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車輛影片中車道線之偵測及追蹤 

 

研究生：陳姿延 指導老師：李素瑛 教授 

       陳華總 教授 

                   

國立交通大學資訊科學與工程研究所 

 

摘  要 

 近年來為了減少交通事故而發展的車輛輔助安全駕駛議題越來越受重視。其

中，車道線偵測在車輛輔助安全系統中是一項必需的元件。在這篇論文中，我們

提出一個利用 time-slice images 來進行偵測及追蹤車道線的系統。另一方面，由

於虛線較為稀疏，不容易在畫面上偵測到，我們提出梯度值調整方法來提高虛線

在畫面上的辨識度。每一張影像經過前置處理、邊緣偵測、峰點找尋及連結找出

候選的車道線，接下來利用 time-slice images 進行車道線驗證，找出真正的車道

線位置，最後在 time-slice images 上預測這些車道線在新畫面的可能位置，以進

行進一步的追蹤。由於我們只針對影像中某幾行進行處理，且我們利用追蹤的方

法提供了連續的車道線偵測，這會減少一張影像所需要的處理時間。 

實驗中採用行車紀錄器所拍下的影片當作測試資料，對於三種情況下做車道

線偵測：一是當從直線開到曲線時，二是當進行車道切換時，三是開在直線上時。

我們實作相關研究之車道線偵測演算法並對所執行出來的結果及產生的問題進

行討論。實驗結果顯示，我們提出的方法確實能協助某些情況下車道線的偵測。 

 

關鍵字：影像處理、機器視覺、車道線偵測、車道線追蹤 
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Abstract 

 

In recent years, in order to reduce traffic accidents, developing Driver Assistance 

Systems for safety has attracted much attention. Lane line detection is an essential 

component of Driver Assistance System. In this thesis, we propose a lane line 

detection and tracking system utilizing the time slice images. On the other hand, due 

to the discontinuousness, dashed lane lines are difficult to detect in a single image. We 

propose the gradient value adjustment method to enhance the recognition of the 

dashed lane lines. For each frame, we find the candidate lane lines in the image 

through pre-processing, edge detection, and peak finding and connecting. Then we 

detect the true lane line positions by the time slice images in lane line verification. 

Once the lane line positions are located, we predict their new positions by the time 

slice images and track them in the new frame. Since we only process several rows of 

an image and we provide the continuous detection of the lane lines by tracking, the 

processing time of an image is reduced. 

The experiments use the video sequences of real road scenes containing three 
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conditions: (1) the intermediate case of driving from the straight lane lines to curve 

lane lines, (2) the lane changing case, and (3) the straight lane lines case. We 

implement other lane line detection algorithms on the above cases, and then analyze 

the experimental results and discuss the problems arising in the experiment. However, 

the experimental results show that our proposed methods can improve the lane line 

detection in some cases. 

 

Keyword: Image Processing、Machine Vision、Lane Line Detection、Lane Line 

Tracking 
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Chapter 1. Introduction 

 

1.1 Motivation and Overview 

 

Recently, traffic accidents have become one of the most serious problems in 

today’s world. However, the major factor which leads to road accidents is the 

carelessness of drivers or improper driving. Therefore, Advance Driver Assistance 

System (ADAS) [1] and Intelligent Transportation System (ITS) [2] are developed to 

improve the driving safety and reduce road accidents. 

For the vision-based driving assistant systems, lane line detection plays an 

essential role in providing useful and effective information with respect to the relative 

position of the vehicle on the road. By means of this information, the driver can better 

understand the road circumstances and his/her driving situations for safety. So for 

decades, lane line detection has become a critical research field. However, in most 

conditions, vision-based lane line detection is simplified into a problem of finding the 

locations of lane lines in the input road images with or without strong prior knowledge 

about the lane line positions and drawing the results in the output images. Figure 1-1 

shows an example of the lane line detection. 

In order to analyze the lane line information from car videos, most lane line 

detection algorithms are based on image processing techniques to search for the lane 

lines. In general, the video analysis procedure comprises three major processing steps: 

(1) selection of the region of interest, (2) lane line detection, and (3) lane line tracking. 

Nevertheless, in most of the existing works, a fundamental problem is that the 

performance of video analysis may not be stable with varied environments and 

different weather conditions, as shown in Figure 1-2, resulting in the difficulty in lane 
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line detection. Besides, as shown in Figure 1-3, the presence of shadows, the lane line 

occluded by the vehicles and various markings on the road also affect the detection 

result. Moreover, most existing works processed the case of straight lane lines and 

curve lane lines, individually. Few researches discuss about the intermediate case of 

driving from the straight lane lines to curve lane lines, as shown in Figure 1-4, or lane 

changing, as shown in Figure 1-5. On the other hand, another critical issue is that 

image processing is always time-consuming. To cater for the requirement of real-time 

response, developing efficient system frameworks and video analysis algorithms is an 

important and inevitable task. Consequently, how to quickly and correctly locate the 

position of the lane lines from car videos is the core problem and issue in our work. 

 

 

Figure 1-1 : An example of the lane line detection. (a) Input frame captured from the 

camera. (b) Output frame where the position of the lane lines is located. 

 

 

Figure 1-2 : Different weather conditions. (a) Image captured under the sunny day. (b) 

Image captured under the cloudy day. (c) Image captured under the rainy day. 
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Figure 1-3 : Different driving environments. (a) The presence of shadows. (b) The 

lane line occluded by the vehicles. (c) Various markings on the road. 

 

 

Figure 1-4 : An example of the intermediate case of driving from the (a) straight lane 

lines to (b) curve lane lines and then back to (c) straight lane lines. 

 

 

Figure 1-5 : An example of lane changing from the left to right. 

 

In this thesis, we describe our lane line detection and tracking system, then 

implement and compare several methods on the various cases, as shown in Figure 1-4 

and Figure 1-5, and we discuss some problems arising in the course of our 

experiments. We mount the camera on the upper center of windshield of the vehicle for 

video capturing when driving. When inputting a car video, our proposed system 
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locates the vanishing point at first, and then instead of using the whole image, we only 

process some rows of the image as our rows of interest (ROIs). Slicing through the 

stack of some frames in time at a ROI generates a time slice image. With the time 

slice images and the vanishing point’s position, we can detect the lane lines and track 

them on the time slice images. In the experiment, we implement several lane line 

detection algorithms and test them on real car videos captured at special environment 

conditions, then we discuss the problems arising in the experiment. 

In conclusion, the contributions of this thesis are listed as follows: 

 We adopt the peak finding algorithm to find out the points of the candidate lane 

lines, instead of giving a fixed threshold to classify the pixels in the image into 

non-lane-line and lane-line classes. 

 We propose a gradient value adjustment algorithm to overcome the sparseness 

problem in detecting dashed lane lines. 

 We propose a lane line detection and tracking algorithm using the “time slice 

images” which involve the lane lines’ relationship between the time and space. 

Also, the time slice images can help us to detect the shape of curve lane lines 

without calculating the parameters of curve fitting. 

 

1.2 Organization 

 

 The rest of this thesis is organized as follows. In Chapter 2, we survey some 

related works in lane line detection and tracking of car videos. Chapter 3 introduces 

our system to detect and track the position of lane lines. In Chapter 4, the experimental 

results of lane line detection and tracking are shown and discussed. At last, we 

conclude this thesis and describe the future work in Chapter 5. 
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Chapter 2. Related Works 

 

In this chapter, some related works in lane line detection and tracking of car video 

are described. A distinction can be made between the problems of lane line detection 

and tracking. Lane line detection involves determining the location of the lane lines in 

a single image. Lane line tracking involves determining the location of the lane lines 

in a sequence of consecutive images, using information about the lane line location 

from previous images in the sequence to constrain the probable lane line detection in 

the current image. In each video, the first several image frames will be processed by 

the lane line detection algorithm, and this will provide a good estimation of lane line 

tracking for the subsequent frames. 

 

2.1 Related Works in Lane Line Detection 

 

As a basic yet important component in driver assistance systems [1][3], the aim 

of lane line detection is to detect the relative position of the vehicle on the road and to 

obtain the lane line information, such as the offset, the orientation, the curvature, and the 

types. With this lane line information, we can provide a better understanding of road 

environment to drivers and thus improve the driving safety. Generally, a road image 

can be classified into a structured or unstructured one, as shown in Figure 2-1(a) and 

(b), respectively. The most distinguishable characteristic between structured roads and 

unstructured roads is the existence of lane lines. The structured road has its boundary 

showing specific features or certain regularity in appearance. The structured road 

boundary has characteristics such as the painted white or yellow line(s), and regularly 
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shaped road edges. On the other hand, the boundary of the unstructured road does not 

have apparent features or regularity in its appearance. Most researches of lane line 

detection focus on the analysis of structured roads where the lane lines are painted on the 

road surface. 

 

 

Figure 2-1 : Two types of road image. (a) Structured road image. (b) Unstructured 

road image. 

 

The vision-based lane line detection is a complex and challenging task. It is well 

known that vision cues greatly vary depending upon lighting changes and weather 

conditions. Moreover, due to the appearance of various markings on the road and the 

different scenarios, for example, driving on an urban road [4][20] or on a highway [5], 

it is difficult to recognize the position of lane lines.  

During the recent years, various weather conditions for vision-based lane line 

detection techniques for safety vehicles are taken into consideration and are being 

developed. There have been many approaches proposed for lane line detection. Those 

works usually use different road models, 2D [7][12] or 3D [4][6][15][17][19]. 

Different lane lines, straight [12][14][15][28] or curve [10][30][33], and different lane 

line patterns, solid or dash painted line [3]-[30], are considered. Different techniques 

are employed, Hough transformation [11][28], template matching [10][25], or neural 

networks [8]. The recent survey paper proposed by McCall and Trivedi [3] provides a 
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comprehensive summary of existing approaches. Most of the methods propose a 

three-step process. (1) Initializing lane lines by extracting features such as edges [7], 

texture [8], color [9], and frequency domain features [10]. (2) Post-processing the 

extracted features to remove outliers using techniques like Hough transform [11][28] 

and dynamic programming [12], along with computational models explaining the 

structure of the road using deformable contours [13], and regions with piecewise 

constant curvatures [6]. (3) Tracking the detected lane lines using the Kalman filter 

[14] or particle filter [15][16] by assuming motion models such as constant velocity or 

acceleration for the vehicle. However, these approaches can be classified into two main 

categories namely feature-based and model-based techniques [3]. Detailed surveys can 

be found in [3]-[30]. 

 

2.1.1 Feature-based Lane Detection 

 

The feature-based methods detect the lane lines in the road images by using some 

low-level features, such as painted lines [17]-[19], lane line edges [7][22][23], texture 

[8] and colors [9][20][21]. The advantage of the feature-based methods is that the 

features are extracted easily. Nevertheless, they highly demand well-painted lane lines 

or strong lane line edges in road images; otherwise this method may fail. Furthermore, 

the performance of this method may easily suffer from occlusion or noise. In the 

following, we review some representative works of feature-based lane line detection. 

Broggi and Bertè [17][18] develop an approach applying the IPM (Inverse 

Perspective Mapping) [42] algorithm on the road image. The IPM algorithm is a 

mathematical technique whereby a coordinate system may be transformed from one 

perspective to another, and it can remove the perspective effect from the acquired 

image. The perspective effect means that the lane lines width change according to 
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their distance from the camera. In this case, in order to remove the perspective effect, 

the a-priori knowledge exploited by the IPM transform is the assumption of a flat 

road in front of the vehicle. The IPM algorithm maps the acquired image, as shown in 

Figure 2-2(a), into a new 2-D domain array in which the information content is 

homogeneously distributed among all pixels and the resulting image represents a top 

view of the road region in front of the vehicle, as if it were observed from the top, as 

shown in Figure 2-2(b). 

 

 
Figure 2-2 : An example of Inverse Perspective Mapping. (a) Original image. (b) 

Inverse perspective mapped image which seems to be observed from the top. 

 

Here, the assumption used in the definition of a “lane line” is that a lane line is 

represented by a quasi-vertical bright line of constant width surrounded by a dark 

region (the road). Hence, the pixels belonging to a lane line have higher intensity 

values than their left and right neighbors. Thus, the lane line detection is reduced to 

the determination of horizontal black-white-black transitions. Based on a geometrical 

transform and on a fast morphological processing, the system is capable of detecting 

the lane lines. Figure 2-3 shows the results of lane line detection through the IPM 

algorithm. 
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Figure 2-3 : Lane line detection through the removal of the perspective effect in three 

different conditions: straight road with shadows, curved road with shadows, junction. 

(a) Input image. (b) Mapped image (3D to 2D) of (a). (c) Result of the line-wise 

detection of black-white-black transitions in the horizontal direction. (d) Remapped 

image (2D to 3D) where the grey areas represent the portion of the image shown in (c). 

(e) Superimposition of (d) onto a brighter version of the original image (a). [18] 

 

Bertozzi and Broggi [19] propose the GOLD (Generic Obstacle and Lane 

Detection) system utilizing a stereo vision-based hardware and software architecture, 

which aims at improving road safety of moving vehicles. The GOLD system removes 

the perspective effect also by IPM algorithm which maps the region ahead of the 

vehicle into the top view. In GOLD, lane lines after the IPM transform are modeled as 

quasi-vertical constant width lines, brighter than their surrounding region. Based on a 

line-wise determination of horizontal black-white-black transitions, the pixels that 

have higher intensity value than their horizontal neighbors at a given distance are 
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detected. However, in this work, not only the lane line detection is implemented but 

also the obstacle detection. 

He et al. [20] propose a color-based vision system to determine the road 

parameters and detect lane lines from urban traffic scenes. Based on the projective 

transformation, edge detection, binarization and their pre-defined curvature models, as 

shown in Figure 2-4, this system estimates three candidate boundaries to extract the 

road region. The result of boundary estimation module is combined with the color 

information of the capture image to get the road area image. Finally, they utilize this 

road area image and three candidate boundaries to determine the real road boundaries 

and to acquire the parameters of road. Cheng et al. [21] apply the color of road and 

lane lines for the image segmentation, and then utilize the size, shape and motion 

characteristics to determine whether a region belongs to a vehicle or a lane line for 

false lane line region elimination. Huang and Pan [22] develop a method to detect the 

lane lines and the road edges of structured and unstructured roads, respectively. In 

structured road detection, utilizing the vertical Sobel mask and color characteristic at 

first to detect the points of lane lines. If the number of points is greater than a 

predefined threshold, the slope filtering is applied to refine the detection results. And 

the least square approximation is employed to represent the lane lines. The 

unstructured road detection is performed while the number of detected points is not 

enough. They extract the road surface with the predefined sets of sampled blocks, and 

obtain the edge points from the vertical intervals. For the accuracy of detection, the 

new sampled blocks are updated by the random sampling points from segmented 

regions. 
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Figure 2-4 : The flowchart of He et al.[20]. (Red rectangle is represented as the 

curvature model they defined.) 

 

 Tsai et al. [23] propose a lane line detection algorithm using the concept of 

directional random walks based on Markov process. Two major components are 

included in this method to decide the correct locations of all lane lines: (1) lane 

segmentation and (2) edge linking. They first define proper structure elements to 

extract different lane line features from input frames using a novel morphology-based 

approach. Then, they utilize a novel linking technique to link all “desired” lane line 

features for lane lines detection. The technique considers the linking process as a 

directional random walk which constructs a Markov probability matrix for measuring 

the direction relationships between lane segments. Then, from the matrix of transition 

probability, the correct locations of all lane lines can be decided and found in videos. 

Yim and Oh [24] develop a three-feature based automatic lane line detection algorithm 
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(TFALDA). It is intended for automatic extraction of the lane lines without the priori 

information or manual initialization under different road environments. The lane lines 

are recognized based on similarity match in a three dimensional (3D) space consisting 

of the starting position, direction, and gray-level value of a lane line as features, as 

shown in Figure 2-5. 

 

 

Figure 2-5 : The lane line candidate vectors mapped into the 3D feature space. 

 

2.1.2 Model-based Lane Detection 

 

Model-based methods represent the lane lines through a few geometric 

parameters. According to the shapes of lane lines, the lane line models can be defined 

as a straight line model [12][14][15][28] or a parabolic model (that is, curve) [10][30], 

even a spline model [4][13][29]. Moreover, how to find the best parameters for the 

model is the core problem to be solved. Compared with the feature-based methods, the 

model-based methods are less sensitive to weak lane line appearance features and 

noise. 

To acquire the best parameters of lane line model, the likelihood function 

[10][25], the Hough transform [11][28], and curve fitting [30], had been applied into 

the lane line detection. However, the model-based methods require a complex 

modeling process involving much prior knowledge. Constructing a simple model for 
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one scene can get better efficiency, but this model may not work well in another scene 

because it cannot describe arbitrary shape of lane lines. So, the simple models are less 

adaptive. But for the complex models, although they can adapt to multiple scenes and 

describe arbitrary shape of lane lines, an iterative error minimization algorithm should 

be applied for the estimation of best model parameters, which is comparatively 

time-consuming. The process would take much time and would not satisfy the real 

time requirement of the driving applications. Next, we discuss some representative 

works of model-based lane line detection. 

In [25], Kluge and Lakshmanan present a deformable template model of lane line 

structure, called Likelihood Of Image Shape (LOIS), to locate the lane lines by 

optimizing a likelihood function. It is assumed that the left and right lane lines are 

modeled as two parallel parabolas on the flat ground plane. For each pixel, this 

algorithm uses a Canny edge detector [26] to obtain the gradient magnitude and 

orientation. The parameters of perspective projection model are then estimated by 

applying the Maximum A Posteriori (MAP) estimation [27] and the Metropolis 

algorithm based on the image gradient. Figure 2-6 shows some results of LOIS’ lane 

detection under the various road environmental conditions. 

 

 

Figure 2-6 : Examples of LOIS’ lane line detection [25]. 
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The LANA system [10], proposed by Kreucher and Lakshmanan, is similar to 

the LOIS system [25] at the detection stage. But LANA combines the frequency 

domain features of the lane lines with a deformable template for finding the lane line 

edges. The feature vectors are used to compute the likelihood probability through 

fitting the detected features to a lane line model. Li et al. [11] develop the Springrobot 

system by using the color and edge gradient as the lane line features and the adaptive 

randomized Hough transform (ARHT) to locate the curve lane lines on the feature 

map. A multi-resolution strategy is applied to achieve an accurate solution rapidly and 

to decrease the running time to meet the real-time requirement. As illustrated in 

Figure 2-7, they first reduce the size of the original image to 1/2
z
, where z = 1, 2, by 

bicubic interpolation. The reduced images are called “half image” and “quarter 

image”, respectively. In these images with lower resolution, they apply the ARHT 

with fixed quantized accuracy to roughly and efficiently locate the global optima of 

lane lines without regarding the accuracy. The parameters resulting from the previous 

step can be used as starting values of another ARHT for more accurate location of 

lane lines. Therefore, the parameter search can be restricted to a small area around the 

previous solution, saving time and storage complexities. This coarse-to-fine location 

speeds up the process of lane line detection, thus it offers an acceptable solution at an 

affordable computational cost. Figure 2-7 shows the results of multi-resolution 

algorithm in Springrobot system. 
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Figure 2-7 : Multiresolution algorithm for detecting the lane line rapidly and 

accurately [11], which uses the size reducing at first, then applies the ARHT to detect 

the parameters of lane lines roughly, and finally uses coarse-to-fine location method 

to offer the better position of lane lines. 

 

Park et al. [30] use the lane-curve function (LCF) for lane line detection. The 

whole process of algorithm is shown in Figure 2-8. The LCF is obtained by 

transforming the defined parabolic function from the world coordinates into the image 

coordinates. Moreover, this algorithm needs no transformation of the image pixels 

into the world coordinates. The main idea of this algorithm is to search for the 

best-described LCF of the lane-curve on an image. In advance, several LCFs are 

assumed by changing the curvature and for each LCF, it defines its lane line region of 

interest. Then, the comparison is carried out between the slope of an assumed LCF 

and the phase angle of the edge pixels in the lane line region of interest. The LCF with 

the minimal difference in the comparison becomes the true LCF corresponding to the 

lane-curve.  
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Figure 2-8 : The process overview of LCF [30]. 

 

Wang et al. [29] propose a Catmull-Rom spline [32] based lane line model. Their 

algorithm uses a maximum likelihood approach in detecting the lane lines. As 

Catmull-Rom spline model can form arbitrary shapes by control points, it can describe 

a wider range of lane line structures than the straight or parabolic model. Figure 2-9 

shows the estimation of lane lines to real road image by implementing the 

Catmull-Rom spline algorithm. In [13], Wang et al. propose a B-Snake based lane line 

detection and tracking algorithm without any camera parameters. The main 

characteristics of this method are as follows. (1) The Canny/Hough Estimation of 

Vanishing Point (CHEVP) is presented for providing a good initial position for the 

B-Snake. (2) The Minimum Mean-Square Error (MMSE) is proposed to determine the 

control points of the B-Snake model by the overall image forces on two sides of the 
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lane. (3) The Gradient Vector Flow (GVF) [31] field is used to let the B-Snake move 

to its optimal solution. The estimation of lane lines by B-Snake is shown in Figure 

2-10.  

 

 

Figure 2-9 : An example of lane line detection by Catmull-Rom spline. (a) Original 

road image. (b) The result of lane line detection by Catmull-Rom splines. ( PL0, PL1, 

PL2) and ( PR0, PR1, PR2) are the control points for left and right side of lane line. PL0 

and PR0 are the same control point, which supposes to be vanishing point. [29] 

 

 

Figure 2-10 : Examples of lane line detection using the B-Snake. [13] 

 

2.2 Related Works in Lane Tracking 

 

However, some researches [7][8][10][12][20][23][30] do not mention about the 

idea of lane line tracking. They only propose the lane line detection algorithm on each 
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single frame and do not take into consideration about the relationship between two 

consecutive frames. However, most researches [6][9][14][15][16][21][28] usually 

include the lane line tracking into their systems for the purpose of the real-time 

requirement. Hence, considering there is only small change between two consecutive 

frames, those systems use information from previous results to facilitate the current 

detection. The Kalman filter [14] or the Particle filter [15][16] is the common method 

used to track the lane lines in videos since it can provide the continuous detection on 

all images in a sequence. Lane line tracking step can drastically reduce the search area 

in every frame and consequently detect lane lines in an efficient way.  

In [14], when the lane lines are detected, the Kalman filters are used to track and 

smooth the estimates of parameters of lane lines based on the measurements. While 

tracking, if lane lines are intermittently not detected, then the Kalman filter relies on 

its prediction to produce estimates. However, if the lane lines go undetected for more 

than a few seconds, then tracking is disabled until the next detection. This is to avoid 

producing incorrect estimates when the lane lines do not appear on the road.  

Kim [16] choose a particle-filtering algorithm over the Kalman filter to prevent 

the result from being biased too much on the predicted vehicle motion but to give 

more weight to the image evidence. Due to the vehicle’s vibration and pitch change, 

the motion of the lane lines in world coordinates is not smooth enough to be properly 

modeled by a Kalman filter.  

Although a lot of lane line detection and tracking algorithms are proposed, few 

researches mention about the intermediate case of driving from the straight lane lines 

to the curve lane lines, or the lane changing case. Therefore, we implement several 

algorithms in the intermediate case and the lane changing case. Then we discuss the 

problems arising in the experiments. 
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Chapter 3. Proposed System Architecture 

 

This chapter describes the details of our proposed system. At first, an overview is 

given in Section 3.1, and the pre-processing is described in Section 3.2. Section 3.3 

introduces the method to compute the vanishing point and set the row of interest (ROI) 

for subsequent processing steps. Then our proposed approach of lane line detection 

and verification is presented in Section 3.4, and finally, we explain the lane line 

tracking algorithm in Section 3.5. 

 

 

Figure 3-1 : The proposed system architecture. 
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3.1 Overview of the Proposed System 

 

The overview of proposed system is depicted in Figure 3-1. The system 

architecture consists of four modules, including (1) Pre-processing, (2) Vanishing 

Point Computation and Row of Interest (ROI) Setting, (3) Lane Line Detection and 

Verification, and (4) Lane Line Tracking. For each step, we show the sample results on 

the right side. 

For each image acquired from the camera, Pre-processing step for noise removal 

is firstly performed by image smoothing, image normalization and edge detection. In 

Vanishing Point Computation and Row of Interest (ROI) Setting step, the Hough 

transform and linear least square are applied in order to decide the possible position of 

the vanishing point and then utilize the vanishing point to delimit the rows of interest 

(ROIs) which we want to analyze in the following steps. Next, Lane Line Detection 

and Verification uses the gradient histogram of edge image generated from edge 

detection and some limitations to obtain the lane lines. Lastly, Lane Line tracking 

tracks the lane lines on the time-slice images generated from the ROIs. 

 

3.2 Pre-processing 

 

In this section, pre-processing is performed to reduce the noise and improve the 

contrast of the original image, then generate the corresponding edge image for 

subsequent processing. As illustrated in Figure 3-2, the original color image is first 

converted to the grayscale image. For image smoothing, we use the Gussian filter to 

eliminate the noise. Then in order to facilitate the extraction of lane lines, we use 

image normalization to increase the contrast of the image. At last, we extract the edge 
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features of the lane lines by edge detection. 

 

 

Figure 3-2 : Flowchart of Pre-processing module. 

 

3.2.1 RGB to Gray 

 

At the beginning, the original images are composed of three independent channels 

for red, green and blue primary color components. Thus, for RGB to grayscale 
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conversion, we take three channel values of each pixel in the color image and use the 

conversion formula defined by Eq. (1) [37] to get the value for the corresponding pixel 

in the grayscale image. Pixels throughout the RGB image are scanned and this 

procedure is applied to convert a RGB image into grayscale one. 

 

Gray = 0.299 * Red + 0.587 * Green + 0.114 * Blue    (1) 

 

3.2.2 Image Smoothing 

 

To realize the lane line detection, noise disturbance can greatly affect lane line 

distinction. However, the noise reduction techniques usually involve averaging the 

value of pixels residing in a local area and generating a blurred or smoothed image. 

Here, we apply the Gaussian filter [37] to eliminate the noise signal. As one of the 

specialized weighted averaging filters, the Gaussian filter has been widely adopted in 

the field of image processing and computer vision for years, and is known for its 

image smoothing and noise reduction capability. 

 

3.2.3 Image Normalization  

 

Since there are different environment conditions such as the presence of strong 

shadows, object reflection, illumination variation, and obscurity, the contrast 

enhancement of image intensity is essential. Image normalization [37] is a spatial 

domain based image enhancement technique. After image normalization, the 

distribution of pixels becomes more evenly spread out over the available pixel range. 

This step normalizes the brightness values of image in the range from 0 to 255, 

ensuring that the lane lines have high intensity value in every frame, even when the 
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overall brightness is changing. Figure 3-3 shows an example of image normalization. 

 

 

Figure 3-3 : An example of image normalization. Comparing the original histogram of 

image after smoothing (top) with the normalized histogram of image after 

normalization (bottom), one can observe that the range of pixel intensity values 

becomes broader. 

 

3.2.4 Edge Detection 

 

After smoothing and normalizing the image, we want to utilize some features to 

recognize the lane lines. In order to attract the drivers’ attentions, a lane line is usually 

painted in a special color and owns high contrast (or high edge responses) to the 

neighboring road surface. Since color features are easily affected by light changes and 

become unclear at night, we tend to detect the lane lines based on the edge feature and 

acquire the edge information by Sobel edge detector. Since the horizontal gradient of 

the lane line is visible, the 3x3 operator for horizontal changes (Gx) is used, as shown 

in Figure 3-4(a). By applying Gx to each pixel of the image, the horizontal gradient 
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values of edge pixels are obtained. However, as shown in Figure 3-4(b) and (c), Sobel 

edge detector usually generates the positive and negative edges at the rim of the object. 

For computation efficiency, here we only retain the positive edge in the image. Figure 

3-5 shows an example of the edge detection result. 

 

 

Figure 3-4 : Sobel edge detector. (a) Operator for horizontal changes (Gx). (b) Positive 

edge whose intensity change along x-direction is from dark to bright. (c) Negative 

edge whose intensity change along x-direction is from bright to dark. 

 

 

Figure 3-5 : An example of edge detection result. (a) Original image. (b) Result of 

edge pixels which have positive responses after using Gx. 

 

3.3 Vanishing Point Computation and ROI Setting 

 

In this section, we intend to locate the vanishing point and set the row of interest 

(ROI) according to vanishing point. As illustrated in Figure 3-6, we first use the Otsu 
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algorithm to binarize the edge image and then the Hough transformation is applied to 

extract the representative lines. For each frame, we use the linear least square to 

estimate the position of the vanishing point from those representative lines. After 

processing serveral frames, we can locate the position of vanishing point with highest 

probability. As soon as we get the vanishing point, the ROIs are also defined. The 

details of the module are described as follows. 

 

 

Figure 3-6 : Flowchart of Vanishing Point Computation and ROI Setting module. 
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3.3.1 Otsu Binarization 

 

For the reason that the Hough transformation only accepts a binary image as 

input, thresholding is utilized here to segment the edge image. Nevertheless, as the 

lighting conditions are different, an adaptive threshold should be used in this stage. 

Otsu algorithm [33] is used to search for an ideal threshold adaptively.  

The Otsu method exhaustively searches for the threshold which minimizes the 

intra-class variance, defined as a weighted sum of variances of the two classes. The 

thresholding process can be simplified into a process about how to partition the image 

pixels into two classes: C1 = {0, 1, …, T} and C2 = {T+1, T+2, …, Ngl -1}, where Ci 

indicates class, T is the chosen threshold and Ngl is the number of gradient levels of 

the image. The intra-class variance σ 2
intra-class is defined as 
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When the threshold T is chosen, the effect of edge image segmentation is 

obtained through reserving the edge pixels whose gradient levels exceed T. Figure 3-7 

shows the result of Otsu algorithm. 

 

 

Figure 3-7 : Result of Otsu binarization. (a) Original edge image. (b) The 

corresponding binary image after using Otsu algorithm. 

 

3.3.2 Hough transformation 

 

Vanishing point is a point in the image plane, to which a set of parallel lines in 

the 3D space will converge [43]. In order to detect the most prominent straight lines in 

the image, we apply the Hough transform [34] to the binary image. Hough transform 

is the voting algorithm deciding whether there are enough pixels to form a particular 

shape in the image. In our case, we consider the straight lines. Each line has to be 

represented in the polar coordinates (ρ, θ), where ρ represents the distance from the 

origin to the line along a vector perpendicular to the line and θ is the angle between 

the x-axis and the vector perpendicular to the line, as shown in Figure 3-8(a), so that a 

generic point (x, y) belonging to a line will satisfy the following equation: 

                xcos(θ) + ysin(θ) = ρ                       (7) 

Therefore, by means of Hough transform, a line can be represented as a single 

point in the polar-coordinate parameter space. Similarly, since infinite lines pass 
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through any given pixel in the original image, the representation of a pixel in the 

parameter space is a unique sinusoidal curve (representing all the lines that can pass 

through that pixel). However, the point of intersection between multiple sinusoidal 

curves in the parameter space means the line passing through multiple pixels. In the 

other words, the more cumulative number of the intersection points, the more pixels a 

line passes through. As illustrated in Figure 3-8(b), the red point represents the line 

which passes through P1 and P2. The parameter space is divided into bins in the ρ and 

θ space. The total number of intersections in each bin is saved into the accumulator, 

and then the highest voted lines are returned. Here, in order to save the computation 

time, we only consider the top 5 lines in the accumulator. 

In fact, most related works apply the Hough transformation to detect the lane 

lines [28][36], and show good performance of the results on the straight lane lines in 

the road images. However, the Hough transform-based methods can only detect the 

straight lane lines in the image and the case of driving on the curve lane lines cannot 

be handled well, as shown in Figure 3-9.  

 

 

Figure 3-8 : Hough transformation. (a) Polar-coordinate (ρ, θ) representation of a 

straight line. Each line has a unique representation (ρ, θ). (b) The Hough domain of an 

image. The red point is the point with the highest number of intersections [38]. 
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Figure 3-9 : The unreasonable representation of the curve lane lines. (a)(b) The curve 

lane lines in the red circle cannot be detected, and only the straight lane lines in the 

near field are detected. 

 

There are other types of Hough transformation to recognize the shapes like 

circles and ellipses that are mathematically expressed in a binary digital image. When 

the parameters of the circles or ellipses are known in advance, the Hough 

transformation works well. Otherwise, it is difficult to recognize the curves without 

prior-knowledge. In addition, some works [6][10][14][16][25][30] utilize the curve 

fitting to detect the curves. Suppose each point (x, y) belonging to a curve will satisfy 

the following equation: 

                32
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where sj (j = 1, 2, 3) are the parameters of the curve. Then the idea of the curve fitting 

is to find the best parameters sj (j = 1, 2, 3) which minimize E and E is defined as:  
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where k is the total number of pixels used to fit a curve. This method is intuitive, but 

we have to know which pixels belong to the curve before curve fitting method. It is 

the limitation of this method. In addition, the more the number of detected pixels we 

use in curve fitting, the more time used in calculating the parameters we need. 

For the reason mentioned above, we propose a novel algorithm to detect the 



 

30 
 

curve lane lines efficiently. We exploit the time-slice image inspired by [14] to detect 

and track the lane lines. Hence, we need to compute the position of the vanishing 

point at first. 

 

3.3.3 Vanishing Point Computation 

 

After acquiring several prominent lines in the image by Hough transformation, 

we use the “Linear Least Square” [40] to estimate the position of vanishing point in 

each frame. Our method is similar to the Vanishing Point Detection method in [44]. 

Now we have a linear system which involves several linear equations and several 

variables. A general system of m linear equations with n unknowns can be written as: 
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where ui (i = 1, 2, …, n) are the unknowns, ai (i = 11, 12, …, mn) are the coefficients 

of the system, and bi (i = 1, 2, …, m) are the constant terms. A solution of the linear 

system is an assignment of values to ui (i = 1, 2, …, n) that satisfies all m equations 

simultaneously. In matrix-vector notation, the linear system is represented as 

                       BAU                              (11) 
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In our case, each linear equation determines a line on the xy-plane, so the n is 

equal to two. Next, we solve this linear system AU=B with Singular Value 

Decomposition (SVD) [39] to obtain the closest possible solution U. This is 
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equivalent to minimize the squared norm ∥AU-B∥2
, which is a linear least square 

optimization problem. Figure 3-10 shows the estimated vanishing point result (the red 

point) in current frame. 

 

 

Figure 3-10 : The estimated vanishing point result. (a) Original image. (b) The green 

lines are represented as the prominent lines acquired from the Hough transformation 

and the red point is represented as the estimated vanishing point in current frame.  

 

However, the vanishing point cannot be detected well in some frames. Hence, 

how to determine the best and correct vanishing point becomes the issue for us to 

conquer currently. We consider that the position of vanishing point should not move 

drastically during a car video, so we add the time conception to choose the correct 

vanishing point.  

Observing Nvan frames, we record all detected vanishing points and apply the 

voting method by an accumulator, whose concept is similar to the Hough 

transformation, to all vanishing points. When the Euclidean distance between two 

vanishing points is less than a pre-defined threshold, those two vanishing points are 

treated as the same point, and then their vote is incremented by 1. The highest voted 

point represents the correct vanishing point we want. The procedure of vanishing 

point computation is shown in Figure 3-11. 
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Figure 3-11 : Procedure of vanishing point computation. From Nvan frames, choosing 

the highest voted point as the final result of the vanishing point which is drawn in 

yellow. 

 

3.3.4 ROI Setting 

 

Once the position of vanishing point is obtained, we delimit the rows of interest 

(ROIs) which are the main parts we want to process within the whole image. 

Generally, the road region appears under the vanishing point. Under this condition, 

our ROIs are selected from the region Rregion under the vanishing point in the image. 

Nevertheless, instead of processing whole region Rregion, we only take evenly Nrow 

rows within the bottom three-quarter part of Rregion as our ROIs. The illustration of 

ROI setting is presented in Figure 3-12. 
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Figure 3-12 : Illustration of ROI setting. The yellow point indicates the final vanishing 

point, and the five rows (Nrow = 5) in red, green, cyan, yellow, and purple are the 

selected ROIs. 

 

3.4 Lane Detection and Verification 

 

In this section, we detect the candidate lane lines and then a verification 

procedure is performed to remove the false ones. As illustrated in Figure 3-13, we first 

generate the time-slice image for each ROI to record the moving of lane lines. Then 

we adjust the edge gradient histogram of each ROI when a new frame comes for 

enhancing the detection of dashed lane lines. Next, using the smoothing method and 

peak finding algorithm on the gradient histogram to obtain the peak points. With these 

peak points, we utilize some constraints to connect the similar peak points together, 

and further detect the candidate lane lines. Generally, the lateral shift of the vahicle is 

small between two consecutive frames, that is, the difference of the lane line positions 

is small between two consecutive frames. Therefore, we can detect the lane line 

positions in current frame from the surrounding area of the lane line position in the 

last frame. At last, we verify the candidate lane lines by the concept similar to 

tracking. The details of this module are described in the following sections. 
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Figure 3-13 : Flowchart of Lane Line Detection and Verification module. 

 

3.4.1 Time-Slice Image Generation 

 

Inspired by [14], time-slice image generation greatly assists in the detection and 

tracking of lane lines, especially when the vehicle runs from the straight lane lines to 
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curve lane lines or the condition of changing lane happens, which are still challenging 

tasks for state-of-the-art works. Supposing that a video sequence totally have F 

frames, and each frame fi (i = 1, …, F) is a WH image. Then we record the specific 

row Rrow of pixels from each frame in time, and thus we generate a WF time-slice 

image, as shown in Figure 3-14. Besides, the index of each row of time-slice image is 

f, which means the frame number. 

 

 

Figure 3-14 : Illustration of time slice generation. 

 

3.4.2 Gradient Value Adjustment 

 

Due to the discontinuousness of the dashed lane lines, detecting dashed lane lines 

in a single image becomes difficult and Hough transformation based lane line 

detection technique cannot work well. In order to overcome this obstacle, Borkar et al. 

[14] propose the temporal blurring algorithm, which adds the time conception to 
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generate an average image, giving the dashed lane lines the appearance of a near 

continuous line by connecting them. The concept of temporal blurring is to take only 

a few frames from the past in the averaging. The average image is defined as follows: 
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
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where I is the intensity of current frame, n is the index of current frame, and Npast is 

the number of frame from the past. Hence, the detection of these dashed lane lines 

becomes easier since they appear as a connected lines in the image. An example of 

temporal blurring is shown in Figure 3-15. 

 

 

Figure 3-15 : An example of temporal blurring. (a) Original image. (b) Average image. 

 

The temporal blurring algorithm is a good method to facilitate the detection of 

dashed lane lines. It is an important issue to determine how many frames should be 

used for in the averaging process. If too many frames are used, the perceived width of 

the lane lines will be altered; otherwise, if we use only a few frames, the effect of 

temporal blurring will become unobvious. In brief, this method is dependent on the 

moving speed of the vehicle. In our work, a method capable of detecting the dashed 

lane lines without considering the vehicle speed is proposed.  

Five rows are selected as our ROIs (Nrow = 5), and the gradient value of each ROI 
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is recorded. Figure 3-16 shows the gradient histogram of each ROI in the image with 

different colors. However, due to the discontinuousness of dashed lane lines, not 

every ROIs can get the gradient information of lane lines in current frame. As shown 

in Figure 3-16, the gradient value of the left dashed lane line is only recorded on the 

first and third ROIs. For resolving this obstacle, we propose the gradient value 

adjustment algorithm to retain the lane line information. The detail of this algorithm is 

described in Algorithm 1. For each ROI, we first set an accumulative gradient 

histogram to record the change of value. Then, for each pixel, we compare its gradient 

value in current frame with the value of corresponding pixel in accumulative 

histogram. If the current value is less than the accumulative value, we will decrease 

the accumulative value by one. This method can avoid decreasing the value too fast to 

retain the position of the dashed lane line. Otherwise, if the current value is larger 

than the accumulative value, the current value will substitute for the accumulative 

value. Afterward, repeating the above steps until all ROIs are examined. We also need 

Npast frames from the past to obtain the completed information of dashed lane lines. 

However, the advantage of our algorithm is that we do not have to give Npast in 

advance, Npast is automatically determined in the process. (Npast = 3 in our experiment 

averagely.) The result of gradient value adjustment is illustrated in Figure 3-17. 

 

 

Figure 3-16 : The gradient histogram of each ROI shown with different colors. 
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Algorithm 1: Gradient Value Adjustment  

Input: The accumulative gradient value of each ROI (h) and 

       the gradient value of each ROI in current frame (g)  

Output: The gradient value of each ROI after adjusting 

 

1 for each ROI do 

2  for j = 0 to width //each pixel on the ROI 

3      if (gj < hj) then hj = hj -1; 

4    if (hj < 0) then hj = 0; 

5                 endif 

6           endif 

7   else hj = gj; 

8       end for 

9   end for 

 

 
Figure 3-17 : The result of gradient value adjustment. (a) Original gradient histogram 

of each ROI which sometime does not include the information of dashed lane line. (b) 

The gradient value adjustment algorithm compensates the detection of dashed lane 

line. The red cycle shows the final result of dashed lane line. 

 

3.4.3 Gradient Value Smoothing 

 

As shown in Figure 3-17, there are several “hills” in the gradient histogram of 

each ROI. A formal definition of the “hill” [41] can be given as: A range over which 

the values increase first and decrease next without any internal ripples in the 

histogram. As illustrated in Figure 3-18, the peak point (Pp) is the point which has 

maximum gradient value in a hill. Under the ideal case, the position of a lane line 
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corresponds to the position of a peak point for each ROI. However, the lateral moving 

of the vehicle results in many hills in the gradient histogram on each ROI, as shown in 

Figure 3-19(a), this phenomenon causes too many peak points. 

 

 
Figure 3-18 : The hill and peak point (Pp) in the histogram [41]. 

 

As described in Section 3.2.2, for each ROI, in order to remove the noise on the 

gradient histogram, we apply 1-D Gaussian smoothing filter in the x-direction. Table 1 

shows the 1-D x component kernel that we apply [37]. After smoothing, the internal 

ripples in the histogram are removed and the maximal peak is retained, as shown in 

Figure 3-19(b). 

 

 
Figure 3-19 : The result of gradient value smoothing. (a) Original gradient histogram 

with many internal ripples. (b) The gradient histogram only with the maximal peak 

after gradient value smoothing. 
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Table 1 : The 1-D convolution kernel of Gaussian Filter [37]. 

.006 .061 .242 .383 .242 .061 .006 

 

3.4.4 Peak Finding  

 

Since a lane line typically owns the high contrast (or high edge response) to the 

neighboring road surface for attracting drivers’ attentions. Here, we apply the peak 

finding algorithm [41] to extract the feature points of lane lines in the image. Once we 

obtain a peak point, we apply further restrictions to determine whether it corresponds 

to a lane line. That is, the value of a peak point must be larger than an adaptive 

threshold Thval which is defined as: 

                     Thval = gvmax / 2                            (14) 

where gvmax is the maximum gradient value of a ROI. Besides, the distance between 

this peak point and the neighboring peak points should be larger than a distance 

threshold (Thd). We set the value of Thd to 20 in the experiment. If two neighboring 

peaks are within a distance of Thd, the one with small value is discarded. After 

applying the peak finding algorithm, we obtain the feature points of lane lines, as 

shown in Figure 3-20. 

 

 

Figure 3-20 : The result of peak finding algorithm. Found (picked) peak points, 

represented by the white points. 

  



 

41 
 

3.4.5 Peak Connecting  

 

After obtaining the peak points, we produce lane line candidates by connecting 

the similar peak points. First, a line segment Li is generated by a peak point and the 

vanishing point and another line segment Lj is a horizontal line. We calculate the angle 

between Li and Lj for each peak point. For example, in Figure 3-21(a), those blue 

points represent the peak points obtained in peak finding step, and the angle of each 

point is also shown. As we know, for a straight lane line, the angles among the points 

are almost the same or similar. Based on this property, for each pair of ROI (ROIi and 

ROIi+1), we select two peak points with the smallest angle in ROIi and ROIi+1, 

respectively. That is, P1 and P3. The angle difference of two peak points is within a 

threshold Angthres (In our example, Angthres = 5), the pair of two peak points is 

recorded and then the peak point with small angle is discarded. We repeat the above 

steps until there is no peak point to match in ROIi and ROIi+1. Now we go back to our 

example, since the angle of P1 and P3 is similar (|30 - 29| = 1 < Angthres), we record 

this pair and then abandon P3 which has the small angle. Next round, P1 and P4 are 

selected. However, the angle difference of these two points is too large (|30 - 90| = 60 

> Angthres), we do nothing and abandon P1 which has the smaller angle. In round 3, P2 

and P4 are selected. As the same as round 2, we abandon P4 (|90 - 121| = 31 > 

Angthres). In round 4, P2 and P5 are selected. We find that their angles are similar (|121 

- 120| = 1 < Angthres), thus this pair is recorded. Afterward, there is no peak point to be 

matched, and then we stop. The final result of this example is shown in Figure 3-21(b). 

After scanning all ROIs and doing peak connecting algorithm, the result of real road 

image is shown in Figure 3-22. 
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Figure 3-21 : An example of peak connecting algorithm. (a) 5 peak points (blue) and 

the vanishing point (red). (b) Peak connecting result of (a). Each blue line segment 

means that two peak points are similar. 

 

 
Figure 3-22 : The result of peak connecting on the real road image. (a) Peak point 

image. (The peak points are represented by the white points.) (b) Peak connecting 

image. (The white line segments imply the relationship within the similar peak 

points.) 

 

3.4.6 Candidate Lane Line Detection 

 

After peak connecting step, we acquire several line segments in the image. 

Nevertheless, under our assumption, a lane line must be satisfied that all ROIs can 

find a corresponding point. We group these line segments into a line by observing 

their start point and end point. Next, we choose those lines which can pass through all 

ROIs as our candidate lane lines and put them into our candidate list. Figure 3-23 

shows the detected candidate lane lines which are painted with yellow color. 
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Figure 3-23 : The result of candidate lane line detection. (a) Peak connecting image. 

(b) Two candidate lane lines are obtained in current frame (yellow lines). 

 

3.4.7 Lane Line Verification 

 

We verify all candidate lane lines in our candidate list through tracking them in 

M frames. Once a lane line is detected in current frame, it should be found in the 

subsequent frames; otherwise, this lane line may be a false one. Suppose a candidate 

lane line is detected for M frames, it is a valid lane line and then we can put it into our 

tracking list. Figure 3-24 shows the result of lane line verification on the real road 

image, we paint the valid lane lines with cyan color. In car video sequence, we may 

face with the different driving environments, such as various markings on the road, as 

shown in Figure 3-25(a). In this case, some false candidate lane lines are generated, as 

shown in Figure 3-25(b) (the yellow lines). Nevertheless, Figure 3-25(c) shows that 

our lane line verification algorithm can eliminate the false candidate lane lines 

effectively. 
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Figure 3-24 : The result of lane line verification. (a) Two candidate lane lines are 

drawn with yellow color. (b) Final results of lane lines are drawn with cyan color. 

 

 
Figure 3-25 : Elimination of the false candidate lane lines in lane line verification. (a) 

Original image. (b) Two false candidate lane lines are generated since the presence of 

arrow markings on the road. (c) Within M frames, these two false candidate lane lines 

are not detected consecutively and thus be eliminated. 

 

3.5 Lane Line Tracking 

 

As illustrated in Figure 3-26, when a new frame comes, if there are several lane 

lines in the tracking list and candidate list, we first track the lane lines in the tracking 

list, and then track the candidate lane lines in the candidate list. Once a candidate lane 

line passes the limitation in lane line verification, as described in Section 3.4.7, this 

candidate lane line can be put into the tracking list. We describe the tracking 

algorithm about lane line tracking and candidate lane line tracking in the following. 

 



 

45 
 

 

Figure 3-26 : The relationship between the candidate list and tracking list. 

 

Since the position of a lane line (candidate) seldom changes between two 

consecutive frames, we can track a lane line (candidate) by calculating the moving 

velocity (vel) and moving acceleration (acc) and then predicting the possible position 

in a new frame. Nevertheless, we need to obtain the position of a lane line (candidate) 

in the previous frames for calculating vel and acc. Therefore, we do this prediction 

procedure when 2 frames have been processed; otherwise, we directly track the lane 

line (candidate) by finding the surrounding area of the current position in a new frame. 

Here, we take the time-slice image generated by ROI5, as shown in Figure 3-27(b), to 

give an example of the prediction procedure, as shown in Figure 3-27(c). In this 

example, the x-coordinate of the current point is x3. To calculate vel and acc, we apply 

the formulas defined from Eq. (15) to Eq. (17) where ti (i = 1, 2, 3, 4) is the time index. 

Afterward, we obtain the predicted x-position (x4) of the point in a new frame from 

two perspectives: one is obtained from Eq. (18) without the consideration of acc, 

another is obtained from Eq. (19). As described in Eq. (20), we combine two possible 

positions above by averaging them and obtain the final predicted position x4. For a 

new frame, we apply the peak finding algorithm, as mentioned in Section 3.4.4, by 

this predicted position to track the corresponding position of a lane line (candidate) on 

a ROI. When we can find the corresponding points of a lane line (candidate) on all 

ROIs, this lane line (candidate) is seen as “detected” in the new frame; otherwise, we 
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mark it as “miss”. If a lane line (candidate) consecutively misses for M frames, that is, 

the lane line (candidate) is mis-traced for too many frames, it is discarded from the 

tracking list or the candidate list and no longer tracked, as illustrated in Figure 3-26.  

By the way, once the position of a lane line (candidate) in the tracking list 

(candidate list) is obtained in a new frame, we set the gradient value around this 

position to 0 on the gradient histogram of each ROI. This proceduce can avoid 

obtaining the same lane lines between the tracking list and candidate list. 

 

 

Figure 3-27 : The conception of prediction procedure. (a) Two candidate lane lines are 

drawn with yellow color. (b) The time-slice image generated by ROI5 is used to track 

the lane lines. (c) An example of the moving change over x-axis. Here, x3 is the 

current point, and x4 is the predicted point. 
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Chapter 4. Experimental Results and Discussions 

 

In this chapter, we present the experiments for the lane line detection and discuss 

the results. In the Section 4.1, we introduce the environments and datasets used in our 

experiments. Section 4.2 introduces the evaluation methods. The experimental results 

of the lane line detection and the problems occurring in the experiments are discussed 

in Section 4.3. 

 

4.1 Experimental Environments and Datasets 

 

All algorithms are implemented in C programming language and OpenCV (Open 

Source Computer Vision) Library, and all experiments are performed on a general PC 

with Genuine Intel®  U7300 1.30GHZ CPU and Microsoft®  Windows 7 professional 

operation system. We mount the camera on the upper center of windshield of the 

vehicle to capture the road images. Here, we have several video clips for test, but only 

three ground-truth video clips for evaluation. All these clips are captured on the 

highways with the solid/dashed lane lines on straight/curved roads. Moreover, in 

ground-truth video clips, Clip#1 contains the intermediate case of driving from 

straight lane lines to curve lane lines. Here, we only analyze the performance of the 

curve lane lines. Clip#2 is the lane changing case and Clip#3 is the straight lane lines 

case. The resolution of each video frame is 640360 and the clip lengths (in frames) 

are listed in Table 2. Some sample images of the car videos are shown in Figure 4-1. 

Four modules are included in our system, i.e., Pre-processing, Vanishing Point 

Computation and Row of Interest (ROI) Setting, Lane Line Detection and Verification, 

and Lane Line Tracking. The processing time of each module is listed in Table 3. It 
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can be seen that the Vanishing Point Computation and Row of Interest (ROI) Setting 

module takes the most execution time in our system. The cause is from the OTSU 

Binarization step which takes 30ms to find an optimal threshold for each frame. In 

addition, there is no complicated process involved in our system, thus the processing 

speed our system can achieve is up to 21 fps (frame per second). 

 

 

Figure 4-1 : Sample road images in different cases. (a) Intermediate case where the 

type of lane lines is from the straight to the curve then back to straight. (b) Lane 

changing case from left to right. (c) Straight lane lines case. 

 

Table 2 : Total number of frames of each ground-truth video clip. 

Video Clip Number of frame Total frames 

Clip#1 (intermediate case) 130 

8452 Clip#2 (lane changing case) 1236 

Clip#3 (straight lane lines case) 7086 
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Table 3 : Processing time of each module in our system. 

Modules Processing time 

Pre-processing 6.59 ms 

Vanishing Point Computation and Row of Interest (ROI) Setting 38.8 ms 

Lane Line Detection and Verification 1.28 ms 

Lane Line Tracking 0.09 ms 

 

4.2 Evaluation Method 

 

To evaluate the performance of our system, we refer to two performance indices 

in [35]: the missing rate (MR) and false detection rate (FR), as defined by Eq. (21). 
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where Nreal is the number of ground-truth lane lines existing in the road scenes to be 

analyzed, NC is the number of correctly detected lane lines, and ND is the number of 

detected lane lines. 

As the same as the measurement method in [35], we first draw the ground truth 

of a lane line manually to decide whether it is correctly detected. For each pixel in the 

detected lane line, its corresponding point in the ground-truth lane line is the one with 

the same y-coordinate. Then, we calculate their x-coordinate difference as their 

distance. After scanning all pixels in the detected lane line, their average distance can 

be obtained. If the average distance is less than half of a lane line width, the lane line 

is labeled to “correct”. 
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4.3 Experimental Results 

 

Here, we implement several related methods on the intermediate case, the lane 

changing case and the straight lane lines case, and then we show the experimental 

results. We discuss the problems occurring in the experiment. Since the intensity of a 

lane line is brighter than the neighboring road surface in the image, Nadra et al. [36] 

utilize the top-hat transformation, which is one of the morphological operations, in the 

pre-processing step to extract the clear regions in the image regardless of background 

variations, as shown in Figure 4-2(b). For the contrast enhancement, as shown in 

Figure 4-2(c), they give a threshold based on the top-hat transformed image to 

enhance the intensity of the pixels. However, the threshold is hard to define. Another 

question is how to select the structure element of top-hat transformation for lane line 

detection. If we apply the 33 structure element and set the threshold as 6 in the 

top-hat transformation to test our dataset, some lane lines may be destroyed, as shown 

in Figure 4-3(b). Besides, due to too many noise pixels included in the enhancement 

image, as shown in Figure 4-2(c), the recognition rate of lane lines decreases. By the 

way, before pre-processing, they divide the image into left and right parts, as shown 

in Figure 4-2(a), as the regions of interest. This procedure makes the system only can 

detect the condition where the lane lines are located in the left and right parts. When 

doing the lane changing, the lane line crossing the middle part is not detected. 

 

 
Figure 4-2 : The results of pre-processing step in [36]. (a) Original image. (b) Image 

after top-hat transformation. (c) Image after contrast enhancement.  
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Figure 4-3 : The result after the top-hat transformation and contrast enhancement. (a) 

Original image. (b) Image after top-hat transformation and contrast enhancement 

where the red cycle shows the destroyed part of the lane line. 

 

Hence, for reducing the noise pixels in the textured areas, we apply an additional 

constraint “structure tensor” to find those line-structure pixels on the 

contrast-enhanced image. By observing the two eigenvalues of the structure matrix 

SM which is computed over a small window of size (2q+1) around each candidate 

pixel (x, y) and defined by Eq. (22) [37]. 
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Depending on the two eigenvalues of the matrix SM, called λ1 and λ2 (λ1 ≧ λ2), the 

area can be classified into textured (both λ1 and λ2 are large), linear (λ1 >> λ2), and flat 

(both λ1 and λ2 are small). On the straight lane lines, the linear case will apply to 

retain the pixels only if λ1 > β λ2 where β is a constant. Figure 4-4 shows that the 

effectiveness of this method in removing the word pixels in the bottom right corner of 

the image and the pixels of the grass or the wall. Nevertheless, the disadvantage of 

this method is that it takes more than 300ms, which is not suitable for the real-time 

requirement. For the reason of above paragraphs, we do not apply the top-hat 

transformation and line-structure constraint in our system. 

As described in Section 3.3.2, the Hough transformation is one of the most 

common algorithms to detect the straight lines in an image. For various types of lane 

lines, there should be many lane line models used to describe them. The straight and 
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curve are the common lane line models. In this thesis, we first detect and record the 

lane lines from the straight, and then track them in subsequent frames. Figure 4-5 

shows the result of lane line detection when a new lane line appears in the middle of 

two originally detected lane lines. Result of the intermediate case of driving from the 

straight lane lines to curve lane lines then back to straight lane lines is shown in 

Figure 4-6. Figure 4-7 and Figure 4-8 show the result of the lane changing case and 

the straight lane line case, respectively. 

 

 
Figure 4-4 : The result of line-structure constraint. (a) Original image. (b) Image after 

top-hat transformation and contrast enhancement. (c) Image after the line-structure 

constraint on (b). The red cycle shows the effectiveness of noise removal. 

 

 
Figure 4-5 : A new lane line appears in the middle of two originally detected lane lines. 

(a) Original images. (b) Output images. 
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Figure 4-6 : The intermediate case of driving from straight lane lines to curve lane 

lines then back to straight lane lines. (a) Original images. (b) Output images. 

 

 

Figure 4-7 : The lane changing case. (a) Original images. (b) Output images. 

 

 

Figure 4-8 : The straight lane line case. (a) Original images. (b) Output images. 
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Although our algorithm applying the time-slice images to track the lane line 

points is feasible, there are two problems arising in our experiments. Problem 1 is that 

the number of times the gradient value smoothing step is performed affects the 

declining speed of the gradient histogram. As described in Section 3.4.3, we smooth 

the movement of gradient histogram and reduce the generation of the wrong peak 

points when the lateral moving of the vehicle occurs. Nevertheless, the more number 

of times of smoothing, the more quickly the gradient histogram decreases. This 

phenomenon makes the detection of the dashed lane lines go wrong easily. Figure 4-9 

shows an example of incorrect lane line detection due to too many times of smoothing 

steps. We focus on the left lane line and use four times of smoothing step. Since its 

internal distance is farther than the right lane line, we loss its information on the first 

ROI (red color) at frame 458, which is just 3 frames after frame 455. Since from 

frame 458 to frame 464, the next left lane line segment does not pass our first ROI yet, 

we loss the left lane line information on the second, third, fourth, and fifth ROI in the 

image, respectively. Although the new left lane line segment passes our ROIs at frame 

465, the left lane line in the tracking list has been destroyed since it misses for too 

many frames. On the other hand, as shown in Figure 4-10(a) and (b), we apply 1 time 

smoothing and 4 times smoothing in the gradient histogram, respectively. The 

gradient histogram after 1 times smoothing generates many peaks in the ROIs, which 

makes the result of lane line detection go wrong easily. The yellow regions show the 

difference between Figure 4-10(a) and (b). 
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Figure 4-9 : Problem 1 caused by the smoothing step. (a) Original images. (b) Output 

image where the left lane line is incorrect at the frame 465. 

 

 
Figure 4-10 : The results under the different times of the smoothing step. (a) After 1 

time of smoothing step, our system generates an incorrect lane line because of too 

many peaks in the gradient histogram. (b) After 4 times of smoothing step, the result 

of lane line detection is almost correct because of the proper gradient histogram. 

 

Problem 2 is how to check whether the shape of a lane line is correct when 

tracking both on the straight lane lines and curve lane lines. Even though we already 
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obtain a lane line positions on each ROI in the detection step, the new point positions 

on each ROI tracked correctly cannot be ensured because of the noise. The noises may 

come from the leading vehicles (c.f. Figure 4-11 (a)), the words (c.f. Figure 4-11 (b)), 

and the reflection of the windshield (c.f. Figure 4-11 (c)). They cause errors in lane 

line detection. Furthermore, if we find out that several tracked points of a lane line are 

wrong, how to modify this lane line to be correct is also one of the challenges in our 

system. 

 

 

Figure 4-11 : Problem 2 caused by the noises. (a) Noise from the leading vehicle. (b) 

Noise from the words. (c) Noise from the reflection of the windshield. 

 

In the end, we also implement the method proposed by Nadra et al. [36] in our 

experiments. To compare with this method by the statistic analyses, three performance 

indices are used, i.e., missing rate, false detection rate, and accuracy. The definitions 

of missing rate (MR) and false detection rate (FR) are described by Eq. (21) in 

Section 4.2. Table 4 lists the detailed performance comparisons between [36] and our 

method. From the view of accuracy, the method [36] performs better than our method 

for the Clip#2 (lane changing case) and Clip#3 (straight lane line case) since we have 

not resolved the Problem 1 and Problem 2 yet. But for the Clip#1 (intermediate case), 

their method performs worse than our method because their method needs to delimit a 

region for the curve fitting method. However, the performance of their system does 
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not work well on our dataset because of two reasons. One reason is that they select the 

maximum voting line by the Hough transformation as the lane line in the left and right 

region of interest, respectively. But they do not mention about how to select the better 

region of interest in their system for different car images. The other reason is that they 

only detect the lane lines for each single frame, and do not include the tracking 

conception. Looking back at the performance of our system, since the challenges 

mentioned before still need to be conquered, there is still room for improvement. In 

conclusion, if we can overcome the problems arising in our experimental results, our 

system utilizing the time-slice images to detect and track the lane lines will become 

feasible and robust. 

 

Table 4 : Performance comparisons between Nadra et al.[36] and our method. 

Clips 

# of 

frames 

Methods 

Missing 

frames 

False 

frames 

MR 

(%) 

FR 

(%) 

Accuracy 

(%) 

Clip#1 130 

Nadra et 

al.[36] 
10 70 7.69 53.85 38.46 

Our method 54 0 41.54 0 58.46 

Clip#2 1236 

Nadra et 

al.[36] 
48 884 3.88 71.52 24.6 

Our method 56 939 4.53 75.97 19.5 

Clip#3 7086 

Nadra et 

al.[36] 
146 3003 2.06 42.38 55.56 

Our method 3119 494 44.02 6.97 49.01 
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Chapter 5. Conclusions and Future Works 

 

In this thesis, we propose a lane line detection and tracking system utilizing the 

time-slice images. The system architecture consists of four modules, including (1) 

Pre-processing, (2) Vanishing Point Computation and Row of Interest (ROI) Setting, (3) 

Lane Line Detection and Verification, and (4) Lane Line Tracking. Pre-processing is 

performed by RGB to grayscale, image smoothing, image normalization, and edge 

detection for obtaining the edge feature of lane lines. Vanishing Point Computation 

and Row of Interest (ROI) Setting consists of Otsu binarization, Hough transformation, 

vanishing point computation, and ROI setting for locating the vanishing point and 

delimiting our ROIs. Time-slice image generation, gradient value adjustment, gradient 

value smoothing, peak finding, peak connecting, candidate lane line detection, and 

lane line verification are utilized for extracting the lane lines in the image in Lane 

Line Detection and Verification. The gradient value adjustment algorithm is proposed 

to overcome the sparseness problem in detecting the dashed lane lines. At last, Lane 

Line Tracking applies the prediction procedure to track a lane line in the time slice 

images. Since we consider the location information of a lane line from previous 

images to constrain the probable lane detection in the current image and only process 

on the ROIs instead of the whole image, the processing time of an image is reduced. 

The testing images of the car video clips are captured from the camera mounted on the 

upper center of windshield of the vehicle and we focus on the intermediate case of 

driving from the straight lane lines to curve lane lines and the lane changing case. The 

experimental results show that our proposed methods can improve the recognition of 

the lane line. However, there are still two problems needed to be resolved, as 
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described in Section 4.3. 

Thus, some interesting issues based on time-slice images for the lane lines 

extraction are worthy of further investigation. For the future works, we have some 

suggestions:  

(1) While the vanishing point is determined, how many rows in the image should 

be selected as our ROIs? More ROIs can facilitate the lane line detection and describe 

the shape of the lane lines in detail, but the processing time increases accordingly.  

(2) After selecting the new lane line points on each ROI, how to set constrains to 

check whether the shape of the lane line is correct? Though utilizing the time-slice 

images to track the lane line points is an intuitive approach, the positions of the lane 

lines easily suffer from the noises such as vehicles and shadows in the image. Hence, 

more features should be taken into consideration for eliminating noises in the image 

and to extract the lane lines more efficiently. 

(3) To what extent of smoothing in the gradient histogram is suitable for the 

system to detect the feature points of the lane lines? 

(4) If a system not only detects the lane line positions, but also recognizes the 

types of lane lines such as solid or dashed, single or double, yellow or white, the 

drivers can have better understanding about the driving environment. The drivers also 

can protect themselves in advance of a possible accident on the road. 

(5) In this thesis, we only discuss the intermediate case of driving from the 

straight lane lines to curve lane lines or the lane changing case. Other cases under the 

different weather conditions or different scenarios should be taken into consideration 

for constructing a more robust lane line detection system. 
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