AR B B4R gF

Mining Interest Topics from Plurk

A e BB E W

Mining Interest Topics from Plurk

b A - Student: Yi-Chien Lee
4n I SE N =) Advisor. Shi-Chun Tsai
]2« 8
FRPAEE &g
L ov
A Thesis

Submitted to-Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science
July 2012

Hsinchu, Taiwan, Republic of China

¥ 2

WA REFAAF PRI DT PR > AARAR T R Y B GRS IR ILH AT

oo R ﬁ?ﬁ%wwﬁim;%Wigﬁﬁ—%witw%ﬁﬁﬁﬂ—c&#w%
wﬁm FRPRE T AR B Mg Ea BRI > FRART L FAL
RERWAFT TN F AR JRE X JIL 24Ty BB B4 8 3F5E - Fls =

TR e e TRPRAS L 5 # 47 12 Facebook s A TR E & » 'A4 A B2 SR & »
Fid R EOT AL RE A o e sk RF LR R BR R

2 ARl BB R AR e ek BERBDOR PRI 2B B DTS 0 TNAE
BE- %“u%’i%ﬁﬂﬁﬁfi)}%i B0 F AR E T Al TR AT G B AR

S0 fRAF R AT 0 AN ARt 02 (Plurk) e EPRAR RN - B BARF

TEHFP AR R R A EOMET DR R F DA RR o F
LRI AR ER P RRE A TT IR E AR APEEEE LRI Y
AT T TR IR ¢ I AP AR T o S TR R R AR R g
FRINBACSRLEBRUIP I E LT

B0 P W R hF 0 AP RS - R A ZeroMQ 4 frt T W 2

- BA DTS

*{F.:

X

FREF S B R T RS G B o gt d 3t 2 eh Python APL & 5 B kit
il

2T A g ﬁi#ﬁmN&ﬁixﬁﬂHﬂ?@ﬁ%ﬁuﬁﬁﬁomﬁ&
o 24 HMAC-SHAL @4 38 B % £ fLegd #ay FLIEa ~ g3 4o W & e o

ABSTRACT

People started to make friends with micro-blogging service in recent years; however, it is
difficult to read all messages posted by those whom you are interested in but not familiar with
to find out what he/she is interested in to start a conversation. Furthermore, unlike blog or
Facebook, most of micro-blogging services do not provide profile functionality (self-description
page) for users to describe him/her-self for people to know what he/she is interested in.

To address this demand, we build an online Social Networking Service Discovery (SNSD)
system for Plurk users (plurkers) to find out a plurker’s interest topics/keywords and relation-
ships/connections. The results are presented in graphics on a web browser. With the derived
interests and relationships/connections, applications of the system include friend recommenda-
tions and personalized advertisements.

To enhance crawling performance, we develop a distributed crawling system based on Ze-
roMQ messaging protocol and deploy it on multiple machines to crawl data from Plurk. In addi-
tion, we patch the Plurk API library for Python to-enhance throughput by replacing the standard
library with high-performance-JSON- library, optimizing HTTP connections and customizing

Python C-extensions to accelerate HMAC-SHA1 computation.

i

Acknowledgments

I would like to thank my parents for offering me an opportunity to accomplish this thesis. I
am greatly indebted to Dr. Shi-Chun Tsai, my advisor, for his patience, guidance and encour-
agement. [also wish to thank Dr. Wen-Guey Tzeng, Dr. Shih-Kun Huang, Dr. Tyng-Ruey
Chuang, Dr. Ying-ping Chen, Dr. Tzong-Han Tsai, Dr. Cheng-Zen Yang, Dr. Yi-Yu Liu, Mr.
Jim Huang, Dr. Min-Zheng Shieh, Mr. Min-Chuan Yang, Mr. Chuan-Yu Tsai, Mr. Min-Cheng
Chan, Mr. Huai-Sheng Huang, Mr. Chun-Yuan Cheng and all the other members in the CCIS

research group and CSCC for sharing their wisdom with me.

111

ﬁi%@ﬁ@%ﬁ%ﬁﬁ%ﬁ@ﬁi’%ﬁﬁwﬁ%%%ﬁ@u—a@%?ﬁ
R R R S AR BN D S e o RAEF BN o K HF R hfil AL
2R

A2 e 2 ¥ b B R He | PR 2 L 4 2 Oxlab e Jserv < < 3R
B MR AFA B EZRKETRH AR TR F LG il R T AGH N
ML RED Pt e

RHEY L2 F24 ARPUZFTHREELRPANEGFET > P R0 R F e
%ﬂﬁ%’ﬁﬂﬁgﬁékﬁﬁﬁ%’ﬁiﬁﬁﬁﬂiﬁ¢ﬁ o 7 iﬁ*ﬁﬁ~ﬂ
BEIR MR AP anFindl S PFES T E RS PGS 2 e P et A e

BHAPELETE F S S EUE T 6 i 1P R S R
£ 4057
T FREMD S ST B R LE S e RS GE

v

Contents

1 Introduction

LI Motivation oo e
1.2 Related Work
1.3 Challenges. e e
1.4 Approach
1.4.1 Community Detection’ .« ..o oL 000 L
1.42 DataCollection . 0 . . swmat v oo
1.5 Results. o o L e
1.6 Thesis Structure . .70 . . oL oL
2 System Architecture
2.1 Overview e o e
2.1.1 Social Networking Service Discovery (SNSD) System
2.1.2 Distributed Crawling System
2.2 SNSD System Design and Architecture
2.3 Crawling System Design Considerations
2.3.1 Concurrent Programming
2.3.2 Messaging Protocol
2.3.3 Data Serialization Format
234 Datastore e
2.3.5 Task Queuing for Crawling
23.6 Security e e
2.4 Distributed Crawling System Architecture
2.4.1 System Architecture
242 WorkFlow

11
11
11
12
13
15

243 TaskQueuing 32

3 Implementation Details 35
3.1 DataCollection 35
311 Overview e e e 35

3.1.2 Plurk APland Library 36

3.1.3 Library Optimization 37

3.2 Preprocessing e e e e e e e e 39
32.1 APlurkandItsData 39

322 ElementsofaPlurk 40

3.2.3 URL Filtering Mechanism 41

3.24 Tokenization 44

3.2.5 Plurks Preprocessing, 48

3.3 Community Detectiont i o v v v v s 51
3.3.1 Snowball Sampling™.o 51

3.3.2 Modularity and Louvain Algorithm 51

333 Filtering . ..o . .o L e e 54

3.4 Interest Hierarchy Model oo . oo oL 54
3.5 Datastore Architecture” L L 57
3.6 Celery TaskQueue0 oo e 59
3.7 Celery Cluster Layout and Worker Configurations 62
3.8 Delta Cluster Deployment 65
4 Experiments 69
4.1 Environment e 69
4.2 Performance Benchmarks oo 0oL 70
4.2.1 PythonJSON Libraries 70

4.2.2 Python Serialization 72

423 HMAC-SHAL e 72

424 Python Plurk API Library 75

425 RedisConnection 76

4.3 Interest Derivation 78
4.4 Website Implementation 79

vi

5 Conclusions and Future Works

Bibliography

Appendix A Diskless Linux Cluster Installation
A.1 BaseSystem
A.2 Network Block Device (NBD) Server
A3 DHCPand PXE Server

Appendix B MongoDB Cluster Installation
B.1 MongoDB Installation
B.2 ReplicaSets e
B.3 Sharding

vil

84

86

94
94
97
99

List of Tables

3.1 Comparison of hierarchical data model design from Ref. [45]

4.1 Machine specificationsandroles

viil

List of Figures

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
1.10
1.11
1.12
1.13
1.14
1.15
1.16

2.1
2.2
23
24
2.5
2.6
2.7
2.8
2.9

Plurk, Weibo, and Twitter daily visitors count graph (Taiwan only) 3
Alexa trafficrank forPlurk oo oo 3
Visitors statisticsby Alexa o 3
Plurk timeline 4
Asampleplurk 4
Plurk profile: extra information 5
A Plurk user with his plurtks public oL 6
A Plurk user with his plurksprivateo oL 6
Interests derivation from public or private plurkers 7
Google Analytics forGo!Plurk o,o oo Lo 9
Go!Plurk system flow«. . oooos s S 9
Sample news articles for training ..o 00 . L Lo oL oL 10
Sample plurks for training oo 10
Interest pie chart generated by Go!Plurk 11
Architecture for two-tier parallel crawler 13
SNSD website overviewo 14
Components in the SNSD system and crawling system 17
Work flow for generation of interest keywords hierarchy 17
GIL Behavior 19
Computationboundo 20
Thread e 20
EventLoop e 21
Coroutine e 22
Coroutinewith /O 23
Coroutine with EventLoop 23

X

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20

3.1
3.2
33
34
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

Transports of ZeroMQ 24
RPCover AMQP e 25
RPCover ZeroMQ e 25
Various message formats within the crawling system 28
RPCover AMQPonCrawling 29
RPC over ZeroMQon Crawling 29
Queuingwork flow L 30
Distributed crawling architecture L. 31
Messaging patterns between components 32
Work flow of crawling system 33
States and Redis data type of the task queue 34
Plurk mobileview 36
HTTP persistent connection . .idi e e v v v v v v v v v e e e e e e 38
Elementsofaplurko.0 cuia L 42
URL filtering forafile . .~ .. . oo Lo 44
URL filtering for animage o 45
URL filtering for a Youtube link o0 45
URL filtering forawebpage Loo 46
Demonstration of the normalize function 47
Demonstration of the tokenize function 49
Demonstration of the preprocessing 50
Visualization of the steps of Louvain algorithm 54
Plurk profile: general information 55
Asample Closure Table 57
Table Relationships 58
MongoDB cluster architecture 60
MongoDB cluster configuration 60
Celery cluster architecture 64
OpenStack security group configurations 64
CS workstation cluster architecture L. 65
Servers and racks donated by Delta,Inc. 66
Assingle Deltaserver 67

3.22
3.23
3.24

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21

Delta server with VGA card, 67
Serversinstalledinrack oL o oo 68
Delta cluster architecture 68
Encoding performance 71
Decoding performance 71
Bigdataperformance 71
Memory usage of JSON libraries 72
Serialization performance L. 73
Memory usage of serialization libraries 73
Encodeddatasize 74
HMAC-SHAI performance 75
Original API library 76
Enhanced APl librarycoimmo v v v v o i e 76
Improvementso T L L L U e 77
Redis binding modes ™. . . = . . . L L 77
Redis remote connection types . . « 78
Result of interest derivation.. .« oL 79
Interest keywords hierarchy oo Lo 80
Interesttag cloud 0 e 81
View communities in pack layout. L. 81
View communities in treemap layout, 82
Focus community on pack layout 82
Focus community on treemap layout 83
Parameter filter 83

X1

List of Algorithms

1 URL filtering mechanism
2 Tokenization Process v v v i it e e e e
3 Louvian algorithm

xii

Chapter 1

Introduction

1.1 Motivation

Social networking service on the Internet can be traced back to mid 1990s when providers
such as Geocities launched the service in the form of generalized online communities, which
offered two ways of inter-personal interaction: chat rooms and personal web pages.

Rapid development of the Internet led to the next generation of social networking services
in late 1990s through early 2000s. This new generation of services include the following two
features, among others: user profiles and blog.

User Profiles allow users to define lists.of “friends” and search for other users with similar
attributes [71]. Active providers in this period include SixDegrees.com (1997-2001), Friendster
(2002), MySpace (2003), LinkedIn (2003) and Facebook (2004).

Blogs emerged in the late 1990s. A blog (a portmanteau of the term web log) [12] is a
discussion or information site published on the Internet. Most blogs operate in an interactive
manner, meaning that visitors are allowed to leave comments or even messages to each other.
Bloggers not only produce content to post on their blogs but also build social relations with their
readers and other bloggers [28]. In that sense, blogging can be regarded as a form of social
networking.

Microblogging, “the SMS of the Internet,” [24] is a broadcast medium in the form of blog-
ging. A microblog differs from a traditional blog in that its content is much smaller in size. For
example, Twitter and Plurk enable their users to write and read text-based messages up to 140
characters in length. Most social networking websites offer their own microblogging feature

via “status updates.” [92] Leading micro-blogging providers include Twitter (2006), Facebook,

Sina Weibo (2009) and Plurk (2008).

Use of social networks for making friends and keeping in touch with friends has become
popular recently.[16, 38, 27] Micro-blogging services such as Plurk, Twitter, and Weibo are
popular in Taiwan. According to Alexa [4], Plurk ranked 45th in Taiwan and 2,014th worldwide
on June 1, 2012, as shown in Figures 1.2 and 1.3. This statistics indicates that Plurk is an active
social network service especially in Taiwan.

Furthermore, according to Google Trends on June 1, 2012 (Figure 1.1), Plurk is among
the most popular micro-blogging services in Taiwan, probably due to its user-friendly interface
named “Timeline” as shown in Figure 1.4. As such, this study is based on the Plurk community.

Freshman students exchange their Plurk accounts via bulletin board system (BBS) to get
familiar with each others. Open source developers share their Twitter and Plurk accounts in their
presentation slides for audiences to contact them if they have any comments or are interested in
the project.

Most micro-blogging services allow users-to make two types of relationships: friend and
follower. The friend relationship requires that both individuals confirm they are friends while
the follower relationship can be established without confirmation. As such, followers may not
be connected to the target individual in real life.

In Plurk, individual’s profile information (Figure 1.6) is not publicly available. Users can set
their conversations (plurks) as shown in Figure 1.5, public (Figure 1.7) or private (Figure 1.8),
i.e. only specific users or friends of those who post the contents can view the contents while
anonymous users and followers are not allowed to.

Given the constraints, it’s difficult to know someone via plurks even though all his/her plurks
are public, as shown in Figure 1.9(a) and 1.9(b). However, affiliation and interests information
can be derived from his/her friends in order to conjecture who he/she is or what he/she is inter-
ested in even though we know nothing about him/her, as shown in Figure 1.9(c).

According to the hypothesis, we build an online analysis system for users to find out what
he/she might be interested in by providing his/her Plurk account name.

After generating interest topics/keywords information about someone whom you are inter-
ested in, by our system, you can use the information to refer him/her to your friends who share
the same interests. Search engine service provider and commercial company can use our system

to build user profiles for customized service and advertising.

® plurk.com @ weibo.com ® twitter.com

Daily Unigus Visitors Google Trends

S o e s M e

S P e s MY Y s e e ey A Y TR AR WY TR R T TR Y R TR M Y T = e NN T T N TN Y Y T B O
Jan 2009 Apr 2009 Jul 2008 Oct 2009 Jan 2010 Apr 2010 Jul 2010 00t 2010 Jan 2011 Ags 2011 Jul 2011 Oet 2011 Jan 2012 Ape 2012

Figure 1.1: Plurk, Weibo, and Twitter daily visitors count graph (Taiwan only)

« plurk.com This sile is claimed, but not certified. | ¥ |
Lol Pk

Plurk is a free social networking and micro-blogaging service that allows users to send updates (otherwise known as
plurks) through short messages or links, which can be up to 140 text characters in length. Updates are then shown on the
users home page using a timeline which lists all the updates received in chronological order, and delivered to other users
who have signed up to receive them. Users can respond to other users’ updates from their timeline through the Plurk.com
website, by instant n ing, or by text n ing.

Statistics Summary for plurk.com

Plurk's three-month global Alexa traffic rank is 2,014. Visitors to this site view an average of 2.9 unigue pages per day.
Visitors to the site spend about 56 seconds on each pageview and a total of five minutes on the site during each visit.
Compared with the overall internet population, Plurk.com's audience tends to be Asian; they are also disproportionately
childless women and college graduates between the ages of 25 and 45. The site is based in Canada. Show Less

Alexa Traffic Rank Reputation
© 2014 45 37.340 P TYTY Y
Global Rank @ Rankin Tw @ Sites Linking In @ 1 Review

Figure 1.2: Alexa traffic rank for Plurk

Visitors by Country for Plurk.com

Country Percent of Visitors g oy
B Taiwan 378% 5 r
== India 23.5%

== United States 6.9%

A Philippines 6.0%

™ Indonesia 38%

@ Pakistan 31% I: p

3 Hong Kong 25% ¥ st x

® Japan 1.9% J”t

I Russia 1.6%

I#l Canada 1.2%

Maore

Figure 1.3: Visitors statistics by Alexa

& RpEN e« BUEE = E5X(0)

[PyZuBot [l inkiog: ERFEE S - by sida K pinkblueness B 83, =A%= O Bl rhymenw Bl mET 23S

I pinkblueness Bl B¥ i sstmnammaFor: | Bl biziic BV = FTIRSARES T - - B 6 |

S1787 plurk D :

wox B (222

@ nenen s sway BTEses ekl erasmesTs BEl==
b says [
#o= B F-roEsEnsEERe
gaod BN %5 BOERTRAT = -
says —EHF FE=_=
O ice B Ken BT 2iE—Sms 58 - =]
@ s nEmEE s
& BlEFmEE &
— S Ken BN [g
18:49 18:44 18:39

URL: plurk EF
Plurk #=

Ken 1EfE v

Figure 1.4: Plurk timeline

| VB TAER, BEEERES
L EnAEBBEETRE

120526 TaeTiseo Twinkle

LoREHEE - F8E - SEFERNTER
TREE . LIEREE (Twinkle} E2E2RT
E ESEIELTEERMEEREMA 268
PR ICARIE L= F

l
H,
Hinl
i
I
1

Figure 1.5: A sample plurk

HAE bR | REEES BEITIRS BREY REEER
s s
e A ERS R
HEHEHN R@ART SEEE
EREEE
RAIBIETETE: Ken®CSEtw
it EROEAE
B %
Flickr:
2=ty
Picasa:
Hilt:
BMEFE
Yahoo!BFFE:
AOL:
MSN:
Qa:
Google Talk:
Skype:
EABSEEISTERLH EFARREENER R

(a) Additional information
EAE | RS RER BEIHR ERREE REER

s s

e A ERS R
ERE mERRE 2R

e EE R OTEEE MY N 8% H3E SR s s

=ik
BRI EER frfaard HFETE B SERRE
SHRIEFERBA FEERETA AN A

(b) Interests

fHAES | R | REERE BITIS ERRE R

A kit
B BERIEEERREE |

EREAl AEERT BEEEH

2012 NCTU (#5)

BiREE:
s 20025

il

AR
A 2012 =] O BEHELTE
BRemn 2012[-]

o

(c) Schools & Work

Figure 1.6: Plurk profile: extra information

omic Conttt |11 B2 aivi 04 I alvin B Lecoms Rt Pﬁ 27
ER aivin [Bl 0 oM BRERHS 257 ER awvin Bl szcmaiznm 17 B avin B sta% 20
'] » |

VER - 1:47pm
Tlam WEE 10pm S5pm 2pm Qam 2 E@l 10pm 12pm 1041

et BE

. 5 alvin A0AE M
Karma:
0PI Karma (£7 FULFTHE IR (353)
119667
W 258

Plurks: 7091
FE8): 44856

H#: 2008-1
alvin woon (&) 2012-1
30 7, Bt

x Aok
= ¢ 2@ F]

alvin@plurk.com
alvinwoon.com ‘
DR0E SERITETANE EHEISRATE - . o
AR EZZ plurk.com /contact s

Co-founder, Plurk. The words and

opinions expressed here are my
o not, in any way,

represent the views of Plurk Inc.

T (EE)

Figure 1.7: A Plurk user with his plurks public

*HH ogito ergo sum

PLURK

IEEF e E RS AL EEAARE =

::x3 L

Ken MAA MR BEE Ken

Karma:

3 %
AR Karma 187 G W)

A 14708
EEAE 13

Plurks: 10238
24859

2009
;20

blog.drken.tw yﬁ, E E ‘7
(O]

T

Figure 1.8: A Plurk user with his plurks private

(©)

1.2 Related Work

The Go!Plurk project [47], developed by Ken Lee, Bryan Cheng, and Sean Lee, is the first
service to find users’ interest topics based on the content they posted on Plurk. In this thesis, we
extend and enhance the preliminary work of the Go!Plurk project.

Go!Plurk was announced via Plurk on June 15, 2009. There were at least 13,527 undupli-
cated users visited our website and we analyzed more than 30,000 Plurk accounts in the follow-
ing week (Figure 1.10).

This project was reported by United Daily News (UDN) [95] and a famous blogger Briian
[94] in June 2009, and PChome magazine also introduced the project in August of the same year.

We used 300 news articles from Yahoo! Taiwan and plurks from top-100 active plurkers
as training sources, which were classified into ten pre-defined categories: chitchat, delicacies,
education, lifestyle, movies, music, drama, sports, technology, and travel. Besides, we use
CKIP [58] from Academia Sinica as.Chinese tokenization engine, and defined a reserved lexical
category list for filtering returned tokens from CKIP as shown in Figure 1.12 and Figure 1.13.
Figure 1.11 depicts an overview of the Go!Plurk work flow.

In a simple Go!Plurk test; we sampled 20 latest plurks from tester, use CKIP to extract
Chinese tokens, apply filtered tokens into Naive Bayes classifier to calculate scores for each
category, and finally render a pie chartto visualize the interest distribution, as shown in Figure
1.14.

Although this service is popular with Plurk communities, there are several known issues and
limitations which need to be improved. First, if the tester set his/her plurks private, we cannot
get what he/she said in order to analyze his/her interest. Second, the quality and quantity of
training articles are poor due to short training period and limited labor hours. Third, the ten pre-
defined categories are not general enough to represent interests and users cannot get details due
to the flat structure. Lastly, we only sample 20 latest plurks from tester via RSS feed provided
by Plurk in order to simplify implementation; mechanism for handling plurk content with URL
link was not implemented. As such, we cannot get enough tokens to represent the tester.

Given these issues and limitations, in this thesis we try to increase the accuracy of prediction
results even if tester set his/her plurks private by collecting as much public plurks as we can to
expand training scale, applying automatic training process, and deriving interests information

from one’s friends.

HEAEL
1w - ERREmE s @ mEERsE

~

O ——

13,527 &2
I - 3(+450,800.00%)
[Flesss 4 B AR E R AR B » IETS I stRRHE it a i -

..-""-._-

16,994 BIE &
9 5 5(+339,780.00%)
[FIEFEE£2 B REE AU 3R - LIRMIULIS @RI R a4 -

—

126 EZK%@?E&
KR = 1,76 (-28.56%)
IS4 50 EHRE 3655 BRI ALIEBEV R -

2008/6/15 - 2009/6/21
—e- R aea TN

Y

84.47% B
A 1 38.38% (+120.07%)
FrsEH2M TEIEEMET B LENSHISERIE AT -

.\.———"\.

——
—

--h-"""'-._—-
00: 00 56 I HELLEF E R

A : 00:00:10 (+455.10%)
[FlEsEHE B SRR BT 205 - LTSS @R 4 -

82 49 /(: &
AR = 56.57% (+45.82%)
Flpts5fE ST EERE 365+ LIBNB SRR 4T -

Figure 1.10:-Google Analytics for Go!Plurk

Test

Training

Content / /

News

Plurk
Content

Yl

!

!

Fetch / Tokenization /
Plurk Content

=
!

Classification

!

Generate Pie Chart

Lexical
Database

—

Figure 1.11: Go!Plurk system flow

~ Done |

LR [ReRiE o] ES MRS T ERERNE S T E0E - RO HHEEEE - hE - SEEEEE - EREMCHEN - 7
= iR R AREH) FERFENAMERGT] SYERESTSHEREHRD PAthEEEEGLOEET 1S « MICHE
ol o TEERSSE -~ BTOSARIRIEHE T - BN EXNIRRECBEIE BRI ST RESETSEEER « AN SRR SR E
RIEEMEMIR - (R —REyEHE - DE - BRI EENE - BT BilE ST ERER SIS RE R R IR 2R R H R EETF
E2ERA I 0 MCRUERRERIMLIERE SKERBETMER M7 PEEEEFRBTGIMEL A EERIERT « =7f

1% o [EERAGZEG S BT « ERFRTUE - 200082 HEFERESIETEON - TEEFENTEANTHENISE AN -
OnF R B EEERTH - MICFARL » TE201082(20135 - 2IRONEE FERIFERESATSE » SHE705Z P THF2% - ERERAHELE
Ee R A O R E R, 0 W IGIEAGTE1850 « BAF30%E « BREV « EEERON G- E RS 0 MR 10N LU RECR S RgH
EH LTS ARBMIGHE - EFEZWETERESTSEIEER 108G S£8E120% » SEREEKIndesE « BN L &5 RRRREE
FEIEINE T EE 0 HibS B2 EFERERT RIS RNRRR00E S « ERE177% IR=FEF100% LI baRE « 20108F
TR H R T098 G 20114 R R14208E « B850 B 2013 EHAARET 0768 » FEIR12% o IEET ARSI TR
EFEREFIAFTF DEABLRERT SRR ST ERGEREMNTEES T EREEE ISR FALEEE
HERILIDSELEE TR © (REERE - MCHHEE 2 E T EMRERENHEE2 TT{EET, - SEERRT 95T - 818

1705 » 2010 FFERGESEGIFE18.17{(82270 » FIR143% « EEFHEREH FRERR0128E 7 ERFEHEEIFE39.99E2
oL MBS HE16.8% « 201 3R R S HAR{E fu g o

Bt AR

TR R G B L EE R T TE FES s EE R ke | 1HR 1HER NS B1E B IRE B e MIC RN BT F BIER
B R B A, (I 88 1751 SFF HRERE 1R (H1 BE B0 FAMG &5 (B8 R TR MIC fail ERSER 30 S AR TRE R
b 2 IRIRET (S FATE S EHRL BT RIRES i TR i £ B BRE S IR A B D R R T BHE S TER
FERE BT Bl A8 RS L B HE 15 I MIC U Hie £ E 2 o R B I 5F B R0 E EE i =T
GIE BE G AL BR R vE 28 78 HER S ST EA R §F 182 5% ik 2/ B MIC FR15 3 i 78 HiiEss
Bl 9 14 3 TR R e SREE 0 ST E B b 2 8 o B STE RIS L R 08 —E mE MIC HiEt 2t ST E
Finaey toim (MRS B IR Kindle B30 i b 5 AR EH E7F BN Al 2 E7ERES S HE2 BE E R A lEE
TFE i LB et F 509 B 3 RE = 598 & S0 SFE (WER A 55 771 18 1500 87 E7 0 8 FER B
B TR AL (B BT K TR B E AE TR Bl B MC #ist 2R TFE FEES B B L BE B8 3 ST E BIES Bl
= B Wi B TRG ETF RRER B E IR B RS R EE

WHBRAY B

CITIE o [| e | (BRG] [FE 0 (IR o SR 5 26l o | o 7]~ 7] [F18E) (B9 o ISR I A s e o FEEIE] ~ |~ [—2B] | |0 |
RYIRSIFOIHR H 5] @ (2] 0 ISRERIEILA - (=2 BRI oM - RO - | IFAZEFEF |0 |2 0 0 6 FE7EM] - [THEHREE - |

I - INFIEIETREAR o | - IR 2 0 1 OEEIF 2 01 3E [nIEY] 56N 7 O 61T 4 2 %l » [ZERBIBoI IRIHEI L 8 %610 B0 3 0%« |22
FHEED IS (BRI L O IHER RIS - HEIR 0 1B 1 0@lG] 0 (1 2 0% SFIEs] - 1E1Es) 1SEEE s 0 5 &
Bl 7 7% |=FEAEI 0 0%[ELEREY 1201 076 9FG 01201 1T E423FE[B5%][T|201 35|87 65
&1 2 %| o [BEE sk | (LARIRRE - [RIFHEEE » [AFIRERE] - SN 5 Palml » 1R800 - |ZIEEal - 17 7 (BIseml - 1S5 - 14 9 {8
2117 0%0 1201 0FFFEL B~ |1 7TEZET 11 4 3%~ FEEHEAY > B2 01 2553 91-19 9 {E2%m |
RIT6[-[8%] 1201 38|H ¢|

Figure 1.12: Sample news articles for training

[

Done]

{tH B K E$H: bryanyuan2
S EHE: http:/iwww plurk com/user/bryanyuan2_xmi

e e 20

#

¥

v pryanyuan 215 iR T A HECHSEEREENR - 2—8EF

v bryanyuan 215 &Rt EHIREIFEN

BRI

i bryanyuan 3 EVEFEIEE BRI IERmE e E T

T

ryamfuan WO RE e R RS R TR S

A

gg; bryanyuan 3 BEmdREE (B Eoffice &4 manual

i3

§ vpryanyuan i N — T SRR

§ v bryanyuan i B ETEREESD AR AR th O O Z S S SR B R R ESIEE TR (A
¥ ~|bryanyuan i littlebtc: "FREAR AT T (R IET -~

Figure 1.13: Sample plurks for training

10

Go 'D I [N | l"l[BB GolPlurk
8 s Vs Eﬂﬁ‘s Go!Plurk

HAEFE T - SEABENEREEESH
DrKen Et]ﬁﬂ-l'é-ﬁ | HREAEASREH HrERasEfRERE .

=128 A Plurkt&3g [Driken search|

FEESUERSRARSEREN D

ol o UU1 598 R
Lt 1572 [GEELEEE
— #if 13,109 B H

E &1 GolPlurk B44718 42085 fEERIEE
TEAREAIES: SREEENENSRRNFESE

Figure 1.14: Interest pie chart generated by Go!Plurk

1.3 Challenges

In order to enhance and improve the Go!Plurk system, we have to collect plurk data back to
local datastore efficiently, and the datastore must provide good durability and excellent reading
performance for online retrieval. Traditional database management system (DBMS) is not suit-
able for managing big data; there’are. more than one billion of plurks to crawl. As such, we need
to find out a database solution for big data, which is crucial to efficient web crawling.

Moreover, in order to derive a plurker’s interest topics with his/her conversation private,
we have to compute community partition information for the plurker and extract public plurks
posted by the partition members to derive associated interest topics and keywords. Since the
community detection problem is known for high computational complexity, we have to employ

proper algorithm and optimize performance for online service.

1.4 Approach

1.4.1 Community Detection

Girvan and Newman [30] presented the Grivan-Newman algorithm for community detection
by measuring the graph-theoretic measurement of betweenness. This algorithm returns reason-

able quality of result but runs slowly in worst-case time O(m?n) on a network of n vertices and

11

m edges or O(n?) on a sparse network. The poor computational complexity makes it impractical
for detecting communities in large networks.

Newman [60] proposed an enhanced community detection algorithm by employing modu-
larity [59, 61] as objective function to maximize it. Modularity is a metric to measure the quality
of a particular division of a network into communities. For a weighted network G, the modu-

larity is defined as

Q= 5 %y |4 — 3] 6 (C (), C (7)),
where A;; is the weight of edges between vertex ¢ and j, m is the number of edges of G, C (i)
is the community of vertex ¢, and the d-function § (C (i) ,C (5)) is equal to 1 if C' (i) = C (j),
i.e. ¢ and j are in the same community, and 0 otherwise.

The modularity maximization method employs exhaustive search for all possible divisions
of a network for the highest modularity value to detect community and this method is considered
intractable [14]. Newman [62] then proposed an approximate optimization algorithm which is
similar to his previous research and the worst-case funning time is O((m + n)n) or O(n?) on a
sparse network.

According to Fortunato [26], the computational complexity of Louvain algorithm [85] is
O(m). This algorithm is extremely fast and graphs with up to 10° edges can be analyzed in a
reasonable time on current computational resources. Therefore, we use Louvain algorithm to
detect community partitions in this thesis and the-details about the Louvain algorithm is listed

in the Section 3.3.2.

1.4.2 Data Collection

Chau [15] presented a framework which guarantees that no redundant crawling would occur
while executing parallel crawlers for online social networks. He also demonstrates how to em-
ploy parallel crawlers and improve crawling performance for online social networks including
Linkedin and Friendster via centralized queue by using MySQL database as shown in Figure
1.15. The crawler architecture is based on two-tier parallelism, i.e. the coordinator or sched-
uler schedule tasks for multiple agents in parallel. Besides, each agent itself employs multiple
threads for crawling. This architecture allows simultaneous failures of member crawlers. How-
ever, details of the protocol between crawler agent and scheduler, implementation of the crawler
and datastore design for storing large number of records are not revealed.

Kwak [49] and Russell [74, 75] employ Twitter API to crawl Twitter data and demonstrated

12

. <>

Figure 1.15: Architecture for two-tier parallel crawler

the basic usage with single threading.-As the Twitter API'has query rate limitation, Kwak em-
ploy 20 machines with different IPs and self-regulating collection rate at 10000 requests per
hour. However, there are billions of tweets, millions of user profile and tens of billions of user
relationship connections on the Twitter social network. We have to employ more efficient ways

to crawl data from social network service provider.

1.5 Results

We build an online social networking service discovery (SNSD) system for Plurk users
(plurkers) to find out interest topics/keywords and relationship . The results can be viewed
on a website as shown in Figure 1.16. Besides, we develop a new distributed crawling system
framework based on ZeroMQ messaging protocol and deploy it on several machines to crawl
data from Plurk. Finally, we patch the Plurk API library for Python to enhance throughput by
replacing the standard library with high-performance JSON library, optimize HTTP connections
and customize Python C-extensions for accelerating HMAC-SHA1 [48] computation.

13

Ken O

Yi-Chien Lee (Ken)

24, 5

=] 1988-07-01
RE Taipei, Taiwan
BA=/ 117 /98
Karma 1273

Tag Cloud
SRERO
E=280
BEESE O
=EZEE-O
HZEER O E=E80
=i O
"0
=20
mERE O
Geek @
HE O
Q ==
20 Mo weak
=0 #
=0
=0

(Ul
A Profile
;i

[&)

.
¥
A
&
Q

Q000000000000 0000000 0OO00

O MataGP
O Rossi

O Valenting Rossi

Figure 1.16: SNSD website overview

14

0000000000000 000000

O Gee
O Run Devil Run
O The Boys

O Heot

O gife
O TangP:

o

1.6 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 introduces social networking
services discovery (SNSD) system and the distributed crawling system for this thesis along with
its high-level design. Chapter 3 describes system implementation details. Chapter 4 summarizes
results of the implemented enhancements and illustrates the website built for visualizing SNSD

system. Chapter 5 discusses future work and concludes the thesis.

15

Chapter 2

System Architecture

2.1 Overview

In this chapter, we will introduce two systems: (1) a social networking services discovery
(SNSD) system for discovering user’s relationship and interest from Plurk and (2) a distributed
crawling system for crawling data from the Internet efficiently. The architecture diagram for

these two systems is depicted in Figure 2.1.

2.1.1 Social Networking Service Discovery (SNSD) System

Recent studies [89, 49] indicate that micro-blogging services such as Twitter and Plurk are
used as news aggregation services and ties in Facebook are driven by personal contacts. That
is, networks may be clustered by communities of interests and geography is less significant for
micro-blogging services. Offline relationships drive friendship in Facebook. As such, we can
discover interest topics of users via community detection because micro-blogging services users
connecting to each other are probably driven by interests instead of having offline relationships.

Given the hypothesis, we propose a framework to discover interest topics for a micro-
blogging service user based on his/her conversations, even if conversations are private, by ag-
gregating interest information from communities of the user. Figure 2.2 depicts an overall work

flow for generation of interest keywords hierarchy.

2.1.2 Distributed Crawling System

Distributed crawling is a distributed computing technique employing many computers to

fetch data from the Internet. For example, Internet search engines such as Google and Yahoo!

16

= Crawling System
Celery Task Queue ‘ & relationships
i i lationshi :
@ community dection g relatinshe —- - Redis e = phrks
N & profile
relationship N
T o::nmrmnity partitions crawling task queue Crawing Task Queue
l O ToDo
user_id
SNSD System O WIP
id
& interest hierarchy ! \ @ Dore
& community visualization \ . ‘/
& interest tag cloud =N MongoDB

s profile
plurks
plurks — profile MySQL
& URL fitering

/ interest hierarchy
& normalization

& tokenization
o= keywords =3

Figure 2.1: Components in the SNSD system and crawling system

Preprocessor

Find community

Public ‘
Build interest *,.--"' Aggregation

keywords hierarchy

}
[

l {keywords with frequency, community partition)

Figure 2.2: Work flow for generation of interest keywords hierarchy

17

built server farms distributed geographically to fetch web pages and build indices for indexing
the Internet.

In this thesis, we deploy several computers as crawlers which call Plurk API to request Plurk
users’ profile, relationship and plurks. Besides, we utilize these crawlers as load balancers to
fetch Uniform Resource Locator (URL) from plurks to extend content while avoiding blocking
by the service provider.

Even though previous researches [15, 49] had proposed architectures for parallel crawlers,
they did not provide implementation details such as protocol and datastore. Our design and

implementation will be depicted later in this thesis.

2.2 SNSD System Design and Architecture

In this section, we will describe the framework which analyzes interest information for
micro-blogging users even when their conversations are private.

Firstly, we try to collect users” conversations and relationship network as much as possible.
In general, micro-blogging service providers (MBSPs) provide application programming inter-
faces (API) for users to access-data; however, most of MBSPs limit the request rate by an API
key or IP addresses. We will cover mechanisms for distributed crawlers to access data from
MBSPs beyond the rate limitation in Chapter 3.

Secondly, we apply community detection algorithm when the requested user’s conversations
are private. According to previous hypothesis, micro-blogging networks are clustered by com-
munities of interests. We use this idea to derive interest information from communities when
conversation data for interest analysis is not available.

Thirdly, tokenize the incoming conversation and response data then apply syntactic filter
for removing stop words and uncommon tokens. In western languages, words are separated by
spaces in a sentence, so we only need to split the data by spaces and punctuation marks such as
periods, commas, etc. for tokenization. But in Chinese, there is no simple ways to tokenize be-
cause Chinese text does not have word boundaries and each character is a fundamental linguistic
unit. Therefore, we have to apply Chinese tokenization algorithms to tokenize data.

Lastly, merge interest tags and return them in a hierarchical structure by the pre-defined
interest hierarchy generated from user’s conversation or derived from communities. We get
various interest tags from the previous step, but it is not suitable for visualization directly because

they are still meaningless. Thus, we need to summarize distinct interest tags into formatted

18

|
| | | | |
T/ I E—— 1/O 1o -
\ (\ { \
) U) L
0 » P » Jo . o
4 V4 Vs / Vi Vi /
&/ & / &/ & &/ &/ &/
5/ &/ R4 v/ 5/ o/ 35/
&/ F &/ &/ S/ &/ S
%/ <& & &/ > &/ "/

Figure 2.3: GIL Behavior

hierarchical structure so that users can view the results easily. Besides, if interest tags are derived
from communities, it should render an additional community graph to indicate where these tags

are derived from.

2.3 Crawling System Design Considerations

2.3.1 Concurrent Programming

CPython, written in C, is the default Python bytecode interpreter. However, this interpreter
is not fully thread-safe. In order to support concurrency, global interpreter lock (GIL), a mutex
lock, was introduced. That is, only one thread is allowed to-execute at a given moment, as shown
in Figure 2.3. This restricts multi-threaded CPython programs from fully utilizing all processors
in a multi-processor system. It becomes-a-computational bottleneck while processors are not
fully utilized, as shown in Figure 2.4(a).

Therefore, for multiprocessing module, a process-based threading interface is available since
CPython version 2.6 [40], and it side-steps the GIL effectively by using subprocesses instead of
threads. Instead of threads, processes use interprocess communication (IPC) to communicate
with each other, which is a much heavier solution.

The GIL is released on blocking I/O, when the thread is forced to wait, other threads in
“ready” state will be chosen to execute and get into “running” state, as shown in Figures 2.4.
Therefore, I/O bound Python programs are recommended to use threading module, and CPU
bound programs fit better the multiprocessing module in general. Nevertheless, threading so-
lution is not good enough in the C10K problem [46]. The C10K problem refers to handling of
concurrent ten thousand connections. Several I/O models are introduced to achieve the goal as

described below; We choose Gevent for this thesis.

19

/O [l{e] [l{e]

run] run Dp run W run
1 I !
| J |

(a) CPU Bound Tasks

™ "7 - B)

1
Srunl /0 J<&|F|/o e

(b) I/O Bound Tasks

Figure 2.4: Computation bound

— Processor

| Main Thread] | Thread!]

—— I

create()

I context switch ’

_— e — =]

context switch :
|

p 1
context switch

-~

-

context switch

1
T context switch
1
1
1
I

Figure 2.5: Thread

Blocking sockets with single thread

This model is the simplest implementation with one loop in one process, but it can only

accept one connection at a time.

Blocking sockets with multi-thread

In order to accept multiple connections at the same time, this model will create a new thread
to accept each connection request. Although it can deal with multiple connections, it is an
inefficient approach because it will spend most of CPU time on context-switching when handling

massive concurrent connections.

20

Event Loop

socket socket socket socket

\ \ /

/
\. N //
select() / poll()

Dispatcher

> |handler

Figure 2.6: Event Loop

Non-blocking sockets by event-driven

In order to reduce the context-switching overhead, this approach creates a loop to wait for
occurrence of I/O events and executes the registered handler associated with the event, as shown
in Figure 2.6. This approach is also called event-driven programming. For example, Twisted
[102] is a Python networking framework by using this approach to accomplish non-blocking
asynchronous I/O. The main benefit of this approach is less context-switching, but it makes

program complicated because.multiple events might be raised simultaneously.

Non-blocking sockets by coroutine

Coroutine [11, 10, 50] is an alternative concurrency approach using Python generator func-
tion available since CPython version 2.5[32]. Unlike normal function, generator function pro-
duces sequence of results instead of a return value, and it yield a value then “throw” it back
when called. In contrast to thread, coroutine does not use context-switching because all corou-
tines run in a single process, as shown in Figure 2.7. Besides, as coroutines are not run in
multiple processes, they will not be restricted by GIL and we can fully control the scheduling
of coroutines. Furthermore, it’s much cheaper to create a coroutine than a thread, we can spawn
massive coroutines without significant overheads.

To improve the crawling performance, we finally choose Gevent [23], a coroutine-based
networking library, as our crawling backend. Gevent uses a Greenlet [70], a micro-thread or
lightweight coroutine library as the synchronous API on top of the libevent [63] event loop.

In Gevent programming model, every coroutine has a parent, i.e., the caller, and the top

coroutine is the main thread or the current thread. Sub-coroutines yield execution to their parents

21

— Process

Main Thread I | Coroutinel I | Coroutine2 I
: :
1

1
! next() l |

|
r yield

_,_____
=
&

next()

=
®
o

Figure 2.7: Coroutine

when starting to wait for completion of I/O operations, as shown in Figure 2.8. The parent
coroutine will monitor which I/O is.done from the event loop, and yield the execution back to
the calling sub-coroutine to achieve the asynchronous non-blocking I/O operation, as shown in
Figure 2.9.

Furthermore, Gevent provides a cooperative socket module which ensures coroutines by
Greenlet can access sockets simultaneously. This feature, along with urllib3 [5], is exploited to

speed up the connection performance.

2.3.2 Messaging Protocol

Advanced Message Queuing Protocol (AMQP) [65] is an application layer protocol for
message-oriented middleware (MOM) and is an evolution of semantics taken from the Java
Messaging Service (JMS). AMQP covers two main enterprise messaging patterns: (1) topic-
based publish-subscribe distribution and (2) reliable request-reply with persistent queues by
pre-defined resources: exchange, queue, and binding.

ZeroMQ (ZMQ) [37] is an intelligent transport layer library of messaging functionalities
inspired by the Internet Protocol (IP) [55]. It’s a redesign of messaging to pursue the objective
of uniformity and scalability, i.e. it aims to solve the problem of how to connect thousands
of clients and do millions of messages in a second in a large messaging system. Furthermore,
ZeroMQ covers four main patterns: transient pub-sub, unreliable request-reply, pipeline, and

peer-to-peer. In addition, it provides broker devices and message routing when necessary.

22

— Process

Main Thread l | Coroutinel] | Corg{tiii

]

spawn()

1
|
g
I
|
1
| dispatch
1
[ﬁ /O event

1

1

1

1

(gl

I

|

|

|

1

1

1 |

T 0 - .

| | dispatch

1 1
|

I
I I

I dispatch

I

I

|

Figure 2.8: Coroutine with I/O

Coroutine Scheduler Loop

socket socket socket socket
select() / poll() \ f
next() wait()

Figure 2.9: Coroutine with Event Loop

23

— Node

— Process Node - Node
INPROC
Worker
o o] -y [Froces]
Master | INPROC INPROC Worker P
el nans Gilicd g IESEH
\ st Process
ster
Work:

INPROGC
e
— Node

v

N B =
— Fode] [Nos

/ Process

Master | JPC JFC Worker
Process | REaRe H
\ Worker

\
Scale up Tep

Worker

\ / Node
Master TcP Tce Worker

Node —p| REQREP [4— Node

v\} Worker
TCP

Node

Figure 2.10: Transports of ZeroMQ

In general, AMQP is essentially centralized with a broker and provides reliable persistent
queuing. ZeroMQ is essentially distributed with no pre-defined broker and aims at dealing with
massive messages currently. ‘We choose ZeroMQ as the ecrawling messaging framework and
AMAQP as the backend for Celery [8], the task queuing system for the web worker mentioned in
the previous section.

Remote Procedure Call (RPC) over AMQP requires two queues for storing tasks data and
result, as shown in Figure 2.11. Even though this scenario guarantees reliability and security,
it has a high overhead in the queuing when employing it into a crawling system, as shown in
Figure 2.12.

In order to reduce queue usage, we employ ZeroMQ as messaging protocol in the crawling

system.

2.3.3 Data Serialization Format

In this section, we will introduce several data serialization formats employed in our sys-
tems: Pickle [33], JavaScript Object Notation (JSON) [43], Binary JSON (BSON) [96], and
MessagePack (MsgPack) [76].

24

(id, task) -

//% . B
>

request

store and forward

Cliernt T U u sener
— (id, result)

result

Figure 2.11: RPC over AMQP

(id, task)

i

- -
- forward ~

<>

Server

{id, result)

Figure 2.12: RPC over ZeroMQ

25

Pickle

Pickle is a standard Python module for serializing Python object structures. It converts a
Python object into a byte stream when serializing; a byte stream is converted back into a Python
object on de-serializing. However, the Pickle module is not intended to be a secure format
against erroneous or maliciously constructed data. We need to authenticate the pickled object

before de-serializing it.

JavaScript Object Notation (JSON)

JSON is a lightweight human-readable open standard [21] for data serialization. It is derived
from JavaScript for representing data types and data structures. JSON is widely deployed by
Web APIs such as Twitter, Plurk, and Facebook Graph API, etc.

Binary JSON (BSON)

BSON is based on JSON and is.adopted by MongoDB for data storage. It is designed to be
efficient both in storage space and scan-performance. Unlike JSON, BSON uses binary form
for representing data types and data structures. In addition; it extends JSON with the date, byte

array, and regular expression types.

MessagePack (MsgPack)

MsgPack is based on JSON and aims to be as compact and simple as possible. It is very
similar to BSON except it does not support the date and regular expression data type but more
space-efficient. The Protocol Buffers (PB) [31] format by Google Inc. also aims to be compact
and is compared with MsgPack. However, it is necessary to define a schema which describes the
structure for PB before serializing or de-serializing an object can be performed. But MsgPack
and JSON are compatible to serialize arbitrary data structures.

Listing 2.1 demonstrates how to encode a dictionary object by the above four serialization
formats in Python. The encoded data size for Pickle, JSON, BSON, and MsgPack are: 218, 164,
116, and 151 respectively.

>>> import pickle, marshal, json, bson, msgpack
>>> data = {
"fans_count": 98,

"friends_count": 120,

26

"privacy": "only_friends",
"user_info": {
"display_name": "Ken",
"karma": 131.32,
"gender": 1,
"id": 3461880,

"avatar": 10

-}

>>> pickle.dumps(data)

"(dp@\nS'fans_count'\np1\nI98\nsS'user_info'\np2\n(dp3\nS'gender '\np4\nIl\nsS'display_name'\np5\nS"'
Ken'\np6\nsS'karma'\np7\nF131.32\nsS" avatar'\np8\nI10\nsS'id'\np9\nI3461880\nssS’'friends_count
'\np10\nI120\nsS'privacy ' '\npll\nS'only_friends'\npl2\ns."

>>> json.dumps(data)

'{"fans_count": 98, "user_info": {"gender": 1, "display_name": "Ken", "karma": 131.32, "avatar":
10, "id": 3461880}, "friends_count": 120, "privacy": "only_ friends"}'

>>> bson.BSON.encode(data)

"\x97\x00\x00\x00\x10fans_count\x00b\x00\x00\x00\x03user_info\x003\x00\x00\x00\x10gender\x00\x01\
X00\x00\x00\x02display_name\x00\x04\x00\x00\x00Ken\x00\x01karma\x00\n\xd7\xa3p=j @\x1llavatar\
Xx00\n\x00\x00\x00\x10id\x00\xF8\xd24\x00\x00\x10friends_count\x00x\x00\x00\x00\x02privacy\x00\r
\x00\x00\x000nly friends\x00\x00"

>>> msgpack.dumps(data)

'\x84\xaafans_countb\xa9user_info\x85\xabgender\x01\xacdisplay name\xa3Ken\xa5karma\xcb@ j=p\xa3\
xd7\n\xa6avatar\n\xa2id\xce\x004\xd2\xf8\xadfriends. countx\xa7privacy\xaconly friends'

In the crawling system, we decode JSON data from Plurk API then store the results into
MongoDB in BSON format by MongoDB driver (PyMongo) [2]. Besides, scheduler transmits
control signal and crawlers return crawled data to handler in MsgPack format via ZMQ, as
shown in Figure 2.13. Furthermore, we return user profile and relationship data in JSON for
AJAX HTTP requests and use Pickle as format for the Celery web task queue via AMQP in the
SNSD system.

2.3.4 Datastore

In order to store as many conversations from Plurk as we can for the SNSD system, we have
come up with the criteria for choosing proper data store: scalability, high availability (HA),
performance and index support.

Scalability means we can easily scale out the data store by adding resources to a single node
(scale vertically) or adding more nodes to the system (scale horizontally). High availability (HA)
ensures the data store works properly even if a node in the system is down or out of service. Index

support is required for improving performance and guarantee data uniqueness.

27

Plurk API Server

JSON

¥

Worker

ﬁ MsgPack

Ventilator

BSON

MongoDB Redis
<BSON>

Figure 2.13: Various message formats within the crawling system

According to these criteria, we choose MongoDB, a document-oriented database system,
as data store for storing conversations from MBSPs; MySQL, a relational database manage-
ment system, for interest hierarchy; and Redis, a in-memory, key-value data store with optional

durability, for storing user relationships.

2.3.5 Task Queuing for Crawling

Traditional task queuing systems based on Remote Procedure Call (RPC) require two extra
queues to store task requests, as shown in Figure 2.14, and the result produced by workers for
each request. However, it is not suitable for handling large number of requests by storing extra
data for the traditional RPC.

In order to improve performance and storage efficiency, we replace AMQP with ZeroMQ
library as messaging protocol, as shown in Figure 2.15, and introduce a new mechanism: let the
worker pull tasks from ventilator (dispatcher) instead of having ventilator push tasks to available
worker. Besides, ventilator maintains a priority queue to store states and creation timestamp for
to-do tasks.

When a worker connects to ventilator and asks for a new task, the ventilator pop the oldest
to-do task and check if the task is in done state and has exceeded the time to live (TTL) or not.
If it is not done and exceeded TTL, return this task to worker and set it to the work-in-progress

(WIP) state; otherwise, return the task in to-do state which is generated by ventilator. Figure

28

Dlspatcher queue

— e

fueue T H

DataStore

Figure 2.14: RPC over AMQP on Crawling

% Broker
Dispatcher \5/

S

@j—Dd—_j—D

Broker
DataStore

Figure 2.15: RPC over ZeroMQ on Crawling

2.16 illustrates the process mentioned above.

With this mechanism, ventilator can control the number of to-do tasks and guarantee all tasks

will be processed eventually.

2.3.6 Security

We have to ensure communications between nodes in the crawling system are encrypted to
prevent information leak or nodes being compromised. However, ZeroMQ does not provide
encryption [97], therefore we need to implement key exchange protocol or use SSH tunnel.

Our crawling system is designed for handling massive requests with good performance. We

cannot deploy complicated cryptographical mechanism such as RSA algorithm for per-message

29

>
f

i

<

—D % new request |

register task "'

11 X

-1 check TTL ToDo new request
€ o],
" push task —l Workers
nitify done

ToDo List /

\ Work-In-Progress

-+
remove task notify done
- "__.—_——_—
[——
Done

Figure 2.16: Queuing work flow

encryption/description and setup.of SSH-tunnel betweenventilator and workers.
Therefore, we employ Advanced Encryption Standard (AES) algorithm with Intel Advanced
Encryption Standard Instructions (AES-NI) hardware support as the default cryptography.

2.4 Distributed Crawling System Architecture

2.4.1 System Architecture

Similar to Chau’s crawling framework [15], our system is also based on two-tier architecture
to allow for simultaneous failures of agents. Figure 2.17 depicts a high-level architecture of the
crawling system for this thesis. The crawling system consists of seven components as explained

below.

+ Agent: Installed in every worker node as a daemon process to receive commands from
scheduler to start, stop, or restart the worker process, update scripts and configuration

files, and increase/decrease the number of worker processes.
» Ventilator: Serves as the task dispatcher to dispatch tasks to available workers.

* Proxy: Started with the worker process in worker nodes. It is aimed to reduce TCP con-

nections between backend ventilators.

30

o

r_’—’ ornmander
Reg|stry %)

Datastore
/(Bmker)

|
\

[

node node 7——-—
- /:
Prox;} & Prinny}
VA VA
)
o w) Agent) o w) S
Workers) Workers Agent | 4
]

Figure 2.17: Distributed erawling architecture

* Broker: Similar to proxy, but it’s started on server side to receive TCP connections from

worker nodes and forward messages to ventilators by service identities as router.
» Worker: Do tasks assigned by ventilators.

* Registry: Keep track of available workers, allocate service identity for ventilators, and

balance the requests from ventilators.

* Commander: Administrator send commands to control worker nodes via this role, and it

could communicate with registry to adjust the total number of workers automatically.

There are several ventilators for different purposes in this system; each ventilator has a
unique service identity which is allocated by the registry. For example, we want to crawl plurk-
ers’ relationship for community detection and public plurks for deriving interest topics. Then
there will be two ventilators to dispatch tasks to workers and store result from crawler to specific
datastore such as MongoDB and Redis in our scenario.

ZeroMQ covers several messaging patterns. We employ request-reply pattern between ventilator-
worker, ventilator-registry, commander-registry, and commander-agent; publish-subscribe pat-
tern between commander-agent. Figure 2.18 depicts the messaging pattern employed in the

system. Detailed design is covered in the following section.

31

Commander

=} =)
] ==

cmd.*

Registry ————
L=

cmd $HOST

Worker
| REQ | el
=

Figure 2.18: Messaging patterns between components

2.4.2 Work Flow

Figure 2.19(a) illustrates the work flow within crawling system. The flow is explained below.
First, when worker becomes available, it sénds .an INIT message to ventilator via proxy and
broker. If there are no available ventilators, worker will start to resend the INIT message until a
ventilator responds.

After a worker association is established, ventilator updates worker status to registry and
generates task for the worker with universally unique identifier (UUID) as task ID then sends
task assignment to worker. When a worker finishs the task, it sends results along with task ID
to ventilator. Ventilator then processes the results and stores it to the datastore.

Figure 2.19(b) illustrates the work flow between commander and agents. There are two
messaging patterns, i.e. publish-subscribe and request-reply, between commander and agents in
different scenarios. Agents subscribe to the topic with their own unique hostname and wait for
specific instructions assigned by commander and broadcast generic topics.

If we want to broadcast instructions such as reboot all agent machines or fetch latest config-
uration files or assign specific agent to execute commands such as restart the crawling process,
use the publish-subscribe channel with corresponding topic. That is, generic topic for broad-
casting and specific topic for assigned agent. Moreover, if we want to execute commands and

get response from agent, then use request-reply channel for receiving responses.

2.4.3 Task Queuing

As mentioned above, we introduce a new queuing mechanism and define three states to

represent queuing status of a task. This mechanism is based on Redis datastore, which handles

32

3 REG
Venmw ‘.\5}“"
4 REG ack

»Q

5.REQ 7 REP / Registry Cornmunder
4. SYN REP
2 INIT
Broker
C-)ﬁ 1. PUB REQ
5.REQ
1. INIT
2. PUB REP 3. SYNREQ

o~ -,
Worker gen{ gerrt

(a) Work flow between ventilator and workers (b) Work flow between commander and agents

Figure 2.19: Work flow of crawling system

three data types: list, set and sorted setas shown in Figure 2.20.

Listing 2.2 illustrates how our queuing mechanism works. The execution function, upon
receipt of a target user id, will use ZADD command to add the target to the WIP queue with
300 seconds of TTL then crawl data for the target and store results into datastore. After crawling
and storing, we add the target to the DONE queue by SADD command and remove it from WIP
queue by ZREM command. Ifthere is any exception during crawling or storing data, we remove
the target from WIP queue by ZREM command.

The fetch_targets function demonstrates how to fetch new targets. First, we check if any
target is in WIP state and has executed over TTL by ZRANGEBYSCORE command, i.e. there is
something wrong while crawling data for the target. Second, we generate nine target candidates
by removing and getting the first element in the TODO queue via LPOP command then return
these candidates.

The add_todo function depicts how to add a given target user id to the TODO queue. We
check if this target is in the WIP queue by ZSCORE command and whether it is already done
or not by SISMEMBER command first. If the target is not in the WIP state and not done, then
push the target to TODO queue by RPUSH command.

Listing 2.2: Demonstration for queuing

33

new task

zrangebyscore -
lpop & zadd
check TTL ToDo \\‘
rpush ! g

?@ﬂedset

-+
zrem & sadd

set .(__._-—-"‘" Work-In-Progress

[——

Done

Figure 2.20: States and Redis data type of the task queue

import redis, time

r = redis.Redis()

def execute(user_id):
try:
r.zadd('WIP', user_id, dint(time.time() + 300))
CRAWL_FOR_THE_TARGET_AND STORE(user_id)
r.sadd('DONE', user_id)
r.zrem('WIP', user_id)
except:

r.zrem('WIP', user_id)

def fetch_targets():
targets = []
for _ in r.zrangebyscore('WIP', 0, int(time.time())):
targets.append(_)
for _ in xrange(9):
target = r.lpop('TODO")
targets.append(target)

return targets

def add_todo(user_id):
if r.zscore('WIP', user_id) is None and not r.sismember('DONE', user_id):

r.rpush('TODO"', user_id)

34

Chapter 3

Implementation Details

3.1 Data Collection

3.1.1 Overview

In this section we will show+how we crawl data from the Internet and how we store these
data for interests derivation. There are three mechanisms for crawling data from the Internet and
Plurk: (1) parsing HyperText Markup Language (HTML) source; (2) applying stateful program-
matic web browsing module or(3) using application programming interface (API) provided by
service provider.

Parsing HTML source is the basic mechanism for web crawling. It works by analyzing
static pages’ HTML source code with regular expressions (Regex) or creating Document Object
Model (DOM) for parsing. However, this mechanism is unable to process a page whose content
is loaded with Asynchronous JavaScript and XML (AJAX). For example, we can apply this
mechanism to crawl Plurk in mobile view (Figure 3.1), but it doesn’t work in the standard view.

In order to deal with AJAX, we utilize the stateful programmatic web browsing module.
Generally speaking, this mechanism is based on web browser engines such as WebKit and Gecko
to interpret web pages as a real web browser. Even though this mechanism can deal with most
of web pages, it is much slower than parsing HTML directly. It not suitable for crawling a large
number of web pages due to poor performance.

Most of web service and social network service providers such as Google, Twitter, and Plurk,
etc. provide APIs for developers to access data by registering applications to the official registry.

This mechanism is the most efficient way for crawling data from specific service. However it

35

§ Ken
¥ 130.51 karma - B4 - Taipei, Taiwan
B8 - 119

IR RIEEERFAEARE -

© Plurk, Inc. Standard view

Figure 3.1: Plurk mobile view

usually has rate limitation, i.e. only a limited number of requests in a given period of time is
allowed. Besides, it can’t work behind web proxy servers as anonymous page view.

We apply Plurk API for crawling Plurk data and use Spynner, a stateful programmatic web
browsing module for Python, as the engine to parse keywords from Google real time trends

service 1in this thesis.

3.1.2 Plurk API and Library

Plurk API [67] is currently available in version 2.0, Compared to version 1.0, version 2.0 is
stateless (no login is required)-and requests should be signed using OAuth Core 1.0a standard
[64]. Version 1.0 is session-based and user account and password, instead of authorized keys,
are used for authentication. Both Version2.0.and 1.0 API return data encoded in JSON format.

Plurk officially recommends clsung’s plurk-oauth [17] API library to Python developer,
which depends on oauth2 [79] and httplib2 [83] library. Listing 3.1 depicts how to use plurk-
oauth library to get Plurk profile. Even though the plurk-oauth is fully functional and well tested,
it has poor performance and connection latency resulting from: HTTP connection overhead, per-
formance bottlenecks in JSON library decoding and HMAC-SHA1 signing.

The HMAC procedure for OAuth consists of two phases: (1) calculate HMAC signature
by the specified hash function and the given key and message, then (2) compute the Base64
encoding for the given binary signature. Listing ?? demonstrates the Python implementation of
HMAC-SHA1. Besides, HMAC-SHA1 signature can also be obtained by the shell commands

as follows:
$ echo -n "message" | openssl dgst -shal -binary -hmac "key" | openssl enc -base64

ITjFdNXyFGtIFGyvSWU3fpOLA6Q=

Listing 3.1: Get Plurk profile by plurk-oauth library

36

>>> from PlurkAPI import PlurkAPI

>>> plurk = PlurkAPI(CONSUMER_KEY, CONSUMER_SECRET)
>>> plurk.authorize()

>>> print plurk.callAPI('/APP/Profile/getOwnProfile’)

...truncated data...

Listing 3.2: Compute HMAC-SHA1 by Python standard libraries

>>> import hashlib
>>> import binascii
>>> trans_5C = ''.join(chr(x ~ @x5c) for x in xrange(256))
>>> trans_36 = ''.join(chr(x ~ 0x36) for x in xrange(256))
>>> digestmod = hashlib.shal
>>> blocksize = digestmod().block_size
>>> def hmac(key, msg):

if len(key) > blocksize:

key = digestmod(key).digest()

key += chr(@) * (blocksize - len(key))

o_key_pad = key.translate(trans_5C)

i_key_pad = key.translate(trans.36)

return digestmod(o_key_pad + digestmod(i_key.pad + msg).digest())

>>> h = hmac('key', 'message')

>>> print h.hexdigest()
2088d174d5f2146b48146caf4965377e9dobe3asd

>>> print binascii.b2a_base64(h.digest())[:-1]
IIjFdNXyFGtIFGyvSWU3fpoL46Q=

>>>

>>> from hashlib import shal

>>> import hmac

>>> h = hmac.new('key', 'message', shal)

>>> print binascii.b2a_base64(h.digest())[:-1]
IIjFdNXyFGtIFGyvSWU3fpoL46Q=

3.1.3 Library Optimization

In order to improve these performance bottlenecks, we develop our enhanced patch for plurk-
oauth library.

First, we replace httplib2 [83] with urllib3 [5] for connection pooling; instead of making
connection for each request, connection pool works as a cache to make connections reused when
required, as shown in Figure 3.2. This reduces connection latency and improves throughput.

Second, as Plurk API returns data in JSON format and every request must be decoded into

dictionary type for Python or hash type for Ruby, this is one of the performance bottlenecks.

37

multiple connections persistent connection

open OPEN cmm—

close
open

awn

close
open

Close e—

VY
\

close

Figure 3.2: HTTP persistent connection

We benchmark and profile several Python JSON libraries (mentioned in Chapter 4) then replace
Python JSON decoder included in standard library with ujson [42], which is a high performance
C extension module for Python for the'enhanced library.

Third, Python hmac module included in standard library is based on hashlib module, which
calls native and optimized OpenSSL binary directly. However, this approach has poor perfor-
mance because hmac module calls hashlib-module just for getting hashed value and process
several steps such as character translating and Base64 encoding for calculating HMACs. To ad-
dress this issue, we customize an OpenSSL wrapper for HMAC-SHA1, which returns complete
HMAC-SHALI value directly.

OpenSSL is a nearly optimized C library by assembling codes with hardware acceleration
instructions, and it provides several ciphers, hashing and encoding functions. We use OpenSSL
as the HMAC, SHAI, and Base64 engine and integrate these OpenSSL functions to a Python
extension module with Python C API. This customized extension is built with native codes. It
performs 72 times faster than the version included in standard library. Detailed experimental

results are given in Chapter 4.

Listing 3.3: Compute HMAC-SHA1 by OpenSSL

#include <string.h>
#include <openssl/evp.h>
#include <openssl/hmac.h>

#include <openssl/sha.h>

#ifndef SHA_DIGEST_LENGTH
#define SHA_DIGEST_LENGTH 20

38

#endif
#define B64_LEN (((SHA DIGEST_LENGTH + 2) / 3) * 4) + 1

unsigned char* hmac_shal(unsigned char* key, unsigned char* data)
{
unsigned char* digest;
unsigned char ret[B64_LEN];
// compute HMAC digest
digest = HMAC(EVP_shal(), key, strlen(key), data, strlen(data), NULL, NULL);
// encode binary digest to Base64 format
EVP_EncodeBlock(ret, digest, SHA DIGEST_LENGTH);

return ret;

3.2 Preprocessing

In this section, we will show the elements of Plurk content (plurk) and explain how we apply

the URL filtering and tokenization.to the preprocessing of plurks.

3.2.1 A Plurk and Its Data

We can invoke Timeline series API'to fetch plurk data. For example, we invoke /APP/
Timeline/getPlurk to get data for a plurk' by passing the plurk unique id or invoke /APP/Timeline/
getPublicPlurks to get the public plurks for a plurker by passing the plurker’s user id or nick-
name. A plurk (Figure 1.5 on Page 4) is encoded as a JSON object. It will be returned as

follows:
{

"responses_seen": 0,

"qualifier": "says",

"replurkers": [],

"plurk_id": 1003643246,

"response_count": 0,

"replurkers_count": o,

"replurkable": false,

"limited_to": "|3461880|",

"no_comments": O,

"favorite_count": 0,

"is_unread": @,

"lang": "tr_ch",

"favorers": [],

"content_raw": "http://j.mp/JoIb2K\nhttp://youtu.be/C8HjWFPY78I\nD> Z R K. FF . HRXFTE
MEFER "TAEHR UEREE (Twinkle) BEERNE , BABZF LA EARNRZROLEM , 26 8 AER
AENBERZE",

39

"user_id": 3461880,

"plurk_type": 1,

"qualifier_ translated": "&",

"replurked": false,

"favorite": false,

"content": ...truncated data...,
"replurker_id": null,

"posted": "Sun, 10 Jun 2012 15:50:08 GMT",
"owner_id": 3461880

¥
Plurk API defines twenty two attributes for a plurk. However, in order to reduce storage

size, we only include the following eight essential attributes for further processing in this thesis.

The definitions of each attributes are listed below:
{

"_id": Number,
"owner": Number,
"qualifier": String,
"content": String,
"content_raw": String,
"tags": Array,
"posted_at": ISODate,
"updated_at": ISODate

* _id: The unique plurk id,-used foridentification of the plurk.
» owner: The owner/poster of this-plurk.

9 ¢

* qualifier: Qualifier is used to define the type of the plurk, which can be “says”, “asks”,

“likes”, “shares”, etc.

» content: The formatted and filtered content, e.g. URL will be turned into text and emotions

will be filtered.
» content raw: The raw content as entered by user.
« tags: The tagging result from the filtered content, which is listed in the interest hierarchy.
* posted at: The date this plurk was posted in ISODate format.

» updated at: The date this plurk was formatted and filtered in ISODate format.

3.2.2 Elements of a Plurk

A plurk is composed of the following elements:

40

» Text: Text is the basic type of a plurk, which may contain Chinese, Japanese, English, or

other language characters stored in Unicode.

« URL: URL may be in several types: @plurk ID, web page, image, or file.

— @plurk ID: @plurk ID identifies a Plurk user (plurker). A @plurk ID in a plurk
will be stored in the content raw column and transformed into http://www.plurk.
com/plurk ID in the content column. Moreover, it will show the plurker’s nickname

instead of account name as the link name in the Plurk page.

— Web Page: The web page type is a hyperlink which refers to a web page. Plurk user

can define the link name; if not defined, it will show the original link in the Plurk
page.
— Image: The image type is a hyperlink which refers to an image in such format as

PNG, JPG, GIF etc.

— File: The file type issimilar to.the image type. If the hyperlink does not refer to an

image then a normal file is-assumed.

» oPreview: oPreview is a'special case of web page type. If the page has open graph protocol
properties, the hyperlink will be ‘transformed into.a short “summary” instead of normal
links. This type is convenient for plurkers to share a web page. Instead of typing URL and
defining the link name, a plurker simply types URL and the page title will be displayed

automatically.

Based on the characteristics of plurk elements, we design a URL filtering mechanism and a

preprocessing procedure which will be described in the following sections.

3.2.3 URL Filtering Mechanism

We give a procedure for URL filtering in order to transform URL from raw link into text
content or tags which represent the subject of the URL. The pseudocode is shown in Algorithm

1.

41

®plurk 2E=

Ken 27 v [EReg A twy s AE—E= 3
HEE (Twinkle) &S
gt

RAFTEMR B T XFB%R) LBk
wmlUE - 2EEZE AR RERFRER

< F {Show ! =&

BH>= =~

26 LU LTI B A0 H5 B 2 T JE 51 B &

(a) Text
Iillv.'[:an %I@bubbleswu: mEFEE 4
[*0)]
[

;l_llll
E
TH:

ﬂl{en EA® & nEideis B8
(b) @plurk ID source

Ken fie
o

(c) @plurk_ID rendered
= F:tp ! www.cs.nctu.edu.t
(

fcht/announcements/

EUnEARENTERR) >

i I_I_I_

=

kxis
il
Ik

ﬂl{en BUsEASEAIESES
(d) Web page URL soutce

(e) Web page URL rendered

http:/ /i.imgur. ccmaP_l I Ken
KCXw.jpg

23 xen B

¥
s
i
TH
il

(f) Image source

(g) Image rendered

25 xen B

19/archlinux-

2011.08.19-netinstall-
xBo_64.i50

3

L

haia]

)
Wk
ITH
it

(h) File URL source

®pPlurk 2E=

[CIRESESE A http: / /www.ettoday.net/news/20120527/50150.htm Plurk

EEERLE A

(i) oPreview source

i PR TAEG BEEERES
b EIRER SRR

(j) oPreview rendered

Figure 3.3: Elements of a plurk

42

Input: URL
Output: content

1 begin
2 | content =null
3 | if URL is shortened then
4 \ URL = expand_shortened URL(URL)
5 | end
¢ | if URL is a web page then
7 if Tag is available then
8 \ content = keywords from predefined tags column
9 end
10 else if Metadata is available then
1 \ content = keywords or description from metadata
12 end
13 else
14 \ content = title of the page
15 end
16 | end
17 | elseif URL is an image then
18 \ content = keywords from Google image search
19 end
20 | elseif URL is linked to-Youtube then
21 ‘ content = keywordsfrom metadata
22 end
23 return content
24 end

Algorithm 1: URL filtering mechanism
Firstly, extract the original URL behind the-short URL if necessary by detecting if any URL

redirect request occurs while reading a URL. For example, the URL http://www.ettoday.net/
news/20120527/50150.htm is shorten into http://j.mp/JoIb2K and posted to a plurk. In this case,
we will detect the URL redirect when open the shortened URL, we then continue to open the
redirected URL for reading content.

Secondly, read content from the URL. If the URL is referring to a file, then ignore it (Figure
3.4). If the URL is referring to an image, then apply this URL as a query to the image search
engine such as Google Images (Figure 3.5). If the URL refers to Youtube, we get the description
and keywords value from metadata in the <meta> tag (Figure 3.6). If the URL refers to a web
page, we check if the metadata exists first, then we get keywords, description and title values.
Else if metadata is not available, but keywords for the page are defined then get these keywords.
Otherwise, we get title value from the page, as shown in Figure 3.7.

Lastly, we update filtered content from URL to the content column in datastore. For example,

the URL http://j.mp/JoIb2K after URL filtering process will be transformd into several tags as

43

File URL
l http:/ farchlinux. es. netu.edu twise/ 2012 1.0/ archlinux-2012 11.01-dual.iso

ignored

Figure 3.4: URL filtering for a file

follows:
{

"content": "D LZBNK, FTEHE, B#K, KHF, FFE, TaeTiSeo, Twinkle",
"content_raw": "http://j.mp/JoIb2K",

3.2.4 Tokenization

There are no straightforward methods to tokenize a Chinese sentence because Chinese text
does not have word boundaries and word is a fundamental linguistic unit. Therefore, we develop
a two-step tokenization mechanism based on dictionary in-this section.

Tsai [84] implemented a Chinese segmentation algorithm named MMSEG based on max-
imum matching algorithm andMa [54] showed the procedures of the CKIP Chinese segmen-
tation system, including the disambiguation algorithm for resolving segmentation ambiguities
and identifying unknown words.

These two Chinese segmentation algorithms and implementations (MMSEG and CKIP) are
popular among Traditional Mandarin Chinese users. However, we only care about the matching
of keywords instead of the segmentations of a sentence. Therefore, we do not employ Chinese
segmentation system but a maximum matching algorithm based on corpus dictionary and which
is stored in a trie data structure.

Matching Algorithm with Recursively Implemented StorAge (MARISA) is a space-efficient
trie data structure, while libmarisa [91] is a C++ library implementation of MARISA. We use
marisa-trie [57] Python package, a Python version binding of libmarisa as the trie implementa-
tion to store interest keywords dictionary and to find the longest prefixes keyword. Listing 3.4

demonstrates how to use marisa-trie library to build a trie and find all prefixes by a given key.

Listing 3.4: Find all prefixes of a given key by marisa trie

>>> import marisa_trie

>>> trie = marisa_trie.Trie([u'keyl', u'key2', u'keyl2'])

44

Image URL

http:/fi.imgur.com/PKCXw

v

Google image search

JPG | taeyeon lady marmalade
About 42 results (0.24 seconds)

Image size:
1500 = 1000

Find other sizes of this image:
All sizes - Small - Medium - Large

Best guess for this image: taeyeon lady marmalade

110605 SNSD Taeyeon & Tiffany - Lady Marmalade @ 2011 GIRLS ...
www.youtube comfwatch?v=ZTGJBHBSXrE

5 Jun 2011 - 4 min - Uploaded by snsde‘I

Cr: thekpopshrink + EERERBERET. FETEELAN0531K

&~

v

Filtered content

taeyeon, lady marmalade

Figure 3.5: URL filtering for an image

Youtube URL

v http:/ fwww youtube com/watch?v=WBdzs8eBQ1I

o
o

Metadata
o]

10 | <meta name="description” content="Z X 222 FZF&7
ZLLICH &.. B0l DISsHAIEE S04 HI#A Bz, 22
Eionoooooone e R AEZ02lE ot B3Y 2 A
Otz. 2 SHFEMZ!"

u+>
mE Fom

2| <meta name="keywords" content="M#, =2, FZ, FeI2E=H
Mz, AUEAICH, J:'xl”.ﬂa—rr enblue, Girls generation, snsd,
Hiore =2 =y

==, TT1=, c

L 4
Filtered content

Figure 3.6: URL filtering for a Youtube link

45

Shorten URL
http://|. mp/Jolb2K

Reversed URL
http:/f'www_ettoday net/news/20120527/50150 htm

Tags if available

BT o Lmintl, TEER RE, AN, WK, TaeTiSeo, Twinkle

Metadata if available
22 | <meta name="description" lang="zh-Hant-TW"
content="/PAriFAIN « FFEE » RE TRV FER
PR LAESREEE (Twinkle) SHEMMR - ZHE)
F 7 FEAARERE R 0 26 H LI R Bt e s
ZHBEE R {Show | FEeLL) BIFRE » BT DuERE
FREE BRI - TR BT L
23 | <meta name="news_keywords" content="/LZdEL, 5

BIRE, 152, A0, 550k, TaeTiSeo, Twinkle” />

Title
21 <titlex/DiF TSGR, MERN=HER LS E774A58
WiEsEnEnRER | ETtodayS2BIRRME | ETtoday 3

BE</title>

Filtered content

Figure 3.7: URL filtering for a web page

>>> trie.prefixes(u'keyl2")
[u'keyl', u'keyl2']

We normalize sentences with the following five steps:

1. insert space behind CJK characters and before ASCII characters

. insert space behind ASCII characters and before CJK characters

. replace punctuation characters with whitespaces, replace continuous spaces with a single

whitespace

. strip the whitespaces found in the beginning or end of a sentence, and finally

5. convert case-based characters into lowercase.

Firstly, according to Unicode code charts, CJK characters (unified ideographs) are located in
the range between 4E00 and 9FFF, Katakana in the range between 30A0 and 30FF, and Hiragana
in the range between 3040 and 309F. We employ the Python regex extension, an alternative
regular expression module to replace the re module from Python standard library and apply

these ranges to define several regular expressions for normalization. This step is inspired by the

46

input
l DITEES “AKFER" (Girls' Generation - TaeTiSeo) ZAiEMusic Bank—fiI Hif F&ZEME

p_mixed_1sub(r'\i \2', ctx)
' DL “AXFR" (Girls' Generation - TaeTiSeo) & Music Bank—1I EFE F&ERE

p_mixed_2.sub(r'\1\2", ctx)

DIEES "HKFEH" (Girls' Generation - TaeTiSeo) 7 Music Bank —fI EEH F&EHRE
p_punctuation.sub(' ', ctx)

DL XFEH Girls Generation TaeTiSeo &3 Music Bank —fiI BB F&8EWRE
p_wssub(' ", ctx)

DB XF R Girls Generation TaeTiSeo A& Music Bank —fiI EBFE L&ZEWRE
ctx.strip()lower()

DB KFF girls generation taetiseo &I music bank —fiI Eifi tEERE

output
DB KT F girls generation taetiseo 7RI music bank —fI B tEEWE

Figure 3.8: Demonstration of the normalize function

project: “ & A% i i&{% e 2u i vt 27 [86]: p_mixed 1 and p_mixed 2 define the
pattern set of Unicode characters and ASCII characters. p- ws defines the pattern of whitespace
character by special character'\s, which is equivalent to the set [\t\n\r\f\v]. p_ punctuation
defines the pattern of punctuation characters by special character \p{P}, which is supported by
regex module. Listing 3.5 shows the normalization process and Figure 3.8 illustrates how the

normalization process normalizes a sentence step by step.

Listing 3.5: Normalize sentences by regular expresions

import regex as re

p_mixed_1 = re.compile(ur'([\u4e00-\u9fff\u3040-\u30FF])([a-zA-Z0-9@&;=_\[\$\%\ "*\-\+\(\/1)")
p_mixed_2 = re.compile(ur'([a-zA-Z0-9@&;=_\[\$\%\"*\-\+\(\/]) ([\ude@0-\u9fa5\u3040-\u3eFF])")
p_ws = re.compile(r'[\s]+")

p_punctuation = re.compile(ur'\p{P}+")

def normalize(ctx):
= p_mixed_1.sub(r'\1 \2', ctx)
= p_mixed_2.sub(r'\1 \2', _)

= p_punctuation.sub(' ', _)

p_ws.sub(' ', _)

return _.strip().lower()

Secondly, we generate a list of indexes of whitespace characters in the sentence, then use

the index to retrieve terms. The purpose of this algorithm is to determine whether it is a CJK

47

term or a western term. The pseudocode is shown in Algorithm 2 and Figure 3.9 depicts the

tokenization process step by step.

Input: context, a string
trie, a marisa-trie
Output: terms, a set of matched keywords

1 begin
2 | index=0
3 terms = an empty set
4 | while index < length(context) do
5 if context[index] is a white space then
6 | index +=1
7 end
8 match = trie.longest prefix(context[index:])
9 if match is not null then
10 terms.add(match)
1 index += length(match)
12 end
13 else if context[index] in [a-zA-Z0-9] then
14 ‘ index = next index of white spaces occurs in the context
15 end
16 else
17 ‘ index +=1
18 end
19 end
20 return terms
21 _end

Algorithm 2: Tokenization process

3.2.5 Plurks Preprocessing
The preprocessing procedure is carried out in three phases (Figure 3.10) as follows:
* Apply the URL filtering process to transform URL links into text for extending content.

* Apply the tokenization mechanism to extract keywords from the plurk which are included

in interest keywords hierarchy.

* Transform raw content into tags, and update the records to the datastore.

MongoDB is an open source document-oriented database management systems and a part
of the NoSQL family. It stores records in BSON format, which support several data types such
as String, Integer, Boolean, Double, Null, Array, and Object, etc. As mentioned in subsection

3.2.1, we store the extended and filtered content from phase one into content field in String type

48

input LIRS XFF girls generation taetiseo A music bank —{U EE CHREHE

— Corpus
Il -
VLG £F% girls generation taetiseo 38 music bank —fi BH LSERE /.}’ZH%H .
girls generation
SHNSD
DG « T3 girls generation taetiseo A8 music bank —fI B LEERE s
Py e
DLE = % girls generation taetiseo 78 music bank —{ EH C&ERE taetiseo
DLBE =4 girls generation taetiseo ZiE music bank —fiI B C&FAE
DG == girls generation taetiseo #i8 music bank —fi EF LLERE
DL == girls generation taetiseo FiB music bank —{I B FEERE
DL BFE 2= girls generation taetiseo 7 i@ music bank —fiI i FLERE
DL BFE 2= girls generation taetiseo 7% music bank —{I i F&ERE
DG == girls generation taetiseo isic_bank —1I B C&ERE -
utpu
B
7 = e ol . = e e e 4 T
DLE 52 girls generation taetiseo 72 bank_—1i1 B LaERE I e
taetiseo
DLE == girls generation taetiseo 7% music bank — T FEERE pEa}ES
' ==
output PIEES =% girls generation taetiseo 4 music bank

Figure 3.9: Demonstration of the tokenize function

and tokenized tags from phase three into 7ags field. We demonstrate how to find a plurk after

preprocessing with a specific tag <<% F# & from MongoDB as follows:

> use plurk
switched to db
> db.plurks.findOne({tags: "2 &ZEHK"})
{
"_id" : 996252142,
"owner" : 3461880,

"qualifier" : "wonders",
"content": "ALER,TEE,RX, K, TSR, TaeTiSeo, Twinkle 120526 TaeTiSeo Twin-

kle D2ZRRAG. BFE, REAMERN FEE "AF SR LEREE (Twinkle) BAERNE , BAHZ LT
FEREHRERGLM, 26 AAMBRABHHEBRZE",

"content_raw" : “"http://j.mp/JoIb2K\nhttp://youtu.be/C8HjWFPY78I\nd LB K, FHIE, B LA
HEEKHFEE TAKER LEREE (Twinkle) Z2AERNAE , ERAFZLTRAABNRERN LM , 26 A LUK
BRAZNpERZE",

"tags": ["D A", A", "FFE", "HK", "TaeTiSeo"],

"posted_at” : ISODate("2012-05-28T06:09:10Z"),

"updated_at" : ISODate("2012-07-01T14:29:15.528Z")

49

DB TRFEE . METEERES

120526 TaeTiSeo Twinkle

TEE R LEREE (Twinkle} E2ERE
B SEIELTEERNRERNNE 268

LR, TERE G A, X TS
4, TaeTiSeo, Twinkle 120526
TaeTiSeo Twinkle /> Z Rt A -
FERE - aZAEANTER "X
Fir, MUEREE (Twinkle) &
SERNE EREFE L FEEE
M= ERAVLE » 26 BLIERTTE
e RE

[P B, "R, TSR HRA”, "TaeTiSeo"]

aa'(e"
B ENREHSSSETRE
PEBRAT THE - REFERNTER
Ll BRI ERT
v
URL filtering
http://j.mp/Jolb2K\nhttp://yout
u.be/C8H)WFPY78I\nP L R
o BHE - GAFTEMNFERE
" X&) LIEEEE (Twinkle)
EECREE 83 F L AER
AR ZROEM - 26 BLUERD]
ERMmBRE
v
Tokenization
v
Output

{
" id": 996252142,
"owner": 3461880,
"qualifier": "wonders",

"content": " ZER, TEE GF, AH.."

"content_raw": "http://j.mp/lolb2K\n...",

"tags™: b EER, K", EHE", "EH", TaeTiseo,
"posted_at": ISODate("2012-05-28T06:09:107"),
"updated_at": ISODate("2012-07-01T14:29:15.5287")

Figure 3.10: Demonstration of the preprocessing

50

3.3 Community Detection

In this section, we will introduce the algorithm for sampling network and the algorithm to

find community partitions for the SNSD system to derive users’ interest topics.

3.3.1 Snowball Sampling

Snowball sampling algorithm works like a pyramid scheme. It provides a fairly complete
picture of the network surrounding of the sampling target.

We have to determine a depth limit for this algorithm. In practice, we usually limit the
depth of sampling to two (friends-of-friends) or three (friends-of-friends-of-friends). Listing

3.6 depicts an iterative version of the algorithm with depth of two.

def sampling(G, user):
for friend in read_friends(user).:
G.add_edge(user, friend)
for friend_of_friend inwread_friends(user):

G.add_edge(friend, friend_of_friend)

3.3.2 Modularity and Louvain Algorithm

The Louvain algorithm [85] is a heuristic greedy method based on modularity optimization
to provide excellent results for various application to large network. This algorithm consists of
two phases that are repeated iteratively: modularity optimization and community aggregation.
Main idea of the processes explained by [26, 80] is restated as the pseudocode in Algorithm 3.

We put all vertices of graph G in their individual community at the beginning of this algo-
rithm. In the first phase, for each vertex ¢ we consider its neighbors j to compute the gain of
modularity by putting ¢ into the community of j. If no positive gain available, ¢ stays in its
original community.

In the second phase, we aggregate vertices in the same community to a new supervertex and
build a new graph with supervertice as new vertice. The weight of the edge e (V;, V;) between
supervertices V; and V; of the new graph is calculated. Once this second phase is completed, it
is reapplied to the first phase of the algorithm until a maximum of modularity is attained. Taking

a graph from Tang [80] for example, the input graph will be partitioned into two communities

51

as shown in Figure 3.11.

We employ the python-louvain [82] library which is developed by Thomas Aynaud as the im-
plementation of Louvain algorithm. This library is based on NetworkX [99], which is a Python
scientific library for studying graphs and networks. For example, we create an undirected graph
with ten vertices and apply Louvain algorithm by python-louvain library to find community

partitions as follows:

Listing 3.7: An community detection example in NetworkX

>>> from community import best_partition

>>> import networkx as nx

>>> G = nx.Graph()

>>> G.add_edge(1, 2)

>>> G.add_edge(1, 3)

>>> G.add_edge(1, 4)

>>> G.add_edge(2, 3)

>>> G.add_edge(3, 4)

>>> G.add_edge(4, 5)

>>> G.add_edge(4, 6)

>>> G.add_edge(5, 6)

>>> G.add_edge(5, 7)

>>> G.add_edge(5, 8)

>>> G.add_edge(6, 7)

>>> G.add_edge(6, 8)

>>> G.add_edge(7, 8)

>>> G.add_edge(7, 9)

>>> print(G.nodes())

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> print(G.edges())

[(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (4, 5), (4, 6), (5, 8), (5, 6), (5, 7), (6, 8), (6, 7),
(7, 8), (7, 9)]

>>> part = best_partition(G)

>>> for com in set(part.values()):

list_nodes = [n for n in part.keys() if part[n] == com]

print com, list_nodes

e [1} 2) 3) 4]
1[5, 6, 7, 8, 9]

52

o 0 9 N R W N -

10
1
12
13

14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30

Input: G = (V, E)

Output: S

A is the adjacency matrix of G

A;; is the weight of the edge between vertex ¢ and j
m = 3 3,; Ajj is the number of degrees of G

C' (i) is the community of vertex ¢

d; 1s the degree of vertex ¢

Bij - Aij - didj

2m

an edge with the weight w (C'(s), C (t)

ifs#t

€ (v, vy) = { a self-loop edge with the weight w (C'(s),C (t)) otherwise

w(C(s),C (1) = Xiec, jec, w (i:9)
w (4, j) is the weight of e;;

begin

fori: €V do

| C() = {i)

end

while true do

fori € V do

A (j) = Bij — B

j* (i) = argmax {4&; (7). j € [n]}

if 7* (i) # i and A;(j) >0 then
// Set ¢ and j5* in the same community
C(i) =C(HHVC (1)
C (%) =C (VO ()

end

end

S <—DelRedun ({C (i) |i e V})
if Vi, j* (i) = i then
‘ return S
else
for C{k} € Sdo
// vp 1s a supervertex
end
[=S|
V' =A{vy,...,u}
for v,,v; € V do
‘ est = € (vs,)
end
E' ={eq | vs,v, € V'}
G= (V' E)
end
end
end

/* 1lst phase */

// Delete redundant elements in the collection of communities

/* convergence */

/* 2nd phase */

Algorithm 3: Louvian algorithm

53

original 1%t pass, phase 1

3
— e
4 1
2
st
1% pass, phase 2 2m pass, terminate
) 10
£ N\b
@ {1.2,3,4}
&y
. 3.7 2 - & 2\\\ 14
120 \
AN 10

Figure 3.11: Visualization of the steps of Louvain algorithm

3.3.3 Filtering

Plurk allows users to claim his/her profile including: gender, age, location, etc., as shown
in Figure 3.12. We use gendet, age, privacy status (public or private), and karma (a metrics
for activity) as parameters for snowball sampling algorithm to reduce the sampling range on

demand.

3.4 Interest Hierarchy Model

In order to determine user’s interest topics, we define an interest keyword hierarchy based
on a famous BBS (Bulletin Board System) site PTT.cc in Taiwan to collect interest keywords
and categorize them. In contrast to the Go!Plurk project, the new hierarchy can define detailed
interests category instead of a one-level hierarchy structure.

Trees and graphs are universal data structures; however, they do not easily fit into a relational
data model design. Karwin [45] introduces several hierarchical SQL models such as Adjacency
List, Recursive Query, Path Enumeration (Materialized Path), Nested Sets, and Closure Table.

According to Table 3.1, Adjacency List is the most conventional but difficult to query a
full tree. Recursive Query is more efficient than Adjacency List design, but MySQL does not
support WITH syntax, which is defined in SQL-99. Path Enumeration is not able to check refer-
ential integrity and it stores information redundantly. Nested Sets also fail to support referential

integrity and is difficult to manipulate. Closure Table is the most versatile and elegant design

54

EARERE %

A | AEMiEEl REERE HETHiR ERRE B

" FIER A RIS R ! TR B A A R

2 |Yi-Chien Lee
ERAER: Ken

EREe | Egsss]

gy @ B O R O FEEER
#H: 5 [«] 1 [#] 1988[+]
BRI LTS [=]

MG T =]

RAFYIREE: hupr//blog.drken.tw
TERERIE 300 @FLAA

4

HA YouTube BERFFS

B | Taiwan
£, /#E: Tai-pei [=]
W B Taipei [=]
BRI AT i
blog.drken.tw
(a) Generalssettings (b) Public profile view

Figure 3.12: Plurk profile: general information

Design Tables”| Query Child | Query Tree | Insert | Delete | Ref. Integrity
Adjacency List 1 Easy Hard Easy | Easy | Yes
Recursive Query | 1 Easy Easy Easy | Easy | Yes
Path Enumeration | 1 Easy Easy Easy | Easy | No
Nested Sets 1 Hard Easy Hard | Hard | No
Closure Table 2 Easy Easy Easy | Easy | Yes

Table 3.1: Comparison of hierarchical data model design from Ref. [45]

but requires an additional table to store the relationships.

Instead of storing relationships between ancestor and descendant like the other designs, Clo-
sure Table stores all paths through the tree, as shown in Figure 3.13. Figure 3.13(b) illustrates
how the nodes are stored. Listing 3.8 shows the schema for Closure Table, and we can easily
find descendants or ancestors, insert new records and delete a leaf node or subtree. For example,
we use the query (Listing 3.9) to retrieve descendants of “K-Pop” and insert a new node “Kara”

with id as 8 under “K-Pop” by query (Listing 3.10).

Listing 3.8: SQL schema for Closure Table

CREATE TABLE "taxonomies™ (
“id® INT(11) NOT NULL AUTO_INCREMENT,
“name” VARCHAR(64) NULL DEFAULT NULL,

55

PRIMARY KEY (id)
)s

CREATE TABLE "“hierarchies™ (

“ancestor® INT(11) NOT NULL,
“descendant® INT(11) NOT NULL,
PRIMARY KEY (" ancestor’, “descendant’),
FOREIGN KEY (" ancestor’)

REFERENCES ~taxonomies™ ("id"),
FOREIGN KEY (" descendant™)

REFERENCES "taxonomies™ ("id")

)s

Listing 3.9: Retrieve descendants of “K-Pop”

SELECT t.*

FROM taxonomies AS t
JOIN hierarchies AS h ON t.id = h.descendant

WHERE t.ancestor = 4;

INSERT INTO hierarchies (ance
SELECT h.ancestor, 8
FROM hierarchies AS h
WHERE h.descendant = 4

UNION ALL

SELECT 8, 8;

We extend the Closure Table design and employ MySQL as datastore for the interest keyword
hierarchy. We use four tables: hierarchies, taxonomies, vocabularies, and lexicons to model the
relationship. Based on Closure Table design, table hierarchies store the relationship between
taxonomies. Table taxonomies defines the hierarchy structure. Table vocabularies stores the
relationship between lexicons and taxonomies. Table lexicons defines the interest keywords
and associated information.

We use the following SQL query to obtain the interest keywords hierarchy structure that is

associated with the keyword “Girls Generation”:

Listing 3.11: Obtain hierarchy structure by Closure Table design

SELECT x.id, x.term, v.belongs_to,
GROUP_CONCAT(h.ancestor ORDER BY a.id) AS ancestors,
GROUP_CONCAT(a.name ORDER BY a.id) AS path

FROM lexicons AS x

56

ancestor | descendant

1 1

1 2

1 3

1 4

1 5

1 6

1 7

2 2

3 2

3 3 1D | name
B B 1 | <root>
4 5 2 | J-Pop
4 6 3 | AKB48
4 7 4 |K-Pop
° ° 5 | T-ara
6 6

. . 6 | SNSD
7 7 7|TTS

(a) (b) (c)

Figure 3.13: A-sample Closure Table

JOIN vocabularies AS v ON (v.term = x.id)

JOIN taxonomies AS t ON (v.belongs_to = t.id)
JOIN hierarchies AS h ON (t.id = h.descendant)
JOIN taxonomies AS a ON (a.id = htancestor)
AND x.term LIKE 'Girls Generation'

GROUP BY x.term, t.id

3.5 Datastore Architecture

In order to store billions of records into datastore, we employ MongoDB and build a cluster
with twenty nodes, donated by Delta Electronics, Inc., to improve the throughput and availability
by sharding and replication methodologies.

There are three components in the MongoDB cluster: mongos, config server, and shard
server, as shown in Figure 3.15. Mongos instances function as router to deal with requests from
clients and serve as the access point for clients, which forward requests to the appropriate shards
by coordinating with config servers. Config servers maintain the shard metadata and defini-
tive information about the cluster including chunks, shards, and mongos processes information.

Shard servers are used to store data.

57

hierarchies
Colurmn Type | Index

I ancestor INT | PRIMARY, FOREIGN

descendant | INT | PRIMARY, FOREIGN

vocabularies
Column Type | Index

@ term INT |PRIMARY, FOREIGN
taxonomies / belongs_to | INT
Column | Type | Index
®|id INT | PRIMARY, FOREIGN \ lexicons
Column | Type | Index
name | String o INT | PRIMARY

id

term | String | Unique

Figure 3.14: Table Relationships

MongoDB employs replica sets to achieve High Availability (HA) and auto-sharding for
scaling out. Replica sets are used for data redundancy, distributing read load, and high avail-
ability (automated failover). A replication set consists of three or more nodes which are copies
of each other; the set members will elect a primary node and the others as secondary nodes
automatically. MongoDB drivers and mongos will detect a replication set primary changes au-
tomatically.

A shard is comprised of one or more servers in a cluster which is responsible for the same
subset of data. If there is more than one server in-a shard, each server has an identical copy of
data and a shard is usually a replica‘set in-production.

MongoDB’s sharding is based on a shard key which determines how data will be distributed
across the cluster. For example, we have an application that stores fan’s personal profile of Girls’
Generation, a nine-member South Korean pop girl group. Each profile document contains a fa-
vorite_member field, which shows who is the fan’s most favorate. Its value would be “Taeyeon”,
“Jessica”, “Sunny”, “Tiffany”, “Hyoyeon”, “Yuri”, “Sooyoung”, “Yoona”, or “Seohyun”. We
use this field as the shard key.

The collection starts with one chunk (—oo, o) on a shard in one shard server. Once that
chunk gets big enough, it will be split into two chunks with the range (—oo, “Yoona”) and
[“Yoona”, c0). All of the profile documents with “Hyoyeon”, “Jessica”, “Taeyeon”, or “Tiffany”
will be placed into the first chunk and the rest documents with “Yoona”, “Yuri”, “Seohyun”,
“Sooyoung”, or “Sunny” will be placed in the second chunk. With more and more documents

added, eventually we will end up with nine chucks, i.e. one shard per member:

* (—o0,“Jessica”)

58

 [“Jessica”,“Taeyeon”)

 [“Taeyeon”, “Tiffany”)

[“Tiffany”, “Yoona”)

* [“Yoona”, “Yuri”)

o [“Yuri”,"Seohyun”)

* [“Seohyun”,“Sooyoung”)
 [“Sooyoung”,“Sunny”)

o [“Sunny”, o)

The above example chooses a low-cardinality shard key which has a fixed maximum number
of chunks and it will never be able to.use more than that number of shards for the collection. It
is recommended to choose a high-cardinality: field as the shard key such as the profile unique
id number in the above example or a field with MongoDB’s ObjectID datatype. In our case for
storing plurks in the MongoDB, we choose the plurk’s plurk id field, which is the unique id for
a plurk, as the shard key.

We employ three config servers and two mongos servers, and set up nine shards with nine
replicas. That is, one shard per replica set, where each replica consists of two shard servers
and one arbiter in our production server layout. This is recommended by official production
configuration [78]. Besides, we employ diskless architecture to deploy these twenty servers.
Detailed cluster configuration is shown in Figure 3.16 and configurations are given in Appendix

B.

3.6 Celery Task Queue

Computing community partitions for a user is a large computational bottleneck in our system.
Thus, we employ Celery [8], which is an asynchronous distributed task queue library for Python,
to utilize workstations from NCTU CSCC [103] for load-balancing.

A large web application might contain time-consuming functionalities which cannot be done
or need not to be done in real-time such as making thumbnails or processing uploaded files. This

type of problem is called fire-and-forget models, and the process request will be blocked until

59

— Shard Servers

shard

shard

shard

mongos

Figure 3.15: MongoDB cluster architecture

client

Figure 3.16: MongoDB cluster configuration

60

~ S0 @ RSO —~ S1@RS1 — —~ S2 @ RS2 —, — Mongos
TaeYeon Jessica Sunny |
192.168.1.2 192.168.1.3 192.168.1.4 SNSD
[KimT aeveon JngSooYeon LeaSoonkKyu 1q2 168 1 1
192.168.1.12 192.168.1.13 192.168.1.14 ‘ . - ‘
— Aarbiter — Aarbiter — Aarbiter »
SNSD SNSD | SNSD | Sone
192.168.1.1 192.168.1.1 192.168.1.1
! - - 192.168.1.11
~ 53 @ RS3 — 54 @ RS4 — — S5 @ RS5 —,
Tiffany HyoYeon YuRi
192.168.1.5 192.168.1.6 192.168.1.7
HwangMiYoung KimHyaYaon KwonYuRi
192.168.1.15 192 168.1.16 192.168.1.17
— Aarbiter — Aarbiter — Aarbiter — Config Servers
SNED SMSD SNSD
192.168.1.1 192.168.1.1 192.168.1.1
= == = == - SNSD
— 56 @ RS6 —~ 37 @ RS7 — — 58 @ RSB —,
SooYoung Yoonk SeoHywn 1q2.168.1.1
192.168.1.8 192.168.1.9 192.168.1.10
ChoiSooYoung ImYoonA SeoJuHyun
192.168.118 192 168119 192.168.1.20 Sone Taeyeon
— Aarbiter — Aarbiter — Aarbiter
fat A ActRer — 192.168.1.11 | [192.168.1.2
192.168.1.1 192.168.1.1 192.168.1.1
| —| L

the job is done. In our case, we cannot compute every community partitions for a user in a short
time which depends on the number of friends of the user. Given this limitation, we employ
Celery task queue for handling jobs asynchronously to prevent blocking.

Celery has two execution units: broker and worker server. Celery requires a message broker
solution for tasks queuing and storing results. It supports several popular open source choices,
including: RabbitMQ, Redis, traditional RDBMS via SQLAlchemy or Django object-relational
mapping (ORM), and MongoDB... etc. It also supports Amazon SQS, if you deploy Celery in
Amazon Web Services (AWS) platform. Worker servers are the execution instances. You can
choose multiprocessing, Eventlet, gevent, or threading modules as process pool implementation
for specific purposes.

We define three trust levels for our production environments: trusted, semi-trusted, and
untrusted. Trusted level means we have root privileges and unauthorized users are not allowed
to login to the machine. Semi-trusted level means we can login to the machine to use shell but do
not have root privileges. Besides, other user-has no privileges to change file permission which
belongs to us. Untrusted level is similar.to semi-trusted.level, but user might force to change
file permissions. In general, dedicated server is in trusted level, shared UNIX-like workstation
is in semi-trusted level and shared Windows workstation is'in untrusted level.

Redis, a high performance open source key-value store or data structure server, is an excel-
lent broker candidate for Celery. However, it is.designed for trusted level scenario because it
does not provide access control list (ACL) function for authentication, but a single global master
key instead.

Even though Redis supports master-slave replication, which is suitable for scaling out read-
ing performance by adding read-only slave nodes and connects each Redis node via Secure Shell
(SSH) tunnel for basic connection security. However, we cannot employ Redis as Celery broker
because Redis slaves are read-only. Celery workers shall communicate with Redis master di-
rectly. Intruders can use the SSH tunnel to apply brute-force attacks on master in the semi-trusted
level node. Moreover, if the global master key is leaked or any Redis node is compromised, data
would be deleted or falsified by attacker.

Given the above limitations and that we have no fully trusted machines to build a Redis
server in our production environment, we choose RabbitMQ, a stable message queue based on

AMQP and support ACL as broker.

61

3.7 Celery Cluster Layout and Worker Configurations

According to previous consideration for choosing RabbitMQ as the Celery broker, we im-
plement a scalable Celery worker cluster as shown in Figure 3.17.

We employ two virtual machines from openstack.nctu.edu.tw with public IP address as Redis
read-only slaves which serve as relationship data provider for workers from NCTU CSCC, which
connect to the Redis master via SSH tunnel using autossh to manage and restart SSH tunnels
automatically if needed. Besides, we set up security group (firewall) rules, as shown in Figure
3.18, so that these two Redis slaves can only provide data to specific workers from NCTU CSCC
core subnet (140.113.235.0/24). After that, we set up a RabbitMQ instance with custom ACL
policy then configure workers to connect to the RabbitMQ.

In the previous implementation, we choose Python multiprocessing module as process pool
implementation in standard CPython interpreter. However, the computation performance is poor
especially in the case of a user having a large number of friends. Therefore, we employ PyPy
[98] as the alternative process pool implementation with its multiprocessing module. PyPy is
a much faster interpreter for Python language and Just-in-Time compiler. Besides, it is 100%
compatible with the original CPython interpreter.

However, PyPy interpreter can only execute programs in pure Python source code currently,
1.e. we cannot employ PyPy to execute Python programs with CPython or Cython extension
module such as PyZMQ), the Python binding library for ZeroMQ and gevent. Fortunately, Net-
workX, the library which we employ to implement Louvain algorithm, is compatible with PyPy
and it is much faster than the CPython interpreter.

We deploy Python programs with VirtualEnv, a Python tool used to create isolated environ-
ments that we can install Python packages without interfering with either the other VirtualEnvs
or the system wide packages. VirtualEnv support CPython and PyPy interpreter and it can help
users build their Python environment without root privileges.

CSCC workstations run two types of operating systems: FreeBSD and Gentoo Linux. Their
home directories are mounted from a NetAPP centralized storage server, as shown in Figure
3.19. We have to make two VirtualEnvs for PyPy for these two types of OS to execute Celery
worker. However, the latest VirtualEnv version 1.8.2 is not capable of building a PyPy virtual
environment on FreeBSD 8.3, so we can only prepare a CPython environment on FreeBSD

workstations.

62

Given the above limitation, we have to route the task manually by adding a new queue for
FreeBSD workstations for load-balancing. First, define two Celery queues (CELERY QUEUES):
default and bsd, and define two routing keys for these queues: pypy and python27. Second,
define the default queue name (CELERY DEFAULT QUEUE), default routing keys (CEL-
ERY DEFAULT ROUTING KEY) and define default route (CELERY ROUTES) for tasks.

Listing 3.12: Celery Routing Configuration

from kombu import Queue

CELERY_QUEUES = (
Queue('default', routing_key="pypy'),
Queue('bsd', routing_key='python27'),
)
CELERY_DEFAULT_QUEUE = 'default’
CELERY_DEFAULT_ROUTING_KEY = 'pypy’

CELERY_ROUTES = {
"tasks.communities': {
‘queue’: 'default’,
'routing_key': 'pypy',
s

Third, start Celery worker process on FreeBSD workstations and Gentoo Linux worksta-
tions, for instance, bsd1 and linux1 with the =Q option to determine the queue consumed by
the Celery worker process. For example, bsd1 will consume queue bsd, linux1 will consume
queue default, and the worker on main server, random, will consume both default and bsd in
case of FreeBSD workstations failure or we have to scale-in our system by disconnecting CSCC

workstations.
[liic@linuxl ~]$ celery worker -Q default --autoscale=16,8

[liic@bsd5 ~]$ celery worker -Q bsd --autoscale=16,8
[ken@random ~]$ celery worker -Q default,bsd --autoscale=20,2

In the end, as CSCC limits the amount of memory consumption for every user defined in /
etc/login.conf for FreeBSD and /etc/security/limits.conf in Gentoo Linux, but does not limit the
use of /tmp storage space, we utilize the storage space as local cache of relationship data from

Redis slaves by employing FileSystemCache caching function from Werkzeug library.

63

Celery Controller
random.cs

- Redis Master
Replication

/ Celery Signals

— Redis Salves Cluster —————
VM 0 ——
Redis Slave
VM 1 — Read Data
Redis Slave
Celery Workers

— CSCC Workstations

— Linux Workstation =——— — FreeBSD Workstation

linux&.cs

Figure 3.17: Celery cluster architecture

Edit Security Group Rules

Security Group Rules

1P Protocal From Port To Port Source
O Tcp 22 22 140.113.0.0/16 (CIDR)
- TP 6379 6379 140.113.207.175/32 (CIDR)
OoTce 6379 6379 140,113.235.0/24 (CIDR)
o Icwe -1 -1 140.113.207.175/32 (CIDR)
[(e -1 -1 140.113.235.0/24 (CIDR) Delete Rule

Displaying 5 items

Add Rule
IP Protocol From Port To Port Source Group CIDR
TCP =l cior =l |ononm

Figure 3.18: OpenStack security group configurations

64

*

bsdl bsd2 bsda b bsd5 bsd6

limux 1 liAux2 linux2 linux4 linuxs linuxs

Figure 3.19: CS workstation cluster architecture

3.8 Delta Cluster Deployment

Delta Electronics, Inc. donated 80 servers in two racks to NCTU in early 2012 (Figure 3.20).
Unlike normal rack servers, the size.of Delta cloud server chassis is customized, as shown in
Figure 3.21, and it does not provide VGA port, i.e. you cannot attach a monitor to view the
console message by a server but shut it down and plug a VGA card on it, as shown in Figure
3.22. Moreover, these servers are designed for building commodity clouds and employ cost-
effective hardware instead of x86 rack servers. Therefore, it is insufficient for administrator to
install OS on these server boxes one-by-one because there are a large number of server boxes
to be set up and if a server down, it would be difficult to determine whether it is a hardware
damage or just kernel panic.

Hence, it is reasonable to employ preboot execution environment (PXE) to build a diskless
environment for these server boxes, as shown in Figure 3.19. This scenario boots depend on
a remote bootable image and the local storage is used to store data without system files. For
example, we can just pull it out of cabinet and plug a new one back into it when a server box
fails or plug server boxes and power them on when you need to power on servers to expand

a cluster. We have to set up DHCP, TFTP, and Network File System (NFS) or Network Block

65

Figure 3.20: Servers and racks donated by Delta, Inc.

Device (NBD) as a network storage implementation for PXE procedure. The detailed installation

steps and configurations are described in Appendix A:

66

Figure 3.21: A single Delta server

Figure 3.22: Delta server with VGA card

67

Figure 3.23: Servers installed.in rack

&

SNSD

NBD slaves

TaeYeon lessica Sunny Tiffany HyoYeon

DD

YuRi SooYoung YoonA SeaHyun SONE

T

KimTaeYeon JungSooYeon LeeSoonkyu Hw foung KimHyaYeon

el

Figure 3.24: Delta cluster architecture

Juniper EX2200

68

Chapter 4

Experiments

In this chapter, we will depict our experimental environments, performance benchmarks for

libraries and systems, and present the website we build for the SNSD system.

4.1 Environment

We deploy several machines to accomplish such systems as the SNSD system, distributed
crawling system, and the website for the SNSD system. Roles and specifications of these ma-
chines are listed in Table 4.1.

Our server random.cs plays the most important role. The website and the message queue
for Celery are run on top of it. Besides, it is also the crawling controller: ventilator, broker,
registry and commander components are run on top of it as well. Delta cloud cluster, running
Arch Linux [44] operating system, is set up as a MonogDB cluster with replication and sharding
features. We employ this cluster to store plurks for SNSD system.

CS workstation cluster is composed of twelve workstations, which is a mixture of Gentoo

Host name CPU Memory | OS Role

random.cs Intel Xeon X5650 48GB Arch Linux Website, Crawling master
Delta cloud | AMD Opteron 270 | 16GB Arch Linux MongoDB, Crawling agent
bsd[1-5].cs | Intel Xeon E5520 8GB FreeBSD Celery worker, Crawling agent
bsdb.cs Intel Xeon E5405 12GB FreeBSD Celery worker, Crawling agent
linux[1-5].cs | Intel Xeon E5520 8GB Gentoo Linux | Celery worker, Crawling agent
linux6.cs Intel Xeon E5405 12GB Gentoo Linux | Celery worker, Crawling agent
oracle-[0-1] | Intel Xeon E5-2620 | 8GB Arch Linux Redis slave

ken.cs Intel Xeon E5462 32GB Arch Linux Celery worker, Crawling agent
master-i7 Intel Core 17-2600K | 16GB Arch Linux Celery worker, Crawling agent

Table 4.1: Machine specifications and roles

69

Linux [29] and FreeBSD [81] operating systems. These workstations are provided by NCTU
CSCC for students. This cluster is used for scaling out computation power by running Celery
workers.

Two virtual machines (oracle-0, oracle-1) from openstack.cs.nctu.edu.tw work as another
cluster to run Redis instances as read-only slaves for requests from CS workstation cluster. Other
machines such as ken.cs and master-i7 perform the role of Celery workers.

Delta cloud cluster, CS workstation cluster (bsd[1-6].cs, linux[1-6].cs), and other machines
listed above can be consolidated into random.cs and the SNSD system, crawling system and

website will still work properly while scaled in.

4.2 Performance Benchmarks

4.2.1 Python JSON Libraries

In order to find out the fastest available Python JSON library in terms of decoding perfor-
mance, we test the following eight popular libraries: yajl[S1], cjson [22], czjson [93], simplejson
[13], ujson [42], anyjson [73];jsonlib [41], and the JSON-library from Python standard library
[68]. The best one will be the replacement library for Plurk API.

We choose three types of data encoded in JSON format from Plurk API as benchmark dataset:
profile (/APP/Profile/getPublicProfile), friends (/APP/FriendsFans/getFriendsByOffset), and time-
line (/APP/Timeline/getPublicPlurks). Dataset will contain Unicode strings and large lists, and
we prepare five different sizes for friends type.

Before performance testing, we did functional testing to verify that all candidate libraries
do the encoding (serializing an object into a string) and decoding (deserializing a string into
an object) well as expected. The cjson, czjson, and jsonlib library do not pass the verification.
Therefore, we will not consider these three libraries in the following tests.

Our benchmark results indicate that anyjson, simplejson, and yajl are faster than standard
library as shown in Figures 4.1 thru 4.3. However, anyjson and yajl comsume more than 420
MB memory during the testing, and they take 400 MB more than standard library, as shown
in Figure 4.4. The ujson performs the best in encoding and decoding tests. It consumes much
less memory, only 12.9 MB. As such, ujson is selected to replace the standard library in our

implementation.

70

—=-Ujson

' \
g zi / \\ ——stdlib
g \

—=—anyjson

0.2 //){ \\ _':i:lplejson
0.1 / / \"a,

o
w

M
™~
/
| |

N) Q ()
FOSEPY I SN ST N

S & @ & 2 & A e D7 N4

- & & kN
& R > o7 & 7 & & S

& & & = \\2’° wl“é ’ & & 1-?* <
< R & & \ 0&/ Q\&
<

Figure 4.1: Encoding performance

2.5

——stdlib
-E-ujson
——anyjson
——simplejson
yail
Figure 4.2: Decoding performance
25
2077
2
» 1.5
o
s H encode
b 1.047 1.042
a4 0,952 decode
0.6270.847
0.660
0.508
0.5 -
0 i T T T
stdlib ujson anyjson simplejson yajl

Figure 4.3: Big data performance

71

450

426.18 426.18

400

350

300

N
9]
Q

]
Q
Q

megabytes

150

100

50

12.78 12.91 12.2
0 | B EEE

stdlib ujson anyjson simplejson yajl

Figure 4.4: Memory usage of JSON libraries

4.2.2 Python Serialization

We need to choose a serialization format for distributed crawling system and Celery to com-
municate with workers and dispatcher. Instead of encoding performance, we prefer higher de-
coding performance and encoded data size because there are tens of workers but few dispatcher
or controller in distributed crawling system and Celery task queue.

There are five candidates in this experiment: JSON (implemented by ujson), MessagePack,
cPickle (Pickle implemented in C), Marshal, and BSON. We randomly select one million plurks
as dataset for benchmark.

According to our benchmark results, BSON performs the worst, and others’ performances
are close. MessagePack is the fastest one as shown in Figure 4.5. In memory usage part, Mes-
sagePack consumes least memory in encoding but most in decoding, as shown in Figure 4.6.
The major performance difference among the candidates is encoded data size: Dataset in JSON
is close to the baseline of 195 MB, MessagePack takes only 144 MB and Pickle takes 240 MB,
as shown in Figure 4.7. We employ MessagePack as the serialization format considering the

decoding performance and encoded data size.

4.2.3 HMAC-SHA1

Python is a popular general-purpose, high-level scripting language and is regarded as a “glue

language”. Even though the execution performance of Python language is much poorer than C/

72

900

739.45
800

700
600
3
S 500
[=]
2 400
w
300

H encode

" decode
200

100

0 -

80

70

60

[5)]
o

M encode

megabytes
=Y
o

w
Q

1 decode
20

10

Figure 4.6: Memory usage of serialization libraries

73

300

250 48:21

200 195.05 188.196
s 166.262
.§ 150 1440896
[:1v]
o
£

100

50
0 T T T

ujson MessagePack cPickle Marshal BSON

Figure 4.7: Encoded data size

C++ or Java language. It is easily extensible with. C/C++ codes to improve computational
performance.

According to Python performance tips [101], we can improve performance dramatically by
rewriting performance-critical-codes in C extension. Examples [69, 100, 53] demonstrate the
way to build a Python extension written in Python C-API or Cython, a language for writing
Python C extension as easily as Python.codes.

In order to accelerate the HMAC-SHAT procedure, we benchmark the following three imple-
mentations and integrate the fastest one into the enhanced Plurk API library: (1) Python standard
libraries, (2) M2Crypto extension and (3) customized extension module with OpenSSL library.

Python standard library provides two options for calculating Base64 encoding: binascii and
base64. The binascii module is implemented in C and it contains a number of low-level func-
tions to convert data between binary and ASCII-encoded representations. The base64 module
is implemented in Python and it provides encoding and decoding functions as specified in RFC
3548. The base64 module calls binascii module for encoding or decoding input, then translates
the alternative alphabet for the ‘+’ and ‘/* characters in encoded/decoded data.

M2Crypto, a Python wrapper library for OpenSSL, provides several features such as RSA,
HMAUC:s, and symmetric ciphers, etc. However, M2Crypto does not provide Base64 encoding
function, i.e. we can only use M2Crypto to calculate HMAC signature and we have to encode the

binary signature by Python. Listing 4.1 illustrates the usage of M2Crypto library and computing

74

16.000

14.000 13.386
12.000 15270

10.000

8.268

8.000

seconds

6.297

6.000

4.000
2.000 1.561

0000 . . =

Figure 4.8: HMAC-SHA1 performance

of Base64 encoding by base64 and binascii module.

Listing 4.1: Compute HMAC-SHA1 by M2Crypto

>>> from M2Crypto.EVP import HMAC

>>> import base64

>>> import binascii

>>> hmac = HMAC('key', 'shail')

>>> hmac.update('message"')

>>> digest = hmac.digest()

>>> print base64.encodestring(digest)[:-1]
II1jfdNXyFGtIFGyvSWU3FfpoL46Q=

>>> print binascii.b2a_base64(digest)[:-1]
I11jfdNXyFGtIFGyvSWU3fpeL46Q=

We calculate one million HMAC-SHA1 with the three implementations mentioned above.
For standard library approach and M2Crypto approach, we do additional test for base64 and
binascii module. As shown in Figure 4.8, our customized module is the fastest and the approach
based on Python standard library is the slowest. Besides, the encoding performance of binascii

module is better than base64 module due to the translation operations as described above.

4.2.4 Python Plurk API Library

We enhanced the plurk-oauth library for crawling performance. Performance are measured
for the following four different concurrency models: single thread, multi-threading, multi-
processing, and gevent. In this experiment, we randomly choose 1,000 plurkers and time the

duration of crawling these uses’ profiles.

75

70.00

60.00 -~

50.00 -~

40.00 - M Threading

seconds

30.00 - B Multiprocessing

Gevent
20.00

10.00 -~ —

0.00 A
8 16 32 64 128 256 512

Figure 4.9: Original API library

60.00

50.00 -

40.00 -

B Threading

B Multiprocessing

seconds
w
[
o
[
]

20.00 - Gevent

10.00 -

0.00 A
8 16 32 64 128 256 512

Figure 4.10:-Enhanced API library

With original library, multi-processing model performs well since worker pool size larger
than 16 and keeps the performance trend on increasing pool size. Gevent performs better than
multi-threading model. However, the performance reaches a ceiling when pool size gets larger
than 32, as shown in Figures 4.9 and 4.11.

Enhanced library improves about 2% than original library in single thread model, 6% in
multi-threading model, 0.2% in multi-processing model, and 85.3% in gevent model, as shown

in Figure 4.10.

4.2.5 Redis Connection

There are three binding modes for Redis: listening to all interfaces, local loopback (listen
127.0.0.1), and domain socket. According to the official documentation [35], domain socket

is the fastest and local loopback is faster than listening to all interfaces. In this experiment, we

76

9.00

8.00

7.00

6.00

'E 5.00 M Threading

§ 4.00 B Multiprocessing
w

3.00 Gevent

2.00

1.00

0.00

8 16 32 64 128 256 512

Figure 4.11: Improvements

140000

120000
100000
80000
60000 H0.0.0.0

40000 B loopback

requests per second

20000 domain socket

0

SET
GET
INCR
LPOP
SADD
SPCP
MSET

LRANGE_300

LRANGE_500

LRANGE_B00

LPUSH

LPUSH
LRANGE_100

e
-
-
o

1 O

=

a

L
=
S
=
w
=
o

Figure'4.12: Redis binding modes

employ official benchmark tool: redis-benchmark and try to verify the performance for the three
binding modes. Furthermore, due to security concern, it is recommended to make requests to
Redis server via SSH tunnel, and we will also measure the connection overhead for both normal
remote connection and SSH tunnel.

According to the benchmark results shown in Figure 4.12 and 4.13, domain socket and local
loopback perform equally well, and both of them are much faster than listening to all interfaces
mode. Besides, normal remote connection is about two times faster than SSH tunnel in the
benchmark. Given the benchmark results, we connect Redis master and read-only slaves via
SSH tunnel for lower traffic replication and synchronization. Read-only slaves accept requests

via normal remote connections for higher traffic lookup and queries.

77

140000

120000

100000

80000

60000
40000

requests per second

20000

*

—

—

0

PING_INLINE

T

PING_BULK

SET
GET
INCR =

LPUSH

LPOP
SADD

LRANGE_100
LRANGE_300

LRANGE_500

LRANGE_600

MSET

M loopback
normal
M SSH tunnel

Figure 4.13: Redis remote connection types

4.3 Interest Derivation

In this section, we do an experiment to measure how many interest keywords might be
guessed right for a private plurker.

Firstly, we randomly sample 100 public plurkers then aggregate their interest keywords di-
rectly from their public plurks and select top-64 frequent keywords to represent the plurker’s
interests.

Secondly, we regard these plurkers as private and derive their interest keywords from com-
munities. For each community, we'select-top-32 frequent keywords to represent the common
topics for the community and aggregate top-64 frequent keywords to from communities to rep-
resent the plurker’s interests.

Finally, we calculate the number of matching interest keywords by counting intersections of
results from the above two scenarios, as shown in Listing 4.2, to evaluate the precision about
“guessing” interest keywords for a plurker. According to Figure 4.14, we can guess right about

36 keywords for these plurker, i.e. more than half of interest keywords are hit in this experiment.

Listing 4.2: Counting the cardinality of two sets

>>> def intersect(a, b):
return list(set(a) & set(b))

>>> public = {'snsd': 9,

'nctu': 2,

>>> private

{'snsd': 18,

"tts':

3,

‘helena': 21}
'nctu’': 1001}

>>> intersect(public, private)

['snsd', 'nctu']

78

I
Q

w
w

(93]
o

[\
o

matching
(]
o

=
¥,]

=
o

[9)]
|

i)
17
15
11
7
:. l A
. : . . ; L

21~25 26 ™30 31735 36 ™~40 41"~ 45 46 ~ 50 51~55

o]

Figure 4.14: Result of interest derivation

4.4 Website Implementation

The website for SNSD system is based on Flask[7] web framework; besides, we employ
Celery as task queue, D3.js[56] aswisualization engine, and Twitter Bootstrap CSS framework
[52] for this website. We provide three functionalities including: interest hierarchy view, interest
tag cloud and focusable community view in pack and treemap layout.

Firstly, interest hierarchy view is rendered in tree layouts from D3.js. It includes customized
script for making nodes collapsible. The interest hierarchy is collapsed when the page rendered.
Website users are allowed to focus‘on particular hierarchy structure of the plurker by the col-
lapsible function as shown in Figure 4.15.

Secondly, interest tag cloud is rendered in cloud layout by jasondavies[39]. This function is
designed for website user to view plurker’s interest keywords with frequency. The more frequent
a keyword occurs, the bigger it will show in the cloud as in Figure 4.16.

Lastly, focusable community view is rendered in pack and treemap layout from D3.js. When
communities for a plurker are rendered, the community view is zoomed out. That is, website
user can view the community overview as shown in Figure 4.17 and Figure 4.18, and he/she can
click a community to zoom in then focus on the community members as shown in Figure 4.19
and Figure 4.20.

Pack layout is suitable for browsing a plurker with less than 300 friends after filtering with
parameter filter as shown in Figure 4.21. Treemap layout is intended for viewing a community
with tens of members. Besides, this function can help plurkers find someone he/she might

know but not his/her friend yet. Because the rendered communities are sampled by the snowball

79

Ken O

3
Bl
o
o]

Is]

of Bt =i e o

o8|

il i

Wi 0 Tk

System

L]

000 000000000

-
-1
B

pd
)
5

[LEETe] Fas
|
i
-
o

00000

i
fal

\
¥
5

&
0000000000000 0 000000

N

€<
o
F
e

194 -

£
E

ado
ny MDR
timste Ears
nhaizer

?Ig a4

R e e T
I

~.~.|
rJI

o]
&f

= O MoteGP
QO Rossi

O Vzlenting Rossi

o}
MetoGP O

O WSBK

O #t

Figure 4.15: Interest keywords hierarchy

O PuFEt

Girls Generstion

0o
&

ol

=
eTiSeo
B

@

zee
un Devil Run

]
=]
n
m
3

he T
w3

0000000000000 0000000000

sampling algorithm with the plurker’s friends and friends-of-friends, this sampling range could

involve someone he/she might already know.

80

HEmm Z=/NEE - TagCloud

: § N
N @EE—HEJI\E‘; / E;(-% %%@5 =
R RIS Al
LRI “2‘0/ \
%4"%%,0 - !Iﬂﬂ!lleq;f ﬁnII@#ﬁ% %%

Figure 4.16: Interest tag cloud

=8

HERE ZEEVEE ~ | Tag Cloud

Figure 4.17: View communities in pack layout

81

EEEE | TE/NEE - Tag Cloud

cwr -II I-I

Glider
EE
gaod

Figure W%emap layout

Hamm TEIEE Tag Cloud

E=F(2BLY)
Taipei, Taiwan

135

Figure 4.19: Focus community on pack layout

82

HE@E© ZEEE - Tag Cloud

WA S (EEE)
Taipei. Taiwan

100 89

1
s
B
ik

20 -100

=3

Feiznl
REHER

D EERERRERLENRE

| [MLEEI Save changes

Figure 4.21: Parameter filter

&3

Chapter 5

Conclusions and Future Works

We build an online SNSD system for Plurk users to find interest topics/keywords and re-
lationship, develop a new crawling framework based on ZeroMQ, and patch the Plurk API for
performance enhancements. Moreover, we build a website with Flask framework. Users can
view the interests and relationship with-a browser.

This system can be further expanded or enhanced in the following areas. First, to provide
administrator with manageable UI'to maintain the interest keyword hierarchy and consider syn-
onyms, hypernyms and hyponyms for the hierarchy definition. For example, the term “SNSD”,
“b L opr > and “A 4 Al O are the synonyms of “Girl’s Generation”, these terms should
belong to only one category in the hierarchy instead of defining more than two categories with
the same meaning.

Second, apply the SNSD system to Twitter for western language and Sina weibo for mainland
China, and consider fans relationship in interest derivation. With independent interest keywords
hierarchy, our design allows the SNSD system to work with social networking services other than
Plurk. What needs to do is to develop a new scraper for crawling conversation and relationship
data from users and fulfill the interest keywords definitions in the hierarchy if the service is not
using traditional Chinese characters.

Third, accelerate community detection with the algorithm proposed by Fortunato [26], Ros-
vall and Bergstrom [72] . The algorithm, based on random work, achieved high performance in
Fortunate’s test. Furthermore, if we still implement the algorithm by Rosvall and Bergstrom or
refactor Louvain algorithm with NetworkX library, we might try to use Intel C compiler (ICC)
and Math Kernel Library (MKL) to compile the SciPy and NumPy libraries which are employed
by NetworkX for better performance [87].

84

Fourth, our customized Python C-extensions for accelerating crypto computation are based
on OpenSSL. Though OpenSSL is already optimized by several hardware acceleration instruc-
tions such as SSE3, SSE4, AES-NI, or AVX etc., it is not fast enough. According to Intel’s report
[90, 34], the Intel Integrated Performance Primitives library is much faster than OpenSSL. The
IPP can be considered to optimize our programs for higher throughput.

Fifth, consider user’s interactivities in conversations for interest topics derivation. We cur-
rently only consider friend relationship to compute community partitions and derive user’s inter-
est topics. However, users will discuss with each other in a plurk/conversation or thread, we can
utilize these information to derive user’s interest topics and work as another filtering mechanism
and derivation parameter.

Finally, Plurk provides poor searching function for users to search public and his/her own
plurks. For the SNSD system, we have already stored most of public plurks, and we may allow
plurkers to provide his/her private plurks to us via Plurk OAuth API and our system may serve

as a full-text search engine in the future:

85

Bibliography

[1] 10gen, Inc. “MongoDB”, 2012. Available: http://www.mongodb.org

[2] 10gen, Inc. “PyMongo Documentation”, 2012. Available: http:// api.mongodb.org/
python/current/

[3] Adams, P. (2011). Grouped: How Small Groups of Friends are the Key to Influence on
the Social Web, New Riders Press.

[4] Alexa Internet, Inc. “Plurkicom Site Info”,.2012. Available: http://www.alexa.com/site-

info/plurk.com
[5] Andrey Petrov. “shazow/urllib3”, 2012. Available: https://github.com/shazow/urllib3

[6] Arenas, A., J. Duch, et al.{2007). “Size reduction of complex networks preserving mod-

ularity.” New Journal of Physics 9(6): 176.

[7] Armin Ronacher. “Flask (A Python Microframework)”, 2012. Available: http://

flask.pocoo.org

[8] Ask Solem. “Homepage | Celery: Distributed Task Queue”, 2012. Available: http://cel-

eryproject.org
[9] Banker, K. (2011). MongoDB in Action, Manning Pubs Co Series. Manning Publications.

[10] Beazley, D. (2010). “An Introduction to Python Concurrency.” from http://

www.slideshare.net/dabeaz/an-introduction-to-python-concurrency.
[11] Beazley, D. M. (2009). Python essential reference, Addison-Wesley Professional.

[12] Blood, R. (2000). “Weblogs: a history and perspective.” Rebecca’s Pocket 7(9): 2000.

86

[13] Bob Ippolito. “simplejson/simplejson”, 2012. Available: http://github.com/simplejson/

simplejson

[14] Brandes, U., D. Delling, et al. (2006). “Maximizing modularity is hard.” arXiv preprint
physics/0608255.

[15] Chau, D.H., S. Pandit, etal. (2007). Parallel crawling for online social networks. Proceed-
ings of the 16th international conference on World Wide Web. Banff, Alberta, Canada,
ACM: 1283-1284.

[16] Cheng, A., M. Evans, et al. (2009). ’Inside Twitter: An in-depth look inside the Twitter
world.” Unpublished report by Sysomos, inc.

[17] Cheng-Lung Sung. “clsung/plurk-oauth”, 2012. Available: https://github.com/clsung/
plurk-oauth

[18] Chen, K. J. and S. H. Liu (1992). Word identification for Mandarin Chinese sentences.
Proceedings of the 14th conference on Computational linguistics-Volume 1, Association

for Computational Linguistics.

[19] Cho, J. and H. Garcia-Molina (2002). Parallel crawlers. Proceedings of the 11th interna-
tional conference on World Wide Web. Honolulu, Hawaii, USA, ACM: 124-135.

[20] Conway, D. (2010). “Mining and ‘Analyzing Online Social Graph Data.Students” from

http://www.drewconway.com/zia/?p=2151.

[21] Crockford, D. (2006). ‘The application/json media type for javascript object notation

(json).”

[22] Dan Pascu. “python-cjson 1.0.5”, 2012. Available: http://pypi.python.org/pypi/python-

cjson

[23] Denis Bilenko. “gevent: A coroutine-based network library for PythonSpeed”, 2012.

Available: http://www.gevent.org
[24] D’Monte, L. (2011). “Swine flu’s tweet tweet causes online flutter.” Business Standard.

[25] Ellison, N. B., C. Steinfield, et al. (2007). ‘The Benefits of Facebook “Friends:” Social
Capital and College Students’ Use of Online Social Network Sites.” Journal of Computer-
Mediated Communication 12(4): 1143-1168.

87

[26] Fortunato, S. (2010). “Community detection in graphs.” Physics Reports 486(3): 75-174.

[27] Gaonkar, S., J. Li, etal. (2008). Micro-Blog: sharing and querying content through mobile
phones and social participation, ACM.

[28] Gaudeul, A. and C. Peroni (2010). “Reciprocal attention and norm of reciprocity in blog-
ging networks.” Economics Bulletin 30(3): 2230-2248.

[29] Gentoo Foundation, Inc. “Gentoo Linux — Gentoo Linux News”, 2012. Available: http://

WWW.gentoo.org

[30] Girvan, M. and M. E. J. Newman (2002). “Community structure in social and biological
networks.” Proceedings of the National Academy of Sciences 99(12): 7821-7826.

[31] Google (2011). Protocol Buffers: Google’s Data Interchange Format.

[32] Guido van Rossum, P. J. E. (2005). “Coroutines via Enhanced Generators.” from http://

www.python.org/dev/peps/pep-0342

[33] Guido van Rossum, T. P.7(2003). “Extensions to. the pickle protocol.” from http://
www.python.org/dev/peps/pep-0307

[34] Gururaj Nagendra. “Boosting Cryptography. Performance with Intel®Libraries”, 2012.
Available: http://software.intel.com/en-us/articles/boosting-cryptography-performance-

with-intel-libraries
[35] “How fast is Redis? — Redis”, 2012. Available: http://redis.io/topics/benchmarks

[36] Hughes, D. J., M. Rowe, et al. (2012). “A tale of two sites: Twitter vs. Facebook and
the personality predictors of social media usage.” Computers in Human Behavior 28(2):

561-569.

[37] iMatix Corporation. “The Intelligent Transport Layer - zeromq”, 2012. Available: http://

WWW.Zeromq.org

[38] Jansen, B. J., M. Zhang, et al. (2009). “Twitter power: Tweets as electronic word of
mouth.” Journal of the American society for information science and technology 60(11):

2169-2188.

88

[39] Jason Davies. “jasondavies/d3-cloud”, 2012. Available: https://github.com/jasondavies/
d3-cloud

[40] Jesse Noller, R. O. (2008). “Addition of the multiprocessing package to the standard li-
brary.” from http:/www.python.org/dev/peps/pep-0371.

[41] John Millikin. “jsonlib in Launchpad”, 2012. Available: https://launchpad.net/jsonlib
[42] Jonas Térnstrom “esnme/ultrajson”, 2012. Available: http://github.com/esnme/ultrajson
[43] “JSON”, 2012. Available: http://json.org

[44] Judd Vinet, Aaron Griffin. “Arch Linux”, 2012. Available: http://www.archlinux.org

[45] Karwin, B. and J. Carter (2010). SQL Antipatterns: Avoiding the Pitfalls of Database

Programming, Pragmatic Bookshelf.
[46] Kegel, D. (2006). “The C10K problem.” from http://www.kegel.com/c10k.html.

[47] Ken Lee, Bryan Cheng, Sean Lee. “Go!Plurk =% ;2 2 4& 4 47 %, 2012. Available: http://

goplurk.cse.tw

[48] Krawczyk, H., M. Bellare, et al. (1997). REC 2104: HMAC: Keyed-hashing for message

authentication, IETF, February:.

[49] Kwak, H., C. Lee, et al. (2010). What is Twitter, a social network or a news media?
Proceedings of the 19th international conference on World wide web. Raleigh, North

Carolina, USA, ACM: 591-600.

[50] Lin, V. (2010). “Talk about Coroutine and Gevent.” from http://blog.ez2learn.com/
2010/07/17/talk-about-coroutine-and-gevent

[51] Lloyd Hilaiel. “yajl”, 2012. Available: http://lloyd.github.com/yajl

[52] Mark Otto, Angus Droll. “Bootstrap”, 2012. Available: http://twitter.github.com/boot-

strap

[53] Matthew Perry. “A quick Cython introduction”, 2012. Available: http://
blog.perrygeo.net/2008/04/19/a-quick-cython-introduction

&9

[54] Ma, W. Y. and K. J. Chen (2003). Introduction to CKIP Chinese word segmentation
system for the first international Chinese Word Segmentation Bakeoff, Association for

Computational Linguistics.

[55] Martin Sustrik. “@MQ: The Theoretical Foundation - 250bpm™, 2012. Available: http://
d3js.org

[56] Michael Bostock. “D3.js - Data-Driven Documents”, 2012. Available: http://d3js.org

[57] Mikhail Korobov. “marisa-trie 0.3.7”, 2012. Available: http://pypi.python.org/ pyp1/

marisa-trie

[58] National Digital Archives Program, Taiwan. “® < %73# % L7, 2012. Available: http://

ckipsvr.iis.sinica.edu.tw

[59] Newman, M. E. J. and M. Girvan (2004). “Finding and evaluating community structure
in networks.” Physical Review E 69(2): 026113.

[60] Newman, M. E. J. (2004). “Fast algorithm for detecting community structure in net-
works.” Physical Review E 69(6): 066133.

[61] Newman, M. E. J. (2004). “Analysis of weighted networks.” Physical Review E 70(5):
056131.

[62] Newman, M. E. J. (2006). “Modularity and community structure in networks.” Proceed-

ings of the National Academy of Sciences 103(23): 8577-8582.
[63] Nick Mathewson, Niels Provos. “libevent”, 2012. Available: http://libevent.org
[64] OAuth Core Workgroup. “OAuth Core 1.0a”, 2012. Available: http://oauth.net/core/1.0a
[65] OASIS. “AMQP”, 2012. Available: http://www.amqp.org

[66] O’Higgins, N. (2011). MongoDB and Python: Patterns and Processes for the Popular

Document-oriented Database, O’Reilly Media.
[67] Plurk Inc. “Plurk API 2.0”, 2012. Available: http://www.plurk.com/API

[68] Python Software Foundation. “18.2. json —JSON encoder and decoder — Python v2.7.3
documentation”, 2012. Available: http://docs.python.org/library/json.html

90

[69] Python Software Foundation. ‘1. Extending Python with C or C++ — Python v2.7.3
documentation‘”, 2012. Available: http://docs.python.org/2/extending/extending.html

[70] Ralf Schmitt. “python-greenlet/greenlet”, 2012. Available: https://github.com/python-

greenlet/greenlet

[71] Romm-Livermore, C. and K. Setzekorn (2009). Social networking communities and e-

dating services: Concepts and implications, IGI Global.

[72] Rosvall, M. and C. T. Bergstrom (2008). “Maps of random walks on complex networks
reveal community structure.” Proceedings of the National Academy of Sciences 105(4):

1118-1123.
[73] Rune Halvorsen. “runeh / anyjson”, 2012. Available: https://bitbucket.org/runeh/anyjson

[74] Russell, M. (2011). Mining the Social Web: Analyzing Data from Facebook, Twitter,
LinkedIn, and Other Social Media Sites, O’Reilly Media, Inc.

[75] Russell, M. A. (2011). 21 Recipes for Mining Twitter, Oreilly & Associates Inc.

[76] Sadayuki Furuhashi. “MessagePack: It’s like JSON. but fast and small.”, 2012. Available:
http://msgpack.org

[77] Salvatore Sanfilippo, Pieter Noordhuis:“Redis”, 2012. Available: http://redis.io

[78] “Sharded Cluster Architectures — MongoDB Manual”, 2012. Available: http://

docs.mongodb.org/manual/administration/sharding-architectures/

[79] SimpleGeo Inc. “simplegeo/python-oauth2”, 2012. Available: https://github.com/sim-
plegeo/python-oauth2

[80] Tang, L.and H. Liu (2010). “Community detection and mining in social media.” Synthesis
Lectures on Data Mining and Knowledge Discovery 2(1): 1-137.

[81] The FreeBSD Project. “The FreeBSD Project”, 2012. Available: http://www.freebsd.org

[82] Thomas Aynaud. “taynaud / python-louvain”, 2012. Available: https://bitbucket.org/tay-

naud/python-louvain

[83] Thomas Broyer. “httplib2 - A comprehensive HTTP client library in Python”, 2012.
Available: http://code.google.com/p/httplib2

91

[84] Tsai, C. H. (2000). “MMSEG: A word identification system for Mandarin Chinese text
based on two variants of the maximum matching algorithm.” Avaible on internet at http://

technology.chtsai.org/mmseg.

[85] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebre.

“Fast unfolding of community hierarchies in large networks” arXiv (2008): 0803.0476.

[86] Vinta. “gibuloto/paranoid-auto-spacing”, 2012. Available: https://github.com/gibuloto/

paranoid-auto-spacing

[87] Vipin Kumar E K. “Numpy/Scipy with Intel® MKL”, 2012. Available: http://soft-

ware.intel.com/en-us/articles/numpyscipy-with-intel-mkl

[88] Wilson, C., B. Boe, et al. (2009). User interactions in social networks and their implica-

tions. Proceedings of the 4th ACM European conference on Computer systems, ACM.

[89] Wu, S., J. M. Hofman, et al:(2011). Who says what to whom on twitter. Proceedings of
the 20th international conference-on World wide web. Hyderabad, India, ACM: 705-714.

[90] Yang C. “Boosting OpenSSL AES Encryption with Intel®IPP”, 2012. Available: http://

software.intel.com/en-us/articles/boosting-openssl-aes-encryption-with-intel-ipp

[91] Yata Susumu. “ marisa-trie - Matching-Algorithm with Recursively Implemented Stor-

Age”, 2012. Available: https://code.google.com/p/marisa-trie

[92] Zhao, D. and M. B. Rosson (2009). How and why people Twitter: the role that micro-

blogging plays in informal communication at work, ACM.
[93] Zuroc. “czjson 1.0.8”, 2012. Available: http://pypi.python.org/pypi/czjson

[94] # % Z.“GoPlurk! ;3 " 4B 2 4548 > 5 ¢ it IR 2 4 | 7, 2012. Available:
http://briian.com/?p=6331

[95] > E.“ " Go!Plurk ; 4 #7 i% e j2 @481t], 2012. Available: http://mag.udn.com/
mag/digital/storypage.jsp?f ART 1D=199431

[96] “BSON - Binary JSON”, 2012. Available: http://bsonspec.org

[97] “Encryption - zeromq”, 2012. Available: http://www.zeromq.org/topics:encryption

92

[98] “PyPy”, 2012. Available: http://pypy.org
[99] “Overview — NetworkX 1.7 documentation”, 2012. Available: http://networkx.lanl.gov

[100] “Python Programming/Extending with C - Wikibooks, open books for an open world”,
2012. Available: http://en.wikibooks.org/wiki/Python Programming/Extending with C

[101] “PythonSpeed/ PerformanceTips - PythonInfo Wiki”, 2012. Available: http:/
wiki.python.org/moin/PythonSpeed/PerformanceTips

[102] “Twisted”, 2012. Available: http://twistedmatrix.com/trac

[103] “R = 2 ~ F F1 4% % NCTU Department of Computer Science”, 2012. Avail-

able:http://www.cs.nctu.edu.tw/cht/about_cs/index1.php

93

Appendix A

Diskless Linux Cluster Installation

A.1 Base System

Setup network in the live installation environment

ip addr add 140.113.207.149/24 dev eth@

ip link set up etho

ip route add default via 140.113.207.254

echo nameserver 8.8.8.8 > /etc/resolv.conf.head
passwd

/etc/rc.d/sshd start

H OH H O H O H H

Prepare hard drive

fdisk -1

cfdisk /dev/sda
mkfs.ext4 /dev/sdal
mkfs.btrfs /dev/sda3

H O OH O H O H

mkswap /dev/sda2 && swapon /dev/sda2

Mount the partitions

mount /dev/sda3 /mnt
mkdir -p /mnt/boot
mount /dev/sdal /mnt/boot

Select installation mirror

94

mkdir -p /mnt/etc/pacman.d
echo "Server = http://linux.cs.nctu.edu.tw/archlinux/"\$repo"/os/"\$arch"" > /mnt/etc/pacman.d/

mirrorlist

Install the base system and bootloader

pacstrap /mnt base base-devel syslinux btrfs-progs

Generate fstab then chroot into system

genfstab -p /mnt >> /mnt/etc/fstab

arch-chroot /mnt

Miscellaneous configurations

sed -1 's/PermitRootLogin yes/PermitRootLogin no/g' /etc/ssh/sshd_config

cat >> /etc/pacman.conf <<EOF
[archlinuxfr]

Server = http://repo.archlinux.fr/\$arch
EOF

cat > /etc/ntp.conf <<EOF
server tick.stdtime.gov.tw prefer
server tock.stdtime.gov.tw prefer
server time.stdtime.gov.tw prefer
server clock.stdtime.gov.tw
server watch.stdtime.gov.tw
restrict default nomodify nopeer
restrict 127.0.0.1

driftfile /var/lib/ntp/ntp.drift
logfile /var/log/ntp.log

EOF

echo "HOSTNAME" > /etc/hostname

cat > /etc/vconsole.conf <<EOF
KEYMAP="us"

CONSOLEFONT=

CONSOLEMAP=

USECOLOR="yes"

EOF

1n -s /usr/share/zoneinfo/Asia/Taipei /etc/localtime

cat >> /etc/locale.gen <<EOF
en_US.UTF-8 UTF-8

95

zh_TW.UTF-8 UTF-8
zh_TW BIGS
EOF

locale-gen

echo "LANG=en_US.UTF-8" > /etc/locale.conf

Configure the network (static IP)

cat > /etc/resolv.conf <<EOF
nameserver 8.8.8.8

nameserver 8.8.4.4

nameserver 140.113.235.1

EOF

chattr +i /etc/resolv.conf

pacman -S netcfg ifplugd

cat > /etc/network.d/ethernet-static <<EOF
CONNECTION='ethernet"

INTERFACE="ethe'

IP="static’

ADDR='140.113.207.147"
GATEWAY='140.113.207.254"

DNS=('8.8.8.8', '8.8.4.4', '140.113.235.1")
EOF

systemctl enable net-auto-wired.service

disabled Ctrl+Alt+Del to reboot
systemctl mask ctrl-alt-del.target

Enable DAEMONS

systemctl enable cronie.service ntpd.service sshd.service iptables.service syslog-ng.service

iptables -N sshguard
iptables -A INPUT -p tcp --dport 22 -j sshguard
iptables-save > /etc/iptables/iptables.rules

H O H O H =

systemctl restart sshguard.service

Create an initial ramdisk environment

sed -1 's/MODULES=""/MODULES="virtio_blk virtio_pci virtio_net"/g' /etc/mkinitcpio.conf

mkinitcpio -p linux

96

Configure the bootloader

/usr/sbin/syslinux-install_update -iam

vi /boot/syslinux/syslinux.cfg

Root password and adding a user

passwd
adduser

useradd -m -g wheel -G root,log -s /bin/bash ken

Clean up then reboot

rm -rf /var/log/*

rm /var/cache/pacman/pkg/*
exit

rm /mnt/root/.bash_history

umount /mnt/boot /mnt

H O oH H O H H

reboot

A.2 Network Block Device (NBD) Server

Install NBD

pacman -S nbd

Create NBD Image

mkdir /nbd

truncate -s 4G /nbd/root

mkfs.ext4 /nbd/root

mount /nbd/root /mnt

export root=/mnt

mkdir -p $root/{proc,sys,run,tmp}

mkdir -p $root/dev/{pts,shm}

mkdir -p "$root/var/lib/pacman"

mount -t proc proc "$root/proc" -o nosuid,noexec,nodev
mount -t sysfs sys "$root/sys" -o nosuid,noexec,nodev
mount -t devtmpfs udev "$root/dev" -o mode=0755,nosuid

mount -t devpts devpts "$root/dev/pts" -o mode=0620,gid=5,nosuid, noexec

H OH H OH OH OH H O H OH OH OH OH O H

pacman -Syu --root “"$root" --dbpath "$root/var/lib/pacman" base base-devel --arch x86_64

sed -i 's/~HOOKS=".*"/HOOKS="base udev net nbd autodetect pata scsi sata mdadm lvm2 filesystems us-

binput fsck"/g' "$root/etc/mkinitcpio.conf"

97

echo 'NETWORK_PERSIST="yes"' > "$root/etc/rc.conf"
chroot "$root" /bin/bash
(chroot) # mkinitcpio -p linux

(chroot) # exit

umount "$root/dev/pts" "$root/dev" "$root/sys" "$root/proc"

/etc/nbd-server/config

[generic]
user = nbd
group = nbd
[nbdroot]

exportname = /nbd/root

authfile = /etc/nbd-server/allow
copyonwrite = true

postrun = rm -f %s

/etc/nbd-server/allow

192.168.1.2
192.168.1.3
192.168.1.4
192.168.1.5
192.168.1.6
192.168.1.7
192.168.1.8
192.168.1.9
192.168.1.10
192.168.1.11
192.168.1.12
192.168.1.13
192.168.1.14
192.168.1.15
192.168.1.16
192.168.1.17
192.168.1.18
192.168.1.19
192.168.1.20

Install Pxelinux

pacman -S syslinux

mkdir -p /nbd/boot/pxelinux.cfg
cp /usr/lib/syslinux/pxelinux.@ /nbd/boot

mount /nbd/root /mnt
cp -r /mnt/boot /nbd/boot

umount /mnt

98

/mbd/boot/pxelinux.cfg/default

default linux

label linux
kernel vmlinuz-linux

nbdo

A.3 DHCP and PXE Server

Install DNSMasq

pacman -S dnsmasq

/etc/dnsmasq.conf

interface=ethl

bind-interfaces
dhcp-range=192.168.1.2,192.168.1.20,12h
read-ethers
dhcp-option-force=208,f1:00:74:7¢
dhcp-option-force=209, configs/common
dhcp-option-force=210, /nbd/boot/
dhcp-boot=pxelinux.0

enable-tftp

tftp-root=/nbd/boot/

/etc/ethers
00:16:e€6:50:26:70 192.168.1.2
00:16:e6:4d:e3:ea 192.168.1.3
00:16:e6:50:a8:ce 192.168.1.4
00:16:€6:50:be:d2 192.168.1.5
00:14:85:e8:e5:04 192.168.1.6
00:16:e6:4d:dc:b6 192.168.1.7
00:14:85:f0:7c:5c 192.168.1.8
00:16:e6:4f:7f:cc 192.168.1.9
00:16:e6:4e:db:08 192.168.1.10
00:16:e6:5b:ba:3a 192.168.1.11
00:16:e6:55:02:8e 192.168.1.12
00:16:e6:4d:e3:ec 192.168.1.13
00:16:e6:4e:d0:04 192.168.1.14
00:16:e6:52:ff:8e 192.168.1.15
00:16:€6:51:39:12 192.168.1.16
00:16:e6:51:fb:3a 192.168.1.17
00:16:e6:4e:d0:a0 192.168.1.18
00:14:85:ed:55:24 192.168.1.19
00:14:85:f3:cl:e4 192.168.1.20

99

Appendix B

MongoDB Cluster Installation

B.1 MongoDB Installation

Install MongoDB and numactl

pacman -S mongodb numactl

Make directories for MongoDB

mkdir -p /data/mongodb/configsvr
mkdir -p /data/mongodb/log

chown -R mongodb:daemon /data/mongodb

Creat empty logfile then change owner and group

touch /data/mongodb/log/shardsvr.log /data/mongodb/log/configsvr.log
chown -R mongodb:daemon /data/mongodb

Disable hugepage

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled
echo madvise > /sys/kernel/mm/transparent_hugepage/defrag

echo @ > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag

/etc/hosts
#<ip-address> <hostname.domain.org> <hostname>
127.0.0.1 localhost
HE localhost
192.168.1.1 master loghost SNSD
192.168.1.2 slaveo TaeYeon

100

192.168.1.3 slavel Jessica
192.168.1.4 slave2 Sunny
192.168.1.5 slave3 Tiffany
192.168.1.6 slave4d HyoYeon
192.168.1.7 slave5 YuRi
192.168.1.8 slave6 SooYoung
192.168.1.9 slave?7 YoonA
192.168.1.10 slave8 SeoHyun
192.168.1.11 slave9 SONE
192.168.1.12 slavelo KimTaeYeon
192.168.1.13 slavell JungSooYeon
192.168.1.14 slavel2 LeeSoonKyu
192.168.1.15 slavel3 HwangMiYoung
192.168.1.16 slavel4d KimHyoYeon
192.168.1.17 slavel5 KwonYuRi
192.168.1.18 slavel6 ChoiSooYoung
192.168.1.19 slavel? ImYoonA
192.168.1.20 slavel8 SeoJuHyun

/etc/mongodb/configsvr.conf

configsvr = true

quiet = true

dbpath = /data/mongodb/configsvr

logpath = /data/mongodb/log/configsvr.log
logappend = true

rest = true

/etc/mongodb/mongos.conf

quiet = true
logpath = /data/mongodb/log/mongos.log
logappend = true

/etc/mongodb/shardsvr.conf

shardsvr = true

quiet = true

dbpath = /data/mongodb

logpath = /data/mongodb/log/shardsvr.log
logappend = true

oplogSize = 100

rest = true

101

/apo8uou/exep/

/qpoguow/e3ep/

/qposuou/ejep/

/apo3uou/e3ep/

/qpo8uou/exep/

/qposuou/ejep/

/apo3uou/e3ep/

/aqpo8uou/exep/

yzedqp--

yyedgp--

yzedqgp--

yzedqp--

yzedgp--

yzedqgp--

yzedqp--

yzedgp--

LToLcT

9celc

Scele

vecoLe

€coLe

ccele

TcoLt

ecoeLe

jdJod--

JJdod--

1Jdod--

JdJod--

JJdod--

JJdod--

JdJod--

JJdod--

T°T°89T1°¢6T

T'1°891°¢61

T'1°89T°¢6T

T°T°89T1°¢6T

T°1°89T°¢61

T'1°89T°¢6T

T°T°89T°¢61T

T'1°89T°¢61

dr putq-- £sd

dr putqg-- 9sJ

dr putqg-- gsdJ

dr putq-- psd

dt putg-- €sd

dr putqg-- gsdJ

dr putg-- Tsd

dt putg-- @sJ

19sTdad--

19sTdaJ--

19sTdau--

19sTdau--

319sTdad--

19sTdau--

19sTdad--

3}9sTdaJ--

4U0d *JuASpJeYsS /gpoSuow /333 /

JU0> *UASpJeYS /gpoduow /333 /

JU0D * uASpJeYS /qpoSuow /313 /

JU0D *JASpJeYsS /qpoSuow /333 /

1JU0> *UASpJeYsS /gpoduow /333 /

JU0D * uASpJeYS /qpoSuow /313 /

JU0d *uAspJeys /qpoSuow /333 /

1U0> *UASpJeYS /gpoduow /333 /

po3uouw

po3uouw

po3uouw

po3uouw

poSuouw

po3uouw

po3uouw

poSuouw

TIEe=°9AE9TJ2]1UT -~

TIe=9ABITUIIUT -~

TTe=9AB3TJDIUT--

TIE=9ARITUIIUT -~

TTe=9ABITUIIUT - -

TTe=9AB3TJDIUT--

TIE=9ARITUIIUT -~

TIe=9ARITUIIUT -~

T3oewnu, >- gqpoSuow NS #psus
WJ0J-- 3S3dJ-- 9SJ/Jd3TqUe
T3oewnu, >- gpoSuow NS #psus
WJ0J-- 1SdJ-- GSJ/JDITqUe
T1oewnu, >- gpoSuow NS #psus
WDIM04-- 3SdJ-- HSJ/Jd1TqUe
T3oewnu, >- gqpoSuow NS #psus
WDJ0J-- 3SdJ-- €SJ/Jd3TqUe
T3oewnu, >- gpoSuow NS #psus
WfJ0J-- 1SdU-- gSJ/JDITqUe
T1oewnu, >- gpoSuow NS #psus
WfJ04-- 1SdU-- TSJ/JD1TqUE
T3oewnu, >- gqpoSuow NS #psus
WDJ0J-- 3S3dJ-- @SJ/Jd3TqUe

T3oewnu, d- gpoSuow NS #Psus

Jajsewr uo s.Jajiq.ae jie)§

WDJ0J-- 6TOLTZ:9UOS “6TOLT:PSUS ‘6TOLT:uodAae] gp3TJuod-- Juod*soduow/qpoduow/d33/ 4- soduow, d- qpo3uow NS #UOSAILJWTY

WDJ04-- 6TOLT:9UOS “6TOLT:PSUS ‘6TOLT:U02A3R]) qp3T4U0D-- Ju0d*soduow/gpoduow/d3d/ 4- soduow, d- gpoduow ns Huoaksel

DJ04-- 6TOLT:PSUS “6TOLT:U03ASRY ‘6TRLT:9UO0S gp8T4U0d-- 4u0d*soduow/qpoduow/d33d/ 4- soduow, d>- gpoduow NS #dUOS

WDIJ04-- 6TQLT:U02K3LR] “6TRLT :DUOS ‘6TRLZ:PSUS gpST4UOD-- Juo0d*soSuow/qpoSuow/>3d/ - soSuow, d- gpoSuow NS #psus

soguour 1Ie)S

WJO4-- 3SdJ-- JU0D*JASST4UO0D/gpoSuow/d>31d/ - poSuow T[E=dABSTJDIUT-- T3Idewnu, d- gpoSuow ns #uoaksel

WDIMO4-- 3S9J-- 4U0D JUASSTJUOD/gpoSuow/333/ - poSuow TTE=9ABSTJIIUT-- TIdewnu, d- gpoSuow NS #13UOS

WDIMO4-- 3S9J-- JU0D*JUASSTJIUOD/gpoSuow/33d/ J- poSuow TTE=9ABSTJIIUT-- TIdewnu, d- gposuow NS #psus

SJIIAIIS SIJUO0D }aB)S

102

Wd04-- Q¢ T 89T C¢6T
WJd04-- 6T°T 89T C6T
WJd04-- 8T°T 89T C6T
WAU03-- LT T 89T°¢C6T
wld03-- 9T T 89T°C6T
Wd04-- ST T 89T C6T
Wd03-- YT T 89T C6T
W04 -- €T°T 89T C6T
W04 -- CT°T 89T C¢6T

w¥03-- BT T 89T°¢C6T

WId03-- 6°T°89T°¢C6T
WId04-- 8°T°89T°¢C6T
WIJ0F-- L T"89T°C6T
WIJ03-- 9°T 89T C6T
WIJ03-- G T 89T C6T
WIJ0F-- ¥ T 89T C6T
WIM0F-- €°T°89T°¢C6T
WIM04-- T T°89T°¢C6T

dr putq-- 8sd
dt putq-- /sd
dr putg-- 9sd
dr putqg-- gsd
dtputg-- psd
dr putq-- €sd
dr putqg-- gsd
dt putg-- TSJ
dt putg-- @sJ
dr putq-- 8su
dr putq-- £su
drputq-- 9su
dt putqg-- gsu
dr putq-- #sdJ
dt putg-- €sd
dr putq-- gsd
dt putq-- TsdJ
dt putqg-- @sd

13stdau--
319sTdad--
19sTdad--
3astdau--
3astdau--
3astdad--
13stdad--
}9sTdad--
19sTdau--
3}9sTdau--
319sTdau--
319sTdau--
19sTdad--
19sTdad--
3}9sTdad- -
19sTdaJ--
39sTdau--
319sTdau--

JU0D *uASpueys /qpoSuow /333 /
JFU0D *JASpueys /qpoSuouw/33a/
JUOD *uASpueys /qpoSuouw /333 /
JU0D *uAspueys /qpoSuow /333 /
JU0D *uASpJeys /gpo3uow /23 /
JU0D *uAspueys/qpoduouw/333/
JU0D *uAspueys /qpoduow /333 /
JU0D *uASpJeys /qpoduow /333 /
JU0D *uASpueys /qpoSuouw/33a/
JUOD *uASpueys /qpoduow /333 /
JU0D *uAspueys /qpoduow /333 /
4U0D *UASpJeYS /gpo3uow /233 /
JU0d *uAspueys/qpoSuouw /333 /
JU0d *uASpueys /qpoSuouw /333 /
JU0D *uASpueysS /qpoSuow /333 /
JUOD *uASpueys /qpoduow /333 /
JUOD *uASpueys /qpoduow /333 /

JU0d * UASpJeYS /qpoguou /313 /

Ur
.
4
4
4
4
4
4
I
4
4
4
4
4
.
4
4
4

poSuow
poSuow
poSuow
po3uow
poSuow
poSuow
poSuow
poSuow
poSuow
po3uow
poSuow
poSuow
poSuow
poSuow
poSuow
poSuow
po3uow

poSuow

TTe=9ABSTJIIUT--
TTe=9AB3TJDIUT--
TTe=9ABSTJDIUT--
TTe=9ABSTJSIUT--
TTe=9ABSTJSIUT--
TTe=9ABSTJIIUT--
TTe=9ABSTJIIUT--
TTe=9AB3TJDIUT--
TTe=9ABSTJDIUT--
TTEe=9ARSTJSIUT- -
TTEe=9ABSTJSIUT- -
TTE=9ABSTJSIUT--
TTe=9ABSTJDIUT--
TTEe=9ABTJDIUT- -
TTEe=9ARTJDIUT- -
TTEe=9ARTJSIUT- -
TTEe=9ARSTJSIUT- -

TTE=9ABSTJDIUT--

T3oewnu, d- gpoSuow NS #8TIARTS
T3oewnu, >- gpoSuow NS #/TIABTS
T3oewnu, >- gpoSuow NS #9TIARTS
T1oewnu, >- gpoSuow NS #STIABTS
T1oewnu, >- gpoSuow NS #HTIABTS
T3oewnu, d- gpo3uow NS #ETIABTS
T3oewnu, d- qpoSuow NS #ZTIABTS
T3oewnu, >- gpoSuow NS #TTIABTS
T3oewnu, >- gpoSuow NS #ETIABTS
T3dewnu, d>- gpoSuow NS #83ABTS
T1dewnu, >- gpoSuow NS #/3ABTS
T3dewnu, >- gpoSuow NS #93ABTS
T3dewnu, d>- gpoSuow NS #SGIABTS
T3dewnu, d>- gpoSuow NS #yAABTS
T3dewnu, d>- gpoSuow NS #EIABTS
T3dewnu, d>- gpoSuow NS #ZSABTS
T3dewnu, >- gpoSuow NS #TSARTS
T1dewnu, >- gpoSuow NS #@SABTS

SIIAIIS pPJaeYS 1Ie)S

DI04 -- 3SdU-- 8SJ/Jd3TqUe

/qpo3uow/eyep/ yiedqp-- 820L¢ IJod-- T°T°89T 76T dTI puTq-- 8SJ 33STAdJ-- JUOD*JUASpJeys/qpo3uow/d33d/ - po3uow TTE=3ABITJDIUT-- T3dewnu, d- gpo3uow NS #psus

WJ0J-- 1SdU-- /£SJ/JD1TqUe

103

B.2 Replica Sets

Initialize replica sets

ken@snsd$ mongo taeyeon:27018
MongoDB shell version: 2.0.5
connecting to: taeyeon:27018/test
> var cfg = {
_id : "rso",
members : [
{_id : @, host : "taeyeon:27018", priority : 1},
{_id : 1, host : "kimtaeyeon:27018", priority : 2},
{_id : 2, host : "snsd:27020", arbiterOnly : true}

. 1
ooo)
> rs.initiate(cfg)
{
"info" : "Config now saved locally. Should come online in about a minute.",
"ok" : 1

> rs.conf()

{
" id" : "rse”,
"version" : 1,
"members" : [
{
"_id" : o,
"host" : "taeyeon:27018"
s
{
"_id" @ 1,
"host" : "kimtaeyeon:27018",
"priority" : 2
s
{
"_id" @ 2,
"host" : "snsd:27020",
"arbiterOnly" : true
}
1
}
SECONDARY> rs.status()
{
"set" : "rs@",

"date" : ISODate("2012-06-13T17:06:07Z"),
"myState" : 2,

"syncingTo" : "kimtaeyeon:27018",
"members" : [

{
" id" : o,
"name" : "taeyeon:27018",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"optime" : {

"t" : 1339606871000,
B R

1
"optimeDate" : ISODate("2012-06-13T17:01:117"),
"self" : true

1

{
" id" ¢ 1,
"name" : "kimtaeyeon:27018",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"uptime" : 286,
"optime" : {

104

"t" : 1339606871000,
"it o1
s
"optimeDate" : ISODate("2012-06-13T17:01:117"),
"lastHeartbeat" : ISODate("2012-06-13T17:06:07Z"),
"pingMs" : ©
}}
{
"_id" 2,
"name" "snsd:27020",
"health" : 1,
"state" : 7,
"stateStr" "ARBITER",
"uptime" : 248,
"optime" : {
"t" 0,
"i" . 0
s
"optimeDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2012-06-13T17:06:07Z"),
"pingMs" : ©
}
1,
"ok" : 1
}
SECONDARY >

Replica sets configuration

var cfg = {
_id : "rseo",
members : [
{_id : @, host : "taeyeon:27018", priority : 1},
{_id : 1, host : "kimtaeyeon:27018", priority : 2},
{_id : 2, host : "snsd:27020", arbiterOnly : true}
]
}
var cfg = {
_id : "rs1",
members : [
{_id : @, host : "jessica:27018"},
{_id : 1, host : "jungsooyeon:27018"},
{_id : 2, host : "snsd:27021", arbiterOnly : true}
]
}
var cfg = {
_id : "rs2",
members : [
{_id : @, host : "sunny:27018"},
{_id : 1, host : "leesoonkyu:27018"},
{_id : 2, host : "snsd:27022", arbiterOnly : true}
]
}
var cfg = {
_id : "rs3",
members : [
{_id : @, host : "tiffany:27018"},
{_id : 1, host : "hwangmiyoung:27018"},
{_id : 2, host : "snsd:27023", arbiterOnly : true}
]
}
var cfg = {
_id : "rs4",
members : [
{_id : @, host : "hyoyeon:27018"},
{_id : 1, host : "kimhyoyeon:27018"},

105

{_id 2, host :
1
}
var cfg = {
_id : "rs5",
members : [
{_id : @, host :
{_id : 1, host :
{_id : 2, host :
1
}
var cfg = {
_id : "rs6",
members : [
{_id : @, host
{_id : 1, host :
{_id : 2, host
1
}
var cfg = {
_id : "rs7",
members : [
{_id : @, host
{_id : 1, host :
{_id : 2, host :
1
}
var cfg = {
_id : "rs8",
members : [
{_id : @, host :
{_id : 1, host :
{_id : 2, host :
1
}

"snsd:27024", arbiterOnly

: true}

"yuri:27018"},
"kwonyuri:27018"},

"snsd:27025", arbiterOnly

. true}

: "sooyoung:27018"},

"choisooyoung:27018"},

: "snsd:27026", arbiterOnly

. true}

: "yoona:27018"},

"imyoona:27018"},

"snsd:27027", arbiterOnly

. true}

"seohyun:27018"},
"seojuhyun:27018"},

"snsd:27028", arbiterOnly

: true}

B.3 Sharding

Add shards

mongos> use admin
switched to db admin
mongos> db.runCommand ({
{ "shardAdded" : "rse",
mongos> db.runCommand ({
{ "shardAdded" : "rs1i",
mongos> db.runCommand ({
{ "shardAdded" : "rs2",
mongos> db.runCommand ({
{ "shardAdded" : "rs3",
mongos> db.runCommand ({
{ "shardAdded" : "rs4",
mongos> db.runCommand ({
{ "shardAdded" : "rs5",
mongos> db.runCommand ({
{ "shardAdded" : "rs6",
mongos> db.runCommand ({
{ "shardAdded" : "rs7",
mongos> db.runCommand ({
{ "shardAdded" : "rs8",

ken@snsd$ mongo snsd:27017
MongoDB shell version: 2.0.5
connecting to: snsd:27017/test

addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1
addshard
"ok" : 1

"rs@/taeyeon:27018,kimtaeyeon:27018" });

: "rsl/jessica:27018, jungsooyeon:27018" });
? "rs2/sunny:27018,leesoonkyu:27018" });

? "rs3/tiffany:27018,hwangmiyoung:27018" });
? "rs4/hyoyeon:27018,kimhyoyeon:27018" });

% "rs5/yuri:27018, kwonyuri:27018" });

}
: "rs6/sooyoung:27018, choisooyoung:27018" });
}

"rs7/yoona:27018,imyoona:27018" });

.-

"rs8/seohyun:27018,seojuhyun:27018" });

106

mongos> db.runCommand ({

{

"shards" : [

{

"ok" : 1
}

mongos>

listShards : 1 });

T LI
"host"

T LI
"host"

"id" o "
"host"

T LI
"host"

"ign oo
"host"

T LI
"host"

"id" o "
"host"

T LI
"host"

T LI
"host"

rse",
"rs@/kimtaeyeon:27018,taeyeon:27018"

rsi”,
"rsl/jessica:27018, jungsooyeon:27018"

rs2",
"rs2/leesoonkyu:27018,sunny:27018"

rs3",
"rs3/hwangmiyoung:27018,tiffany:27018"

rs4",
"rs4/hyoyeon: 27018, kimhyoyeon:27018"

rs5",
"rs5/kwonyuri:27018,yuri:27018"

rse6",
"rs6/choisooyoung:27018, sooyoung:27018"

rs7",
"rs7/imyoona:27018,yoona:27018"

rs8",
"rs8/seohyun:27018,seojuhyun:27018"

Enable sharding

ken@snsd$ mongo snsd:27017
MongoDB shell version: 2.0.5
connecting to: snsd:27017/test
mongos> printShardingStatus()

--- Sharding Status ---

sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" : "rs@", "host" "rs@/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" : "rsl1l", "host" "rsl/jessica:27018, jungsooyeon:27018" }
{ "_id" : "rs2", "host" "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" : "rs3", "host" "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" : "rs4", "host" "rs4/hyoyeon:27018, kimhyoyeon:27018" }
{ "_id" : "rs5", "host" "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" : "rs6", "host" "rs6/choisooyoung:27018, sooyoung:27018" }
{ "_id" : "rs7", "host" "rs7/imyoona:27018,yoona:27018" }
{ "_id" : "rs8", "host" "rs8/seohyun:27018,seojuhyun:27018" }
databases:
{ "_id" : "admin", ‘"partitioned" : false, "primary" : "config" }

mongos> db.runCommand({enableSharding:"plurk"})

{ "ok" : 1}

mongos> db.runCommand({shardcollection:"plurk.plurks", key:{_id:1}})

107

{ "collectionsharded" "plurk.plurks", "ok" : 1 }
mongos> printShardingStatus()
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" "rs@", "host" "rs@/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" "rs1l", "host" "rsl/jessica:27018, jungsooyeon:27018" }
{ "_id" "rs2", "host" "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" "rs3", "host" "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" "rs4", "host" "rs4/hyoyeon: 27018, kimhyoyeon:27018" }
{ "_id" "rs5", "host" "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" "rs6", "host" "rs6/choisooyoung:27018, sooyoung:27018" }
{ "_id" "rs7", "host" "rs7/imyoona:27018,yoona:27018" }
{ "_id" "rs8", "host" "rs8/seohyun:27018,seojuhyun:27018" }
database
{ "_'d" "admin", "partitioned" : false, “primary" "config" }
{ "_id" : "plurk", "partitioned" : true, "primary" "rs6" }
plurk.plurks chunks:
rsé 1
{"_id" : { $minKey : 1 } } -->> { "_id" : { $maxKey : 1 } } on :
mongos> printShardingStatus()
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" "rs@", "host" "rs@/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" "rs1l", "host" "rsl/jessica:27018, jungsooyeon:27018" }
{ "_id" "rs2", "host" "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" "rs3", "host" "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" "rs4", "host" "rs4/hyoyeon:27018, kimhyoyeon:27018" }
{ "_id" "rs5", "host" "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" "rs6", "host" "rs6/choisooyoung:27018, sooyoung:27018" }
{ "_id" "rs7", "host" "rs7/imyoona:27018,yoona:27018" }
{ "_id" "rs8", "host" "rs8/seohyun:27018,seojuhyun:27018" }
database
{ "_'d" "admin", "partitioned" : false, "primary" "config" }
{ "_id" : "plurk", *"partitioned" : true, "primary" "rs6" }
plurk.plurks chunks:
rse 1
rs4 1
rsil 1
rs2 1
rs5 1
rsé 1
rs3 1
{ "_id" : { $minKey : 1 } } -->> { "_id" : 38 } on :
{ "_id" : 38 } -->> { "_id" : 834733 } on : rs4 Times
{ "_id" : 834733 } -->> { "_id" : 11488297 } on : rsi
{ " id" : 11488297 } -->> { " _id" : 33395723 } on : r
{ "_id" : 33395723 } -->> { "_id" : 509894088 } on : r
{ "_id" : 50989408 } -->> { "_id" : 252729929 } on :
{ "_id" : 252729929 } -->> { "_id" : { $maxKey : 1 } } on :

mongos> db.printShardingStatus(true)
--- Sharding Status ---

sharding version: { "_id" : 1, "version" : 3 }
shards:
{ "_id" "rs@", "host" "rs@/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" "rs1", "host" "rsl/jessica:27018,jungsooyeon:27018" }
{ "_id" "rs2", "host" "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" "rs3", "host" "rs3/hwangmiyoung:27018, tiffany:27018" }
{ "_id" "rs4", "host" "rs4/hyoyeon: 27018, kimhyoyeon:27018" }
{ "_id" "rs5", "host" "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" "rs6", "host" "rs6/choisooyoung:27018, sooyoung:27018" }
{ "_id" "rs7", "host" "rs7/imyoona:27018,yoona:27018" }
{ "_id" "rs8", "host" "rs8/seohyun:27018, seojuhyun:27018" }
database
{ "_'d" "admin", "partitioned" : false, "primary" "config" }
{ "_id" : "plurk", "partitioned" : true, "primary" "rs6" }
plurk.plurks chunks:
rs2 122
rs4 122
rsil 122
rsé 122

108

rs6 Timestamp (1000, 0)

rs@ Timestamp(3000, 0)
tamp (6000, 0)
Timestamp (6000, 1)

s2 Timestamp (5000, 0)
s5 Timestamp (7000, ©)

rsé6 Timestamp(7000, 1)
rs3 Timestamp (2000, 0)

mongos>

{ "_id"

e e L)

(o
{ "_id"
{ "_id"

{ "_id"

" g
g
"ig
"ig

s e L)

" idn
"id"

~ o~

(i
{ "_id"

i

: 1008503104 } -->> { "_id"
: 1010166169 } -->> { "_id"

: 1039107320 } -->> { "_id"
{ "_id" : 1040049038 } -->> { "_id" : { $maxKey : 1 } } on

rsoe 122

rs3 122
rs8 122
rs5 122
rs7 123

: { $minKey : 1 } } -->> { "_id" :
"_id" : 38 } -->> { "_id" : 197903 } on :
" id" : 197903 } -->> { "_id" :
"_id" : 612416 } -->> { "_id"
" id" i 921696 } -->> { "_id"

: 599934313 } -->> { "_id"

: 600312646 } -->> { "_id"

: 600700305 } -->> { "_id"
: 877069913 } -->> { "_id"

: 878621144 } -->> { "_id"
: 891168102 } -->> { "_id"
: 892947685 } -->> { "_id"
: 895436846 } -->> { "_id"

: 968419263 } -->> { "_id"
: 968803422 } -->> { "_id"

612416 } on :
: 921696 } on :
: 1325680 } on :

: 968803422
: 969199788

: 1010166169
: 1011814205

X
¥
b
}

}
}
}
}

38 } on :

: 600312646 } on :
: 600700305 } on :
: 877069913 } on :
: 878621144 } on :
: 891168102
: 892947685
: 895436846
: 898183991

on

on @
on @

on :
: rs8 Timestamp (509000,

on

: 1040049038 } on :

rs2 Timestamp (561000,

rs4 Timestamp(652000, 1)

rsl Timestamp(474000, 0)
rs6 Timestamp(477000, ©)
rs@ Timestamp (561000, 1)

rs7 Timestamp (728000,
rs7 Timestamp (730000,
rs7 Timestamp (730000,
rs8 Timestamp (996000,

: rs8 Timestamp(121000,
on :
on :
on :

rs5 Timestamp (129000,
rs2 Timestamp (142000,
rs2 Timestamp (152000,

rs5 Timestamp (563000,
rs5 Timestamp (569000,

rs8 Timestamp (501000,

rs3 Timestamp (686000,
rs3 Timestamp (686000,

9)

6)
2)
3)
4)
6)
4)
4)
6)

2)
8)

6)
2)

4)
5)

109

