
Chapter 1. Introduction 
 

Different kinds of resources interconnected with a high-speed network provide a 

computing platform, called Heterogeneous Computing (HC) system [11]. In general, a 

HC system means the system that only consider the compute resources which can be a 

workstation, a personal computer, etc. But, there are many kinds of other resources in 

HC system, high performance computing platform, workstations, personal computers, 

data repository, input/output device, etc. There are some applications in HC system. 

For example, an interactive data analysis application may require simultaneous access 

to a storage system holding a copy of the data, a supercomputer for analysis, network 

elements for data transfer, and a display device for interaction [16]. Because of the 

various and sufficient resources, HC system can support a powerful execution 

capability. Therefore, an efficient and effective mapping algorithm for an application 

on HC system becomes more important. A good scheduling method will enormously 

promote the execution capability of HC system. 

Mapping applications in HC system is a well researched problem in the literature. 

The mapping problem is defined as the problem of assigning application tasks to 

suitable resource (matching problem) and ordering task execution in time (scheduling 

problem) to optimize a specific object function. Many static [1, 2, 3, 4] and dynamic 

[5, 6, 7, 8, 9] algorithms are proposed for mapping applications in HC system (for a 

detail classification see [10]). Most of the previous algorithms focus on compute 

resources only. 

In this thesis, we consider the problem of mapping a set of applications to a HC 

system where application tasks require concurrent access to multiple resources of 

different types. In general, this problem is the resource co-allocation problem. In this 

research area, Alhusaini is a pioneer [11]. He proposed two methods for resource 
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co-allocation problem [11, 12]. In [11] and [12], both of them are two phases 

algorithms. These two algorithms almost are the same except the second phase. In the 

first phase, a schedule plan is generated at compiler time. The schedule plan gives a 

scheduling order and resource assignments of tasks, such that the overall schedule 

length is minimized and all resource sharing constraints are satisfied. The goal of the 

second phase is to improve the performance of the schedule plan generated at 

compiler time by adapting to run time change. In a communication intensive 

application, Alhusaini’s method will suffer a disadvantage, that is, schedule length 

increases quickly caused by the communication cost.  

In order to overcome the disadvantage in Alhusaini’s method, we also proposed a 

two phases algorithm which is called the dynamic resource co-allocation algorithm. 

In the first phase, we will only generate the data that will be used in the second phase. 

The main allocation mechanism is in the second phase. We successfully overcome the 

disadvantage in Alhusaini’s method and propose an effective and efficient algorithm 

for resource co-allocation problem.      

The thesis is organized as follows. In chapter 2, we will describe the problem 

domain, system model, application model, and some terminologies. The algorithm 

which we propose will be introduced in chapter 3. In chapter 4, we will describe our 

simulation environment and evaluate our algorithm. Finally, we will make the 

conclusion and list some future work in chapter 5.   
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Chapter 2. Fundamental Background 
and Related Work 

 
    In this chapter, we will introduce the system model, application model, and some 

basic terminologies in section 2.1. Next, we will introduce the resource co-allocation 

problem in the section 2.2. Finally, we will go through some related works to get 

familiar with the development of the research in this area in section 2.3.  

 

2.1 Fundamental Background  
 
2.1.1 System Model 
    
   In our system model, we consider a heterogeneous computing system with m 

compute resources (machines), M={m1,m2,…,mm}, and a set of r non-compute 

resources (resource), R={r1,r2,…,rr}. A machine can be a HPC platform, a 

workstation, a personal computer, etc. A non-compute resource can be a data 

repository, an input/output device, etc. Resources are interconnected by the network.    

2.1.2 Application Model 
 
    Before describing our application model, we will define the DAG which is often 

used to represent the parallel program. We assume that a parallel program is 

composed of n tasks {T1,T2,…,Tn} in which there is a partial order. The partial order 

Ti<Tj implies that Tj can not start execution until Ti finishes due to the data 

dependency between them. This restriction is also called the precedence constrain. 

Formally, we give the following definition and Figure 2.1 shows a simple example of 

DAG. 
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Definition 2.1 A parallel program can be represented by a Directed Acyclic Graph 

(DAG) G = (T, E, C, R), where 

 T={T1,T2,…,Tn} is a finite set of tasks;  

 E is a set of edges which is between the tasks in T and each edge e(i, j) represents 

the data dependency between task Ti and task Tj; 

 C is the function from E to integer in which cij represents the communication 

cost from task Ti to task Tj.  

 R is a function from T to a set of resources in our system. When a task Ti is 

executed, it needs a set of resources, denoted as R(Ti).    

   

We assume that the communication cost in the same machine is negligible in our 

system. That is, the communication cost is zero if Ti and Tj are scheduled to the same 

machine.  

In a DAG, a task without any parent is called an entry task and a task without any 
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Figure 2.2 computation cost matrix Figure 2.1 An example of DAG 
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child is called exit task. If there exists the data dependency from task Ti to task Tj in 

the DAG, we say that task Ti is the immediate predecessor of task Tj and task Tj is the 

immediate successor of task Ti. 

In our system model, a task on different machine has different computation cost. 

Thus, we need the computation cost matrix Exec to describe the computation cost. 

The matrix  is defined as below.  Exec

 

Definition 2.2 In a given task graph, a computation cost matrix Exec is a n m matrix 

in which each component  is the computation cost to complete T

×

),( ji mTExec i on 

machine mj. We assumed that the communication cost between machine  and all 

resources which task  needs to access during execution is included in 

the . 

jm

iT

),( ji mTExec

 

For example, suppose there are four machines in our system. Figure 2.2 shows 

the corresponding computation cost matrix of the DAG in Figure 2.1. A submitted 

application consists of several tasks and is modeled by DAG. In our heterogeneous 

computing system, we consider a set of applications, },...,,{ 21 nAAAA = , compete for 

system resources. We assumed that the whole set of applications to be mapped is 

known apriori (static applications).                  

   

2.1.3 Basic Terminologies 
 
    In this section, we will define some terminologies. For a set of machines, 

M={m1,m2,…,mm}, and a set of non-compute resources, R={r1,r2,…,rr}, MA(mj) and 

RA(rk) gives the earliest available time of machine  and resource rjm k, respectively.  
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Task Resource Requirements 

T0 r1, r2

T1 r2, r3

T2 r3, r5

T3 r1, r4

T4 r4, r5, r6

T5 r6

T1 T2T0

T3 T4 T5

(a) (b)

Figure 2.3  Compatible graph example (a) A set of tasks and their 
resource requirements (b) Compatible graph 

 

As the mapping proceeds, the earliest available time of a resource is defined as the 

release time of the last task assigned to it.  

 

Definition 2.3 In a given partial schedule, we define the Earliest Start Time of task Ti 

on machine mj, denoted as , by the following formula: ),( ji mTEST

EST(Ti,mj) = max{MA(mj), max{FT(Tk) + Ck,i)}}             (Formula 2.1) 

where FT(Tk) is the finish time of task Tk and Ck,i is the communication cost between 

task Tk and Ti.  

 

Definition 2.4 In a given partial schedule, we define the Earliest Finish time of task Ti 

on machine mj, denoted as EFT(Ti,mj), by the following formula: 

),(),(),( jijiji mTExecmTESTmTEFT +=                  (Formula 2.2) 

 

Definition 2.5 Two tasks Ti and Tj are incompatible if and only if φ≠∩ )()( TjRTiR .  
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Incompatible tasks cannot be executed concurrently even if they have no 

precedence constrains among them. This is the resource sharing constrain. Therefore, 

tasks may be unable to run concurrently for precedence constrain or resource sharing 

constrain. We use the compatibility graph defined below to capture the implied 

resource sharing constrains among tasks that may belong to the same or different 

application. For example, Figure 2.3(b) shows the corresponding compatibility graph 

of the tasks set in Figure 2.3(a). 

 

Definition 2.6 Given a set of tasks, },...,,{ 21 nTTTT = , and their resource requirements, 

the compatibility graph [11] g = (V,E) , where 

 V is the set of tasks T; 

 Edge e(i,j) exists if and only if task  and task  are incompatible. iT jT

 

    An independent set is a set of vertices of g such that no two vertices of the set 

are adjacent. An independent set is called the maximal independent set if there are no 

other independent set of g that contains it. A maximal independent set with the 

largest number of vertices among all maximal independent set is called a maximum 

independent set. The maximum independent set problem is NP-complete [15]. In our 

model, a maximal independent set of g represent a maximal set of tasks that can be 

executed concurrently if there is no precedence constrain among them. For example,  

in Figure 2.3 (b), the maximal independent sets of g are {T0,T4}, {T1,T4}, {T0,T2,T5}, 

{T1,T3,T5}, and {T2,T3,T5}. The last three sets are maximum independent sets. Since 

the maximum independent problem is NP-complete, we will use a heuristic approach 

to select maximal independent sets. The approach is based on first selection a critical 

task vc, and then finding a maximal independent sets that contains vc.  
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2.2 The Resource Co-Allocation Problem 
 
    The resource co-allocation problem can be defined as the problem of 

simultaneously allocating multiple resources of different type to applications in order 

to meet specific performance. The need of resource co-allocation is a common 

characteristic of application running in Heterogeneous Computing (HC) environment. 

For example, an application may require a data repository, a High Performance 

Computing (HPC) platform, multiple display devices, and communication links all to 

be allocated simultaneously. 

    These are assumptions in our model. We assumed that only one task can use any 

resource (compute and non-compute resource) at any given time. For the resources 

requirement of each task, we assumed that each task Ti needs concurrent access to one 

compute resource mj and a number of additional resources as specified by the 

set . A task TRTR i ∈)( i cannot start execution until all its required resources are 

available to it. All required resources will be allocated to the task during its execution, 

and may be released before its completion. For the estimated execution time of each 

task, we assume that the estimated execution time and the actual execution time (run 

time) are different, that is, we can not perfect predict the execution time of each task 

in compiler time. 

    The objective function in our framework is to determine an assignment of tasks 

to compute resources and schedule their executions bases on all machines such that 

the overall schedule length of all submitted applications is minimized. Thus, we can 

define our objective function as  

    ,                     (Formula 2.3) })](max[{
1

N

i
AiFinishTimeMinimize

=

where Finish Time(Ai) is the completion time of application Ai. 
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2.3 Related Work 
    

In this section, we will briefly introduce two related work based on our problem 

domain in previous section. There are some differences between them. The method in 

section 2.3.1, it doesn’t consider early resource releasing but another one does.  

  

2.3.1 Alhusaini’s Method without Early Resource Release 
[11] 

 

The method that proposed by Alhusaini is a two phases algorithm. The first 

phase is compiler-time mapping phase and the other is run-time adaptation phase. We 

will introduce their concept as follows. 

The main work in compiler time mapping phase is to generate a schedule plan 

(scheduling order and resource assignment of tasks). In the compiler-time mapping 

phase, given a set of applications and resource requirements of tasks, Alhusaini’s 

method first find tasks that have satisfied precedence constrains. For simplicity, 

Alhusaini’s method combined all submitted applications by a hypothetical zero-cost 

entry task. Each entry node of submitted applications will connect to the hypothetical 

zero-cost entry task and the weight of these edges are zero. Alhusiani’s method 

proceeds level-by-level as follows. For each level l of G, it constructs the 

compatibility graph g for all tasks in this level. Then it repeats two steps until all tasks 

in this level have been allocated. The first process is to find a maximal independent 

set s. The second process is to allocate all tasks in s according to the scheduling order 

of the tasks. The mechanisms of deciding the scheduling order of a maximal 

independent set and different strategies for selecting critical tasks are listed in [11]. 

The reason of selecting critical tasks is mentioned in section 2.1.3.    
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    The run-time adaptation phase is used when the actual execution time is different 

from the estimated execution time. The goal of this phase is to dynamically adjust the 

scheduling order to get a better performance. In compiler-time mapping phase, it will 

generate a order list. Once a task completes its execution, this phase will scan through 

the order list to find all tasks that can be executed at this time and make local 

reordering.  

 

2.3.2 Alhusaini’s method with Early Resource Release [12] 
     

    Alhusaini [12] proposed another algorithm by releasing a resource rk if the task 

that holds the resource rk in run time won’t use it again. Thus, these two algorithms 

almost are the same except for the run-time adaptation phase. 

    The run-adaptation phase is used while a mapping event is happened, where a 

mapping event can be repeated at fixed time intervals, every time a task finishes, or 

every time a resource become available. Each process of mapping event is processed 

as follows. A sub set of tasks, S, that can be executed now is selected starting from the 

first waiting task based in the scheduling order of the scheduling plan that produce at 

compiler-time mapping phase. All tasks in S are considered for execution one-by-one 

in their scheduling order in the schedule plan. For each task Ti, it will first find the 

best machine mb that gives the shortest finish time for Ti at this mapping event. Then    

it uses a comparison condition to decide a machine to task Ti. Based on this 

comparison, it decides if we would execute Ti on machine mb or mj that has been 

assigned to Ti in compiler time mapping phase as specified in schedule plan at this 

mapping event. The comparison condition (migration condition) is  

),(),(),( jijibi mTExecmTExecmTExec ∆+≤ ,                (Formula 2.4) 
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where  is a value between 0% and 100%. It will execute T∆ i on machine mb if the 

condition is true. In the next chapter, we will describe the disadvantages in Alhusaini’s 

method and how we overcome these advantages. 

    We extend this method to a set of tasks not only for a set of independent tasks. In 

chapter 4, we will use this method to be the baseline algorithm. Then, we will 

evaluate the improvement of our algorithm compared to this baseline algorithm.  
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Chapter 3. Dynamic Resource 
Co-allocation Algorithm 

 

    In this chapter, we will mention the motivation of our method and define some 

terminologies that used in our algorithm in section 3.1. In section 3.2, we will 

describe our algorithm. Finally, we will have a discussion in section 3.3.  

 

3.1 Motivation of our Method 
  

    To begin with, we know that Alhusaini’s method with early resource releasing 

will allocate a machine mj M∈ in our system to each task Ti in DAG at compiler-time. 

For each task Ti, it will find a best machine mb which has the earliest finish time 

among all machines. Next, it uses a migration condition to decide whether the task Ti 

need to be migrated to machine mb or not while machine mb and machine mj are 

different. This may result in one situation that task Ti will not be allocated to machine 

mb because the migration condition doesn’t satisfy. We can easily find that when the 

heterogeneity is getting larger, the migration condition is more difficult to be satisfied. 

Furthermore, if task Ti doesn’t be allocated to machine mb, the finish time of task Ti 

will not be the earliest. This is the first disadvantage of Alhusaini’s migration 

mechanism. For example, Figure 3.1 (b) is the estimated execution time of task T2 on 

each machine. We assume that mj and mb are m2 and m1, respectively. Testing the 

migration condition by the estimated execution times of task T2 on machines m2 and 

m1, we can find that the migration condition will be false. 

    In the migration condition, we can find that the migration condition doesn’t 

consider the communication cost between task Ti and its immediate predecessors. This 
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will result in the situation that the schedule length increases quickly caused by the 

communication cost especially for the communication intensive applications. For 

example, in Figure 3.1, we assume that there are three machines and the Task T1 is 

allocated to machine m1 in the run time. Figure 3.1(a) is part of the DAG for a 

communication intensive application and Figure 3.1(b) is the estimated execution 

time of task T2 on each machine. Moreover, we assume that the task T2 is allocated to 

machine m2 in the compiler time phase. We will consider how to allocate the task T2 

in run-time adaptation phase now. First, it will find a best machine which is m1 now 

because the estimated earliest finish time of task T2 on machine m1 is the shortest that 

is calculated by Formula 2.2. Then, when we test the migration condition, we find that 

the migration condition is false even if the value,∆ , is 100%. Therefore in Figure 

3.1(c), the task T2 will be allocated to machine m2 and completes at time unit 107. We 

Machines   T2T1
  m1      20 

T2

  m2      7 

m1 

m2

m3

60 

  m3      15   

(a) (b) 

T1

T2

40                        100     107   Time 

        (c) 
Figure 3.1  (a) part of DAG  (b) estimated execution time of task T2 on 
each machine (C) part of schedule plan 
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can find that if task T2 was allocated to machine m1, the finish time of task T2 will be 

60. In a communication intensive application, the schedule length will increase 

quickly caused by migration condition fail. This is another impact of migration 

condition in communication intensive application. Because the migration condition 

mechanism has this disadvantage, we would try to remove it in our algorithm. 

    In Alhusaini’s method, the major part of the algorithm focuses on the allocation 

mechanism in compiler-time mapping phase. But we have no any information about 

when a task Ti will release a resource )( ik TRr ∈  before task Ti completes in 

compiler time. And, we don’t know what resources will be available at any significant 

time unit. So, all tasks are assumed that they won’t release any resource before they 

complete in compiler time. In order to improve the performance, Alhusaini use an 

adaptation mechanism in run time. Here, we want to allocate a set of independent 

tasks at each mapping event in run time directly instead of the compiler time. And, we 

will dynamic select a set of tasks to be allocated depending on the number of common 

resources and the data dependency between tasks which are unscheduled. Before we 

describe how we modify Alhusaini’s method, we will describe the weight function 

and the weighted compatibility graph in our method.          

 

3.2 Dynamic Resource Co-allocation Algorithm 
 

    We will describe the basic principle of Dynamic Resource Co-allocation 

Algorithm (DRCA) for resource co-allocation problem in this section. DRCA also has 

two phases: one is called the compiler time phase and the other is run time allocation 

phase. In section 3.2.1, we will describe the compiler time phase first. Next, we will 

describe the run time allocation phase in section 3.2.2. 
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Task Resource requirement

T0  

T1 r1, r2, r4

T2 r2, r4

T3 r0, r1, r2, r4, r5

T4 r1, r3, r5

T5 r0, r2

T6 r1

 

 
3.2.1 Compiler Time Phase 
 

    In the compiler time phase, we only produce the data that will be used in run 

time allocation phase. There are only two steps in this phase. Step one is to construct 

the Weighted Compatible Graph (WCG). The definition of WCG is given below. 

T0

T3 T4

T5

T2

T1

(c) 

(a) 

Figure 3.2  (a) two DAGs (b) resource requirement of tasks in 
Figure 3.2 (a) (c) weighted compatibility graph  

T1

T2 T3 T4

T0 T6

15 14
10 

17 

T5

(b) 

2

2 2

2

3
1

1
1

T6

1

1
1
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Compiler time phase 
Input: DAGs and their resource requirement  
Output: WCG  
 
Begin  
1. Construct the weighted compatible graph for the DAGs 
2. Mark all tasks that do not require any non-compute resource 
End  

Figure 3.3  Pseudo code of the compiler time phase 
 

 

Definition 3.1 Given a set of tasks and the resource requirement of each tasks, the 

Weighted Compatibility Graph (WCG) W = (T, E, C), where  

 T is the set of all tasks  

 E is a set of edges which is between the tasks in T; edge e(i, j) exists if task Ti 

and task Tj use some resources in common, 

 C is a function form E to integer in which cij represents the number of common  

resources between task Ti and Tj. 

 

For example, Figure 3.2 (c) shows the corresponding weighted compatibility graph to 

the set of tasks in Figure 2.3 (a) and their resource requirements in Figure 3.2 (b). The 

second step is to mark all tasks that do not require any non-compute resource during 

execution. Figure 3.3 is the algorithm of compiler time phase.  

 

3.2.2 Run Time Allocation Phase 
 

    To begin with, a task Ti is in the ready state if all the immediate predecessors of 

task Ti are completed and every resource rk∈R(Ti) are free and each unscheduled task  
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Run time allocation phase 
 
Begin 
1. Let WCG be the weighted compatible graph generated in the compiler time 

phase 
2. Counter = 0 
3. P is an integer such that 2Pp < N, where N is the total number of tasks 
4. While (counter < total number of tasks) do: 
5.   At each mapping event do: 
6.      If (some non-compute resources are released in this mapping event) 
7.         Adjust WCG   
8.      Put all ready state tasks into the set READY 
9.      Extract all tasks that are marked at compiler time from READY and put 

them into set M 
10.     do 
11.     Pick one task t with the highest weight in READY to be critical task and 

put it into set C 
12.     Remove tasks that are incompatible to t in READY 
13.     Calculate the size z of READY 
14.     While (z > P) 
15.     Find a maximal independent set S from READY such that C S ⊆

16.     Reinsert all tasks from M into S   
17.     While (S is not empty) do: 
18.         If (C is not empty) do: 
19.             Pick the highest weight task t from C 
20.             Remove t from C 
                Remove t from S 
21.         Else do: 
22.             Pick a task t from S 
23.             Remove t from S 
24.         Find a machine mj that has earliest finish time to t 
25.         Allocate R(t) to t         
26.         Execute t on machine m 
27.         Counter++  
28.     End(while)   
29. End(while) 
30. End  

Figure 3.4  Pseudo code of run time allocation phase
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Ti in our method has a dynamic weight. The weight of each task is defined as follows. 

 

Definition 3.2 Given a DAG G = (T, E, C) and the WCG W = (T1, E1, C1) of this 

DAG., we define the weight w(i) for each task Ti as  

w(i) = out_degree(i)+ ,∑ ijc 1),( Ejie ∈ ,                   (Formula 3.1) 

where out_degree(i) is out degree of task Ti in DAG and cij is the number of common 

resources between task Ti and Tj in WCG. 

 

    For example, given the DAG in Figure 3.2 (a) and the WCG in Figure 3.2 (c), the 

weight of task T1, w(1), is ten. And w(3) and w(4) are ten and four, respectively.  

During run time, if task Ti releases a resource rk and rk is one of the resources required 

by an unscheduled task Tj, the value cij will minus one. Therefore, the value cij will 

adjust in run time as the mapping proceeds. And, the weight of task Ti, w(Ti), will 

adjust in run time as the mapping proceeds. For example, while task T1 is in the 

execution state and releases resource r1 )( 1TR∈ , the weights of task T3, T4, and T6 will 

become nine, three, and two respectively.  

    One of the steps in run time allocation phase is to select a maximal independent 

set S. But the time complexity of selecting a maximal independent set is really great. 

The time complexity is O(2CCR), where C is the number of tasks in the independent 

set not included the critical task vc, and R is the total number of non-compute 

resources. Therefore, in order not to increase the overhead in run time, we have to add 

some processes to restrict the integer C. There are two kinds of situations that we 

describe below.    

 First, if a task Ti doesn’t require any non-compute resource and is in the ready 

state, it must be selected into the maximal independent set S. The reason is that task Ti 
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will not suffer any resource sharing constrain between other tasks that is in ready state, 

too. Therefore, it can concurrently execute with other tasks that is also in the ready 

state. We can mark these tasks that do not require any non-compute resource in the 

compiler time and extract them before selecting the maximal independent set S. Then, 

we will reinsert them to the maximal independent set S after selecting the maximal 

independent set.  

Second, for the selecting of maximal independent set, we select a set of critical 

tasks such that the integer C is less than k, where k is the number such that 2kk is less 

than the total number of tasks. While we select more critical tasks, there are more 

non-compute resources will be reserve for them. So, there are more tasks that in the 

ready state suffer resource sharing constrain to critical tasks. We can remove them 

before selecting a maximal independent set. This process will have the time 

complexity of selecting maximal independent set to be O(NR), where N is the total 

number of tasks.  

In run time allocation phase, there are some other processes at each mapping 

event. To ensure precedence constrain to be satisfied, we gather all tasks that are in 

the ready state to be set READY. Before we select a maximal independent set from 

READY, we must extract all tasks that is marked in compiler time phase. This will be 

helpful for us to restrict the time complexity of selecting a maximal set from READY. 

As we mention above, we will reinsert them to the maximal independent set. 

    We will select a set of tasks to be critical tasks according to the weight of each 

task. A task that has the greatest weight in the set READY will be selected first. There 

are two reasons for a task Ti to have the greatest weight in READY. First, task Ti has 

many immediate successors or second, there are many tasks that are unscheduled and 
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 T0 T1 T2 T3 T4 T5 T6

M1 5 5 4 7 8 3 3 

M2 7 6 4 6 7 8 4 

M3 4 4 5 5 6 5 3 

(a) 
m1 

 

require the resources that need by task Ti, too. Therefore, if the largest weight task Ti 

completes earlier, we will have more tasks to be ready and we may select more tasks 

to be execute concurrently. Selecting a set of critical tasks will also help us reduce the 

time complexity of selecting maximal independent set.  

After deciding the critical tasks, we will select a maximal independent set S that 

included the critical tasks from READY to be allocated. For the allocation mechanism, 

we use the highest weight first for the critical tasks in S and the other tasks are 

random. We use a simple allocation mechanism and consider two situations to reduce 

the time complexity of selecting maximal independent set in our algorithm. This will 

help us reduce the overhead in run time. If the overhead is increase quickly in run 

m2

m3

T0

T1

0  1  2  3  4  5  6                                time   
(b) 

Figure 3.5  (a) the estimated computation cost of tasks in Figure 3.2 (a) (b) the 
result of first mapping event (c) the result after second mapping event 
at time unit 2 

m1 

m2

m3

T0

T6

T1

(c) 
0  1  2  3  4  5  6                                time   

 20



time, the schedule length will also increase. When we want to allocate a task Ti to a 

suitable machine, we use the earliest finish time of task Ti on each machine to decide 

which machine is suitable. Figure 3.4 is the pseudo code of the run time allocation 

phase.  

    In Figure 3.5, we show an example for the first mapping event of tasks in Figure 

3.2 (a) and Figure 3.5 (a) is their estimated execution time on each machine. There are 

seven tasks in the Figure 3.2 (a), so the value k in run time allocation algorithm is 1. 

There two tasks will be put in the set READY that is task T0 and task T1. Because task 

T0 doesn’t require any non-compute resource, it will be extracted before the selecting 

of maximal independent set. The result of first mapping event is shown in Figure 3.5 

(b). We assumed that task T1 will release resource r1 at time unit 2. The result after 

this mapping event is in Figure 3.5 (c). 

  

3.3 Discussion  
 

    In section 3.1, we ever mentioned that Alhusaini’s method has two disadvantages 

caused by the migration condition. We will describe how we avoid these 

disadvantages in our method. For the first disadvantage in Alhusaini’s method, that is, 

in a communication intensive application, the schedule length will increase quickly 

caused by communication cost. To avoid this disadvantage, we must consider the 

computation and communication cost simultaneously. Therefore, we use the earliest 

finish time of a task Ti on each machine to choose a machine mj that will make the 

task Ti completes earlier and allocate task Ti to machine mj. This will help us avoid the 

schedule length increasing quickly in a communication intensive application. In 

chapter4, we will illustrate the effect of migration condition through the simulation 
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 Compiler time Run time 

Alhusaini’s method O(2NNR) O(N2R) 

DRCA O(N2R) O(N2R) 

Figure 3.6  Time complexity of Alhusaini’s method and DRCA 
 

result.  

    In Alhusaini’s method, when the heterogeneity is getting bigger and bigger, the 

migration condition would be false frequently. It would be harder to allocate a task Ti 

to the best machine mb. In DRCA, we directly allocate a task Ti to a machine mj in run 

time. Therefore, we can avoid the disadvantage of migration condition mechanism. 

    Figure 3.6 is the time complexity of Alhusaini’s method and DRCA. In the 

compiler time mapping phase of Alhusaini’s method, the time complexity of selecting 

a maximal independent set is O(2NNR), where N is the total number of tasks and R is 

the total number of resources. The run time adaptation phase of Alhusaini’s method, 

the time complexity is O(N2R). In DRCA, the time complexity of compiler time phase 

is focus on constructing the WCG. The time complexity of run time allocation phase 

in DRCA is O(N2R). 
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Chapter 4. Simulation and Performance 
Evaluation 

 

    After describing the Dynamic Resource Co-allocation Algorithm (DRCA), we 

will verify the effectiveness of it by implementation and simulation. In section 4.1, we 

will describe the architecture of simulator. Next, we will evaluate the performance in 

section 4.2. 

 

4.1 Simulation Construction 
 

    We use the C++ language to construct our simulator. There are two parts in our 

simulator. The first part is Random Graph Generator (RGG) [13], the second part is 

the algorithm (DRCA or Alhusaini’s method). Figure 4.1 is the flow chart of our 

simulator. We will give the detailed description about each part in the following.  

 

(a) Random Graph Generator (RGG) [13] 

    The main function of the RGG is to generate the DAG. As we define in definition 

2.1, the parallel program with n tasks can be represented as DAG with n tasks. In our 

simulation, we use several parameters to generate a DAG. The parameters are as 

following. 

 Number of tasks in the graph, (TASK). 

 Shape parameter of the graph, (SHAPE). 

The height (depth) of a DAG is randomly generated from a uniform distribution 

with a mean value equal to
SHAPE

TASK . The wide of each level is randomly selected 

from a uniform distribution with mean equal to taskSHAPE × . A dense graph  
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Random Graph Generator 

 

 

(a shorten graph with high parallelism) can be generated by selecting SHAPE >> 

1.0; if SHAPE << 1.0, it will generate a long graph with a low parallelism 

degree. 

 Maximal out degree of a task (OUT_DEGREE). 

 Communication to computation ratio (CCR). 

It is the ratio of the average communication cost to the average computation cost. 

If the CCR value of a DAG is very low, it can be considered as a 

computation-intensive application. On the contrary, it will be a 

communication-intensive application. 

 Range percentage of computation cost on machines, (HETERGENEITY). 

It is basically the heterogeneity factor for machine speeds. A high percentage 

Compiler time mapping 
phase 

Run time adaptation 
phase 

Compiler time phase 

Run time allocation phase 

Alhusaini’s method DRCA 
Algorithm

 

Finial schedule 

Figure 4.1 The flow chart of the simulator 

 24



value causes a significant different in a task’s computation cost among the 

machines and a low percentage indicates that the expected computation cost of a 

task is almost equal on any given machines in the system. 

 

The parameters that we describe above can be used to generate DAGs with any 

characteristic. In the following, we list other parameters used in our simulation 

environment.  

       

 Number of machines in the system, (MACHINE) 

 Number of non-compute resources in the system, (RCS) 

 Percentage Error, (PE). 

The actual (run-time) values of computation and communication costs are 

randomly selected from the range [-PE, +PE] of the estimated values, where PE 

is a value between 0% and 100%. Perfect estimated values correspond to PE = 0. 

 RANGE. 

It is the ratio of the number of tasks that doesn’t have perfect estimated values to 

the total number of tasks. 

 Resource Using Mode, (RUM). 

This mode is used to decide that how many resource a task uses. There are three 

modes in RUM. RANDOM_RUM: random decides that how many resources a 

task uses. MORE_RUM: almost all tasks use more than half of the total number 

of non-compute resources. LESS_RUM: almost all tasks use less than half of the 

total number of non-compute resource. 

 Resource Releasing Mode, (RRM) 

This mode is used to decide that when a task Ti will release a resource rk )( iTR∈  
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before completes. There are four modes in RRM. RANDOM_RRM: random 

decide that when a task Ti will release a resource rk )( iTR∈ . LATE_RRM: almost 

all tasks release a task rk )( iTR∈ after half of the actual computation cost. 

EARLY_RRM: almost all tasks release a task rk )( iTR∈ before half of the actual 

computation cost. NO_RRM: no early resources release. 

 

    Using all of these parameters, we can construct any kinds of applications and 

characteristic to them. In each experiment, we run ten DAGs to each set of parameters 

and use the average schedule lengths of these DAGs to be the schedule length of this 

set of parameters. Figure 4.2 shows all range of the parameters. 

 

(b) Algorithm 

    Alhusaini’s method is a level-by-level algorithm. In order to get a shorter 

schedule length in Alhusaini’s method, we implement the Alhusaini’s method in a 

crossing level method [14] in our simulator. DRCA is also implemented in the 

simulator. The input of the algorithm is the DAGs and their resource requirements. 

The output of the algorithm is the finial schedule. In the next section, we will 

illustrate our evaluation results. 

     

4.2 Performance Evaluations  
     

    In this section, we will evaluate the performance of DRCA comparing with the 

Alhusaini’s method. First of all, we define the Schedule Length Ration (SLR) as the 

average schedule length of DRCA divides by the average schedule length of 

Alhusaini’s method. If the SLR is larger than 1.0 means the Alhusaini’s method has 
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MACHINE 2, 4, 6, 8, 10, 12 

PE 0%, 30%, 60%, 90% 

RANGE 20%, 40%, 60%, 80%, 100% 

OUT_DEGREE 4, 8, 12 

SHAPE 0.5, 1, 2 

RCS 4, 8, 12, 16, 20 

RRM RANDOM, LATE, EARLY, NO 

RUM RANDOM, MORE, LESS 

CCR 0.1, 0.5, 1, 5, 10 

TASK 100, 150, 200, 250, 300 

HETEROGNEEITY 0.2, 0.5, 1, 1.5 

 
Figure 4.2  The range of all parameters 

 

the smaller schedule length. On the contrary, if the SLR is smaller than 1.0 means the 

DRCA has smaller schedule length. We observe the variation of SLR on three 

parameters, CCR, HETEROGENEITY, and TASK in our experiments.  

    First, we will observe the effect of CCR. The simulation result is illustrates in 

Figure 4.3 and Figure 4.4. We fixed some parameters in these experiments, 

MACHINE{8}, PE{30%}, RANGE{60%}, OUT_DEGREE{4, 8, 12}, SHAPE{0.5, 

1, 2}, RCS{8}, RANDOM_RUM, and RANDOM_RRM. We observe the effect of 

CCR {0.1, 0.5, 1, 5, 10} with changing the TASK {100, 150, 200} and 

HETEROGENEITY{0.2, 1, 1.5} in Figure 4.3 and Figure 4.4, respectively. We can 

find that as the CCR increases the SLR decreases quickly. Therefore, in a 

communication intensive application, Alhusaini’s method will have larger schedule 

length than DRCA. In a communication intensive application, an efficient method 
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Figure 4.3  The simulation result of 
effect of CCR with changing TASK 

Figure 4.4  The simulation result of 
effect of CCR with changing 

HETEROGENEITY 

 

 

 

to reduce the communication cost between tasks will enormously shorten the schedule 

length. But, the migration condition in Alhusaini’s method, only computation cost will 

be used to decide to migrate a task to its best machine or not in run time. Therefore, 

the schedule length will increase quickly caused by the communication cost. As we 

mention in section 3.1, Alhusaini’s method has this disadvantage and we prove it 

through this experiment. In a computation intensive application, we do not have the 

great improvement like communication intensive application but the SLR is also 

below to 1.0. So, we still have shorter schedule length in a computation intensive 

application.   

There is also another disadvantage in Alhusaini’s method that we mention in 

section 3.1, that is, as the HETEROGENEITY is getting larger the migration 

condition will be false frequently. In Figure 4.5 and Figure 4.6, we will illustrate the 

effect of HETEROGENEITY on SLR. Through these two experiments, we can find  
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Figure 4.6  The simulation result of 
effect of HETEROGENEITY with 

changing TASK 

Figure 4.5  The simulation result of 
effect of HETEROGENEITY with 

changing CCR 
 

 

 

that the SLR decreases as the HETEROGENEITY increases. Each time, the migration 

condition is tested and the result is false. Here, we consider the task Ti to be allocated 

to the machine that has larger finish time than best machine. This will make the finish 

time of the task Ti not the earliest. Therefore, if the migration condition false 

frequently, there are more tasks won’t be allocated to the best machine. While the 

HETEROGENEITY becomes larger, the difference of computation cost of a task on 

each machine will be greatly. So, if the machine mj that has been allocated to a task Ti 

in compiler time has smaller computation cost than other machines in system for task 

Ti, it will be harder to migrate successfully in run time. This is because the 

computation cost of task Ti on other machines is bigger than the computation cost on 

mj. Therefore, as the HETEROGENEITY increases the SLR decreases.   

We also want to observe the parameter TASK. When there are more tasks in a 

DAG, there are more and more chances for a DAG to test the migration condition and 
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Figure 4.8  The simulation result of 
effect of TASK with changing 
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Figure 4.7  The simulation result of 
effect of TASK with changing CCR 

 

 

 

to be false frequently. While there more times of migration condition false, there are 

more times for Alhusaini’s method to increase the schedule length. Therefore, as the 

number of tasks increases the SLR decreases. In Figure 4.7 and Figure 4.8, we 

observe the parameter TASK. We find that the SLR decreases slowly as the TASK 

increases.  

    Because of the disadvantage of migration condition in Alhusaini’s method, we 

get much improvement in DRCA. But beside the disadvantage of migration condition, 

we want to know whether we have any other improvement in DRCA comparing with 

Alhusaini’s method. Therefore, in order to make sure that each task will be allocated 

to best machine, we set the value,∆ , in Alhusaini’s method to be infinity. Therefore, 

each task will be allocated to best machine at run time adaptation phase in Alhusaini’s 

method. The simulation results are in Figure 4.9 to Figure 4.14. In these experiments, 

we still observe three parameters, CCR, HETEROGENEITY, and TASK. Through 
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 Figure 4.9  The simulation result of 
effect of CCR without effect of 
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Figure 4.9 to Figure 4.14, we can find that 

shows that without effect of migration cond

length than Alhusaini’s method.  

    In our simulation, we found that the par

RUM, and RRM have no any significant im

of these parameters, the varying range of t

found that as these parameters change in 

variation. Therefore, we do not discuss th

here.  
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Figure 4.11  The simulation result of
effect of HETEROGENEITY without
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Chapter 5. Conclusion and Future  
Work 

 
    In the previous chapters, we have introduced our system model, application 

models, and proposed a two phase algorithm for the resource co-allocation problem. 

The compiler time phase is used to generate the data that will be used in run time. The 

run time allocation phase is used to select a maximal independent set and allocate a 

task to a suitable machine. In order to evaluate the performance of our algorithm, we 

construct a simulation environment and compare with Alhusaini’s method. Finally, we 

will conclude our thesis and propose some future work for our research. 

 

5.1 Conclusion   
 

    In Alhusaini’s method, we found that the migration condition mechanism would 

be a drawback for finding a better schedule plan. And, the assumption in compiler 

time doesn’t consider early resource releasing. For these reasons, we proposed the 

dynamic resource co-allocation algorithm. In summary, it has the following main 

advantages compared with Alhusaini’s method: 

(1) For effectiveness, we propose a weight function for allocating a task in run time 

and remove the effect of migration condition mechanism. We verify the 

effectiveness of DRCA by constructing simulation. The simulation results in 

chapter 4 show that DRCA effectively shortens the schedule length comparing 

with Alhusaini’s method. Especially in communication intensive application, we 

obtain more better performance. 

(2) For efficiency, the time complexity of run time phase in Alhusaini’s method and 

DRCA are in common. Both of them are O(N2R), where N is the total number of 
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tasks and R is the total number of non-compute resources. But in compiler time 

phase, the time complexity of Alhusaini’s method is O(2NR) greater than DRCA’s 

time complexity which is O(N2R). Therefore, whether in compiler time or run time, 

we are more efficient than that of Alhusaini’s method. 

 

5.2 Future Works 
 

    In addition to the feature we discussed before, there are still some issues in the 

future research.  

(1) In our system, we use a fully-connected network. However, for more realistic, we 

can take the consideration of different network topology, system latency…, etc, in 

our system model. When the system model is more and more realistic, it is more 

difficult to design a good algorithm.   

(2) We may expand our assumptions to consider usage of multiple compute resources 

and advance resource reservations. With advantage reservation, system resources 

can be reserved in advance for specific time intervals. To co-allocate a set of 

resources in this case, efficient algorithms are needed to find the best time slot 

when all resources are available for required duration.  
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