

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

車 輛 影 片 中 車 道 線 之 偵 測 及 追 蹤

A Novel Lane Line Detection and Tracking System of Car

Videos

研 究 生：陳姿延

指導教授：李素瑛 教授

 陳華總 教授

中 華 民 國 一 百 零 一 年 七 月

車輛影片中車道線之偵測及追蹤

A Novel Lane Line Detection and Tracking System of Car Videos

研 究 生：陳姿延 Student：Tsu-Yen Chen

指導教授：李素瑛、陳華總 Advisor：Suh-Yin Lee, Hua-Tsung Chen

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

中華民國一百零一年七月

i

車輛影片中車道線之偵測及追蹤

研究生：陳姿延 指導老師：李素瑛 教授

 陳華總 教授

國立交通大學資訊科學與工程研究所

摘 要

 近年來為了減少交通事故而發展的車輛輔助安全駕駛議題越來越受重視。其

中，車道線偵測在車輛輔助安全系統中是一項必需的元件。在這篇論文中，我們

提出一個利用 time-slice images 來進行偵測及追蹤車道線的系統。另一方面，由

於虛線較為稀疏，不容易在畫面上偵測到，我們提出梯度值調整方法來提高虛線

在畫面上的辨識度。每一張影像經過前置處理、邊緣偵測、峰點找尋及連結找出

候選的車道線，接下來利用 time-slice images 進行車道線驗證，找出真正的車道

線位置，最後在 time-slice images 上預測這些車道線在新畫面的可能位置，以進

行進一步的追蹤。由於我們只針對影像中某幾行進行處理，且我們利用追蹤的方

法提供了連續的車道線偵測，這會減少一張影像所需要的處理時間。

實驗中採用行車紀錄器所拍下的影片當作測試資料，對於三種情況下做車道

線偵測：一是當從直線開到曲線時，二是當進行車道切換時，三是開在直線上時。

我們實作相關研究之車道線偵測演算法並對所執行出來的結果及產生的問題進

行討論。實驗結果顯示，我們提出的方法確實能協助某些情況下車道線的偵測。

關鍵字：影像處理、機器視覺、車道線偵測、車道線追蹤

ii

A Novel Lane Line Detection and Tracking System of Car Videos

Student: Tsu-Yen Chen Advisor: Prof. Suh-Yin Lee

 Prof. Hua-Tsung Chen

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

In recent years, in order to reduce traffic accidents, developing Driver Assistance

Systems for safety has attracted much attention. Lane line detection is an essential

component of Driver Assistance System. In this thesis, we propose a lane line

detection and tracking system utilizing the time slice images. On the other hand, due

to the discontinuousness, dashed lane lines are difficult to detect in a single image. We

propose the gradient value adjustment method to enhance the recognition of the

dashed lane lines. For each frame, we find the candidate lane lines in the image

through pre-processing, edge detection, and peak finding and connecting. Then we

detect the true lane line positions by the time slice images in lane line verification.

Once the lane line positions are located, we predict their new positions by the time

slice images and track them in the new frame. Since we only process several rows of

an image and we provide the continuous detection of the lane lines by tracking, the

processing time of an image is reduced.

The experiments use the video sequences of real road scenes containing three

iii

conditions: (1) the intermediate case of driving from the straight lane lines to curve

lane lines, (2) the lane changing case, and (3) the straight lane lines case. We

implement other lane line detection algorithms on the above cases, and then analyze

the experimental results and discuss the problems arising in the experiment. However,

the experimental results show that our proposed methods can improve the lane line

detection in some cases.

Keyword: Image Processing、Machine Vision、Lane Line Detection、Lane Line

Tracking

iv

Acknowledgement

I greatly appreciate the patient guidance, the encouragement, and valuable

comments of my advisors, Porf. Suh-Yin Lee and Porf. Hua-Tsung Chen. Without

their graceful advices and help, I cannot complete this thesis. Besides, I want to extend

my thanks to my friends and all members in the Information System laboratory,

Hui-Zhen Gu, Yi-Cheng Chen, Chien-Peng Ho, Chien-Li Chou, Chun-Chieh Hsu,

Yee-Choy Chean, Li-Wu Tsai, Tuan-Hsien Lee, Chao-Ying Wu, Wei-Zen Wang,

Fan-Chung Lin, Li-Yen Kuo, Ming-Chu Chu, Kuan-Wei Chen, Yu-Chen Ho and

Tzu-Hsuan Chiang especially. They gave me a lot of suggestions and shared their

experiences.

Finally, I would like to express my deepest appreciation to my dear family for

their supports. This thesis is dedicated to them.

v

Table of Contents

Abstract (Chinese) .. i

Abstract (English) .. ii

Acknowledgement .. iv

Table of Contents ... v

List of Figures .. vii

List of Tables ... xi

Chapter 1. Introduction .. 1

1.1 Motivation and Overview .. 1

1.2 Organization ... 4

Chapter 2. Related Works .. 5

2.1 Related Works in Lane Line Detection .. 5

2.1.1 Feature-based Lane Detection.. 7

2.1.2 Model-based Lane Detection ... 12

2.2 Related Works in Lane Tracking .. 17

Chapter 3. Proposed System Architecture ... 19

3.1 Overview of the Proposed System ... 20

3.2 Pre-processing .. 20

3.2.1 RGB to Gray .. 21

3.2.2 Image Smoothing ... 22

3.2.3 Image Normalization ... 22

3.2.4 Edge Detection ... 23

3.3 Vanishing Point Computation and ROI Setting ... 24

3.3.1 Otsu Binarization ... 26

3.3.2 Hough transformation .. 27

3.3.3 Vanishing Point Computation .. 30

3.3.4 ROI Setting .. 32

3.4 Lane Detection and Verification .. 33

3.4.1 Time-Slice Image Generation .. 34

3.4.2 Gradient Value Adjustment .. 35

3.4.3 Gradient Value Smoothing ... 38

3.4.4 Peak Finding .. 40

3.4.5 Peak Connecting .. 41

3.4.6 Candidate Lane Line Detection ... 42

3.4.7 Lane Line Verification ... 43

3.5 Lane Line Tracking .. 44

vi

Chapter 4. Experimental Results and Discussions ... 47

4.1 Experimental Environments and Datasets ... 47

4.2 Evaluation Method ... 49

4.3 Experimental Results ... 50

Chapter 5. Conclusions and Future Works ... 58

Bibliography .. 60

vii

List of Figures

Figure 1-1 : An example of the lane line detection. (a) Input frame captured from the

camera. (b) Output frame where the position of the lane lines is located. 2

Figure 1-2 : Different weather conditions. (a) Image captured under the sunny day. (b)

Image captured under the cloudy day. (c) Image captured under the rainy

day. .. 2

Figure 1-3 : Different driving environments. (a) The presence of shadows. (b) The

lane line occluded by the vehicles. (c) Various markings on the road. 3

Figure 1-4 : An example of the intermediate case of driving from the (a) straight lane

lines to (b) curve lane lines and then back to (c) straight lane lines. 3

Figure 1-5 : An example of lane changing from the left to right. 3

Figure 2-1 : Two types of road image. (a) Structured road image. (b) Unstructured

road image. .. 6

Figure 2-2 : An example of Inverse Perspective Mapping. (a) Original image. (b)

Inverse perspective mapped image which seems to be observed from the

top. ... 8

Figure 2-3 : Lane line detection through the removal of the perspective effect in three

different conditions: straight road with shadows, curved road with

shadows, junction. (a) Input image. (b) Mapped image (3D to 2D) of (a).

(c) Result of the line-wise detection of black-white-black transitions in

the horizontal direction. (d) Remapped image (2D to 3D) where the grey

areas represent the portion of the image shown in (c). (e)

Superimposition of (d) onto a brighter version of the original image (a).

[18] .. 9

Figure 2-4 : The flowchart of He et al.[20]. (Red rectangle is represented as the

curvature model they defined.) ... 11

Figure 2-5 : The lane line candidate vectors mapped into the 3D feature space. 12

Figure 2-6 : Examples of LOIS’ lane line detection [25]. .. 13

Figure 2-7 : Multiresolution algorithm for detecting the lane line rapidly and

accurately [11], which uses the size reducing at first, then applies the

ARHT to detect the parameters of lane lines roughly, and finally uses

coarse-to-fine location method to offer the better position of lane lines. 15

Figure 2-8 : The process overview of LCF [30]. ... 16

Figure 2-9 : An example of lane line detection by Catmull-Rom spline. (a) Original

road image. (b) The result of lane line detection by Catmull-Rom splines.

(PL0, PL1, PL2) and (PR0, PR1, PR2) are the control points for left and right

viii

side of lane line. PL0 and PR0 are the same control point, which supposes

to be vanishing point. [29] .. 17

Figure 2-10 : Examples of lane line detection using the B-Snake. [13] 17

Figure 3-1 : The proposed system architecture. ... 19

Figure 3-2 : Flowchart of Pre-processing module. .. 21

Figure 3-3 : An example of image normalization. Comparing the original histogram of

image after smoothing (top) with the normalized histogram of image

after normalization (bottom), one can observe that the range of pixel

intensity values becomes broader. ... 23

Figure 3-4 : Sobel edge detector. (a) Operator for horizontal changes (Gx). (b) Positive

edge whose intensity change along x-direction is from dark to bright. (c)

Negative edge whose intensity change along x-direction is from bright to

dark. ... 24

Figure 3-5 : An example of edge detection result. (a) Original image. (b) Result of

edge pixels which have positive responses after using Gx. 24

Figure 3-6 : Flowchart of Vanishing Point Computation and ROI Setting module. 25

Figure 3-7 : Result of Otsu binarization. (a) Original edge image. (b) The

corresponding binary image after using Otsu algorithm. 27

Figure 3-8 : Hough transformation. (a) Polar-coordinate (ρ, θ) representation of a

straight line. Each line has a unique representation (ρ, θ). (b) The Hough

domain of an image. The red point is the point with the highest number

of intersections [38]... 28

Figure 3-9 : The unreasonable representation of the curve lane lines. (a)(b) The curve

lane lines in the red circle cannot be detected, and only the straight lane

lines in the near field are detected. .. 29

Figure 3-10 : The estimated vanishing point result. (a) Original image. (b) The green

lines are represented as the prominent lines acquired from the Hough

transformation and the red point is represented as the estimated

vanishing point in current frame. .. 31

Figure 3-11 : Procedure of vanishing point computation. From Nvan frames, choosing

the highest voted point as the final result of the vanishing point which is

drawn in yellow. .. 32

Figure 3-12 : Illustration of ROI setting. The yellow point indicates the final vanishing

point, and the five rows (Nrow = 5) in red, green, cyan, yellow, and purple

are the selected ROIs. .. 33

Figure 3-13 : Flowchart of Lane Line Detection and Verification module. 34

Figure 3-14 : Illustration of time slice generation. .. 35

Figure 3-15 : An example of temporal blurring. (a) Original image. (b) Average image.

ix

 ... 36

Figure 3-16 : The gradient histogram of each ROI shown with different colors. 37

Figure 3-17 : The result of gradient value adjustment. (a) Original gradient histogram

of each ROI which sometime does not include the information of dashed

lane line. (b) The gradient value adjustment algorithm compensates the

detection of dashed lane line. The red cycle shows the final result of

dashed lane line. .. 38

Figure 3-18 : The hill and peak point (Pp) in the histogram [41]. 39

Figure 3-19 : The result of gradient value smoothing. (a) Original gradient histogram

with many internal ripples. (b) The gradient histogram only with the

maximal peak after gradient value smoothing. 39

Figure 3-20 : The result of peak finding algorithm. Found (picked) peak points,

represented by the white points. .. 40

Figure 3-21 : An example of peak connecting algorithm. (a) 5 peak points (blue) and

the vanishing point (red). (b) Peak connecting result of (a). Each blue

line segment means that two peak points are similar. 42

Figure 3-22 : The result of peak connecting on the real road image. (a) Peak point

image. (The peak points are represented by the white points.) (b) Peak

connecting image. (The white line segments imply the relationship

within the similar peak points.) ... 42

Figure 3-23 : The result of candidate lane line detection. (a) Peak connecting image.

(b) Two candidate lane lines are obtained in current frame (yellow lines).

 ... 43

Figure 3-24 : The result of lane line verification. (a) Two candidate lane lines are

drawn with yellow color. (b) Final results of lane lines are drawn with

cyan color. ... 44

Figure 3-25 : Elimination of the false candidate lane lines in lane line verification. (a)

Original image. (b) Two false candidate lane lines are generated since the

presence of arrow markings on the road. (c) Within M frames, these two

false candidate lane lines are not detected consecutively and thus be

eliminated. ... 44

Figure 3-26 : The relationship between the candidate list and tracking list. 45

Figure 3-27 : The conception of prediction procedure. (a) Two candidate lane lines are

drawn with yellow color. (b) The time-slice image generated by ROI5 is

used to track the lane lines. (c) An example of the moving change over

x-axis. Here, x3 is the current point, and x4 is the predicted point. 46

Figure 4-1 : Sample road images in different cases. (a) Intermediate case where the

type of lane lines is from the straight to the curve then back to straight. (b)

x

Lane changing case from left to right. (c) Straight lane lines case. 48

Figure 4-2 : The results of pre-processing step in [36]. (a) Original image. (b) Image

after top-hat transformation. (c) Image after contrast enhancement. 50

Figure 4-3 : The result after the top-hat transformation and contrast enhancement. (a)

Original image. (b) Image after top-hat transformation and contrast

enhancement where the red cycle shows the destroyed part of the lane

line. .. 51

Figure 4-4 : The result of line-structure constraint. (a) Original image. (b) Image after

top-hat transformation and contrast enhancement. (c) Image after the

line-structure constraint on (b). The red cycle shows the effectiveness of

noise removal. ... 52

Figure 4-5 : A new lane line appears in the middle of two originally detected lane lines.

(a) Original images. (b) Output images... 52

Figure 4-6 : The intermediate case of driving from straight lane lines to curve lane

lines then back to straight lane lines. (a) Original images. (b) Output

images. .. 53

Figure 4-7 : The lane changing case. (a) Original images. (b) Output images. 53

Figure 4-8 : The straight lane line case. (a) Original images. (b) Output images. 53

Figure 4-9 : Problem 1 caused by the smoothing step. (a) Original images. (b) Output

image where the left lane line is incorrect at the frame 465. 55

Figure 4-10 : The results under the different times of the smoothing step. (a) After 1

time of smoothing step, our system generates an incorrect lane line

because of too many peaks in the gradient histogram. (b) After 4 times of

smoothing step, the result of lane line detection is almost correct because

of the proper gradient histogram. .. 55

Figure 4-11 : Problem 2 caused by the noises. (a) Noise from the leading vehicle. (b)

Noise from the words. (c) Noise from the reflection of the windshield. 56

xi

List of Tables

Table 1 : The 1-D convolution kernel of Gaussian Filter [37]. 40

Table 2 : Total number of frames of each ground-truth video clip. 48

Table 3 : Processing time of each module in our system. .. 49

Table 4 : Performance comparisons between Nadra et al.[36] and our method. 57

1

Chapter 1. Introduction

1.1 Motivation and Overview

Recently, traffic accidents have become one of the most serious problems in

today’s world. However, the major factor which leads to road accidents is the

carelessness of drivers or improper driving. Therefore, Advance Driver Assistance

System (ADAS) [1] and Intelligent Transportation System (ITS) [2] are developed to

improve the driving safety and reduce road accidents.

For the vision-based driving assistant systems, lane line detection plays an

essential role in providing useful and effective information with respect to the relative

position of the vehicle on the road. By means of this information, the driver can better

understand the road circumstances and his/her driving situations for safety. So for

decades, lane line detection has become a critical research field. However, in most

conditions, vision-based lane line detection is simplified into a problem of finding the

locations of lane lines in the input road images with or without strong prior knowledge

about the lane line positions and drawing the results in the output images. Figure 1-1

shows an example of the lane line detection.

In order to analyze the lane line information from car videos, most lane line

detection algorithms are based on image processing techniques to search for the lane

lines. In general, the video analysis procedure comprises three major processing steps:

(1) selection of the region of interest, (2) lane line detection, and (3) lane line tracking.

Nevertheless, in most of the existing works, a fundamental problem is that the

performance of video analysis may not be stable with varied environments and

different weather conditions, as shown in Figure 1-2, resulting in the difficulty in lane

2

line detection. Besides, as shown in Figure 1-3, the presence of shadows, the lane line

occluded by the vehicles and various markings on the road also affect the detection

result. Moreover, most existing works processed the case of straight lane lines and

curve lane lines, individually. Few researches discuss about the intermediate case of

driving from the straight lane lines to curve lane lines, as shown in Figure 1-4, or lane

changing, as shown in Figure 1-5. On the other hand, another critical issue is that

image processing is always time-consuming. To cater for the requirement of real-time

response, developing efficient system frameworks and video analysis algorithms is an

important and inevitable task. Consequently, how to quickly and correctly locate the

position of the lane lines from car videos is the core problem and issue in our work.

Figure 1-1 : An example of the lane line detection. (a) Input frame captured from the

camera. (b) Output frame where the position of the lane lines is located.

Figure 1-2 : Different weather conditions. (a) Image captured under the sunny day. (b)

Image captured under the cloudy day. (c) Image captured under the rainy day.

3

Figure 1-3 : Different driving environments. (a) The presence of shadows. (b) The

lane line occluded by the vehicles. (c) Various markings on the road.

Figure 1-4 : An example of the intermediate case of driving from the (a) straight lane

lines to (b) curve lane lines and then back to (c) straight lane lines.

Figure 1-5 : An example of lane changing from the left to right.

In this thesis, we describe our lane line detection and tracking system, then

implement and compare several methods on the various cases, as shown in Figure 1-4

and Figure 1-5, and we discuss some problems arising in the course of our

experiments. We mount the camera on the upper center of windshield of the vehicle for

video capturing when driving. When inputting a car video, our proposed system

4

locates the vanishing point at first, and then instead of using the whole image, we only

process some rows of the image as our rows of interest (ROIs). Slicing through the

stack of some frames in time at a ROI generates a time slice image. With the time

slice images and the vanishing point’s position, we can detect the lane lines and track

them on the time slice images. In the experiment, we implement several lane line

detection algorithms and test them on real car videos captured at special environment

conditions, then we discuss the problems arising in the experiment.

In conclusion, the contributions of this thesis are listed as follows:

 We adopt the peak finding algorithm to find out the points of the candidate lane

lines, instead of giving a fixed threshold to classify the pixels in the image into

non-lane-line and lane-line classes.

 We propose a gradient value adjustment algorithm to overcome the sparseness

problem in detecting dashed lane lines.

 We propose a lane line detection and tracking algorithm using the “time slice

images” which involve the lane lines’ relationship between the time and space.

Also, the time slice images can help us to detect the shape of curve lane lines

without calculating the parameters of curve fitting.

1.2 Organization

 The rest of this thesis is organized as follows. In Chapter 2, we survey some

related works in lane line detection and tracking of car videos. Chapter 3 introduces

our system to detect and track the position of lane lines. In Chapter 4, the experimental

results of lane line detection and tracking are shown and discussed. At last, we

conclude this thesis and describe the future work in Chapter 5.

5

Chapter 2. Related Works

In this chapter, some related works in lane line detection and tracking of car video

are described. A distinction can be made between the problems of lane line detection

and tracking. Lane line detection involves determining the location of the lane lines in

a single image. Lane line tracking involves determining the location of the lane lines

in a sequence of consecutive images, using information about the lane line location

from previous images in the sequence to constrain the probable lane line detection in

the current image. In each video, the first several image frames will be processed by

the lane line detection algorithm, and this will provide a good estimation of lane line

tracking for the subsequent frames.

2.1 Related Works in Lane Line Detection

As a basic yet important component in driver assistance systems [1][3], the aim

of lane line detection is to detect the relative position of the vehicle on the road and to

obtain the lane line information, such as the offset, the orientation, the curvature, and the

types. With this lane line information, we can provide a better understanding of road

environment to drivers and thus improve the driving safety. Generally, a road image

can be classified into a structured or unstructured one, as shown in Figure 2-1(a) and

(b), respectively. The most distinguishable characteristic between structured roads and

unstructured roads is the existence of lane lines. The structured road has its boundary

showing specific features or certain regularity in appearance. The structured road

boundary has characteristics such as the painted white or yellow line(s), and regularly

6

shaped road edges. On the other hand, the boundary of the unstructured road does not

have apparent features or regularity in its appearance. Most researches of lane line

detection focus on the analysis of structured roads where the lane lines are painted on the

road surface.

Figure 2-1 : Two types of road image. (a) Structured road image. (b) Unstructured

road image.

The vision-based lane line detection is a complex and challenging task. It is well

known that vision cues greatly vary depending upon lighting changes and weather

conditions. Moreover, due to the appearance of various markings on the road and the

different scenarios, for example, driving on an urban road [4][20] or on a highway [5],

it is difficult to recognize the position of lane lines.

During the recent years, various weather conditions for vision-based lane line

detection techniques for safety vehicles are taken into consideration and are being

developed. There have been many approaches proposed for lane line detection. Those

works usually use different road models, 2D [7][12] or 3D [4][6][15][17][19].

Different lane lines, straight [12][14][15][28] or curve [10][30][33], and different lane

line patterns, solid or dash painted line [3]-[30], are considered. Different techniques

are employed, Hough transformation [11][28], template matching [10][25], or neural

networks [8]. The recent survey paper proposed by McCall and Trivedi [3] provides a

7

comprehensive summary of existing approaches. Most of the methods propose a

three-step process. (1) Initializing lane lines by extracting features such as edges [7],

texture [8], color [9], and frequency domain features [10]. (2) Post-processing the

extracted features to remove outliers using techniques like Hough transform [11][28]

and dynamic programming [12], along with computational models explaining the

structure of the road using deformable contours [13], and regions with piecewise

constant curvatures [6]. (3) Tracking the detected lane lines using the Kalman filter

[14] or particle filter [15][16] by assuming motion models such as constant velocity or

acceleration for the vehicle. However, these approaches can be classified into two main

categories namely feature-based and model-based techniques [3]. Detailed surveys can

be found in [3]-[30].

2.1.1 Feature-based Lane Detection

The feature-based methods detect the lane lines in the road images by using some

low-level features, such as painted lines [17]-[19], lane line edges [7][22][23], texture

[8] and colors [9][20][21]. The advantage of the feature-based methods is that the

features are extracted easily. Nevertheless, they highly demand well-painted lane lines

or strong lane line edges in road images; otherwise this method may fail. Furthermore,

the performance of this method may easily suffer from occlusion or noise. In the

following, we review some representative works of feature-based lane line detection.

Broggi and Bertè [17][18] develop an approach applying the IPM (Inverse

Perspective Mapping) [42] algorithm on the road image. The IPM algorithm is a

mathematical technique whereby a coordinate system may be transformed from one

perspective to another, and it can remove the perspective effect from the acquired

image. The perspective effect means that the lane lines width change according to

8

their distance from the camera. In this case, in order to remove the perspective effect,

the a-priori knowledge exploited by the IPM transform is the assumption of a flat

road in front of the vehicle. The IPM algorithm maps the acquired image, as shown in

Figure 2-2(a), into a new 2-D domain array in which the information content is

homogeneously distributed among all pixels and the resulting image represents a top

view of the road region in front of the vehicle, as if it were observed from the top, as

shown in Figure 2-2(b).

Figure 2-2 : An example of Inverse Perspective Mapping. (a) Original image. (b)

Inverse perspective mapped image which seems to be observed from the top.

Here, the assumption used in the definition of a “lane line” is that a lane line is

represented by a quasi-vertical bright line of constant width surrounded by a dark

region (the road). Hence, the pixels belonging to a lane line have higher intensity

values than their left and right neighbors. Thus, the lane line detection is reduced to

the determination of horizontal black-white-black transitions. Based on a geometrical

transform and on a fast morphological processing, the system is capable of detecting

the lane lines. Figure 2-3 shows the results of lane line detection through the IPM

algorithm.

9

Figure 2-3 : Lane line detection through the removal of the perspective effect in three

different conditions: straight road with shadows, curved road with shadows, junction.

(a) Input image. (b) Mapped image (3D to 2D) of (a). (c) Result of the line-wise

detection of black-white-black transitions in the horizontal direction. (d) Remapped

image (2D to 3D) where the grey areas represent the portion of the image shown in (c).

(e) Superimposition of (d) onto a brighter version of the original image (a). [18]

Bertozzi and Broggi [19] propose the GOLD (Generic Obstacle and Lane

Detection) system utilizing a stereo vision-based hardware and software architecture,

which aims at improving road safety of moving vehicles. The GOLD system removes

the perspective effect also by IPM algorithm which maps the region ahead of the

vehicle into the top view. In GOLD, lane lines after the IPM transform are modeled as

quasi-vertical constant width lines, brighter than their surrounding region. Based on a

line-wise determination of horizontal black-white-black transitions, the pixels that

have higher intensity value than their horizontal neighbors at a given distance are

10

detected. However, in this work, not only the lane line detection is implemented but

also the obstacle detection.

He et al. [20] propose a color-based vision system to determine the road

parameters and detect lane lines from urban traffic scenes. Based on the projective

transformation, edge detection, binarization and their pre-defined curvature models, as

shown in Figure 2-4, this system estimates three candidate boundaries to extract the

road region. The result of boundary estimation module is combined with the color

information of the capture image to get the road area image. Finally, they utilize this

road area image and three candidate boundaries to determine the real road boundaries

and to acquire the parameters of road. Cheng et al. [21] apply the color of road and

lane lines for the image segmentation, and then utilize the size, shape and motion

characteristics to determine whether a region belongs to a vehicle or a lane line for

false lane line region elimination. Huang and Pan [22] develop a method to detect the

lane lines and the road edges of structured and unstructured roads, respectively. In

structured road detection, utilizing the vertical Sobel mask and color characteristic at

first to detect the points of lane lines. If the number of points is greater than a

predefined threshold, the slope filtering is applied to refine the detection results. And

the least square approximation is employed to represent the lane lines. The

unstructured road detection is performed while the number of detected points is not

enough. They extract the road surface with the predefined sets of sampled blocks, and

obtain the edge points from the vertical intervals. For the accuracy of detection, the

new sampled blocks are updated by the random sampling points from segmented

regions.

11

Figure 2-4 : The flowchart of He et al.[20]. (Red rectangle is represented as the

curvature model they defined.)

 Tsai et al. [23] propose a lane line detection algorithm using the concept of

directional random walks based on Markov process. Two major components are

included in this method to decide the correct locations of all lane lines: (1) lane

segmentation and (2) edge linking. They first define proper structure elements to

extract different lane line features from input frames using a novel morphology-based

approach. Then, they utilize a novel linking technique to link all “desired” lane line

features for lane lines detection. The technique considers the linking process as a

directional random walk which constructs a Markov probability matrix for measuring

the direction relationships between lane segments. Then, from the matrix of transition

probability, the correct locations of all lane lines can be decided and found in videos.

Yim and Oh [24] develop a three-feature based automatic lane line detection algorithm

12

(TFALDA). It is intended for automatic extraction of the lane lines without the priori

information or manual initialization under different road environments. The lane lines

are recognized based on similarity match in a three dimensional (3D) space consisting

of the starting position, direction, and gray-level value of a lane line as features, as

shown in Figure 2-5.

Figure 2-5 : The lane line candidate vectors mapped into the 3D feature space.

2.1.2 Model-based Lane Detection

Model-based methods represent the lane lines through a few geometric

parameters. According to the shapes of lane lines, the lane line models can be defined

as a straight line model [12][14][15][28] or a parabolic model (that is, curve) [10][30],

even a spline model [4][13][29]. Moreover, how to find the best parameters for the

model is the core problem to be solved. Compared with the feature-based methods, the

model-based methods are less sensitive to weak lane line appearance features and

noise.

To acquire the best parameters of lane line model, the likelihood function

[10][25], the Hough transform [11][28], and curve fitting [30], had been applied into

the lane line detection. However, the model-based methods require a complex

modeling process involving much prior knowledge. Constructing a simple model for

13

one scene can get better efficiency, but this model may not work well in another scene

because it cannot describe arbitrary shape of lane lines. So, the simple models are less

adaptive. But for the complex models, although they can adapt to multiple scenes and

describe arbitrary shape of lane lines, an iterative error minimization algorithm should

be applied for the estimation of best model parameters, which is comparatively

time-consuming. The process would take much time and would not satisfy the real

time requirement of the driving applications. Next, we discuss some representative

works of model-based lane line detection.

In [25], Kluge and Lakshmanan present a deformable template model of lane line

structure, called Likelihood Of Image Shape (LOIS), to locate the lane lines by

optimizing a likelihood function. It is assumed that the left and right lane lines are

modeled as two parallel parabolas on the flat ground plane. For each pixel, this

algorithm uses a Canny edge detector [26] to obtain the gradient magnitude and

orientation. The parameters of perspective projection model are then estimated by

applying the Maximum A Posteriori (MAP) estimation [27] and the Metropolis

algorithm based on the image gradient. Figure 2-6 shows some results of LOIS’ lane

detection under the various road environmental conditions.

Figure 2-6 : Examples of LOIS’ lane line detection [25].

14

The LANA system [10], proposed by Kreucher and Lakshmanan, is similar to

the LOIS system [25] at the detection stage. But LANA combines the frequency

domain features of the lane lines with a deformable template for finding the lane line

edges. The feature vectors are used to compute the likelihood probability through

fitting the detected features to a lane line model. Li et al. [11] develop the Springrobot

system by using the color and edge gradient as the lane line features and the adaptive

randomized Hough transform (ARHT) to locate the curve lane lines on the feature

map. A multi-resolution strategy is applied to achieve an accurate solution rapidly and

to decrease the running time to meet the real-time requirement. As illustrated in

Figure 2-7, they first reduce the size of the original image to 1/2
z
, where z = 1, 2, by

bicubic interpolation. The reduced images are called “half image” and “quarter

image”, respectively. In these images with lower resolution, they apply the ARHT

with fixed quantized accuracy to roughly and efficiently locate the global optima of

lane lines without regarding the accuracy. The parameters resulting from the previous

step can be used as starting values of another ARHT for more accurate location of

lane lines. Therefore, the parameter search can be restricted to a small area around the

previous solution, saving time and storage complexities. This coarse-to-fine location

speeds up the process of lane line detection, thus it offers an acceptable solution at an

affordable computational cost. Figure 2-7 shows the results of multi-resolution

algorithm in Springrobot system.

15

Figure 2-7 : Multiresolution algorithm for detecting the lane line rapidly and

accurately [11], which uses the size reducing at first, then applies the ARHT to detect

the parameters of lane lines roughly, and finally uses coarse-to-fine location method

to offer the better position of lane lines.

Park et al. [30] use the lane-curve function (LCF) for lane line detection. The

whole process of algorithm is shown in Figure 2-8. The LCF is obtained by

transforming the defined parabolic function from the world coordinates into the image

coordinates. Moreover, this algorithm needs no transformation of the image pixels

into the world coordinates. The main idea of this algorithm is to search for the

best-described LCF of the lane-curve on an image. In advance, several LCFs are

assumed by changing the curvature and for each LCF, it defines its lane line region of

interest. Then, the comparison is carried out between the slope of an assumed LCF

and the phase angle of the edge pixels in the lane line region of interest. The LCF with

the minimal difference in the comparison becomes the true LCF corresponding to the

lane-curve.

16

Figure 2-8 : The process overview of LCF [30].

Wang et al. [29] propose a Catmull-Rom spline [32] based lane line model. Their

algorithm uses a maximum likelihood approach in detecting the lane lines. As

Catmull-Rom spline model can form arbitrary shapes by control points, it can describe

a wider range of lane line structures than the straight or parabolic model. Figure 2-9

shows the estimation of lane lines to real road image by implementing the

Catmull-Rom spline algorithm. In [13], Wang et al. propose a B-Snake based lane line

detection and tracking algorithm without any camera parameters. The main

characteristics of this method are as follows. (1) The Canny/Hough Estimation of

Vanishing Point (CHEVP) is presented for providing a good initial position for the

B-Snake. (2) The Minimum Mean-Square Error (MMSE) is proposed to determine the

control points of the B-Snake model by the overall image forces on two sides of the

17

lane. (3) The Gradient Vector Flow (GVF) [31] field is used to let the B-Snake move

to its optimal solution. The estimation of lane lines by B-Snake is shown in Figure

2-10.

Figure 2-9 : An example of lane line detection by Catmull-Rom spline. (a) Original

road image. (b) The result of lane line detection by Catmull-Rom splines. (PL0, PL1,

PL2) and (PR0, PR1, PR2) are the control points for left and right side of lane line. PL0

and PR0 are the same control point, which supposes to be vanishing point. [29]

Figure 2-10 : Examples of lane line detection using the B-Snake. [13]

2.2 Related Works in Lane Tracking

However, some researches [7][8][10][12][20][23][30] do not mention about the

idea of lane line tracking. They only propose the lane line detection algorithm on each

18

single frame and do not take into consideration about the relationship between two

consecutive frames. However, most researches [6][9][14][15][16][21][28] usually

include the lane line tracking into their systems for the purpose of the real-time

requirement. Hence, considering there is only small change between two consecutive

frames, those systems use information from previous results to facilitate the current

detection. The Kalman filter [14] or the Particle filter [15][16] is the common method

used to track the lane lines in videos since it can provide the continuous detection on

all images in a sequence. Lane line tracking step can drastically reduce the search area

in every frame and consequently detect lane lines in an efficient way.

In [14], when the lane lines are detected, the Kalman filters are used to track and

smooth the estimates of parameters of lane lines based on the measurements. While

tracking, if lane lines are intermittently not detected, then the Kalman filter relies on

its prediction to produce estimates. However, if the lane lines go undetected for more

than a few seconds, then tracking is disabled until the next detection. This is to avoid

producing incorrect estimates when the lane lines do not appear on the road.

Kim [16] choose a particle-filtering algorithm over the Kalman filter to prevent

the result from being biased too much on the predicted vehicle motion but to give

more weight to the image evidence. Due to the vehicle’s vibration and pitch change,

the motion of the lane lines in world coordinates is not smooth enough to be properly

modeled by a Kalman filter.

Although a lot of lane line detection and tracking algorithms are proposed, few

researches mention about the intermediate case of driving from the straight lane lines

to the curve lane lines, or the lane changing case. Therefore, we implement several

algorithms in the intermediate case and the lane changing case. Then we discuss the

problems arising in the experiments.

19

Chapter 3. Proposed System Architecture

This chapter describes the details of our proposed system. At first, an overview is

given in Section 3.1, and the pre-processing is described in Section 3.2. Section 3.3

introduces the method to compute the vanishing point and set the row of interest (ROI)

for subsequent processing steps. Then our proposed approach of lane line detection

and verification is presented in Section 3.4, and finally, we explain the lane line

tracking algorithm in Section 3.5.

Figure 3-1 : The proposed system architecture.

20

3.1 Overview of the Proposed System

The overview of proposed system is depicted in Figure 3-1. The system

architecture consists of four modules, including (1) Pre-processing, (2) Vanishing

Point Computation and Row of Interest (ROI) Setting, (3) Lane Line Detection and

Verification, and (4) Lane Line Tracking. For each step, we show the sample results on

the right side.

For each image acquired from the camera, Pre-processing step for noise removal

is firstly performed by image smoothing, image normalization and edge detection. In

Vanishing Point Computation and Row of Interest (ROI) Setting step, the Hough

transform and linear least square are applied in order to decide the possible position of

the vanishing point and then utilize the vanishing point to delimit the rows of interest

(ROIs) which we want to analyze in the following steps. Next, Lane Line Detection

and Verification uses the gradient histogram of edge image generated from edge

detection and some limitations to obtain the lane lines. Lastly, Lane Line tracking

tracks the lane lines on the time-slice images generated from the ROIs.

3.2 Pre-processing

In this section, pre-processing is performed to reduce the noise and improve the

contrast of the original image, then generate the corresponding edge image for

subsequent processing. As illustrated in Figure 3-2, the original color image is first

converted to the grayscale image. For image smoothing, we use the Gussian filter to

eliminate the noise. Then in order to facilitate the extraction of lane lines, we use

image normalization to increase the contrast of the image. At last, we extract the edge

21

features of the lane lines by edge detection.

Figure 3-2 : Flowchart of Pre-processing module.

3.2.1 RGB to Gray

At the beginning, the original images are composed of three independent channels

for red, green and blue primary color components. Thus, for RGB to grayscale

22

conversion, we take three channel values of each pixel in the color image and use the

conversion formula defined by Eq. (1) [37] to get the value for the corresponding pixel

in the grayscale image. Pixels throughout the RGB image are scanned and this

procedure is applied to convert a RGB image into grayscale one.

Gray = 0.299 * Red + 0.587 * Green + 0.114 * Blue (1)

3.2.2 Image Smoothing

To realize the lane line detection, noise disturbance can greatly affect lane line

distinction. However, the noise reduction techniques usually involve averaging the

value of pixels residing in a local area and generating a blurred or smoothed image.

Here, we apply the Gaussian filter [37] to eliminate the noise signal. As one of the

specialized weighted averaging filters, the Gaussian filter has been widely adopted in

the field of image processing and computer vision for years, and is known for its

image smoothing and noise reduction capability.

3.2.3 Image Normalization

Since there are different environment conditions such as the presence of strong

shadows, object reflection, illumination variation, and obscurity, the contrast

enhancement of image intensity is essential. Image normalization [37] is a spatial

domain based image enhancement technique. After image normalization, the

distribution of pixels becomes more evenly spread out over the available pixel range.

This step normalizes the brightness values of image in the range from 0 to 255,

ensuring that the lane lines have high intensity value in every frame, even when the

23

overall brightness is changing. Figure 3-3 shows an example of image normalization.

Figure 3-3 : An example of image normalization. Comparing the original histogram of

image after smoothing (top) with the normalized histogram of image after

normalization (bottom), one can observe that the range of pixel intensity values

becomes broader.

3.2.4 Edge Detection

After smoothing and normalizing the image, we want to utilize some features to

recognize the lane lines. In order to attract the drivers’ attentions, a lane line is usually

painted in a special color and owns high contrast (or high edge responses) to the

neighboring road surface. Since color features are easily affected by light changes and

become unclear at night, we tend to detect the lane lines based on the edge feature and

acquire the edge information by Sobel edge detector. Since the horizontal gradient of

the lane line is visible, the 3x3 operator for horizontal changes (Gx) is used, as shown

in Figure 3-4(a). By applying Gx to each pixel of the image, the horizontal gradient

24

values of edge pixels are obtained. However, as shown in Figure 3-4(b) and (c), Sobel

edge detector usually generates the positive and negative edges at the rim of the object.

For computation efficiency, here we only retain the positive edge in the image. Figure

3-5 shows an example of the edge detection result.

Figure 3-4 : Sobel edge detector. (a) Operator for horizontal changes (Gx). (b) Positive

edge whose intensity change along x-direction is from dark to bright. (c) Negative

edge whose intensity change along x-direction is from bright to dark.

Figure 3-5 : An example of edge detection result. (a) Original image. (b) Result of

edge pixels which have positive responses after using Gx.

3.3 Vanishing Point Computation and ROI Setting

In this section, we intend to locate the vanishing point and set the row of interest

(ROI) according to vanishing point. As illustrated in Figure 3-6, we first use the Otsu

25

algorithm to binarize the edge image and then the Hough transformation is applied to

extract the representative lines. For each frame, we use the linear least square to

estimate the position of the vanishing point from those representative lines. After

processing serveral frames, we can locate the position of vanishing point with highest

probability. As soon as we get the vanishing point, the ROIs are also defined. The

details of the module are described as follows.

Figure 3-6 : Flowchart of Vanishing Point Computation and ROI Setting module.

26

3.3.1 Otsu Binarization

For the reason that the Hough transformation only accepts a binary image as

input, thresholding is utilized here to segment the edge image. Nevertheless, as the

lighting conditions are different, an adaptive threshold should be used in this stage.

Otsu algorithm [33] is used to search for an ideal threshold adaptively.

The Otsu method exhaustively searches for the threshold which minimizes the

intra-class variance, defined as a weighted sum of variances of the two classes. The

thresholding process can be simplified into a process about how to partition the image

pixels into two classes: C1 = {0, 1, …, T} and C2 = {T+1, T+2, …, Ngl -1}, where Ci

indicates class, T is the chosen threshold and Ngl is the number of gradient levels of

the image. The intra-class variance σ 2
intra-class is defined as

)()()()()(2

22

2

11

2

classintra TTqTTqT   (2)

where qi(T) and σ i
2
(T) indicates the proportion and gradient variance of the Ci pixels,

respectively. The class probabilities are estimated as Eq. (3), the means of class are

given by Eq. (4), and the individual class variances are defined as Eqs. (5) and (6).

)()()()(
1

2

1

1 iHTqandiHTq
glN

Ti

T

i




 (3)

 



glN

Ti

T

i Tq

iiH
Tand

Tq

iiH
T

1 2

2

1 1

1
)(

)(
)(

)(

)(
)( (4)

 



T

i Tq

iH
TiT

1 1

2

1

2

1
)(

)(
)]([)( (5)

 



glN

Ti Tq

iH
TiT

1 2

2

2

2

2
)(

)(
)]([)(

 (6)

27

When the threshold T is chosen, the effect of edge image segmentation is

obtained through reserving the edge pixels whose gradient levels exceed T. Figure 3-7

shows the result of Otsu algorithm.

Figure 3-7 : Result of Otsu binarization. (a) Original edge image. (b) The

corresponding binary image after using Otsu algorithm.

3.3.2 Hough transformation

Vanishing point is a point in the image plane, to which a set of parallel lines in

the 3D space will converge [43]. In order to detect the most prominent straight lines in

the image, we apply the Hough transform [34] to the binary image. Hough transform

is the voting algorithm deciding whether there are enough pixels to form a particular

shape in the image. In our case, we consider the straight lines. Each line has to be

represented in the polar coordinates (ρ, θ), where ρ represents the distance from the

origin to the line along a vector perpendicular to the line and θ is the angle between

the x-axis and the vector perpendicular to the line, as shown in Figure 3-8(a), so that a

generic point (x, y) belonging to a line will satisfy the following equation:

 xcos(θ) + ysin(θ) = ρ (7)

Therefore, by means of Hough transform, a line can be represented as a single

point in the polar-coordinate parameter space. Similarly, since infinite lines pass

28

through any given pixel in the original image, the representation of a pixel in the

parameter space is a unique sinusoidal curve (representing all the lines that can pass

through that pixel). However, the point of intersection between multiple sinusoidal

curves in the parameter space means the line passing through multiple pixels. In the

other words, the more cumulative number of the intersection points, the more pixels a

line passes through. As illustrated in Figure 3-8(b), the red point represents the line

which passes through P1 and P2. The parameter space is divided into bins in the ρ and

θ space. The total number of intersections in each bin is saved into the accumulator,

and then the highest voted lines are returned. Here, in order to save the computation

time, we only consider the top 5 lines in the accumulator.

In fact, most related works apply the Hough transformation to detect the lane

lines [28][36], and show good performance of the results on the straight lane lines in

the road images. However, the Hough transform-based methods can only detect the

straight lane lines in the image and the case of driving on the curve lane lines cannot

be handled well, as shown in Figure 3-9.

Figure 3-8 : Hough transformation. (a) Polar-coordinate (ρ, θ) representation of a

straight line. Each line has a unique representation (ρ, θ). (b) The Hough domain of an

image. The red point is the point with the highest number of intersections [38].

29

Figure 3-9 : The unreasonable representation of the curve lane lines. (a)(b) The curve

lane lines in the red circle cannot be detected, and only the straight lane lines in the

near field are detected.

There are other types of Hough transformation to recognize the shapes like

circles and ellipses that are mathematically expressed in a binary digital image. When

the parameters of the circles or ellipses are known in advance, the Hough

transformation works well. Otherwise, it is difficult to recognize the curves without

prior-knowledge. In addition, some works [6][10][14][16][25][30] utilize the curve

fitting to detect the curves. Suppose each point (x, y) belonging to a curve will satisfy

the following equation:

 32

2

1 sxsxsy  (8)

where sj (j = 1, 2, 3) are the parameters of the curve. Then the idea of the curve fitting

is to find the best parameters sj (j = 1, 2, 3) which minimize E and E is defined as:

2

32

2

1

1

)]([sxsxsyE iii

k

i




 (9)

where k is the total number of pixels used to fit a curve. This method is intuitive, but

we have to know which pixels belong to the curve before curve fitting method. It is

the limitation of this method. In addition, the more the number of detected pixels we

use in curve fitting, the more time used in calculating the parameters we need.

For the reason mentioned above, we propose a novel algorithm to detect the

30

curve lane lines efficiently. We exploit the time-slice image inspired by [14] to detect

and track the lane lines. Hence, we need to compute the position of the vanishing

point at first.

3.3.3 Vanishing Point Computation

After acquiring several prominent lines in the image by Hough transformation,

we use the “Linear Least Square” [40] to estimate the position of vanishing point in

each frame. Our method is similar to the Vanishing Point Detection method in [44].

Now we have a linear system which involves several linear equations and several

variables. A general system of m linear equations with n unknowns can be written as:

mnmn

nn

mm

nn

b

b

ua

ua

ua

ua

ua

ua

buauaua











22

22

222

11

121

11212111



















 (10)

where ui (i = 1, 2, …, n) are the unknowns, ai (i = 11, 12, …, mn) are the coefficients

of the system, and bi (i = 1, 2, …, m) are the constant terms. A solution of the linear

system is an assignment of values to ui (i = 1, 2, …, n) that satisfies all m equations

simultaneously. In matrix-vector notation, the linear system is represented as

 BAU  (11)

where ,

21

22221

11211





















mnmm

n

n

aaa

aaa

aaa

A









 and
2

1





















nu

u

u

U






















mb

b

b

B

2

1

 (12)

In our case, each linear equation determines a line on the xy-plane, so the n is

equal to two. Next, we solve this linear system AU=B with Singular Value

Decomposition (SVD) [39] to obtain the closest possible solution U. This is

31

equivalent to minimize the squared norm ∥AU-B∥2
, which is a linear least square

optimization problem. Figure 3-10 shows the estimated vanishing point result (the red

point) in current frame.

Figure 3-10 : The estimated vanishing point result. (a) Original image. (b) The green

lines are represented as the prominent lines acquired from the Hough transformation

and the red point is represented as the estimated vanishing point in current frame.

However, the vanishing point cannot be detected well in some frames. Hence,

how to determine the best and correct vanishing point becomes the issue for us to

conquer currently. We consider that the position of vanishing point should not move

drastically during a car video, so we add the time conception to choose the correct

vanishing point.

Observing Nvan frames, we record all detected vanishing points and apply the

voting method by an accumulator, whose concept is similar to the Hough

transformation, to all vanishing points. When the Euclidean distance between two

vanishing points is less than a pre-defined threshold, those two vanishing points are

treated as the same point, and then their vote is incremented by 1. The highest voted

point represents the correct vanishing point we want. The procedure of vanishing

point computation is shown in Figure 3-11.

32

Figure 3-11 : Procedure of vanishing point computation. From Nvan frames, choosing

the highest voted point as the final result of the vanishing point which is drawn in

yellow.

3.3.4 ROI Setting

Once the position of vanishing point is obtained, we delimit the rows of interest

(ROIs) which are the main parts we want to process within the whole image.

Generally, the road region appears under the vanishing point. Under this condition,

our ROIs are selected from the region Rregion under the vanishing point in the image.

Nevertheless, instead of processing whole region Rregion, we only take evenly Nrow

rows within the bottom three-quarter part of Rregion as our ROIs. The illustration of

ROI setting is presented in Figure 3-12.

33

Figure 3-12 : Illustration of ROI setting. The yellow point indicates the final vanishing

point, and the five rows (Nrow = 5) in red, green, cyan, yellow, and purple are the

selected ROIs.

3.4 Lane Detection and Verification

In this section, we detect the candidate lane lines and then a verification

procedure is performed to remove the false ones. As illustrated in Figure 3-13, we first

generate the time-slice image for each ROI to record the moving of lane lines. Then

we adjust the edge gradient histogram of each ROI when a new frame comes for

enhancing the detection of dashed lane lines. Next, using the smoothing method and

peak finding algorithm on the gradient histogram to obtain the peak points. With these

peak points, we utilize some constraints to connect the similar peak points together,

and further detect the candidate lane lines. Generally, the lateral shift of the vahicle is

small between two consecutive frames, that is, the difference of the lane line positions

is small between two consecutive frames. Therefore, we can detect the lane line

positions in current frame from the surrounding area of the lane line position in the

last frame. At last, we verify the candidate lane lines by the concept similar to

tracking. The details of this module are described in the following sections.

34

Figure 3-13 : Flowchart of Lane Line Detection and Verification module.

3.4.1 Time-Slice Image Generation

Inspired by [14], time-slice image generation greatly assists in the detection and

tracking of lane lines, especially when the vehicle runs from the straight lane lines to

35

curve lane lines or the condition of changing lane happens, which are still challenging

tasks for state-of-the-art works. Supposing that a video sequence totally have F

frames, and each frame fi (i = 1, …, F) is a WH image. Then we record the specific

row Rrow of pixels from each frame in time, and thus we generate a WF time-slice

image, as shown in Figure 3-14. Besides, the index of each row of time-slice image is

f, which means the frame number.

Figure 3-14 : Illustration of time slice generation.

3.4.2 Gradient Value Adjustment

Due to the discontinuousness of the dashed lane lines, detecting dashed lane lines

in a single image becomes difficult and Hough transformation based lane line

detection technique cannot work well. In order to overcome this obstacle, Borkar et al.

[14] propose the temporal blurring algorithm, which adds the time conception to

36

generate an average image, giving the dashed lane lines the appearance of a near

continuous line by connecting them. The concept of temporal blurring is to take only

a few frames from the past in the averaging. The average image is defined as follows:







past

0 past

)(
geAverageIma

N

i N

inI
 (13)

where I is the intensity of current frame, n is the index of current frame, and Npast is

the number of frame from the past. Hence, the detection of these dashed lane lines

becomes easier since they appear as a connected lines in the image. An example of

temporal blurring is shown in Figure 3-15.

Figure 3-15 : An example of temporal blurring. (a) Original image. (b) Average image.

The temporal blurring algorithm is a good method to facilitate the detection of

dashed lane lines. It is an important issue to determine how many frames should be

used for in the averaging process. If too many frames are used, the perceived width of

the lane lines will be altered; otherwise, if we use only a few frames, the effect of

temporal blurring will become unobvious. In brief, this method is dependent on the

moving speed of the vehicle. In our work, a method capable of detecting the dashed

lane lines without considering the vehicle speed is proposed.

Five rows are selected as our ROIs (Nrow = 5), and the gradient value of each ROI

37

is recorded. Figure 3-16 shows the gradient histogram of each ROI in the image with

different colors. However, due to the discontinuousness of dashed lane lines, not

every ROIs can get the gradient information of lane lines in current frame. As shown

in Figure 3-16, the gradient value of the left dashed lane line is only recorded on the

first and third ROIs. For resolving this obstacle, we propose the gradient value

adjustment algorithm to retain the lane line information. The detail of this algorithm is

described in Algorithm 1. For each ROI, we first set an accumulative gradient

histogram to record the change of value. Then, for each pixel, we compare its gradient

value in current frame with the value of corresponding pixel in accumulative

histogram. If the current value is less than the accumulative value, we will decrease

the accumulative value by one. This method can avoid decreasing the value too fast to

retain the position of the dashed lane line. Otherwise, if the current value is larger

than the accumulative value, the current value will substitute for the accumulative

value. Afterward, repeating the above steps until all ROIs are examined. We also need

Npast frames from the past to obtain the completed information of dashed lane lines.

However, the advantage of our algorithm is that we do not have to give Npast in

advance, Npast is automatically determined in the process. (Npast = 3 in our experiment

averagely.) The result of gradient value adjustment is illustrated in Figure 3-17.

Figure 3-16 : The gradient histogram of each ROI shown with different colors.

38

Algorithm 1: Gradient Value Adjustment

Input: The accumulative gradient value of each ROI (h) and

 the gradient value of each ROI in current frame (g)

Output: The gradient value of each ROI after adjusting

1 for each ROI do

2 for j = 0 to width //each pixel on the ROI

3 if (gj < hj) then hj = hj -1;

4 if (hj < 0) then hj = 0;

5 endif

6 endif

7 else hj = gj;

8 end for

9 end for

Figure 3-17 : The result of gradient value adjustment. (a) Original gradient histogram

of each ROI which sometime does not include the information of dashed lane line. (b)

The gradient value adjustment algorithm compensates the detection of dashed lane

line. The red cycle shows the final result of dashed lane line.

3.4.3 Gradient Value Smoothing

As shown in Figure 3-17, there are several “hills” in the gradient histogram of

each ROI. A formal definition of the “hill” [41] can be given as: A range over which

the values increase first and decrease next without any internal ripples in the

histogram. As illustrated in Figure 3-18, the peak point (Pp) is the point which has

maximum gradient value in a hill. Under the ideal case, the position of a lane line

39

corresponds to the position of a peak point for each ROI. However, the lateral moving

of the vehicle results in many hills in the gradient histogram on each ROI, as shown in

Figure 3-19(a), this phenomenon causes too many peak points.

Figure 3-18 : The hill and peak point (Pp) in the histogram [41].

As described in Section 3.2.2, for each ROI, in order to remove the noise on the

gradient histogram, we apply 1-D Gaussian smoothing filter in the x-direction. Table 1

shows the 1-D x component kernel that we apply [37]. After smoothing, the internal

ripples in the histogram are removed and the maximal peak is retained, as shown in

Figure 3-19(b).

Figure 3-19 : The result of gradient value smoothing. (a) Original gradient histogram

with many internal ripples. (b) The gradient histogram only with the maximal peak

after gradient value smoothing.

40

Table 1 : The 1-D convolution kernel of Gaussian Filter [37].

.006 .061 .242 .383 .242 .061 .006

3.4.4 Peak Finding

Since a lane line typically owns the high contrast (or high edge response) to the

neighboring road surface for attracting drivers’ attentions. Here, we apply the peak

finding algorithm [41] to extract the feature points of lane lines in the image. Once we

obtain a peak point, we apply further restrictions to determine whether it corresponds

to a lane line. That is, the value of a peak point must be larger than an adaptive

threshold Thval which is defined as:

 Thval = gvmax / 2 (14)

where gvmax is the maximum gradient value of a ROI. Besides, the distance between

this peak point and the neighboring peak points should be larger than a distance

threshold (Thd). We set the value of Thd to 20 in the experiment. If two neighboring

peaks are within a distance of Thd, the one with small value is discarded. After

applying the peak finding algorithm, we obtain the feature points of lane lines, as

shown in Figure 3-20.

Figure 3-20 : The result of peak finding algorithm. Found (picked) peak points,

represented by the white points.

41

3.4.5 Peak Connecting

After obtaining the peak points, we produce lane line candidates by connecting

the similar peak points. First, a line segment Li is generated by a peak point and the

vanishing point and another line segment Lj is a horizontal line. We calculate the angle

between Li and Lj for each peak point. For example, in Figure 3-21(a), those blue

points represent the peak points obtained in peak finding step, and the angle of each

point is also shown. As we know, for a straight lane line, the angles among the points

are almost the same or similar. Based on this property, for each pair of ROI (ROIi and

ROIi+1), we select two peak points with the smallest angle in ROIi and ROIi+1,

respectively. That is, P1 and P3. The angle difference of two peak points is within a

threshold Angthres (In our example, Angthres = 5), the pair of two peak points is

recorded and then the peak point with small angle is discarded. We repeat the above

steps until there is no peak point to match in ROIi and ROIi+1. Now we go back to our

example, since the angle of P1 and P3 is similar (|30 - 29| = 1 < Angthres), we record

this pair and then abandon P3 which has the small angle. Next round, P1 and P4 are

selected. However, the angle difference of these two points is too large (|30 - 90| = 60

> Angthres), we do nothing and abandon P1 which has the smaller angle. In round 3, P2

and P4 are selected. As the same as round 2, we abandon P4 (|90 - 121| = 31 >

Angthres). In round 4, P2 and P5 are selected. We find that their angles are similar (|121

- 120| = 1 < Angthres), thus this pair is recorded. Afterward, there is no peak point to be

matched, and then we stop. The final result of this example is shown in Figure 3-21(b).

After scanning all ROIs and doing peak connecting algorithm, the result of real road

image is shown in Figure 3-22.

42

Figure 3-21 : An example of peak connecting algorithm. (a) 5 peak points (blue) and

the vanishing point (red). (b) Peak connecting result of (a). Each blue line segment

means that two peak points are similar.

Figure 3-22 : The result of peak connecting on the real road image. (a) Peak point

image. (The peak points are represented by the white points.) (b) Peak connecting

image. (The white line segments imply the relationship within the similar peak

points.)

3.4.6 Candidate Lane Line Detection

After peak connecting step, we acquire several line segments in the image.

Nevertheless, under our assumption, a lane line must be satisfied that all ROIs can

find a corresponding point. We group these line segments into a line by observing

their start point and end point. Next, we choose those lines which can pass through all

ROIs as our candidate lane lines and put them into our candidate list. Figure 3-23

shows the detected candidate lane lines which are painted with yellow color.

43

Figure 3-23 : The result of candidate lane line detection. (a) Peak connecting image.

(b) Two candidate lane lines are obtained in current frame (yellow lines).

3.4.7 Lane Line Verification

We verify all candidate lane lines in our candidate list through tracking them in

M frames. Once a lane line is detected in current frame, it should be found in the

subsequent frames; otherwise, this lane line may be a false one. Suppose a candidate

lane line is detected for M frames, it is a valid lane line and then we can put it into our

tracking list. Figure 3-24 shows the result of lane line verification on the real road

image, we paint the valid lane lines with cyan color. In car video sequence, we may

face with the different driving environments, such as various markings on the road, as

shown in Figure 3-25(a). In this case, some false candidate lane lines are generated, as

shown in Figure 3-25(b) (the yellow lines). Nevertheless, Figure 3-25(c) shows that

our lane line verification algorithm can eliminate the false candidate lane lines

effectively.

44

Figure 3-24 : The result of lane line verification. (a) Two candidate lane lines are

drawn with yellow color. (b) Final results of lane lines are drawn with cyan color.

Figure 3-25 : Elimination of the false candidate lane lines in lane line verification. (a)

Original image. (b) Two false candidate lane lines are generated since the presence of

arrow markings on the road. (c) Within M frames, these two false candidate lane lines

are not detected consecutively and thus be eliminated.

3.5 Lane Line Tracking

As illustrated in Figure 3-26, when a new frame comes, if there are several lane

lines in the tracking list and candidate list, we first track the lane lines in the tracking

list, and then track the candidate lane lines in the candidate list. Once a candidate lane

line passes the limitation in lane line verification, as described in Section 3.4.7, this

candidate lane line can be put into the tracking list. We describe the tracking

algorithm about lane line tracking and candidate lane line tracking in the following.

45

Figure 3-26 : The relationship between the candidate list and tracking list.

Since the position of a lane line (candidate) seldom changes between two

consecutive frames, we can track a lane line (candidate) by calculating the moving

velocity (vel) and moving acceleration (acc) and then predicting the possible position

in a new frame. Nevertheless, we need to obtain the position of a lane line (candidate)

in the previous frames for calculating vel and acc. Therefore, we do this prediction

procedure when 2 frames have been processed; otherwise, we directly track the lane

line (candidate) by finding the surrounding area of the current position in a new frame.

Here, we take the time-slice image generated by ROI5, as shown in Figure 3-27(b), to

give an example of the prediction procedure, as shown in Figure 3-27(c). In this

example, the x-coordinate of the current point is x3. To calculate vel and acc, we apply

the formulas defined from Eq. (15) to Eq. (17) where ti (i = 1, 2, 3, 4) is the time index.

Afterward, we obtain the predicted x-position (x4) of the point in a new frame from

two perspectives: one is obtained from Eq. (18) without the consideration of acc,

another is obtained from Eq. (19). As described in Eq. (20), we combine two possible

positions above by averaging them and obtain the final predicted position x4. For a

new frame, we apply the peak finding algorithm, as mentioned in Section 3.4.4, by

this predicted position to track the corresponding position of a lane line (candidate) on

a ROI. When we can find the corresponding points of a lane line (candidate) on all

ROIs, this lane line (candidate) is seen as “detected” in the new frame; otherwise, we

46

mark it as “miss”. If a lane line (candidate) consecutively misses for M frames, that is,

the lane line (candidate) is mis-traced for too many frames, it is discarded from the

tracking list or the candidate list and no longer tracked, as illustrated in Figure 3-26.

By the way, once the position of a lane line (candidate) in the tracking list

(candidate list) is obtained in a new frame, we set the gradient value around this

position to 0 on the gradient histogram of each ROI. This proceduce can avoid

obtaining the same lane lines between the tracking list and candidate list.

Figure 3-27 : The conception of prediction procedure. (a) Two candidate lane lines are

drawn with yellow color. (b) The time-slice image generated by ROI5 is used to track

the lane lines. (c) An example of the moving change over x-axis. Here, x3 is the

current point, and x4 is the predicted point.

 12

12

12
1 xx

tt

xx
vel 




 (15)

 23

23

23
2 xx

tt

xx
vel 




 (16)

12

12

12 velvel
tt

velvel
acc 




 (17)

 233423__4)(velxttvelxx accno  (18)

accvelxttaccttvelxx accwith
2

1
)(

2

1
)(23

2

343423__4  (19)

2

)(__4__4

4

accwithaccno xx
x


 (20)

47

Chapter 4. Experimental Results and Discussions

In this chapter, we present the experiments for the lane line detection and discuss

the results. In the Section 4.1, we introduce the environments and datasets used in our

experiments. Section 4.2 introduces the evaluation methods. The experimental results

of the lane line detection and the problems occurring in the experiments are discussed

in Section 4.3.

4.1 Experimental Environments and Datasets

All algorithms are implemented in C programming language and OpenCV (Open

Source Computer Vision) Library, and all experiments are performed on a general PC

with Genuine Intel® U7300 1.30GHZ CPU and Microsoft® Windows 7 professional

operation system. We mount the camera on the upper center of windshield of the

vehicle to capture the road images. Here, we have several video clips for test, but only

three ground-truth video clips for evaluation. All these clips are captured on the

highways with the solid/dashed lane lines on straight/curved roads. Moreover, in

ground-truth video clips, Clip#1 contains the intermediate case of driving from

straight lane lines to curve lane lines. Here, we only analyze the performance of the

curve lane lines. Clip#2 is the lane changing case and Clip#3 is the straight lane lines

case. The resolution of each video frame is 640360 and the clip lengths (in frames)

are listed in Table 2. Some sample images of the car videos are shown in Figure 4-1.

Four modules are included in our system, i.e., Pre-processing, Vanishing Point

Computation and Row of Interest (ROI) Setting, Lane Line Detection and Verification,

and Lane Line Tracking. The processing time of each module is listed in Table 3. It

48

can be seen that the Vanishing Point Computation and Row of Interest (ROI) Setting

module takes the most execution time in our system. The cause is from the OTSU

Binarization step which takes 30ms to find an optimal threshold for each frame. In

addition, there is no complicated process involved in our system, thus the processing

speed our system can achieve is up to 21 fps (frame per second).

Figure 4-1 : Sample road images in different cases. (a) Intermediate case where the

type of lane lines is from the straight to the curve then back to straight. (b) Lane

changing case from left to right. (c) Straight lane lines case.

Table 2 : Total number of frames of each ground-truth video clip.

Video Clip Number of frame Total frames

Clip#1 (intermediate case) 130

8452 Clip#2 (lane changing case) 1236

Clip#3 (straight lane lines case) 7086

49

Table 3 : Processing time of each module in our system.

Modules Processing time

Pre-processing 6.59 ms

Vanishing Point Computation and Row of Interest (ROI) Setting 38.8 ms

Lane Line Detection and Verification 1.28 ms

Lane Line Tracking 0.09 ms

4.2 Evaluation Method

To evaluate the performance of our system, we refer to two performance indices

in [35]: the missing rate (MR) and false detection rate (FR), as defined by Eq. (21).

D

CDC

N

NN
FR

N

NN
MR





 and

real

real (21)

where Nreal is the number of ground-truth lane lines existing in the road scenes to be

analyzed, NC is the number of correctly detected lane lines, and ND is the number of

detected lane lines.

As the same as the measurement method in [35], we first draw the ground truth

of a lane line manually to decide whether it is correctly detected. For each pixel in the

detected lane line, its corresponding point in the ground-truth lane line is the one with

the same y-coordinate. Then, we calculate their x-coordinate difference as their

distance. After scanning all pixels in the detected lane line, their average distance can

be obtained. If the average distance is less than half of a lane line width, the lane line

is labeled to “correct”.

50

4.3 Experimental Results

Here, we implement several related methods on the intermediate case, the lane

changing case and the straight lane lines case, and then we show the experimental

results. We discuss the problems occurring in the experiment. Since the intensity of a

lane line is brighter than the neighboring road surface in the image, Nadra et al. [36]

utilize the top-hat transformation, which is one of the morphological operations, in the

pre-processing step to extract the clear regions in the image regardless of background

variations, as shown in Figure 4-2(b). For the contrast enhancement, as shown in

Figure 4-2(c), they give a threshold based on the top-hat transformed image to

enhance the intensity of the pixels. However, the threshold is hard to define. Another

question is how to select the structure element of top-hat transformation for lane line

detection. If we apply the 33 structure element and set the threshold as 6 in the

top-hat transformation to test our dataset, some lane lines may be destroyed, as shown

in Figure 4-3(b). Besides, due to too many noise pixels included in the enhancement

image, as shown in Figure 4-2(c), the recognition rate of lane lines decreases. By the

way, before pre-processing, they divide the image into left and right parts, as shown

in Figure 4-2(a), as the regions of interest. This procedure makes the system only can

detect the condition where the lane lines are located in the left and right parts. When

doing the lane changing, the lane line crossing the middle part is not detected.

Figure 4-2 : The results of pre-processing step in [36]. (a) Original image. (b) Image

after top-hat transformation. (c) Image after contrast enhancement.

51

Figure 4-3 : The result after the top-hat transformation and contrast enhancement. (a)

Original image. (b) Image after top-hat transformation and contrast enhancement

where the red cycle shows the destroyed part of the lane line.

Hence, for reducing the noise pixels in the textured areas, we apply an additional

constraint “structure tensor” to find those line-structure pixels on the

contrast-enhanced image. By observing the two eigenvalues of the structure matrix

SM which is computed over a small window of size (2q+1) around each candidate

pixel (x, y) and defined by Eq. (22) [37].

  









qx

qxi

qy

qyj

TjigjigSM)),((),(
 (22)

Depending on the two eigenvalues of the matrix SM, called λ1 and λ2 (λ1 ≧ λ2), the

area can be classified into textured (both λ1 and λ2 are large), linear (λ1 >> λ2), and flat

(both λ1 and λ2 are small). On the straight lane lines, the linear case will apply to

retain the pixels only if λ1 > β λ2 where β is a constant. Figure 4-4 shows that the

effectiveness of this method in removing the word pixels in the bottom right corner of

the image and the pixels of the grass or the wall. Nevertheless, the disadvantage of

this method is that it takes more than 300ms, which is not suitable for the real-time

requirement. For the reason of above paragraphs, we do not apply the top-hat

transformation and line-structure constraint in our system.

As described in Section 3.3.2, the Hough transformation is one of the most

common algorithms to detect the straight lines in an image. For various types of lane

lines, there should be many lane line models used to describe them. The straight and

52

curve are the common lane line models. In this thesis, we first detect and record the

lane lines from the straight, and then track them in subsequent frames. Figure 4-5

shows the result of lane line detection when a new lane line appears in the middle of

two originally detected lane lines. Result of the intermediate case of driving from the

straight lane lines to curve lane lines then back to straight lane lines is shown in

Figure 4-6. Figure 4-7 and Figure 4-8 show the result of the lane changing case and

the straight lane line case, respectively.

Figure 4-4 : The result of line-structure constraint. (a) Original image. (b) Image after

top-hat transformation and contrast enhancement. (c) Image after the line-structure

constraint on (b). The red cycle shows the effectiveness of noise removal.

Figure 4-5 : A new lane line appears in the middle of two originally detected lane lines.

(a) Original images. (b) Output images.

53

Figure 4-6 : The intermediate case of driving from straight lane lines to curve lane

lines then back to straight lane lines. (a) Original images. (b) Output images.

Figure 4-7 : The lane changing case. (a) Original images. (b) Output images.

Figure 4-8 : The straight lane line case. (a) Original images. (b) Output images.

54

Although our algorithm applying the time-slice images to track the lane line

points is feasible, there are two problems arising in our experiments. Problem 1 is that

the number of times the gradient value smoothing step is performed affects the

declining speed of the gradient histogram. As described in Section 3.4.3, we smooth

the movement of gradient histogram and reduce the generation of the wrong peak

points when the lateral moving of the vehicle occurs. Nevertheless, the more number

of times of smoothing, the more quickly the gradient histogram decreases. This

phenomenon makes the detection of the dashed lane lines go wrong easily. Figure 4-9

shows an example of incorrect lane line detection due to too many times of smoothing

steps. We focus on the left lane line and use four times of smoothing step. Since its

internal distance is farther than the right lane line, we loss its information on the first

ROI (red color) at frame 458, which is just 3 frames after frame 455. Since from

frame 458 to frame 464, the next left lane line segment does not pass our first ROI yet,

we loss the left lane line information on the second, third, fourth, and fifth ROI in the

image, respectively. Although the new left lane line segment passes our ROIs at frame

465, the left lane line in the tracking list has been destroyed since it misses for too

many frames. On the other hand, as shown in Figure 4-10(a) and (b), we apply 1 time

smoothing and 4 times smoothing in the gradient histogram, respectively. The

gradient histogram after 1 times smoothing generates many peaks in the ROIs, which

makes the result of lane line detection go wrong easily. The yellow regions show the

difference between Figure 4-10(a) and (b).

55

Figure 4-9 : Problem 1 caused by the smoothing step. (a) Original images. (b) Output

image where the left lane line is incorrect at the frame 465.

Figure 4-10 : The results under the different times of the smoothing step. (a) After 1

time of smoothing step, our system generates an incorrect lane line because of too

many peaks in the gradient histogram. (b) After 4 times of smoothing step, the result

of lane line detection is almost correct because of the proper gradient histogram.

Problem 2 is how to check whether the shape of a lane line is correct when

tracking both on the straight lane lines and curve lane lines. Even though we already

56

obtain a lane line positions on each ROI in the detection step, the new point positions

on each ROI tracked correctly cannot be ensured because of the noise. The noises may

come from the leading vehicles (c.f. Figure 4-11 (a)), the words (c.f. Figure 4-11 (b)),

and the reflection of the windshield (c.f. Figure 4-11 (c)). They cause errors in lane

line detection. Furthermore, if we find out that several tracked points of a lane line are

wrong, how to modify this lane line to be correct is also one of the challenges in our

system.

Figure 4-11 : Problem 2 caused by the noises. (a) Noise from the leading vehicle. (b)

Noise from the words. (c) Noise from the reflection of the windshield.

In the end, we also implement the method proposed by Nadra et al. [36] in our

experiments. To compare with this method by the statistic analyses, three performance

indices are used, i.e., missing rate, false detection rate, and accuracy. The definitions

of missing rate (MR) and false detection rate (FR) are described by Eq. (21) in

Section 4.2. Table 4 lists the detailed performance comparisons between [36] and our

method. From the view of accuracy, the method [36] performs better than our method

for the Clip#2 (lane changing case) and Clip#3 (straight lane line case) since we have

not resolved the Problem 1 and Problem 2 yet. But for the Clip#1 (intermediate case),

their method performs worse than our method because their method needs to delimit a

region for the curve fitting method. However, the performance of their system does

57

not work well on our dataset because of two reasons. One reason is that they select the

maximum voting line by the Hough transformation as the lane line in the left and right

region of interest, respectively. But they do not mention about how to select the better

region of interest in their system for different car images. The other reason is that they

only detect the lane lines for each single frame, and do not include the tracking

conception. Looking back at the performance of our system, since the challenges

mentioned before still need to be conquered, there is still room for improvement. In

conclusion, if we can overcome the problems arising in our experimental results, our

system utilizing the time-slice images to detect and track the lane lines will become

feasible and robust.

Table 4 : Performance comparisons between Nadra et al.[36] and our method.

Clips

of

frames

Methods

Missing

frames

False

frames

MR

(%)

FR

(%)

Accuracy

(%)

Clip#1 130

Nadra et

al.[36]
10 70 7.69 53.85 38.46

Our method 54 0 41.54 0 58.46

Clip#2 1236

Nadra et

al.[36]
48 884 3.88 71.52 24.6

Our method 56 939 4.53 75.97 19.5

Clip#3 7086

Nadra et

al.[36]
146 3003 2.06 42.38 55.56

Our method 3119 494 44.02 6.97 49.01

58

Chapter 5. Conclusions and Future Works

In this thesis, we propose a lane line detection and tracking system utilizing the

time-slice images. The system architecture consists of four modules, including (1)

Pre-processing, (2) Vanishing Point Computation and Row of Interest (ROI) Setting, (3)

Lane Line Detection and Verification, and (4) Lane Line Tracking. Pre-processing is

performed by RGB to grayscale, image smoothing, image normalization, and edge

detection for obtaining the edge feature of lane lines. Vanishing Point Computation

and Row of Interest (ROI) Setting consists of Otsu binarization, Hough transformation,

vanishing point computation, and ROI setting for locating the vanishing point and

delimiting our ROIs. Time-slice image generation, gradient value adjustment, gradient

value smoothing, peak finding, peak connecting, candidate lane line detection, and

lane line verification are utilized for extracting the lane lines in the image in Lane

Line Detection and Verification. The gradient value adjustment algorithm is proposed

to overcome the sparseness problem in detecting the dashed lane lines. At last, Lane

Line Tracking applies the prediction procedure to track a lane line in the time slice

images. Since we consider the location information of a lane line from previous

images to constrain the probable lane detection in the current image and only process

on the ROIs instead of the whole image, the processing time of an image is reduced.

The testing images of the car video clips are captured from the camera mounted on the

upper center of windshield of the vehicle and we focus on the intermediate case of

driving from the straight lane lines to curve lane lines and the lane changing case. The

experimental results show that our proposed methods can improve the recognition of

the lane line. However, there are still two problems needed to be resolved, as

59

described in Section 4.3.

Thus, some interesting issues based on time-slice images for the lane lines

extraction are worthy of further investigation. For the future works, we have some

suggestions:

(1) While the vanishing point is determined, how many rows in the image should

be selected as our ROIs? More ROIs can facilitate the lane line detection and describe

the shape of the lane lines in detail, but the processing time increases accordingly.

(2) After selecting the new lane line points on each ROI, how to set constrains to

check whether the shape of the lane line is correct? Though utilizing the time-slice

images to track the lane line points is an intuitive approach, the positions of the lane

lines easily suffer from the noises such as vehicles and shadows in the image. Hence,

more features should be taken into consideration for eliminating noises in the image

and to extract the lane lines more efficiently.

(3) To what extent of smoothing in the gradient histogram is suitable for the

system to detect the feature points of the lane lines?

(4) If a system not only detects the lane line positions, but also recognizes the

types of lane lines such as solid or dashed, single or double, yellow or white, the

drivers can have better understanding about the driving environment. The drivers also

can protect themselves in advance of a possible accident on the road.

(5) In this thesis, we only discuss the intermediate case of driving from the

straight lane lines to curve lane lines or the lane changing case. Other cases under the

different weather conditions or different scenarios should be taken into consideration

for constructing a more robust lane line detection system.

60

Bibliography

[1] O. Gietelink, J. Ploeg, B. De Schutter, and M. Verhaegen, “Development of

advanced driver assistance systems with vehicle hardware-in-the-loop

simulations,” Vehicle System Dynamics, vol. 44, no. 7, pp. 569–590, July 2006.

[2] S. Ezell, “Explaining International IT Application Leaderhip : Intelligent

Transportation Systems”, The Information Technology & Innovation Foundation,

January 2010. http://www.itif.org/files/2010-1-27-ITS_Leadership.pdf

[3] J. C. McCall and M. M. Trivedi, “Video-based lane detection estimation and

tracking for driver assistance: Survey, system, and evaluation,” IEEE Transactions

on Intelligent Transportation System, vol. 7, no. 1, pp. 20-37, March 2006.

[4] M. Aly, “Real time detection of lane markers in urban streets,” in Proc. IEEE

Intelligent Vehicles Symposium, pp. 7-12, June 4–6, 2008.

[5] D. Khosla, “Accurate estimation of forward path geometry using two-clothoid

road model,” IEEE Intelligent Vehicles Symposium, vol. 1, pp. 154-159, June

17-21, 2002.

[6] S. Nedevschi, R. Schmidt, T. Graf, R. Danescu, D. Frentiu, T. Marita, F. Oniga,

and C. Pocol, “3D lane detection system based on stereovision,” in Proc. IEEE

Intelligent Transportation Systems Conference, Washington, DC, pp. 161-166,

Oct. 3-6, 2004.

[7] Y. Otsuka, S. Muramatsu, H. Takenaga, Y. Kobayashi, and T. Monj, “Multitype

lane markers recognition using local edge direction,” in Proc. IEEE Intelligent

Vehicles Symposium, pp. 604-609, Jun. 2002.

[8] C. Rasmussen, “Combining laser range, color, and texture cues for autonomous

http://www.itif.org/files/2010-1-27-ITS_Leadership.pdf

61

road following,” in Proc. IEEE Int. Conf. Robot. Autom., pp. 4320-4325, Aug.

2002.

[9] R. Tapia-Espinoza and M. Torres-Torriti, “A comparison of gradient versus color

and texture analysis for lane detection and tracking,” in Proc. Latin Amer. Robot.

Symp., pp. 1-6, Oct. 2009.

[10] C. Kreucher and S. Lakshmanan, “LANA: A lane extraction algorithm that uses

frequency domain features,” IEEE Transactions on Robotics and Automation, vol.

15, no. 2, pp. 343-350, Apr. 1999.

[11] Q. Li, N. Zheng, and H. Cheng, “Springrobot: A prototype autonomous vehicle

and its algorithms for lane detection,” IEEE Trans. on Intelligent Transportation

Systems, vol. 5, no. 4, pp. 300-308, Dec. 2004.

[12] D. Kang and M. Jung, “Road lane segmentation using dynamic programming for

active safety vehicles,” Pattern Recognit. Lett., vol. 24, no. 16, pp. 3177-3185,

Dec. 2003.

[13] Y. Wang, E. K. Teoh, and D. Shen, “Lane detection and tracking using B-snake,”

Image and Vision Computing, vol. 22, no. 4, pp. 269-280, 2004.

[14] A. Borkar, M. Hayes, and M. Smith, “A novel lane detection system with efficient

ground truth generation,” IEEE Transactions on Intelligent Transportation

Systems, vol.13, no. 1, pp. 365-374, March 2012.

[15] N. Apostoloff and A. Zelinsky, “Robust vision based lane tracking using multiple

cues and particle filtering,” in Proc. IEEE Intell. Veh. Symp., pp. 558–563, Jun.

2003.

[16] Z. Kim, “Robust lane detection and tracking in challenging scenarios,” IEEE

Trans. Intell. Transp. Syst., vol. 9, no. 1, pp. 16-26, Mar. 2008.

[17] A. Broggi, “Robust real-time lane and road detection in critical shadow

conditions,” Proceedings of the IEEE International Symposium on Computer

62

Vision, Coral Gables, Florida, pp. 353-358, November 19-21, 1995.

[18] A. Broggi, and S. Berte, “Vision-based road detection in automotive systems: A

real-time expectation-driven approach,” Journal of Artificial Intelligence

Research, vol. 3, pp. 325-348, 1995.

[19] M. Bertozzi, and A. Broggi, “GOLD: A parallel real-time stereo vision system for

generic obstacle and lane detection,” IEEE Trans. on Image Processing, vol.7,

no.1, pp.62-81, Jan. 1998.

[20] Y. He, H. Wang, and B. Zhang, “Color-based road detection in urban traffic

scenes,” IEEE Transactions on Intelligent Transportation System, vol. 5, no. 4, pp.

309-318, Dec. 2004.

[21] H.Y. Cheng, B.S. Jeng, P.T. Tseng, and K.C. Fan, “Lane Detection with Moving

Vehicles in the Traffic Scenes,”IEEE Transactions on Intelligent Transportation

System, vol. 7, no. 4, pp. 571-582, Dec. 2006.

[22] Y. R. Huang, Y. L. Pan, "Fast Algorithm for Structured and Unstructured Road

Detection", IEEE International Congress on Image and Signal Processing, pp. 1-5,

2009.

[23] L.W. Tsai, J.W. Hsieh, C.H. Chuang, and K.C. Fan, “Lane detection using

directional random walks,” IEEE Intelligent Vehicles Symposium, pp.303-306,

June 4-6, 2008.

[24] Y. U. Yim, and S. Y. Oh, “Three-feature based automatic lane detection algorithm

(TFALDA) for autonomous driving,” IEEE Transactions on Intelligent

Transportation System, vol. 4, pp. 219–225, Dec. 2003.

[25] K. Kluge, and S. Lakshmanan, “A deformable-template approach to lane

detection,” in Proceedings of the IEEE Intelligent Vehicles Symposium, Detroit,

pp. 54–59, September 25-26, 1995.

[26] Canny, J., “A computational approach to edge detection,” IEEE Trans. Pattern

63

Analysis and Machine Intelligence, vol.8, no.6, pp.679-698, Nov. 1986.

[27] Steven M. Kay, Fundamentals of Statistical Processing, Volume I: Estimation

Theory, Prentice Hall Signal Processing Series, 1993.

[28] J. Wang, Y. Wu, Z. Liang, and Y. Xi, “Lane detection based on random hough

transform on region of interesting,” Proc. IEEE International Conference on

Information and Automation (ICIA), pp. 1735-1740, 2010.

[29] Y. Wang, D. Shen, and E. K. Teoh, “Lane Detection Using Catmull-Rom Spline,”

in Proc. IEEE Intelligent Vehicles Symposium, pp. 51-57, Oct. 1998.

[30] J. W. Park, J. W. Lee, and K. Y. Jhang, “A Lane-Curve Detection Based on An

LCF,” Pattern Recognition Letters, vol. 24, no. 14, pp. 2301-2313, Oct. 2003.

[31] C. Xu, and J. L. Prince, “Snakes, shapes, and gradient vector flow,” IEEE

Transactions on Image Processing, vol. 7, no. 3, pp. 359-369, 1998.

[32] E. Catmull, and R. Rom, “A class of local interpolating splines,” in Computer

Aided Geometric Design, New York, pp. 317-326, 1974.

[33] N. Otsu, “A threshold selection method from gray level histograms,” IEEE

Transactions on Systems, Man and Cybernetics, vol. 9, pp. 62-66, 1979.

[34] P. V. C. Hough, “Method and means for recognizing complex patterns,” U.S.

Patent 3,069,654, Dec. 18, 1962.

[35] S. Y. Chen, J. W. Hsieh, and D. Y. Chen, “Jointing Edge Labeling and

Geometrical Constraint for Lane Detection and its Application to Suspicious

Driving Behavior Analysis,” Journal of Information Science and Engineering

(JISE), vol. 27, no. 2, pp. 715-732, March 2011.

[36] B. R. Nadra, H. Mohamed, and B.A. Hanene, “A Comparative Study of

Vision-based Lane Detection Methods”, In Advanced Concepts for Intelligent

Vision Systems (ACIVS), Belgium, pp. 46-57, 2011.

[37] B. Jahne, “Digital Image Processing,” Springer Verlag, 2002.

64

[38] R. C. Gonzalez, and R. E. Woods, Digital Image Processing (3rd Edition),

Prentice Hall, 2008. http://folk.uib.no/eha070/mat262/lectures%202011/

DIP3ELecture11_2011.pdf

[39] M. E. Wall, A. Rechtsteiner, and L. Rocha, “Singular Value Decomposition and

Principal Component Analysis”, A Practical Approach to Microarray Data

Analysis. (Berrar DP, Dubitzky W, Granzow M, eds.), Kluwer: Norwell, pp.

91-109, Mar 2003.

[40] D. Leykekhman, “Lecture 9. Linear Least Squares. Using SVD Decomposition”,

2008. http://www.math.uconn.edu/~leykekhman/courses/MATH3795/Lectures/

Lecture_9_Linear_least_squares_SVD.pdf

[41] S. S. Huang, C. J. Chen, P. Y. Hsiao, and L. C. Fu, “On-Board Vision System for

Lane Recognition and Front-Vehicle Detection to Enhance Driver’s Awareness,”

IEEE Intl. Conf. on Robotics and Automation, New Orleans, Los Angeles, USA,

pp. 2456-2461, 2004.

[42] H.A. Mallot, H.H. Biilthoff, J.J. Little, and S. Bohrer, “Inverse perspective

mapping simplifies optical flow computation and obstacle detection,” in

Biological Cybernetics, vol. 64, no. 3, pp. 177-185, 1991.

[43] V. Cantoni, L. Lombardi, M. Porta, and N. Sicard, “Vanishing Point Detection:

Representation Analysis and New Approaches,” in Proceedings of 11th IEEE

International Conference on Image Analysis and Processing, pp. 90-94, Sept.

26-28, 2001.

[44] C. C. Wang, S. S. Huang, and L. C. Fu, “Driver assistance system for lane

detection and vehicle recognition with night vision,” IEEE Intl. Conf. on

Intelligent Robots and Systems, Alberta, Canada, pp. 3530-3535, 2005.

