
國立交通大學

資訊科學與工程研究所

碩士論文

社群網路興趣探勘

Mining Interest Topics from Plurk

研 究 生：李宜謙

指導教授：蔡錫鈞教授

中華民國一零一年七月

社群網路興趣探勘

Mining Interest Topics from Plurk

研 究 生：李宜謙 Student: Yi-Chien Lee

指導教授：蔡錫鈞 Advisor: Shi-Chun Tsai

國立交通大學

資訊科學與工程研究所

碩士論文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

中華民國一零一年七月

摘 要

近年來隨著社群網路服務的蓬勃發展，越來越多使用者透過微網誌服務認識新朋

友。然而，利用微網誌服務來認識新朋友會遇到一個問題：例如當你看到一位微網誌使

用者的大頭照覺得她是你喜歡的異性類型，進而想要認識這位網友，那麼你可能得先大

致看完她的留言內容，先大致了解這位網友對哪些話題有興趣後開始嘗試談話。因為大

部分的微網誌服務沒有提供類似 Facebook的個人資訊頁面，陌生人無法透過閱讀使用

者主動提供的資訊去投其所好，加上微網誌的文章發表量很大，想要看完一個人的留言

去推測他的興趣是很困難的。此外，如果想要認識的異性網友沒有公開她的留言，那麼

想要一親芳澤的難度就更高了，因為你無從得知她對那些話題有興趣。

為了解決上述的問題，我們針對噗浪 (Plurk)微網誌服務設計了一套興趣探勘系統。

這套探勘系統能夠快速整理受測者發表過的關鍵字並視覺化該使用者的交友網路。若

受測者將他的時間軸設定為私密狀態，意即留言內容不公開，我們透過整合該受測者朋

友的留言資訊去推測他會感到興趣的話題與關鍵字。我們也可將受測者感興趣的關鍵

字使用於個人化、廣告業務以及朋友推薦等應用。

為了快速蒐集噗浪上的資訊，我們開發了一套基於 ZeroMQ的分散式資料蒐集框架

並佈署到多台機器上增加資料蒐集的速度。此外，由於噗浪的 Python API函式庫效能

不甚理想，所以我們透過更換 JSON函式庫、強化 HTTP連線管理以及撰寫 OpenSSL

擴充套件加速 HMAC-SHA1運算速度等手段改善效能瓶頸並大幅增加蒐集的效率。

i

ABSTRACT

People started to make friends with micro-blogging service in recent years; however, it is

difficult to read all messages posted by those whom you are interested in but not familiar with

to find out what he/she is interested in to start a conversation. Furthermore, unlike blog or

Facebook, most of micro-blogging services do not provide profile functionality (self-description

page) for users to describe him/her-self for people to know what he/she is interested in.

To address this demand, we build an online Social Networking Service Discovery (SNSD)

system for Plurk users (plurkers) to find out a plurker’s interest topics/keywords and relation-

ships/connections. The results are presented in graphics on a web browser. With the derived

interests and relationships/connections, applications of the system include friend recommenda-

tions and personalized advertisements.

To enhance crawling performance, we develop a distributed crawling system based on Ze-

roMQmessaging protocol and deploy it on multiple machines to crawl data from Plurk. In addi-

tion, we patch the Plurk API library for Python to enhance throughput by replacing the standard

library with high-performance JSON library, optimizing HTTP connections and customizing

Python C-extensions to accelerate HMAC-SHA1 computation.

ii

Acknowledgments

I would like to thank my parents for offering me an opportunity to accomplish this thesis. I

am greatly indebted to Dr. Shi-Chun Tsai, my advisor, for his patience, guidance and encour-

agement. I also wish to thank Dr. Wen-Guey Tzeng, Dr. Shih-Kun Huang, Dr. Tyng-Ruey

Chuang, Dr. Ying-ping Chen, Dr. Tzong-Han Tsai, Dr. Cheng-Zen Yang, Dr. Yi-Yu Liu, Mr.

Jim Huang, Dr. Min-Zheng Shieh, Mr. Min-Chuan Yang, Mr. Chuan-Yu Tsai, Mr. Min-Cheng

Chan, Mr. Huai-Sheng Huang, Mr. Chun-Yuan Cheng and all the other members in the CCIS

research group and CSCC for sharing their wisdom with me.

iii

誌謝

首先誠摯的感謝指導教授蔡錫鈞博士，老師悉心的教導使我得以一窺圖論與演算法

領域的深奧殿堂並指點我正確的方向，使我獲益匪淺。老師對學問的嚴謹更是我輩學習

的典範。

本論文的完成另外亦得感謝噗浪的創辦人雲惟彬先生與 0xlab的 Jserv大大提供意

見，以及元智大學蔡宗翰教授和鄭鈞元同學的支持。因為有你們的幫忙，使得本論文能

夠更完整而嚴謹。

感謝楊名全、謝旻錚、詹珉誠以及黃懷陞學長協助我進行研究，且總能在我迷惘時

為我解惑，也感謝蔡權昱同學的幫忙，恭喜我們順利走過這兩年。實驗室的方智誼、邱

韜瑋以及系計中的許伯羽、游傑、林宏昱學弟們當然也不能忘記，你們的協助我銘記在

心。

感謝我的摯友馬安妤、李金樺、黃暄仁以及許健聖在我陷入低潮時能鼓勵我並使我

重拾研究的熱情。

因為需要感謝的人太多了，就感謝少女時代吧！最後，謹以此文獻給我摯愛的雙親。

iv

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Related Work . 8

1.3 Challenges . 11

1.4 Approach . 11

1.4.1 Community Detection . 11

1.4.2 Data Collection . 12

1.5 Results . 13

1.6 Thesis Structure . 15

2 System Architecture 16

2.1 Overview . 16

2.1.1 Social Networking Service Discovery (SNSD) System 16

2.1.2 Distributed Crawling System . 16

2.2 SNSD System Design and Architecture . 18

2.3 Crawling System Design Considerations . 19

2.3.1 Concurrent Programming . 19

2.3.2 Messaging Protocol . 22

2.3.3 Data Serialization Format . 24

2.3.4 Datastore . 27

2.3.5 Task Queuing for Crawling . 28

2.3.6 Security . 29

2.4 Distributed Crawling System Architecture . 30

2.4.1 System Architecture . 30

2.4.2 Work Flow . 32

v

2.4.3 Task Queuing . 32

3 Implementation Details 35

3.1 Data Collection . 35

3.1.1 Overview . 35

3.1.2 Plurk API and Library . 36

3.1.3 Library Optimization . 37

3.2 Preprocessing . 39

3.2.1 A Plurk and Its Data . 39

3.2.2 Elements of a Plurk . 40

3.2.3 URL Filtering Mechanism . 41

3.2.4 Tokenization . 44

3.2.5 Plurks Preprocessing . 48

3.3 Community Detection . 51

3.3.1 Snowball Sampling . 51

3.3.2 Modularity and Louvain Algorithm 51

3.3.3 Filtering . 54

3.4 Interest Hierarchy Model . 54

3.5 Datastore Architecture . 57

3.6 Celery Task Queue . 59

3.7 Celery Cluster Layout and Worker Configurations 62

3.8 Delta Cluster Deployment . 65

4 Experiments 69

4.1 Environment . 69

4.2 Performance Benchmarks . 70

4.2.1 Python JSON Libraries . 70

4.2.2 Python Serialization . 72

4.2.3 HMAC-SHA1 . 72

4.2.4 Python Plurk API Library . 75

4.2.5 Redis Connection . 76

4.3 Interest Derivation . 78

4.4 Website Implementation . 79

vi

5 Conclusions and Future Works 84

Bibliography 86

Appendix A Diskless Linux Cluster Installation 94

A.1 Base System . 94

A.2 Network Block Device (NBD) Server . 97

A.3 DHCP and PXE Server . 99

Appendix B MongoDB Cluster Installation 100

B.1 MongoDB Installation . 100

B.2 Replica Sets . 104

B.3 Sharding . 106

vii

List of Tables

3.1 Comparison of hierarchical data model design from Ref. [45] 55

4.1 Machine specifications and roles . 69

viii

List of Figures

1.1 Plurk, Weibo, and Twitter daily visitors count graph (Taiwan only) 3

1.2 Alexa traffic rank for Plurk . 3

1.3 Visitors statistics by Alexa . 3

1.4 Plurk timeline . 4

1.5 A sample plurk . 4

1.6 Plurk profile: extra information . 5

1.7 A Plurk user with his plurks public . 6

1.8 A Plurk user with his plurks private . 6

1.9 Interests derivation from public or private plurkers 7

1.10 Google Analytics for Go!Plurk . 9

1.11 Go!Plurk system flow . 9

1.12 Sample news articles for training . 10

1.13 Sample plurks for training . 10

1.14 Interest pie chart generated by Go!Plurk . 11

1.15 Architecture for two-tier parallel crawler . 13

1.16 SNSD website overview . 14

2.1 Components in the SNSD system and crawling system 17

2.2 Work flow for generation of interest keywords hierarchy 17

2.3 GIL Behavior . 19

2.4 Computation bound . 20

2.5 Thread . 20

2.6 Event Loop . 21

2.7 Coroutine . 22

2.8 Coroutine with I/O . 23

2.9 Coroutine with Event Loop . 23

ix

2.10 Transports of ZeroMQ . 24

2.11 RPC over AMQP . 25

2.12 RPC over ZeroMQ . 25

2.13 Various message formats within the crawling system 28

2.14 RPC over AMQP on Crawling . 29

2.15 RPC over ZeroMQ on Crawling . 29

2.16 Queuing work flow . 30

2.17 Distributed crawling architecture . 31

2.18 Messaging patterns between components . 32

2.19 Work flow of crawling system . 33

2.20 States and Redis data type of the task queue 34

3.1 Plurk mobile view . 36

3.2 HTTP persistent connection . 38

3.3 Elements of a plurk . 42

3.4 URL filtering for a file . 44

3.5 URL filtering for an image . 45

3.6 URL filtering for a Youtube link . 45

3.7 URL filtering for a web page . 46

3.8 Demonstration of the normalize function . 47

3.9 Demonstration of the tokenize function . 49

3.10 Demonstration of the preprocessing . 50

3.11 Visualization of the steps of Louvain algorithm 54

3.12 Plurk profile: general information . 55

3.13 A sample Closure Table . 57

3.14 Table Relationships . 58

3.15 MongoDB cluster architecture . 60

3.16 MongoDB cluster configuration . 60

3.17 Celery cluster architecture . 64

3.18 OpenStack security group configurations . 64

3.19 CS workstation cluster architecture . 65

3.20 Servers and racks donated by Delta, Inc. 66

3.21 A single Delta server . 67

x

3.22 Delta server with VGA card . 67

3.23 Servers installed in rack . 68

3.24 Delta cluster architecture . 68

4.1 Encoding performance . 71

4.2 Decoding performance . 71

4.3 Big data performance . 71

4.4 Memory usage of JSON libraries . 72

4.5 Serialization performance . 73

4.6 Memory usage of serialization libraries . 73

4.7 Encoded data size . 74

4.8 HMAC-SHA1 performance . 75

4.9 Original API library . 76

4.10 Enhanced API library . 76

4.11 Improvements . 77

4.12 Redis binding modes . 77

4.13 Redis remote connection types . 78

4.14 Result of interest derivation . 79

4.15 Interest keywords hierarchy . 80

4.16 Interest tag cloud . 81

4.17 View communities in pack layout . 81

4.18 View communities in treemap layout . 82

4.19 Focus community on pack layout . 82

4.20 Focus community on treemap layout . 83

4.21 Parameter filter . 83

xi

List of Algorithms

1 URL filtering mechanism . 43

2 Tokenization process . 48

3 Louvian algorithm . 53

xii

Chapter 1

Introduction

1.1 Motivation

Social networking service on the Internet can be traced back to mid 1990s when providers

such as Geocities launched the service in the form of generalized online communities, which

offered two ways of inter-personal interaction: chat rooms and personal web pages.

Rapid development of the Internet led to the next generation of social networking services

in late 1990s through early 2000s. This new generation of services include the following two

features, among others: user profiles and blog.

User Profiles allow users to define lists of “friends” and search for other users with similar

attributes [71]. Active providers in this period include SixDegrees.com (1997-2001), Friendster

(2002), MySpace (2003), LinkedIn (2003) and Facebook (2004).

Blogs emerged in the late 1990s. A blog (a portmanteau of the term web log) [12] is a

discussion or information site published on the Internet. Most blogs operate in an interactive

manner, meaning that visitors are allowed to leave comments or even messages to each other.

Bloggers not only produce content to post on their blogs but also build social relations with their

readers and other bloggers [28]. In that sense, blogging can be regarded as a form of social

networking.

Microblogging, “the SMS of the Internet,” [24] is a broadcast medium in the form of blog-

ging. A microblog differs from a traditional blog in that its content is much smaller in size. For

example, Twitter and Plurk enable their users to write and read text-based messages up to 140

characters in length. Most social networking websites offer their own microblogging feature

via “status updates.” [92] Leading micro-blogging providers include Twitter (2006), Facebook,

1

Sina Weibo (2009) and Plurk (2008).

Use of social networks for making friends and keeping in touch with friends has become

popular recently.[16, 38, 27] Micro-blogging services such as Plurk, Twitter, and Weibo are

popular in Taiwan. According to Alexa [4], Plurk ranked 45th in Taiwan and 2,014th worldwide

on June 1, 2012, as shown in Figures 1.2 and 1.3. This statistics indicates that Plurk is an active

social network service especially in Taiwan.

Furthermore, according to Google Trends on June 1, 2012 (Figure 1.1), Plurk is among

the most popular micro-blogging services in Taiwan, probably due to its user-friendly interface

named “Timeline” as shown in Figure 1.4. As such, this study is based on the Plurk community.

Freshman students exchange their Plurk accounts via bulletin board system (BBS) to get

familiar with each others. Open source developers share their Twitter and Plurk accounts in their

presentation slides for audiences to contact them if they have any comments or are interested in

the project.

Most micro-blogging services allow users to make two types of relationships: friend and

follower. The friend relationship requires that both individuals confirm they are friends while

the follower relationship can be established without confirmation. As such, followers may not

be connected to the target individual in real life.

In Plurk, individual’s profile information (Figure 1.6) is not publicly available. Users can set

their conversations (plurks) as shown in Figure 1.5, public (Figure 1.7) or private (Figure 1.8),

i.e. only specific users or friends of those who post the contents can view the contents while

anonymous users and followers are not allowed to.

Given the constraints, it’s difficult to know someone via plurks even though all his/her plurks

are public, as shown in Figure 1.9(a) and 1.9(b). However, affiliation and interests information

can be derived from his/her friends in order to conjecture who he/she is or what he/she is inter-

ested in even though we know nothing about him/her, as shown in Figure 1.9(c).

According to the hypothesis, we build an online analysis system for users to find out what

he/she might be interested in by providing his/her Plurk account name.

After generating interest topics/keywords information about someone whom you are inter-

ested in, by our system, you can use the information to refer him/her to your friends who share

the same interests. Search engine service provider and commercial company can use our system

to build user profiles for customized service and advertising.

2

Figure 1.1: Plurk, Weibo, and Twitter daily visitors count graph (Taiwan only)

Figure 1.2: Alexa traffic rank for Plurk

Figure 1.3: Visitors statistics by Alexa

3

Figure 1.4: Plurk timeline

Figure 1.5: A sample plurk

4

(a) Additional information

(b) Interests

(c) Schools & Work

Figure 1.6: Plurk profile: extra information

5

Figure 1.7: A Plurk user with his plurks public

Figure 1.8: A Plurk user with his plurks private

6

(a) (b)

(c)

Figure 1.9: Interests derivation from public or private plurkers

7

1.2 Related Work

The Go!Plurk project [47], developed by Ken Lee, Bryan Cheng, and Sean Lee, is the first

service to find users’ interest topics based on the content they posted on Plurk. In this thesis, we

extend and enhance the preliminary work of the Go!Plurk project.

Go!Plurk was announced via Plurk on June 15, 2009. There were at least 13,527 undupli-

cated users visited our website and we analyzed more than 30,000 Plurk accounts in the follow-

ing week (Figure 1.10).

This project was reported by United Daily News (UDN) [95] and a famous blogger Briian

[94] in June 2009, and PChomemagazine also introduced the project in August of the same year.

We used 300 news articles from Yahoo! Taiwan and plurks from top-100 active plurkers

as training sources, which were classified into ten pre-defined categories: chitchat, delicacies,

education, lifestyle, movies, music, drama, sports, technology, and travel. Besides, we use

CKIP [58] from Academia Sinica as Chinese tokenization engine, and defined a reserved lexical

category list for filtering returned tokens from CKIP as shown in Figure 1.12 and Figure 1.13.

Figure 1.11 depicts an overview of the Go!Plurk work flow.

In a simple Go!Plurk test, we sampled 20 latest plurks from tester, use CKIP to extract

Chinese tokens, apply filtered tokens into Naïve Bayes classifier to calculate scores for each

category, and finally render a pie chart to visualize the interest distribution, as shown in Figure

1.14.

Although this service is popular with Plurk communities, there are several known issues and

limitations which need to be improved. First, if the tester set his/her plurks private, we cannot

get what he/she said in order to analyze his/her interest. Second, the quality and quantity of

training articles are poor due to short training period and limited labor hours. Third, the ten pre-

defined categories are not general enough to represent interests and users cannot get details due

to the flat structure. Lastly, we only sample 20 latest plurks from tester via RSS feed provided

by Plurk in order to simplify implementation; mechanism for handling plurk content with URL

link was not implemented. As such, we cannot get enough tokens to represent the tester.

Given these issues and limitations, in this thesis we try to increase the accuracy of prediction

results even if tester set his/her plurks private by collecting as much public plurks as we can to

expand training scale, applying automatic training process, and deriving interests information

from one’s friends.

8

Figure 1.10: Google Analytics for Go!Plurk

Figure 1.11: Go!Plurk system flow

9

Figure 1.12: Sample news articles for training

Figure 1.13: Sample plurks for training

10

Figure 1.14: Interest pie chart generated by Go!Plurk

1.3 Challenges

In order to enhance and improve the Go!Plurk system, we have to collect plurk data back to

local datastore efficiently, and the datastore must provide good durability and excellent reading

performance for online retrieval. Traditional database management system (DBMS) is not suit-

able for managing big data; there are more than one billion of plurks to crawl. As such, we need

to find out a database solution for big data, which is crucial to efficient web crawling.

Moreover, in order to derive a plurker’s interest topics with his/her conversation private,

we have to compute community partition information for the plurker and extract public plurks

posted by the partition members to derive associated interest topics and keywords. Since the

community detection problem is known for high computational complexity, we have to employ

proper algorithm and optimize performance for online service.

1.4 Approach

1.4.1 Community Detection

Girvan and Newman [30] presented the Grivan-Newman algorithm for community detection

by measuring the graph-theoretic measurement of betweenness. This algorithm returns reason-

able quality of result but runs slowly in worst-case time O(m2n) on a network of n vertices and

11

m edges orO(n3) on a sparse network. The poor computational complexity makes it impractical

for detecting communities in large networks.

Newman [60] proposed an enhanced community detection algorithm by employing modu-

larity [59, 61] as objective function to maximize it. Modularity is a metric to measure the quality

of a particular division of a network into communities. For a weighted network G, the modu-

larity is defined as

Q = 1
2m

∑
i,j

[
Aij − kikj

2m

]
δ (C (i) , C (j)),

where Aij is the weight of edges between vertex i and j, m is the number of edges of G, C (i)

is the community of vertex i, and the δ-function δ (C (i) , C (j)) is equal to 1 if C (i) = C (j),

i.e. i and j are in the same community, and 0 otherwise.

The modularity maximization method employs exhaustive search for all possible divisions

of a network for the highest modularity value to detect community and this method is considered

intractable [14]. Newman [62] then proposed an approximate optimization algorithm which is

similar to his previous research and the worst-case running time is O((m+ n)n) or O(n2) on a

sparse network.

According to Fortunato [26], the computational complexity of Louvain algorithm [85] is

O(m). This algorithm is extremely fast and graphs with up to 109 edges can be analyzed in a

reasonable time on current computational resources. Therefore, we use Louvain algorithm to

detect community partitions in this thesis and the details about the Louvain algorithm is listed

in the Section 3.3.2.

1.4.2 Data Collection

Chau [15] presented a framework which guarantees that no redundant crawling would occur

while executing parallel crawlers for online social networks. He also demonstrates how to em-

ploy parallel crawlers and improve crawling performance for online social networks including

Linkedin and Friendster via centralized queue by using MySQL database as shown in Figure

1.15. The crawler architecture is based on two-tier parallelism, i.e. the coordinator or sched-

uler schedule tasks for multiple agents in parallel. Besides, each agent itself employs multiple

threads for crawling. This architecture allows simultaneous failures of member crawlers. How-

ever, details of the protocol between crawler agent and scheduler, implementation of the crawler

and datastore design for storing large number of records are not revealed.

Kwak [49] and Russell [74, 75] employ Twitter API to crawl Twitter data and demonstrated

12

Figure 1.15: Architecture for two-tier parallel crawler

the basic usage with single threading. As the Twitter API has query rate limitation, Kwak em-

ploy 20 machines with different IPs and self-regulating collection rate at 10000 requests per

hour. However, there are billions of tweets, millions of user profile and tens of billions of user

relationship connections on the Twitter social network. We have to employ more efficient ways

to crawl data from social network service provider.

1.5 Results

We build an online social networking service discovery (SNSD) system for Plurk users

(plurkers) to find out interest topics/keywords and relationship . The results can be viewed

on a website as shown in Figure 1.16. Besides, we develop a new distributed crawling system

framework based on ZeroMQ messaging protocol and deploy it on several machines to crawl

data from Plurk. Finally, we patch the Plurk API library for Python to enhance throughput by

replacing the standard library with high-performance JSON library, optimize HTTP connections

and customize Python C-extensions for accelerating HMAC-SHA1 [48] computation.

13

Figure 1.16: SNSD website overview

14

1.6 Thesis Structure

The remainder of the thesis is organized as follows. Chapter 2 introduces social networking

services discovery (SNSD) system and the distributed crawling system for this thesis along with

its high-level design. Chapter 3 describes system implementation details. Chapter 4 summarizes

results of the implemented enhancements and illustrates the website built for visualizing SNSD

system. Chapter 5 discusses future work and concludes the thesis.

15

Chapter 2

System Architecture

2.1 Overview

In this chapter, we will introduce two systems: (1) a social networking services discovery

(SNSD) system for discovering user’s relationship and interest from Plurk and (2) a distributed

crawling system for crawling data from the Internet efficiently. The architecture diagram for

these two systems is depicted in Figure 2.1.

2.1.1 Social Networking Service Discovery (SNSD) System

Recent studies [89, 49] indicate that micro-blogging services such as Twitter and Plurk are

used as news aggregation services and ties in Facebook are driven by personal contacts. That

is, networks may be clustered by communities of interests and geography is less significant for

micro-blogging services. Offline relationships drive friendship in Facebook. As such, we can

discover interest topics of users via community detection because micro-blogging services users

connecting to each other are probably driven by interests instead of having offline relationships.

Given the hypothesis, we propose a framework to discover interest topics for a micro-

blogging service user based on his/her conversations, even if conversations are private, by ag-

gregating interest information from communities of the user. Figure 2.2 depicts an overall work

flow for generation of interest keywords hierarchy.

2.1.2 Distributed Crawling System

Distributed crawling is a distributed computing technique employing many computers to

fetch data from the Internet. For example, Internet search engines such as Google and Yahoo!

16

Figure 2.1: Components in the SNSD system and crawling system

Figure 2.2: Work flow for generation of interest keywords hierarchy

17

built server farms distributed geographically to fetch web pages and build indices for indexing

the Internet.

In this thesis, we deploy several computers as crawlers which call Plurk API to request Plurk

users’ profile, relationship and plurks. Besides, we utilize these crawlers as load balancers to

fetch Uniform Resource Locator (URL) from plurks to extend content while avoiding blocking

by the service provider.

Even though previous researches [15, 49] had proposed architectures for parallel crawlers,

they did not provide implementation details such as protocol and datastore. Our design and

implementation will be depicted later in this thesis.

2.2 SNSD System Design and Architecture

In this section, we will describe the framework which analyzes interest information for

micro-blogging users even when their conversations are private.

Firstly, we try to collect users’ conversations and relationship network as much as possible.

In general, micro-blogging service providers (MBSPs) provide application programming inter-

faces (API) for users to access data; however, most of MBSPs limit the request rate by an API

key or IP addresses. We will cover mechanisms for distributed crawlers to access data from

MBSPs beyond the rate limitation in Chapter 3.

Secondly, we apply community detection algorithmwhen the requested user’s conversations

are private. According to previous hypothesis, micro-blogging networks are clustered by com-

munities of interests. We use this idea to derive interest information from communities when

conversation data for interest analysis is not available.

Thirdly, tokenize the incoming conversation and response data then apply syntactic filter

for removing stop words and uncommon tokens. In western languages, words are separated by

spaces in a sentence, so we only need to split the data by spaces and punctuation marks such as

periods, commas, etc. for tokenization. But in Chinese, there is no simple ways to tokenize be-

cause Chinese text does not have word boundaries and each character is a fundamental linguistic

unit. Therefore, we have to apply Chinese tokenization algorithms to tokenize data.

Lastly, merge interest tags and return them in a hierarchical structure by the pre-defined

interest hierarchy generated from user’s conversation or derived from communities. We get

various interest tags from the previous step, but it is not suitable for visualization directly because

they are still meaningless. Thus, we need to summarize distinct interest tags into formatted

18

Figure 2.3: GIL Behavior

hierarchical structure so that users can view the results easily. Besides, if interest tags are derived

from communities, it should render an additional community graph to indicate where these tags

are derived from.

2.3 Crawling System Design Considerations

2.3.1 Concurrent Programming

CPython, written in C, is the default Python bytecode interpreter. However, this interpreter

is not fully thread-safe. In order to support concurrency, global interpreter lock (GIL), a mutex

lock, was introduced. That is, only one thread is allowed to execute at a given moment, as shown

in Figure 2.3. This restricts multi-threaded CPython programs from fully utilizing all processors

in a multi-processor system. It becomes a computational bottleneck while processors are not

fully utilized, as shown in Figure 2.4(a).

Therefore, for multiprocessingmodule, a process-based threading interface is available since

CPython version 2.6 [40], and it side-steps the GIL effectively by using subprocesses instead of

threads. Instead of threads, processes use interprocess communication (IPC) to communicate

with each other, which is a much heavier solution.

The GIL is released on blocking I/O, when the thread is forced to wait, other threads in

“ready” state will be chosen to execute and get into “running” state, as shown in Figures 2.4.

Therefore, I/O bound Python programs are recommended to use threading module, and CPU

bound programs fit better the multiprocessing module in general. Nevertheless, threading so-

lution is not good enough in the C10K problem [46]. The C10K problem refers to handling of

concurrent ten thousand connections. Several I/O models are introduced to achieve the goal as

described below; We choose Gevent for this thesis.

19

(a) CPU Bound Tasks

(b) I/O Bound Tasks

Figure 2.4: Computation bound

Figure 2.5: Thread

Blocking sockets with single thread

This model is the simplest implementation with one loop in one process, but it can only

accept one connection at a time.

Blocking sockets with multi-thread

In order to accept multiple connections at the same time, this model will create a new thread

to accept each connection request. Although it can deal with multiple connections, it is an

inefficient approach because it will spendmost of CPU time on context-switchingwhen handling

massive concurrent connections.

20

Figure 2.6: Event Loop

Non-blocking sockets by event-driven

In order to reduce the context-switching overhead, this approach creates a loop to wait for

occurrence of I/O events and executes the registered handler associated with the event, as shown

in Figure 2.6. This approach is also called event-driven programming. For example, Twisted

[102] is a Python networking framework by using this approach to accomplish non-blocking

asynchronous I/O. The main benefit of this approach is less context-switching, but it makes

program complicated because multiple events might be raised simultaneously.

Non-blocking sockets by coroutine

Coroutine [11, 10, 50] is an alternative concurrency approach using Python generator func-

tion available since CPython version 2.5[32]. Unlike normal function, generator function pro-

duces sequence of results instead of a return value, and it yield a value then “throw” it back

when called. In contrast to thread, coroutine does not use context-switching because all corou-

tines run in a single process, as shown in Figure 2.7. Besides, as coroutines are not run in

multiple processes, they will not be restricted by GIL and we can fully control the scheduling

of coroutines. Furthermore, it’s much cheaper to create a coroutine than a thread, we can spawn

massive coroutines without significant overheads.

To improve the crawling performance, we finally choose Gevent [23], a coroutine-based

networking library, as our crawling backend. Gevent uses a Greenlet [70], a micro-thread or

lightweight coroutine library as the synchronous API on top of the libevent [63] event loop.

In Gevent programming model, every coroutine has a parent, i.e., the caller, and the top

coroutine is the main thread or the current thread. Sub-coroutines yield execution to their parents

21

Figure 2.7: Coroutine

when starting to wait for completion of I/O operations, as shown in Figure 2.8. The parent

coroutine will monitor which I/O is done from the event loop, and yield the execution back to

the calling sub-coroutine to achieve the asynchronous non-blocking I/O operation, as shown in

Figure 2.9.

Furthermore, Gevent provides a cooperative socket module which ensures coroutines by

Greenlet can access sockets simultaneously. This feature, along with urllib3 [5], is exploited to

speed up the connection performance.

2.3.2 Messaging Protocol

Advanced Message Queuing Protocol (AMQP) [65] is an application layer protocol for

message-oriented middleware (MOM) and is an evolution of semantics taken from the Java

Messaging Service (JMS). AMQP covers two main enterprise messaging patterns: (1) topic-

based publish-subscribe distribution and (2) reliable request-reply with persistent queues by

pre-defined resources: exchange, queue, and binding.

ZeroMQ (ZMQ) [37] is an intelligent transport layer library of messaging functionalities

inspired by the Internet Protocol (IP) [55]. It’s a redesign of messaging to pursue the objective

of uniformity and scalability, i.e. it aims to solve the problem of how to connect thousands

of clients and do millions of messages in a second in a large messaging system. Furthermore,

ZeroMQ covers four main patterns: transient pub-sub, unreliable request-reply, pipeline, and

peer-to-peer. In addition, it provides broker devices and message routing when necessary.

22

Figure 2.8: Coroutine with I/O

Figure 2.9: Coroutine with Event Loop

23

Figure 2.10: Transports of ZeroMQ

In general, AMQP is essentially centralized with a broker and provides reliable persistent

queuing. ZeroMQ is essentially distributed with no pre-defined broker and aims at dealing with

massive messages currently. We choose ZeroMQ as the crawling messaging framework and

AMQP as the backend for Celery [8], the task queuing system for the web worker mentioned in

the previous section.

Remote Procedure Call (RPC) over AMQP requires two queues for storing tasks data and

result, as shown in Figure 2.11. Even though this scenario guarantees reliability and security,

it has a high overhead in the queuing when employing it into a crawling system, as shown in

Figure 2.12.

In order to reduce queue usage, we employ ZeroMQ as messaging protocol in the crawling

system.

2.3.3 Data Serialization Format

In this section, we will introduce several data serialization formats employed in our sys-

tems: Pickle [33], JavaScript Object Notation (JSON) [43], Binary JSON (BSON) [96], and

MessagePack (MsgPack) [76].

24

Figure 2.11: RPC over AMQP

Figure 2.12: RPC over ZeroMQ

25

Pickle

Pickle is a standard Python module for serializing Python object structures. It converts a

Python object into a byte stream when serializing; a byte stream is converted back into a Python

object on de-serializing. However, the Pickle module is not intended to be a secure format

against erroneous or maliciously constructed data. We need to authenticate the pickled object

before de-serializing it.

JavaScript Object Notation (JSON)

JSON is a lightweight human-readable open standard [21] for data serialization. It is derived

from JavaScript for representing data types and data structures. JSON is widely deployed by

Web APIs such as Twitter, Plurk, and Facebook Graph API, etc.

Binary JSON (BSON)

BSON is based on JSON and is adopted by MongoDB for data storage. It is designed to be

efficient both in storage space and scan-performance. Unlike JSON, BSON uses binary form

for representing data types and data structures. In addition, it extends JSON with the date, byte

array, and regular expression types.

MessagePack (MsgPack)

MsgPack is based on JSON and aims to be as compact and simple as possible. It is very

similar to BSON except it does not support the date and regular expression data type but more

space-efficient. The Protocol Buffers (PB) [31] format by Google Inc. also aims to be compact

and is compared withMsgPack. However, it is necessary to define a schema which describes the

structure for PB before serializing or de-serializing an object can be performed. But MsgPack

and JSON are compatible to serialize arbitrary data structures.

Listing 2.1 demonstrates how to encode a dictionary object by the above four serialization

formats in Python. The encoded data size for Pickle, JSON, BSON, andMsgPack are: 218, 164,

116, and 151 respectively.

Listing 2.1: Serialization

>>> import pickle, marshal, json, bson, msgpack

>>> data = {

... "fans_count": 98,

... "friends_count": 120,

26

... "privacy": "only_friends",

... "user_info": {

... "display_name": "Ken",

... "karma": 131.32,

... "gender": 1,

... "id": 3461880,

... "avatar": 10

... }

... }

>>> pickle.dumps(data)

"(dp0\nS'fans_count'\np1\nI98\nsS'user_info'\np2\n(dp3\nS'gender'\np4\nI1\nsS'display_name'\np5\nS'

Ken'\np6\nsS'karma'\np7\nF131.32\nsS'avatar'\np8\nI10\nsS'id'\np9\nI3461880\nssS'friends_count

'\np10\nI120\nsS'privacy'\np11\nS'only_friends'\np12\ns."

>>> json.dumps(data)

'{"fans_count": 98, "user_info": {"gender": 1, "display_name": "Ken", "karma": 131.32, "avatar":

10, "id": 3461880}, "friends_count": 120, "privacy": "only_friends"}'

>>> bson.BSON.encode(data)

'\x97\x00\x00\x00\x10fans_count\x00b\x00\x00\x00\x03user_info\x00J\x00\x00\x00\x10gender\x00\x01\

x00\x00\x00\x02display_name\x00\x04\x00\x00\x00Ken\x00\x01karma\x00\n\xd7\xa3p=j`@\x10avatar\

x00\n\x00\x00\x00\x10id\x00\xf8\xd24\x00\x00\x10friends_count\x00x\x00\x00\x00\x02privacy\x00\r

\x00\x00\x00only_friends\x00\x00'

>>> msgpack.dumps(data)

'\x84\xaafans_countb\xa9user_info\x85\xa6gender\x01\xacdisplay_name\xa3Ken\xa5karma\xcb@`j=p\xa3\

xd7\n\xa6avatar\n\xa2id\xce\x004\xd2\xf8\xadfriends_countx\xa7privacy\xaconly_friends'

In the crawling system, we decode JSON data from Plurk API then store the results into

MongoDB in BSON format by MongoDB driver (PyMongo) [2]. Besides, scheduler transmits

control signal and crawlers return crawled data to handler in MsgPack format via ZMQ, as

shown in Figure 2.13. Furthermore, we return user profile and relationship data in JSON for

AJAX HTTP requests and use Pickle as format for the Celery web task queue via AMQP in the

SNSD system.

2.3.4 Datastore

In order to store as many conversations from Plurk as we can for the SNSD system, we have

come up with the criteria for choosing proper data store: scalability, high availability (HA),

performance and index support.

Scalability means we can easily scale out the data store by adding resources to a single node

(scale vertically) or addingmore nodes to the system (scale horizontally). High availability (HA)

ensures the data store works properly even if a node in the system is down or out of service. Index

support is required for improving performance and guarantee data uniqueness.

27

Figure 2.13: Various message formats within the crawling system

According to these criteria, we choose MongoDB, a document-oriented database system,

as data store for storing conversations from MBSPs; MySQL, a relational database manage-

ment system, for interest hierarchy; and Redis, a in-memory, key-value data store with optional

durability, for storing user relationships.

2.3.5 Task Queuing for Crawling

Traditional task queuing systems based on Remote Procedure Call (RPC) require two extra

queues to store task requests, as shown in Figure 2.14, and the result produced by workers for

each request. However, it is not suitable for handling large number of requests by storing extra

data for the traditional RPC.

In order to improve performance and storage efficiency, we replace AMQP with ZeroMQ

library as messaging protocol, as shown in Figure 2.15, and introduce a new mechanism: let the

worker pull tasks from ventilator (dispatcher) instead of having ventilator push tasks to available

worker. Besides, ventilator maintains a priority queue to store states and creation timestamp for

to-do tasks.

When a worker connects to ventilator and asks for a new task, the ventilator pop the oldest

to-do task and check if the task is in done state and has exceeded the time to live (TTL) or not.

If it is not done and exceeded TTL, return this task to worker and set it to the work-in-progress

(WIP) state; otherwise, return the task in to-do state which is generated by ventilator. Figure

28

Figure 2.14: RPC over AMQP on Crawling

Figure 2.15: RPC over ZeroMQ on Crawling

2.16 illustrates the process mentioned above.

With this mechanism, ventilator can control the number of to-do tasks and guarantee all tasks

will be processed eventually.

2.3.6 Security

We have to ensure communications between nodes in the crawling system are encrypted to

prevent information leak or nodes being compromised. However, ZeroMQ does not provide

encryption [97], therefore we need to implement key exchange protocol or use SSH tunnel.

Our crawling system is designed for handling massive requests with good performance. We

cannot deploy complicated cryptographical mechanism such as RSA algorithm for per-message

29

Figure 2.16: Queuing work flow

encryption/description and setup of SSH tunnel between ventilator and workers.

Therefore, we employ Advanced Encryption Standard (AES) algorithmwith Intel Advanced

Encryption Standard Instructions (AES-NI) hardware support as the default cryptography.

2.4 Distributed Crawling System Architecture

2.4.1 System Architecture

Similar to Chau’s crawling framework [15], our system is also based on two-tier architecture

to allow for simultaneous failures of agents. Figure 2.17 depicts a high-level architecture of the

crawling system for this thesis. The crawling system consists of seven components as explained

below.

• Agent: Installed in every worker node as a daemon process to receive commands from

scheduler to start, stop, or restart the worker process, update scripts and configuration

files, and increase/decrease the number of worker processes.

• Ventilator: Serves as the task dispatcher to dispatch tasks to available workers.

• Proxy: Started with the worker process in worker nodes. It is aimed to reduce TCP con-

nections between backend ventilators.

30

Figure 2.17: Distributed crawling architecture

• Broker: Similar to proxy, but it’s started on server side to receive TCP connections from

worker nodes and forward messages to ventilators by service identities as router.

• Worker: Do tasks assigned by ventilators.

• Registry: Keep track of available workers, allocate service identity for ventilators, and

balance the requests from ventilators.

• Commander: Administrator send commands to control worker nodes via this role, and it

could communicate with registry to adjust the total number of workers automatically.

There are several ventilators for different purposes in this system; each ventilator has a

unique service identity which is allocated by the registry. For example, we want to crawl plurk-

ers’ relationship for community detection and public plurks for deriving interest topics. Then

there will be two ventilators to dispatch tasks to workers and store result from crawler to specific

datastore such as MongoDB and Redis in our scenario.

ZeroMQcovers severalmessaging patterns. We employ request-reply pattern between ventilator-

worker, ventilator-registry, commander-registry, and commander-agent; publish-subscribe pat-

tern between commander-agent. Figure 2.18 depicts the messaging pattern employed in the

system. Detailed design is covered in the following section.

31

Figure 2.18: Messaging patterns between components

2.4.2 Work Flow

Figure 2.19(a) illustrates thework flowwithin crawling system. The flow is explained below.

First, when worker becomes available, it sends an INIT message to ventilator via proxy and

broker. If there are no available ventilators, worker will start to resend the INIT message until a

ventilator responds.

After a worker association is established, ventilator updates worker status to registry and

generates task for the worker with universally unique identifier (UUID) as task ID then sends

task assignment to worker. When a worker finishs the task, it sends results along with task ID

to ventilator. Ventilator then processes the results and stores it to the datastore.

Figure 2.19(b) illustrates the work flow between commander and agents. There are two

messaging patterns, i.e. publish-subscribe and request-reply, between commander and agents in

different scenarios. Agents subscribe to the topic with their own unique hostname and wait for

specific instructions assigned by commander and broadcast generic topics.

If we want to broadcast instructions such as reboot all agent machines or fetch latest config-

uration files or assign specific agent to execute commands such as restart the crawling process,

use the publish-subscribe channel with corresponding topic. That is, generic topic for broad-

casting and specific topic for assigned agent. Moreover, if we want to execute commands and

get response from agent, then use request-reply channel for receiving responses.

2.4.3 Task Queuing

As mentioned above, we introduce a new queuing mechanism and define three states to

represent queuing status of a task. This mechanism is based on Redis datastore, which handles

32

(a) Work flow between ventilator and workers (b) Work flow between commander and agents

Figure 2.19: Work flow of crawling system

three data types: list, set and sorted set as shown in Figure 2.20.

Listing 2.2 illustrates how our queuing mechanism works. The execution function, upon

receipt of a target user_id, will use ZADD command to add the target to the WIP queue with

300 seconds of TTL then crawl data for the target and store results into datastore. After crawling

and storing, we add the target to the DONE queue by SADD command and remove it fromWIP

queue by ZREM command. If there is any exception during crawling or storing data, we remove

the target from WIP queue by ZREM command.

The fetch_targets function demonstrates how to fetch new targets. First, we check if any

target is inWIP state and has executed over TTL by ZRANGEBYSCORE command, i.e. there is

something wrong while crawling data for the target. Second, we generate nine target candidates

by removing and getting the first element in the TODO queue via LPOP command then return

these candidates.

The add_todo function depicts how to add a given target user_id to the TODO queue. We

check if this target is in the WIP queue by ZSCORE command and whether it is already done

or not by SISMEMBER command first. If the target is not in the WIP state and not done, then

push the target to TODO queue by RPUSH command.

Listing 2.2: Demonstration for queuing

33

Figure 2.20: States and Redis data type of the task queue

import redis, time

r = redis.Redis()

def execute(user_id):

try:

r.zadd('WIP', user_id, int(time.time() + 300))

CRAWL_FOR_THE_TARGET_AND_STORE(user_id)

r.sadd('DONE', user_id)

r.zrem('WIP', user_id)

except:

r.zrem('WIP', user_id)

def fetch_targets():

targets = []

for _ in r.zrangebyscore('WIP', 0, int(time.time())):

targets.append(_)

for _ in xrange(9):

target = r.lpop('TODO')

targets.append(target)

return targets

def add_todo(user_id):

if r.zscore('WIP', user_id) is None and not r.sismember('DONE', user_id):

r.rpush('TODO', user_id)

34

Chapter 3

Implementation Details

3.1 Data Collection

3.1.1 Overview

In this section we will show how we crawl data from the Internet and how we store these

data for interests derivation. There are three mechanisms for crawling data from the Internet and

Plurk: (1) parsing HyperText Markup Language (HTML) source; (2) applying stateful program-

matic web browsing module or (3) using application programming interface (API) provided by

service provider.

Parsing HTML source is the basic mechanism for web crawling. It works by analyzing

static pages’ HTML source code with regular expressions (Regex) or creating Document Object

Model (DOM) for parsing. However, this mechanism is unable to process a page whose content

is loaded with Asynchronous JavaScript and XML (AJAX). For example, we can apply this

mechanism to crawl Plurk in mobile view (Figure 3.1), but it doesn’t work in the standard view.

In order to deal with AJAX, we utilize the stateful programmatic web browsing module.

Generally speaking, this mechanism is based onweb browser engines such asWebKit andGecko

to interpret web pages as a real web browser. Even though this mechanism can deal with most

of web pages, it is much slower than parsing HTML directly. It not suitable for crawling a large

number of web pages due to poor performance.

Most of web service and social network service providers such as Google, Twitter, and Plurk,

etc. provide APIs for developers to access data by registering applications to the official registry.

This mechanism is the most efficient way for crawling data from specific service. However it

35

Figure 3.1: Plurk mobile view

usually has rate limitation, i.e. only a limited number of requests in a given period of time is

allowed. Besides, it can’t work behind web proxy servers as anonymous page view.

We apply Plurk API for crawling Plurk data and use Spynner, a stateful programmatic web

browsing module for Python, as the engine to parse keywords from Google real time trends

service in this thesis.

3.1.2 Plurk API and Library

Plurk API [67] is currently available in version 2.0. Compared to version 1.0, version 2.0 is

stateless (no login is required) and requests should be signed using OAuth Core 1.0a standard

[64]. Version 1.0 is session-based and user account and password, instead of authorized keys,

are used for authentication. Both Version 2.0 and 1.0 API return data encoded in JSON format.

Plurk officially recommends clsung’s plurk-oauth [17] API library to Python developer,

which depends on oauth2 [79] and httplib2 [83] library. Listing 3.1 depicts how to use plurk-

oauth library to get Plurk profile. Even though the plurk-oauth is fully functional and well tested,

it has poor performance and connection latency resulting from: HTTP connection overhead, per-

formance bottlenecks in JSON library decoding and HMAC-SHA1 signing.

The HMAC procedure for OAuth consists of two phases: (1) calculate HMAC signature

by the specified hash function and the given key and message, then (2) compute the Base64

encoding for the given binary signature. Listing ?? demonstrates the Python implementation of

HMAC-SHA1. Besides, HMAC-SHA1 signature can also be obtained by the shell commands

as follows:
$ echo -n "message" | openssl dgst -sha1 -binary -hmac "key" | openssl enc -base64

IIjfdNXyFGtIFGyvSWU3fp0L46Q=

Listing 3.1: Get Plurk profile by plurk-oauth library

36

>>> from PlurkAPI import PlurkAPI

>>> plurk = PlurkAPI(CONSUMER_KEY, CONSUMER_SECRET)

>>> plurk.authorize()

>>> print plurk.callAPI('/APP/Profile/getOwnProfile')

...truncated data...

Listing 3.2: Compute HMAC-SHA1 by Python standard libraries

>>> import hashlib

>>> import binascii

>>> trans_5C = ''.join(chr(x ^ 0x5c) for x in xrange(256))

>>> trans_36 = ''.join(chr(x ^ 0x36) for x in xrange(256))

>>> digestmod = hashlib.sha1

>>> blocksize = digestmod().block_size

>>> def hmac(key, msg):

... if len(key) > blocksize:

... key = digestmod(key).digest()

... key += chr(0) * (blocksize - len(key))

... o_key_pad = key.translate(trans_5C)

... i_key_pad = key.translate(trans_36)

... return digestmod(o_key_pad + digestmod(i_key_pad + msg).digest())

...

>>> h = hmac('key', 'message')

>>> print h.hexdigest()

2088df74d5f2146b48146caf4965377e9d0be3a4

>>> print binascii.b2a_base64(h.digest())[:-1]

IIjfdNXyFGtIFGyvSWU3fp0L46Q=

>>>

>>> from hashlib import sha1

>>> import hmac

>>> h = hmac.new('key', 'message', sha1)

>>> print binascii.b2a_base64(h.digest())[:-1]

IIjfdNXyFGtIFGyvSWU3fp0L46Q=

3.1.3 Library Optimization

In order to improve these performance bottlenecks, we develop our enhanced patch for plurk-

oauth library.

First, we replace httplib2 [83] with urllib3 [5] for connection pooling; instead of making

connection for each request, connection pool works as a cache to make connections reused when

required, as shown in Figure 3.2. This reduces connection latency and improves throughput.

Second, as Plurk API returns data in JSON format and every request must be decoded into

dictionary type for Python or hash type for Ruby, this is one of the performance bottlenecks.

37

Figure 3.2: HTTP persistent connection

We benchmark and profile several Python JSON libraries (mentioned in Chapter 4) then replace

Python JSON decoder included in standard library with ujson [42], which is a high performance

C extension module for Python for the enhanced library.

Third, Python hmac module included in standard library is based on hashlib module, which

calls native and optimized OpenSSL binary directly. However, this approach has poor perfor-

mance because hmac module calls hashlib module just for getting hashed value and process

several steps such as character translating and Base64 encoding for calculating HMACs. To ad-

dress this issue, we customize an OpenSSL wrapper for HMAC-SHA1, which returns complete

HMAC-SHA1 value directly.

OpenSSL is a nearly optimized C library by assembling codes with hardware acceleration

instructions, and it provides several ciphers, hashing and encoding functions. We use OpenSSL

as the HMAC, SHA1, and Base64 engine and integrate these OpenSSL functions to a Python

extension module with Python C API. This customized extension is built with native codes. It

performs 72 times faster than the version included in standard library. Detailed experimental

results are given in Chapter 4.

Listing 3.3: Compute HMAC-SHA1 by OpenSSL

#include <string.h>

#include <openssl/evp.h>

#include <openssl/hmac.h>

#include <openssl/sha.h>

#ifndef SHA_DIGEST_LENGTH

#define SHA_DIGEST_LENGTH 20

38

#endif

#define B64_LEN (((SHA_DIGEST_LENGTH + 2) / 3) * 4) + 1

unsigned char* hmac_sha1(unsigned char* key, unsigned char* data)

{

unsigned char* digest;

unsigned char ret[B64_LEN];

// compute HMAC digest

digest = HMAC(EVP_sha1(), key, strlen(key), data, strlen(data), NULL, NULL);

// encode binary digest to Base64 format

EVP_EncodeBlock(ret, digest, SHA_DIGEST_LENGTH);

return ret;

}

3.2 Preprocessing

In this section, we will show the elements of Plurk content (plurk) and explain how we apply

the URL filtering and tokenization to the preprocessing of plurks.

3.2.1 A Plurk and Its Data

We can invoke Timeline series API to fetch plurk data. For example, we invoke /APP/

Timeline/getPlurk to get data for a plurk by passing the plurk unique id or invoke /APP/Timeline/

getPublicPlurks to get the public plurks for a plurker by passing the plurker’s user_id or nick-

name. A plurk (Figure 1.5 on Page 4) is encoded as a JSON object. It will be returned as

follows:
{

"responses_seen": 0,

"qualifier": "says",

"replurkers": [],

"plurk_id": 1003643246,

"response_count": 0,

"replurkers_count": 0,

"replurkable": false,

"limited_to": "|3461880|",

"no_comments": 0,

"favorite_count": 0,

"is_unread": 0,

"lang": "tr_ch",

"favorers": [],

"content_raw": "http://j.mp/JoIb2K\nhttp://youtu.be/C8HjWFPY78I\n少女時代太妍、蒂芬妮、徐玄所組

成的子團體「太蒂徐」以首張專輯《Twinkle》登台已滿四周，每周都穿上不同風格的表演服的她們，26日以性感

可愛的粉色系空",

39

"user_id": 3461880,

"plurk_type": 1,

"qualifier_translated": "說",

"replurked": false,

"favorite": false,

"content": ...truncated data...,

"replurker_id": null,

"posted": "Sun, 10 Jun 2012 15:50:08 GMT",

"owner_id": 3461880

}

Plurk API defines twenty two attributes for a plurk. However, in order to reduce storage

size, we only include the following eight essential attributes for further processing in this thesis.

The definitions of each attributes are listed below:
{

"_id": Number,

"owner": Number,

"qualifier": String,

"content": String,

"content_raw": String,

"tags": Array,

"posted_at": ISODate,

"updated_at": ISODate

}

• _id: The unique plurk id, used for identification of the plurk.

• owner: The owner/poster of this plurk.

• qualifier: Qualifier is used to define the type of the plurk, which can be “says”, “asks”,

“likes”, “shares”, etc.

• content: The formatted and filtered content, e.g. URLwill be turned into text and emotions

will be filtered.

• content_raw: The raw content as entered by user.

• tags: The tagging result from the filtered content, which is listed in the interest hierarchy.

• posted_at: The date this plurk was posted in ISODate format.

• updated_at: The date this plurk was formatted and filtered in ISODate format.

3.2.2 Elements of a Plurk

A plurk is composed of the following elements:

40

• Text: Text is the basic type of a plurk, which may contain Chinese, Japanese, English, or

other language characters stored in Unicode.

• URL: URL may be in several types: @plurk_ID, web page, image, or file.

– @plurk_ID: @plurk_ID identifies a Plurk user (plurker). A @plurk_ID in a plurk

will be stored in the content_raw column and transformed into http://www.plurk.

com/plurk_ID in the content column. Moreover, it will show the plurker’s nickname

instead of account name as the link name in the Plurk page.

– Web Page: The web page type is a hyperlink which refers to a web page. Plurk user

can define the link name; if not defined, it will show the original link in the Plurk

page.

– Image: The image type is a hyperlink which refers to an image in such format as

PNG, JPG, GIF etc.

– File: The file type is similar to the image type. If the hyperlink does not refer to an

image then a normal file is assumed.

• oPreview: oPreview is a special case of web page type. If the page has open graph protocol

properties, the hyperlink will be transformed into a short “summary” instead of normal

links. This type is convenient for plurkers to share a web page. Instead of typing URL and

defining the link name, a plurker simply types URL and the page title will be displayed

automatically.

Based on the characteristics of plurk elements, we design a URL filtering mechanism and a

preprocessing procedure which will be described in the following sections.

3.2.3 URL Filtering Mechanism

We give a procedure for URL filtering in order to transform URL from raw link into text

content or tags which represent the subject of the URL. The pseudocode is shown in Algorithm

1.

41

(a) Text

(b) @plurk_ID source (c) @plurk_ID rendered

(d) Web page URL source (e) Web page URL rendered

(f) Image source (g) Image rendered

(h) File URL source

(i) oPreview source

(j) oPreview rendered

Figure 3.3: Elements of a plurk

42

Input: URL
Output: content

1 begin
2 content = null
3 if URL is shortened then
4 URL = expand_shortened_URL(URL)
5 end
6 if URL is a web page then
7 if Tag is available then
8 content = keywords from predefined tags column
9 end
10 else if Metadata is available then
11 content = keywords or description from metadata
12 end
13 else
14 content = title of the page
15 end
16 end
17 else if URL is an image then
18 content = keywords from Google image search
19 end
20 else if URL is linked to Youtube then
21 content = keywords from metadata
22 end
23 return content

24 end
Algorithm 1: URL filtering mechanism

Firstly, extract the original URL behind the short URL if necessary by detecting if any URL

redirect request occurs while reading a URL. For example, the URL http://www.ettoday.net/

news/20120527/50150.htm is shorten into http://j.mp/JoIb2K and posted to a plurk. In this case,

we will detect the URL redirect when open the shortened URL, we then continue to open the

redirected URL for reading content.

Secondly, read content from the URL. If the URL is referring to a file, then ignore it (Figure

3.4). If the URL is referring to an image, then apply this URL as a query to the image search

engine such as Google Images (Figure 3.5). If the URL refers to Youtube, we get the description

and keywords value from metadata in the <meta> tag (Figure 3.6). If the URL refers to a web

page, we check if the metadata exists first, then we get keywords, description and title values.

Else if metadata is not available, but keywords for the page are defined then get these keywords.

Otherwise, we get title value from the page, as shown in Figure 3.7.

Lastly, we update filtered content fromURL to the content column in datastore. For example,

the URL http://j.mp/JoIb2K after URL filtering process will be transformd into several tags as

43

Figure 3.4: URL filtering for a file

follows:
{

...

"content": "少女時代, 子團體, 徐玄, 太妍, 蒂芬妮, TaeTiSeo, Twinkle",

"content_raw": "http://j.mp/JoIb2K",

...

}

3.2.4 Tokenization

There are no straightforward methods to tokenize a Chinese sentence because Chinese text

does not have word boundaries and word is a fundamental linguistic unit. Therefore, we develop

a two-step tokenization mechanism based on dictionary in this section.

Tsai [84] implemented a Chinese segmentation algorithm named MMSEG based on max-

imum matching algorithm and Ma [54] showed the procedures of the CKIP Chinese segmen-

tation system, including the disambiguation algorithm for resolving segmentation ambiguities

and identifying unknown words.

These two Chinese segmentation algorithms and implementations (MMSEG and CKIP) are

popular among Traditional Mandarin Chinese users. However, we only care about the matching

of keywords instead of the segmentations of a sentence. Therefore, we do not employ Chinese

segmentation system but a maximummatching algorithm based on corpus dictionary and which

is stored in a trie data structure.

Matching Algorithmwith Recursively Implemented StorAge (MARISA) is a space-efficient

trie data structure, while libmarisa [91] is a C++ library implementation of MARISA. We use

marisa-trie [57] Python package, a Python version binding of libmarisa as the trie implementa-

tion to store interest keywords dictionary and to find the longest prefixes keyword. Listing 3.4

demonstrates how to use marisa-trie library to build a trie and find all prefixes by a given key.

Listing 3.4: Find all prefixes of a given key by marisa trie

>>> import marisa_trie

>>> trie = marisa_trie.Trie([u'key1', u'key2', u'key12'])

44

Figure 3.5: URL filtering for an image

Figure 3.6: URL filtering for a Youtube link

45

Figure 3.7: URL filtering for a web page

>>> trie.prefixes(u'key12')

[u'key1', u'key12']

We normalize sentences with the following five steps:

1. insert space behind CJK characters and before ASCII characters

2. insert space behind ASCII characters and before CJK characters

3. replace punctuation characters with whitespaces, replace continuous spaces with a single

whitespace

4. strip the whitespaces found in the beginning or end of a sentence, and finally

5. convert case-based characters into lowercase.

Firstly, according to Unicode code charts, CJK characters (unified ideographs) are located in

the range between 4E00 and 9FFF, Katakana in the range between 30A0 and 30FF, and Hiragana

in the range between 3040 and 309F. We employ the Python regex extension, an alternative

regular expression module to replace the re module from Python standard library and apply

these ranges to define several regular expressions for normalization. This step is inspired by the

46

Figure 3.8: Demonstration of the normalize function

project: “為什麼你們就是不能加個空格呢？” [86]. p_mixed_1 and p_mixed_2 define the

pattern set of Unicode characters and ASCII characters. p_ws defines the pattern of whitespace

character by special character \s, which is equivalent to the set [\t\n\r\f\v]. p_punctuation

defines the pattern of punctuation characters by special character \p{P}, which is supported by

regex module. Listing 3.5 shows the normalization process and Figure 3.8 illustrates how the

normalization process normalizes a sentence step by step.

Listing 3.5: Normalize sentences by regular expresions

import regex as re

p_mixed_1 = re.compile(ur'([\u4e00-\u9fff\u3040-\u30FF])([a-zA-Z0-9@&;=_\[\$\%\^*\-\+\(\/])')

p_mixed_2 = re.compile(ur'([a-zA-Z0-9@&;=_\[\$\%\^*\-\+\(\/])([\u4e00-\u9fa5\u3040-\u30FF])')

p_ws = re.compile(r'[\s]+')

p_punctuation = re.compile(ur'\p{P}+')

def normalize(ctx):

_ = p_mixed_1.sub(r'\1 \2', ctx)

_ = p_mixed_2.sub(r'\1 \2', _)

_ = p_punctuation.sub(' ', _)

_ = p_ws.sub(' ', _)

return _.strip().lower()

Secondly, we generate a list of indexes of whitespace characters in the sentence, then use

the index to retrieve terms. The purpose of this algorithm is to determine whether it is a CJK

47

term or a western term. The pseudocode is shown in Algorithm 2 and Figure 3.9 depicts the

tokenization process step by step.
Input: context, a string

trie, a marisa-trie
Output: terms, a set of matched keywords

1 begin
2 index = 0
3 terms = an empty set
4 while index < length(context) do
5 if context[index] is a white space then
6 index += 1
7 end
8 match = trie.longest_prefix(context[index:])
9 if match is not null then
10 terms.add(match)
11 index += length(match)
12 end
13 else if context[index] in [a-zA-Z0-9] then
14 index = next index of white spaces occurs in the context
15 end
16 else
17 index += 1
18 end
19 end
20 return terms

21 end
Algorithm 2: Tokenization process

3.2.5 Plurks Preprocessing

The preprocessing procedure is carried out in three phases (Figure 3.10) as follows:

• Apply the URL filtering process to transform URL links into text for extending content.

• Apply the tokenization mechanism to extract keywords from the plurk which are included

in interest keywords hierarchy.

• Transform raw content into tags, and update the records to the datastore.

MongoDB is an open source document-oriented database management systems and a part

of the NoSQL family. It stores records in BSON format, which support several data types such

as String, Integer, Boolean, Double, Null, Array, and Object, etc. As mentioned in subsection

3.2.1, we store the extended and filtered content from phase one into content field in String type

48

Figure 3.9: Demonstration of the tokenize function

and tokenized tags from phase three into tags field. We demonstrate how to find a plurk after

preprocessing with a specific tag “少女時代” from MongoDB as follows:
> use plurk

switched to db

> db.plurks.findOne({tags: "少女時代"})

{

"_id" : 996252142,

"owner" : 3461880,

"qualifier" : "wonders",

"content": "少女時代,子團體,徐玄,太妍,蒂芬妮,TaeTiSeo,Twinkle 120526 TaeTiSeo Twin-

kle 少女時代太妍、蒂芬妮、徐玄所組成的子團體「太蒂徐」以首張專輯《Twinkle》登台已滿四周，每周都穿上不

同風格的表演服的她們，26日以性感可愛的粉色系空",

"content_raw" : "http://j.mp/JoIb2K\nhttp://youtu.be/C8HjWFPY78I\n少女時代太妍、蒂芬妮、徐玄所

組成的子團體「太蒂徐」以首張專輯《Twinkle》登台已滿四周，每周都穿上不同風格的表演服的她們，26日以性

感可愛的粉色系空",

"tags": ["少女時代", "太妍", "蒂芬妮", "徐玄", "TaeTiSeo"],

"posted_at" : ISODate("2012-05-28T06:09:10Z"),

"updated_at" : ISODate("2012-07-01T14:29:15.528Z")

}

49

Figure 3.10: Demonstration of the preprocessing

50

3.3 Community Detection

In this section, we will introduce the algorithm for sampling network and the algorithm to

find community partitions for the SNSD system to derive users’ interest topics.

3.3.1 Snowball Sampling

Snowball sampling algorithm works like a pyramid scheme. It provides a fairly complete

picture of the network surrounding of the sampling target.

We have to determine a depth limit for this algorithm. In practice, we usually limit the

depth of sampling to two (friends-of-friends) or three (friends-of-friends-of-friends). Listing

3.6 depicts an iterative version of the algorithm with depth of two.

Listing 3.6: Iterative sampling

def sampling(G, user):

for friend in read_friends(user):

G.add_edge(user, friend)

for friend_of_friend in read_friends(user):

G.add_edge(friend, friend_of_friend)

3.3.2 Modularity and Louvain Algorithm

The Louvain algorithm [85] is a heuristic greedy method based on modularity optimization

to provide excellent results for various application to large network. This algorithm consists of

two phases that are repeated iteratively: modularity optimization and community aggregation.

Main idea of the processes explained by [26, 80] is restated as the pseudocode in Algorithm 3.

We put all vertices of graph G in their individual community at the beginning of this algo-

rithm. In the first phase, for each vertex i we consider its neighbors j to compute the gain of

modularity by putting i into the community of j. If no positive gain available, i stays in its

original community.

In the second phase, we aggregate vertices in the same community to a new supervertex and

build a new graph with supervertice as new vertice. The weight of the edge e (Vs, Vt) between

supervertices Vs and Vt of the new graph is calculated. Once this second phase is completed, it

is reapplied to the first phase of the algorithm until a maximum of modularity is attained. Taking

a graph from Tang [80] for example, the input graph will be partitioned into two communities

51

as shown in Figure 3.11.

We employ the python-louvain [82] library which is developed by Thomas Aynaud as the im-

plementation of Louvain algorithm. This library is based on NetworkX [99], which is a Python

scientific library for studying graphs and networks. For example, we create an undirected graph

with ten vertices and apply Louvain algorithm by python-louvain library to find community

partitions as follows:

Listing 3.7: An community detection example in NetworkX

>>> from community import best_partition

>>> import networkx as nx

>>> G = nx.Graph()

>>> G.add_edge(1, 2)

>>> G.add_edge(1, 3)

>>> G.add_edge(1, 4)

>>> G.add_edge(2, 3)

>>> G.add_edge(3, 4)

>>> G.add_edge(4, 5)

>>> G.add_edge(4, 6)

>>> G.add_edge(5, 6)

>>> G.add_edge(5, 7)

>>> G.add_edge(5, 8)

>>> G.add_edge(6, 7)

>>> G.add_edge(6, 8)

>>> G.add_edge(7, 8)

>>> G.add_edge(7, 9)

>>> print(G.nodes())

[1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> print(G.edges())

[(1, 2), (1, 3), (1, 4), (2, 3), (3, 4), (4, 5), (4, 6), (5, 8), (5, 6), (5, 7), (6, 8), (6, 7),

(7, 8), (7, 9)]

>>> part = best_partition(G)

>>> for com in set(part.values()):

... list_nodes = [n for n in part.keys() if part[n] == com]

... print com, list_nodes

...

0 [1, 2, 3, 4]

1 [5, 6, 7, 8, 9]

52

Input: G = (V,E)
Output: S
A is the adjacency matrix of G
Aij is the weight of the edge between vertex i and j
m = 1

2

∑
ij Aij is the number of degrees of G

C (i) is the community of vertex i
di is the degree of vertex i
Bij = Aij − didj

2m

e (vs, vt) =

{
an edge with the weight w (C (s) , C (t)) if s ̸= t
a self-loop edge with the weight w (C (s) , C (t)) otherwise

w (C (s) , C (t)) =
∑

i∈Cs,j∈Ct
w (i, j)

w (i, j) is the weight of eij
1 begin
2 for i ∈ V do
3 C (i) = {i}
4 end
5 while true do
6 for i ∈ V do /* 1st phase */
7 ∆i (j) = Bij −Bii

8 j∗ (i) = argmax {∆i (j) | j ∈ [n]}
9 if j∗ (i) ̸= i and ∆i (j) > 0 then

// Set i and j∗ in the same community
10 C (i) = C (j∗) ∪ C (i)
11 C (j∗) = C (j∗) ∪ C (i)

12 end
13 end

// Delete redundant elements in the collection of communities
14 S ← DelRedun ({C (i) | i ∈ V })
15 if ∀i, j∗ (i) = i then /* convergence */
16 return S
17 else /* 2nd phase */
18 for C {k} ∈ S do

// vk is a supervertex
19 vk ← C {k}
20 end
21 l = |S|
22 V ′ = {v1, ..., vl}
23 for vs, vt ∈ V do
24 est = e (vs, vt)
25 end
26 E ′ = {est | vs, vt ∈ V ′}
27 G = (V ′, E ′)

28 end
29 end
30 end

Algorithm 3: Louvian algorithm

53

Figure 3.11: Visualization of the steps of Louvain algorithm

3.3.3 Filtering

Plurk allows users to claim his/her profile including: gender, age, location, etc., as shown

in Figure 3.12. We use gender, age, privacy status (public or private), and karma (a metrics

for activity) as parameters for snowball sampling algorithm to reduce the sampling range on

demand.

3.4 Interest Hierarchy Model

In order to determine user’s interest topics, we define an interest keyword hierarchy based

on a famous BBS (Bulletin Board System) site PTT.cc in Taiwan to collect interest keywords

and categorize them. In contrast to the Go!Plurk project, the new hierarchy can define detailed

interests category instead of a one-level hierarchy structure.

Trees and graphs are universal data structures; however, they do not easily fit into a relational

data model design. Karwin [45] introduces several hierarchical SQL models such as Adjacency

List, Recursive Query, Path Enumeration (Materialized Path), Nested Sets, and Closure Table.

According to Table 3.1, Adjacency List is the most conventional but difficult to query a

full tree. Recursive Query is more efficient than Adjacency List design, but MySQL does not

support WITH syntax, which is defined in SQL-99. Path Enumeration is not able to check refer-

ential integrity and it stores information redundantly. Nested Sets also fail to support referential

integrity and is difficult to manipulate. Closure Table is the most versatile and elegant design

54

(a) General settings (b) Public profile view

Figure 3.12: Plurk profile: general information

Design Tables Query Child Query Tree Insert Delete Ref. Integrity
Adjacency List 1 Easy Hard Easy Easy Yes
Recursive Query 1 Easy Easy Easy Easy Yes
Path Enumeration 1 Easy Easy Easy Easy No
Nested Sets 1 Hard Easy Hard Hard No
Closure Table 2 Easy Easy Easy Easy Yes

Table 3.1: Comparison of hierarchical data model design from Ref. [45]

but requires an additional table to store the relationships.

Instead of storing relationships between ancestor and descendant like the other designs, Clo-

sure Table stores all paths through the tree, as shown in Figure 3.13. Figure 3.13(b) illustrates

how the nodes are stored. Listing 3.8 shows the schema for Closure Table, and we can easily

find descendants or ancestors, insert new records and delete a leaf node or subtree. For example,

we use the query (Listing 3.9) to retrieve descendants of “K-Pop” and insert a new node “Kara”

with id as 8 under “K-Pop” by query (Listing 3.10).

Listing 3.8: SQL schema for Closure Table

CREATE TABLE `taxonomies` (

`id` INT(11) NOT NULL AUTO_INCREMENT,

`name` VARCHAR(64) NULL DEFAULT NULL,

55

PRIMARY KEY (`id`)

);

CREATE TABLE `hierarchies` (

`ancestor` INT(11) NOT NULL,

`descendant` INT(11) NOT NULL,

PRIMARY KEY (`ancestor`, `descendant`),

FOREIGN KEY (`ancestor`)

REFERENCES `taxonomies` (`id`),

FOREIGN KEY (`descendant`)

REFERENCES `taxonomies` (`id`)

);

Listing 3.9: Retrieve descendants of “K-Pop”

SELECT t.*

FROM taxonomies AS t

JOIN hierarchies AS h ON t.id = h.descendant

WHERE t.ancestor = 4;

Listing 3.10: Insert a new node under “K-Pop”

INSERT INTO hierarchies (ancestor, descendant)

SELECT h.ancestor, 8

FROM hierarchies AS h

WHERE h.descendant = 4

UNION ALL

SELECT 8, 8;

Weextend the Closure Table design and employMySQL as datastore for the interest keyword

hierarchy. We use four tables: hierarchies, taxonomies, vocabularies, and lexicons to model the

relationship. Based on Closure Table design, table hierarchies store the relationship between

taxonomies. Table taxonomies defines the hierarchy structure. Table vocabularies stores the

relationship between lexicons and taxonomies. Table lexicons defines the interest keywords

and associated information.

We use the following SQL query to obtain the interest keywords hierarchy structure that is

associated with the keyword “Girls Generation”:

Listing 3.11: Obtain hierarchy structure by Closure Table design

SELECT x.id, x.term, v.belongs_to,

GROUP_CONCAT(h.ancestor ORDER BY a.id) AS ancestors,

GROUP_CONCAT(a.name ORDER BY a.id) AS path

FROM lexicons AS x

56

(a) (b) (c)

Figure 3.13: A sample Closure Table

JOIN vocabularies AS v ON (v.term = x.id)

JOIN taxonomies AS t ON (v.belongs_to = t.id)

JOIN hierarchies AS h ON (t.id = h.descendant)

JOIN taxonomies AS a ON (a.id = h.ancestor)

AND x.term LIKE 'Girls Generation'

GROUP BY x.term, t.id

3.5 Datastore Architecture

In order to store billions of records into datastore, we employ MongoDB and build a cluster

with twenty nodes, donated byDelta Electronics, Inc., to improve the throughput and availability

by sharding and replication methodologies.

There are three components in the MongoDB cluster: mongos, config server, and shard

server, as shown in Figure 3.15. Mongos instances function as router to deal with requests from

clients and serve as the access point for clients, which forward requests to the appropriate shards

by coordinating with config servers. Config servers maintain the shard metadata and defini-

tive information about the cluster including chunks, shards, and mongos processes information.

Shard servers are used to store data.

57

Figure 3.14: Table Relationships

MongoDB employs replica sets to achieve High Availability (HA) and auto-sharding for

scaling out. Replica sets are used for data redundancy, distributing read load, and high avail-

ability (automated failover). A replication set consists of three or more nodes which are copies

of each other; the set members will elect a primary node and the others as secondary nodes

automatically. MongoDB drivers and mongos will detect a replication set primary changes au-

tomatically.

A shard is comprised of one or more servers in a cluster which is responsible for the same

subset of data. If there is more than one server in a shard, each server has an identical copy of

data and a shard is usually a replica set in production.

MongoDB’s sharding is based on a shard key which determines how data will be distributed

across the cluster. For example, we have an application that stores fan’s personal profile of Girls’

Generation, a nine-member South Korean pop girl group. Each profile document contains a fa-

vorite_member field, which showswho is the fan’s most favorate. Its value would be “Taeyeon”,

“Jessica”, “Sunny”, “Tiffany”, “Hyoyeon”, “Yuri”, “Sooyoung”, “Yoona”, or “Seohyun”. We

use this field as the shard key.

The collection starts with one chunk (−∞,∞) on a shard in one shard server. Once that

chunk gets big enough, it will be split into two chunks with the range (−∞, “Yoona”) and

[“Yoona”,∞). All of the profile documentswith “Hyoyeon”, “Jessica”, “Taeyeon”, or “Tiffany”

will be placed into the first chunk and the rest documents with “Yoona”, “Yuri”, “Seohyun”,

“Sooyoung”, or “Sunny” will be placed in the second chunk. With more and more documents

added, eventually we will end up with nine chucks, i.e. one shard per member:

• (−∞,“Jessica”)

58

• [“Jessica”,“Taeyeon”)

• [“Taeyeon”,“Tiffany”)

• [“Tiffany”,“Yoona”)

• [“Yoona”,“Yuri”)

• [“Yuri”,“Seohyun”)

• [“Seohyun”,“Sooyoung”)

• [“Sooyoung”,“Sunny”)

• [“Sunny”,∞)

The above example chooses a low-cardinality shard key which has a fixed maximum number

of chunks and it will never be able to use more than that number of shards for the collection. It

is recommended to choose a high-cardinality field as the shard key such as the profile unique

id number in the above example or a field with MongoDB’s ObjectID datatype. In our case for

storing plurks in the MongoDB, we choose the plurk’s plurk_id field, which is the unique id for

a plurk, as the shard key.

We employ three config servers and two mongos servers, and set up nine shards with nine

replicas. That is, one shard per replica set, where each replica consists of two shard servers

and one arbiter in our production server layout. This is recommended by official production

configuration [78]. Besides, we employ diskless architecture to deploy these twenty servers.

Detailed cluster configuration is shown in Figure 3.16 and configurations are given in Appendix

B.

3.6 Celery Task Queue

Computing community partitions for a user is a large computational bottleneck in our system.

Thus, we employ Celery [8], which is an asynchronous distributed task queue library for Python,

to utilize workstations from NCTU CSCC [103] for load-balancing.

A large web application might contain time-consuming functionalities which cannot be done

or need not to be done in real-time such as making thumbnails or processing uploaded files. This

type of problem is called fire-and-forget models, and the process request will be blocked until

59

Figure 3.15: MongoDB cluster architecture

Figure 3.16: MongoDB cluster configuration

60

the job is done. In our case, we cannot compute every community partitions for a user in a short

time which depends on the number of friends of the user. Given this limitation, we employ

Celery task queue for handling jobs asynchronously to prevent blocking.

Celery has two execution units: broker and worker server. Celery requires a message broker

solution for tasks queuing and storing results. It supports several popular open source choices,

including: RabbitMQ, Redis, traditional RDBMS via SQLAlchemy or Django object-relational

mapping (ORM), and MongoDB... etc. It also supports Amazon SQS, if you deploy Celery in

Amazon Web Services (AWS) platform. Worker servers are the execution instances. You can

choose multiprocessing, Eventlet, gevent, or threading modules as process pool implementation

for specific purposes.

We define three trust levels for our production environments: trusted, semi-trusted, and

untrusted. Trusted level means we have root privileges and unauthorized users are not allowed

to login to the machine. Semi-trusted level means we can login to the machine to use shell but do

not have root privileges. Besides, other user has no privileges to change file permission which

belongs to us. Untrusted level is similar to semi-trusted level, but user might force to change

file permissions. In general, dedicated server is in trusted level, shared UNIX-like workstation

is in semi-trusted level and shared Windows workstation is in untrusted level.

Redis, a high performance open source key-value store or data structure server, is an excel-

lent broker candidate for Celery. However, it is designed for trusted level scenario because it

does not provide access control list (ACL) function for authentication, but a single global master

key instead.

Even though Redis supports master-slave replication, which is suitable for scaling out read-

ing performance by adding read-only slave nodes and connects each Redis node via Secure Shell

(SSH) tunnel for basic connection security. However, we cannot employ Redis as Celery broker

because Redis slaves are read-only. Celery workers shall communicate with Redis master di-

rectly. Intruders can use the SSH tunnel to apply brute-force attacks onmaster in the semi-trusted

level node. Moreover, if the global master key is leaked or any Redis node is compromised, data

would be deleted or falsified by attacker.

Given the above limitations and that we have no fully trusted machines to build a Redis

server in our production environment, we choose RabbitMQ, a stable message queue based on

AMQP and support ACL as broker.

61

3.7 Celery Cluster Layout and Worker Configurations

According to previous consideration for choosing RabbitMQ as the Celery broker, we im-

plement a scalable Celery worker cluster as shown in Figure 3.17.

We employ two virtual machines from openstack.nctu.edu.twwith public IP address as Redis

read-only slaveswhich serve as relationship data provider for workers fromNCTUCSCC,which

connect to the Redis master via SSH tunnel using autossh to manage and restart SSH tunnels

automatically if needed. Besides, we set up security group (firewall) rules, as shown in Figure

3.18, so that these two Redis slaves can only provide data to specific workers fromNCTUCSCC

core subnet (140.113.235.0/24). After that, we set up a RabbitMQ instance with custom ACL

policy then configure workers to connect to the RabbitMQ.

In the previous implementation, we choose Python multiprocessing module as process pool

implementation in standard CPython interpreter. However, the computation performance is poor

especially in the case of a user having a large number of friends. Therefore, we employ PyPy

[98] as the alternative process pool implementation with its multiprocessing module. PyPy is

a much faster interpreter for Python language and Just-in-Time compiler. Besides, it is 100%

compatible with the original CPython interpreter.

However, PyPy interpreter can only execute programs in pure Python source code currently,

i.e. we cannot employ PyPy to execute Python programs with CPython or Cython extension

module such as PyZMQ, the Python binding library for ZeroMQ and gevent. Fortunately, Net-

workX, the library which we employ to implement Louvain algorithm, is compatible with PyPy

and it is much faster than the CPython interpreter.

We deploy Python programs with VirtualEnv, a Python tool used to create isolated environ-

ments that we can install Python packages without interfering with either the other VirtualEnvs

or the system wide packages. VirtualEnv support CPython and PyPy interpreter and it can help

users build their Python environment without root privileges.

CSCC workstations run two types of operating systems: FreeBSD and Gentoo Linux. Their

home directories are mounted from a NetAPP centralized storage server, as shown in Figure

3.19. We have to make two VirtualEnvs for PyPy for these two types of OS to execute Celery

worker. However, the latest VirtualEnv version 1.8.2 is not capable of building a PyPy virtual

environment on FreeBSD 8.3, so we can only prepare a CPython environment on FreeBSD

workstations.

62

Given the above limitation, we have to route the task manually by adding a new queue for

FreeBSDworkstations for load-balancing. First, define twoCelery queues (CELERY_QUEUES):

default and bsd, and define two routing keys for these queues: pypy and python27. Second,

define the default queue name (CELERY_DEFAULT_QUEUE), default routing keys (CEL-

ERY_DEFAULT_ROUTING_KEY) and define default route (CELERY_ROUTES) for tasks.

Listing 3.12: Celery Routing Configuration

from kombu import Queue

CELERY_QUEUES = (

Queue('default', routing_key='pypy'),

Queue('bsd', routing_key='python27'),

)

CELERY_DEFAULT_QUEUE = 'default'

CELERY_DEFAULT_ROUTING_KEY = 'pypy'

CELERY_ROUTES = {

'tasks.communities': {

'queue': 'default',

'routing_key': 'pypy',

},

}

Third, start Celery worker process on FreeBSD workstations and Gentoo Linux worksta-

tions, for instance, bsd1 and linux1 with the -Q option to determine the queue consumed by

the Celery worker process. For example, bsd1 will consume queue bsd, linux1 will consume

queue default, and the worker on main server, random, will consume both default and bsd in

case of FreeBSD workstations failure or we have to scale-in our system by disconnecting CSCC

workstations.
[liic@linux1 ~]$ celery worker -Q default --autoscale=16,8

[liic@bsd5 ~]$ celery worker -Q bsd --autoscale=16,8

[ken@random ~]$ celery worker -Q default,bsd --autoscale=20,2

In the end, as CSCC limits the amount of memory consumption for every user defined in /

etc/login.conf for FreeBSD and /etc/security/limits.conf in Gentoo Linux, but does not limit the

use of /tmp storage space, we utilize the storage space as local cache of relationship data from

Redis slaves by employing FileSystemCache caching function from Werkzeug library.

63

Figure 3.17: Celery cluster architecture

Figure 3.18: OpenStack security group configurations

64

Figure 3.19: CS workstation cluster architecture

3.8 Delta Cluster Deployment

Delta Electronics, Inc. donated 80 servers in two racks to NCTU in early 2012 (Figure 3.20).

Unlike normal rack servers, the size of Delta cloud server chassis is customized, as shown in

Figure 3.21, and it does not provide VGA port, i.e. you cannot attach a monitor to view the

console message by a server but shut it down and plug a VGA card on it, as shown in Figure

3.22. Moreover, these servers are designed for building commodity clouds and employ cost-

effective hardware instead of x86 rack servers. Therefore, it is insufficient for administrator to

install OS on these server boxes one-by-one because there are a large number of server boxes

to be set up and if a server down, it would be difficult to determine whether it is a hardware

damage or just kernel panic.

Hence, it is reasonable to employ preboot execution environment (PXE) to build a diskless

environment for these server boxes, as shown in Figure 3.19. This scenario boots depend on

a remote bootable image and the local storage is used to store data without system files. For

example, we can just pull it out of cabinet and plug a new one back into it when a server box

fails or plug server boxes and power them on when you need to power on servers to expand

a cluster. We have to set up DHCP, TFTP, and Network File System (NFS) or Network Block

65

Figure 3.20: Servers and racks donated by Delta, Inc.

Device (NBD) as a network storage implementation for PXE procedure. The detailed installation

steps and configurations are described in Appendix A.

66

Figure 3.21: A single Delta server

Figure 3.22: Delta server with VGA card

67

Figure 3.23: Servers installed in rack

Figure 3.24: Delta cluster architecture

68

Chapter 4

Experiments

In this chapter, we will depict our experimental environments, performance benchmarks for

libraries and systems, and present the website we build for the SNSD system.

4.1 Environment

We deploy several machines to accomplish such systems as the SNSD system, distributed

crawling system, and the website for the SNSD system. Roles and specifications of these ma-

chines are listed in Table 4.1.

Our server random.cs plays the most important role. The website and the message queue

for Celery are run on top of it. Besides, it is also the crawling controller: ventilator, broker,

registry and commander components are run on top of it as well. Delta cloud cluster, running

Arch Linux [44] operating system, is set up as a MonogDB cluster with replication and sharding

features. We employ this cluster to store plurks for SNSD system.

CS workstation cluster is composed of twelve workstations, which is a mixture of Gentoo

Host name CPU Memory OS Role
random.cs Intel Xeon X5650 48GB Arch Linux Website, Crawling master
Delta cloud AMD Opteron 270 16GB Arch Linux MongoDB, Crawling agent
bsd[1-5].cs Intel Xeon E5520 8GB FreeBSD Celery worker, Crawling agent
bsd6.cs Intel Xeon E5405 12GB FreeBSD Celery worker, Crawling agent
linux[1-5].cs Intel Xeon E5520 8GB Gentoo Linux Celery worker, Crawling agent
linux6.cs Intel Xeon E5405 12GB Gentoo Linux Celery worker, Crawling agent
oracle-[0-1] Intel Xeon E5-2620 8GB Arch Linux Redis slave
ken.cs Intel Xeon E5462 32GB Arch Linux Celery worker, Crawling agent
master-i7 Intel Core i7-2600K 16GB Arch Linux Celery worker, Crawling agent

Table 4.1: Machine specifications and roles

69

Linux [29] and FreeBSD [81] operating systems. These workstations are provided by NCTU

CSCC for students. This cluster is used for scaling out computation power by running Celery

workers.

Two virtual machines (oracle-0, oracle-1) from openstack.cs.nctu.edu.tw work as another

cluster to run Redis instances as read-only slaves for requests fromCSworkstation cluster. Other

machines such as ken.cs and master-i7 perform the role of Celery workers.

Delta cloud cluster, CS workstation cluster (bsd[1-6].cs, linux[1-6].cs), and other machines

listed above can be consolidated into random.cs and the SNSD system, crawling system and

website will still work properly while scaled in.

4.2 Performance Benchmarks

4.2.1 Python JSON Libraries

In order to find out the fastest available Python JSON library in terms of decoding perfor-

mance, we test the following eight popular libraries: yajl [51], cjson [22], czjson [93], simplejson

[13], ujson [42], anyjson [73], jsonlib [41], and the JSON library from Python standard library

[68]. The best one will be the replacement library for Plurk API.

We choose three types of data encoded in JSON format fromPlurkAPI as benchmark dataset:

profile (/APP/Profile/getPublicProfile), friends (/APP/FriendsFans/getFriendsByOffset), and time-

line (/APP/Timeline/getPublicPlurks). Dataset will contain Unicode strings and large lists, and

we prepare five different sizes for friends type.

Before performance testing, we did functional testing to verify that all candidate libraries

do the encoding (serializing an object into a string) and decoding (deserializing a string into

an object) well as expected. The cjson, czjson, and jsonlib library do not pass the verification.

Therefore, we will not consider these three libraries in the following tests.

Our benchmark results indicate that anyjson, simplejson, and yajl are faster than standard

library as shown in Figures 4.1 thru 4.3. However, anyjson and yajl comsume more than 420

MB memory during the testing, and they take 400 MB more than standard library, as shown

in Figure 4.4. The ujson performs the best in encoding and decoding tests. It consumes much

less memory, only 12.9 MB. As such, ujson is selected to replace the standard library in our

implementation.

70

Figure 4.1: Encoding performance

Figure 4.2: Decoding performance

Figure 4.3: Big data performance

71

Figure 4.4: Memory usage of JSON libraries

4.2.2 Python Serialization

We need to choose a serialization format for distributed crawling system and Celery to com-

municate with workers and dispatcher. Instead of encoding performance, we prefer higher de-

coding performance and encoded data size because there are tens of workers but few dispatcher

or controller in distributed crawling system and Celery task queue.

There are five candidates in this experiment: JSON (implemented by ujson), MessagePack,

cPickle (Pickle implemented in C), Marshal, and BSON. We randomly select one million plurks

as dataset for benchmark.

According to our benchmark results, BSON performs the worst, and others’ performances

are close. MessagePack is the fastest one as shown in Figure 4.5. In memory usage part, Mes-

sagePack consumes least memory in encoding but most in decoding, as shown in Figure 4.6.

The major performance difference among the candidates is encoded data size: Dataset in JSON

is close to the baseline of 195 MB, MessagePack takes only 144 MB and Pickle takes 240 MB,

as shown in Figure 4.7. We employ MessagePack as the serialization format considering the

decoding performance and encoded data size.

4.2.3 HMAC-SHA1

Python is a popular general-purpose, high-level scripting language and is regarded as a “glue

language”. Even though the execution performance of Python language is much poorer than C/

72

Figure 4.5: Serialization performance

Figure 4.6: Memory usage of serialization libraries

73

Figure 4.7: Encoded data size

C++ or Java language. It is easily extensible with C/C++ codes to improve computational

performance.

According to Python performance tips [101], we can improve performance dramatically by

rewriting performance-critical codes in C extension. Examples [69, 100, 53] demonstrate the

way to build a Python extension written in Python C-API or Cython, a language for writing

Python C extension as easily as Python codes.

In order to accelerate the HMAC-SHA1 procedure, we benchmark the following three imple-

mentations and integrate the fastest one into the enhanced Plurk API library: (1) Python standard

libraries, (2) M2Crypto extension and (3) customized extension module with OpenSSL library.

Python standard library provides two options for calculating Base64 encoding: binascii and

base64. The binascii module is implemented in C and it contains a number of low-level func-

tions to convert data between binary and ASCII-encoded representations. The base64 module

is implemented in Python and it provides encoding and decoding functions as specified in RFC

3548. The base64 module calls binascii module for encoding or decoding input, then translates

the alternative alphabet for the ‘+’ and ‘/’ characters in encoded/decoded data.

M2Crypto, a Python wrapper library for OpenSSL, provides several features such as RSA,

HMACs, and symmetric ciphers, etc. However, M2Crypto does not provide Base64 encoding

function, i.e. we can only useM2Crypto to calculate HMAC signature andwe have to encode the

binary signature by Python. Listing 4.1 illustrates the usage of M2Crypto library and computing

74

Figure 4.8: HMAC-SHA1 performance

of Base64 encoding by base64 and binascii module.

Listing 4.1: Compute HMAC-SHA1 by M2Crypto

>>> from M2Crypto.EVP import HMAC

>>> import base64

>>> import binascii

>>> hmac = HMAC('key', 'sha1')

>>> hmac.update('message')

>>> digest = hmac.digest()

>>> print base64.encodestring(digest)[:-1]

IIjfdNXyFGtIFGyvSWU3fp0L46Q=

>>> print binascii.b2a_base64(digest)[:-1]

IIjfdNXyFGtIFGyvSWU3fp0L46Q=

We calculate one million HMAC-SHA1 with the three implementations mentioned above.

For standard library approach and M2Crypto approach, we do additional test for base64 and

binascii module. As shown in Figure 4.8, our customized module is the fastest and the approach

based on Python standard library is the slowest. Besides, the encoding performance of binascii

module is better than base64 module due to the translation operations as described above.

4.2.4 Python Plurk API Library

We enhanced the plurk-oauth library for crawling performance. Performance are measured

for the following four different concurrency models: single thread, multi-threading, multi-

processing, and gevent. In this experiment, we randomly choose 1,000 plurkers and time the

duration of crawling these uses’ profiles.

75

Figure 4.9: Original API library

Figure 4.10: Enhanced API library

With original library, multi-processing model performs well since worker pool size larger

than 16 and keeps the performance trend on increasing pool size. Gevent performs better than

multi-threading model. However, the performance reaches a ceiling when pool size gets larger

than 32, as shown in Figures 4.9 and 4.11.

Enhanced library improves about 2% than original library in single thread model, 6% in

multi-threading model, 0.2% in multi-processing model, and 85.3% in gevent model, as shown

in Figure 4.10.

4.2.5 Redis Connection

There are three binding modes for Redis: listening to all interfaces, local loopback (listen

127.0.0.1), and domain socket. According to the official documentation [35], domain socket

is the fastest and local loopback is faster than listening to all interfaces. In this experiment, we

76

Figure 4.11: Improvements

Figure 4.12: Redis binding modes

employ official benchmark tool: redis-benchmark and try to verify the performance for the three

binding modes. Furthermore, due to security concern, it is recommended to make requests to

Redis server via SSH tunnel, and we will also measure the connection overhead for both normal

remote connection and SSH tunnel.

According to the benchmark results shown in Figure 4.12 and 4.13, domain socket and local

loopback perform equally well, and both of them are much faster than listening to all interfaces

mode. Besides, normal remote connection is about two times faster than SSH tunnel in the

benchmark. Given the benchmark results, we connect Redis master and read-only slaves via

SSH tunnel for lower traffic replication and synchronization. Read-only slaves accept requests

via normal remote connections for higher traffic lookup and queries.

77

Figure 4.13: Redis remote connection types

4.3 Interest Derivation

In this section, we do an experiment to measure how many interest keywords might be

guessed right for a private plurker.

Firstly, we randomly sample 100 public plurkers then aggregate their interest keywords di-

rectly from their public plurks and select top-64 frequent keywords to represent the plurker’s

interests.

Secondly, we regard these plurkers as private and derive their interest keywords from com-

munities. For each community, we select top-32 frequent keywords to represent the common

topics for the community and aggregate top-64 frequent keywords to from communities to rep-

resent the plurker’s interests.

Finally, we calculate the number of matching interest keywords by counting intersections of

results from the above two scenarios, as shown in Listing 4.2, to evaluate the precision about

“guessing” interest keywords for a plurker. According to Figure 4.14, we can guess right about

36 keywords for these plurker, i.e. more than half of interest keywords are hit in this experiment.

Listing 4.2: Counting the cardinality of two sets

>>> def intersect(a, b):

... return list(set(a) & set(b))

...

>>> public = {'snsd': 9, 'nctu': 2, 'helena': 21}

>>> private = {'snsd': 18, 'tts': 3, 'nctu': 1001}

>>> intersect(public, private)

['snsd', 'nctu']

78

Figure 4.14: Result of interest derivation

4.4 Website Implementation

The website for SNSD system is based on Flask[7] web framework; besides, we employ

Celery as task queue, D3.js[56] as visualization engine, and Twitter Bootstrap CSS framework

[52] for this website. We provide three functionalities including: interest hierarchy view, interest

tag cloud and focusable community view in pack and treemap layout.

Firstly, interest hierarchy view is rendered in tree layouts from D3.js. It includes customized

script for making nodes collapsible. The interest hierarchy is collapsed when the page rendered.

Website users are allowed to focus on particular hierarchy structure of the plurker by the col-

lapsible function as shown in Figure 4.15.

Secondly, interest tag cloud is rendered in cloud layout by jasondavies[39]. This function is

designed for website user to view plurker’s interest keywords with frequency. Themore frequent

a keyword occurs, the bigger it will show in the cloud as in Figure 4.16.

Lastly, focusable community view is rendered in pack and treemap layout from D3.js. When

communities for a plurker are rendered, the community view is zoomed out. That is, website

user can view the community overview as shown in Figure 4.17 and Figure 4.18, and he/she can

click a community to zoom in then focus on the community members as shown in Figure 4.19

and Figure 4.20.

Pack layout is suitable for browsing a plurker with less than 300 friends after filtering with

parameter filter as shown in Figure 4.21. Treemap layout is intended for viewing a community

with tens of members. Besides, this function can help plurkers find someone he/she might

know but not his/her friend yet. Because the rendered communities are sampled by the snowball

79

Figure 4.15: Interest keywords hierarchy

sampling algorithm with the plurker’s friends and friends-of-friends, this sampling range could

involve someone he/she might already know.

80

Figure 4.16: Interest tag cloud

Figure 4.17: View communities in pack layout

81

Figure 4.18: View communities in treemap layout

Figure 4.19: Focus community on pack layout

82

Figure 4.20: Focus community on treemap layout

Figure 4.21: Parameter filter

83

Chapter 5

Conclusions and Future Works

We build an online SNSD system for Plurk users to find interest topics/keywords and re-

lationship, develop a new crawling framework based on ZeroMQ, and patch the Plurk API for

performance enhancements. Moreover, we build a website with Flask framework. Users can

view the interests and relationship with a browser.

This system can be further expanded or enhanced in the following areas. First, to provide

administrator with manageable UI to maintain the interest keyword hierarchy and consider syn-

onyms, hypernyms and hyponyms for the hierarchy definition. For example, the term “SNSD”,

“少女時代”, and “소녀시대” are the synonyms of “Girl’s Generation”, these terms should

belong to only one category in the hierarchy instead of defining more than two categories with

the same meaning.

Second, apply the SNSD system to Twitter for western language and Sinaweibo formainland

China, and consider fans relationship in interest derivation. With independent interest keywords

hierarchy, our design allows the SNSD system toworkwith social networking services other than

Plurk. What needs to do is to develop a new scraper for crawling conversation and relationship

data from users and fulfill the interest keywords definitions in the hierarchy if the service is not

using traditional Chinese characters.

Third, accelerate community detection with the algorithm proposed by Fortunato [26], Ros-

vall and Bergstrom [72] . The algorithm, based on random work, achieved high performance in

Fortunate’s test. Furthermore, if we still implement the algorithm by Rosvall and Bergstrom or

refactor Louvain algorithm with NetworkX library, we might try to use Intel C compiler (ICC)

andMath Kernel Library (MKL) to compile the SciPy and NumPy libraries which are employed

by NetworkX for better performance [87].

84

Fourth, our customized Python C-extensions for accelerating crypto computation are based

on OpenSSL. Though OpenSSL is already optimized by several hardware acceleration instruc-

tions such as SSE3, SSE4, AES-NI, or AVX etc., it is not fast enough. According to Intel’s report

[90, 34], the Intel Integrated Performance Primitives library is much faster than OpenSSL. The

IPP can be considered to optimize our programs for higher throughput.

Fifth, consider user’s interactivities in conversations for interest topics derivation. We cur-

rently only consider friend relationship to compute community partitions and derive user’s inter-

est topics. However, users will discuss with each other in a plurk/conversation or thread, we can

utilize these information to derive user’s interest topics and work as another filtering mechanism

and derivation parameter.

Finally, Plurk provides poor searching function for users to search public and his/her own

plurks. For the SNSD system, we have already stored most of public plurks, and we may allow

plurkers to provide his/her private plurks to us via Plurk OAuth API and our system may serve

as a full-text search engine in the future.

85

Bibliography

[1] 10gen, Inc. “MongoDB”, 2012. Available: http://www.mongodb.org

[2] 10gen, Inc. “PyMongo Documentation”, 2012. Available: http:// api.mongodb.org/

python/current/

[3] Adams, P. (2011). Grouped: How Small Groups of Friends are the Key to Influence on

the Social Web, New Riders Press.

[4] Alexa Internet, Inc. “Plurk.com Site Info”, 2012. Available: http://www.alexa.com/site-

info/plurk.com

[5] Andrey Petrov. “shazow/urllib3”, 2012. Available: https://github.com/shazow/urllib3

[6] Arenas, A., J. Duch, et al. (2007). “Size reduction of complex networks preserving mod-

ularity.” New Journal of Physics 9(6): 176.

[7] Armin Ronacher. “Flask (A Python Microframework)”, 2012. Available: http://

flask.pocoo.org

[8] Ask Solem. “Homepage | Celery: Distributed Task Queue”, 2012. Available: http://cel-

eryproject.org

[9] Banker, K. (2011). MongoDB in Action, Manning Pubs Co Series. Manning Publications.

[10] Beazley, D. (2010). “An Introduction to Python Concurrency.” from http://

www.slideshare.net/dabeaz/an-introduction-to-python-concurrency.

[11] Beazley, D. M. (2009). Python essential reference, Addison-Wesley Professional.

[12] Blood, R. (2000). “Weblogs: a history and perspective.” Rebecca’s Pocket 7(9): 2000.

86

[13] Bob Ippolito. “simplejson/simplejson”, 2012. Available: http://github.com/simplejson/

simplejson

[14] Brandes, U., D. Delling, et al. (2006). “Maximizing modularity is hard.” arXiv preprint

physics/0608255.

[15] Chau, D. H., S. Pandit, et al. (2007). Parallel crawling for online social networks. Proceed-

ings of the 16th international conference on World Wide Web. Banff, Alberta, Canada,

ACM: 1283-1284.

[16] Cheng, A., M. Evans, et al. (2009). ”Inside Twitter: An in-depth look inside the Twitter

world.” Unpublished report by Sysomos, inc.

[17] Cheng-Lung Sung. “clsung/plurk-oauth”, 2012. Available: https://github.com/clsung/

plurk-oauth

[18] Chen, K. J. and S. H. Liu (1992). Word identification for Mandarin Chinese sentences.

Proceedings of the 14th conference on Computational linguistics-Volume 1, Association

for Computational Linguistics.

[19] Cho, J. and H. Garcia-Molina (2002). Parallel crawlers. Proceedings of the 11th interna-

tional conference on World Wide Web. Honolulu, Hawaii, USA, ACM: 124-135.

[20] Conway, D. (2010). “Mining and Analyzing Online Social Graph Data.Students” from

http://www.drewconway.com/zia/?p=2151.

[21] Crockford, D. (2006). ‘The application/json media type for javascript object notation

(json).”

[22] Dan Pascu. “python-cjson 1.0.5”, 2012. Available: http://pypi.python.org/pypi/python-

cjson

[23] Denis Bilenko. “gevent: A coroutine-based network library for PythonSpeed”, 2012.

Available: http://www.gevent.org

[24] D’Monte, L. (2011). “Swine flu’s tweet tweet causes online flutter.” Business Standard.

[25] Ellison, N. B., C. Steinfield, et al. (2007). ‘The Benefits of Facebook “Friends:” Social

Capital and College Students’ Use of Online Social Network Sites.’ Journal of Computer-

Mediated Communication 12(4): 1143-1168.

87

[26] Fortunato, S. (2010). “Community detection in graphs.” Physics Reports 486(3): 75-174.

[27] Gaonkar, S., J. Li, et al. (2008).Micro-Blog: sharing and querying content throughmobile

phones and social participation, ACM.

[28] Gaudeul, A. and C. Peroni (2010). “Reciprocal attention and norm of reciprocity in blog-

ging networks.” Economics Bulletin 30(3): 2230-2248.

[29] Gentoo Foundation, Inc. “Gentoo Linux – Gentoo Linux News”, 2012. Available: http://

www.gentoo.org

[30] Girvan, M. and M. E. J. Newman (2002). “Community structure in social and biological

networks.” Proceedings of the National Academy of Sciences 99(12): 7821-7826.

[31] Google (2011). Protocol Buffers: Google’s Data Interchange Format.

[32] Guido van Rossum, P. J. E. (2005). “Coroutines via Enhanced Generators.” from http://

www.python.org/dev/peps/pep-0342

[33] Guido van Rossum, T. P. (2003). “Extensions to the pickle protocol.” from http://

www.python.org/dev/peps/pep-0307

[34] Gururaj Nagendra. “Boosting Cryptography Performance with Intel®Libraries”, 2012.

Available: http://software.intel.com/en-us/articles/boosting-cryptography-performance-

with-intel-libraries

[35] “How fast is Redis? – Redis”, 2012. Available: http://redis.io/topics/benchmarks

[36] Hughes, D. J., M. Rowe, et al. (2012). “A tale of two sites: Twitter vs. Facebook and

the personality predictors of social media usage.” Computers in Human Behavior 28(2):

561-569.

[37] iMatix Corporation. “The Intelligent Transport Layer - zeromq”, 2012. Available: http://

www.zeromq.org

[38] Jansen, B. J., M. Zhang, et al. (2009). “Twitter power: Tweets as electronic word of

mouth.” Journal of the American society for information science and technology 60(11):

2169-2188.

88

[39] Jason Davies. “jasondavies/d3-cloud”, 2012. Available: https://github.com/jasondavies/

d3-cloud

[40] Jesse Noller, R. O. (2008). “Addition of the multiprocessing package to the standard li-

brary.’ from http:/www.python.org/dev/peps/pep-0371.

[41] John Millikin. “jsonlib in Launchpad”, 2012. Available: https://launchpad.net/jsonlib

[42] Jonas Tärnström “esnme/ultrajson”, 2012. Available: http://github.com/esnme/ultrajson

[43] “JSON”, 2012. Available: http://json.org

[44] Judd Vinet, Aaron Griffin. “Arch Linux”, 2012. Available: http://www.archlinux.org

[45] Karwin, B. and J. Carter (2010). SQL Antipatterns: Avoiding the Pitfalls of Database

Programming, Pragmatic Bookshelf.

[46] Kegel, D. (2006). “The C10K problem.” from http://www.kegel.com/c10k.html.

[47] Ken Lee, Bryan Cheng, Sean Lee. “Go!Plurk噗浪興趣分析機”, 2012. Available: http://

goplurk.cse.tw

[48] Krawczyk, H., M. Bellare, et al. (1997). RFC 2104: HMAC: Keyed-hashing for message

authentication, IETF, February.

[49] Kwak, H., C. Lee, et al. (2010). What is Twitter, a social network or a news media?

Proceedings of the 19th international conference on World wide web. Raleigh, North

Carolina, USA, ACM: 591-600.

[50] Lin, V. (2010). “Talk about Coroutine and Gevent.” from http:// blog.ez2learn.com/

2010/07/17/talk-about-coroutine-and-gevent

[51] Lloyd Hilaiel. “yajl”, 2012. Available: http://lloyd.github.com/yajl

[52] Mark Otto, Angus Droll. “Bootstrap”, 2012. Available: http://twitter.github.com/boot-

strap

[53] Matthew Perry. “A quick Cython introduction”, 2012. Available: http://

blog.perrygeo.net/2008/04/19/a-quick-cython-introduction

89

[54] Ma, W. Y. and K. J. Chen (2003). Introduction to CKIP Chinese word segmentation

system for the first international Chinese Word Segmentation Bakeoff, Association for

Computational Linguistics.

[55] Martin Sústrik. “ØMQ: The Theoretical Foundation - 250bpm”, 2012. Available: http://

d3js.org

[56] Michael Bostock. “D3.js - Data-Driven Documents”, 2012. Available: http://d3js.org

[57] Mikhail Korobov. “marisa-trie 0.3.7”, 2012. Available: http:// pypi.python.org/ pypi/

marisa-trie

[58] National Digital Archives Program, Taiwan. “中文斷詞系統”, 2012. Available: http://

ckipsvr.iis.sinica.edu.tw

[59] Newman, M. E. J. and M. Girvan (2004). “Finding and evaluating community structure

in networks.” Physical Review E 69(2): 026113.

[60] Newman, M. E. J. (2004). “Fast algorithm for detecting community structure in net-

works.” Physical Review E 69(6): 066133.

[61] Newman, M. E. J. (2004). “Analysis of weighted networks.” Physical Review E 70(5):

056131.

[62] Newman, M. E. J. (2006). “Modularity and community structure in networks.” Proceed-

ings of the National Academy of Sciences 103(23): 8577-8582.

[63] Nick Mathewson, Niels Provos. “libevent”, 2012. Available: http://libevent.org

[64] OAuth Core Workgroup. “OAuth Core 1.0a”, 2012. Available: http://oauth.net/core/1.0a

[65] OASIS. “AMQP”, 2012. Available: http://www.amqp.org

[66] O’Higgins, N. (2011). MongoDB and Python: Patterns and Processes for the Popular

Document-oriented Database, O’Reilly Media.

[67] Plurk Inc. “Plurk API 2.0”, 2012. Available: http://www.plurk.com/API

[68] Python Software Foundation. “18.2. json—JSON encoder and decoder — Python v2.7.3

documentation”, 2012. Available: http://docs.python.org/library/json.html

90

[69] Python Software Foundation. ‘1. Extending Python with C or C++ — Python v2.7.3

documentation‘”, 2012. Available: http://docs.python.org/2/extending/extending.html

[70] Ralf Schmitt. “python-greenlet/greenlet”, 2012. Available: https://github.com/python-

greenlet/greenlet

[71] Romm-Livermore, C. and K. Setzekorn (2009). Social networking communities and e-

dating services: Concepts and implications, IGI Global.

[72] Rosvall, M. and C. T. Bergstrom (2008). “Maps of random walks on complex networks

reveal community structure.” Proceedings of the National Academy of Sciences 105(4):

1118-1123.

[73] Rune Halvorsen. “runeh / anyjson”, 2012. Available: https://bitbucket.org/runeh/anyjson

[74] Russell, M. (2011). Mining the Social Web: Analyzing Data from Facebook, Twitter,

LinkedIn, and Other Social Media Sites, O’Reilly Media, Inc.

[75] Russell, M. A. (2011). 21 Recipes for Mining Twitter, Oreilly & Associates Inc.

[76] Sadayuki Furuhashi. “MessagePack: It’s like JSON. but fast and small.”, 2012. Available:

http://msgpack.org

[77] Salvatore Sanfilippo, Pieter Noordhuis. “Redis”, 2012. Available: http://redis.io

[78] “Sharded Cluster Architectures — MongoDB Manual”, 2012. Available: http://

docs.mongodb.org/manual/administration/sharding-architectures/

[79] SimpleGeo Inc. “simplegeo/python-oauth2”, 2012. Available: https://github.com/sim-

plegeo/python-oauth2

[80] Tang, L. andH. Liu (2010). “Community detection andmining in social media.” Synthesis

Lectures on Data Mining and Knowledge Discovery 2(1): 1-137.

[81] The FreeBSD Project. “The FreeBSD Project”, 2012. Available: http://www.freebsd.org

[82] Thomas Aynaud. “taynaud / python-louvain”, 2012. Available: https://bitbucket.org/tay-

naud/python-louvain

[83] Thomas Broyer. “httplib2 - A comprehensive HTTP client library in Python”, 2012.

Available: http://code.google.com/p/httplib2

91

[84] Tsai, C. H. (2000). “MMSEG: A word identification system for Mandarin Chinese text

based on two variants of the maximummatching algorithm.” Avaible on internet at http://

technology.chtsai.org/mmseg.

[85] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebre.

“Fast unfolding of community hierarchies in large networks” arXiv (2008): 0803.0476.

[86] Vinta. “gibuloto/paranoid-auto-spacing”, 2012. Available: https://github.com/gibuloto/

paranoid-auto-spacing

[87] Vipin Kumar E K. “Numpy/ Scipy with Intel®MKL”, 2012. Available: http:// soft-

ware.intel.com/en-us/articles/numpyscipy-with-intel-mkl

[88] Wilson, C., B. Boe, et al. (2009). User interactions in social networks and their implica-

tions. Proceedings of the 4th ACM European conference on Computer systems, ACM.

[89] Wu, S., J. M. Hofman, et al. (2011). Who says what to whom on twitter. Proceedings of

the 20th international conference on World wide web. Hyderabad, India, ACM: 705-714.

[90] Yang C. “Boosting OpenSSL AES Encryption with Intel®IPP”, 2012. Available: http://

software.intel.com/en-us/articles/boosting-openssl-aes-encryption-with-intel-ipp

[91] Yata Susumu. “ marisa-trie - Matching Algorithm with Recursively Implemented Stor-

Age”, 2012. Available: https://code.google.com/p/marisa-trie

[92] Zhao, D. and M. B. Rosson (2009). How and why people Twitter: the role that micro-

blogging plays in informal communication at work, ACM.

[93] Zuroc. “czjson 1.0.8”, 2012. Available: http://pypi.python.org/pypi/czjson

[94] 不來恩. “GoPlurk! 噗浪「興趣分析機」，看看你是哪種噗浪人！”, 2012. Available:

http://briian.com/?p=6331

[95] 楊又肇. “「Go!Plurk」分析你的噗浪興趣比例”, 2012. Available: http://mag.udn.com/

mag/digital/storypage.jsp?f_ART_ID=199431

[96] “BSON - Binary JSON”, 2012. Available: http://bsonspec.org

[97] “Encryption - zeromq”, 2012. Available: http://www.zeromq.org/topics:encryption

92

[98] “PyPy”, 2012. Available: http://pypy.org

[99] “Overview — NetworkX 1.7 documentation”, 2012. Available: http://networkx.lanl.gov

[100] “Python Programming/Extending with C - Wikibooks, open books for an open world”,

2012. Available: http://en.wikibooks.org/wiki/Python_Programming/Extending_with_C

[101] “PythonSpeed/ PerformanceTips - PythonInfo Wiki”, 2012. Available: http://

wiki.python.org/moin/PythonSpeed/PerformanceTips

[102] “Twisted”, 2012. Available: http://twistedmatrix.com/trac

[103] “國立交通大學資訊工程學系 NCTU Department of Computer Science”, 2012. Avail-

able:http://www.cs.nctu.edu.tw/cht/about_cs/index1.php

93

Appendix A

Diskless Linux Cluster Installation

A.1 Base System

Setup network in the live installation environment

ip addr add 140.113.207.149/24 dev eth0

ip link set up eth0

ip route add default via 140.113.207.254

echo nameserver 8.8.8.8 > /etc/resolv.conf.head

passwd

/etc/rc.d/sshd start

Prepare hard drive

fdisk -l

cfdisk /dev/sda

mkfs.ext4 /dev/sda1

mkfs.btrfs /dev/sda3

mkswap /dev/sda2 && swapon /dev/sda2

Mount the partitions

mount /dev/sda3 /mnt

mkdir -p /mnt/boot

mount /dev/sda1 /mnt/boot

Select installation mirror

94

mkdir -p /mnt/etc/pacman.d

echo "Server = http://linux.cs.nctu.edu.tw/archlinux/"\$repo"/os/"\$arch"" > /mnt/etc/pacman.d/

mirrorlist

Install the base system and bootloader

pacstrap /mnt base base-devel syslinux btrfs-progs

Generate fstab then chroot into system

genfstab -p /mnt >> /mnt/etc/fstab

arch-chroot /mnt

Miscellaneous configurations

sed -i 's/PermitRootLogin yes/PermitRootLogin no/g' /etc/ssh/sshd_config

cat >> /etc/pacman.conf <<EOF

[archlinuxfr]

Server = http://repo.archlinux.fr/\$arch

EOF

cat > /etc/ntp.conf <<EOF

server tick.stdtime.gov.tw prefer

server tock.stdtime.gov.tw prefer

server time.stdtime.gov.tw prefer

server clock.stdtime.gov.tw

server watch.stdtime.gov.tw

restrict default nomodify nopeer

restrict 127.0.0.1

driftfile /var/lib/ntp/ntp.drift

logfile /var/log/ntp.log

EOF

echo "HOSTNAME" > /etc/hostname

cat > /etc/vconsole.conf <<EOF

KEYMAP="us"

CONSOLEFONT=

CONSOLEMAP=

USECOLOR="yes"

EOF

ln -s /usr/share/zoneinfo/Asia/Taipei /etc/localtime

cat >> /etc/locale.gen <<EOF

en_US.UTF-8 UTF-8

95

zh_TW.UTF-8 UTF-8

zh_TW BIG5

EOF

locale-gen

echo "LANG=en_US.UTF-8" > /etc/locale.conf

Configure the network (static IP)

cat > /etc/resolv.conf <<EOF

nameserver 8.8.8.8

nameserver 8.8.4.4

nameserver 140.113.235.1

EOF

chattr +i /etc/resolv.conf

pacman -S netcfg ifplugd

cat > /etc/network.d/ethernet-static <<EOF

CONNECTION='ethernet'

INTERFACE='eth0'

IP='static'

ADDR='140.113.207.147'

GATEWAY='140.113.207.254'

DNS=('8.8.8.8', '8.8.4.4', '140.113.235.1')

EOF

systemctl enable net-auto-wired.service

disabled Ctrl+Alt+Del to reboot

systemctl mask ctrl-alt-del.target

Enable DAEMONS

systemctl enable cronie.service ntpd.service sshd.service iptables.service syslog-ng.service

iptables -N sshguard

iptables -A INPUT -p tcp --dport 22 -j sshguard

iptables-save > /etc/iptables/iptables.rules

systemctl restart sshguard.service

Create an initial ramdisk environment

sed -i 's/MODULES=""/MODULES="virtio_blk virtio_pci virtio_net"/g' /etc/mkinitcpio.conf

mkinitcpio -p linux

96

Configure the bootloader

/usr/sbin/syslinux-install_update -iam

vi /boot/syslinux/syslinux.cfg

Root password and adding a user

passwd

adduser

useradd -m -g wheel -G root,log -s /bin/bash ken

Clean up then reboot

rm -rf /var/log/*

rm /var/cache/pacman/pkg/*

exit

rm /mnt/root/.bash_history

umount /mnt/boot /mnt

reboot

A.2 Network Block Device (NBD) Server

Install NBD

pacman -S nbd

Create NBD Image

mkdir /nbd

truncate -s 4G /nbd/root

mkfs.ext4 /nbd/root

mount /nbd/root /mnt

export root=/mnt

mkdir -p $root/{proc,sys,run,tmp}

mkdir -p $root/dev/{pts,shm}

mkdir -p "$root/var/lib/pacman"

mount -t proc proc "$root/proc" -o nosuid,noexec,nodev

mount -t sysfs sys "$root/sys" -o nosuid,noexec,nodev

mount -t devtmpfs udev "$root/dev" -o mode=0755,nosuid

mount -t devpts devpts "$root/dev/pts" -o mode=0620,gid=5,nosuid,noexec

pacman -Syu --root "$root" --dbpath "$root/var/lib/pacman" base base-devel --arch x86_64

sed -i 's/^HOOKS=".*"/HOOKS="base udev net nbd autodetect pata scsi sata mdadm lvm2 filesystems us-

binput fsck"/g' "$root/etc/mkinitcpio.conf"

97

echo 'NETWORK_PERSIST="yes"' > "$root/etc/rc.conf"

chroot "$root" /bin/bash

(chroot) # mkinitcpio -p linux

(chroot) # exit

umount "$root/dev/pts" "$root/dev" "$root/sys" "$root/proc"

/etc/nbd-server/config

[generic]
user = nbd
group = nbd

[nbdroot]
exportname = /nbd/root
authfile = /etc/nbd-server/allow
copyonwrite = true
postrun = rm -f %s

/etc/nbd-server/allow

192.168.1.2
192.168.1.3
192.168.1.4
192.168.1.5
192.168.1.6
192.168.1.7
192.168.1.8
192.168.1.9
192.168.1.10
192.168.1.11
192.168.1.12
192.168.1.13
192.168.1.14
192.168.1.15
192.168.1.16
192.168.1.17
192.168.1.18
192.168.1.19
192.168.1.20

Install Pxelinux

pacman -S syslinux

mkdir -p /nbd/boot/pxelinux.cfg

cp /usr/lib/syslinux/pxelinux.0 /nbd/boot

mount /nbd/root /mnt

cp -r /mnt/boot /nbd/boot

umount /mnt

98

/nbd/boot/pxelinux.cfg/default

default linux

label linux
kernel vmlinuz-linux
append initrd=initramfs-linux.img ip=:::::eth0:dhcp nbd_host=192.168.1.1 nbd_name=nbdroot root=/dev/
nbd0

A.3 DHCP and PXE Server

Install DNSMasq

pacman -S dnsmasq

/etc/dnsmasq.conf

interface=eth1
bind-interfaces
dhcp-range=192.168.1.2,192.168.1.20,12h
read-ethers
dhcp-option-force=208,f1:00:74:7e
dhcp-option-force=209,configs/common
dhcp-option-force=210,/nbd/boot/
dhcp-boot=pxelinux.0
enable-tftp
tftp-root=/nbd/boot/

/etc/ethers

00:16:e6:50:a6:70 192.168.1.2
00:16:e6:4d:e3:ea 192.168.1.3
00:16:e6:50:a8:ce 192.168.1.4
00:16:e6:50:be:d2 192.168.1.5
00:14:85:e8:e5:04 192.168.1.6
00:16:e6:4d:dc:b6 192.168.1.7
00:14:85:f0:7c:5c 192.168.1.8
00:16:e6:4f:7f:cc 192.168.1.9
00:16:e6:4e:db:08 192.168.1.10
00:16:e6:5b:ba:3a 192.168.1.11
00:16:e6:55:02:8e 192.168.1.12
00:16:e6:4d:e3:ec 192.168.1.13
00:16:e6:4e:d0:04 192.168.1.14
00:16:e6:52:ff:8e 192.168.1.15
00:16:e6:51:39:12 192.168.1.16
00:16:e6:51:fb:3a 192.168.1.17
00:16:e6:4e:d0:a0 192.168.1.18
00:14:85:ed:55:24 192.168.1.19
00:14:85:f3:c1:e4 192.168.1.20

99

Appendix B

MongoDB Cluster Installation

B.1 MongoDB Installation

Install MongoDB and numactl

pacman -S mongodb numactl

Make directories for MongoDB

mkdir -p /data/mongodb/configsvr

mkdir -p /data/mongodb/log

chown -R mongodb:daemon /data/mongodb

Creat empty logfile then change owner and group

touch /data/mongodb/log/shardsvr.log /data/mongodb/log/configsvr.log

chown -R mongodb:daemon /data/mongodb

Disable hugepage

echo madvise > /sys/kernel/mm/transparent_hugepage/enabled

echo madvise > /sys/kernel/mm/transparent_hugepage/defrag

echo 0 > /sys/kernel/mm/transparent_hugepage/khugepaged/defrag

/etc/hosts

#<ip-address> <hostname.domain.org> <hostname>
127.0.0.1 localhost
::1 localhost

192.168.1.1 master loghost SNSD
192.168.1.2 slave0 TaeYeon

100

192.168.1.3 slave1 Jessica
192.168.1.4 slave2 Sunny
192.168.1.5 slave3 Tiffany
192.168.1.6 slave4 HyoYeon
192.168.1.7 slave5 YuRi
192.168.1.8 slave6 SooYoung
192.168.1.9 slave7 YoonA
192.168.1.10 slave8 SeoHyun
192.168.1.11 slave9 SONE
192.168.1.12 slave10 KimTaeYeon
192.168.1.13 slave11 JungSooYeon
192.168.1.14 slave12 LeeSoonKyu
192.168.1.15 slave13 HwangMiYoung
192.168.1.16 slave14 KimHyoYeon
192.168.1.17 slave15 KwonYuRi
192.168.1.18 slave16 ChoiSooYoung
192.168.1.19 slave17 ImYoonA
192.168.1.20 slave18 SeoJuHyun

/etc/mongodb/configsvr.conf

configsvr = true
quiet = true
dbpath = /data/mongodb/configsvr
logpath = /data/mongodb/log/configsvr.log
logappend = true
rest = true

/etc/mongodb/mongos.conf

quiet = true
logpath = /data/mongodb/log/mongos.log
logappend = true

/etc/mongodb/shardsvr.conf

shardsvr = true
quiet = true
dbpath = /data/mongodb
logpath = /data/mongodb/log/shardsvr.log
logappend = true
oplogSize = 100
rest = true

101

St
ar
tc
on
fig

se
rv
er
s

sn
sd

#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/c
on

fi
gs

vr
.c

on
f

--
re

st
--

fo
rk

"

so
ne

#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/c
on

fi
gs

vr
.c

on
f

--
re

st
--

fo
rk

"

ta
ey

eo
n#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/c
on

fi
gs

vr
.c

on
f

--
re

st
--

fo
rk

"

St
ar
tm

on
go
s

sn
sd

#
su

mo
ng

od
b
-c

"m
on

go
s

-f
/e

tc
/m

on
go

db
/m

on
go

s.
co

nf
--

co
nf

ig
db

sn
sd

:2
70

19
,s

on
e:

27
01

9,
ta

ey
eo

n:
27

01
9

--
fo

rk
"

so
ne

#
su

mo
ng

od
b
-c

"m
on

go
s

-f
/e

tc
/m

on
go

db
/m

on
go

s.
co

nf
--

co
nf

ig
db

so
ne

:2
70

19
,t

ae
ye

on
:2

70
19

,s
ns

d:
27

01
9

--
fo

rk
"

ta
ey

eo
n#

su
mo

ng
od

b
-c

"m
on

go
s

-f
/e

tc
/m

on
go

db
/m

on
go

s.
co

nf
--

co
nf

ig
db

ta
ey

eo
n:

27
01

9,
sn

sd
:2

70
19

,s
on

e:
27

01
9

--
fo

rk
"

ki
mt

ae
ye

on
#
su

mo
ng

od
b
-c

"m
on

go
s

-f
/e

tc
/m

on
go

db
/m

on
go

s.
co

nf
--

co
nf

ig
db

ta
ey

eo
n:

27
01

9,
sn

sd
:2

70
19

,s
on

e:
27

01
9

--
fo

rk
"

St
ar
ta
rb
ite
rs
on

m
as
te
r

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

0
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
0

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
0
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

1
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
1

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
1
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

2
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
2

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
2
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

3
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
3

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
3
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

4
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
4

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
4
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

5
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
5

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
5
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

6
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
6

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
6
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

7
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
7

--
db

pa
th

/d
at

a/
mo

ng
od

b/

102

ar
bi

te
r/

rs
7
--

re
st

--
fo

rk
"

sn
sd

#
su

mo
ng

od
b

-c
"n

um
ac

tl
--

in
te

rl
ea

ve
=a

ll
mo

ng
od

-f
/e

tc
/m

on
go

db
/s

ha
rd

sv
r.

co
nf

--
re

pl
Se

t
rs

8
--

bi
nd

_i
p

19
2.

16
8.

1.
1

--
po

rt
27

02
8

--
db

pa
th

/d
at

a/
mo

ng
od

b/

ar
bi

te
r/

rs
8
--

re
st

--
fo

rk
"

St
ar
ts
ha
rd

se
rv
er
s

sl
av

e0
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
0

--
bi

nd
_i

p
19

2.
16

8.
1.

2
--

fo
rk

"

sl
av

e1
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
1

--
bi

nd
_i

p
19

2.
16

8.
1.

3
--

fo
rk

"

sl
av

e2
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
2

--
bi

nd
_i

p
19

2.
16

8.
1.

4
--

fo
rk

"

sl
av

e3
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
3

--
bi

nd
_i

p
19

2.
16

8.
1.

5
--

fo
rk

"

sl
av

e4
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
4

--
bi

nd
_i

p
19

2.
16

8.
1.

6
--

fo
rk

"

sl
av

e5
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
5

--
bi

nd
_i

p
19

2.
16

8.
1.

7
--

fo
rk

"

sl
av

e6
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
6

--
bi

nd
_i

p
19

2.
16

8.
1.

8
--

fo
rk

"

sl
av

e7
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
7

--
bi

nd
_i

p
19

2.
16

8.
1.

9
--

fo
rk

"

sl
av

e8
#
su

mo
ng

od
b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
8

--
bi

nd
_i

p
19

2.
16

8.
1.

10
--

fo
rk

"

sl
av

e1
0#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
0

--
bi

nd
_i

p
19

2.
16

8.
1.

12
--

fo
rk

"

sl
av

e1
1#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
1

--
bi

nd
_i

p
19

2.
16

8.
1.

13
--

fo
rk

"

sl
av

e1
2#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
2

--
bi

nd
_i

p
19

2.
16

8.
1.

14
--

fo
rk

"

sl
av

e1
3#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
3

--
bi

nd
_i

p
19

2.
16

8.
1.

15
--

fo
rk

"

sl
av

e1
4#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
4

--
bi

nd
_i

p
19

2.
16

8.
1.

16
--

fo
rk

"

sl
av

e1
5#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
5

--
bi

nd
_i

p
19

2.
16

8.
1.

17
--

fo
rk

"

sl
av

e1
6#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
6

--
bi

nd
_i

p
19

2.
16

8.
1.

18
--

fo
rk

"

sl
av

e1
7#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
7

--
bi

nd
_i

p
19

2.
16

8.
1.

19
--

fo
rk

"

sl
av

e1
8#

su
mo

ng
od

b
-c

"n
um

ac
tl

--
in

te
rl

ea
ve

=a
ll

mo
ng

od
-f

/e
tc

/m
on

go
db

/s
ha

rd
sv

r.
co

nf
--

re
pl

Se
t

rs
8

--
bi

nd
_i

p
19

2.
16

8.
1.

20
--

fo
rk

"

103

B.2 Replica Sets

Initialize replica sets

ken@snsd$ mongo taeyeon:27018
MongoDB shell version: 2.0.5
connecting to: taeyeon:27018/test
> var cfg = {
... _id : "rs0",
... members : [
... {_id : 0, host : "taeyeon:27018", priority : 1},
... {_id : 1, host : "kimtaeyeon:27018", priority : 2},
... {_id : 2, host : "snsd:27020", arbiterOnly : true}
...]
... }
> rs.initiate(cfg)
{

"info" : "Config now saved locally. Should come online in about a minute.",
"ok" : 1

}
> rs.conf()
{

"_id" : "rs0",
"version" : 1,
"members" : [

{
"_id" : 0,
"host" : "taeyeon:27018"

},
{

"_id" : 1,
"host" : "kimtaeyeon:27018",
"priority" : 2

},
{

"_id" : 2,
"host" : "snsd:27020",
"arbiterOnly" : true

}
]

}
SECONDARY> rs.status()
{

"set" : "rs0",
"date" : ISODate("2012-06-13T17:06:07Z"),
"myState" : 2,
"syncingTo" : "kimtaeyeon:27018",
"members" : [

{
"_id" : 0,
"name" : "taeyeon:27018",
"health" : 1,
"state" : 2,
"stateStr" : "SECONDARY",
"optime" : {

"t" : 1339606871000,
"i" : 1

},
"optimeDate" : ISODate("2012-06-13T17:01:11Z"),
"self" : true

},
{

"_id" : 1,
"name" : "kimtaeyeon:27018",
"health" : 1,
"state" : 1,
"stateStr" : "PRIMARY",
"uptime" : 286,
"optime" : {

104

"t" : 1339606871000,
"i" : 1

},
"optimeDate" : ISODate("2012-06-13T17:01:11Z"),
"lastHeartbeat" : ISODate("2012-06-13T17:06:07Z"),
"pingMs" : 0

},
{

"_id" : 2,
"name" : "snsd:27020",
"health" : 1,
"state" : 7,
"stateStr" : "ARBITER",
"uptime" : 248,
"optime" : {

"t" : 0,
"i" : 0

},
"optimeDate" : ISODate("1970-01-01T00:00:00Z"),
"lastHeartbeat" : ISODate("2012-06-13T17:06:07Z"),
"pingMs" : 0

}
],
"ok" : 1

}
SECONDARY>

Replica sets configuration

var cfg = {
_id : "rs0",
members : [

{_id : 0, host : "taeyeon:27018", priority : 1},
{_id : 1, host : "kimtaeyeon:27018", priority : 2},
{_id : 2, host : "snsd:27020", arbiterOnly : true}

]
}

var cfg = {
_id : "rs1",
members : [

{_id : 0, host : "jessica:27018"},
{_id : 1, host : "jungsooyeon:27018"},
{_id : 2, host : "snsd:27021", arbiterOnly : true}

]
}

var cfg = {
_id : "rs2",
members : [

{_id : 0, host : "sunny:27018"},
{_id : 1, host : "leesoonkyu:27018"},
{_id : 2, host : "snsd:27022", arbiterOnly : true}

]
}

var cfg = {
_id : "rs3",
members : [

{_id : 0, host : "tiffany:27018"},
{_id : 1, host : "hwangmiyoung:27018"},
{_id : 2, host : "snsd:27023", arbiterOnly : true}

]
}

var cfg = {
_id : "rs4",
members : [

{_id : 0, host : "hyoyeon:27018"},
{_id : 1, host : "kimhyoyeon:27018"},

105

{_id : 2, host : "snsd:27024", arbiterOnly : true}
]

}

var cfg = {
_id : "rs5",
members : [

{_id : 0, host : "yuri:27018"},
{_id : 1, host : "kwonyuri:27018"},
{_id : 2, host : "snsd:27025", arbiterOnly : true}

]
}

var cfg = {
_id : "rs6",
members : [

{_id : 0, host : "sooyoung:27018"},
{_id : 1, host : "choisooyoung:27018"},
{_id : 2, host : "snsd:27026", arbiterOnly : true}

]
}

var cfg = {
_id : "rs7",
members : [

{_id : 0, host : "yoona:27018"},
{_id : 1, host : "imyoona:27018"},
{_id : 2, host : "snsd:27027", arbiterOnly : true}

]
}

var cfg = {
_id : "rs8",
members : [

{_id : 0, host : "seohyun:27018"},
{_id : 1, host : "seojuhyun:27018"},
{_id : 2, host : "snsd:27028", arbiterOnly : true}

]
}

B.3 Sharding

Add shards

ken@snsd$ mongo snsd:27017
MongoDB shell version: 2.0.5
connecting to: snsd:27017/test
mongos> use admin
switched to db admin
mongos> db.runCommand({ addshard : "rs0/taeyeon:27018,kimtaeyeon:27018" });
{ "shardAdded" : "rs0", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs1/jessica:27018,jungsooyeon:27018" });
{ "shardAdded" : "rs1", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs2/sunny:27018,leesoonkyu:27018" });
{ "shardAdded" : "rs2", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs3/tiffany:27018,hwangmiyoung:27018" });
{ "shardAdded" : "rs3", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs4/hyoyeon:27018,kimhyoyeon:27018" });
{ "shardAdded" : "rs4", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs5/yuri:27018,kwonyuri:27018" });
{ "shardAdded" : "rs5", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs6/sooyoung:27018,choisooyoung:27018" });
{ "shardAdded" : "rs6", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs7/yoona:27018,imyoona:27018" });
{ "shardAdded" : "rs7", "ok" : 1 }
mongos> db.runCommand({ addshard : "rs8/seohyun:27018,seojuhyun:27018" });
{ "shardAdded" : "rs8", "ok" : 1 }

106

mongos> db.runCommand({ listShards : 1 });
{

"shards" : [
{

"_id" : "rs0",
"host" : "rs0/kimtaeyeon:27018,taeyeon:27018"

},
{

"_id" : "rs1",
"host" : "rs1/jessica:27018,jungsooyeon:27018"

},
{

"_id" : "rs2",
"host" : "rs2/leesoonkyu:27018,sunny:27018"

},
{

"_id" : "rs3",
"host" : "rs3/hwangmiyoung:27018,tiffany:27018"

},
{

"_id" : "rs4",
"host" : "rs4/hyoyeon:27018,kimhyoyeon:27018"

},
{

"_id" : "rs5",
"host" : "rs5/kwonyuri:27018,yuri:27018"

},
{

"_id" : "rs6",
"host" : "rs6/choisooyoung:27018,sooyoung:27018"

},
{

"_id" : "rs7",
"host" : "rs7/imyoona:27018,yoona:27018"

},
{

"_id" : "rs8",
"host" : "rs8/seohyun:27018,seojuhyun:27018"

}
],
"ok" : 1

}
mongos>

Enable sharding

ken@snsd$ mongo snsd:27017
MongoDB shell version: 2.0.5
connecting to: snsd:27017/test
mongos> printShardingStatus()
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:

{ "_id" : "rs0", "host" : "rs0/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" : "rs1", "host" : "rs1/jessica:27018,jungsooyeon:27018" }
{ "_id" : "rs2", "host" : "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" : "rs3", "host" : "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" : "rs4", "host" : "rs4/hyoyeon:27018,kimhyoyeon:27018" }
{ "_id" : "rs5", "host" : "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" : "rs6", "host" : "rs6/choisooyoung:27018,sooyoung:27018" }
{ "_id" : "rs7", "host" : "rs7/imyoona:27018,yoona:27018" }
{ "_id" : "rs8", "host" : "rs8/seohyun:27018,seojuhyun:27018" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }

mongos> db.runCommand({enableSharding:"plurk"})
{ "ok" : 1 }

mongos> db.runCommand({shardcollection:"plurk.plurks", key:{_id:1}})

107

{ "collectionsharded" : "plurk.plurks", "ok" : 1 }
mongos> printShardingStatus()
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:

{ "_id" : "rs0", "host" : "rs0/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" : "rs1", "host" : "rs1/jessica:27018,jungsooyeon:27018" }
{ "_id" : "rs2", "host" : "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" : "rs3", "host" : "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" : "rs4", "host" : "rs4/hyoyeon:27018,kimhyoyeon:27018" }
{ "_id" : "rs5", "host" : "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" : "rs6", "host" : "rs6/choisooyoung:27018,sooyoung:27018" }
{ "_id" : "rs7", "host" : "rs7/imyoona:27018,yoona:27018" }
{ "_id" : "rs8", "host" : "rs8/seohyun:27018,seojuhyun:27018" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "plurk", "partitioned" : true, "primary" : "rs6" }

plurk.plurks chunks:
rs6 1

{ "_id" : { $minKey : 1 } } -->> { "_id" : { $maxKey : 1 } } on : rs6 Timestamp(1000, 0)

mongos> printShardingStatus()
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:

{ "_id" : "rs0", "host" : "rs0/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" : "rs1", "host" : "rs1/jessica:27018,jungsooyeon:27018" }
{ "_id" : "rs2", "host" : "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" : "rs3", "host" : "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" : "rs4", "host" : "rs4/hyoyeon:27018,kimhyoyeon:27018" }
{ "_id" : "rs5", "host" : "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" : "rs6", "host" : "rs6/choisooyoung:27018,sooyoung:27018" }
{ "_id" : "rs7", "host" : "rs7/imyoona:27018,yoona:27018" }
{ "_id" : "rs8", "host" : "rs8/seohyun:27018,seojuhyun:27018" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "plurk", "partitioned" : true, "primary" : "rs6" }

plurk.plurks chunks:
rs0 1
rs4 1
rs1 1
rs2 1
rs5 1
rs6 1
rs3 1

{ "_id" : { $minKey : 1 } } -->> { "_id" : 38 } on : rs0 Timestamp(3000, 0)
{ "_id" : 38 } -->> { "_id" : 834733 } on : rs4 Timestamp(6000, 0)
{ "_id" : 834733 } -->> { "_id" : 11488297 } on : rs1 Timestamp(6000, 1)
{ "_id" : 11488297 } -->> { "_id" : 33395723 } on : rs2 Timestamp(5000, 0)
{ "_id" : 33395723 } -->> { "_id" : 50989408 } on : rs5 Timestamp(7000, 0)
{ "_id" : 50989408 } -->> { "_id" : 252729929 } on : rs6 Timestamp(7000, 1)

{ "_id" : 252729929 } -->> { "_id" : { $maxKey : 1 } } on : rs3 Timestamp(2000, 0)

mongos> db.printShardingStatus(true)
--- Sharding Status ---
sharding version: { "_id" : 1, "version" : 3 }
shards:

{ "_id" : "rs0", "host" : "rs0/kimtaeyeon:27018,taeyeon:27018" }
{ "_id" : "rs1", "host" : "rs1/jessica:27018,jungsooyeon:27018" }
{ "_id" : "rs2", "host" : "rs2/leesoonkyu:27018,sunny:27018" }
{ "_id" : "rs3", "host" : "rs3/hwangmiyoung:27018,tiffany:27018" }
{ "_id" : "rs4", "host" : "rs4/hyoyeon:27018,kimhyoyeon:27018" }
{ "_id" : "rs5", "host" : "rs5/kwonyuri:27018,yuri:27018" }
{ "_id" : "rs6", "host" : "rs6/choisooyoung:27018,sooyoung:27018" }
{ "_id" : "rs7", "host" : "rs7/imyoona:27018,yoona:27018" }
{ "_id" : "rs8", "host" : "rs8/seohyun:27018,seojuhyun:27018" }

databases:
{ "_id" : "admin", "partitioned" : false, "primary" : "config" }
{ "_id" : "plurk", "partitioned" : true, "primary" : "rs6" }

plurk.plurks chunks:
rs2 122
rs4 122
rs1 122
rs6 122

108

rs0 122
rs3 122
rs8 122
rs5 122
rs7 123

{ "_id" : { $minKey : 1 } } -->> { "_id" : 38 } on : rs2 Timestamp(561000, 0)
{ "_id" : 38 } -->> { "_id" : 197903 } on : rs4 Timestamp(652000, 1)
{ "_id" : 197903 } -->> { "_id" : 612416 } on : rs1 Timestamp(474000, 0)
{ "_id" : 612416 } -->> { "_id" : 921696 } on : rs6 Timestamp(477000, 0)
{ "_id" : 921696 } -->> { "_id" : 1325680 } on : rs0 Timestamp(561000, 1)
...

{ "_id" : 599934313 } -->> { "_id" : 600312646 } on : rs7 Timestamp(728000, 6)
{ "_id" : 600312646 } -->> { "_id" : 600700305 } on : rs7 Timestamp(730000, 2)
{ "_id" : 600700305 } -->> { "_id" : 877069913 } on : rs7 Timestamp(730000, 3)
{ "_id" : 877069913 } -->> { "_id" : 878621144 } on : rs8 Timestamp(99000, 4)
{ "_id" : 878621144 } -->> { "_id" : 891168102 } on : rs8 Timestamp(121000, 6)
{ "_id" : 891168102 } -->> { "_id" : 892947685 } on : rs5 Timestamp(129000, 4)
{ "_id" : 892947685 } -->> { "_id" : 895436846 } on : rs2 Timestamp(142000, 4)
{ "_id" : 895436846 } -->> { "_id" : 898183991 } on : rs2 Timestamp(152000, 6)
...

{ "_id" : 968419263 } -->> { "_id" : 968803422 } on : rs5 Timestamp(563000, 2)
{ "_id" : 968803422 } -->> { "_id" : 969199788 } on : rs5 Timestamp(569000, 8)
...

{ "_id" : 1008503104 } -->> { "_id" : 1010166169 } on : rs8 Timestamp(501000, 6)
{ "_id" : 1010166169 } -->> { "_id" : 1011814205 } on : rs8 Timestamp(509000, 2)

...
{ "_id" : 1039107320 } -->> { "_id" : 1040049038 } on : rs3 Timestamp(686000, 4)

{ "_id" : 1040049038 } -->> { "_id" : { $maxKey : 1 } } on : rs3 Timestamp(686000, 5)

mongos>

109

