Ao A i B OR R BRE BB

Symbolic Environment Support for Testing Large Software

Applications

IR AR R

FERR 101 & 7 B

£

AESARWPREZ PEERE LR
Symbolic Environment Support for Testing Large Software

Applications
N Student : Wei-Shiang Huang
hERR IR R Advisor : Shih-Kung Huang
B2 o2+ 7
EANCUO S - R A S S
e
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

¢ ER [101 £ 7

A0 S Al I oR R 2P B R OB K

&

LR R Aa RS AR R e AR SN §] L
EPRA B o 5B P e ik SBEAT e i R RLEAT S P T S) g R
W ek AR V28 U RRE 2 R TR
WAL B RS 2k ko 0 8 (S %m@WP¢‘¢ﬁ~*ﬂ?7%o

f sk v e S = RS Bk e SO A i A
‘iiE(Crash Database) o 3f st foph oAb ? % AR (T E B 3 HoAY o § e *

TERFORNTREEE - BE TV IRR Y TR o FLL @ K R Rl
F@* Beq CPRERE L R B

=

nlﬂ@ﬁwﬁ%ﬁ#@m?ﬂ’ﬂw & - @%?%ﬁf”’ﬁﬁw
o FIE T LR NG ATH S A M 1R B T A
SR AR T N AR T TR DI R TS BT T R

Rt KPR SR A YT R W R T ORIk A
BORY F AR PR SR 2 RIRRE R S R BTSRRI
B e o § R FBEGH L SRR TE p o 2 i
fAE & —‘*‘ HETAA ﬁvxbm%ﬁﬂ\ﬁ'\ PR P EBE PR ERE S S TP
T aﬁé%o.f*bi"*’?ﬂ%# R H AR TR R B 5
BRI A L o F TR R Y SRE o FP{ FRENE TS

Symbolic Environment Support for Testing Large Software Applications

Student : Wei-Shiang Huang Advisors : Dr. Shih-Kun Huang

Department of Computer Science and Engineering

National Chiao Tung University

ABSTRACT

With the development of software, the quality issues have become a major
concern. The truth is that programmers still do not take this problem into
consideration, so that software is still with a lot of vulnerabilities or bugs. In this
thesis, we try to build a repository with potentially vulnerable software called crash
database. The purpose of this database is to collect software with vulnerabilities or
bugs, and these collections can be used for further analyze. This database provides an
integrated environment that contains an entire operating system, software and remote
control framework, so that users do.not have to-build the environment manually and

they can easily perform experiments.

In addition, we develop a web management and monitoring interface; this
interface allows users to choose the proper software images and clone a new testing
environment quickly. For administrators, they can use this system to add, remove, and
control software images; meanwhile, it has the monitoring mechanism that we can
know the status of every crash database server. The system therefore improves the

traditional software analysis environment.

k2

S
Flwmzehe s R4 429 - BREGgd o I 45 E kgl
AR Ee T T - BRSO R BEE & KA L LT AP E LR
A TTRBELER I I EF ORI (I EA N AL RS AP E

v oARE
\‘Eb

M

Pl el R R R A8 R Pt R B T
BRI SN dnse > XEFT FETE L DR foRAT 0 x4 NP ERF v Ep o
Vb e R AR ORI EF I PR S R0 MR o

S AT R RS ST N S F U TR R § S

AtE
pd

AR e ME T X AR N BATREF L0 AF bz 44
ULk o HHIE

Gips & 5 HRE Y AT ARk BAR GRS A P e

e

WA LRI AP GRS A F IR FEP

B R R B 4 b R BAE 0 L S R e o B
R I MR G FRER A RAE SR RGBSR AL
Forak RGBS R RA o S

EFRERE M TEIEI AEFAFCREFE I I AFERY o
g5k A L 4 o CNA &) e 5 ﬁ\wE‘_g s AIREp SR FY R FS

BT 0 AT R FIE 22 G ch A BB o

3

4P| RS Ao i A S R G LR BT F 0 A AR Bl R s i

B Waoh A G At S0 B ARG S L e

ﬁ% = PR - ’}gk‘%‘,?‘zg AR ILERY A s R

Contents

FER bbb i
ABSTRACT s s ii
5% pUUU PP RRPPRRRt iii
(O] (=] 01 1PN iv
LISt Of FIQUIESuuueeettiiiiiiciirrnnnreeeeeiisiissssnnneeeeesessssssssnnnsnesssssssssssssnsnsasasssssssssssnnnans vi
] B0 I o] [N viii
1. INErOTUCTION ...t b et eiett et e e fh b shes ettt se bbb eens 1
T T, f AN f 7 R N T 1
1.1.1. . Common VUINerabilitiescomteeeeeii it 1

1.1.2. Program Testing MechaniSm.........cc..cceeivieeeeeeeeeieieeeene 3

1.1.3. 0 Other TOOIS . i ittt e et 7

12, MotiValia.... A" N e =il . S Y . .. 10

IR T O | o] 1= o3 £ Y- USSR 11

2. RElALEA WOTK ... ettt ettt 12
3. IMBLNOOS. ...t 14
3.1, Guest OS Remote CONtrol........coevieirineininereeeeeeeree e 15
3.1.1. RemOte CONIOl ..o 15

3.1.2. Symbolic Methods..........ccoeeveiieiiieieeeeceeeee e 17

3.2, Crash Databasec.ccoevirieriiinieceeeeere e 19
3.2.1. Design of Crash Databasecccccvevvevieveerieecieceeceeee e 19

3.2.2. Image Management & MONItOr.........ccocvevievieveeceseereee e 23

iv

3.2.3. Automated EXPErimentcccccveeerieiierieneeeeeese e 25

O 100101 (=T 0 0 =T] 7 U (o] o ISR 26
4.1. Guest OS Remote CONTIOL......ccooiviririiieieieiese e 26
4.1.1. Procedure of Customized FUNCLIONccooveivvienieeieneeeee, 26

4.1.2. Customized OP-Code.......cccoeriririeieierierereee e 27

813, SPEPIUGIN oo 28

4.1.4. Remote Control frameworkccooceevevieneeienieneece e 29

4.2, Crash Database ..o i oot i 31
4.2.1. Fast Deployment & Low Usage of Disk Spacecccce.e.e. 31

4.2.2. Support Large Scale Testing & Load Balance......................... 33

4.3. Web Based Management & Monitor System.........cccceeeeveecieeeennnn, 35
4.3.1. Image ManagemeNntcooceiiiiieiiie ettt ie et 35

4.3.2. SEIVICE IMONITON ..c..eeurenressessrssnrsnsnnneeseeneestaebeastiheseeeseeneessensessensens 37

4.3.3. Automated EXperiment ... 38

5. Result and EVAlUATION. .t i iiinne e ssesssiie e casitaneesasheeseessessessessessessensensessessenes 40
5.1. Imagesin Crash Database............ccoveeieriieiere e 40

5.2, BOOT THME ..ottt sttt ettt sae 42

5.3, Web Managementc.cccuerieierierienieeiesieesiesee s e eee e seesee e enseeneas 43

6. CONCIUSION ..euiiiiiieeete et st sttt sa e 45
7. RETEIENCE .ot sttt 46

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:

Figure 7:

Example code and diagram of stack overflow......................... 2
The symbolic eXecution treecccocvevviiieiiece s, 4
Example code and concolic execution tree.........ccccccevvvevviiennnn. 6
Virtualization of QEMUccccooviiiiiiiiinniee e 7

Notification function of Nagios..........cccceeveriieiiieninineseee, 8
Process of FUull CRAX SYStEMcccocviiiiieieeeneee e 10

The conceptual model of our methodcccccoooviveivinnen, 14

Figure 8: The execution process of customized Op-code in Program...16
Figure 9: Flow chart of remote control..............cccociieninininiiiicn, 16
Figure 10: External Symbolic methodccoeiiin i, 17
Figure 11: The flow chart of remote control with symbolic method.....18
Figure 12: The concept of Crash Database.............ccc...cocooevveiieicieennnnn, 19
Figure 13: Copy-On-Write transactions.......c. i ciereneneseneeeeeeeenens 20
Figure 14: The image cloud-diagram ...c.....cc..coooveveiieiecece e, 21
Figure 15: Model of image management system............cccccevevveiverieennenn, 23
Figure 16: Administrator operates diagramccccocevererenienienienieennns 24
Figure 17: Process of image creation and scripts generation 25
Figure 18: Core components of customized functioncccceeeenenee, 26
Figure 19: Custom instruction format............ccoocevvieneniiinencceeee, 27
Figure 20: Sample code of customized Op-Codeccoervrvrviinnenn, 27
Figure 21: The execution process of S?E PIUGiN.........cccccovvevveevrvenennenn. 28

vi

file:///C:/Users/Wayne/cloudbox/論文/論文.docx%23_Toc331773474
file:///C:/Users/Wayne/cloudbox/論文/論文.docx%23_Toc331773480

Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:

Figure 31:

Remote control framework ..o 29
The concept of Pool and ZFS File systemc.cccccovvvennen, 31
ZFS Fast ClONe ProCeSScccoiiierieiiineiee s 32
Software snapshot in one QEMU imageccoecvvvervenenne. 33
The structure of server load balance............c.ccocovviiiennen, 34
Image management Web Site..........ocoeiieiencicnincceeee, 35
Whole procedure of automated experimentccc...... 38
Pseudo code of automated experiment scriptcc.cccevenee. 39
IMage ST ... i e 43
Page of temporary IMagecc.ocviiieiiienee e 44

Vii

List of Tables

Table 1: Comparison of related platform........ccccccocoeviveiiiieiiece e 13
Table 2: List of software that has installed in Crash Database.............. 41
Table 3: Boot time of LiNUX IMAgecccvvvieieeiiiie e 42
Table 4: Boot time of WINdOWS IMAgEecccoveivereriiiniiinieieeieicin 42

viii

1. Introduction

During the process of development, programmers may ignore the risk of
software defect. The software may have many known bugs in the previous version

or unknown bugs in the latest version.

With a view to analyzing and examining software bugs, it needs a friendly

testing environment with variety of software collections.

Although there are several web databases which provide a lot of software
exploits or vulnerabilities, they do not hold the original software version. This
makes it hard to. acquire old software for inspection or analysis. Hence, for the
establishment of a platform for software-testing, the acquisition of software and

the development of an ease of use system are notable works.

Therefore, in this work, we will create a software database which contains
separate versions of software along with vulnerabilities or exploits. On the other
hand, we will construct a remote symbolic execution testing environment which

for convenient uses.

1.1. Background
1.1.1. Common Vulnerabilities

® Stack-based Overflow

Stack is an area of a computer that contains a limited size of memory, and it is

typically used to keep local variables, function parameters, and return addresses.

Stack Growth

However, because of the fixed amount of stack, the input buffer may
overwrite a local variable or the return address in the stack frame if a vulnerable

program does not manipulate the inputs properly.

This act may cause the unexpected behavior of a program, or even crash the

program.

1.|/* Exgmple code of Stock-Bosed Overflow in C Longuoge %/
3.|#include <string.h>

5. wvold stcpy(char #ptr)

5. {

7. char st[12];

/* not check string lLength */

18. strepy(st, ptr);

13. int main (int argc, char **argv)

14.) {
15. stcpylargv[1]1);
16.) ¥
Unallocated Stack Space Unallocated Stack Space
Address
0x80C03508
. E g Char st[12] E g
o
§§ £ ?
Char *ptr i Char *ptr i
Saved Frame pointer Saved Frame pointer
Little Endian
0x20C03508
Parent Routine's Stack Parent Routine's Stack
1. Before data is copied. 2. "TEST" is the input string 3. "AAAAAAAAAAAAAAAAAAAA

\x08\x35\xCO\x80" is the input
argument.

Figure 1: Example code and diagram of stack overflow

Figure 1 is an example of stack-based overflow; it takes an argument from

standard input and copies it into a local variable st which is located in memory
2

stack. If the length of the input string is smaller than 12 characters, this code runs
without problem. Nevertheless, if the length of the input string is over 11
characters, those remaining strings will overwrite a memory buffer that does not

belong to the stack. This will result in the corruption of the stack frame.

® Heap-based Overflow

A heap overflow is a buffer overflow that occurs in the heap portion of memory.
This usually means the buffer was allocated by dynamic memory allocation like

POSIX malloc() API.

Attackers can overwrite the internal memory structures such as linked-list
pointers. It may cause the program to crash, or bring the program into an infinite
loop. Also, the vulnerability usually can be used to execute malicious code, which is

not programmer’s expectation.

® Uncontrolled Format String

Uncontrolled format string is a kind of software vulnerability due to the
programmer’s negligence. They do not specify the format argument in the function
such as POSIX printf(). So the input becomes user-controlled and allows a malicious
user to inject arbitrary format string into the code. This may cause the program to

crash or execute arbitrary code.

1.1.2. Program Testing Mechanism

® Symbolic Execution

Symbolic execution [5][6] is a software testing technique, which is used to

analyze a program symbolically. In contrast to traditional analysis method, concrete
3

execution, which uses particular samples as inputs and will be restricted to explore
specific paths by initial values, symbolic execution will try to explore all the paths of

the program by a set of symbols.

In symbolic execution, program variables are replaced with symbolic values
and these symbols may designate any values at the beginning. As the program runs,
symbolic values are brought into the program; thus they will be calculated, assigned
and affected by control flow like a normal program execution. After it explores the

entire possible path, it produces symbolic formulas as output.

These symbolic formulas are fed into a constraint solver, and the solver will

attempt to create a complex set that can pass through the same path.

([Path Condition : true] \\‘
\ x=X,y=Y /
intx,vy,z l

([Path Condition : true] A

X>Y? ‘
if(x>y) True/

— - ‘ [Path Condition : X>Y])
Z=X; < > K - J False
]
else
Z=Y, < > “’/ [Path Conditic:(n (X<=Y])
\ Z=

Figure 2: The symbolic execution tree

For instance, in Figure 2 the path condition is initially true. If the program runs
into if(x >y) branch, the path condition will be X <Y. If the program runs into else

branch, the path condition will be X >Y.

® Concolic Testing

Symbolic execution has its advantage in code coverage testing. However, for
large software, it is time consuming, and often impossible to traverse all the paths

because of the path explosion problem.

Concolic testing [8] is a hybrid testing technique of random testing and
symbolic execution; it avoids the drawbacks of random testing and symbolic
execution. The main idea of concolic testing is to use the concrete values, generated
from random testing and symbolic execution. The symbolic execution will take
advantage of concrete input to obtain better code coverage. First, concolic testing
uses concrete values as input to execute a program on a certain path, and collects
symbolic constraints for symbolic execution when encountering conditional branch.
When a path _terminates, the constraint solver computes these constraints of each
branch point and generates new_test case that Is used to explore the feasible paths

repeatedly.

Figure 3 is a classic example code which is used to describe the execution of
concolic testing. The first is to try an arbitrary value for x and y, for example, x =y =
2. In the concolic execution, z will be set to 4y and not satisfy the branch condition
since z # 5000. The symbolic execution keeps the same path, but view x and y as
symbolic variables. Then z is set to 4y and gets an inequality x # 5000. This
inequality is called a path condition and all the executions which follow the same

path must satisfy this path condition.

void func(int x, inty) ‘ if \‘\"
{ \ /
intz=4*y; x #5000 \//\:5000
if(x == 5000 e N Ve \
{ [x=0) [)
if(x<z) \ y=0 | \ i /’
t 5 . \\\7/// \\\;7/ /
exit -1; X2z <<z
} — P
} Ve N\
‘ x =5000 ‘ X = 5000 \\‘
} ‘x\ y:O \ y=1251//r

Figure 3: Example code and concolic execution tree

Before starting a new execution path, we would use the last path condition
encountered, x # 5000, and negate it, with X = 5000. Then a constraint solver will
try to find the values for input variables x and y for the next run. For example, a

valid testing set might be x = 5000 and y = 0.

This input allows the program to enter the inner branch if(x < z), but this
would not be satisfiable since 5000 is large than z. The path conditions are x =
5000 and x > z. We negate it and get X < z. The constraint solver is invoked to find
values satisfying x = 5000, x < z, and z = 4y. For instance, a solution is x = 50000

and y = 2501. This input will reach the final path.

® Fuzz Testing

Fuzz testing [11][12] is a straightforward technique that can be used to
evaluate code quality. In fuzz testing, it uses random, unexpected or invalid data

to attack a computer program, and then wait to see if it results in crashes.

The process of fuzz testing is to prepare a valid file format for testing
program, then mutating some part of the file with a random data. This fuzzed file

will be fed into the program and check if it will cause failures.

It is an efficient way to test a program, and we use this technique to generate

crashes which are viewed as concrete values on concolic testing.

1.1.3. Other Tools

® QEMU

QEMU [1] means “Quick EMUIator”. It is:an open source and free processes
emulator which is based on dynamic translation technique. Because it can emulate
various CPUs (x86, PowerPC, ARM and SPARC) on different platforms; it
supports a vast number of devices, allowing it to perform different unmodified
guest operating systems such as Windows, FreeBSD, and Linux. Another usage of
QEMU is for debugging purpose because it provides stop, inspect, save and restore

virtual machine functions, thus making it convenient for debugging.

//’7

Operating System
FEEW " Storage &
VM Netowowk I/0
Memory & CPU
/0 QEMU

Guest Mode Host OS User Mode
Kernel Mode

Host OS Kernel Mode

\\v Hardware v)

Figure 4: Virtualization of QEMU

® Nagios

Nagios [14] is a computer system monitoring tool which watches equipment,
network, and service status of the system in time. If something goes wrong, Nagios

will alert the manager immediately.

_\
/— \
[
L

R \\\,
o o
S =

image server

:

image server

web server

Figure 5: Notification function of Nagios

Furthermore, Nagios provides the functions that help diagnose and repair

problems before they affect users or damage the system.
® S°E

S?E [2] is a software analysis platform, and it allows running the whole
operating system in a testing environment. It uses dynamic binary translation,
selective symbolic execution and relaxed execution consistency models to find the
execution paths. So we can analyze not only the user-mode but also the kernel-mode

binary.

® /FS

ZFS [3][4] stands “Zettabyte File System”, and it is developed by Sun
Microsystems. It supports a variety of features such as data integrity, high storage
capacities, integration of file system and volume management, snapshots,

copy-on-write clones and soft-RAID technique.

These features make it easier to manage a storage system easier; the
copy-on-write clone makes it fast to clone new image and destroy it after using, and

snapshot provides the flexibility of data recovery.

® Sikuli

Sikuli [15] s software that can simulate the behavior of the mouse and

keyword on graphical user interfaces (GUI) environment by images or screenshots.

There are some key components including Sikuli Script, Sikuli IDE and a
visual scripting APl for Jython. Sikuli can control anything on the screen

automatically without calling system’s API.

1.2. Motivation

The original idea is “how to analyze multiple vulnerabilities in the same
time”. When we want to confirm or evaluate software bugs, we must find the
correct version of the software first. It may be easy to find the current one. If
someone wants to get an earlier or the oldest version, it will be a time-consuming
job. Besides, much software depends on the OS (Operation System) version,
assuming that you want to check them; you will take a lot of effort on environment

setup.

We also need to take into consideration of the usage of storage and the
testing environment disposing. Accordingly, a mechanism that reduces space

usage and shortens the building process is another critical issue.

In addition, we need to make a user-friendly interface for managing the
status of every virtual machine ‘and provide them with ‘a convenient way to

examine their software.

I
I
I
|
]
i Crash 1!
> “‘,“ Database 4N
- A -

]
]
]
! 1
I / \
{ i CRAX ‘ f . \
| Fuzzed Software | . | Exploit Generator |
\ | (Fast Concolic) \ J
\ i
I
]
]
]
]

‘_."-7“ \ —
A ‘?
Remote Control N A/
Il —~
Interface I | \:]’

\. i
; |
]

]

]

]

]

]

]

]

]

]

I

I

I

I

Figure 6: Process of Full CRAX system
10

1.3. Objective

It is known that there are existing bugs in software, so that we strive to
achieve the goal of building a software testing framework. Fortunately, we have
CRAX, a software testing platform, but there are still some insufficient functions.
Hence, we will develop a crash database and guest OS remote management

which will integrate into the CRAX framework.

® Crash Database

This target is to create an VM image database which contains a large
number of software and relevant OS; this database will become the source of

testing targets of CRAX, fuzzer and wargames:

However, for administrative management, it will have a friendly Virtual

Machine management and monitor interface.
® Guest OS Remate Management

We will analyze multiple systems.simultaneously, so it is necessary to
have an interactive interface that can be used to control the analysis
environment and implement symbolic environment such as sym-file,

sym-socket, sym-stdin, sym-age and sin-env from the host to guest OS.

11

2. Related Work

In this thesis, it focuses on the establishment of Crash Database and remote

control framework system. In the following sections, we will introduce some related

research about virtual machine management and database concerning vulnerability

and software bugs.

Exploit Database (http://www.exploit-db.com/) is an online website that
supports various archives of exploits and vulnerabilities of the software.
It mainly provides exploit. code, files for wvulnerable program.
Nevertheless its disadvantage is that it does not provide vulnerable
software. So it may be difficult to find the old version of software if
someone wants to test it.

Common Vulnerabilities and Exposures (CVE) (htp://cve.mitre.org/) is
more like a dictionary than a database, and its source comes from a
variety of security companies or organizations. Furthermore, it uses a
unified format and identifier for every security problem. Everyone can
follow the standard to release security notes. CVE provides a reference
for publicly known information, security vulnerabilities and exposures.
The Open Source Vulnerability Database (OSVDB)
(http://www.osvdb.org/) is an open source database supported by and for
the community. According to the characteristic of vulnerabilities, they
classify them into different categories.

National Vulnerability Database (NVD) (http://nvd.nist.gov/) is the U.S.
government repository of standards based vulnerability management data

represented using the Security Content Automation Protocol (SCAP).

12

This data enables automation of vulnerability management, security
measurement, and compliance. NVD includes databases of security
checklists, security related software flaws, misconfigurations, product
names, and impact metrics

® Metasploit (http://www.metasploit.com/) is a security project which aim
at security vulnerabilities and penetration testing. It collects a lot of
software bugs, exploits and vulnerabilities. Furthermore, it also provides
automatic testing program.

® Testbed@TWISC (http://testbed.ncku.edu.tw) is a network security
testing platform, ‘and it integrates Emulab system to provide an

independent, controllable, and close environment for experiment.

Name Software Pre-installe® Provide A testing Management
database software Exploit enyirenment system

Exploit Database v v

CVE 4

OSVvDB v

NVD v

Metasploit v v

Testbed@TWISC ¢ 4

Crash Database v v v v (4

Table 1: Comparison of related platform
13

3. Methods

Figure 7 is the model of our method; it mainly divides into two parts, Guest OS

Remote Control and the Design of Crash Database.

Wargame CRAX Fuzzer

Crash A
Guest OSs
Database -/

Host Management

Web
Management & Host OS
Monitor

Figure 7: The conceptual model of our method

From the model, we know that Guest OSs run on a machine emulator called

QEMU, and we will implement an interface as a communication bridge between

Guest OS and Host OS.

On the left side of this model, we can see there is a database named Crash
Database. As the name implies, it contains much software with its crash file in the
database. In addition, a database management system is indispensable, so we will

develop a web management system and a monitoring mechanism to log system’s

14

status.In the following sections, we will describe the ideas of every component in

details.

3.1.Guest OS Remote Control

3.1.1. Remote Control

In QEMU environment, it does not provide a native API for remote control, so it
is not possible to control guest OS directly from the host. If you want to command the
Guest, you need to open a console and operate there. In other words, it may cost a lot
of time on manual methods and is not convenient for experiments. In order to improve
this drawback, we propose an easy function which permits you to command from the

outside of the guest OS.

In this research, we try to combine these functions into a framework. At first, we
think that we can modify QEMU’s code to implement the targets, but it will take a lot
of efforts. Besides, this method makes it hard to port into other platforms. As a result,

an alternative way is.implemented in this work.

We know that S’E allows you to use customized Op-Code, which is a specific
machine code defined by S,E in its own version of QEMU. In other words, it is
possible to write inline assembly in our program. Then S?E’s QEMU will interpret
this code automatically. For this reason, we can develop a program, which is used to

transfer files or some information.

15

Execution of Execute

program normally
No Execute specific
Contain instruction
customized
Op-Code ? Interpret
Op-Code
Yes
In S2E
QEMU
mode ? ves
No End

Figure 8: The execution process of customized Op-code in Program

Figure 8 shows the procedure of-executing customized Op-Code. When the
program runs the code:that contains customized Op-Code, it will check whether the
environment is running in S°E QEMU mode first. If not, then the program will pause
until it is in S°E QEMU mode. As S’E‘QEMU receives the Op-Code, the code will be

translated to the corresponding instruction and will be executed.

Host OS Guest OS

Listening Socket
Call Customized

Op-Code action

Check A
No Connection Fetch Host IP
Info &
Yes command
Command Shell Connect to Host OS

Figure 9: Flow chart of remote control
16

Figure 9 is the flowchart of remote control. The program has two parts. Host OS
will create a listening socket on a specific port, and Guest OS will use another socket
to connect to Host OS. In the beginning, the Customized Op-Code function is trying
to get Host OS’s IP info, and the IP address will be used to connect to Host OS. If the
connection is successful, then the Host OS side would bounce a shell for remote

control.

3.1.2. Symbolic Methods

We want to send symbolic data from the external environment instead of
inserting symbolic function into source code. From Figure 10, we know the concrete
input will be transformed into symbolic data by our symbolic method, and this
symbolic data will be delivered to the program being tested. In order to achieve this,
we integrate symbolic methods with our remote control program. Thus, users can use

from the remote.

Our Sym

Method
Input from .
stdin, file, arg,) else {

I

I

]

I

]

I

I

I

I

I

|

A Symboli | £ (x> 3)

socket i ln 2 i o
Data in) alse
Memory : g $e

I

I

I

I

void write(int x
{

y if (x < MAX) {

if (x > 0)

else

}
}

From the outside of program Testing program

Figure 10: External Symbolic method

17

The following will explain the process of remote control with symbolic methods.
When receiving command from Host OS, parser function will examine the command
first. If it belongs to symbolic-commands, the program will create a new process to

execute symbolic-functions which translate input into symbolic data.

Command
Make Symbolic Command execution
Yes No
, ?
Shell Sym-cmd
Host socket Guest socket

Figure 11: The flow chart of remote control with symbaolic method

18

3.2.Crash Database

3.2.1. Design of Crash Database

Fast Clone
ﬁ

CRAX Server Farm

Another issue rela I is i to a Il possible versions of
the software. So, we p e can be used to store and
manage testing samples. | | . A ra At has pre-installed software
package. Users can find their targt i this dtaas and create a new environment for

testing use in time.

Because this database contains a significant of software images, there are many
conditions that need to be taken into account. We introduce some necessities in the

following:

19

® Fast image clone

(A) (B) (€)

Before clone After clone After block
image image updated
Active file Active file Active file
Clone Image Clone Image
system system system
LN =
i ¥ PN ST 7T AN T T
// / | TR N o // / / \ N /’/?/' < "
/S "'\ \ > AN "'\ P N
/ ! NSl P Y / ~._
s / | b0 A | v Voo ~
v Al v e <« K 4 * 4aY /" « K 4 ¥ A “
B C D A B C D A B C D D'

Figure 13: Copy-On-Write transactions

In this model, we will pre-build many software testing environments in
QEMU . image. When users need an environment for a test, wargame or
fuzzed test, we will create a new one in VM. Traditionally, if we want to
create ‘new environments, we must use the copy command to make copies
of the original image. This duplicating process is a time-consuming job; it
may take minutes or even hours. So how to solve this bottleneck is the chief
issue we need to take into.account. We use Copy-on-write (COW)
technique in this system. The primary advantage of this technique is that if
no caller ever makes any modifications, no private copy needs to be created.
So it significantly reduces the wasting time, which makes the copy process

can be finished in seconds.

® Support multiple computing server & Load balance

Because there are a large number of computing nodes, which may use
different images at the same time, the model is supposed to allow

concurrent access.
20

Image Cloud

Figure 14: The image cloud diagram

We choose Network File System (NFS) [9] as the backbone. NFS is a
distributed file system protocol, and it allows users on distinct computers to
access remote file over the network. By-using this technique, the system has
the capacity to support multiple computing servers. As users need a testing
environment, we will clone a new image and set a shared flag on that
directory. Thus, this directory can be accessed or wrote by the remote

computing node.

This mechanism has a disadvantage; if too many computing nodes
access the same image server, it results in a bottleneck on network

bandwidth.

21

The solution of this difficulty is by using distributed image servers.
Those images are deployed in many servers in advance, and the round-robin
technique is used for load balance. Round-robin is like its name. It
maintains a list of available resources, which can be chosen for a task.
While a computing node wants to access a remote image, it will be assigned
an image server by round-robin, and mounting the image directory by NFS.

Then, the image is ready to use.

Low disk space usage

The design of crash database is used to store the entire operating system
and different software images, so each entry may occupy a lot of space. The

usage of disk space is a-serious problem and must be taken into consideration.

If every software and operating system is installed in independent QEMU
image, it-will have many QEMU images and use a lot of disk space. QEMU
provides a function, which is called snapshot; it can record the state of a
system at a particular point in time. The best of all, snapshot refers to an actual
copy of the original state, so. it costs a little size of disk space. It brings up us
an idea to store compatible software in the same operating system image. In
this method, a variety of software can be installed in one image and reduce

waste of disk space.

22

3.2.2. Image Management & Monitor

/Q
/ Presentation \

Facade

Control Layer
(Image Management, Admin, Monitor)

Vi
¥
Service
Monitor

Figure 15: Model of image management system

Various software images are stored in crash database; a mechanism to administer

this system is needed. A comprehensive management platform that enables us to

manage images easily and efficiently is indispensable.

This management platform is developed with web based technologies, and it

provides an intuitive GUI that an administrator can know the information of every

image clearly. Furthermore, the platform permits users to create and destroy a new

testing environment from the web page. Just click a button, and all the manual works

are done by the automatic script.

23

Besides, it also has a monitoring agent; this makes administrator easily to know
the status of every server and service. When an unexpected affair happened, it notified

administrators by E-mail or SMS.

Image Server
Image Server

Image Server

Image Cloud

System Monitor

Figure 16: Administrator operates diagram

Figure 15 is the layered madel of this management platform; each layer serves its

upper layer and is served by its lower layer.

First layer is Presentation Layer, and it is a web GUI page. Users can connect to

this i2nterface by various web browsers, and manage QEMU images.

The second layer is Facade Layer, and it is the layer that combines all the
function objects into a single interface. It simplifies the complicated process of calling

independent object.

The Control Layer is the implementation of every function object, and it is
composed of three components. Mon stands for Service Monitor system. File
represents the function of control image. And ORM is a MySQL database, which is

used to record the information of every image and some management data.

24

3.2.3. Automated Experiment

In order to reduce manual work, an automated experiment function is necessary.
The goal of automated experiment is that it can start QEMU image and do symbolic
experiment automatically. We can say that automated experiment is an enhancement

of remote control program.

The basic idea is using shell scripts. First, a code template is prepared in advance;
the remote control program and some shell scripts are packed into this template. And

script’s arguments and execution command-are getting from a backend database.

Create Image

Pass info
Instance Create
Fetch info
from DB Generate

Automatically
script

Figure 17: Process of image creation and scripts generation

When users create a new testing environment, a script file will be generated
dynamically at the same time. The script file contains instructions to mount image
properly, and the execution command, which will be sent to the guest OS by remote
control program. So user just needs to download this script and execute on Host OS;

other works are automatically done by the script.

25

4. Implementation

In the previous chapter, we introduce the related methods and ideas which are

used in this thesis. In this chapter, we mainly focuses on the detail of implementation.

The architecture of this framework can be divided into different parts, so we will

expound them dependently.

First part is Guest OS Remote Control; it relates to the communication bridge

between Host OS and Guest OS in QEMU.

The second part relates to techniques used in Crash Database that enable us to

create a database satisfying the demand desired.

The third focuses on the web-management, monitor system of QEMU image and

the scripts, which are used to execute experiment automatically.

4.1.Guest OS Remote Control

4.1.1. Procedure of Customized Function

Header File GET program
(Define function name > (Call the function in
and unique Op-Code) Include Header header file)

Guest 05

QEMU Interpreter

Plugin
(DETIHE the correspf:ond Link v
action of every unigue
Op-Code) Corresponsive
Action

Figure 18: Core components of customized function
26

Figure 18 is the execution process of GET Program with customize Op-Code. It
is composed of three components. GET program use the Op-code to invoke specific
functions, which define in a header file. And implementations of these specific

functions are defined in a plugin of QEMU.

When GET program executes, the corresponding actions will take place on the

Host OS. The details of every component will be explained in the following sections.

4.1.2. Customized Op-Code

#3£E CUSTOM 1NSTrUcticon +o

af 3F 00 00 WY XYY XYY OYY WY Y'Y

¥X: 16-bit instruction code. Each plugin should have a unique one.

¥Y¥: 6-bytes operands. Freely defined by the instruction code.

Figure 19: Custom instruction format

In S’E’s plugin, it provides customized Op-Code which extends the x86
instruction set. However, we can implement any customized Op-Code to control the
execution behavior from the guest OS. Figure 19 is the format of Customized

OP-code.

static inline int s2e_open(const char® fname)
{
int fd;
asm__ __ wvolatile_ |
".byte 8x8f, @x3f\n"
".byte @x@@, GxEE, 8x88, B9x88\n"
".byte @x@@, @x88, 8x8d, B9x8a\n"

v "=a" (fd) : "a"(-1), "b" (fname), "c" (8)

fd;

Figure 20: Sample code of customized Op-Code

27

Figure 20 is the function that we define in the header file. This function
represents the action of a file open, and a file name sent from the guest OS to host OS

as a function parameter.

Line 5 to 7 defines a unique Op-Code for this instruction; the 3™ and 4™ byte
0x00 OXEE is a unique identifier of this plugin. Furthermore, the 5 byte 0x00 is the

operand which is used to identify the open action in this plugin.

4.1.3. S’E Plugin

l Input Opcode

If Opcode NO

. > END
exist
YES \
Switch
OPEN Action CLOSE
l READ
GET Filename & Remove fd from file Read guestFD &
Flags & guestFD description table bufAddr & count

l

Write File to guest
oS

Figure 21: The execution process of S’E Plugin

This HostFiles plugin [2] declares the actual actions of customized Op-Code; we
use this plugin to accomplish the purpose desired. When the program inside guest OS

call the specific functions that are related to customized Op-Code. QEMU with the
28

plugin will be triggered and interpreted the Op-Code. If the Op-Code is defined, it

reads some CPU registers to get the information of the file and address of guest’s file

buffer. After these actions are finished, the plugin starts to write the file directly into

buffer address. And the guest side can receive the file from the buffer.

4.1.4. Remote Control framework

The remote control framework is the combination of customized functions,

socket program and symbolic methods.

Socket is the core component of our remote cohtrol framework and it is used to

deliver command from host OS to guest OS. Our remote control framework has two

sides; one is in the Host 0S Slde (caIIed server srde) and another is installed in Guest

OS (called client S|de)

-

Host Info,

N

Va B

locking file

Step 4

@ Command
. /

Host OS side

Step 1
5 Get data
function
Step 2
Step 3
Step 5

JZ4 Step 6 u

Command Sym
Parser methods

Guest OS side

Figure 22: Remote control framework

29

In our implementation, server side is designed like a remote command shell, and
it is listening on the Host OS that waiting the connections from clients. Moreover, it is
allowed to give any kind of system command, and these inputs will be purged first,

and then be sent to the client side.

The client side is a more complicated structure; it includes plugin function, basic

socket 1/0O, command parser and symbolic methods.

Figure 22 shows the running process of remote control framework; the GET data
function will fetch necessary information from the Host OS, and the client uses this
information to connect to server. While the socket.connection is accomplished, users
can command the Guest OS. If the client receives a command which is a system
command, then it will be passed-into a command parser and execute, or it will receive

by symbolic methods function and do symbolic execution.

30

4.2.Crash Database

4.2.1. Fast Deployment & Low Usage of Disk Space

Windows i
Linux Image Temp Image
Image .
Filesystem

Fil t
Filesystem resystem

Image Storage Pool

Hard Disks

The implement of our fast deployment is based on ZFS; it has the ability for fast

deployment.

The design of crash database is used to store a large number of data, so the risk
of data damage is not acceptable; we take redundant array of independent disks (RAID)

technology in our model.

31

From figure 23, there is an image storage pool with RAID. And the pool has
three types of file system. One is called Windows image file system, which used to
store windows related software QEMU image, and another is Linux image file system,
which is used to store Unix-Like QEMU image. However, there is still a file system
called testing image file system; it is a space that we use to keep temporary QEMU

images, which are a testing environment for a wargame, fuzzed test and CRAX.

In the file system, we use the policy that a single image is an independent file
system. That means it has several file systems on the pool. The reason of putting
single image in a file system'is that ZFS’s basic snapshot unit is a file system. By this
method, we can use ZFS snapshot function to keep the status of every single image.
And when the image is needed, we clone a new one to a temporary file system right

now. And those temporary.-file systems are destroyed after the experiment finished.

Snapshot Snapshot

ZFS Clone

Original Image Pool Temporary Image Pool

Figure 24: ZFS Fast Clone Process

Up to now, we have solved the problem of fast VM image deployment, and

another issue we need to face is how to reduce the space of the software image. It is

32

known that QEMU support the similar function called snapshot. By this technique, we
can decrease the usage of disk space. First, we set up a new OS in blank image, and
installing software one by one in the image by snapshot way. Nevertheless, there has a
problem with QEMU snapshot if it has too many snapshots in one image, the boot
time of that image will become extremely slow. So after the estimate, we found it

goes well that one image has 3 to 5 snapshots.

Snapshots

Office
2010

Base QEMU Image with Operating System

In the future, this system may be used by a large scale of computing nodes; one
node’s hardware may not have the capacity to support the whole computing nodes. So
these concerns need to be taken into the prototype of crash database on the planning

phase.

In order to solve this problem, we use a distributed architecture. In other words,

the servers are divided into computing and image nodes.

33

The only work of image node is to maintain and provide images for other
computing nodes. And all images are shared to every computing node by Network
File System (NFS). That makes it easier to maintain the consistency of every single

image.

This architecture may face a problem, the bottleneck of every single server’s
network throughput. Our solution is that we can pre-build some image servers, and
taking advantage of ZFS. It provides a command called zfs send which is used to save
and restore ZFS data. In the implementation, we can use this command to transmit
data through the network. to another server; it makes it easier for image server
deployment. In addition, if we want to add more image servers, this command can

reduce the administration efforts:

-
MNode 1
Internet b

L °

=

N

1%

Node 2

- _w

Node 3
Figure 26: The structure of server load balance

While users require a testing environment, we randomly assign an image server
to create a testing image and share to them. This also can distribute the system load of

every image server and achieve the goal of load balance.

34

4.3.Web Based Management & Monitor System

4.3.1. Image Management

It is a concept of VDCM. After building up a crash database, we need to manage
these images. A powerful image management system is the front end of the crash

database.

The management system in this thesis is composed of PHP and MySQL database;
PHP is used to perform our dynamic web page, and MySQL to store the relation

between snapshot and image.

-~ CVE-ID

e Software Version

,J Crash Type

Platform

Image Location

. Snapshot Name

S Program Name

S Testfile Name

Figure 27: Image management web site

In order to reach the requirement of crash database, there are several attributes
are used to record necessary information of every entry. And in the list, an entry

represents a single software version.

35

In the following, we will explain the purpose of every attribute.

® CVE-ID

Common Vulnerabilities and Exposures (CVE) is an authoritative database
of software bugs. If the software is listed in CVE, this column will be marked

with its unique ID. So that users can find details of this vulnerability by this ID.

® Software Version

In crash database, there are various versions of a single software. Moreover,
each one may have different software bugs. So it is necessary to label this

information.

® Crash Type

In our research team, we define many types of software bugs. And each
type should use distinct symbolic methods to make symbolic. This message is

used to tell users the crash type of this software.

® Platform

Much software can run on various OS platforms. Thus, a label to indicate

the OS version and type is necessary

® Image Location & Snapshot Name

Because there are three to five software snapshots in a single image, these
two columns will record the location of each image and the snapshot name of
that software. The main purpose of this is used to execute experiments

automatically.

36

® Program Name & Testfile Name

They are used by automated experiments. They will be fed into remote

control program as a parameter, and execute corresponding symbolic execution.

For convenience, the web management site also provides a search interface,

so that users can easier find their requirement by specific keyword.

4.3.2. Service Monitor

With the growth of the scale, there are more and more image servers. If some

machines go wrong, it is hard to find the problems in time.

Thus, we promote a service monitor system that can be used to monitor image
server’s status. We use open-source software called Nagios; it allows us to write

customized script to fit our needs.

In this system, we use it to check whether the website is still alive. In addition, it
also monitors the usage of memory, disk space and the load of OS. If any unusual

condition happens, it will inform administrator to deal with the problem.

37

4.3.3. Automated Experiment

An automated experiment combines web site, remote control program and some
shell script. We implement an image creation mechanism in web site. If users find a

suitable testing image, they can click a button called “create instance”.

Q Create Testing Image

f
l\Ll /l' Generate

Clone Image

o download script

t\% e Share Image

Running on the Computing Node

Figure 28: Whole procedure of automated experiment

Next, we will explain what’s going on after clicking the button. First, the system
will generate a unique ID as serial number to identify every temporary image. Then it
calls a script named image create. Image create is a shell script, and is responsible to
communicate with file system; ZFS will use location information to find the correct
image and the unique ID as file system’s name to create a temporary testing
environment. After creating image successfully, a script named generate will be
executed; it will use our predefined template and the mount point of temporary image
to create a download link. Users can download the link and execute on their machine.

Then it will automatically mount the image and call up QEMU to do an experiment.

38

/*Pseudo Code of Imoge Creotion ond Automotic Execution Script®/

/% unigue ID for every testing imoge */

$serial_number = rand()

/ Bose Variable

$BASE_PATH = "image/tmp";
$IMAGE_NAME = “SELECT * From "y
$05_TYPE = “"SELECT * From

/ Stort Cloning Imoge
$zfs_clone = "zfs clone $IMAGE_NAME $BASE_PATH/$serial_number";
$zfs_share = "zfs set sharenfs 3$BASE_PATH/$serial”;

zfs_clonel);

zfs_sharel);

/* End Clone Process

/* Generote downlood Link script */

/ Basic Info
$script_name = “exp-".%serial_number”.sh
$IMAGE_SERVER_IP = “"SELECT * FROM "y

$5file = fopen("$script_name”, "w");

SQEMU_PATH = "PATH TO QEMU";
$S2E_CONFIG = "PATH TO S2E config";

//Image Info

$PROG_NAME = "SELECT * FROM "
$SNAPSHOT= "SELECT * FROM "
SVNC = "VNC Port Number™;
$CRASH_TYPE = “"SELECT * FROM "

// Write info to shell script
furite($file, "Mount information");

furite($file, "QEMU Start information");

iF(SCRASH_TYPE == "symfile") {
furite($file, "call remote control program and execute symfile");
H
else iFf(SCRASH_TYPE == "symarg") {
furite(3file, “"call remote control program and execute symarg");
H
else iFf($CRASH_TYPE == "symenv") {
furite($file, "call remote controcl program and execute symenv");
H
else iFf(SCRASH_TYPE == "symstdin") {
furite(%file, "call remote control program and execute symstdin");
H
else iF(SCRASH_TYPE == "symsocket") {
furite(3file, "call remote control program and execute symsocket”);
H
else {
break;
H

fclose($file);
Figure 29: Pseudo code of automated experiment script

39

5. Result and Evaluation

5.1.Images in Crash Database

In this thesis, the target is to build a crash database that supports a testing
environment for users. So we promote a prototype of crash database, and use this

structure to keep software in our system.

Thus, we try to find a variety of software versions with vulnerabilities from the

internet, and classify them and install into QEMU image one by one.

Tables 2 shows the result of our efforts; we mainly focus on the software that can
be exploited. And according to their input source, we organize them into environment,

stdin, arg, file and socket.

Program Exploit Type Input Source Advisory ID Platform
A2ps Stack Overflow Env. EDB-ID-816 Linux
Aspell Stack Overflow Stdin CVE2004-0548 Linux
FreeRadius Stack Overflow Env. Linux
GhostScript Stack Overflow Arg. CVE-2010-2055 Linux
Glftpd Stack Overtlow Arg. OSVDB-ID-16373 Linux
Gnugol Stack Overflow Env. Linux

40

Program

Htpasswd

Iwconfig

nCompess

OrzHttpd

PSUtils

Rsync

SharUtils

Socat

Squrrel Mail

Tipxd

Office 2007

Safari 5.1

Office 2010

Adobe Reader X

Up to now, there are nearly 40 programs in our crash database. In that way, users

Exploit Type

Stack Overflow

Stack Overflow

Stack Overflow

Format String

Stack Overflow

Stack Overflow

Format String

Format String

Stack Overflow

Format String

Buffer Overflow

Stack Overflow

can test these easily.

Input Source

Arg.

Arg.

Arg.

Socket

Arg.

Env.

Arg.

Arg.

Arg.

File

File

41

Advisory ID

OSVDB-ID-10068

CVE-2003-0947

CVE-2001-1413

OSVDB-ID-60944

EDB-ID-890

CVE-2004-2093

OSVDB-ID-10255

CVE-2004-1484

CVE-2004-0524

OSVDB-ID-123346

CVE-2011-0222

CVE-2010-3333

CVE-2011-0611

Table 2: List of software that has installed in Crash Database

Platform

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Linux

Windows

Windows

Windows

Windows

5.2.Boot Time

In our model, images are shared by the network, so it is vital to compare the load

time between local disk and remote disk.

So we test the boot of both Linux and windows image, and our testing network is
100Mbps Ethernet. We found that local disk is still a little faster than images shared

by NFS.

If the capacity of a single computer and the consuming time of clone image are

taken into consideration, the ased time of this ne model is still acceptable.

>

Location 1% Time 2" Time 3™ Time Average
Time

1:00.31s

NFS 1:02.00s

Location Average

Time

Local 0:57.30s 0:50.86s 0:51.52s 53.22s

NFS 1:00.40s 1:01.95s 1:00.85 61.08s

Table 4: Boot time of Windows image

42

5.3.Web Management

In this thesis, we use website to manage our images. So in the following, we will

show some pictures of this management page.

Crax

Images VMs Logout (admin)

Crax Images | overations

. . Create Craximage
Displaying 1-3 of 3 result{s).
Manage Craxlmage
ID: 6
Cve: 2012-0000-000
Software Version: test
Crash Type: test
Platform: test
Image Name: test
Snapshot Name: test

D: 7

Cve: CVE-2012-1111
Software Version: Office
Crash Type: buffer overflow
Platform: Windows

Image Name: linux
Snapshot Name: offfice 2007

D: 8

Cve: CVE-2012-1110
Software Version: office 2007
Crash Type: buffer overflow
Platform: Windows

Image Name: linux
Snapshot Name: windows

Copyright ® 2012 by My Company.
All Rights Reserved.
Powered by Yii Framework.

Figure 30: Image list

Figure 30 is the image list; users can add new software information on this page,
and click the “Create Instance” button. Then it will generate a new environment for

testing.

43

Crax

Images VMs Logout {admin)

Vm Lists | operations

Create VmList

Displaying 1-2 of 2 result(s).
paying {s) Manage VmList

1D: 22
Image ID: 6
Timestamp: 2012-07-05 06:58:04

1D: 23
Image ID: &
Timestamp: 2012-07-05 08:56:13

Copyright & 2012 by My Company.
All Rights Reserved.
Powered by Yii Framework.

Figure 31 is the p testing environment is

created, the VM Li ges are created in the

system now. And these

44

6. Conclusion

We promote a crash database model in this thesis and use a web interface to
implement this system. It has the advantage that does not need to install management
software additionally. If you have browsers, you can connect to the management

system.

Moreover, in order to solve the bottleneck of a single server model, a concept
called image cloud is brought up here. This architecture can share image to a lot of
computing nodes by different image servers, and the fast clone mechanism make it

faster to create a new testing environment.

For controlling the Guest OS, we also add the remote control function in this
system. Users can give command to guest OS directly from this bridge, significantly

reducing the inconvenience of manual operation.

Finally, there still is much-room to improve remote control function, for example,

to support symbolic GUI'and higher level of symbolic server.

45

7. Reference

[1] Bellard, F. QEMU, a fast and portable dynamic translator. 2005. USENIX.

[2] V. Chipounov, V. Georgescu, C. Zam r, and G. Candea. Selective symbolic
execution. In HotDep, 2009.

[3] Rodeh, O. and A. Teperman. zFS-a scalable distributed file system using object
disks. 2003. IEEE.

[4] Dawidek, P.J., Porting the ZFS file system to the FreeBSD operating system.
Proc. of AsiaBSDCon, 2007: p. 97-103.

[5] King, J.C., Symbolic execution and program testing. Communications of the
ACM, 1976. 19(7): p.-385-394.

[6] Anand, S., C. Pasareanu, and W. Visser, JPF-SE: A symbolic execution
extension to java pathfinder. Tools and Algorithms for the Construction and
Analysis of Systems, 2007: p. 134-138.

[7] Ciortea, L., et al., Cloud9: A software testing service. ACM SIGOPS Operating
Systems Review, 2010. 43(4): p. 5-10.

[8] Sen, K. Concolic testing. 2007. ACM.

[9] Shepler, S., etal., Network file system (NFS) version 4 protocol. Network, 2003.

[10] Lattner, C. and V. Adve. LLVM: A compilation framework for lifelong program
analysis & transformation. 2004. IEEE.

[11] Miller, B., Fuzz testing of application reliability, 2007, Madison.

[12] Neystadt, J., ,, Automated Penetration Testing with White-Box Fuzzing *“. MSDN
Library, 2008.

[13] Cadar, C., D. Dunbar, and D. Engler. KLEE: Unassisted and automatic
generation of high-coverage tests for complex systems programs. 2008. USENIX
Association.

[14] Galstad, E., Nagios Version 3. x Documentation. Nagios Group [viitattu 20.2.
2009]. Saatavissa: http://nagios. sourceforge. net/docs/nagios-3. pdf, 2008.

[15] Yeh, T., T.H. Chang, and R.C. Miller. Sikuli: using GUI screenshots for search
and automation. 2009. ACM.

[16] Cha, A.R.S.K., T. Avgerinos, and D. Brumley. Unleashing mayhem on binary
code. 2012.

46

