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利用足跡分析來加速基於消失點射線取樣之人群定位演算法 

 

 
研究生：王之容  指導教授: 莊仁輝 

 
 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

 

近年來，以視覺為基礎的人群定位與追蹤越來越受到重視，也不斷發展出新的技術

與應用。然而，大部分的方法都需仰賴大量的計算方能處理嚴重遮蔽的問題，且往往需

倚賴特殊硬體才能達成即時的定位與追蹤。不同於這些研究，本論文提出一快速且準確

的多攝影機人群定位演算法，對前景區域建立以消失點為基礎的二維樣本線段，並將之

投影於地平面，利用足跡分析找出線段相交密集處，有效限縮人物立足點在地平面的可

能範圍。再透過二維前景影像，對人物立足點可能區域做進一步的篩選與驗證，有效率

地估計出人物的位置與高度。本篇論文不需大量分析人物特徵點，有效率地降低系統的

計算成本以符合即時運算的需求。經實驗證明，本篇論文演算法相較於先前研究[9]的人

物三維重建方法，在多人且嚴重遮蔽的環境中可提升至十倍計算速率，且依然不失偵測

正確度與定位精準度，進而達成即時的三維人群定位。 
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ABSTRACT 

 

With the popularity of vision-based camera surveillance, the research on people 

localization appeals to much attention. In this study, we propose an efficient and effective 

system capable of locating a crowd of dense people in real time, using multiple cameras. For 

each camera view, line samples, originated from a vanishing point, of foreground objects are 

projected on the ground plane. Ground regions containing a high density of projected lines are 

then used to find people locations. Enhanced from previous works, the people localization 

approach proposed in this study needs not project all foreground pixels of all views to 

multiple reference planes or compute pairwise intersections of projected sample lines at 

different heights, resulting in significant improvement in computational efficiency. 

Furthermore, the people heights can also be estimated. Experimental results on real 

surveillance scenes show that comparable accuracy in people localization can be achieved 

with ten times in computing speed compared with our previous approach.  
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Chapter 1. Introduction 

1.1 Motivation 

Recently, the proliferation of security surveillance cameras necessitates the development 

of automatic/semi-automatic surveillance system with the assistance of computer technology. 

Therefore, the research on vision-based people localization has been gaining popularity. In 

more recent years, there has been a tremendous wave of interest in people localization for 

crowded scenes. Serious occlusions may occur frequently within a group of people in a 

real-world environment. Based on current research, there is still scope for accuracy and 

efficiency improvements in solving occlusion problems. 

Conventional people localization approaches are based on single-camera monitoring. A 

target object can be successfully detected with a single static or moving camera if it is neither 

occluded by nor occluding others in the scene. However, this kind of monocular approach 

may not achieve high accuracy under serious occlusion. An example is shown in Figure 1.1 

and Figure 1.2; the two binary foreground images are obtained from the original images by  

 

 

Figure 1.1 An example of isolated people in frame 185. (a) The frame before occlusion occurs. 

(b) The binary foreground image of (a). 
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Figure 1.2 An example of serious occlusion in frame 215. (a) The frame shows the person 

dressed in red jacket is occluded. (b) The binary foreground image of (a). 

 

background subtraction. With difference of 30 frames between the two figures, the circled 

foreground region in Figure 1.1(b) can be clearly recognized as an isolated person, but it is 

hard to distinguish the region in Figure 1.2(b) as two people due to the serious occlusion. 

To overcome the limitations, vision-based localization and tracking have shifted from 

monocular approaches to multi-camera approaches since the latter may handle serious 

occlusion better by using more information. An example of multi-camera localization is 

shown in Figure 1.3, with 9 persons in four views of the same scene. The four views contain 3, 4, 

2, and 3  

 

 

Figure 1.3 Multi-camera approach provides sufficient information for people localization. (a) 

The binary foreground images from four views of the same scene. (b) The localization result 
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obtained from (a) by using our method. 

foreground regions with serious occlusion, respectively. But by using multiple views of the 

same scene, the localization recovers information that might be missing in a particular view 

and achieves good results under serious occlusion as shown in Figure 1.3(b). 

However, multi-camera approach increases the amount of information from additional 

views and leads to much higher computational complexity. Our purpose is to propose an 

efficient and effective approach for people localization using multiple cameras, which can 

handle serious occlusion in a crowd scene and provide real-time performance without special 

hardware. 

1.2 Review of Related Works 

In the last decade, a considerable amount of approaches for people localization and 

tracking have been dedicated to effectively dealing with occlusion problem. Traditional 

single-camera-based monocular approaches [1]–[3] for people localization often cannot 

achieve high accuracy due to the limited viewpoint and cluttering issue, i.e., a person in one 

view might be partially or completely occluded by other people. To overcome these 

limitations, many latest people localization schemes adopt multiple cameras [4]–[9]. 

Hu et al. [4] propose a method using people axes, wherein each person is represented by 

an axis, to estimate the feet points in images. Before the determination of the principal axes of 

people, the foreground regions need to be predefined for an isolated person, a group of people 

or occluded people. Since the principal axis-based method highly relies on the accuracy of 

object classification step which distinguishes the three situations of foreground regions, this 

approach may not work well for dense crowd. 

Instead of using shape cues or color models to analyze foreground regions in [4], Khan et 

al. [5] propose a people tracking work which neither detects nor tracks objects in any single 
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camera or camera pairs. The proposed method projects and integrates foreground likelihood 

information of all image pixels, which is captured from different views, on multiple reference 

planes of different heights to form an occupancy probability. Different from the method in [5], 

which performs the reconstruction in three dimensions, the methods proposed by Fleuret et al. 

[6] and Alahi et al. [7] only use the occupancy map on grids of the ground plane, which is 

measured by back-projecting a predefined model, e.g., a rectangle, to image planes for 

occupancy computation. Without correspondences of people between different views, 

approaches presented in [5]–[7], which have high complexity in computation due to the 

pixel-based processing, perform quite well under serious occlusions. However, such methods 

are not suitable for certain surveillance applications, such as intruder detection and abnormal 

behavior detection wherein people localization is only part of the complete process, which 

need prompt attention and demand for very high processing and response speed.  

In [9], Lo and Chuang propose an efficient vanishing point-based line sampling 

technique for people localization with near real time performance to avoid projecting all 

foreground pixels of multiple camera views to all reference planes. The computational 

complexity is reduced from pixel-based to line-based processing. Multi-plane homography is 

used to obtain pairwise intersections of the line samples at different heights. Then the vertical 

line samples in the 3D scene can be reconstructed for people location estimation. 

In this study, we continue to use the vanishing point-based line sampling technique in [9]. 

The efficiency of the above line sample-based approach is further improved in our method. 

Without multi-plane projection for reconstruction in three dimensions, we consider only one 

reference (ground) plane to analyze footsteps of people, resulting in significant improvement 

in computational efficiency. Experimental results show that comparable accuracy in people 

localization can be achieved with ten times in computing speed compared with our previous 

approach [9].  
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1.3 Overview of Proposed Methods 

In this study, we propose an efficient and effective approach for people localization 

using multiple cameras. Figure 1.4 illustrates the schematic diagram of the proposed 

framework. First, the preprocessing procedure of camera calibration is executed to find the 

vanishing point of vertical lines in the scene for each image plane. Next, we generate lines 

originated from such a vanishing point to sample the foreground objects (people) in each 

camera view, as in [9]. The line samples of foreground objects from all camera views are then 

projected onto the ground plane via homographic transformation, with regions crossed 

through by a large number of projected sample lines identified as candidate people locations. 

We then generate (vertical) 3D line samples for these candidate people locations. After a 

refinement/verification procedure for these 3D line samples, the height of each person can 

also be estimated. Finally, the remaining 3D line samples are clustered into individual axes to 

indicate people locations and heights. 
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Figure 1.4 Schematic diagram of the proposed people localization framework  
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1.4 Contributions of This Thesis 

In this study, we propose an efficient and effective method capable of locating a crowd 

of dense people in real time, using multiple cameras. We retain the advantage of vanishing 

point-based line sampling proposed in [9]; foreground features such as color models or shape 

cues are not needed. Furthermore, we develop a 3D line sampling scheme for a single 

reference ground plane to estimate people locations, instead of performing reconstruction via 

computing pairwise intersections of the sample lines at different heights as in [9]. The 

computational efficiency of the proposed method achieves up to 180 frames per second. For 

intruder detection and abnormal behavior detection to function properly wherein people 

localization is only part of the complete process, our approach may help to provide prompt 

attention with very high processing and response speed. Experiments show satisfactory recall 

and precision rates can be achieved by the proposed method under serious occlusion for some 

crowded scenes in the real world. 

1.5 Thesis Organization 

The remainder of this thesis is organized as follows. In Chapter 2, we explain how to 

generate 2D line samples in multi-view based on vanishing points. In Chapter 3, a two-layer 

grid occupancy map is generated by projecting the above 2D line samples on ground for 

footstep analysis which estimates candidate people locations. In Chapter 4, 3D line samples 

are generated from these candidate people locations. Refinement/verification scheme is then 

developed to validate each 3D line sample. Experimental results with reasonable performance 

in people localization in terms of accuracy and efficiency are given in Chapter 5. Finally, 

conclusions of our study and suggestions for future works are given in Chapter 6. 
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Chapter 2. Vanishing Point-Based Line 

Sampling and Projection 

In this chapter, we will review the process developed in [9] for generating line samples 

of foreground regions in 2D views, before they are projected to the reference ground plane for 

subsequent people localization process proposed in this thesis. In Section 2.1, the generation 

of line samples in 2D views based on the vanishing points where vertical lines in 3D space 

converge is reviewed. The estimation of these vanishing points and the 2D line-based 

sampling are also presented. In Section 2.2, after the 2D foreground line samples are created, 

we describe how to project them to the ground plane via homographic transformation. Figure 

2.1 shows the process of vanishing point-based line sampling and projection. The projected 

2D foreground line samples on the ground will be used for subsequent people occupancy 

estimation. 

Foreground 

image sequence

from each view i

Vanishing point pv estimation

Vanishing point-based 2D line 

sample generation

Ground plane homography Hi π estimation

Projection of 2D foreground line 

sample to the ground

 

Figure 2.1 Overview of the vanishing point-based line sampling and projection 

 

2.1 2D Line-Based Sampling from Vanishing Points 

Based on projective geometry, lines in a 2D image which are parallel in the 3D space 

will intersect in the 2D image at one point known as the vanishing point. Since people 

walking and standing are generally perpendicular to the ground, we use the above 

vanishing-point characteristic to generate vertical line samples of foreground in the 3D space.  
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Figure 2.2 Vertical poles on the ground plane intersect in the image at the vanishing point. 

 

In our study, we first obtain the vanishing point in each view by placing four vertical 

poles on the ground plane, as shown in Figure 2.2. The linear equations of the four line 

segments in the 2D image, L1, L2, L3 and L4, are obtained by detecting the red marks of the 

vertical poles displayed on the image. Assume the equations are in the following form, 

{

              
              
              
              

          (1) 

By extending the line segments of vertical poles in the 2D image, the intersection (x, y) 

known as vanishing point can be found. The simultaneous equations in (1) can also be 

formulated using matrices as 

[

    
    
    
    

] [
 
 ]  [

  
  
  
  

].        (2) 

To obtain the position   ⃑⃑⃑⃑       of the vanishing point, we can rewrite (2) as 

    ⃑⃑⃑⃑   ,         (3) 

where   is coefficient matrix and   is the constants vector of the four equations. The 
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approximate least square solution   ⃑⃑⃑⃑  can be solved by  

 
 

⃑⃑  ⃑      ,         (4) 

where    is the pseudoinverse matrix of  . It can be computed by using the singular value 

decomposition (SVD) of  . 

We next generate 2D foreground line samples in the associated camera view which are 

originated from the vanishing point   ⃑⃑⃑⃑  and correspond to a sheet of vertical 3D lines in the 

scene (see Figure 2.3). Line samples which do not contain enough foreground pixels will be 

discarded since they are expected to be near the margin of foreground regions and will have 

little contribution to 3D localization (see Figure 2.3(c)). For those line samples containing 

enough pixels, they should also tolerate small areas of holes and shadows generated in 

background subtraction. Such a line sampling method reduces the computational time for 

analyzing the foreground information and scales down the computational complexity by 

converting the underlying pixel-based processes to line-based processes. In contrast to the 

principal axis-based method of finding the representation of a person proposed in [4], by 

adopting the 2D line-based sampling using vanishing point, no additional foreground analysis 

is required for people localization. 

 

 

Figure 2.3 The 2D line-based sampling from vanishing point. (a) The original image of one 

view. (b) Foreground image of (a). (c) Vanishing point-originated line samples for (b). 

 

http://en.wikipedia.org/wiki/Singular_value_decomposition
http://en.wikipedia.org/wiki/Singular_value_decomposition
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2.2 Line Projection via Ground Plane Homography 

Since people walking and standing are generally perpendicular to the ground and the 2D 

foreground line samples correspond to vertical lines in 3D space, the projected foreground 

line samples on the ground plane will give us the information closely related to people 

locations. In this section, the 2D foreground line samples in each camera view are projected 

onto the ground plane via ground plane homography.  

Planar homography, the projective geometry constraint, is a non-singular linear 

relationship between points on planes. Images of points on a plane in one view    are related 

to corresponding image points in another view    by a planar homography matrix     based 

on homogeneous representation. Let   ⃑⃑  ⃑ and   ⃑⃑  ⃑ be homogeneous vectors of size 3 × 1,   ⃑⃑  ⃑ 

be a point on plane    and   ⃑⃑  ⃑ be the corresponding point on plane   . The two points can 

be associated with the 3 × 3 homographic matrix    : 

     ⃑⃑  ⃑     ⃑⃑⃑⃑ ,        (5) 

where     is a non-singular matrix transforming points on    to points on   . The 

homographic matrix     induced by a plane is unique up to a scale factor   and is 

determined by 8 degrees of freedom. It can be estimated from four corresponding points in 

two views [12]. 

 

Figure 2.4 Geometrical relationship between lines on image and on ground. 
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Figure 2.5 The 2D foreground line samples on image projected on ground. (a) Vanishing 

point-originated line samples in an image. (b) The projected 2D foreground line samples on 

the ground plane (top view). 

 

In our study, we obtain in advance the positions of four landmarks   ,   ,    and    

on the image plane and on the ground (see Figure 2.2). Each matching pair gives two 

constraints and fixes two degrees of freedom, thus the ground plane homography can be 

obtained with four pairs of matched points. The geometrical relationship of a vertical line 

projected on ground is illustrated in Figure 2.4. Let   denote a vertical line in 3D space 

perpendicular to the ground plane  , and    be the corresponding line on view i. We can 

obtain the projection    by transforming    from image plane i to ground plane π through 

the homography matrix    , which can be acquired by using landmarks on the ground. An 

example of 2D foreground line samples projected from image to ground plane is shown in 

Figure 2.5. 

According to Section 2.1, the 2D foreground line samples originated from the vanishing 

point can be generated to sample the foreground objects (people) in each camera view. The 

line samples are then projected onto the ground plane via ground plane homography    . 

Figure 2.6 shows the 2D foreground line samples and the projected 2D foreground line 

samples on ground in each view. As shown in Figure 2.6(d) with actual people locations 

shown as red points, it is easy to see that the more a region is crossed through by the projected 

sample lines, the more likely the region contains a person. Thus, in Chapter 3, we identify 
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regions which are crossed through by a large number of projected line samples as candidate 

people regions. 

 While distal ends of the line samples shown in Figure 2.6(d) seem to be useless and can 

be removed before the above process, they may contain indispensable information when 

occlusion occurs. For example, the occlusion in view 2 of Figure 2.6 merges three people into 

one (the largest) foreground region. To guarantee the projected 2D foreground line samples of 

this region cover the actual people locations, the removable part is less than one third for all 

line samples and practically irremovable for some of them. Since there are various situations 

of occlusion in a crowded scene, it is hard to determine which part is removable for each line 

sample. Therefore, the current practice is to retain the integrity of the projected line samples 

to ensure that regions containing people will not be neglected. 
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(a)

 

(b) 

 

(c) 

 

(d) 

Figure 2.6 An example of projecting 2D line samples from different views onto the ground 

plane. (a) Original images of multiple views. (b) Vanishing point-originated 2D foreground 

line samples for (a). (c) The projected 2D foreground line samples on ground plane for each 

view (top view). (d) The 2D foreground line samples from all camera views (the union of (c)). 

The actual people locations are shown as red points. 
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Chapter 3. Grid-Based Estimation of 

Candidate People Locations via Footstep 

Analysis 

In this chapter, a novel way of estimating the candidate people regions on ground by 

using the projected 2D foreground line samples obtained in Chapter 2 is described. Different 

from reconstructing 3D line samples to find candidate people regions, as in [9], we develop a 

line sampling scheme via footstep analysis on a single reference (ground) plane to first 

estimate potential people locations. As shown in Figure 2.6(d), people are more likely to stay 

in regions crossed through by a large number of projected 2D foreground line samples from 

all camera views. This characteristic is utilized here to estimate the candidate people regions. 

In Section 3.1, we use a discretized occupancy map in which the visible part of the ground 

plane is discretized into a finite number of regular blocks, and for each block the number of 

crossing line samples is counted. In Section 3.2, for the blocks with enough line samples, we 

then perform further screening for pre-selected locations in each block, verifying against 2D 

foreground images, to filter out unoccupied locations. Figure 3.1 shows the process of 

grid-based estimation of candidate people locations. The retaining candidate people locations 

will be further used for people localization. 

 

Ground plane 

descretization

Projected 2D 

foreground 

line samples

Two-layer grid 

occupancy map 

generation

Thresholding of 

candidate people blocks 

Screening of candidate 

people locations

 

Figure 3.1 Overview of the grid-based estimation of candidate people locations. 
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3.1 Grid-Based Discretization on Ground Plane 

The main idea of this section is to acquire the distribution of people footsteps from all 

camera views to find the regions where people are more likely to stay. First, we discretize the 

ground plane into blocks; each block has the size of 50cm  50cm, about the area a standing 

person occupies. Then the number of projected 2D foreground line samples crossing each 

block is counted. We next use the counted numbers to find the blocks with high densities of 

crossing lines. 

The process of line counting is illustrated in Figure 3.2. The line count of each block 

crossed by   ̅̅ ̅ will be increased by one. After the line counting process for each line sample 

from all views is completed, we obtain the discretized grid with counted numbers for the 

ground plane, as shown in Figure 3.3 for the example shown in Figure 2.6. However, when 

using only one descretized grid, the above line counts may distribute across neighboring 

blocks. Thus we add a second grid with an offset of 25cm in both vertical and horizontal 

directions from the first one. Figure 3.4 shows the result of the line counting for second grid 

for the example in Figure 2.6, with the spatial relation between the two grids shown in Figure 

3.5. 

 

 

Figure 3.2 The quantity of crossing line samples for each block is counted. 
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Figure 3.3 Result of the line counting for the first grid (layer 1) on the ground plane for the 

example shown in Figure 2.6. The numbers in each block represents the quantity of line 

samples crossing though it. 

 

 

Figure 3.4 Result of the line counting for the second grid (layer 2) on the ground plane for the 

example shown in Figure 2.6. 
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Figure 3.5 Two grids with an offset of 25cm in both vertical and horizontal directions. 

 

Note that some blocks in one grid may have higher counts than the other grid with an 

offset. As shown in Figure 3.6, the line sample count dispersed by neighboring blocks can be 

compensated by using two grids with an offset. In Figure 3.6(a), the line count in the blue 

circled region is distributed over 4 blocks in layer 1, but is more concentrated in layer 2 with 

the largest number of line samples equal to 16. On the other hand, in Figure 3.6(b), the line 

count in the red circled region is more concentrated in layer 1 with the largest number of line 

samples equal to 13, but is distributed over 4 blocks in layer 2.  

After all blocks have been counted, we obtain the two-layer grid occupancy map as 

shown in Figure 3.7. We then merge the overlapping grids into a quarter size grid. The higher 

count is retained for each quarter block, as illustrated in Figure 3.8.  

 

 

Figure 3.6 Close-up views of portions of Figure 3.3 and Figure 3.4 showing some line counts 

are dispersed among neighboring blocks. (a) The line count in the blue circled region is 

distributed in layer 1 (on the left), but is more concentrated in layer 2 (on the right). (b) The 

line count in the red circled region is more concentrated in layer 1, but is distributed in layer 

2.  
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Figure 3.7 The two-layer grid occupancy map obtained by combining two grids (shown in 

Figure 3.3 and Figure 3.4). 

 

 

Figure 3.8 The two-layered grids are merged into a quarter size grid by retaining the one with 

higher count. 

3.2 Candidate People Locations Estimation 

By examining the two-layer grid occupancy map, numbers shown in the quarter blocks 

which count the projected 2D foreground line samples from all camera views seem to 

represent the distribution of people footsteps reasonably. Accordingly, the main purpose of 

this section is to reduce the number of regions need to be verified further to see whether they 

are occupied by persons. The determination of which quarter blocks should be retained as 

candidate people locations includes the following two stages:  
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● The quarter blocks whose counts are greater than a threshold Tc are identified as 

candidate people blocks (CPBs). 

● The CPBs are then filtered by a single-plane screening, at leg level hl, to find the 

most likely candidate people locations (CPLs). 

We first use a thresholding process to find the dense blocks from the two-layer grid 

occupancy map. The CPBs are those quarter blocks whose counts are greater than a threshold 

Tc. We set Tc = 8, which requires that a CPB is crossed through by sample lines from at least 

two camera views. The quarter blocks after thresholding are shown in Figure 3.9. 

 

 

Figure 3.9 The candidate people blocks (CPBs) for the example shown in Figure 3.7. 

 

After the CPBs have been obtained with the above thresholding, four sample points are 

generated from each quarter block region, as shown in Figure 3.10, for the preparation of 

single-plane screening, which is based on point transformation via homography. The sample 

points generated from CPBs are shown in Figure 3.11. Here we generate four regular points 

from one CPB to avoid miss detections in a crowded scene that people may be very close to 
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one another. For example, if only one point, e.g., the block center, is generated from each 

CPB, then the CPB with size 25cm  25cm can only have a maximum of one person 

identified in the 25cm  25cm region.  

 

 

Figure 3.10 The illustration of generating four sample points in each CPB. 

 

 

Figure 3.11 Sample points for the CPBs shown in Figure 3.9. 

 

After the sample points are generated from CPBs, we then apply the single-plane 

screening to remove inconsistent positions produced in CPBs. We first set an altitude hl at 

human leg level, which is defined as 50cm. And we use the homography matrix Hli to 

transform points on plane at hl to image view i. In particular, let P0 = (x, y, 0) be one of the 

points in a CPB. Suppose a person is standing at position P0, then image of point Pl = (x, y, hl) 

projected to any camera view should stay inside his/her leg region and covered by some 

foreground regions. As shown in Figure 3.12, we use homography matrix Hli to back project 
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point Pl at the leg level to view i. The point P0 in a CPB region will be discarded if there exist 

an i such that the above projection does not satisfy the above constraint. 

 

 

Figure 3.12 Projecting point at leg level hl to image view i. 

 

Figure 3.13 shows the remaining points, called the candidate people locations (CPLs), 

obtained after the above screening process for the example shown in Figure 3.11. These CPLs 

which is substantially reduced from original sample points in the CPBs will be used further 

for following chapter for finding people locations. 

 

 

Figure 3.13 The obtained CPLs for the example in Figure 3.11.  
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Chapter 4. People Localization and Height 

Estimation 

In this chapter, we describe how to achieve the goal of people localization and height 

estimation based on the 2D candidate people locations (CPLs) obtained in Chapter 3. In 

Section 4.1, 3D vertical line samples of human body with a pre-set height h are generated. 

These 3D line samples are refined with respect to foreground images from different views. 

The people heights in the 3D space are then estimated by using the view-invariant cross ratio. 

In Section 4.2, the refined 3D line samples are screened by some physical properties of human 

body and a foreground coverage rate from different views. After the above verification 

procedures, those retained 3D line samples are clustered into axes of individual persons by 

using the breadth-first search (BFS). Figure 4.1 shows the process of 3D people localization 

and height estimation. 

 

Candidate people 

locations on ground

Generation of 

3D line samples

Refinement of 3D line samples 

and height estimation 

Clustering of qualified 

3D line samples 

Estimated 

people locations 

and heights

 

Figure 4.1 Overview of 3D people localization and height estimation 

 

4.1 Refinement of 3D Line Samples 

In this section, we show how to form 3D line samples of human body in the 3D space. 

We first establish an initial 3D line sample with a pre-set height h on each CPL. The height h, 

which is set to be 200cm, should be a value higher than a normal human height. After that, 

these initial 3D line samples are then refined against foreground images. 

The refinement is based on the fact that if a 3D line sample corresponds to a real person 
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in the scene, its image in all views should be covered by foreground regions. In other words, 

its top and bottom end points will be covered by foreground regions in all views. If that is not 

the case, the initial 3D line sample should be shortened until it falls within foreground regions 

in all views. As shown in Figure 4.2, assume the coordinate of the CPL is (x, y) on the ground 

plane, and the top of the initial 3D line sample is Ph = (x, y, 200). The height of an initial 3D 

line sample will be shortened to a reasonable length to fit the real height of a person in view i 

can be achieved by 

● Project the top and bottom end points, Ph and P0, of the initial 3D line sample onto 

camera view i as ph
i
 and p0

i
, respectively. 

● Move ph
i
 and p0

i
 inward until they are covered by a foreground region. 

As shown in Figure 4.2, the back projections from ground plane π and pre-set height plane πh 

to the image plane view i are via the homagraphic matrixes H0i and Hhi respectively.  

 

 

 

Figure 4.2 Generating and refining a 3D line sample. 
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Figure 4.3 An example of 2D refinement in each camera view i with one observed person. (a) 

The initial 3D line samples (red) and the refined ones (blue) in the binary foreground images 

of all views. (b) The initial 3D line samples (red) and the refined ones (blue) in the original 

images of all views.  

 

Consider the example shown in Figure 4.3 wherein the initial 3D line sample located on 

one CPL is projected onto each camera view. For easy observation of the refinement result, 

we only show one line sample of an observed person. The projected line samples with 200cm 

height in 3D space are shown in red, with the refined portions shown in blue. Note that both 

the top and bottom of the refined line samples must be covered by foreground regions. 

After the 2D refinement in each camera view, we can efficiently estimate the 3D human 

heights by using cross ratio. Cross ratio is a ratio of distances associated with an ordered 

quadruple of collinear points preserved under projective geometry. Given four collinear points 

A, B, C and D, one definition of the cross ratio used in our method is given by  

            
  ̅̅ ̅̅    ̅̅ ̅̅

  ̅̅ ̅̅    ̅̅ ̅̅
.       (6) 

The ratio CR of these distances is invariant under projective transformations. As shown in 

Figure 4.4, the four collinear points A, B, C and D are related to collinear points A’, B’, C’ and 

D’ by a projective transformation. Thus the cross ratio CR’ is equal to the cross ratio CR:  

                 
    ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅ ̅

    ̅̅ ̅̅ ̅̅      ̅̅ ̅̅ ̅̅
 

  ̅̅ ̅̅    ̅̅ ̅̅

  ̅̅ ̅̅    ̅̅ ̅̅
            .    (7) 
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Figure 4.4 The cross ratios CR(A, B, C, D) and CR’(A’, B’, C’, D’) are equal, since points A, B, 

C, D and A', B', C', D' are related by a projective transformation. 

 

To estimate the height     
 of the refined 3D top point     (see Figure 4.2), we can 

utilize the collinear points, ph
i
, pt

i
, p0

i
 and pv

i
, obtained in the 2D view i, as illustrated in 

Figure 4.5. In particular, consider the cross ratio CRt
i
 (ph

i
, pt

i
, p0

i
, pv

i
) in view i given by  

   
 (  

    
    

    
 )  

  
   

 ̅̅ ̅̅ ̅̅ ̅   
   

 ̅̅ ̅̅ ̅̅ ̅

  
   

 ̅̅ ̅̅ ̅̅ ̅   
   

 ̅̅ ̅̅ ̅̅ ̅.       (8) 

 

 

Figure 4.5 The relationship of the collinear points on 2D view i. (Please refer to Figure 4.2 for 

detailed relation between the 3D line sample and the projected one on image view i.) 

 

Note that the fourth point is the vanishing point   
 , which is mentioned in Chapter 2. And the 

refined bottom point pb
i
 has not yet been used since we are finding the height     

 of the top 

point Pti of the 3D line sample. From (7), we know that the cross ratio CRt
i 
in view i is equal 

to the cross ratio CRti in the 3D space, or 

   
  

  
   

 ̅̅ ̅̅ ̅̅ ̅   
   

 ̅̅ ̅̅ ̅̅ ̅

  
   

 ̅̅ ̅̅ ̅̅ ̅   
   

 ̅̅ ̅̅ ̅̅ ̅  
     ̅̅ ̅̅ ̅̅ ̅̅       ̅̅ ̅̅ ̅̅ ̅

    ̅̅ ̅̅ ̅̅ ̅      ̅̅ ̅̅ ̅̅ ̅
            (9) 
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Since Pv is approach infinity in the 3D space, the distances from points Pv to others will 

approach ∞, then     
      

̅̅ ̅̅ ̅̅  is the only unknown value in (9) and we can get 

    
 

 

   
           (10) 

where       
̅̅ ̅̅ ̅̅      is the pre-set height of the initial 3D line sample. Similarly, the 

refined 3D bottom point height      (see Figure 4.2) can be obtained as 

    
 

 

   
           (11) 

where    
  utilize the collinear points ph

i
, pb

i
, p0

i
 and pv

i
 obtained in 2D view i. Note that the 

refined 2D bottom point pb
i
 is used to substitute for the top point pt

i
. For error tolerance, e.g., 

to cope with noises and occlusion, the intersection of all the refined 3D line samples from 

different camera views is adopted as the final 3D line sample of a possible human body for 

each CPL. Thus, the heights    
 and    

 of two end points Pt and Pb of the final 3D line 

sample for each CPL is given by 

   
         

           ,       (12) 

   
         

           .       (13) 

Consider Figure 4.3 for an occlusion example, the projected 3D line sample in view 2 is 

projected onto an occlusion region, and the line sample in this view cannot be refined to a 

proper height; thus we further apply the intersection of all the refined 3D line samples to cope 

with occlusion in 2D views. 

4.2 Generation of Major Axes of People 

After the 3D line samples with the refined top and bottom points Pt and Pb for each CPLs 

have been obtained, we need to further verify whether the refined 3D line samples correspond 

to a person existing in the 3D scene. The following procedures are the same as adopted in [9]. 

First, we filter out some inconsistent 3D line samples based on the physical shape/size of a 
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human body based on the following two conditions: 

(a) Length constraint: the length of a 3D line sample is longer than the length threshold 

THlen, i.e., 

    
̅̅ ̅̅ ̅̅ > 𝑇 𝑙𝑒𝑛.         (14) 

(b) Foot height constraint: the height    
 of its bottom end point Pb does not exceed the 

bottom-position threshold THbot, i.e., 

   
< 𝑇  𝑜 .         (15) 

The thresholds THlen and THbot are set to be 130cm and 50cm in our approach respectively. 

The main objective of the above two conditions is to preserve two kinds of 3D line samples 

which correspond to (i) the full length of a standing/walking person or (ii) the torso of a 

person with his/her feet. In practice, these two rules can efficiently remove most of 

inappropriate 3D line samples. While the first two filtering rules listed above are more 

intuitive, we now focus on the third rule to check the foreground coverage of a 3D line 

sample: 

(c) Average foreground coverage rate (AFCR): the foreground coverage rate in all 

views of the 3D line sample is higher than a threshold THfg. 

Accordingly, We back project the 3D line sample to check the foreground coverage of 

different height levels. For a person do appear in the monitored scene, these back-projected 

points should be covered by some foreground regions. For example, if all back-projected 

points in all views for a 3D line sample are of foreground, its AFCR is equal to 100%. 

After the above verification procedure (a)-(c), the major axis (MA) of a person can be 

estimated from the remaining 3D line samples. To that end, an undirected graph is built for 

these line samples in such a way that an edge will be established for any two of them if their 

horizontal distance is shorter than a threshold Tc (= 25cm). Then, we apply breadth-first 

search to cluster these line samples. Figure 4.6(c) shows the clustering results for the input 
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frame with 9 persons shown in Figure 4.6(a), and 3D line samples obtained with the above 

verification procedure are shown in Figure 4.6(b). To locate individual persons, the position 

of each of them can be estimated as the average position of the members in the corresponding 

cluster, as shown as a blue point in Figure 4.6(c). Finally, for each cluster, a major axis (MA) 

to represent the corresponding person is established at the above average position as shown in 

Figure 4.6(d), with the maximum height of the members of the cluster being regarded as a 

person’s height. 

 

 

Figure 4.6 Clustering and localization results after refinement and verification procedures for 

the example in Figure 3.13. (a) Input frame (9 persons). (b) Verified 3D line samples. (c) Top 

view of the clustering sets with red points representing the ground truth, and blue points 

representing the estimations, of people locations in this scene, respectively. (d) The 3D major 

axes (MAs). 
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Chapter 5. Experimental Results 

Our experiments are conducted for three QVGA resolution (360240) video sequences 

with 30 frames per second; each has four camera views of an indoor scene under different 

degrees of occlusion. The calibration poles are placed vertically on the ground of the scene 

beforehand, for the estimation of vanishing points, and multiple homographic matrices. These 

sequences are captured with different numbers and trajectories of people. Table 5.1 shows the 

detailed information for three testing sequences, named S1, S2, and S3, respectively. The 

average distance between the cameras and the monitored area is about 15m. The computation 

is performed with a PC under Windows 7 with 4 GB DDR3 RAM and a 2.4G Intel i5 M520 

CPU, without using any additional hardware. 

 

Table 5.1 The information of three video sequences 

Sequence Number of frames Number of persons 

S1 691 
9 

(eight circling the center one) 

S2 776 
9 

(walking randomly) 

S3 271 
12 

(walking randomly) 

 

Figure 5.1(a) shows an example frame of sequence S1. One can see that the lighting 

conditions are quite complicated. The sun light may come through the windows directly and 

the reflections from the floor can be seen clearly. A total of 691 frames are captured for S1 

wherein eight persons are walking periodically around the ninth one standing near the center 

of the monitored area. Figure 5.1(b) and (c) show the verified 3D line samples and the MAs to 

represent people localization results, and view from a slightly higher elevation angle, which 
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easily correspond to camera view 1 (the left most one in Figure 5.1(a)). In addition, for a 

closer examination of the correctness of the proposed people localization and the height 

estimation scheme, bounding boxes with a fixed cross-section of 50cm × 50cm, and with their 

heights obtained, are back-projected to the captured images, as shown in Figure 5.1(d). One 

can see that these bounding boxes do overlay nicely with the corresponding individuals. The 

recall and precision rates for the whole sequence are evaluated as 95.8% and 95.7%, 

respectively.  

 

 

Figure 5.1 An instance of sequence S1, frame 1 (9 persons, eight circling the center one). (a) 

Input frame from four different viewing directions. (b) Verified 3D line samples of different 

clusters in the scene. (c) 3D major axes (MAs) to represent different persons in the scene. (d) 

Localization results illustrated with bounding boxes. 
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Figure 5.2(a) shows an instance of sequence S2, which has the same people count as that 

for S1, but the nine people are walking randomly in the scene. While S2 may have more 

serious occlusions in some time intervals, the repeated occlusions caused by periodic walking 

pattern in S1 do not occur in S2. As a result, both the average recall and precision rates are 

increased slightly. To further examine the robustness of our method under serious occlusion, 

sequence S3 is evaluated, which is similar to S2 but having twelve persons randomly walking 

in the scene. While satisfactory localization results are obtained in Figures 5.3, the recall and 

precision rates for S3 are decreased to 92.9% and 91.2%, respectively. As the localization 

results of above sequences summarized in Table 5.2, the proposed approach seems to work 

robustly despite some degradation in localization accuracy for serious occlusion.  

 

 

Figure 5.2 An instance of sequence S2, frame 1 (9 persons, walking randomly). 
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Figure 5.3 An instance of sequence S3, frame 1 (12 persons, walking randomly). 

 

Table 5.2 Performance of the proposed approach 

Sequence Recall Precision Average error FPS 

S1 95.8% 95.7% 11.86cm 236.36 

S2 96.2% 96.2% 10.57cm 231.62 

S3 92.9% 91.2% 11.25cm 181.96 

 

In our experiments, the “Recall” and “Precision” are defined by  

       
  𝑜  𝑒  

   𝑜  𝑒          𝑒 𝑒   𝑜𝑛 
,       (16) 

          
  𝑜  𝑒  

   𝑜  𝑒      𝑙 𝑒  𝑙    
.       (17) 

An estimated location at a distance less than 30cm from the ground truth is regarded as 

correct, and the “Average error” gives the average distance between the estimated people 
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locations and those of ground truth produced manually. The precision and recall rates in all 

the three videos are above 90%. The computational speed, in frames per second (FPS), are 

evaluated without including the cost of background subtraction. The proposed approach 

achieves very high computational efficiency, even for the crowded scene S3, wherein 12 

persons can be located quite accurately at a high processing speed of about 180 fps. The FPS 

degradation in S3 is because the computational time is dominated by the number of 2D line 

samples, which will grow with the area of foregrounds. As for the accuracy, the average error 

is lesser than 12cm, respectively, which can hopefully be regarded as sufficient for many 

surveillance applications 

Although the above evaluations show that the proposed method can often provide 

reasonably good localization results, there are extreme cases which cannot be completely 

handled with the proposed method. Firstly, when the foreground regions are broken at leg 

level, the initial 3D line sample will not be generated and the miss detection will occur. For 

the example shown in Figure 5.4, the person with a blue shirt cannot be detected since the 

broken foreground region is at his leg level and this position will not be taken as a candidate 

people location (CPL). Secondly, while the scene is under very serious occlusions, e.g., in 

Figure 5.5, the ground region may be covered by foreground regions in all views and a false 

alarm will occur (see the circled regions in Figure 5.5(a) and (b)). No matter a person does 

exist or not, a 3D line sample will be generated. If such a 3D line sample cannot be filtered 

out by the aforementioned verification procedure, a false alarm will occur (see the 3D MA in 

red in Figure 5.5(c)). Finally, when the distances between people are too small, their 3D MAs 

will be clustered into the same group. And this will lead to two miss detections and one false 

alarm, as shown in Figure 5.6. For localization efficiency, the BFS scheme for clustering only 

determines whether the distance between two MAs is smaller than a threshold. 
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Figure 5.4 An example of miss detection in sequence S2. (a) Segmented foreground regions 

and 2D line samples. (b) The localization results wherein the person with blue shirt cannot be 

detected because of the broken foreground region at his leg level. 

 

 

Figure 5.5 An example of false alarms in sequence S2. (a) Segmented foreground regions and 

2D line samples in all views. (b) The localization results illustrated with bounding boxes in all 

views. (c) The 3D MAs to represent different persons in the scene. The 3D MA in red 

represents a false alarm. 
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Figure 5.6 An example of miss detections and false alarms in sequence S2. (a) The 

localization results illustrated with bounding boxes. (b) Clusters of verified 3D line samples in 

the scene with the circled region indicating the merge of two clusters. 

 

For performance comparison with previous research, similar results of people 

localization obtained in [9] are listed in Table 5.3 (compared with Table 5.2). One can see that 

the approach proposed in this thesis achieves similar precision and recall rates as in [9]. 

However, the processing speed is significantly enhanced, about ten times faster than [9], due 

to the use of projected 2D foreground line samples on ground, instead of reconstructing 3D 

major axes via computing pairwise intersections of sample lines of image foreground 

projected at different heights. 

 

Table 5.3 Performance of people localization of [9]. 

Sequence Recall Precision Avg. error FPS 

S1 93.7% 95.1% 11.07 cm 26.69 

S2 94.3% 94.1% 9.56 cm 26.33 

S3 92.3% 91.9% 9.57 cm 18.09 
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The results of person height estimation for S1 are shown in Figure 5.7. The red squares 

indicate the actual heights and blue dots represent the estimated heights together with 

intervals of unit standard deviations. Figure 5.8 shows similar results of person height 

estimation for S2 can be obtained. However, when the occlusion becomes more serious, the 

performance of height estimation of S3 is degraded as shown in Figure 5.9. More detailed 

data of people height estimation can be found in Table 5.4, Table 5.5 and Table 5.6 for S1-S3. 

 

 

Figure 5.7 Results of person height estimation for S1. 

 

Figure 5.8 Results of person height estimation for S2. 

 

Figure 5.9 Results of person height estimation for S3. 
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Table 5.4 Results of person height estimation for S1. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Actual 167 166 173 170 174 171 174 180 172 

Average 168.5  167.1  174.2  170.0  170.0  173.8  173.0  178.3  171.7  

Std 5.3  5.1  6.6  5.6  5.7  5.3  6.5  4.9  7.6  

Error 1.5  1.1  1.2  0.0  4.0  2.8  1.0  1.7  0.3  

 

Table 5.5 Results of person height estimation for S2. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 

Actual 170 171 180 166 174 172 167 174 173 

Average 172.4  176.2  174.9  165.7  169.9  174.1  171.3  173.5  173.8  

Std 4.3  5.2  5.1  5.7  6.6  6.6  6.0  5.8  3.7  

Error 2.4  5.2  5.1  0.3  4.1  2.1  4.3  0.5  0.8  

 

Table 5.6 Results of person height estimation for S3. 

 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

Actual 174 180 191 166 174 173 173 170 172 167 168 171 

Average 168.9 171.4 186.8 164.3 178.7 183.9 171.9 167.9 173.8 170.4 170.8 176.1 

Std 3.6 6.6 9.0 7.3 9.1 9.5 6.4 2.6 5.4 3.4 7.2 5.3 

Error 5.1 8.6 4.2 1.7 4.7 10.9 1.1 2.1 1.8 3.4 2.8 5.1 
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Chapter 6. Conclusions and Future Works 

6.1 Conclusions 

In this thesis, an efficient and effective approach for people localization using multiple 

cameras is proposed. Instead of reconstructing 3D major axes via computing pairwise 

intersections of the line samples at different heights, as in [9], we retain the advantage of 

vanishing point-based line sampling, and develop a sampling scheme based on the discretized 

two-layer grid occupancy map. This map is adopted to count the number of projected 2D 

foreground line samples, and then be used to find out occupied locations effectively. Thus, the 

computation cost is greatly reduced without sacrificing the correctness and accuracy. The 

experiments, conducting on three video sequences with serious occlusions, also verify the 

effectiveness and efficiency of the proposed approach. The comparable accuracy in people 

localization can be achieved with ten times in computing speed compared with the previous 

work [9] with high processing speed of about 180 fps. This also shows our method can be 

applied for many applications that require real-time performance such as intruder detection 

and abnormal behavior detection.  

6.2 Future Works 

We are currently working on adding tracking mechanisms, and expect to see further 

reduction in average errors in people localization. The person height information can also be 

contributive to the applications of user-designated video query and retrieval. Furthermore, we 

expect to design an automatic adjustment method finding applicable parameters for different 

scenarios according to a period of observations collected from video sequences.   
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