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Using DBT (Dynamic Binary Translation)

to improve performance of micro-architecture’ s cache

simulations: a case study

Student: Chun-Yen Chen Advisor: Dr. Wei-Chung Hsu
Degree Program of Computer Science

National Chiao Tung University

ABSTRACT

This thesis uses DBT techniques to improve the performance of
micro-architecture’s cache mechanism. This study will focus on how to improve
cache simulation’s performance due to the cache importance in micro-architecture
simulations. We modified the SimpleScalar and ran the experiment on it. When
running the test codes with many memory reference instructions, such as loops,
repeatedly, there are many redundant cache simulations. By our experiment method,
these redundancies will be detected and the times of cache simulations will be
reduced. With the enhancement and associated optimization, we have observed

340%~390% of speed up on average over the original SimpleScalar.
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. Introduction

In the computer engineering field, new ideas are often evaluated and verified by
simulations before actual implementations. A micro-architecture simulator simulates
the detailed implementations of a computer system implementation such as the
processor, the memory hierarchy, and sometimes, the memory interconnections and
buses. In the design of micro-architecture, simulations are frequently used to predict
the performance and tradeoffs are often made to fine tune the design. This process has
been very effective in reducing the .cost .of design, increasing the reliability and
performance of the Implementation. In ‘micro-architecture simulations, performance
critical components such as caches, register modules, out-of-order. instruction issue
mechanisms, re-order buffers, branch predictors, load/store buffers are often modeled
in details. Usually, the more implementation details modeled, the more accurate the
predictions, but the slower the simulations. With all micro-architecture modules, the
cache hierarchy is one of the most importance, since it is not only performance critical,
but also frequently invoked by every memory reference instruction during the
program execution.

Traditional cache simulations are usually based on interpretation. It means that
each is interpreted and the memory operation involved is going through the cache

hierarchy simulation. This commonly used approach is straightforward, but is very



slow. Over the past many years, JIT(Just-In-Time Translation) techniques [1] have

been used to speed up the interpretation of bytecode, and DBT(Dynamic Binary

Translation) techniques have been adopted to speed up interpretation of executables

[2]. It is quite natural to question why such techniques were not used for speeding up

micro-architecture simulations.

This thesis investigates how DBT techniques may be used for fast

micro-architecture simulations."We started from.cache simulations, but the idea could

be extended to other-micro-architecture simulations such as the pipeline simulations

and the load/store buffer simulations. Although DBT 'is not a new technology, but it

has not been used effectively on micro-architecture simulations. DBT has been quite

successfully applied for function simulation, for example, most high performance

functional simulators, such as QEMU, Simics, Shade and so on, are based on DBT.

DBT turns interpretation into native code execution, for example, instead of

interpreting an “ADD” instruction, DBT translate this ADD instruction to an

equivalent native add instruction on the host machine, and the execution of this “ADD”

instruction is now emulated by executing the translated native instruction instead of

the slow process of interpretation. Translation needs to be done only once, since the

translated code will be stored in a code cache so that subsequent execution of the

same code sequence can go directly to the translated code. However, when DBT is



applied to micro-architecture simulations, one challenge might emerge.

Micro-architecture simulations often involve lots of details to emulate. Those details

are often coded as functions and are called when the activities are involved in one

instruction emulation. If we translate all these activities into native code, the degree of

code expansion may degrade the simulation speed instead of making it go faster. We

will further discuss this impact in next paragraph and use some experimental data to

support this point. To avoid this code expansion dilemma, this study chooses a

selected area to apply the idea of DBT on micro-architecture simulation. In this study,

the simulation goes through the same components many times, for example, each

memory operation will call the cache simulator. We propose to-have the dynamic

translator chooses some critical blocks of these components, applies optimizations to

get rid of redundancies, converts the selected blocks to native instructions, and stores

the translated code in the code cache for subsequent simulations.

There are significant redundancies exist among multiple load/store instructions.

Due to spatial locality, multiple load/stores are likely reference data located on the

same cache line. Instead of calling the cache simulation multiple times, the simulation

activities might be combined into one transaction. This is particularly useful for

frequently executed loops. According to the fact mentioned above, the DBT could

merge multiple cache simulations into one and eliminate a large portion of simulation



activities.

Before starting our work, a proper platform must be chosen. Simplescalar is a
well-known open source computer architecture/micro-architecture simulator, and it is
a set of tools that model a virtual computer system with CPU, caches and a memory
hierarchy. In year 2000, more than one third of all papers published in top computer
architecture conferences used the SimpleScalar tool sets to evaluate their designs. [3]
That is why we choose it for the investigation study:

The purpose of .this study is to come up with a method for identifying these
redundancies and let a DBT to eliminate such redundancies via code transformations.
By eliminating the redundancies, the total time of data cache simulation, in this study,
would be decreased. We believe the same idea could also be applied to other
micro-architecture simulations. In our study, we modified the original sim-cache
simulator to include our proposed approach. Unmodified code will run as before, and
modified code will be executed as if the DBT has applied the transformation and
perform merged cache simulations.

Motivating Example

In this paragraph, we will use real examples to point out the differences between

translating guest instructions to host instructions by interpretation or by DBT on

micro-architecture simulations. Then we could understand the motivation of this work.



Use a short and simple code as example, as shown in Figure 1.

Figure 1 A simple C code example

In Figure 1, there are some arithmetic instructions in a loop. When we use

interpretation to emulate, the ADD and MUL instruction are emulated as a sequence

of instructions respectively, as-shown in Figure 2. If we choose DBT to do the

emulation, the ADD and MUL instruction could be converted to native code, as

sample as one single native instruction, so the number of executed instructions in

emulation is much less than interpretation. Although-the DBT is an effective way to

do emulation, but the speedup may-not be realized when applied to micro-architecture

simulations. The reason is that micro-architecture simulators are not only translate

code like interpretation, but require many instructions to do the cache simulation,

register updating, load/store refreshing, interconnection buses and peripheral devices.



Figure 2 Translated instructions: Interpreter vs."Micro-architecture simulator (Add

instruction with cache simulation only)
Code expansion problem

If we inline these function calls, the code expansion may slow down the program,
and the performance of simulation may be even less than the original one. Table 1
shows the code size of these functions. Even though the source C code is simple and
short, the translated code size of these functions is large. Based on this data, we take
Figure 2 and Figure 3 as examples; the number of instructions of micro-architecture
simulation (with cache simulation only) is about 3300 (according to Tablel, each
cache access function translated to 1111 native instructions), it’s more than translated
code in interpretation. When the number of iteration is 100, the translated code size of
micro-architecture simulation with inlined cache simulation are much larger than

original way (as shown in Figure3). According to this conclude, even though we use



binary translation to translate the source instructions with native instructions, its

performance may be worse than original one.

Function name code size native code size
cache_access 207 1111
ruu_commit 554 3294

ruu_writeback 453 863

Isg_refresh 111 300
ruu_issue 707 3165
ruu_dispatch 15484 77452+
ruu_fetch 1137 4806

Table'd Code size of main functions in sim-outorder simulator

Interpreter Micro-architecture
Simulator
(with cache simulation)

Code cache size

requirement 32 13364
(Unloop 4 times)

Figure 3 Code expansion problem
7



In conclusion, instead of inline these functions, the better way to improve the
performance of micro-architecture simulation is to reduce the times of function calls.
Therefore, find a proper function to improve is important. Cache simulation is easier
and more potential than other functions to optimize.

The remainder of this thesis is as follows. In Chapter 2, we introduce the
background of this work. Chapter 3 shows the design and implementation of merged
cache simulations. In Chapter 4, we evaluate the performance of our design and
discuss the correctness and applicability-of this approach. Chapter 5 summaries and

concludes.



II. Background

In this chapter, we will introduce some important terms, which we could realize
and know their meanings in the following chapter. First, we discuss the translation
techniques between different ISAs and then explain what a micro-architecture
simulator need to do.

2.1Interpretation
Interpretation is a straightforward emulation way. When a simulator uses
interpreter way from ISAL to ISA2, it requires tens of native instructions to emulate

the execution of each source instructions:

2.2Binary Translation

Binary Translation is a better way in emulation than interpretation, which makes
better performance during the. translation. The reason is that binary translation
converts blocks of source instructions to native instructions and then stores these
native instructions in specific cache. Once the instructions are translated, we could use
and execute them repeatedly without doing the same translation again, it’s faster than
interpretation

There are two main types of binary translation, static and dynamic. Static binary
translation converts the guest binary code into code that runs on the target architecture

without running the code first. It’s hard to maintain correctness, since code discovery
9



and code location problems. But, it can avoid some translation overhead at runtime.

Dynamic binary translation (DBT) takes a short sequence of code and then
translates it and caches the resulting sequence at runtime. Even though the overhead
of translation code is expensive, it significantly reduces the times of translation since
we can use the translated code in code cache repeatedly.

2.3Micro-architecture Simulator

Differ with functional simulator, a micro-architecture simulator not only maintain
the program’s correctness but also go through the cache and use pipeline mechanism,
just like run a.program “in a true hardware "environment. Therefore, the
micro-architecture simulator is more sophisticated than functional simulator and
implements more detail, so we need consider more problems if we want to modify it.

2.4SimpleScalar

SimpleScalar is an open source micro-architecture simulator developed by Todd
Austin, which is a set of tools that model a virtual computer system with CPU, cache
and memory hierarchy. The early versions of tool set included contributions by Doug
Burger and Guri Sohi. [4] Today, SimpleScalar is developed and supported by

SimpleScalar LLC.

10
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Memory flat memory space module memory.c memory.h

Dlite! DLite!, internal debugger dlite.c dlite.h

Stats statistics package stats.c stats.h

Table 2 Main components of SimpleScalar’s performance core

The above mentioned are lower layer (component layer) of simulator’s structure.
Now we introduce upper layer (simulator layer) of simulators. There are five levels in
Figure 5. It’s a trade-off between performance and detail. Each simulation level needs
corresponding performance core’s components to support it. In the following lines, we

will further describe the details-of-each simulation model.

Sim-Fast Sim-Safe Sim-Profile Sim-Cache Sim-Outorder

ijge"“es °f 350 lines 900 lines ﬁ:;':t 1000 ¥ 3900 lines
functional functional Functional Flunctional ger:orfmar;ce
ut-of-order
a4+ MIPS w/ checks Lot of stats Cache stats issue
Branch pred.
ALUs
Cache
TLB
Detail 200+ KIPS
Performance

pH

Figure 5 Simplescalar’s simulation levels
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2.4.1 Sim-fast and sim-safe

The sim-fast level resides in sim-fast.c .It executes each instruction serially.
Sim-fast is optimized for speed, and assumes no cache, instruction checking, and
doesn’t support for DLite!. DLite! is an internal in SimpleScalar tool set, which is a
lightweight debugger and could help us to trace the code structure.

Sim-safe is another version of sim-fast, and it also simulates functional
simulation, but checks for correct alignment and access. permissions for each memory
reference. These two simulators cannot accept any additional command-line
arguments; both versions are very simple, therefore they are good starting points for

us to understand the internal works of the simulators.

2.4.2 Sim-profile
Just like its name, sim-profile can generate detailed program profiles on
instruction classes and addresses, text symbols, memory accesses, branches, and data
segment symbols. There are some extra options to show many different kinds of
profile information. For example, if we type the “-taddrprof” command-line argument
additionally, the terminal will show the execution profile by text address. In addition,

the sim-profile uses more code files than the above versions.

13



2.4.3 Sim-cache

Sim-cache is an ideal for fast simulation of cache and it generates one- and

two-level cache hierarchy statistics and profiles. In addition to universal arguments,

sim-cache accepts the arguments in Table3. The cache size is the product of <nsets>,

Table 3. Additional arguments of sim-cache level

14



<bsize>, and<assoc>. As an example, “-cache:ill i11:1024:32:2:1” will set a
2-way associative, 64K byte, level-1 instruction cache which uses LRU replacement
policy. To have a unified level in the hierarchy, “point” the instruction cache to the

name of the data cache in the corresponding level, as shown in Figure 6.

(T I

il di1
-cache:il1il1:128:64:1:1 -cache:il2il2:128:64:4:|
v ¥ -cache:dl1dl1:256:32:1:]  -cache:dI2 dI2:1024:64:2:I
il2 di2
\ [ Use different level 2 cache ] /
/ i -cache:illil1:128:64:1:] -cache:il2 dI2 \
il1 di1
\ -cache:dl1 d11:256:32:1:|  -cache:dI2 ul2:1024:64:2:|
y
[ Use unified level 2 cache ]
ul2

- J

Figure 6 Set the cache-hierarchy

2.4.4 Sim-outorder

Sim-outorder is the most complicated and detailed simulator, the main code file is
about 4000 lines. This simulator supports out-of-order issue and execution, based on
the Register Update Unit. The RUU renames the registers and hold the results, then
retires completed instructions in program order in each cycle. This simulator also uses
a load/store queue (LSQ unit). If the store is speculative, the values of store are placed

in the queue. Loads are dispatched to the memory system while the addresses of all

15



previous stores are known. Otherwise, it may generate cache misses.
Figure 7 shows the pipeline of sim-outorder, there are six main stages for which

are fetch, dispatch, issue, execute, writeback and commit.

!

Fetch [—% Dispatch Scheduler4J| Exec —> Writeback —> Commit
Memory
Mem
scheduler | |

>
TLB ‘

] \[’\R‘ﬁ‘ﬁ-_
I-Cache D-Cache D-
\ Virtual memory

Figure 7 Pipeline for sim-outorder

The fetch stage is implemented in ruu_fetch(), it fetches instructions from I-cache
and after fetching the instructions, it sends them to the dispatch stage. The dispatch
routine performs the instructions decoding and register renaming and its code resides
in ruu_dispatch(). The issue stage (scheduler stage) of the pipeline is contained in
ruu_issue() and Isq_refresh(). These functions issue instruction to the functional units,
tracking register and memory dependencies. The execute stage is also maintained in
ruu_issue(). The routine receives as many ready instructions as possible from last
stage, and schedules writeback events by using the latency of the functional units. The
writeback stage is contained in ruu_writeback(), and it scans the event queue. When

the completed instruction is found, it goes through the dependence chain of

16



instruction outputs to mark instructions that are dependent on the completed

instruction. This routine makes the dependent instruction as ready to issued when it

only waiting the completion. The ruu_commit() routine handles the instructions from

writeback stage that are ready to commit. It does committing instructions, updating of

the data caches and handling date TLB miss. When an instruction is committed, its

result is placed to the architected register file, and the RUU and LSQ states must be

updated.

The main loop of the simulator, located in.sim-main(), is structured as Figure 4.

ruu_init();

for(;; ) {
ruu_commit() ;
ruu_writeback() ;
Isq_refresh();
ruu_issue();
ruu_dispatch();
ruu_fetch();

Figure 8 Code structure in sim-outorder

As shown in Figure 8, the pipeline is executed reversely. By this method, the

inter-stage latch synchronization can be handled correctly.

17



1. Design and Implementation

3.1Design Issues

As shown in Figure 9, if we want to run a program in SimpleScalar’s instruction
set, it must be compiled to PISA binary first. Then the simulator can run this binary
code to help us analysis the cache line’s information, cache miss rate and load/store
instructions count etc... Since this report aims to reduce the overhead of cache
simulation, we pointed out.there are some redundancies in translating load/store

instructions during the micro-architecture simulation and improved the performance

C source code

through our method.

PISA binary

Figure 9 Execution flow of simplescalar
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3.2Modify Cache Simulation Mechanism

As mentioned previously, this study aims to reduce the cache simulation’s time.
Therefore, we choose the sim-cache simulator to implement our method and modify
the cache mechanism in it. As shown in Figure 10, the simulator implements the way
of the cache simulation’s function call, it contained in sim-cache.c, and the cache
model resides in cache.c and cache.h. The above files are the target that we will focus

on.

BPred

Simulator Core
(sim-cache.c)

Resource Dlite!

Cache
(cache.c,cache.h) Memory

Figure 10 Performance cores of sim-cache level

3.3Merge The Cache Simulations In The Same
Cache

Sim-cache translates and executes the instructions serially. Since that, the same
translated code is executed repeatedly when the program has loops in it. Take forloop
as example, programmers usually use forloop to deal with computations, memory
copy, searching algorithm and string comparison. The data are stored continuously in

arrays, therefore the memory addresses which loads and stores accessed are also

19



continuous. Each load or store instruction implicitly calls a cache access function to
handle the data cache simulation and the accessed locations are consecutive in this
situation. Based on this conclusion, we could merge the simulations into one when the
accessed cache blocks are in the same cache line.

The following steps are used to achieve our goal, as proposed in Figure 11.

Simulation’s routine €——

e

Find the loop I

continuous F

o
— memory address? -
— -

| b |-

' |
Loop unrolling
s

Address
— Overlapped?

l F
Merge cache access
simulations into one
simulation |

=

Figure 11 The flowchart of implementation

First, we create some variables to record the old PC (program counter) and check

whether there is a loop or not during the simulation’s routine. If the value of old PC is

bigger than current PC, and the address of current PC is always equal to the one of

last comparison, the loop exists. Then record the instruction sequences between these

two program counters. After checking the continuity of memory addresses, the

modified routine will unroll the loop. The times of unrolling is limited by the size of

20



cache line. Use the default configuration in sim-cache as example, the data cache line
size is 32 bytes, each load word instruction accesses 4bytes data from the data cache.
Therefore, the maximum number of unrolling is 8 in this case.

Loop unrolling is a loop transformation technique that attempts to upgrade a
program’s performance. After unrolling, the loop is expanded. There are repeat

instruction sequences in the unrolled loop, as shown in Figure 12.

Iw $2,0(54) Access the

Iw $3,400(54) | data cache
Iw $2,0($4) i;\;'SZ, a($a) / continuously

Iw $3,400($4)
addiu $5,%5,1 ! Iw $3,404(54) |
addu $2,52,53 !
w2006 ol ws2,8(34)
addiu $4,54,4 . Iw $3,408(54)
slti $2,$5,100 ‘
bne $2,$0,400308 :w g:ﬁ‘f{;ﬁ ]
J w $3,
. |

addiu $5,55,4 '

Figure 12 Loop unrolling

The arrowed instructions is the same instruction in each loop iteration, these
instructions call the cache access function, accessing the data cache continuously after
unrolling the loop.

Now we can merge these simulations into one. In our modified routine, the first
load or store instruction calls a cache access function which accesses four times of

size as the original one. The other function calls are removed. As shown in Figure 13,

21



the original simulator’s routine uses switch statement and macro functions to do the

implementation of instruction execution. This switch statement uses an enumerated

type “op” which is passed as argument here and its value corresponds to opcode’s

name. SYMCAT is a macro function which combines the OP’s name and the string

‘IMPL’ to a macro function. Take Iw (load word) instruction as example, the

SYMCAT returned a combined string “LW_IMPL”, it has been defined in the

“machine.def” and this function call multilevel macro calls to finish the instruction

execution.

switch (op)

#define DEFINST (OP,MSK, NAME, OPFOBRM, RES, FLAGS,01,02,I1,I2,1I3)
case 0OP:
SYMCRT (OF, _IMFL);
break;
#define DEFLINK (OP,MSK, NAME,MASK, SHIFT)
case OF:
panic("attempted to execute a linking opcode™);
#define CCNMECT (CE)
#include "machine.def"
defanlt:
panic("attempted to execute a bogus opcode™);

}

Figure 13 Original implementation of instruction execution

Figure 14 shows a part of code of modified version of sim-cache simulator.

LW_CACHE_IMPL represents a multilevel path of optimized cache simulation, and

the LW_MEM_IMPL updates memory status but not goes through the data cache. The

branch flag is set to count the stall of load word instructions, because after merged the

cache simulations, the following three simulations must be taken off.
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if(op=—12) { f /1w instruction
if (branch==0) { ffuse this flag to count the stall
if(((GPR(B5)+0F5)%1c)=0) { //check alignment
LW _CACHE TMPL:
LW _MEM IMPL;
}
else LW_IMFL:
}
else {
LW _MEM TMPL:
}

Figure 14Modified implementation of instruction execution

Figure 15 shows the difference between original and modified way. In ideal

situation, the speedup of cache simulation time is 4.

Cache line(32 bytes)
' M jteration 1
Original - . W iteration 2
W iteration 3
: I iteration 4
| iteration 5
Modified - Witeration 6
iteration 7
| : ' iteration 8
0 10 20 30

Figure 15 Cache line’s status

3.4Address Overlapping Problem of Load/Store

Instructions

In the above paragraph, we explain our method in detail. However, there is a big
issue before merging the cache simulations. According to our study’s hypothesis, the
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addresses which be accessed by load/store instruction must be continuous first, so the
cache line’s value can be the same as the original one after executing the modified
routine. But there is a special case that the program will choose the original routine to

execute, even though the continuously addresses has be found.
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V. Experiments and Results

In this chapter, the experimental result using different cases is shown. Each case’s
number of iteration is 10 to 100000 times; hence the result could show the
performance from small to large. We use SimpleScalar 3.0, SimpleScalar PISA GNU
GCC compiler and SimpleScalar PISA GNU binary utilities which are required for
users to use the PISA instruction set and build their own binaries.

4.1Experimental Environment

Our experiments.run on an Inter.i5-760 @ 2.80GHz with 4GB RAM desktop
machine. The operating system is 32-bit Ubuntu 12.04 LTS. The test cases are
mentioned behind; these cases are compiled with —O3 flag by SimpleScalar compiler
tools that are based on GNU GCC. The program execution time is measured by
clock_gettime function. It is accurate to nanosecond that is more precise and proper
than the gettimeofday function, since the cache simulation time is usually hundreds of
nanoseconds. Figure 16 shows how to use this function to calculate the execution

time.

clock gettime( CLOCKE REALTIME, &start):

MyProgram({ argv[l] )

clock gettime( CLOCE REALTIME, &stop):

accum = { Stop.tV_sSec - Start.tv _sec ) ¥
+ ( Stop.tv_nsec - SCart.tv_nsec )

Figure 16 Using clock gettime function to get the time of program execution
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4.2Case Studies

First, we will introduce some cases in a loop and implement our speedup methods
on them in this part and explain the common problems in these cases. Then explain
how to solve or avoid them.

4.2.1 Array Addition
As shown in Figure 17. This case is a simple add instruction in a loop. It loads

data from two addresses, then adds it and stores the result in another memory address.

Figure 17 Case: Array Addition

4.2.2 Memory Copy

In this case, we only copy the data from an address to another one. Since there is
one load and one store word instruction, the times of data cache access are two for

each loop. Figure 18 shows the source and translated code of this case.
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Figure 18 Case: Memory Copy

4.2.3 Comparison

It is a common case when we- try to determine a variable’s value by a comparison.
Such as A equals B, A is greater than B and A'is not equal to B etc... In Figure 19, we
make array c’s value 0 when the value of array a and b are equal, otherwise the value
of array c is 1. The lower right corner of Figure 19 shows the translated code, the first
and second line are normal load instructions, we could use our optimization on them,
but the store instructions in the following lines cannot be optimized. Since we don’t
know whether the comparison is taken or not, we cannot merge the cache simulation

of these special store instructions.
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Figure 19 Case: Comparison

4.2.4 Linear Search

This case is a very simple search method which we often used it to find specific
number in an array. All the value in array arr[] are produced randomly, so did the

value of “search”. After found the target number, this case set array arr2 and flag is 1.

Figure 19 Case: Linear search
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4.2.5 Bubble Sort

This case is a bubble sort which works by comparing each element of the list with

the element next to it and then swapping them if required. Since this case uses a

comparison before swapping the array data, the sequence of translated code is similar

to comparison case one which is mentioned above. Figure 21 shows the source ¢ code

and the translated code sequence of this case. There are two store word instructions

after branch equal instruction.in the fourth line of translated code. When this branch is

taken, these store instructions have been jumped, therefore them cannot be optimized

by our implementation way. As expected, the performance gain-may be lower than

array addition and memory copy and be close to comparison case.

Figure 20 Case: Bubble Sort
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4.3Preliminary Results

This section shows the early result of our experimental method. We choose array
addition case to verify our method. Table 3 and 4 shows the read time and write time
of data cache simulation in the main optimal loop respectively. The ratio of original
version to modified one is about 3.3x to 3.8x, which means the speedup of data cache

simulation. It’s close to the theoretical value as mentioned previously.

Iteration times Original(nsec) Modified(nsec) Ratio
100 124508 32513 3.82
1000 12339431 333466 3.72
8000 10486522 3106978 3.38

Table 4 Read time of datacach

e simulation (in the main loop)

Iteration times Original(nsec) Modified(nsec) Ratio
100 63209 18015 3.51
1000 598556 179722 3.33
8000 5050219 1500883 3.36

Table 5 Write time of data cache simulation (in the main loop)

The following tables show the total time of data cache simulation with original
and modified version. As shown in Table5, the speedup is only about 1.5 and the

speedup shown in Table6 is even less.
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Iteration times Original(nsec) Modified(nsec) Ratio
100 457357 349692 131
1000 2779136 1830592 1.52
8000 21107228 13715219 1.54
Table 6 Read time of data cache simulation (Total)

Iteration times Original(nsec) Modified(nsec) Ratio
100 2485621 2407451 1.03
1000 3962573 3518010 1.12
8000 17512895 13812644 1.27

Table 7 Write time of data cache simulation (Total)

4.3.1 Array Initialization Problem

After profiling, we found the bottleneck of the total cache simulation. In these
test codes, the arrays are initialized before using. The compiler implicitly initializes
these arrays iteratively, just like copying memory data from an array to another one in
a forloop. Figure 22 shows the translated code sequence of array initialization. There
is a little different to those cases mentioned previously. The memory address is
continuously with load/store word instructions in each loop, so we don’t need to
unroll the loop to improve it. To reduce the total time of cache simulation, a feature

was added to enhance the modified routine, that is if the addresses of memory is as
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shown in Figure22, merging load’s cache simulation into one, so do store’s. Therefore

the total time of cache simulation is decreased significantly. In the next chapter, this

study will show the this optimization’s influence

400228:
400230:
400238:
400240:
400248:
400250:
400258:
400260:
400268:
400270:
400278:

N\

-

=

lw $2,0($6)
lw $3,4(56) Read data cache once

Iw $4,8(56)

Iw Q';p_l—"fﬁl’_\
sw $2,0($7)
sw $3,4(S7) Write data cache once

sw $4,8(57)
sw $5,12(57)

addiu $6,56,16
addiu $7,57,16
bne $6,58,400228

Figure 21 code sequence of array initialization

4. 4Experiment Results

This section shows the final results of above cases. First we display the data of

each case in default of cache and make some explanations of these results, then

compare the performance of cache block size. After the performance issue, the

analyses of cache miss rate of each case are shown to ensure the correctness of our

modified version. Finally we briefly conclude the effect of our optimal method in

micro-architecture simulator’s cache.

Figure 23 is the experiment results of array addition, the L1 data cache uses the
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default configuration (with 256 sets, 32 bytes for each block and the associative of set

is 1) and its size is 8KB. As the first case, we introduce the parts of this diagram in

detail. In the bottom of this diagram, the horizontal axis shows the number of loop

iterations and in the left of this figure, the vertical axis shows the ratio of original

Simplescalar’s data cache access time to modified versions. There are 4 columns in

fixed iterations of loop. The left hand side is the collections of read/write data in the

optimal scope and the right hand side is the-collections.of read/write data during the

whole program. This study will use the same format to perform the results in the

following figures.

Figure 22 Case : Array Addition (with default configuration of L1 data cache)

As shown in Figure23, the speedups are not consistent when the loop iteration’s

number is small, since the iterations are too small that the results may be influenced
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by experimental error. The largest test data displays the modified version’s speedup is

about 3.4x to 3.5x and the experimental results between the optimal loop and the

whole program are more and more closely when the iteration’s number goes from

small to big; in other words, the charts which consist of 4 columns are getting more

and more smoothly from left to right.

Speedup
4

3.5
3
2.5
2
1.5
1
0.5
0

3.38
3.33 3.183'34 3

100

Memory Copy

M Read(In optimal loop) M Write(In optimal loop) [ Read(Program) M Write(Program)

o 3 53 3-54
3.353 343.43 3.393.39 3.453: 3.4
21~ ) 3.19

1000 10000 100000

The number of loop iterations

Figure 23 Case : Memory Copy (with.default configuration of L1 data cache)

Figure 24 shows the case 2 results. The purple charts show the improved

performance of write data cache access during the whole program time. When the

iterations go from small to big, the dark red charts which mean the modified write

data cache performance of the optimal loop scope look like as the purple chart. And

the same phenomenon is shown in blue and green chart. It means that the results are

getting more stable of large test case. In conclusion, the speedup is about 3.3x to 3.5x
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in the largest case.

Comparison
M Read(In optimal loop) M Write(In optimal loop) [ Read(Program) M Write(Program)
4.13 4.06
4 3.75 3.72
Speedup

35

3
2.5

2
L5 0.911-06- 1.031.071.02 0.961070.08

1
il i

0

100 1000 10000 100000
The number of loop iterations

Figure 24 Case : Comparison (with default configuration of L1 data cache)

In Figure 25; the blue charts are more evident than the others. The reason is that
the modified routine only change the load mechanism in the optimal loop and it
account for a small rate of the total load instructions: Therefore, the dark red charts
are all close to 1 because the write.data cache. mechanism:is the same; and the green
charts grow slightly when the number of iterations changed from 100 to 100000.
There is only one kind of charts hasn’t be mentioned above — the purple charts. It
shows the total time of write data cache access is reduced, but it looks like
unreasonable since the write data cache efficiency in the optimal loop is almost the
same as before. There is a complete explanation in the following sentences.

In the previous chapter, there is another optimized way to accelerate the load or
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store instructions, and this method is out of the optimal loop. After traced the

assembly code, we found that there are some consecutive store instructions in certain
loop which didn’t vary even though array size and loop iterations changed. That’s the
reason that purple charts show some speedup when test data is small but make rarely

improvement in the large test.

LinearSearch
M Read(In optimal loop) M Write(In optimal loop) [ Read(Program) M Write(Program)
Speedup 5 g9 3.98 3.81

35

3
2.5

2
1.5 1. 15 12 1.131.11

1
il i

0

1000 10000 100000
The number of loop iterations

Figure 25 Case : Linear Search (with.default configuration of L1 data cache)

In Figure 26, the read data cache time is improved in the optimal loop, the
speedup is about 3.5x to 3.8x. Due to the ratio of load instructions in the loop to other
loads, the performance of total read time decreased when the iterations had increased.
Since the write data count is different between original Simplescalar and modified one,
it makes no sense to put the ratio of write data cache time in the optimal loop in this

figure. The purple charts show the same trend as previous case, the write data access
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is improved out of the loop. Even though the optimization made 2.56 speedup in small

test data, the speedup is rare when the program iterations grew.

BubbleSort
M Read(In optimal loop) M Write(In optimal loop) [ Read(Program) M Write(Program)
Speedup 4.09 3.93
4 3.69 : 3.7 389 381
35
3 2.53
2.5
2 1.76
1.5 ’
0.96
1
0.5 0 0
0
10 100 1000 2000

The number of loop iterations

Figure 26 Case : Bubble Sort (with default configuration of L1 data cache)

Figure 27 shows the last case in our study. Compare the read data cache
efficiency in the loop and the total runtime, there is a strong relevance between them.
When the test data get bigger, the green chart is.closerto the blue chart. It means the
load instructions are almost in the optimal loop when the number of loop iterations
raised, so the speedup in the loop is almost identical to the total execute time’s
speedup. The purple charts show the same results with last two cases, it is no more

explanation here.
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Cache miss rate

Loop Size : 100000

W Original 16 Bytes M Original 32 Bytes M Original 64 Bytes

0.2499 0.2498
Miss rate

0625  0.039 0.0565

.0292 0.0002
0.0166 0.0001
0.0001

ArrayAddition MemCopy Comparison LinearSearch BubbleSort

Figure 27 Data cache miss rate (Original)

Figure 30 and:31 show the data cache miss rate with original and modified
version. The miss rates are almast the same in these cases with different cache
configuration. Still; there is a little difference between these two versions when the
cache block size is 16 bytes. The difference is very small'and do not influence the

correctness of our study results.
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Loop Size : 100000

B Modified 16 Bytes B Modified 32 Bytes E Modified 64 Bytes

0.2493 0.2489
Miss rate

0.0563

.0292 0.0002
0.0166 0.0001
0.0001

.0625 0.0389

ArrayAddition MemCopy Comparison LinearSearch BubbleSort
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V. Conclusion and Future Work

In this thesis, we presented a simple method to improve the micro-architecture’s
cache simulation performance, and used some general test code as case studies to
verify our hypothesis. After discussing the possible problems of implementing such a
method in modified Simplescalar, many experiments have been done. The results are
presented and discussed in the previous chapter. As expected, the results show the
average speedups are about 3.4x to 3.9x when memory:read operations dominate the
execution with default data cache configuration.

This study makes a good case for using DBT to speed up micro-architecture
simulations; we could also extend the same idea to other micro-architecture features
such as pipeline or-load/store buffer simulations. For example, the DBT could try use
similar optimizations in upper levels, such as merging the behavior of same stage in

the pipelines.

Example: ADD $3,51,52
MUL $5,53,54

ADD $8,56,57

Clock Cycle

1 2 3 4
w52 G EEEIEED
ol ol

GCEED
ADD $8,56,57 )

Overlapped this instruction

Figure 290 Example: Pipeline stages
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In other ways, the current modified Simplescalar leaves much room for
improvement. Now the merge mechanism is pre-set before running the simulation,
and the speedup factor is fixed to 4. In simulations of future processors, the actual

speed up could be greater when the cache line size is more than 4 words, as is rather

common for L2 or L3 caches.
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