
Chapter 1. Introduction

Different kinds of resources interconnected with a high-speed network provide a

computing platform, called Heterogeneous Computing (HC) system [11]. In general, a

HC system means the system that only consider the compute resources which can be a

workstation, a personal computer, etc. But, there are many kinds of other resources in

HC system, high performance computing platform, workstations, personal computers,

data repository, input/output device, etc. There are some applications in HC system.

For example, an interactive data analysis application may require simultaneous access

to a storage system holding a copy of the data, a supercomputer for analysis, network

elements for data transfer, and a display device for interaction [16]. Because of the

various and sufficient resources, HC system can support a powerful execution

capability. Therefore, an efficient and effective mapping algorithm for an application

on HC system becomes more important. A good scheduling method will enormously

promote the execution capability of HC system.

Mapping applications in HC system is a well researched problem in the literature.

The mapping problem is defined as the problem of assigning application tasks to

suitable resource (matching problem) and ordering task execution in time (scheduling

problem) to optimize a specific object function. Many static [1, 2, 3, 4] and dynamic

[5, 6, 7, 8, 9] algorithms are proposed for mapping applications in HC system (for a

detail classification see [10]). Most of the previous algorithms focus on compute

resources only.

In this thesis, we consider the problem of mapping a set of applications to a HC

system where application tasks require concurrent access to multiple resources of

different types. In general, this problem is the resource co-allocation problem. In this

research area, Alhusaini is a pioneer [11]. He proposed two methods for resource

 1

co-allocation problem [11, 12]. In [11] and [12], both of them are two phases

algorithms. These two algorithms almost are the same except the second phase. In the

first phase, a schedule plan is generated at compiler time. The schedule plan gives a

scheduling order and resource assignments of tasks, such that the overall schedule

length is minimized and all resource sharing constraints are satisfied. The goal of the

second phase is to improve the performance of the schedule plan generated at

compiler time by adapting to run time change. In a communication intensive

application, Alhusaini’s method will suffer a disadvantage, that is, schedule length

increases quickly caused by the communication cost.

In order to overcome the disadvantage in Alhusaini’s method, we also proposed a

two phases algorithm which is called the dynamic resource co-allocation algorithm.

In the first phase, we will only generate the data that will be used in the second phase.

The main allocation mechanism is in the second phase. We successfully overcome the

disadvantage in Alhusaini’s method and propose an effective and efficient algorithm

for resource co-allocation problem.

The thesis is organized as follows. In chapter 2, we will describe the problem

domain, system model, application model, and some terminologies. The algorithm

which we propose will be introduced in chapter 3. In chapter 4, we will describe our

simulation environment and evaluate our algorithm. Finally, we will make the

conclusion and list some future work in chapter 5.

 2

Chapter 2. Fundamental Background
and Related Work

 In this chapter, we will introduce the system model, application model, and some

basic terminologies in section 2.1. Next, we will introduce the resource co-allocation

problem in the section 2.2. Finally, we will go through some related works to get

familiar with the development of the research in this area in section 2.3.

2.1 Fundamental Background

2.1.1 System Model

 In our system model, we consider a heterogeneous computing system with m

compute resources (machines), M={m1,m2,…,mm}, and a set of r non-compute

resources (resource), R={r1,r2,…,rr}. A machine can be a HPC platform, a

workstation, a personal computer, etc. A non-compute resource can be a data

repository, an input/output device, etc. Resources are interconnected by the network.

2.1.2 Application Model

 Before describing our application model, we will define the DAG which is often

used to represent the parallel program. We assume that a parallel program is

composed of n tasks {T1,T2,…,Tn} in which there is a partial order. The partial order

Ti<Tj implies that Tj can not start execution until Ti finishes due to the data

dependency between them. This restriction is also called the precedence constrain.

Formally, we give the following definition and Figure 2.1 shows a simple example of

DAG.

 3

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

41017
14263026
6179
2012315
2622619
520154
13541820
3035730
1912106

Exec

T0 T1

Definition 2.1 A parallel program can be represented by a Directed Acyclic Graph

(DAG) G = (T, E, C, R), where

 T={T1,T2,…,Tn} is a finite set of tasks;

 E is a set of edges which is between the tasks in T and each edge e(i, j) represents

the data dependency between task Ti and task Tj;

 C is the function from E to integer in which cij represents the communication

cost from task Ti to task Tj.

 R is a function from T to a set of resources in our system. When a task Ti is

executed, it needs a set of resources, denoted as R(Ti).

We assume that the communication cost in the same machine is negligible in our

system. That is, the communication cost is zero if Ti and Tj are scheduled to the same

machine.

In a DAG, a task without any parent is called an entry task and a task without any

T2 T3

T6

T4

T8

T7

T5

15 9 16 3 20

30 10

15

7

Figure 2.2 computation cost matrix Figure 2.1 An example of DAG

 4

child is called exit task. If there exists the data dependency from task Ti to task Tj in

the DAG, we say that task Ti is the immediate predecessor of task Tj and task Tj is the

immediate successor of task Ti.

In our system model, a task on different machine has different computation cost.

Thus, we need the computation cost matrix Exec to describe the computation cost.

The matrix is defined as below. Exec

Definition 2.2 In a given task graph, a computation cost matrix Exec is a n m matrix

in which each component is the computation cost to complete T

×

),(ji mTExec i on

machine mj. We assumed that the communication cost between machine and all

resources which task needs to access during execution is included in

the .

jm

iT

),(ji mTExec

For example, suppose there are four machines in our system. Figure 2.2 shows

the corresponding computation cost matrix of the DAG in Figure 2.1. A submitted

application consists of several tasks and is modeled by DAG. In our heterogeneous

computing system, we consider a set of applications, },...,,{ 21 nAAAA = , compete for

system resources. We assumed that the whole set of applications to be mapped is

known apriori (static applications).

2.1.3 Basic Terminologies

 In this section, we will define some terminologies. For a set of machines,

M={m1,m2,…,mm}, and a set of non-compute resources, R={r1,r2,…,rr}, MA(mj) and

RA(rk) gives the earliest available time of machine and resource rjm k, respectively.

 5

Task Resource Requirements

T0 r1, r2

T1 r2, r3

T2 r3, r5

T3 r1, r4

T4 r4, r5, r6

T5 r6

T1 T2T0

T3 T4 T5

(a) (b)

Figure 2.3 Compatible graph example (a) A set of tasks and their
resource requirements (b) Compatible graph

As the mapping proceeds, the earliest available time of a resource is defined as the

release time of the last task assigned to it.

Definition 2.3 In a given partial schedule, we define the Earliest Start Time of task Ti

on machine mj, denoted as , by the following formula:),(ji mTEST

EST(Ti,mj) = max{MA(mj), max{FT(Tk) + Ck,i)}} (Formula 2.1)

where FT(Tk) is the finish time of task Tk and Ck,i is the communication cost between

task Tk and Ti.

Definition 2.4 In a given partial schedule, we define the Earliest Finish time of task Ti

on machine mj, denoted as EFT(Ti,mj), by the following formula:

),(),(),(jijiji mTExecmTESTmTEFT += (Formula 2.2)

Definition 2.5 Two tasks Ti and Tj are incompatible if and only if φ≠∩)()(TjRTiR .

 6

Incompatible tasks cannot be executed concurrently even if they have no

precedence constrains among them. This is the resource sharing constrain. Therefore,

tasks may be unable to run concurrently for precedence constrain or resource sharing

constrain. We use the compatibility graph defined below to capture the implied

resource sharing constrains among tasks that may belong to the same or different

application. For example, Figure 2.3(b) shows the corresponding compatibility graph

of the tasks set in Figure 2.3(a).

Definition 2.6 Given a set of tasks, },...,,{ 21 nTTTT = , and their resource requirements,

the compatibility graph [11] g = (V,E) , where

 V is the set of tasks T;

 Edge e(i,j) exists if and only if task and task are incompatible. iT jT

 An independent set is a set of vertices of g such that no two vertices of the set

are adjacent. An independent set is called the maximal independent set if there are no

other independent set of g that contains it. A maximal independent set with the

largest number of vertices among all maximal independent set is called a maximum

independent set. The maximum independent set problem is NP-complete [15]. In our

model, a maximal independent set of g represent a maximal set of tasks that can be

executed concurrently if there is no precedence constrain among them. For example,

in Figure 2.3 (b), the maximal independent sets of g are {T0,T4}, {T1,T4}, {T0,T2,T5},

{T1,T3,T5}, and {T2,T3,T5}. The last three sets are maximum independent sets. Since

the maximum independent problem is NP-complete, we will use a heuristic approach

to select maximal independent sets. The approach is based on first selection a critical

task vc, and then finding a maximal independent sets that contains vc.

 7

2.2 The Resource Co-Allocation Problem

 The resource co-allocation problem can be defined as the problem of

simultaneously allocating multiple resources of different type to applications in order

to meet specific performance. The need of resource co-allocation is a common

characteristic of application running in Heterogeneous Computing (HC) environment.

For example, an application may require a data repository, a High Performance

Computing (HPC) platform, multiple display devices, and communication links all to

be allocated simultaneously.

 These are assumptions in our model. We assumed that only one task can use any

resource (compute and non-compute resource) at any given time. For the resources

requirement of each task, we assumed that each task Ti needs concurrent access to one

compute resource mj and a number of additional resources as specified by the

set . A task TRTR i ∈)(i cannot start execution until all its required resources are

available to it. All required resources will be allocated to the task during its execution,

and may be released before its completion. For the estimated execution time of each

task, we assume that the estimated execution time and the actual execution time (run

time) are different, that is, we can not perfect predict the execution time of each task

in compiler time.

 The objective function in our framework is to determine an assignment of tasks

to compute resources and schedule their executions bases on all machines such that

the overall schedule length of all submitted applications is minimized. Thus, we can

define our objective function as

 , (Formula 2.3) })](max[{
1

N

i
AiFinishTimeMinimize

=

where Finish Time(Ai) is the completion time of application Ai.

 8

2.3 Related Work

In this section, we will briefly introduce two related work based on our problem

domain in previous section. There are some differences between them. The method in

section 2.3.1, it doesn’t consider early resource releasing but another one does.

2.3.1 Alhusaini’s Method without Early Resource Release
[11]

The method that proposed by Alhusaini is a two phases algorithm. The first

phase is compiler-time mapping phase and the other is run-time adaptation phase. We

will introduce their concept as follows.

The main work in compiler time mapping phase is to generate a schedule plan

(scheduling order and resource assignment of tasks). In the compiler-time mapping

phase, given a set of applications and resource requirements of tasks, Alhusaini’s

method first find tasks that have satisfied precedence constrains. For simplicity,

Alhusaini’s method combined all submitted applications by a hypothetical zero-cost

entry task. Each entry node of submitted applications will connect to the hypothetical

zero-cost entry task and the weight of these edges are zero. Alhusiani’s method

proceeds level-by-level as follows. For each level l of G, it constructs the

compatibility graph g for all tasks in this level. Then it repeats two steps until all tasks

in this level have been allocated. The first process is to find a maximal independent

set s. The second process is to allocate all tasks in s according to the scheduling order

of the tasks. The mechanisms of deciding the scheduling order of a maximal

independent set and different strategies for selecting critical tasks are listed in [11].

The reason of selecting critical tasks is mentioned in section 2.1.3.

 9

 The run-time adaptation phase is used when the actual execution time is different

from the estimated execution time. The goal of this phase is to dynamically adjust the

scheduling order to get a better performance. In compiler-time mapping phase, it will

generate a order list. Once a task completes its execution, this phase will scan through

the order list to find all tasks that can be executed at this time and make local

reordering.

2.3.2 Alhusaini’s method with Early Resource Release [12]

 Alhusaini [12] proposed another algorithm by releasing a resource rk if the task

that holds the resource rk in run time won’t use it again. Thus, these two algorithms

almost are the same except for the run-time adaptation phase.

 The run-adaptation phase is used while a mapping event is happened, where a

mapping event can be repeated at fixed time intervals, every time a task finishes, or

every time a resource become available. Each process of mapping event is processed

as follows. A sub set of tasks, S, that can be executed now is selected starting from the

first waiting task based in the scheduling order of the scheduling plan that produce at

compiler-time mapping phase. All tasks in S are considered for execution one-by-one

in their scheduling order in the schedule plan. For each task Ti, it will first find the

best machine mb that gives the shortest finish time for Ti at this mapping event. Then

it uses a comparison condition to decide a machine to task Ti. Based on this

comparison, it decides if we would execute Ti on machine mb or mj that has been

assigned to Ti in compiler time mapping phase as specified in schedule plan at this

mapping event. The comparison condition (migration condition) is

),(),(),(jijibi mTExecmTExecmTExec ∆+≤ , (Formula 2.4)

 10

where is a value between 0% and 100%. It will execute T∆ i on machine mb if the

condition is true. In the next chapter, we will describe the disadvantages in Alhusaini’s

method and how we overcome these advantages.

 We extend this method to a set of tasks not only for a set of independent tasks. In

chapter 4, we will use this method to be the baseline algorithm. Then, we will

evaluate the improvement of our algorithm compared to this baseline algorithm.

 11

Chapter 3. Dynamic Resource
Co-allocation Algorithm

 In this chapter, we will mention the motivation of our method and define some

terminologies that used in our algorithm in section 3.1. In section 3.2, we will

describe our algorithm. Finally, we will have a discussion in section 3.3.

3.1 Motivation of our Method

 To begin with, we know that Alhusaini’s method with early resource releasing

will allocate a machine mj M∈ in our system to each task Ti in DAG at compiler-time.

For each task Ti, it will find a best machine mb which has the earliest finish time

among all machines. Next, it uses a migration condition to decide whether the task Ti

need to be migrated to machine mb or not while machine mb and machine mj are

different. This may result in one situation that task Ti will not be allocated to machine

mb because the migration condition doesn’t satisfy. We can easily find that when the

heterogeneity is getting larger, the migration condition is more difficult to be satisfied.

Furthermore, if task Ti doesn’t be allocated to machine mb, the finish time of task Ti

will not be the earliest. This is the first disadvantage of Alhusaini’s migration

mechanism. For example, Figure 3.1 (b) is the estimated execution time of task T2 on

each machine. We assume that mj and mb are m2 and m1, respectively. Testing the

migration condition by the estimated execution times of task T2 on machines m2 and

m1, we can find that the migration condition will be false.

 In the migration condition, we can find that the migration condition doesn’t

consider the communication cost between task Ti and its immediate predecessors. This

 12

will result in the situation that the schedule length increases quickly caused by the

communication cost especially for the communication intensive applications. For

example, in Figure 3.1, we assume that there are three machines and the Task T1 is

allocated to machine m1 in the run time. Figure 3.1(a) is part of the DAG for a

communication intensive application and Figure 3.1(b) is the estimated execution

time of task T2 on each machine. Moreover, we assume that the task T2 is allocated to

machine m2 in the compiler time phase. We will consider how to allocate the task T2

in run-time adaptation phase now. First, it will find a best machine which is m1 now

because the estimated earliest finish time of task T2 on machine m1 is the shortest that

is calculated by Formula 2.2. Then, when we test the migration condition, we find that

the migration condition is false even if the value,∆ , is 100%. Therefore in Figure

3.1(c), the task T2 will be allocated to machine m2 and completes at time unit 107. We

Machines T2T1
 m1 20

T2

 m2 7

m1

m2

m3

60

 m3 15

(a) (b)

T1

T2

40 100 107 Time

 (c)
Figure 3.1 (a) part of DAG (b) estimated execution time of task T2 on
each machine (C) part of schedule plan

 13

can find that if task T2 was allocated to machine m1, the finish time of task T2 will be

60. In a communication intensive application, the schedule length will increase

quickly caused by migration condition fail. This is another impact of migration

condition in communication intensive application. Because the migration condition

mechanism has this disadvantage, we would try to remove it in our algorithm.

 In Alhusaini’s method, the major part of the algorithm focuses on the allocation

mechanism in compiler-time mapping phase. But we have no any information about

when a task Ti will release a resource)(ik TRr ∈ before task Ti completes in

compiler time. And, we don’t know what resources will be available at any significant

time unit. So, all tasks are assumed that they won’t release any resource before they

complete in compiler time. In order to improve the performance, Alhusaini use an

adaptation mechanism in run time. Here, we want to allocate a set of independent

tasks at each mapping event in run time directly instead of the compiler time. And, we

will dynamic select a set of tasks to be allocated depending on the number of common

resources and the data dependency between tasks which are unscheduled. Before we

describe how we modify Alhusaini’s method, we will describe the weight function

and the weighted compatibility graph in our method.

3.2 Dynamic Resource Co-allocation Algorithm

 We will describe the basic principle of Dynamic Resource Co-allocation

Algorithm (DRCA) for resource co-allocation problem in this section. DRCA also has

two phases: one is called the compiler time phase and the other is run time allocation

phase. In section 3.2.1, we will describe the compiler time phase first. Next, we will

describe the run time allocation phase in section 3.2.2.

 14

Task Resource requirement

T0

T1 r1, r2, r4

T2 r2, r4

T3 r0, r1, r2, r4, r5

T4 r1, r3, r5

T5 r0, r2

T6 r1

3.2.1 Compiler Time Phase

 In the compiler time phase, we only produce the data that will be used in run

time allocation phase. There are only two steps in this phase. Step one is to construct

the Weighted Compatible Graph (WCG). The definition of WCG is given below.

T0

T3 T4

T5

T2

T1

(c)

(a)

Figure 3.2 (a) two DAGs (b) resource requirement of tasks in
Figure 3.2 (a) (c) weighted compatibility graph

T1

T2 T3 T4

T0 T6

15 14
10

17

T5

(b)

2

2 2

2

3
1

1
1

T6

1

1
1

 15

Compiler time phase
Input: DAGs and their resource requirement
Output: WCG

Begin
1. Construct the weighted compatible graph for the DAGs
2. Mark all tasks that do not require any non-compute resource
End

Figure 3.3 Pseudo code of the compiler time phase

Definition 3.1 Given a set of tasks and the resource requirement of each tasks, the

Weighted Compatibility Graph (WCG) W = (T, E, C), where

 T is the set of all tasks

 E is a set of edges which is between the tasks in T; edge e(i, j) exists if task Ti

and task Tj use some resources in common,

 C is a function form E to integer in which cij represents the number of common

resources between task Ti and Tj.

For example, Figure 3.2 (c) shows the corresponding weighted compatibility graph to

the set of tasks in Figure 2.3 (a) and their resource requirements in Figure 3.2 (b). The

second step is to mark all tasks that do not require any non-compute resource during

execution. Figure 3.3 is the algorithm of compiler time phase.

3.2.2 Run Time Allocation Phase

 To begin with, a task Ti is in the ready state if all the immediate predecessors of

task Ti are completed and every resource rk∈R(Ti) are free and each unscheduled task

 16

Run time allocation phase

Begin
1. Let WCG be the weighted compatible graph generated in the compiler time

phase
2. Counter = 0
3. P is an integer such that 2Pp < N, where N is the total number of tasks
4. While (counter < total number of tasks) do:
5. At each mapping event do:
6. If (some non-compute resources are released in this mapping event)
7. Adjust WCG
8. Put all ready state tasks into the set READY
9. Extract all tasks that are marked at compiler time from READY and put

them into set M
10. do
11. Pick one task t with the highest weight in READY to be critical task and

put it into set C
12. Remove tasks that are incompatible to t in READY
13. Calculate the size z of READY
14. While (z > P)
15. Find a maximal independent set S from READY such that C S ⊆

16. Reinsert all tasks from M into S
17. While (S is not empty) do:
18. If (C is not empty) do:
19. Pick the highest weight task t from C
20. Remove t from C
 Remove t from S
21. Else do:
22. Pick a task t from S
23. Remove t from S
24. Find a machine mj that has earliest finish time to t
25. Allocate R(t) to t
26. Execute t on machine m
27. Counter++
28. End(while)
29. End(while)
30. End

Figure 3.4 Pseudo code of run time allocation phase

 17

Ti in our method has a dynamic weight. The weight of each task is defined as follows.

Definition 3.2 Given a DAG G = (T, E, C) and the WCG W = (T1, E1, C1) of this

DAG., we define the weight w(i) for each task Ti as

w(i) = out_degree(i)+ ,∑ ijc 1),(Ejie ∈ , (Formula 3.1)

where out_degree(i) is out degree of task Ti in DAG and cij is the number of common

resources between task Ti and Tj in WCG.

 For example, given the DAG in Figure 3.2 (a) and the WCG in Figure 3.2 (c), the

weight of task T1, w(1), is ten. And w(3) and w(4) are ten and four, respectively.

During run time, if task Ti releases a resource rk and rk is one of the resources required

by an unscheduled task Tj, the value cij will minus one. Therefore, the value cij will

adjust in run time as the mapping proceeds. And, the weight of task Ti, w(Ti), will

adjust in run time as the mapping proceeds. For example, while task T1 is in the

execution state and releases resource r1)(1TR∈ , the weights of task T3, T4, and T6 will

become nine, three, and two respectively.

 One of the steps in run time allocation phase is to select a maximal independent

set S. But the time complexity of selecting a maximal independent set is really great.

The time complexity is O(2CCR), where C is the number of tasks in the independent

set not included the critical task vc, and R is the total number of non-compute

resources. Therefore, in order not to increase the overhead in run time, we have to add

some processes to restrict the integer C. There are two kinds of situations that we

describe below.

 First, if a task Ti doesn’t require any non-compute resource and is in the ready

state, it must be selected into the maximal independent set S. The reason is that task Ti

 18

will not suffer any resource sharing constrain between other tasks that is in ready state,

too. Therefore, it can concurrently execute with other tasks that is also in the ready

state. We can mark these tasks that do not require any non-compute resource in the

compiler time and extract them before selecting the maximal independent set S. Then,

we will reinsert them to the maximal independent set S after selecting the maximal

independent set.

Second, for the selecting of maximal independent set, we select a set of critical

tasks such that the integer C is less than k, where k is the number such that 2kk is less

than the total number of tasks. While we select more critical tasks, there are more

non-compute resources will be reserve for them. So, there are more tasks that in the

ready state suffer resource sharing constrain to critical tasks. We can remove them

before selecting a maximal independent set. This process will have the time

complexity of selecting maximal independent set to be O(NR), where N is the total

number of tasks.

In run time allocation phase, there are some other processes at each mapping

event. To ensure precedence constrain to be satisfied, we gather all tasks that are in

the ready state to be set READY. Before we select a maximal independent set from

READY, we must extract all tasks that is marked in compiler time phase. This will be

helpful for us to restrict the time complexity of selecting a maximal set from READY.

As we mention above, we will reinsert them to the maximal independent set.

 We will select a set of tasks to be critical tasks according to the weight of each

task. A task that has the greatest weight in the set READY will be selected first. There

are two reasons for a task Ti to have the greatest weight in READY. First, task Ti has

many immediate successors or second, there are many tasks that are unscheduled and

 19

 T0 T1 T2 T3 T4 T5 T6

M1 5 5 4 7 8 3 3

M2 7 6 4 6 7 8 4

M3 4 4 5 5 6 5 3

(a)
m1

require the resources that need by task Ti, too. Therefore, if the largest weight task Ti

completes earlier, we will have more tasks to be ready and we may select more tasks

to be execute concurrently. Selecting a set of critical tasks will also help us reduce the

time complexity of selecting maximal independent set.

After deciding the critical tasks, we will select a maximal independent set S that

included the critical tasks from READY to be allocated. For the allocation mechanism,

we use the highest weight first for the critical tasks in S and the other tasks are

random. We use a simple allocation mechanism and consider two situations to reduce

the time complexity of selecting maximal independent set in our algorithm. This will

help us reduce the overhead in run time. If the overhead is increase quickly in run

m2

m3

T0

T1

0 1 2 3 4 5 6 time
(b)

Figure 3.5 (a) the estimated computation cost of tasks in Figure 3.2 (a) (b) the
result of first mapping event (c) the result after second mapping event
at time unit 2

m1

m2

m3

T0

T6

T1

(c)
0 1 2 3 4 5 6 time

 20

time, the schedule length will also increase. When we want to allocate a task Ti to a

suitable machine, we use the earliest finish time of task Ti on each machine to decide

which machine is suitable. Figure 3.4 is the pseudo code of the run time allocation

phase.

 In Figure 3.5, we show an example for the first mapping event of tasks in Figure

3.2 (a) and Figure 3.5 (a) is their estimated execution time on each machine. There are

seven tasks in the Figure 3.2 (a), so the value k in run time allocation algorithm is 1.

There two tasks will be put in the set READY that is task T0 and task T1. Because task

T0 doesn’t require any non-compute resource, it will be extracted before the selecting

of maximal independent set. The result of first mapping event is shown in Figure 3.5

(b). We assumed that task T1 will release resource r1 at time unit 2. The result after

this mapping event is in Figure 3.5 (c).

3.3 Discussion

 In section 3.1, we ever mentioned that Alhusaini’s method has two disadvantages

caused by the migration condition. We will describe how we avoid these

disadvantages in our method. For the first disadvantage in Alhusaini’s method, that is,

in a communication intensive application, the schedule length will increase quickly

caused by communication cost. To avoid this disadvantage, we must consider the

computation and communication cost simultaneously. Therefore, we use the earliest

finish time of a task Ti on each machine to choose a machine mj that will make the

task Ti completes earlier and allocate task Ti to machine mj. This will help us avoid the

schedule length increasing quickly in a communication intensive application. In

chapter4, we will illustrate the effect of migration condition through the simulation

 21

 Compiler time Run time

Alhusaini’s method O(2NNR) O(N2R)

DRCA O(N2R) O(N2R)

Figure 3.6 Time complexity of Alhusaini’s method and DRCA

result.

 In Alhusaini’s method, when the heterogeneity is getting bigger and bigger, the

migration condition would be false frequently. It would be harder to allocate a task Ti

to the best machine mb. In DRCA, we directly allocate a task Ti to a machine mj in run

time. Therefore, we can avoid the disadvantage of migration condition mechanism.

 Figure 3.6 is the time complexity of Alhusaini’s method and DRCA. In the

compiler time mapping phase of Alhusaini’s method, the time complexity of selecting

a maximal independent set is O(2NNR), where N is the total number of tasks and R is

the total number of resources. The run time adaptation phase of Alhusaini’s method,

the time complexity is O(N2R). In DRCA, the time complexity of compiler time phase

is focus on constructing the WCG. The time complexity of run time allocation phase

in DRCA is O(N2R).

 22

Chapter 4. Simulation and Performance
Evaluation

 After describing the Dynamic Resource Co-allocation Algorithm (DRCA), we

will verify the effectiveness of it by implementation and simulation. In section 4.1, we

will describe the architecture of simulator. Next, we will evaluate the performance in

section 4.2.

4.1 Simulation Construction

 We use the C++ language to construct our simulator. There are two parts in our

simulator. The first part is Random Graph Generator (RGG) [13], the second part is

the algorithm (DRCA or Alhusaini’s method). Figure 4.1 is the flow chart of our

simulator. We will give the detailed description about each part in the following.

(a) Random Graph Generator (RGG) [13]

 The main function of the RGG is to generate the DAG. As we define in definition

2.1, the parallel program with n tasks can be represented as DAG with n tasks. In our

simulation, we use several parameters to generate a DAG. The parameters are as

following.

 Number of tasks in the graph, (TASK).

 Shape parameter of the graph, (SHAPE).

The height (depth) of a DAG is randomly generated from a uniform distribution

with a mean value equal to
SHAPE

TASK . The wide of each level is randomly selected

from a uniform distribution with mean equal to taskSHAPE × . A dense graph

 23

Random Graph Generator

(a shorten graph with high parallelism) can be generated by selecting SHAPE >>

1.0; if SHAPE << 1.0, it will generate a long graph with a low parallelism

degree.

 Maximal out degree of a task (OUT_DEGREE).

 Communication to computation ratio (CCR).

It is the ratio of the average communication cost to the average computation cost.

If the CCR value of a DAG is very low, it can be considered as a

computation-intensive application. On the contrary, it will be a

communication-intensive application.

 Range percentage of computation cost on machines, (HETERGENEITY).

It is basically the heterogeneity factor for machine speeds. A high percentage

Compiler time mapping
phase

Run time adaptation
phase

Compiler time phase

Run time allocation phase

Alhusaini’s method DRCA
Algorithm

Finial schedule

Figure 4.1 The flow chart of the simulator

 24

value causes a significant different in a task’s computation cost among the

machines and a low percentage indicates that the expected computation cost of a

task is almost equal on any given machines in the system.

The parameters that we describe above can be used to generate DAGs with any

characteristic. In the following, we list other parameters used in our simulation

environment.

 Number of machines in the system, (MACHINE)

 Number of non-compute resources in the system, (RCS)

 Percentage Error, (PE).

The actual (run-time) values of computation and communication costs are

randomly selected from the range [-PE, +PE] of the estimated values, where PE

is a value between 0% and 100%. Perfect estimated values correspond to PE = 0.

 RANGE.

It is the ratio of the number of tasks that doesn’t have perfect estimated values to

the total number of tasks.

 Resource Using Mode, (RUM).

This mode is used to decide that how many resource a task uses. There are three

modes in RUM. RANDOM_RUM: random decides that how many resources a

task uses. MORE_RUM: almost all tasks use more than half of the total number

of non-compute resources. LESS_RUM: almost all tasks use less than half of the

total number of non-compute resource.

 Resource Releasing Mode, (RRM)

This mode is used to decide that when a task Ti will release a resource rk)(iTR∈

 25

before completes. There are four modes in RRM. RANDOM_RRM: random

decide that when a task Ti will release a resource rk)(iTR∈ . LATE_RRM: almost

all tasks release a task rk)(iTR∈ after half of the actual computation cost.

EARLY_RRM: almost all tasks release a task rk)(iTR∈ before half of the actual

computation cost. NO_RRM: no early resources release.

 Using all of these parameters, we can construct any kinds of applications and

characteristic to them. In each experiment, we run ten DAGs to each set of parameters

and use the average schedule lengths of these DAGs to be the schedule length of this

set of parameters. Figure 4.2 shows all range of the parameters.

(b) Algorithm

 Alhusaini’s method is a level-by-level algorithm. In order to get a shorter

schedule length in Alhusaini’s method, we implement the Alhusaini’s method in a

crossing level method [14] in our simulator. DRCA is also implemented in the

simulator. The input of the algorithm is the DAGs and their resource requirements.

The output of the algorithm is the finial schedule. In the next section, we will

illustrate our evaluation results.

4.2 Performance Evaluations

 In this section, we will evaluate the performance of DRCA comparing with the

Alhusaini’s method. First of all, we define the Schedule Length Ration (SLR) as the

average schedule length of DRCA divides by the average schedule length of

Alhusaini’s method. If the SLR is larger than 1.0 means the Alhusaini’s method has

 26

MACHINE 2, 4, 6, 8, 10, 12

PE 0%, 30%, 60%, 90%

RANGE 20%, 40%, 60%, 80%, 100%

OUT_DEGREE 4, 8, 12

SHAPE 0.5, 1, 2

RCS 4, 8, 12, 16, 20

RRM RANDOM, LATE, EARLY, NO

RUM RANDOM, MORE, LESS

CCR 0.1, 0.5, 1, 5, 10

TASK 100, 150, 200, 250, 300

HETEROGNEEITY 0.2, 0.5, 1, 1.5

Figure 4.2 The range of all parameters

the smaller schedule length. On the contrary, if the SLR is smaller than 1.0 means the

DRCA has smaller schedule length. We observe the variation of SLR on three

parameters, CCR, HETEROGENEITY, and TASK in our experiments.

 First, we will observe the effect of CCR. The simulation result is illustrates in

Figure 4.3 and Figure 4.4. We fixed some parameters in these experiments,

MACHINE{8}, PE{30%}, RANGE{60%}, OUT_DEGREE{4, 8, 12}, SHAPE{0.5,

1, 2}, RCS{8}, RANDOM_RUM, and RANDOM_RRM. We observe the effect of

CCR {0.1, 0.5, 1, 5, 10} with changing the TASK {100, 150, 200} and

HETEROGENEITY{0.2, 1, 1.5} in Figure 4.3 and Figure 4.4, respectively. We can

find that as the CCR increases the SLR decreases quickly. Therefore, in a

communication intensive application, Alhusaini’s method will have larger schedule

length than DRCA. In a communication intensive application, an efficient method

 27

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.5 1 5 10

CCR

S
L

R

TASK 100 TASK 150

TASK 200

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.5 1 5 10

CCR

S
L

R

HETERO 0.2 HETERO 1

HETERO 1.5

Figure 4.3 The simulation result of
effect of CCR with changing TASK

Figure 4.4 The simulation result of
effect of CCR with changing

HETEROGENEITY

to reduce the communication cost between tasks will enormously shorten the schedule

length. But, the migration condition in Alhusaini’s method, only computation cost will

be used to decide to migrate a task to its best machine or not in run time. Therefore,

the schedule length will increase quickly caused by the communication cost. As we

mention in section 3.1, Alhusaini’s method has this disadvantage and we prove it

through this experiment. In a computation intensive application, we do not have the

great improvement like communication intensive application but the SLR is also

below to 1.0. So, we still have shorter schedule length in a computation intensive

application.

There is also another disadvantage in Alhusaini’s method that we mention in

section 3.1, that is, as the HETEROGENEITY is getting larger the migration

condition will be false frequently. In Figure 4.5 and Figure 4.6, we will illustrate the

effect of HETEROGENEITY on SLR. Through these two experiments, we can find

 28

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.5 1 1.5

HETERGENEITY

S
L

R

CCR 1 CCR 0,1

CCR 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.5 1 1.5

HETERGENEITY

S
L

R

TASK 100 TASK 150

TASK 200

Figure 4.6 The simulation result of
effect of HETEROGENEITY with

changing TASK

Figure 4.5 The simulation result of
effect of HETEROGENEITY with

changing CCR

that the SLR decreases as the HETEROGENEITY increases. Each time, the migration

condition is tested and the result is false. Here, we consider the task Ti to be allocated

to the machine that has larger finish time than best machine. This will make the finish

time of the task Ti not the earliest. Therefore, if the migration condition false

frequently, there are more tasks won’t be allocated to the best machine. While the

HETEROGENEITY becomes larger, the difference of computation cost of a task on

each machine will be greatly. So, if the machine mj that has been allocated to a task Ti

in compiler time has smaller computation cost than other machines in system for task

Ti, it will be harder to migrate successfully in run time. This is because the

computation cost of task Ti on other machines is bigger than the computation cost on

mj. Therefore, as the HETEROGENEITY increases the SLR decreases.

We also want to observe the parameter TASK. When there are more tasks in a

DAG, there are more and more chances for a DAG to test the migration condition and

 29

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 150 200 250 300

number of tasks

S
L

R

HETERO 0.2 HETERO 1

HETERO 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 150 200 250 300

number of tasks

S
L

R

CCR 1 CCR 0.1

CCR 10

Figure 4.8 The simulation result of
effect of TASK with changing

HETEROGENEITY

Figure 4.7 The simulation result of
effect of TASK with changing CCR

to be false frequently. While there more times of migration condition false, there are

more times for Alhusaini’s method to increase the schedule length. Therefore, as the

number of tasks increases the SLR decreases. In Figure 4.7 and Figure 4.8, we

observe the parameter TASK. We find that the SLR decreases slowly as the TASK

increases.

 Because of the disadvantage of migration condition in Alhusaini’s method, we

get much improvement in DRCA. But beside the disadvantage of migration condition,

we want to know whether we have any other improvement in DRCA comparing with

Alhusaini’s method. Therefore, in order to make sure that each task will be allocated

to best machine, we set the value,∆ , in Alhusaini’s method to be infinity. Therefore,

each task will be allocated to best machine at run time adaptation phase in Alhusaini’s

method. The simulation results are in Figure 4.9 to Figure 4.14. In these experiments,

we still observe three parameters, CCR, HETEROGENEITY, and TASK. Through

 30

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.5 1 5 10

CCR

S
L

R

TASK 100 TASK 150

TASK 200

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.1 0.5 1 5 10

CCR

S
L

R

HETERO 0.2 HETERO 1

HETERO 1.5

 Figure 4.9 The simulation result of
effect of CCR without effect of

migration condition

Figure 4.9 to Figure 4.14, we can find that

shows that without effect of migration cond

length than Alhusaini’s method.

 In our simulation, we found that the par

RUM, and RRM have no any significant im

of these parameters, the varying range of t

found that as these parameters change in

variation. Therefore, we do not discuss th

here.

 31
Figure 4.10 The simulation result of
effect of CCR without effect of

migration condition
the average SLR is about 0.9. This result

ition, DRCA still have shorter schedule

ameters, RCS, MACHINE, PE, RANGE,

pact on the SLR. In the simulation results

hem is like the range in Figure 4.2. We

the simulation the SLR almost has no

e simulation results of these parameters

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.5 1 1.5

HETEROGENEITY

S
L

R

CCR 0.1 CCR 1

CCR 10

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

0.2 0.5 1 1.5

HETEROGENEITY

S
L

R
TASK 100 TASK 150

TASK 200

Figure 4.11 The simulation result of
effect of HETEROGENEITY without

effect of migration condition
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 150 200 250 300

number of tasks

S
L

R

CCR 0.1 CCR 1

CCR 10

Figure 4.13 The simulation result of
effect of TASK without effect of

migration condition

32
Figure 4.12 The simulation result of
effect of HETEROGENEITY without

effect of migration condition
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

100 150 200 250 300

number of tasks

S
L

R

HETERO 0.2 HETERO 1

HETERO 1.5

Figure 4.14 The simulation result of
effect of TASK without effect of

migration condition

Chapter 5. Conclusion and Future
Work

 In the previous chapters, we have introduced our system model, application

models, and proposed a two phase algorithm for the resource co-allocation problem.

The compiler time phase is used to generate the data that will be used in run time. The

run time allocation phase is used to select a maximal independent set and allocate a

task to a suitable machine. In order to evaluate the performance of our algorithm, we

construct a simulation environment and compare with Alhusaini’s method. Finally, we

will conclude our thesis and propose some future work for our research.

5.1 Conclusion

 In Alhusaini’s method, we found that the migration condition mechanism would

be a drawback for finding a better schedule plan. And, the assumption in compiler

time doesn’t consider early resource releasing. For these reasons, we proposed the

dynamic resource co-allocation algorithm. In summary, it has the following main

advantages compared with Alhusaini’s method:

(1) For effectiveness, we propose a weight function for allocating a task in run time

and remove the effect of migration condition mechanism. We verify the

effectiveness of DRCA by constructing simulation. The simulation results in

chapter 4 show that DRCA effectively shortens the schedule length comparing

with Alhusaini’s method. Especially in communication intensive application, we

obtain more better performance.

(2) For efficiency, the time complexity of run time phase in Alhusaini’s method and

DRCA are in common. Both of them are O(N2R), where N is the total number of

 33

tasks and R is the total number of non-compute resources. But in compiler time

phase, the time complexity of Alhusaini’s method is O(2NR) greater than DRCA’s

time complexity which is O(N2R). Therefore, whether in compiler time or run time,

we are more efficient than that of Alhusaini’s method.

5.2 Future Works

 In addition to the feature we discussed before, there are still some issues in the

future research.

(1) In our system, we use a fully-connected network. However, for more realistic, we

can take the consideration of different network topology, system latency…, etc, in

our system model. When the system model is more and more realistic, it is more

difficult to design a good algorithm.

(2) We may expand our assumptions to consider usage of multiple compute resources

and advance resource reservations. With advantage reservation, system resources

can be reserved in advance for specific time intervals. To co-allocate a set of

resources in this case, efficient algorithms are needed to find the best time slot

when all resources are available for required duration.

 34

Bibliographies

[1] M. Iverson, F. Ozguner, and G. J. Follen, “Parallelizing existing applications in a

distributed heterogeneous environment,” 4th Heterogeneous Computing

Workshop (HCW’95), pp. 93-100, Apr. 1995.

[2] P. Shroff, D. W. Watson, N. S. Flann, and R. F. Freund, “Genetic simulated

annealing for scheduling data-dependent tasks in heterogeneous environment,”

5th Heterogeneous Computing Workshop (HCW’98), pp. 98-117, Apr 1996.

[3] G. C. Sih and E. A. Lee, “A compiler-time scheduling heuristic for

interconnection-constrained heterogeneous processor architecture,” IEEE Trans.

On Parallel and Distributed Systems, vol. 4, no. 2, pp. 175-187, Feb. 1993.

[4] L. Wang, H. J. Siegel, V. Roychowdhury, and A. Maciejewski, “Task Matching

and Scheduling in Heterogeneous Computing Environments Using a Genet

ic-Algorithm –Based Approach,” Journal of Parallel and Distributed Computing,

vol. 47, no. 1, pp.8-22, Nov. 1997.

[5] I. Ahmad and Y. Kwok, “On parallelizing the multiprocessor scheduling

problem,” IEEE Trans. on Parallel and Distributed Systems, vol. 10, no. 4,

pp.414-432, April 1999.

[6] R. Freund, B. Carter, D. Watson, E. Keith, and F. Mirabile, “Generational

scheduling for heterogeneous computing Systems,” Int’l Conf. Parallel and

Distributed Processing Techniques and Applications (PD PTA ‘ 96), pp. 769-778,

Aug. 1996.

[7] M. Iverson, and F. Ozguner, “Dynamic, competitive scheduling of multiple

DAGs in a distributed heterogeneous environment,” 7th Heterogeneous

Computing Workshop (HCW’98), pp. 70-78, March 1998.

 35

[8] C. Leangsuksun, J. Potter, and S. Scott, “Dynamic task mapping algorithms for a

distributed heterogeneous computing environment,” 4th Heterogeneous

Computing Workshop (HCW’95), pp.30-34, Apr. 1995.

[9] M. Maheswaran and H. J. Siegel, “A Dynamic matching and scheduling

algorithm for heterogeneous computing systems,” 7th Heterogeneous Computing

Workshop (HCW’98), pp. 57-69, March 1998.

[10] T. Braun, H. J. Segel, N. Beck, L. Boloni, M. Maheswaran, A. Reuther, J.

Robertson, M. Theys, and B. Yao, “A taxonomy for describing matching and

scheduling heuristics for mixed-machines heterogeneous computing systems,”

Workshop on Advances in Parallel and Distributed Systems(APADA), West

Lafayette, IN, pp.330-335, Oct. 1998.

[11] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A framework for

mapping with resource co-allocation in heterogeneous computing system,” 9th

Heterogeneous Computing Workshop (HCW 2000), pages 273-286, May 2000.

[12] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “Run-Time Adaptation

for Grid environments,” Proceedings 15th International Parallel and Distributed

Processing Symposium, pp. 864-874, April 2001.

[13] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing,” IEEE Trans. on

Parallel and Distributed System, vol.13, pp.260-274, Mar. 2002.

[14] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra, “A unified resources

scheduling framework for heterogeneous computing environment,” 8th

Heterogeneous Computing Workshop (HCW ‘99), pp.156-165, April 1999

[15] N. Christofides, Graph theory: An algorithmic approach, Academic Press, 1975

[16] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy, “A

 36

distributed resource management architecture that support adnance reservations

and co-allocation,“ Intl. Workshop in Quality of Service, 1999.

 37

