); 

 

/* test_satisfy_policy 

 * @param1: array of attr string 
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 * @param2: size of the array 

 * @param3: root the access tree 

 * @return: 1 if satisfy; 0 if not 

 */ 

int test_satisfy_policy(char** attrs, int num_sk, attr_tree_node* final_policy); 

#endif 

 

A.2  LSSS.h and LSSS.c 

#ifndef _LSSS_H_ 

#define _LSSS_H_ 

#include <stdlib.h> 

#include <string.h> 

#include <pbc/pbc.h> 

#include "../policy_parse/attr_tree.h" 

typedef struct _MSP_{ 

   int** matrix; 

   char** label; 

   int rows; 

   int cols; 

}MSP; 

void MSP_init(MSP* msp, int rows, int cols); 

void MSP_clear(MSP* msp); 

/* use LW's algorithm to make an MSP. 

 * @param1: msp 

 * @param2: tree's root 

 */ 

int makeMSP_v2(MSP* msp, attr_tree_node* node); 

/* use Our algorithm to make an MSP 
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 * @param1: msp 

 * @param2: tree's root 

 */ 

int makeMSP_v3(MSP* msp, attr_tree_node* node); 

/* Computes Shares 

 * @param1: msp 

 * @param2: input vector[s, r1, r2, ...] 

 * @param3: output vector 

 */ 

void computeShares(MSP* msp, element_t* input_array, element_t* output_array); 

/* use Gauss-Jordan to reduce msp's matrix 

 * @return: 1 if sucess 0 if failed 

 */ 

int reduceMSP(MSP* msp); 

void swap_vector(int** matrix, int i, int k); 

void swap_label(char** label, int i, int k); 

/* divide the row by n 

 * @param1: matrix 

 * @param2: index of row 

 * @param3: number of columns 

 * @parma4: n 

 */ 

void divide_row_by_n(int** matrix, int i_row, int cols, int n); 

void eliminate(int** matrix, int i_row, int i_col, int rows, int cols, int **new_matrix); 

#endif 

int makeMSP_v3(MSP* msp, attr_tree_node* node){ 

   int** matrix = msp -> matrix; 

   char** label = msp -> label; 
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   int cols = msp -> cols; 

   int rows = msp -> rows; 

   attr_tree_node* queue[100] = {0}; 

   int* vectors [100] = {0}; 

   int write_i = -1; 

   int read_i = -1; 

   int* v = calloc(cols, sizeof(int)); 

   v[0] = 1; 

   queue[++write_i] = node; 

   vectors[write_i] = v; 

   int count = 1; 

   int index = 0; 

   while( read_i < write_i ){ 

      attr_tree_node* node = queue[++read_i]; 

      int* v = vectors[read_i]; 

      if( node -> node_type == ATTR_NODE_OR ){ 

         int i = 0; 

         for( i; i < 2; i++){ 

            queue[++write_i] = (node -> subnode)[i]; 

            vectors[write_i] = v; 

         } 

      } 

      else if( node -> node_type == ATTR_NODE_AND ){ 

         int* l_v = calloc(cols, sizeof(int)); 

         int* r_v = calloc(cols, sizeof(int)); 

         memcpy(l_v, v, cols*sizeof(int)); 

         l_v[count] = 1; 

         { 
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            int i = 0; 

            for(i; i < cols; i++) 

               r_v[i] = v[i] - l_v[i]; 

         } 

         count++; 

         queue[++write_i] = (node -> subnode)[0]; 

         vectors[write_i] = l_v; 

         queue[++write_i] = (node -> subnode)[1]; 

         vectors[write_i] = r_v; 

      } 

      else if( node -> node_type == ATTR_NODE_THRESHOLD ){ 

         int i = 0; 

         for( i; i < node->num_subnodes; i++ ){ 

            int* l_v = calloc(cols, sizeof(int)); 

            memcpy(l_v, v, cols*sizeof(int)); 

            int j = 0; 

            for( j; j < node->threshold_k - 1; j++){ 

               l_v[count+j] = power(i+1, j+1); 

               //printf("power:%d\n", power(i+1, j+1)); 

            } 

            queue[++write_i] = (node -> subnode)[i]; 

            vectors[write_i] = l_v; 

            //free(l_v); 

         } 

         count = count + (node->threshold_k) - 1; 

      } 

      else if( node -> node_type == ATTR_NODE_LEAF){ 

         memcpy( matrix[index], v, cols*sizeof(int) ); 
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         label[index] = node->attribute; 

         index++; 

      } 

   } 

} 

int reduceMSP(MSP* msp){ 

   int** matrix = msp->matrix; 

   char** label = msp->label; 

   int cols = msp->cols; 

   int rows = msp->rows; 

   int** new_matrix = calloc(rows, sizeof(int*)); 

   { 

      int  i = 0; 

      for(i; i < rows; i++){ 

         new_matrix[i] = calloc(rows, sizeof(int)); 

         new_matrix[i][i] = 1; 

      } 

   } 

   // Gauss-Jordan 

   int i_row = 0; 

   int i_col = 0; 

   while( i_row < rows && i_col < cols ){ 

      //look for a non-zero entry in col i_col at or below row i_row 

      int k = i_row; 

      while( k < rows && matrix[k][i_col] == 0 ) k++; 

      if( k <= rows ){ 

         if( k != i_row ){ 

            //swap 
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            swap_vector(matrix, i_row, k); 

            swap_vector(new_matrix, i_row, k); 

            swap_label(label, i_row, k); 

         } 

         if( matrix[i_row][i_col] != 1){ 

           //divide 

           int div = matrix[i_row][i_col] / 1; 

           divide_row_by_n( matrix, i_row, cols,  div); 

           divide_row_by_n( new_matrix, i_row, rows, div); 

         } 

         //eliminate 

         eliminate(matrix, i_row, i_col, rows, cols, new_matrix); 

         i_row++; 

      } 

      i_col++; 

   } 

   msp->matrix = new_matrix; 

   msp -> cols = msp -> rows; 

   return 1; 

} 

 

A.3  CPABE.h 

 

#ifndef _LW11_H_ 

#define _LW11_H_ 

#define TYPE_A_GROUP_ORDER_LENGTH 512 

#define TYPE_A_BASE_FIELD_LENGTH 1536 
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#define PUBLIC_DATABASE "abe.db" 

#include <pbc/pbc.h> 

#include <openssl/sha.h> 

#include <sqlite3.h> 

#include <stdio.h> 

#include <string.h> 

#include "pairingio.h" 

#include "LSSS.h" 

typedef struct _AUTHORITY_SK_{ 

   char attribute[256]; 

   element_t alpha; 

   element_t y; 

}authority_sk; 

typedef struct _CIPHER_INFO_{ 

   element_t C1; 

   element_t C2; 

   element_t C3; 

   int owner_id; 

   int pk_id; 

   char matrix_row[128]; 

}cipher_info; 

typedef struct _PK_{ 

   char PK1[4096]; 

   char PK2[4096]; 

   int owner_id; 

   int pk_id; 

}PK; 

typedef struct _DECRYPTION_KEY_ { 
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   char* key_text; 

   char* attribute; 

   int gid; 

}DK; 

/* return a maloc DK*/ 

DK* new_DK(char* key_text, char* attr, int gid); 

/* free a DK*/ 

void delete_DK(DK* _dk); 

/* read all authority's secret keys from file into an array 

* return: an array of authority_sk*, the array is ended with NULL. If failed, return NULL. 

 */ 

authority_sk** get_authority_keys_from_file(pairing_t pairing, const char* filename); 

/* Produce system parameters: the pairing parameter file and the g parameter file 

 * param1: the file where pairing parmeter will be written 

 * param2: the file where g parmeter will be written 

 * return: if success return 0. else return 1 

 */ 

int global_setup_LW11(const char* pairing_param_filename, const char* g_param_filename); 

/* Produce public keys and secret keys. The public keys will be stored into sqlite3 database. 

 * The private keys will be stored into a file(param4.secretkey) 

 * param1: the pairing 

 * param2: the generator g 

 * param3: owner's name 

 * param4: the file contains the owners' all controlled attributes 

 * return: if success return 0. else return 1 

 */ 

int authority_setup_LW11(pairing_t pairing, element_t g, const char * owner_name, const char * attributes_file); 
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/* Connect the sqlite database 

 * param1: sqlite3 database file name 

 * param2: the address of sqlite3 handle 

 * param3: error function, when connection failed, this function will be called 

 * return: 0 if succedd, else return whatever error_func returns 

 */ 

int connect_database(const char* databasename, sqlite3** handle, int (*error_func)(const char*) ); 

/* Check if value exists in table's column 

 * return: the id of the row if exist, -1 if not 

 */ 

sqlite3_int64 is_value_in_column_of_table(sqlite3* handle, const char* table_name, const char* column_name, 

const char* value); 

/* Check insert a column's value in table 

 * return: 0 if success, 1 if failed 

 */ 

int insert_value_in_column_of_table(sqlite3* handle, const char* table_name, const char* column_name, const 

char* value); 

/* Produce a decryption key of owner:attribute to user(gid) 

 * param1: (output)the produced decryption key 

 * param2: generator g 

 * param2: pairing 

 * param3: array generated by `get_authority_keys_from_file` 

 * param4: attribute 

 * param5; user's gif 

 * return: 0 if success, 1 if failed 

 */ 

int keygen_LW11(element_t key, pairing_t pairing, element_t g, authority_sk** array_of_asks, const char * 

attribute, int gid);    
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/* Encrypt file under aes128 and  M is an element of GT, will be used as a key of AES-128 

 * @param1: an element of GT 

 * @param2: filename 

 * @param3: cipher id in database 

 */ 

int LW11_encrypt_file(element_t M, char* file, int cipher_id); 

/* Compute Me(g,g)^s, stored it into first parameter 

 * @param1: output 

 * @param2: M(session key) 

 * @param3: e(g,g) 

 * @param4: s 

 */ 

int LW11_encrypt_sessionkey(element_t Megg_s, element_t M, element_t egg, element_t s); 

/* insert policy and encrypted session key into database 

 * @param1: policy string 

 * @param2: encrypted session key (type is GT) 

 * @return: the insert row id, if failed -1 

 */ 

int insert_cipher_into_database(char* policy_input, element_t Megg_s); 

/* get a cipher_info 

 * @param1: formate owner:attribute 

 * @return: NULL if failed 

 */ 

cipher_info* get_cipherinfo(char* raw_attr, int* matrix_row, int cols, element_t omega, element_t lambda, 

element_t r, element_t egg , element_t g); 

/* store the cipher_info into the database 

 * @param1: cipherinfo 

 * @parma2: cipher_id 
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 * @return 0 if failed 

 */ 

int store_cipher_info(cipher_info* cipherinfo, int cipher_id); 

/* get cipher infos from public db, return a array of cipher_info 

 * @param1: id of the cipher 

 * @param2: output, size of array 

 * @return: a pointer or NULL 

 */ 

cipher_info** get_cipherinfo_from_db(int cipher_id, int* size_of_array, pairing_t pairing); 

/* print ci's member*/ 

void print_cipher_info(cipher_info* ci); 

/* get_attr_string_array 

 * @param1: array of dk 

 * @param2: size of the array 

 * @return: the array or null 

 */ 

char** get_attr_string_array(DK** dks, int num_sk); /* get an msp by array of cipher_info 

 * @return: an MSP or null 

 */ 

MSP* getMSP_by_cipher_info(cipher_info** cis, int size_of_array, char** attrs, int size_of_attrs); 

/* count a character appears in a string 

 * @param1: the string 

 * @param2: the char 

 * @return: the count 

 */ 

int count_chars(const char*, char); 

/* find the attribute's pk id from database 

 * @param1: string and the form is owner:attribute 
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 * @return: the pk id or -1 

 */ 

int find_pk_id(char* str); 

/* find a DK* from array of DK 

 * @param1: array of DK 

 * @param2: array size 

 * @param3: attribute string 

 * @return: NULL pointer or DK* 

 */ 

DK* find_DK_by_attribute(DK** dks, int size, char* str); 

cipher_info* find_cipher_info_by_attribute(cipher_info** cis, int size_of_array, char* attribute); 

/* get encrypted sk from database by cipher id 

 * @param1: element_t, must be GT 

 * @param2: the cipher id 

 * @return: -1 if failed 

 */ 

int get_encrypted_sk(element_t M, int cipher_id); 

#endif                                                   


