

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

支 援 大 型 軟 體 測 試 之 符 號 環 境 系 統

Symbolic Environment Support for Testing Large Software

Applications

研 究 生：黃韋翔

指導教授：黃世昆 教授

中 華 民 國 101 年 7 月

支援大型軟體測試之符號環境系統

Symbolic Environment Support for Testing Large Software

Applications

 研 究 生：黃韋翔 Student：Wei-Shiang Huang

指導教授：黃世昆 Advisor：Shih-Kung Huang

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 7 月

i

支 援 大 型 軟 體 測 試 之 符 號 環 境 系 統

學生：黃韋翔 指導教授：黃世昆 老師

國 立 交 通 大 學 資 訊 科 學 與 工 程 學 研 究 所 碩 士 班

摘要

在軟體開發的過程中，因為程式開發者的疏忽，往往會造成程式中含有潛在

的軟體漏洞。透過自動化的軟體動態檢測技術，我們可以從中找出存在的軟體問

題。如要大規模、快速、且方便的對軟體檢測，就要建立一個軟體資料庫，將有

問題的軟體建立為樣本，以便於後續的軟體研究、分析、與測試之用。

在此篇論文中，提出透過建立虛擬機器映像檔的方式，建立軟體失控樣本資

料庫(Crash Database)。預先在映像檔中安裝相關的作業系統以及軟體，當使用

者需要時，則可快速建立一個馬上可供使用的環境，改善使用者在進行軟體測試

時，還需花時間手動安裝的缺點。

為了方便軟體樣本資料庫的管理，我們也提出一個網頁管理介面，透過此介

面，管理者可以在此介面中新增、查詢、刪除後端虛擬機器映像檔的資料。此外，

也提供系統狀態監控機制，能在儲存資料庫的設備出現問題時，即時透過電子郵

件或簡訊告知管理者。

對於使用者來說，瀏覽這個介面即可了解目前資料庫中可供測試的軟體版本。

為了方便使用者在使用時能夠快速建立測試環境，網頁中也提供即時建立虛擬機

器映像檔之功能。當使用者點選該功能後，後端程式即會自動建立對應的軟體映

像檔；使用者透過下載自動化的腳本程式，來自動掛載透過網路分享的映像檔，

進行實驗。結合遠端管理機制，使用者藉由我們所開發的遠端管理軟體，能透過

在外部下指令，操作虛擬機器中的環境，達到更多樣性的運作方式。

ii

Symbolic Environment Support for Testing Large Software Applications

 Student：Wei-Shiang Huang Advisors：Dr. Shih-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

With the development of software, the quality issues have become a major

concern. The truth is that programmers still do not take this problem into

consideration, so that software is still with a lot of vulnerabilities or bugs. In this

thesis, we try to build a repository with potentially vulnerable software called crash

database. The purpose of this database is to collect software with vulnerabilities or

bugs, and these collections can be used for further analyze. This database provides an

integrated environment that contains an entire operating system, software and remote

control framework, so that users do not have to build the environment manually and

they can easily perform experiments.

In addition, we develop a web management and monitoring interface; this

interface allows users to choose the proper software images and clone a new testing

environment quickly. For administrators, they can use this system to add, remove, and

control software images; meanwhile, it has the monitoring mechanism that we can

know the status of every crash database server. The system therefore improves the

traditional software analysis environment.

iii

誌謝

碩士論文的完成，代表人生中一個階段的結束，正式揮別了十多年來的學生

生涯，邁向了另一個新的挑戰。感謝多年來在背後不斷給予支持與陪伴的家人，

而爸爸和媽媽這些年來含辛茹苦的付出，更讓我能無後顧之憂地完成我的學業。

特別謝謝我的指導教授黃世昆老師，在他的殷勤的指導與提點之下，使我能

夠順利完成我的論文，老師平常對於學生的關心和照顧，也令我們點滴在心頭。

另外，謝謝田筱榮老師、孔崇旭老師和宋定懿老師不辭辛勞地前來協助口試，對

於論文中的不足給予了指導和建議，讓我感到收益良多，使論文可以更臻於完善

而嚴謹。而陳登吉老師在我初到交大這個新環境時，給了我許多幫助以及人生上

的建議，謝謝您。

 在這兩年多的研究所生活中，實驗室的同儕俊維、翰霖、基傑、偉明和奕任

總是不吝於給予協助，在遇到瓶頸或挫折時，適時的給了我許多意見。而學長們

博彥、孟緯、世欣、銘祥，也在我初接觸這個領域時，給了許多指導與討論。還

有劉歡、正宇、鍾翔、俊彥與博謙，我會想念與大家一同度過的這段美好時光，

希望將來還有機會一同出遊與聚餐，謝謝你們。

接著還要感謝大學時期給予我啟蒙的潘仁義老師以及中正大學計算機中心

的張永榴先生和 CNA 校園網路策進會的夥伴們，在那段日子裡，學習到了許多，

奠定下了我對於電腦網路以及資訊安全方面的基礎，謝謝你們。

也特別謝謝幾位知心的好友吳安妮、洪皓軒以及陳蔚青，在我感到灰心和難

過時，給了我許多的安慰與鼓勵。

最後，得之於人者太多，出之於己者太少，謝謝一路上走來許多人的幫忙與

提攜，謹以此篇論文，獻給那些曾經幫助過我的人。

iv

Contents

摘要 .. i

ABSTRACT .. ii

誌謝 ... iii

Contents ... iv

List of Figures .. vi

List of Tables ... viii

1. Introduction .. 1

1.1. Background .. 1

1.1.1. Common Vulnerabilities ... 1

1.1.2. Program Testing Mechanism .. 3

1.1.3. Other Tools ... 7

1.2. Motivation ... 10

1.3. Objective ... 11

2. Related Work ... 12

3. Methods ... 14

3.1. Guest OS Remote Control ... 15

3.1.1. Remote Control .. 15

3.1.2. Symbolic Methods .. 17

3.2. Crash Database .. 19

3.2.1. Design of Crash Database ... 19

3.2.2. Image Management & Monitor .. 23

v

3.2.3. Automated Experiment ... 25

4. Implementation .. 26

4.1. Guest OS Remote Control ... 26

4.1.1. Procedure of Customized Function .. 26

4.1.2. Customized Op-Code ... 27

4.1.3. S
2
E Plugin ... 28

4.1.4. Remote Control framework .. 29

4.2. Crash Database .. 31

4.2.1. Fast Deployment & Low Usage of Disk Space 31

4.2.2. Support Large Scale Testing & Load Balance 33

4.3. Web Based Management & Monitor System 35

4.3.1. Image Management ... 35

4.3.2. Service Monitor .. 37

4.3.3. Automated Experiment ... 38

5. Result and Evaluation.. 40

5.1. Images in Crash Database ... 40

5.2. Boot Time .. 42

5.3. Web Management .. 43

6. Conclusion .. 45

7. Reference .. 46

vi

List of Figures

Figure 1: Example code and diagram of stack overflow 2

Figure 2: The symbolic execution tree ... 4

Figure 3: Example code and concolic execution tree 6

Figure 4: Virtualization of QEMU ... 7

Figure 5: Notification function of Nagios... 8

Figure 6: Process of Full CRAX system ... 10

Figure 7: The conceptual model of our method 14

Figure 8: The execution process of customized Op-code in Program ... 16

Figure 9: Flow chart of remote control .. 16

Figure 10: External Symbolic method ... 17

Figure 11: The flow chart of remote control with symbolic method 18

Figure 12: The concept of Crash Database.. 19

Figure 13: Copy-On-Write transactions .. 20

Figure 14: The image cloud diagram ... 21

Figure 15: Model of image management system 23

Figure 16: Administrator operates diagram ... 24

Figure 17: Process of image creation and scripts generation 25

Figure 18: Core components of customized function 26

Figure 19: Custom instruction format ... 27

Figure 20: Sample code of customized Op-Code 27

Figure 21: The execution process of S
2
E Plugin 28

file:///C:/Users/Wayne/cloudbox/論文/論文.docx%23_Toc331773474
file:///C:/Users/Wayne/cloudbox/論文/論文.docx%23_Toc331773480

vii

Figure 22: Remote control framework .. 29

Figure 23: The concept of Pool and ZFS File system 31

Figure 24: ZFS Fast Clone Process .. 32

Figure 25: Software snapshot in one QEMU image 33

Figure 26: The structure of server load balance 34

Figure 27: Image management web site... 35

Figure 28: Whole procedure of automated experiment 38

Figure 29: Pseudo code of automated experiment script 39

Figure 30: Image list .. 43

Figure 31: Page of temporary image .. 44

viii

List of Tables

Table 1: Comparison of related platform .. 13

Table 2: List of software that has installed in Crash Database 41

Table 3: Boot time of Linux image ... 42

Table 4: Boot time of Windows image ... 42

1

1. Introduction

During the process of development, programmers may ignore the risk of

software defect. The software may have many known bugs in the previous version

or unknown bugs in the latest version.

With a view to analyzing and examining software bugs, it needs a friendly

testing environment with variety of software collections.

Although there are several web databases which provide a lot of software

exploits or vulnerabilities, they do not hold the original software version. This

makes it hard to acquire old software for inspection or analysis. Hence, for the

establishment of a platform for software testing, the acquisition of software and

the development of an ease of use system are notable works.

Therefore, in this work, we will create a software database which contains

separate versions of software along with vulnerabilities or exploits. On the other

hand, we will construct a remote symbolic execution testing environment which

for convenient uses.

1.1. Background

1.1.1. Common Vulnerabilities

 Stack-based Overflow

Stack is an area of a computer that contains a limited size of memory, and it is

typically used to keep local variables, function parameters, and return addresses.

2

However, because of the fixed amount of stack, the input buffer may

overwrite a local variable or the return address in the stack frame if a vulnerable

program does not manipulate the inputs properly.

This act may cause the unexpected behavior of a program, or even crash the

program.

Figure 1: Example code and diagram of stack overflow

Figure 1 is an example of stack-based overflow; it takes an argument from

standard input and copies it into a local variable st which is located in memory

3

stack. If the length of the input string is smaller than 12 characters, this code runs

without problem. Nevertheless, if the length of the input string is over 11

characters, those remaining strings will overwrite a memory buffer that does not

belong to the stack. This will result in the corruption of the stack frame.

 Heap-based Overflow

A heap overflow is a buffer overflow that occurs in the heap portion of memory.

This usually means the buffer was allocated by dynamic memory allocation like

POSIX malloc() API.

Attackers can overwrite the internal memory structures such as linked-list

pointers. It may cause the program to crash, or bring the program into an infinite

loop. Also, the vulnerability usually can be used to execute malicious code, which is

not programmer’s expectation.

 Uncontrolled Format String

Uncontrolled format string is a kind of software vulnerability due to the

programmer’s negligence. They do not specify the format argument in the function

such as POSIX printf(). So the input becomes user-controlled and allows a malicious

user to inject arbitrary format string into the code. This may cause the program to

crash or execute arbitrary code.

1.1.2. Program Testing Mechanism

 Symbolic Execution

Symbolic execution [5][6] is a software testing technique, which is used to

analyze a program symbolically. In contrast to traditional analysis method, concrete

4

execution, which uses particular samples as inputs and will be restricted to explore

specific paths by initial values, symbolic execution will try to explore all the paths of

the program by a set of symbols.

In symbolic execution, program variables are replaced with symbolic values

and these symbols may designate any values at the beginning. As the program runs,

symbolic values are brought into the program; thus they will be calculated, assigned

and affected by control flow like a normal program execution. After it explores the

entire possible path, it produces symbolic formulas as output.

These symbolic formulas are fed into a constraint solver, and the solver will

attempt to create a complex set that can pass through the same path.

int x, y, z;

…

if (x > y)

 z = x;

else

 z = y;

[Path Condition : true]
x = X, y = Y

[Path Condition : true]
X > Y ?

[Path Condition : X > Y]
z = X

[Path Condition : X <= Y]
z = Y

True

False

Figure 2: The symbolic execution tree

For instance, in Figure 2 the path condition is initially true. If the program runs

into if(x > y) branch, the path condition will be X < Y. If the program runs into else

branch, the path condition will be X > Y.

5

 Concolic Testing

Symbolic execution has its advantage in code coverage testing. However, for

large software, it is time consuming, and often impossible to traverse all the paths

because of the path explosion problem.

Concolic testing [8] is a hybrid testing technique of random testing and

symbolic execution; it avoids the drawbacks of random testing and symbolic

execution. The main idea of concolic testing is to use the concrete values, generated

from random testing and symbolic execution. The symbolic execution will take

advantage of concrete input to obtain better code coverage. First, concolic testing

uses concrete values as input to execute a program on a certain path, and collects

symbolic constraints for symbolic execution when encountering conditional branch.

When a path terminates, the constraint solver computes these constraints of each

branch point and generates new test case that is used to explore the feasible paths

repeatedly.

Figure 3 is a classic example code which is used to describe the execution of

concolic testing. The first is to try an arbitrary value for x and y, for example, x = y =

2. In the concolic execution, z will be set to 4y and not satisfy the branch condition

since z ≠ 5000. The symbolic execution keeps the same path, but view x and y as

symbolic variables. Then z is set to 4y and gets an inequality x ≠ 5000. This

inequality is called a path condition and all the executions which follow the same

path must satisfy this path condition.

6

void func(int x, int y)
{

int z = 4 * y;

if(x == 5000)
{

if(x < z)
{

exit -1;
}

}

}

if

x = 0
y = 0

if

x = 5000
y = 0

x = 5000
y = 1251

x ≠ 5000 x = 5000

x ≥ z x < z

Figure 3: Example code and concolic execution tree

Before starting a new execution path, we would use the last path condition

encountered, x ≠ 5000, and negate it, with x = 5000. Then a constraint solver will

try to find the values for input variables x and y for the next run. For example, a

valid testing set might be x = 5000 and y = 0.

This input allows the program to enter the inner branch if(x < z), but this

would not be satisfiable since 5000 is large than z. The path conditions are x =

5000 and x ≥ z. We negate it and get x < z. The constraint solver is invoked to find

values satisfying x = 5000, x < z, and z = 4y. For instance, a solution is x = 50000

and y = 2501. This input will reach the final path.

 Fuzz Testing

Fuzz testing [11][12] is a straightforward technique that can be used to

evaluate code quality. In fuzz testing, it uses random, unexpected or invalid data

to attack a computer program, and then wait to see if it results in crashes.

7

The process of fuzz testing is to prepare a valid file format for testing

program, then mutating some part of the file with a random data. This fuzzed file

will be fed into the program and check if it will cause failures.

It is an efficient way to test a program, and we use this technique to generate

crashes which are viewed as concrete values on concolic testing.

1.1.3. Other Tools

 QEMU

QEMU [1] means “Quick EMUlator”. It is an open source and free processes

emulator which is based on dynamic translation technique. Because it can emulate

various CPUs (x86, PowerPC, ARM and SPARC) on different platforms; it

supports a vast number of devices, allowing it to perform different unmodified

guest operating systems such as Windows, FreeBSD, and Linux. Another usage of

QEMU is for debugging purpose because it provides stop, inspect, save and restore

virtual machine functions, thus making it convenient for debugging.

Guest Mode
Kernel Mode

VM

QEMU

Operating System

Host OS User Mode

Host OS Kernel Mode

Hardware

Storage &
Netowowk I/O

Memory & CPU
I/O

Figure 4: Virtualization of QEMU

8

 Nagios

Nagios [14] is a computer system monitoring tool which watches equipment,

network, and service status of the system in time. If something goes wrong, Nagios

will alert the manager immediately.

request request

request

responseresponse

re
po

ns
eimage server

image server

web server

no
tif

ie
r

Figure 5: Notification function of Nagios

Furthermore, Nagios provides the functions that help diagnose and repair

problems before they affect users or damage the system.

 S
2
E

S
2
E [2] is a software analysis platform, and it allows running the whole

operating system in a testing environment. It uses dynamic binary translation,

selective symbolic execution and relaxed execution consistency models to find the

execution paths. So we can analyze not only the user-mode but also the kernel-mode

binary.

9

 ZFS

ZFS [3][4] stands “Zettabyte File System”, and it is developed by Sun

Microsystems. It supports a variety of features such as data integrity, high storage

capacities, integration of file system and volume management, snapshots,

copy-on-write clones and soft-RAID technique.

These features make it easier to manage a storage system easier; the

copy-on-write clone makes it fast to clone new image and destroy it after using, and

snapshot provides the flexibility of data recovery.

 Sikuli

Sikuli [15] is software that can simulate the behavior of the mouse and

keyword on graphical user interfaces (GUI) environment by images or screenshots.

There are some key components including Sikuli Script, Sikuli IDE and a

visual scripting API for Jython. Sikuli can control anything on the screen

automatically without calling system’s API.

10

1.2. Motivation

The original idea is “how to analyze multiple vulnerabilities in the same

time”. When we want to confirm or evaluate software bugs, we must find the

correct version of the software first. It may be easy to find the current one. If

someone wants to get an earlier or the oldest version, it will be a time-consuming

job. Besides, much software depends on the OS (Operation System) version,

assuming that you want to check them; you will take a lot of effort on environment

setup.

We also need to take into consideration of the usage of storage and the

testing environment disposing. Accordingly, a mechanism that reduces space

usage and shortens the building process is another critical issue.

In addition, we need to make a user-friendly interface for managing the

status of every virtual machine and provide them with a convenient way to

examine their software.

Figure 6: Process of Full CRAX system

11

1.3. Objective

It is known that there are existing bugs in software, so that we strive to

achieve the goal of building a software testing framework. Fortunately, we have

CRAX, a software testing platform, but there are still some insufficient functions.

Hence, we will develop a crash database and guest OS remote management

which will integrate into the CRAX framework.

 Crash Database

This target is to create an VM image database which contains a large

number of software and relevant OS; this database will become the source of

testing targets of CRAX, fuzzer and wargames.

However, for administrative management, it will have a friendly Virtual

Machine management and monitor interface.

 Guest OS Remote Management

We will analyze multiple systems simultaneously, so it is necessary to

have an interactive interface that can be used to control the analysis

environment and implement symbolic environment such as sym-file,

sym-socket, sym-stdin, sym-age and sin-env from the host to guest OS.

12

2. Related Work

In this thesis, it focuses on the establishment of Crash Database and remote

control framework system. In the following sections, we will introduce some related

research about virtual machine management and database concerning vulnerability

and software bugs.

 Exploit Database (http://www.exploit-db.com/) is an online website that

supports various archives of exploits and vulnerabilities of the software.

It mainly provides exploit code, files for vulnerable program.

Nevertheless its disadvantage is that it does not provide vulnerable

software. So it may be difficult to find the old version of software if

someone wants to test it.

 Common Vulnerabilities and Exposures (CVE) (htp://cve.mitre.org/) is

more like a dictionary than a database, and its source comes from a

variety of security companies or organizations. Furthermore, it uses a

unified format and identifier for every security problem. Everyone can

follow the standard to release security notes. CVE provides a reference

for publicly known information, security vulnerabilities and exposures.

 The Open Source Vulnerability Database (OSVDB)

(http://www.osvdb.org/) is an open source database supported by and for

the community. According to the characteristic of vulnerabilities, they

classify them into different categories.

 National Vulnerability Database (NVD) (http://nvd.nist.gov/) is the U.S.

government repository of standards based vulnerability management data

represented using the Security Content Automation Protocol (SCAP).

13

This data enables automation of vulnerability management, security

measurement, and compliance. NVD includes databases of security

checklists, security related software flaws, misconfigurations, product

names, and impact metrics

 Metasploit (http://www.metasploit.com/) is a security project which aim

at security vulnerabilities and penetration testing. It collects a lot of

software bugs, exploits and vulnerabilities. Furthermore, it also provides

automatic testing program.

 Testbed@TWISC (http://testbed.ncku.edu.tw) is a network security

testing platform, and it integrates Emulab system to provide an

independent, controllable, and close environment for experiment.

Name Software

database

Pre-install

software

Provide

Exploit

A testing

environment

Management

system

Exploit Database ✔ ✔

CVE ✔

OSVDB ✔

NVD ✔

Metasploit ✔ ✔

Testbed@TWISC ✔ ✔

Crash Database ✔ ✔ ✔ ✔ ✔

Table 1: Comparison of related platform

14

3. Methods

Figure 7 is the model of our method; it mainly divides into two parts, Guest OS

Remote Control and the Design of Crash Database.

Figure 7: The conceptual model of our method

From the model, we know that Guest OSs run on a machine emulator called

QEMU, and we will implement an interface as a communication bridge between

Guest OS and Host OS.

On the left side of this model, we can see there is a database named Crash

Database. As the name implies, it contains much software with its crash file in the

database. In addition, a database management system is indispensable, so we will

develop a web management system and a monitoring mechanism to log system’s

15

status.In the following sections, we will describe the ideas of every component in

details.

3.1. Guest OS Remote Control

3.1.1. Remote Control

In QEMU environment, it does not provide a native API for remote control, so it

is not possible to control guest OS directly from the host. If you want to command the

Guest, you need to open a console and operate there. In other words, it may cost a lot

of time on manual methods and is not convenient for experiments. In order to improve

this drawback, we propose an easy function which permits you to command from the

outside of the guest OS.

In this research, we try to combine these functions into a framework. At first, we

think that we can modify QEMU’s code to implement the targets, but it will take a lot

of efforts. Besides, this method makes it hard to port into other platforms. As a result,

an alternative way is implemented in this work.

We know that S
2
E allows you to use customized Op-Code, which is a specific

machine code defined by S2E in its own version of QEMU. In other words, it is

possible to write inline assembly in our program. Then S
2
E’s QEMU will interpret

this code automatically. For this reason, we can develop a program, which is used to

transfer files or some information.

16

Figure 8: The execution process of customized Op-code in Program

Figure 8 shows the procedure of executing customized Op-Code. When the

program runs the code that contains customized Op-Code, it will check whether the

environment is running in S
2
E QEMU mode first. If not, then the program will pause

until it is in S
2
E QEMU mode. As S

2
E QEMU receives the Op-Code, the code will be

translated to the corresponding instruction and will be executed.

Figure 9: Flow chart of remote control

17

Figure 9 is the flowchart of remote control. The program has two parts. Host OS

will create a listening socket on a specific port, and Guest OS will use another socket

to connect to Host OS. In the beginning, the Customized Op-Code function is trying

to get Host OS’s IP info, and the IP address will be used to connect to Host OS. If the

connection is successful, then the Host OS side would bounce a shell for remote

control.

3.1.2. Symbolic Methods

We want to send symbolic data from the external environment instead of

inserting symbolic function into source code. From Figure 10, we know the concrete

input will be transformed into symbolic data by our symbolic method, and this

symbolic data will be delivered to the program being tested. In order to achieve this,

we integrate symbolic methods with our remote control program. Thus, users can use

from the remote.

Figure 10: External Symbolic method

18

The following will explain the process of remote control with symbolic methods.

When receiving command from Host OS, parser function will examine the command

first. If it belongs to symbolic-commands, the program will create a new process to

execute symbolic-functions which translate input into symbolic data.

Figure 11: The flow chart of remote control with symbolic method

19

3.2. Crash Database

3.2.1. Design of Crash Database

Figure 12: The concept of Crash Database

Another issue related to this research is how to analyze all possible versions of

the software. So, we propose a database prototype which can be used to store and

manage testing samples. It is named Crash Database, which has pre-installed software

package. Users can find their target in this database and create a new environment for

testing use in time.

Because this database contains a significant of software images, there are many

conditions that need to be taken into account. We introduce some necessities in the

following:

20

 Fast image clone

In this model, we will pre-build many software testing environments in

QEMU image. When users need an environment for a test, wargame or

fuzzed test, we will create a new one in VM. Traditionally, if we want to

create new environments, we must use the copy command to make copies

of the original image. This duplicating process is a time-consuming job; it

may take minutes or even hours. So how to solve this bottleneck is the chief

issue we need to take into account. We use Copy-on-write (COW)

technique in this system. The primary advantage of this technique is that if

no caller ever makes any modifications, no private copy needs to be created.

So it significantly reduces the wasting time, which makes the copy process

can be finished in seconds.

 Support multiple computing server & Load balance

Because there are a large number of computing nodes, which may use

different images at the same time, the model is supposed to allow

concurrent access.

Figure 13: Copy-On-Write transactions

21

Figure 14: The image cloud diagram

We choose Network File System (NFS) [9] as the backbone. NFS is a

distributed file system protocol, and it allows users on distinct computers to

access remote file over the network. By using this technique, the system has

the capacity to support multiple computing servers. As users need a testing

environment, we will clone a new image and set a shared flag on that

directory. Thus, this directory can be accessed or wrote by the remote

computing node.

This mechanism has a disadvantage; if too many computing nodes

access the same image server, it results in a bottleneck on network

bandwidth.

22

The solution of this difficulty is by using distributed image servers.

Those images are deployed in many servers in advance, and the round-robin

technique is used for load balance. Round-robin is like its name. It

maintains a list of available resources, which can be chosen for a task.

While a computing node wants to access a remote image, it will be assigned

an image server by round-robin, and mounting the image directory by NFS.

Then, the image is ready to use.

 Low disk space usage

The design of crash database is used to store the entire operating system

and different software images, so each entry may occupy a lot of space. The

usage of disk space is a serious problem and must be taken into consideration.

If every software and operating system is installed in independent QEMU

image, it will have many QEMU images and use a lot of disk space. QEMU

provides a function, which is called snapshot; it can record the state of a

system at a particular point in time. The best of all, snapshot refers to an actual

copy of the original state, so it costs a little size of disk space. It brings up us

an idea to store compatible software in the same operating system image. In

this method, a variety of software can be installed in one image and reduce

waste of disk space.

23

3.2.2. Image Management & Monitor

Figure 15: Model of image management system

Various software images are stored in crash database; a mechanism to administer

this system is needed. A comprehensive management platform that enables us to

manage images easily and efficiently is indispensable.

This management platform is developed with web based technologies, and it

provides an intuitive GUI that an administrator can know the information of every

image clearly. Furthermore, the platform permits users to create and destroy a new

testing environment from the web page. Just click a button, and all the manual works

are done by the automatic script.

24

Besides, it also has a monitoring agent; this makes administrator easily to know

the status of every server and service. When an unexpected affair happened, it notified

administrators by E-mail or SMS.

Figure 16: Administrator operates diagram

Figure 15 is the layered model of this management platform; each layer serves its

upper layer and is served by its lower layer.

First layer is Presentation Layer, and it is a web GUI page. Users can connect to

this i2nterface by various web browsers, and manage QEMU images.

The second layer is Façade Layer, and it is the layer that combines all the

function objects into a single interface. It simplifies the complicated process of calling

independent object.

The Control Layer is the implementation of every function object, and it is

composed of three components. Mon stands for Service Monitor system. File

represents the function of control image. And ORM is a MySQL database, which is

used to record the information of every image and some management data.

25

3.2.3. Automated Experiment

In order to reduce manual work, an automated experiment function is necessary.

The goal of automated experiment is that it can start QEMU image and do symbolic

experiment automatically. We can say that automated experiment is an enhancement

of remote control program.

The basic idea is using shell scripts. First, a code template is prepared in advance;

the remote control program and some shell scripts are packed into this template. And

script’s arguments and execution command are getting from a backend database.

Figure 17: Process of image creation and scripts generation

When users create a new testing environment, a script file will be generated

dynamically at the same time. The script file contains instructions to mount image

properly, and the execution command, which will be sent to the guest OS by remote

control program. So user just needs to download this script and execute on Host OS;

other works are automatically done by the script.

26

4. Implementation

In the previous chapter, we introduce the related methods and ideas which are

used in this thesis. In this chapter, we mainly focuses on the detail of implementation.

The architecture of this framework can be divided into different parts, so we will

expound them dependently.

First part is Guest OS Remote Control; it relates to the communication bridge

between Host OS and Guest OS in QEMU.

The second part relates to techniques used in Crash Database that enable us to

create a database satisfying the demand desired.

The third focuses on the web management, monitor system of QEMU image and

the scripts, which are used to execute experiment automatically.

4.1. Guest OS Remote Control

4.1.1. Procedure of Customized Function

Figure 18: Core components of customized function

27

Figure 18 is the execution process of GET Program with customize Op-Code. It

is composed of three components. GET program use the Op-code to invoke specific

functions, which define in a header file. And implementations of these specific

functions are defined in a plugin of QEMU.

When GET program executes, the corresponding actions will take place on the

Host OS. The details of every component will be explained in the following sections.

4.1.2. Customized Op-Code

In S
2
E’s plugin, it provides customized Op-Code which extends the x86

instruction set. However, we can implement any customized Op-Code to control the

execution behavior from the guest OS. Figure 19 is the format of Customized

OP-code.

Figure 20: Sample code of customized Op-Code

Figure 19: Custom instruction format

28

Figure 20 is the function that we define in the header file. This function

represents the action of a file open, and a file name sent from the guest OS to host OS

as a function parameter.

Line 5 to 7 defines a unique Op-Code for this instruction; the 3
rd

 and 4
th

 byte

0x00 0xEE is a unique identifier of this plugin. Furthermore, the 5
th

 byte 0x00 is the

operand which is used to identify the open action in this plugin.

4.1.3. S
2
E Plugin

Figure 21: The execution process of S
2
E Plugin

This HostFiles plugin [2] declares the actual actions of customized Op-Code; we

use this plugin to accomplish the purpose desired. When the program inside guest OS

call the specific functions that are related to customized Op-Code. QEMU with the

29

plugin will be triggered and interpreted the Op-Code. If the Op-Code is defined, it

reads some CPU registers to get the information of the file and address of guest’s file

buffer. After these actions are finished, the plugin starts to write the file directly into

buffer address. And the guest side can receive the file from the buffer.

4.1.4. Remote Control framework

The remote control framework is the combination of customized functions,

socket program and symbolic methods.

Socket is the core component of our remote control framework, and it is used to

deliver command from host OS to guest OS. Our remote control framework has two

sides; one is in the Host OS Side (called server side) and another is installed in Guest

OS (called client side).

Figure 22: Remote control framework

30

In our implementation, server side is designed like a remote command shell, and

it is listening on the Host OS that waiting the connections from clients. Moreover, it is

allowed to give any kind of system command, and these inputs will be purged first,

and then be sent to the client side.

The client side is a more complicated structure; it includes plugin function, basic

socket I/O, command parser and symbolic methods.

Figure 22 shows the running process of remote control framework; the GET data

function will fetch necessary information from the Host OS, and the client uses this

information to connect to server. While the socket connection is accomplished, users

can command the Guest OS. If the client receives a command which is a system

command, then it will be passed into a command parser and execute, or it will receive

by symbolic methods function and do symbolic execution.

31

4.2. Crash Database

4.2.1. Fast Deployment & Low Usage of Disk Space

Figure 23: The concept of Pool and ZFS File system

In order to support crash database, we build a server as image storage. FreeBSD

9 is the first choice of server environment because it supports Z file system (ZFS).

The implement of our fast deployment is based on ZFS; it has the ability for fast

deployment.

The design of crash database is used to store a large number of data, so the risk

of data damage is not acceptable; we take redundant array of independent disks (RAID)

technology in our model.

32

From figure 23, there is an image storage pool with RAID. And the pool has

three types of file system. One is called Windows image file system, which used to

store windows related software QEMU image, and another is Linux image file system,

which is used to store Unix-Like QEMU image. However, there is still a file system

called testing image file system; it is a space that we use to keep temporary QEMU

images, which are a testing environment for a wargame, fuzzed test and CRAX.

In the file system, we use the policy that a single image is an independent file

system. That means it has several file systems on the pool. The reason of putting

single image in a file system is that ZFS’s basic snapshot unit is a file system. By this

method, we can use ZFS snapshot function to keep the status of every single image.

And when the image is needed, we clone a new one to a temporary file system right

now. And those temporary file systems are destroyed after the experiment finished.

Figure 24: ZFS Fast Clone Process

Up to now, we have solved the problem of fast VM image deployment, and

another issue we need to face is how to reduce the space of the software image. It is

33

known that QEMU support the similar function called snapshot. By this technique, we

can decrease the usage of disk space. First, we set up a new OS in blank image, and

installing software one by one in the image by snapshot way. Nevertheless, there has a

problem with QEMU snapshot if it has too many snapshots in one image, the boot

time of that image will become extremely slow. So after the estimate, we found it

goes well that one image has 3 to 5 snapshots.

Figure 25: Software snapshot in one QEMU image

4.2.2. Support Large Scale Testing & Load Balance

In the future, this system may be used by a large scale of computing nodes; one

node’s hardware may not have the capacity to support the whole computing nodes. So

these concerns need to be taken into the prototype of crash database on the planning

phase.

In order to solve this problem, we use a distributed architecture. In other words,

the servers are divided into computing and image nodes.

34

The only work of image node is to maintain and provide images for other

computing nodes. And all images are shared to every computing node by Network

File System (NFS). That makes it easier to maintain the consistency of every single

image.

This architecture may face a problem, the bottleneck of every single server’s

network throughput. Our solution is that we can pre-build some image servers, and

taking advantage of ZFS. It provides a command called zfs send which is used to save

and restore ZFS data. In the implementation, we can use this command to transmit

data through the network to another server; it makes it easier for image server

deployment. In addition, if we want to add more image servers, this command can

reduce the administration efforts.

Figure 26: The structure of server load balance

While users require a testing environment, we randomly assign an image server

to create a testing image and share to them. This also can distribute the system load of

every image server and achieve the goal of load balance.

35

4.3. Web Based Management & Monitor System

4.3.1. Image Management

It is a concept of VDCM. After building up a crash database, we need to manage

these images. A powerful image management system is the front end of the crash

database.

The management system in this thesis is composed of PHP and MySQL database;

PHP is used to perform our dynamic web page, and MySQL to store the relation

between snapshot and image.

Figure 27: Image management web site

In order to reach the requirement of crash database, there are several attributes

are used to record necessary information of every entry. And in the list, an entry

represents a single software version.

36

In the following, we will explain the purpose of every attribute.

 CVE-ID

Common Vulnerabilities and Exposures (CVE) is an authoritative database

of software bugs. If the software is listed in CVE, this column will be marked

with its unique ID. So that users can find details of this vulnerability by this ID.

 Software Version

In crash database, there are various versions of a single software. Moreover,

each one may have different software bugs. So it is necessary to label this

information.

 Crash Type

In our research team, we define many types of software bugs. And each

type should use distinct symbolic methods to make symbolic. This message is

used to tell users the crash type of this software.

 Platform

Much software can run on various OS platforms. Thus, a label to indicate

the OS version and type is necessary

 Image Location & Snapshot Name

Because there are three to five software snapshots in a single image, these

two columns will record the location of each image and the snapshot name of

that software. The main purpose of this is used to execute experiments

automatically.

37

 Program Name & Testfile Name

They are used by automated experiments. They will be fed into remote

control program as a parameter, and execute corresponding symbolic execution.

For convenience, the web management site also provides a search interface,

so that users can easier find their requirement by specific keyword.

4.3.2. Service Monitor

With the growth of the scale, there are more and more image servers. If some

machines go wrong, it is hard to find the problems in time.

Thus, we promote a service monitor system that can be used to monitor image

server’s status. We use open source software called Nagios; it allows us to write

customized script to fit our needs.

In this system, we use it to check whether the website is still alive. In addition, it

also monitors the usage of memory, disk space and the load of OS. If any unusual

condition happens, it will inform administrator to deal with the problem.

38

4.3.3. Automated Experiment

An automated experiment combines web site, remote control program and some

shell script. We implement an image creation mechanism in web site. If users find a

suitable testing image, they can click a button called “create instance”.

Figure 28: Whole procedure of automated experiment

Next, we will explain what’s going on after clicking the button. First, the system

will generate a unique ID as serial number to identify every temporary image. Then it

calls a script named image create. Image create is a shell script, and is responsible to

communicate with file system; ZFS will use location information to find the correct

image and the unique ID as file system’s name to create a temporary testing

environment. After creating image successfully, a script named generate will be

executed; it will use our predefined template and the mount point of temporary image

to create a download link. Users can download the link and execute on their machine.

Then it will automatically mount the image and call up QEMU to do an experiment.

39

Figure 29: Pseudo code of automated experiment script

40

5. Result and Evaluation

5.1. Images in Crash Database

In this thesis, the target is to build a crash database that supports a testing

environment for users. So we promote a prototype of crash database, and use this

structure to keep software in our system.

Thus, we try to find a variety of software versions with vulnerabilities from the

internet, and classify them and install into QEMU image one by one.

Tables 2 shows the result of our efforts; we mainly focus on the software that can

be exploited. And according to their input source, we organize them into environment,

stdin, arg, file and socket.

Program Exploit Type Input Source Advisory ID Platform

A2ps Stack Overflow Env. EDB-ID-816 Linux

Aspell Stack Overflow Stdin CVE2004-0548 Linux

FreeRadius Stack Overflow Env. Linux

GhostScript Stack Overflow Arg. CVE-2010-2055 Linux

Glftpd Stack Overflow Arg. OSVDB-ID-16373 Linux

Gnugol Stack Overflow Env. Linux

41

Program Exploit Type Input Source Advisory ID Platform

Htpasswd Stack Overflow Arg. OSVDB-ID-10068 Linux

Iwconfig Stack Overflow Arg. CVE-2003-0947 Linux

nCompess Stack Overflow Arg. CVE-2001-1413 Linux

OrzHttpd Format String Socket OSVDB-ID-60944 Linux

PSUtils Stack Overflow Arg. EDB-ID-890 Linux

Rsync Stack Overflow Env. CVE-2004-2093 Linux

SharUtils Format String Arg. OSVDB-ID-10255 Linux

Socat Format String Arg. CVE-2004-1484 Linux

Squrrel Mail Stack Overflow Arg. CVE-2004-0524 Linux

Tipxd Format String Arg. OSVDB-ID-123346 Linux

Office 2007 Buffer Overflow File Windows

Safari 5.1 CVE-2011-0222 Windows

Office 2010 Stack Overflow File CVE-2010-3333 Windows

Adobe Reader X CVE-2011-0611 Windows

Table 2: List of software that has installed in Crash Database

Up to now, there are nearly 40 programs in our crash database. In that way, users

can test these easily.

42

5.2. Boot Time

In our model, images are shared by the network, so it is vital to compare the load

time between local disk and remote disk.

So we test the boot of both Linux and windows image, and our testing network is

100Mbps Ethernet. We found that local disk is still a little faster than images shared

by NFS.

If the capacity of a single computer and the consuming time of clone image are

taken into consideration, the increased time of this network model is still acceptable.

Location 1
st
 Time 2

nd
 Time 3

rd
 Time Average

Time

Local 1:01.20s 1:01.20s 0:58.55s 1:00.31s

NFS 1:01.06s 1:02.44s 1:02.52s 1:02.00s

Table 3: Boot time of Linux image

Location 1
st
 Time 2

nd
 Time 3

rd
 Time Average

Time

Local 0:57.30s 0:50.86s 0:51.52s 53.22s

NFS 1:00.40s 1:01.95s 1:00.85 61.08s

Table 4: Boot time of Windows image

43

5.3. Web Management

In this thesis, we use website to manage our images. So in the following, we will

show some pictures of this management page.

Figure 30: Image list

 Figure 30 is the image list; users can add new software information on this page,

and click the “Create Instance” button. Then it will generate a new environment for

testing.

44

Figure 31: Page of temporary image

 Figure 31 is the page of temporary image; when a new testing environment is

created, the VM Lists will increase an entry to present what images are created in the

system now. And these images will be cleaned periodically.

45

6. Conclusion

We promote a crash database model in this thesis and use a web interface to

implement this system. It has the advantage that does not need to install management

software additionally. If you have browsers, you can connect to the management

system.

Moreover, in order to solve the bottleneck of a single server model, a concept

called image cloud is brought up here. This architecture can share image to a lot of

computing nodes by different image servers, and the fast clone mechanism make it

faster to create a new testing environment.

For controlling the Guest OS, we also add the remote control function in this

system. Users can give command to guest OS directly from this bridge, significantly

reducing the inconvenience of manual operation.

Finally, there still is much room to improve remote control function, for example,

to support symbolic GUI and higher level of symbolic server.

46

7. Reference
[1] Bellard, F. QEMU, a fast and portable dynamic translator. 2005. USENIX.

[2] V. Chipounov, V. Georgescu, C. Zam r, and G. Candea. Selective symbolic

execution. In HotDep, 2009.

[3] Rodeh, O. and A. Teperman. zFS-a scalable distributed file system using object

disks. 2003. IEEE.

[4] Dawidek, P.J., Porting the ZFS file system to the FreeBSD operating system.

Proc. of AsiaBSDCon, 2007: p. 97-103.

[5] King, J.C., Symbolic execution and program testing. Communications of the

ACM, 1976. 19(7): p. 385-394.

[6] Anand, S., C. Păsăreanu, and W. Visser, JPF–SE: A symbolic execution

extension to java pathfinder. Tools and Algorithms for the Construction and

Analysis of Systems, 2007: p. 134-138.

[7] Ciortea, L., et al., Cloud9: A software testing service. ACM SIGOPS Operating

Systems Review, 2010. 43(4): p. 5-10.

[8] Sen, K. Concolic testing. 2007. ACM.

[9] Shepler, S., et al., Network file system (NFS) version 4 protocol. Network, 2003.

[10] Lattner, C. and V. Adve. LLVM: A compilation framework for lifelong program

analysis & transformation. 2004. IEEE.

[11] Miller, B., Fuzz testing of application reliability, 2007, Madison.

[12] Neystadt, J., „Automated Penetration Testing with White-Box Fuzzing “. MSDN

Library, 2008.

[13] Cadar, C., D. Dunbar, and D. Engler. KLEE: Unassisted and automatic

generation of high-coverage tests for complex systems programs. 2008. USENIX

Association.

[14] Galstad, E., Nagios Version 3. x Documentation. Nagios Group [viitattu 20.2.

2009]. Saatavissa: http://nagios. sourceforge. net/docs/nagios-3. pdf, 2008.

[15] Yeh, T., T.H. Chang, and R.C. Miller. Sikuli: using GUI screenshots for search

and automation. 2009. ACM.

[16] Cha, A.R.S.K., T. Avgerinos, and D. Brumley. Unleashing mayhem on binary

code. 2012.

