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利用動態二進制轉譯技術 
改善微架構內快取記憶體模擬:個案研究 

 
 研究生：陳君彥      指導教授：徐慰中博士 

國 立 交 通 大 學 資 訊 科 學 與 工 程 研 究 所 碩 士 班 

摘 要       

 本篇論文是透過動態二進制轉譯相關技術嘗試改良微架構內快取記憶體模

擬之機制。有鑑於快取記憶體在微架構模擬中影響效能的權重，此實驗將關注在

如何改善其效能。其中將修改 SimpleScalar並透過此一平台進行實驗。當測試

的程式，例如迴圈等重複執行且內含許多需存取記憶體的指令時，其中會產生許

多不必要的快取記憶體模擬。經由本實驗設計的方法，可偵測並進一步減少快取

記憶體模擬的次數以使整體效能提升。實驗結果顯示，改良後的 SimpleScalar

在執行快取記體憶模擬時的平均時間比起原本快上了 3.4~3.9倍 
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Using DBT (Dynamic Binary Translation)  

to improve performance of micro-architecture’s cache 

simulations: a case study 

 
Student: Chun-Yen Chen   Advisor: Dr. Wei-Chung Hsu 

Degree Program of Computer Science 
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ABSTRACT 

This thesis uses DBT techniques to improve the performance of 

micro-architecture’s cache mechanism. This study will focus on how to improve 

cache simulation’s performance due to the cache importance in micro-architecture 

simulations. We modified the SimpleScalar and ran the experiment on it. When 

running the test codes with many memory reference instructions, such as loops, 

repeatedly, there are many redundant cache simulations. By our experiment method, 

these redundancies will be detected and the times of cache simulations will be 

reduced. With the enhancement and associated optimization, we have observed 

340%~390% of speed up on average over the original SimpleScalar. 
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I. Introduction 
In the computer engineering field, new ideas are often evaluated and verified by 

simulations before actual implementations. A micro-architecture simulator simulates 

the detailed implementations of a computer system implementation such as the 

processor, the memory hierarchy, and sometimes, the memory interconnections and 

buses. In the design of micro-architecture, simulations are frequently used to predict 

the performance and tradeoffs are often made to fine tune the design. This process has 

been very effective in reducing the cost of design, increasing the reliability and 

performance of the implementation. In micro-architecture simulations, performance 

critical components such as caches, register modules, out-of-order instruction issue 

mechanisms, re-order buffers, branch predictors, load/store buffers are often modeled 

in details. Usually, the more implementation details modeled, the more accurate the 

predictions, but the slower the simulations. With all micro-architecture modules, the 

cache hierarchy is one of the most importance, since it is not only performance critical, 

but also frequently invoked by every memory reference instruction during the 

program execution. 

Traditional cache simulations are usually based on interpretation. It means that 

each is interpreted and the memory operation involved is going through the cache 

hierarchy simulation. This commonly used approach is straightforward, but is very 
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slow. Over the past many years, JIT(Just-In-Time Translation) techniques [1] have 

been used to speed up the interpretation of bytecode, and DBT(Dynamic Binary 

Translation) techniques have been adopted to speed up interpretation of executables 

[2]. It is quite natural to question why such techniques were not used for speeding up 

micro-architecture simulations.  

This thesis investigates how DBT techniques may be used for fast 

micro-architecture simulations. We started from cache simulations, but the idea could 

be extended to other micro-architecture simulations such as the pipeline simulations 

and the load/store buffer simulations. Although DBT is not a new technology, but it 

has not been used effectively on micro-architecture simulations. DBT has been quite 

successfully applied for function simulation, for example, most high performance 

functional simulators, such as QEMU, Simics, Shade and so on, are based on DBT. 

DBT turns interpretation into native code execution, for example, instead of 

interpreting an “ADD” instruction, DBT translate this ADD instruction to an 

equivalent native add instruction on the host machine, and the execution of this “ADD” 

instruction is now emulated by executing the translated native instruction instead of 

the slow process of interpretation. Translation needs to be done only once, since the 

translated code will be stored in a code cache so that subsequent execution of the 

same code sequence can go directly to the translated code. However, when DBT is 
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applied to micro-architecture simulations, one challenge might emerge. 

Micro-architecture simulations often involve lots of details to emulate. Those details 

are often coded as functions and are called when the activities are involved in one 

instruction emulation. If we translate all these activities into native code, the degree of 

code expansion may degrade the simulation speed instead of making it go faster. We 

will further discuss this impact in next paragraph and use some experimental data to 

support this point. To avoid this code expansion dilemma, this study chooses a 

selected area to apply the idea of DBT on micro-architecture simulation. In this study, 

the simulation goes through the same components many times, for example, each 

memory operation will call the cache simulator. We propose to have the dynamic 

translator chooses some critical blocks of these components, applies optimizations to 

get rid of redundancies, converts the selected blocks to native instructions, and stores 

the translated code in the code cache for subsequent simulations. 

There are significant redundancies exist among multiple load/store instructions. 

Due to spatial locality, multiple load/stores are likely reference data located on the 

same cache line. Instead of calling the cache simulation multiple times, the simulation 

activities might be combined into one transaction. This is particularly useful for 

frequently executed loops. According to the fact mentioned above, the DBT could 

merge multiple cache simulations into one and eliminate a large portion of simulation 
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activities. 

Before starting our work, a proper platform must be chosen. Simplescalar is a 

well-known open source computer architecture/micro-architecture simulator, and it is 

a set of tools that model a virtual computer system with CPU, caches and a memory 

hierarchy. In year 2000, more than one third of all papers published in top computer 

architecture conferences used the SimpleScalar tool sets to evaluate their designs. [3] 

That is why we choose it for the investigation study. 

The purpose of this study is to come up with a method for identifying these 

redundancies and let a DBT to eliminate such redundancies via code transformations. 

By eliminating the redundancies, the total time of data cache simulation, in this study, 

would be decreased. We believe the same idea could also be applied to other 

micro-architecture simulations. In our study, we modified the original sim-cache 

simulator to include our proposed approach. Unmodified code will run as before, and 

modified code will be executed as if the DBT has applied the transformation and 

perform merged cache simulations.  

Motivating Example 

In this paragraph, we will use real examples to point out the differences between 

translating guest instructions to host instructions by interpretation or by DBT on 

micro-architecture simulations. Then we could understand the motivation of this work. 
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Use a short and simple code as example, as shown in Figure 1. 

 
Figure 1 A simple C code example 

In Figure 1, there are some arithmetic instructions in a loop. When we use 

interpretation to emulate, the ADD and MUL instruction are emulated as a sequence 

of instructions respectively, as shown in Figure 2. If we choose DBT to do the 

emulation, the ADD and MUL instruction could be converted to native code, as 

sample as one single native instruction, so the number of executed instructions in 

emulation is much less than interpretation. Although the DBT is an effective way to 

do emulation, but the speedup may not be realized when applied to micro-architecture 

simulations. The reason is that micro-architecture simulators are not only translate 

code like interpretation, but require many instructions to do the cache simulation, 

register updating, load/store refreshing, interconnection buses and peripheral devices.  
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Figure 2 Translated instructions: Interpreter vs. Micro-architecture simulator (Add 

instruction with cache simulation only) 

Code expansion problem 

If we inline these function calls, the code expansion may slow down the program, 

and the performance of simulation may be even less than the original one. Table 1 

shows the code size of these functions. Even though the source C code is simple and 

short, the translated code size of these functions is large. Based on this data, we take 

Figure 2 and Figure 3 as examples; the number of instructions of micro-architecture 

simulation (with cache simulation only) is about 3300 (according to Table1, each 

cache access function translated to 1111 native instructions), it’s more than translated 

code in interpretation. When the number of iteration is 100, the translated code size of 

micro-architecture simulation with inlined cache simulation are much larger than 

original way (as shown in Figure3). According to this conclude, even though we use 
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binary translation to translate the source instructions with native instructions, its 

performance may be worse than original one. 

 

Table 1 Code size of main functions in sim-outorder simulator 

 

Figure 3  Code expansion problem 

 

Function name code size native code size 

cache_access 207 1111 

ruu_commit 554 3294 

ruu_writeback 453 863 

lsq_refresh 111 300 

ruu_issue 707 3165 

ruu_dispatch 15484 77452+ 

ruu_fetch 1137 4806 
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In conclusion, instead of inline these functions, the better way to improve the 

performance of micro-architecture simulation is to reduce the times of function calls. 

Therefore, find a proper function to improve is important. Cache simulation is easier 

and more potential than other functions to optimize. 

The remainder of this thesis is as follows. In Chapter 2, we introduce the 

background of this work. Chapter 3 shows the design and implementation of merged 

cache simulations. In Chapter 4, we evaluate the performance of our design and 

discuss the correctness and applicability of this approach. Chapter 5 summaries and 

concludes. 
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II. Background 
In this chapter, we will introduce some important terms, which we could realize 

and know their meanings in the following chapter. First, we discuss the translation 

techniques between different ISAs and then explain what a micro-architecture 

simulator need to do. 

2.1 Interpretation 

Interpretation is a straightforward emulation way. When a simulator uses 

interpreter way from ISA1 to ISA2, it requires tens of native instructions to emulate 

the execution of each source instructions.  

 

2.2 Binary Translation 

Binary Translation is a better way in emulation than interpretation, which makes 

better performance during the translation. The reason is that binary translation 

converts blocks of source instructions to native instructions and then stores these 

native instructions in specific cache. Once the instructions are translated, we could use 

and execute them repeatedly without doing the same translation again, it’s faster than 

interpretation 

 There are two main types of binary translation, static and dynamic. Static binary 

translation converts the guest binary code into code that runs on the target architecture 

without running the code first. It’s hard to maintain correctness, since code discovery 
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and code location problems. But, it can avoid some translation overhead at runtime. 

Dynamic binary translation (DBT) takes a short sequence of code and then 

translates it and caches the resulting sequence at runtime. Even though the overhead 

of translation code is expensive, it significantly reduces the times of translation since 

we can use the translated code in code cache repeatedly. 

2.3 Micro-architecture Simulator 

Differ with functional simulator, a micro-architecture simulator not only maintain 

the program’s correctness but also go through the cache and use pipeline mechanism, 

just like run a program in a true hardware environment. Therefore, the 

micro-architecture simulator is more sophisticated than functional simulator and 

implements more detail, so we need consider more problems if we want to modify it. 

2.4 SimpleScalar 

SimpleScalar is an open source micro-architecture simulator developed by Todd 

Austin, which is a set of tools that model a virtual computer system with CPU, cache 

and memory hierarchy. The early versions of tool set included contributions by Doug 

Burger and Guri Sohi. [4] Today, SimpleScalar is developed and supported by 

SimpleScalar LLC. 

http://www.cs.utexas.edu/users/dburger
http://www.cs.wisc.edu/~sohi
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Figure 4 Simplescalar’s structure  

Simplescalar supports PISA (Simplescalar ISA) and Alpha architectures, with the 

tool set, we can simulate real programs on a range of many processors. Figure 4 

shows the simplescalar tool set contains many modular components. And we can 

understand each component’s feature by Table1. 

Block Name Meaning Source code 

BPred branch predictors bpred.c bpred.h 

Resource resource manager module resource.c resource.h 

Cache cache module cache.c cache.h 

Loader program loader loader.c loader.h 

Regs register module reg.c reg.h 
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Memory flat memory space module memory.c memory.h 

Dlite! DLite!, internal debugger dlite.c dlite.h 

Stats statistics package stats.c stats.h 

Table 2 Main components of SimpleScalar’s performance core 

The above mentioned are lower layer (component layer) of simulator’s structure. 

Now we introduce upper layer (simulator layer) of simulators. There are five levels in 

Figure 5. It’s a trade-off between performance and detail. Each simulation level needs 

corresponding performance core’s components to support it. In the following lines, we 

will further describe the details of each simulation model. 

 

 

Figure 5 Simplescalar’s simulation levels 
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2.4.1 Sim-fast and sim-safe 

The sim-fast level resides in sim-fast.c .It executes each instruction serially. 

Sim-fast is optimized for speed, and assumes no cache, instruction checking, and 

doesn’t support for DLite!. DLite! is an internal in SimpleScalar tool set, which is a 

lightweight debugger and could help us to trace the code structure. 

Sim-safe is another version of sim-fast, and it also simulates functional 

simulation, but checks for correct alignment and access permissions for each memory 

reference. These two simulators cannot accept any additional command-line 

arguments; both versions are very simple, therefore they are good starting points for 

us to understand the internal works of the simulators. 

 

2.4.2 Sim-profile 

Just like its name, sim-profile can generate detailed program profiles on 

instruction classes and addresses, text symbols, memory accesses, branches, and data 

segment symbols. There are some extra options to show many different kinds of 

profile information. For example, if we type the “-taddrprof” command-line argument 

additionally, the terminal will show the execution profile by text address. In addition, 

the sim-profile uses more code files than the above versions. 
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2.4.3 Sim-cache 

 Sim-cache is an ideal for fast simulation of cache and it generates one- and 

two-level cache hierarchy statistics and profiles. In addition to universal arguments, 

sim-cache accepts the arguments in Table3. The cache size is the product of <nsets>,  

Table 3. Additional arguments of sim-cache level 

Argument’s name Meaning 

-cache:dl1/dl2 <config> level 1 / 2 data cache configuration 

-cache:il1/il2 <config> level 1 instruction cache configuration 

-tlb:dtlb <config> data TLB configuration 

-tlb:itlb <config> instruction TLB configuration 

-flush <config> flush caches on system calls 

- icompress remaps 64-bit inst address to 32-bit equivalent 

-pcstat <stat> record statistic<stat> by text address 

<config> <name>:<nsets>:<bsize>:<assoc>:<repl> 

<name> cache name  

<nsets> number of sets 

<bsize> block size 

<assoc> associativity(number of “ways”) 

<repl> set replacement policy(l : LRU ; f : FIFO ; r : Random) 
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<bsize>, and<assoc>. As an example, “-cache:il1 il1:1024:32:2:l” will set a 

2-way associative, 64K byte, level-1 instruction cache which uses LRU replacement 

policy. To have a unified level in the hierarchy, “point” the instruction cache to the 

name of the data cache in the corresponding level, as shown in Figure 6. 

 

Figure 6 Set the cache hierarchy 

 

2.4.4 Sim-outorder 

Sim-outorder is the most complicated and detailed simulator, the main code file is 

about 4000 lines. This simulator supports out-of-order issue and execution, based on 

the Register Update Unit. The RUU renames the registers and hold the results, then 

retires completed instructions in program order in each cycle. This simulator also uses 

a load/store queue (LSQ unit). If the store is speculative, the values of store are placed 

in the queue. Loads are dispatched to the memory system while the addresses of all 
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previous stores are known. Otherwise, it may generate cache misses.  

Figure 7 shows the pipeline of sim-outorder, there are six main stages for which 

are fetch, dispatch, issue, execute, writeback and commit.  

 
Figure 7 Pipeline for sim-outorder 

The fetch stage is implemented in ruu_fetch(), it fetches instructions from I-cache 

and after fetching the instructions, it sends them to the dispatch stage. The dispatch 

routine performs the instructions decoding and register renaming and its code resides 

in ruu_dispatch(). The issue stage (scheduler stage) of the pipeline is contained in 

ruu_issue() and lsq_refresh(). These functions issue instruction to the functional units, 

tracking register and memory dependencies. The execute stage is also maintained in 

ruu_issue(). The routine receives as many ready instructions as possible from last 

stage, and schedules writeback events by using the latency of the functional units. The 

writeback stage is contained in ruu_writeback(), and it scans the event queue. When 

the completed instruction is found, it goes through the dependence chain of 
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instruction outputs to mark instructions that are dependent on the completed 

instruction. This routine makes the dependent instruction as ready to issued when it 

only waiting the completion. The ruu_commit() routine handles the instructions from 

writeback stage that are ready to commit. It does committing instructions, updating of 

the data caches and handling date TLB miss. When an instruction is committed, its 

result is placed to the architected register file, and the RUU and LSQ states must be 

updated. 

The main loop of the simulator, located in sim_main(), is structured as Figure 4. 

 
Figure 8 Code structure in sim-outorder 

As shown in Figure 8, the pipeline is executed reversely. By this method, the 

inter-stage latch synchronization can be handled correctly.  
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III. Design and Implementation 
3.1 Design Issues 

As shown in Figure 9, if we want to run a program in SimpleScalar’s instruction 

set, it must be compiled to PISA binary first. Then the simulator can run this binary 

code to help us analysis the cache line’s information, cache miss rate and load/store 

instructions count etc... Since this report aims to reduce the overhead of cache 

simulation, we pointed out there are some redundancies in translating load/store 

instructions during the micro-architecture simulation and improved the performance 

through our method.  

  

Figure 9 Execution flow of simplescalar 
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3.2 Modify Cache Simulation Mechanism 

As mentioned previously, this study aims to reduce the cache simulation’s time. 

Therefore, we choose the sim-cache simulator to implement our method and modify 

the cache mechanism in it. As shown in Figure 10, the simulator implements the way 

of the cache simulation’s function call, it contained in sim-cache.c, and the cache 

model resides in cache.c and cache.h. The above files are the target that we will focus 

on. 

 

Figure 10 Performance cores of sim-cache level 

 

3.3 Merge The Cache Simulations In The Same 

Cache 

Sim-cache translates and executes the instructions serially. Since that, the same 

translated code is executed repeatedly when the program has loops in it. Take forloop 

as example, programmers usually use forloop to deal with computations, memory 

copy, searching algorithm and string comparison. The data are stored continuously in 

arrays, therefore the memory addresses which loads and stores accessed are also 
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continuous. Each load or store instruction implicitly calls a cache access function to 

handle the data cache simulation and the accessed locations are consecutive in this 

situation. Based on this conclusion, we could merge the simulations into one when the 

accessed cache blocks are in the same cache line. 

The following steps are used to achieve our goal, as proposed in Figure 11. 

 
Figure 11 The flowchart of implementation 

First, we create some variables to record the old PC (program counter) and check 

whether there is a loop or not during the simulation’s routine. If the value of old PC is 

bigger than current PC, and the address of current PC is always equal to the one of 

last comparison, the loop exists. Then record the instruction sequences between these 

two program counters. After checking the continuity of memory addresses, the 

modified routine will unroll the loop. The times of unrolling is limited by the size of 
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cache line. Use the default configuration in sim-cache as example, the data cache line 

size is 32 bytes, each load word instruction accesses 4bytes data from the data cache. 

Therefore, the maximum number of unrolling is 8 in this case. 

Loop unrolling is a loop transformation technique that attempts to upgrade a 

program’s performance. After unrolling, the loop is expanded. There are repeat 

instruction sequences in the unrolled loop, as shown in Figure 12.  

 

Figure 12 Loop unrolling 

 

The arrowed instructions is the same instruction in each loop iteration, these 

instructions call the cache access function, accessing the data cache continuously after 

unrolling the loop.  

Now we can merge these simulations into one. In our modified routine, the first 

load or store instruction calls a cache access function which accesses four times of 

size as the original one. The other function calls are removed. As shown in Figure 13, 
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the original simulator’s routine uses switch statement and macro functions to do the 

implementation of instruction execution. This switch statement uses an enumerated 

type “op” which is passed as argument here and its value corresponds to opcode’s 

name. SYMCAT is a macro function which combines the OP’s name and the string 

‘IMPL’ to a macro function. Take lw (load word) instruction as example, the 

SYMCAT returned a combined string “LW_IMPL”, it has been defined in the 

“machine.def” and this function call multilevel macro calls to finish the instruction 

execution.  

 

Figure 13 Original implementation of instruction execution 

Figure 14 shows a part of code of modified version of sim-cache simulator. 

LW_CACHE_IMPL represents a multilevel path of optimized cache simulation, and 

the LW_MEM_IMPL updates memory status but not goes through the data cache. The 

branch flag is set to count the stall of load word instructions, because after merged the 

cache simulations, the following three simulations must be taken off. 
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Figure 14Modified implementation of instruction execution 

 

Figure 15 shows the difference between original and modified way. In ideal 

situation, the speedup of cache simulation time is 4. 

 

Figure 15 Cache line’s status 

 

3.4 Address Overlapping Problem of Load/Store 

Instructions 

In the above paragraph, we explain our method in detail. However, there is a big 

issue before merging the cache simulations. According to our study’s hypothesis, the 
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addresses which be accessed by load/store instruction must be continuous first, so the 

cache line’s value can be the same as the original one after executing the modified 

routine. But there is a special case that the program will choose the original routine to 

execute, even though the continuously addresses has be found. 
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IV. Experiments and Results 
In this chapter, the experimental result using different cases is shown. Each case’s 

number of iteration is 10 to 100000 times; hence the result could show the 

performance from small to large. We use SimpleScalar 3.0, SimpleScalar PISA GNU 

GCC compiler and SimpleScalar PISA GNU binary utilities which are required for 

users to use the PISA instruction set and build their own binaries.  

4.1 Experimental Environment 

Our experiments run on an Inter i5-760 @ 2.80GHz with 4GB RAM desktop 

machine. The operating system is 32-bit Ubuntu 12.04 LTS. The test cases are 

mentioned behind; these cases are compiled with –O3 flag by SimpleScalar compiler 

tools that are based on GNU GCC. The program execution time is measured by 

clock_gettime function. It is accurate to nanosecond that is more precise and proper 

than the gettimeofday function, since the cache simulation time is usually hundreds of 

nanoseconds. Figure 16 shows how to use this function to calculate the execution 

time.  

 

Figure 16 Using clock gettime function to get the time of program execution 
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4.2 Case Studies 

First, we will introduce some cases in a loop and implement our speedup methods 

on them in this part and explain the common problems in these cases. Then explain 

how to solve or avoid them. 

4.2.1 Array Addition 

As shown in Figure 17. This case is a simple add instruction in a loop. It loads 

data from two addresses, then adds it and stores the result in another memory address. 

 

Figure 17 Case: Array Addition 

4.2.2 Memory Copy 

In this case, we only copy the data from an address to another one. Since there is 

one load and one store word instruction, the times of data cache access are two for 

each loop. Figure 18 shows the source and translated code of this case. 
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Figure 18 Case: Memory Copy 

 

4.2.3 Comparison 

It is a common case when we try to determine a variable’s value by a comparison. 

Such as A equals B, A is greater than B and A is not equal to B etc… In Figure 19, we 

make array c’s value 0 when the value of array a and b are equal, otherwise the value 

of array c is 1. The lower right corner of Figure 19 shows the translated code, the first 

and second line are normal load instructions, we could use our optimization on them, 

but the store instructions in the following lines cannot be optimized. Since we don’t 

know whether the comparison is taken or not, we cannot merge the cache simulation 

of these special store instructions. 
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Figure 19 Case: Comparison 

 

4.2.4 Linear Search 

This case is a very simple search method which we often used it to find specific 

number in an array. All the value in array arr[] are produced randomly, so did the 

value of “search”. After found the target number, this case set array arr2 and flag is 1.  

 
Figure 19 Case: Linear search 
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4.2.5 Bubble Sort 

This case is a bubble sort which works by comparing each element of the list with 

the element next to it and then swapping them if required. Since this case uses a 

comparison before swapping the array data, the sequence of translated code is similar 

to comparison case one which is mentioned above. Figure 21 shows the source c code 

and the translated code sequence of this case. There are two store word instructions 

after branch equal instruction in the fourth line of translated code. When this branch is 

taken, these store instructions have been jumped, therefore them cannot be optimized 

by our implementation way. As expected, the performance gain may be lower than 

array addition and memory copy and be close to comparison case. 

 

Figure 20 Case: Bubble Sort 
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4.3 Preliminary Results 

This section shows the early result of our experimental method. We choose array 

addition case to verify our method. Table 3 and 4 shows the read time and write time 

of data cache simulation in the main optimal loop respectively. The ratio of original 

version to modified one is about 3.3x to 3.8x, which means the speedup of data cache 

simulation. It’s close to the theoretical value as mentioned previously. 

Iteration times Original(nsec) Modified(nsec) Ratio 

100 124508 32513 3.82 

1000 12339431 333466 3.72 

8000 10486522 3106978 3.38 

Table 4 Read time of data cache simulation (in the main loop) 

Iteration times Original(nsec) Modified(nsec) Ratio 

100 63209 18015 3.51 

1000 598556 179722 3.33 

8000 5050219 1500883 3.36 

Table 5 Write time of data cache simulation (in the main loop) 

The following tables show the total time of data cache simulation with original 

and modified version. As shown in Table5, the speedup is only about 1.5 and the 

speedup shown in Table6 is even less.  
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Iteration times Original(nsec) Modified(nsec) Ratio 

100 457357 349692 1.31 

1000 2779136 1830592 1.52 

8000 21107228 13715219 1.54 

Table 6 Read time of data cache simulation (Total) 

Iteration times Original(nsec) Modified(nsec) Ratio 

100 2485621 2407451 1.03 

1000 3962573 3518010 1.12 

8000 17512895 13812644 1.27 

Table 7 Write time of data cache simulation (Total) 

 

4.3.1 Array Initialization Problem 

After profiling, we found the bottleneck of the total cache simulation. In these 

test codes, the arrays are initialized before using. The compiler implicitly initializes 

these arrays iteratively, just like copying memory data from an array to another one in 

a forloop. Figure 22 shows the translated code sequence of array initialization. There 

is a little different to those cases mentioned previously. The memory address is 

continuously with load/store word instructions in each loop, so we don’t need to 

unroll the loop to improve it. To reduce the total time of cache simulation, a feature 

was added to enhance the modified routine, that is if the addresses of memory is as 
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shown in Figure22, merging load’s cache simulation into one, so do store’s. Therefore 

the total time of cache simulation is decreased significantly. In the next chapter, this 

study will show the this optimization’s influence  

 

Figure 21 code sequence of array initialization 

 
 

4.4 Experiment Results 

This section shows the final results of above cases. First we display the data of 

each case in default of cache and make some explanations of these results, then 

compare the performance of cache block size. After the performance issue, the 

analyses of cache miss rate of each case are shown to ensure the correctness of our 

modified version. Finally we briefly conclude the effect of our optimal method in 

micro-architecture simulator’s cache. 

Figure 23 is the experiment results of array addition, the L1 data cache uses the 
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default configuration (with 256 sets, 32 bytes for each block and the associative of set 

is 1) and its size is 8KB. As the first case, we introduce the parts of this diagram in 

detail. In the bottom of this diagram, the horizontal axis shows the number of loop 

iterations and in the left of this figure, the vertical axis shows the ratio of original 

Simplescalar’s data cache access time to modified versions. There are 4 columns in 

fixed iterations of loop. The left hand side is the collections of read/write data in the 

optimal scope and the right hand side is the collections of read/write data during the 

whole program. This study will use the same format to perform the results in the 

following figures. 

 

Figure 22 Case : Array Addition (with default configuration of L1 data cache) 

As shown in Figure23, the speedups are not consistent when the loop iteration’s 

number is small, since the iterations are too small that the results may be influenced 
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by experimental error. The largest test data displays the modified version’s speedup is 

about 3.4x to 3.5x and the experimental results between the optimal loop and the 

whole program are more and more closely when the iteration’s number goes from 

small to big; in other words, the charts which consist of 4 columns are getting more 

and more smoothly from left to right. 

 
Figure 23 Case : Memory Copy (with default configuration of L1 data cache) 

Figure 24 shows the case 2 results. The purple charts show the improved 

performance of write data cache access during the whole program time. When the 

iterations go from small to big, the dark red charts which mean the modified write 

data cache performance of the optimal loop scope look like as the purple chart. And 

the same phenomenon is shown in blue and green chart. It means that the results are 

getting more stable of large test case. In conclusion, the speedup is about 3.3x to 3.5x 
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in the largest case. 

 

Figure 24 Case : Comparison (with default configuration of L1 data cache) 

In Figure 25, the blue charts are more evident than the others. The reason is that 

the modified routine only change the load mechanism in the optimal loop and it 

account for a small rate of the total load instructions. Therefore, the dark red charts 

are all close to 1 because the write data cache mechanism is the same; and the green 

charts grow slightly when the number of iterations changed from 100 to 100000. 

There is only one kind of charts hasn’t be mentioned above – the purple charts. It 

shows the total time of write data cache access is reduced, but it looks like 

unreasonable since the write data cache efficiency in the optimal loop is almost the 

same as before. There is a complete explanation in the following sentences.  

In the previous chapter, there is another optimized way to accelerate the load or 
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store instructions, and this method is out of the optimal loop. After traced the 

assembly code, we found that there are some consecutive store instructions in certain 

loop which didn’t vary even though array size and loop iterations changed. That’s the 

reason that purple charts show some speedup when test data is small but make rarely 

improvement in the large test. 

 

Figure 25 Case : Linear Search (with default configuration of L1 data cache) 

In Figure 26, the read data cache time is improved in the optimal loop, the 

speedup is about 3.5x to 3.8x. Due to the ratio of load instructions in the loop to other 

loads, the performance of total read time decreased when the iterations had increased. 

Since the write data count is different between original Simplescalar and modified one, 

it makes no sense to put the ratio of write data cache time in the optimal loop in this 

figure. The purple charts show the same trend as previous case, the write data access 
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is improved out of the loop. Even though the optimization made 2.56 speedup in small 

test data, the speedup is rare when the program iterations grew.  

 

Figure 26 Case : Bubble Sort (with default configuration of L1 data cache) 

Figure 27 shows the last case in our study. Compare the read data cache 

efficiency in the loop and the total runtime, there is a strong relevance between them. 

When the test data get bigger, the green chart is closer to the blue chart. It means the 

load instructions are almost in the optimal loop when the number of loop iterations 

raised, so the speedup in the loop is almost identical to the total execute time’s 

speedup. The purple charts show the same results with last two cases, it is no more 

explanation here. 
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Cache miss rate 

 

Figure 27 Data cache miss rate (Original) 

Figure 30 and 31 show the data cache miss rate with original and modified 

version. The miss rates are almost the same in these cases with different cache 

configuration. Still, there is a little difference between these two versions when the 

cache block size is 16 bytes. The difference is very small and do not influence the 

correctness of our study results. 
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Figure 28 Data cache miss rate (Modified) 
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V. Conclusion and Future Work 
In this thesis, we presented a simple method to improve the micro-architecture’s 

cache simulation performance, and used some general test code as case studies to 

verify our hypothesis. After discussing the possible problems of implementing such a 

method in modified Simplescalar, many experiments have been done. The results are 

presented and discussed in the previous chapter. As expected, the results show the 

average speedups are about 3.4x to 3.9x when memory read operations dominate the 

execution with default data cache configuration. 

This study makes a good case for using DBT to speed up micro-architecture 

simulations; we could also extend the same idea to other micro-architecture features 

such as pipeline or load/store buffer simulations. For example, the DBT could try use 

similar optimizations in upper levels, such as merging the behavior of same stage in 

the pipelines.  

 

Figure 290 Example: Pipeline stages 
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In other ways, the current modified Simplescalar leaves much room for 

improvement. Now the merge mechanism is pre-set before running the simulation, 

and the speedup factor is fixed to 4. In simulations of future processors, the actual 

speed up could be greater when the cache line size is more than 4 words, as is rather 

common for L2 or L3 caches. 
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