5 17 A2 38 N2

EAREETIENIEA

"t m X

#F ok -2 0 B Eg F 2 & E

Verification for Static Binary Translation

B or oA TERE

R P R

FERE 101 & 8 A

HHELE - ~BEFL%RE
Verification for Static Binary Translation

By o2 iRE Student : Yuan-Jia Li
hERE PR Advisor : Wuu Yang
E;é] & W= g
R - - BN A
ML 2
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

August 2012

Hsinchu, Taiwan, Republic of China

PR 101 # 8

CEREY ¥ By PR B

F
“k
(=

N
%
=4
-

SeUfLE B 1 fRAT 3 STAR L FL

AN B AR - AREFA S B L T E RS
et ARt B s TS o sptheanBoEy B BRI B
B E L o B o d WFE - B ABEFEG P R e e

ol s e d8 o B 3 8 e e B (Calling conventions) ~ k sues e

AN\

(System calls) » #7171 v & - BIRE 1 1% o Fl s - B @e 72
dhig 4 0 APR PR xS A N ERE i £ o Tl B
- BpE R RRFEEFS N T Y S Ry £ A e &
e VPR - Y N - AR FsRER 0 v ¢
fel e B4R Y e A B ATHCE AP ZE 2k & (Architecture state) o ¥
b AL AR OE P 4r o - BRI R T b k4 BB

RE P AT UL FELS D g £

Verification for Static Binary Translation

Student : Yuan-Jia Li Advisor : Dr. Wuu Yang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Binary translation is an important technique for porting programs as it
allows applications for one platform to execute on another. The technique is
widely used in virtual machines and emulators. However, developing binary
translators is tricky because many delicate details need be handled carefully,
such as calling conventions and system calls. Because of the huge number of
instructions in a program, it requires much effort to identify the mistranslated
instructions. Therefore, it is necessary to develop an automatic tool to verify
the translated programs and to identify the mistranslated instructions. We
propose a new verification mechanism for static binary translation, which
checks the emulated architecture state (the state of the emulated architecture)
from time to time during program execution. In our verification tool, there
are additional designs that can speed up the verification and accurately

identify the mistranslated instructions.

Thmy BNz d gL PR FHN P ERPYP R EF w2 ER
duBAET o X P RAEGF RREF - Kadhe ¥ fp 0 ¥ 0 BEEAR 2
PR Z fe o Y G 0 R AeB R ARl SR F A TE g A P
A2 > - H - HREAPAcr B FAY o A RR BHE B ahat o
Fobd BRMA T L R AR i AR X
3 group meeting #Fih-T X EF o EEF AR =X dhmeeting ¢ AT duE
RAAFT RN TR hp B v FPR e ke B0 A iR

T REERwmY LRE -

PRy &R BFPLASLAB ih2 B i Zu T ppEg Bk 28 £ 4
THPIIEANF IR AR R FRAREI TR KSR - R
HE S B HhelAy @ @A - BT e e
B HA A NCTU ioibens — = EAFT T 4 BEE { S 2§ o

RS RHMAMFA - L AT BAFA BAFUL T IR

EEe R

The work reported in this paper is partially supported by National Science Council,
Taiwan, Republic of China, under grants NSC 100-2218-E-009-010-MY3 and NSC
100-2218-E-009-009-MY 3.

Contents

LR

Abstract

9

List of Figures
1 Introduction

2 Background
2.1 Overview of QEMU

2.2 Overview of LLBT
3 Challenges of Verification

4 Design and Implementation
4.1 Allocating Identical Virtual Memory

4.2 Performance of Verification

iv

ii

iii

vi

5 Speed Up Verification

5.1 Coarse Instruction

5.2 Quick Verification

6 Experimental Evaluation

6.1 The Bugs in LLBT Discovered by the Verifier

6.2 The Number of Times Instrumentation Code Is Executed . . .

6.3 Execution Time

7 Conclusion

Bibliography

19

19

26

31

32

34

36

40

41

List of Figures

2.1

4.1

4.2

5.1

0.2

2.3

The left figure is the virtual memory layout of QEMU emulat-
ing an ARM program, and the right figure is the virtual mem-
ory layout of the translated x86 program which was translated

from an ARM program by LLBT.

The overall structure of the verification consists of the offline
phase and the runtime phase. The translated x86 program,
the register-defining list, and the results of coarse-instruction
analysis are prepared during the offline phase. At runtime,
three processes cooperate to perform verification.

The initial content of the ARM stack.

An example coarse instruction. The colored registers in the
right are the registers defined by the coarse instruction.
The algorithm for coarse-instruction analysis
Remove instrumentation code dynamically. TB means a trans-

lation block.

vi

6.1 The number of times instrumentation code is executed in
coarse mode and in branch mode relative to that in full mode. 35
6.2 Execution time when verifying EEMBC applications in the
branch, coarse, and full modes. The base line is the execution
time of emulated ARM programs without verification. 38
6.3 Execution time when verifying EEMBC applications in the
coarse quick and full quick modes. The base line is the exe-

cution time of emulated ARM programs without verification. . 39

vii

Chapter 1

Introduction

Binary translation [17, pp: 49-52] is an important technique for porting
programs as it allows applications for one (software/hardware) platform to
execute on another. The technique is widely used in virtual machines and
emulators, such as VMware Workstation [5], Microsoft Hyper-V [3], and
QEMU [7]. Based on the translation time, there are two broad categories
of binary translation: static binary translation, which translates code offline,
and dynamic binary translation, which translates code at run time. UQBT
[10] is a static binary translator while FX!32 [9], Aries [20], and QEMU are
dynamic.

Developing binary translators is challenging because many issues need
be handled carefully, such as calling conventions, system calls, and the code
discovery and code location problems [17, pp. 52-55]. The translated pro-

gram would fail if any issue is handled incorrectly. In order to verify the

correctness of a translated program, machine state is manually checked after
each instruction is executed. The manual approach consumes a lot of time
and is error-prone. It would be advantageous to have an automatic tool that
can verify the translated programs and identify the errors produced by the
translator.

Traditional verification methods fall in two categories. The first com-
pares the execution results of the original and the translated programs. The
concept is similar to black-box testing of software testing. This strategy is
simple but unsuitable since it is difficult to accurately compare the results
since there are many kinds of results; such as creating a new file or initiating
a system operation. Moreover, this strategy would produce little information
to help debugging.

The second performs verification based on the control flow of the pro-
grams. This strategy is widely applied in the validation of optimizing com-
pilers [15,19]. Because the target addresses of the indirect branches cannot
be resolved completely, it is difficult to build an accurate control flow graph
from binary code. The constraint makes this strategy difficult to be applied
in the verification of binary translation.

We propose a new mechanism to verify programs produced by a static bi-
nary translator. This mechanism is based on the first method but comparing
the architecture states instead of the program outputs. In our verification
mechanism, the emulated architecture state is checked after each translated

instruction is executed. Instrumentation code, called a checkpoint, is in-

serted after each translated instruction. Instrument must be done on both
the emulated ARM binary and the translated x86 binary at exactly the same
places. The original ARM programs and the translated x86 programs run
side by side. When the instrumentation code is executed, the emulated ar-
chitecture state, including the emulated CPU registers and condition flags,
is compared against the corresponding architecture state in the original pro-
gram. This strategy seems simple and intuitive, but there are many chal-
lenges to overcome. One challenge is the inconsistency of the placement of
the code and data in the virtual memory. Different placements result in
different values in the architecture state. This makes comparison difficult.

In this research, we developed a verifier which can indicate the mistrans-
lated instruction if it discovers the program is translated incorrectly. The
verifier uses QEMU to produce the run-time architecture states of the orig-
inal program and then compares it against the corresponding emulated ar-
chitecture states of the translated program to ensure the translated program
behaves exactly as the original program. The verifier also helps the devel-
opers to identify mis-translation problems in a static binary translator. In
addition, we invented several techniques that speed up the verifier without
losing the precision in verification.

The remainder of this thesis is structured as follows. Chapter 2 sketches
the binary translator LLBT and the emulator QEMU. Chapter 3 describes
the challenges of verification. Chapter 4 illustrates the implementation de-

tails and shows how to overcome the problem of different memory address.

Chapter 5 details the method to speed up verification. Chapter 6 discusses

the experimental results, and this research is summarized in chapter 7.

Chapter 2

Background

In this research, we attempt to verify the static binary translator LLBT
(LLvm-based Binary Translator) [16]. We use LLBT to translate an ARM
binary into an x86 binary and compare the architecture states during the
execution of the ARM and x86 binaries. We also need QEMU to emulate the
ARM binary on our hardware platform (which is a x86 architecture). Two
reasons let us to use QEMU to emulate the ARM binary instead of directly
execute it on a real ARM machine. The first reason is performance. In this
research, the two architecture states should be compared. It needs network
communication to send information for verifying. The overhead of network
communication is more than communication between two processes in the
same machine. The second reason is decreasing the developing effort, we use
QEMU to help us deal with the placement of data in the virtual memory

rather than duplicate the function of memory management. The details of

implementation will be described in chapter 4. Thus, it is recommended to
have basic knowledge about QEMU and LLBT. The overview of QEMU and

LLBT are given in the remainder of this chapter.

2.1 Overview of QEMU

QEMU is a generic machine emulator and virtualizer created by Fab-
rice Bellard. Two modes of emulation are supported by QEMU: process
virtual machines and system virtual machines. A process virtual machine
can make programs executable on platforms of different Instruction Set Ar-
chitectures (ISAs). Thanks to the technique of binary translation, process
virtual machines for different ISAs could be implemented on the same hard-
ware platform. For example, an ARM program can be executed on an x86
architecture. On the other hand, a system virtual machine makes it possible
to emulate a whole system including I/O devices, memory space, etc. An-
other operating system or environment, called guest, can be built on top of
the current system, called host.

In this research, we use the process mode of QEMU. When a original
program is emulated by QEMU in the process mode, QEMU first loads the
original code, sets the base address of the emulated heap, and initializes the
emulated CPU registers in memory. Then it allocates memory space for the
code cache and the emulated stack. Finally, QEMU translates the original

code and then executes the translated code. Note that the translated code

is stored in the code cache temporarily, the emulated architecture state is
represented by the emulated CPU registers, and the emulated heap and em-
ulated stack are the heap and stack used by the translated code, respectively.
The left side of Figure 2.1 shows the overall memory layout of QEMU em-
ulating an ARM program. Currently QEMU is used in many applications

such as the Google Android Emulator [2].

2.2 Overview of LLBT

LLBT is a static binary translator based on LLVM (Low Level Virtual
Machine) [6]. Unlike QEMU, LLBT translates code offline, but it does not
offer the function of system virtualization. LLBT translates ARM machine
code into LLVM IRs (an intermediate representation in LLVM), and then
uses the LLVM backend to generate target machine code. LLBT takes an
ARM binary program as input and it outputs a new binary program for
another ISA (Instruction Set Architecture), such as ARM, x86 and MIPS.

The right side of Figure 2.1 shows the overall memory layout of a trans-
lated program in the x86 platform. It is important to note that the emulated
architecture state is maintained by the translated x86 program and the ARM
stack is allocated in the stack of the process by default rather than in the
heap. In general, the performance of a program translated by a static binary
translator would be better than that by a dynamic binary translator because

the translation time can be ignored.

Kernel space Kernel space
Code cache \L \L
of translated
code (x86) Dynamic libraries Dynamic libraries
AN
m----- ARM stack
ARM heap T ARM CPU
ARM heap registers
.data heap A
1= .bss .data '
v |
ARM CPU bss | F-----
registers text o
v
d Translated
reserved reserve code (x86)
QEMU x86

Figure 2.1: The left figure is the virtual memory layout of QEMU emulating
an ARM program, and the right figure is the virtual memory layout of the
translated x86 program which was translated from an ARM program by

LLBT.

Chapter 3

Challenges of Verification

When an ARM program is emulated by QEMU, the process’s virtual ad-
dress space is managed by the QEMU memory management instead of the
host operating system. In other words, QEMU not only emulates the pro-
cessor but also emulates the memory. On the other hand, when executing
a translated program (translated by LLBT), the emulated stack and heap
could be placed at any location allocated by the host operating system. Fig-
ure 2.1 shows the virtual memory layouts in QEMU (left) and the translated
x86 program (right), respectively. In QEMU, both the ARM stack and the
ARM heap are emulated in the heap; while in the translated x86 program,
the ARM heap is emulated in the heap but the ARM stack is emulated in
the stack section. This causes the differences in the memory layout of two
programs.

When we verify the behaviours of the original ARM program (which is

emulated by QEMU) and of the translated x86 program in Figure 2.1, we
compare their architecture states at various steps during program execution.
The architecture state includes the contents of the registers and the four
condition flags (NZCV'). The contents of a register could be either a value
or an address. When the contents of a register, say R1, is a value, R1 in the
original ARM program and R1 in the translated x86 program should have
identical values. When the contents of a register, say R2, is an address, R2
in the original ARM program and R2 in the translated x86 program could
have different contents if memory allocation is done differently in the two
programs.

ARM is a register-based load-and-store architecture. All memory oper-
ations are performed by load or store instructions. Before an instruction
accesses the memory, the address of the memory cell must be saved in the
registers. For example, when a program operates on the process stack, the
stack-pointer register SP holds the address of stack’s top cell. During ver-
ification, the contents of the stack-pointer registers in the emulated ARM
program and in the translated x86 program registers may be different even if
they actually point to the same stack-top cell. Similar situations may happen
to other registers.

In comparing architecture states, there are two approaches: (1) We may
allow different memory allocations and adjust the addresses in registers ac-
cordingly. (2) If we always allocate the ARM stack and heap at the same

virtual addresses, all corresponding registers in the emulated ARM program

10

and in the translated x86 program must always hold the same contents, be it
a value or an address. In the former solution, adjusting the addresses in the
architecture states is cumbersome because it is difficult to track the contents
of registers. Therefore, we adopts the later approach. We are careful to al-
ways make the same memory allocation in both the emulated ARM program
and the translated x86 program. This makes comparing architecture states
simple.

In a straightforward verification, we compare the architecture states after
every instruction is executed. - This increases the overhead of verification
significantly. In some cases, the overhead might be up to 60 times the actual
running time. The poor performance makes the straightforward verification
infeasible. We propose a new method that reduces the number of comparisons

without sacrificing the accuracy of verification.

11

Chapter 4

Design and Implementation

This chapter illustrates the various methods that are used to ensure that
memory allocation in the translated x86 program is exactly the same as
that in the emulated ARM program. Figure 4.1 shows the overall structure
of the verifier. Before program execution, the translated x86 program is
generated from the original ARM program by LLBT. LLBT also produces a
register-defining list from the generated LLVM intermediate form (IR). For
each ARM instruction, the register-defining list contains the registers that
are modified by that ARM instruction. In order to verify the LLVM IR
generated by LLBT, we use another register-defining analyzer, which also
produces a register-defining list from the original ARM binary code. The
two register-defining lists should be identical otherwise there are problems in
LLBT.

The register-defining list is used in the coarse-instruction analysis, which

12

could help to reduce the checkpoints and will be described in chapter 5.
Note that the coarse-instruction analysis is performed in LLBT for gener-
ating instrumentation code in the translated x86 programs. At runtime,
QEMU will initialize the emulated ARM stack and consult the result of the
coarse-instruction analysis for code instrumentation in QEMU. In our imple-
mentation, QEMU will fork two new processes. The original QEMU process
continues performing the normal actions in QEMU. The first spawned pro-
cess loads the x86 binary translated by LLBT as a shared library and jumps
to the main function of the library to execute the translated code. The second
spawned process works as a verifier-which compares the architecture states

obtained from the two other processes.

4.1 Allocating Identical Virtual Memory

In order to simplify the comparison of the architecture states, all variables
and dynamic memory in the translated x86 program are allocated in the same
virtual addresses as those in the emulated ARM program.

When QEMU emulates the original ARM binary, it first allocates a block
of memory that will serve as the stack of the ARM binary. When the trans-
lated x86 binary executes, it also needs to allocate a block of memory that
will serve as the stack of the ARM binary. Moreover, when a program is
executed, the program loader will push the addresses of the system argu-

ments and environment variables into the stack. Figure 4.2 shows the initial

13

Offline

ey ARM program (original program)]
1
1
! U U
. Coarse-
H Register-defining analyzer instruction LLBT
' analysis :
E @ ' N 4 @
1
i | Register-defining list] ' | Register-defining list] Translated x86]
! U : program
i r Compare ! ! !
1 e | |
! | ! i
1 1 1
1 | . 1 :
! Rluntlme 1 1
1 ! 1
: | | |
1 ! 1
1

Allocate and initialize ARM stack

process m
v

QEMU translate code

v

process

Load shared object
(Translated program)

’ Bind syscall wrapper and ARM stack ‘

[= == -

v
I Execute process I Execute I
I Emulated states |<—> Verifier (—)I Emulated states I
IPC (compare states) IPC

Figure 4.1: The overall structure of the verification consists of the offline
phase and the runtime phase. The translated x86 program, the register-
defining list, and the results of coarse-instruction analysis are prepared during
the offline phase. At runtime, three processes cooperate to perform verifica-

tion.

14

ARM stack

low

argc

Pointer of argv[0]

Pointer of argv([1]

NULL

Pointer of env[0]

Pointer of env[1]

high NULL

Figure 4.2: The initial content of the ARM stack.

contents of the ARM stack. The ARM stack in the translated x86 binary
should be located at the same virtual memory address and should have the
same content as the ARM stack in the emulated ARM binary.

When QEMU forks the first new process, the new process automatically
copies the entire virtual memory from the original QEMU process. Then the
translated x86 code is loaded as a shared library and starts execution. The
translated x86 binary can use the ARM stack directly.

The ARM heap is handled similar to the ARM stack. The ARM heap
in the translated x86 binary is located at exactly the same virtual memory

address as the ARM heap in the emulated ARM binary because the new

15

process is forked from the original QEMU process. Memory in the heap is
allocated piece by piece. Since memory allocation is done with system calls,
such as brk or mmap, we may intercept such system calls in order to control
memory allocation.

In order to make the two ARM heaps (one in emulated ARM code and
one in the translated x86 code) identical, it is necessary to modify all the
system calls which are related to memory allocation. But we cannot change
the kernel code when we modify the system calls because other programs
unrelated to verification would be influenced as well. Therefore, a user-level’s
solution should be adopted.

Before explaining the solution, we describe the system-call mechanism in
ARM architecture. There are two steps in a system call in an ARM program:

1. Store a system call number in the register R7.

2. Raise a software interrupt by swi (or-svc) instruction.

The brk system call is implemented as follow:

mov R7, #45

svc 0x00000000

The first mov instruction stores the constant 45 into the register R7. 45
is the system-call number of the brk system call. The second instruction
svc raises a software interrupt. In handling the software interrupt, the OS
will switch to the kernel mode, allocate the required memory, and store the

address of the allocated memory into the register RO.

16

In our solution, LLBT translates the svc instruction into a function call
to a wrapper which performs the system call according to the value of R7.
The wrapper uses mmap to allocate a block of memory at a specific address.
In fact, the QEMU memory management is implemented in a similar way.

Although adapting the system-call wrapper can avoid modifying the ker-
nel code, it still needs a memory management utility that behaves exactly the
same as the QEMU memory management. This is achieved automatically
when a new process is forked from the original QEMU process. The QEMU
memory management automatically sits on the virtual memory of the new
process. Because the translated program is loaded into the process (which
is forked from QEMU) as a shared library, the code sections in QEMU and
translated x86 code exist in the same memory space. It is possible for the
translated x86 code to use QEMU memory management. So, we initialize a
function pointer which points to the code of QEMU memory management
and then the system-call wrapper of the translated x86 program can adopt
the memory management by calling through the function pointer.

Therefore, the strategy, executing the translated x86 code by loading
it into the new process, which forked from QEMU, as a library, is a good
solution with less development effort to makes the ARM stack and ARM

heap identical.

17

4.2 Performance of Verification

The performance of the straightforward verification is a serious challenge.
In the straightforward verification, the instrumentation code is inserted im-
mediately after every translated ARM instruction. This means that the
instrumentation code is executed once for every ARM instruction that is ex-
ecuted. The instrumentation code will collect and deliver the architecture
state to the verifier. The cost of the instrumentation code is much more than
that of a single ARM instruction. In our experiment, the execution time with
verification was 27 times that without verification.

The instrumentation code needs to deliver the architecture state to the
verification. We use the shared memory for the delivery, which is the fastest
IPC strategy because no memory copy between user space and kernel space
needed.

We propose two methods to reduce the verification overhead.

18

Chapter 5

Speed Up Verification

In this chapter, we proposed two methods to speed up the verification.
The first, coarse instructions, reduces the number of instrumentation code
and indicates the mistranslated instruction without losing the precision. The
second, quick verification, attempts to verify each ARM instruction at most

once even if that instruction is executed several times.

5.1 Coarse Instruction

A coarse instruction is a sequence of instructions. It consists of one
or more adjacent machine instructions in a program. We called the group-
ing method as coarse-instruction analysis. Figure 5.1 shows an example
coarse instruction. The first instruction add r5, sp, #40 defines the regis-
ter R5. The remaining instructions define {R6}, {R1, R2, R3}, {RO}, {IP},

respectively.

19

Modify regs. Instructions Processor registers

s N
R5 add RS5, SP, #40 6 pa | om | E
R6 mov R6, #0

R4 | R5 | R6 R7
R1,R2,R3 | Idm RS, {R1, R2, R3}
RO ldr RO, [SP, #32] R8 ' R3 |R10| FP
IP 9 Idr 1P, [SP, #228]) IP | SP | LR | PC

Figure 5.1: An example coarse instruction. The colored registers in the right

are the registers defined by the coarse instruction.

A coarse instruction is a- longest sequence of consecutive instructions that
satisfy the following conditions: (1) If one instruction is executed, all the
following instructions in the coarse instruction will be executed; and (2) No
two instructions define the same registers; and (3) Every machine instruc-
tion belongs to exactly one coarse instruction. (4) It is possible to jump
to the middle of a coarse instruction. The first condition implies only the
last machine instruction of coarse instructions can be a jump instruction.
The second condition implies every register is modified at most one time
in a coarse instruction. We add the instrumentation code after each coarse
instruction, instead of after each machine instruction. When any register
goes wrong during verification, we can still trace the offending machine in-
struction. The reduces the instrumentation code by 80% in the example in
Figure 5.1.

There might be more than one way to partition a program into coarse

20

instructions. We will show a simple algorithm that can identify coarse in-
structions later.

A coarse instruction can be represented as C' = (Iy,I,...,I,) where
each I; is a machine instruction in the program. The registers defined by C'
is D = (D4, Do, ..., D,) where D; is the set of registers defined by I;. Note
that D; N D; = @, when @ # j.

We may analyze a program and identify the coarse instructions. The
instrumentation code is added after each coarse instruction. As shown in
Figure 4.1, the register-defining analysis and coarse-instruction analysis are
performed offline.

A coarse instruction is not a basic block for two reasons: A basic block has
exactly one entry point and one exit point. In contrast, a coarse instruction
can have multiple entry points and one exit point. It is allowed to jump into
the middle of a coarse instruction. This definition could potentially enlarge
a coarse instruction. Hence there are fewer coarse instructions (and less
instrumentation overhead). Different instructions in the same basic block
can define the same registers. This is not allowed in a coarse instruction
because we need to trace the offending instruction in a coarse instruction
once a register goes wrong.

In order to group coarse instructions, we analyze the instructions to collect
the registers and condition flags defined by each instruction and to find all
jump instructions. The analysis is performed and the instrumentation code

are inserted during translation. A condition flag is treated like a register for

21

our purpose. All instructions that may change the straightline control flow
are considered as jump instructions.

In the ARM architecture, there are three types of jump instructions:

1. The branch instructions such as b (branch), which accepts a signed
offset as the relative address of the next instruction, and bl (branch
and link), which saves the program counter PC in the linkage register
LR before jumping to the target address. These instructions can be
identified by opcode of the instructions.

2. The instructions that define the program counter PC such as mov PC,
LR. These instructions can be identified easily.

3. In the ARM architecture, some of instructions such as cmp may set
the condition flags (NZCV) of the processor. The N flag is set when
the result is negative; the Z flag is set when the result is zero; the
(' flag is set when the result of an unsigned operation overflows; and
V flag is set when the result of a signed operation overflows. Some
ARM instructions could be conditionally executed. We called these
instructions are predicated instructions.

A predicated instruction is considered as a conditional branch. How-
ever, in order to make a coarse instruction as large as possible, a
sequence of predicated instructions with the same predicate will be
grouped into a single coarse instruction. For example, the following

sequence of instructions is divided into 5 coarse instructions:

22

Certain instructions may change the condition flag, for example, in
addeqs, the suffix s means the condition flag will be modified accord-
ing the result of the add operation. A coarse instruction will stop
immediately after such an instruction. Certain instructions do not
carry a flag. These instructions will always be executed. A sequence
of non-predicated instructions could be appended to the end of the
previous predicated coarse isntruction.
The algorithm for coarse-instruction analysis is shown in Figure 5.2.
This algorithm will group the coarse instructions by marking the last
machine instruction of each coarse instruction as a checkpoint. Lines 9 to 11
identify the first two kinds of jump instructions. Lines 12 to 14 ensure that

no register is defined more than once in a coarse instruction. Lines from 15 to

23

Input: © is a sequence of instructions ordered by virtual addresses.
Output: Group the instructions to coarse instructions and mark the last

instruction in a coarse instruction as a checkpoint.

1: procedure COARSEANALYSIS(O)

2 acc_regs = NULL

3 pre_ins = FirstInstruction(©)

4 pre__cond = ALWAYS

5: for each ins € © do

6 def regs = GetDefineRegs(ins)

7 cond = GetCondition(ins)

8 is_set_cond = IsSetCondition(ins)
9: if PC e def regs then

10: MarkCheckPoint(ins)

11: acc_regs = NULL

12: else if def regs Nacc_regs # () then
13: MarkCheckPoint(pre_ins)

14: acc_regs = def regs

15: else if cond # pre_cond or is__set. cond = TRUE then
16: pre__cond = cond

17: if cond = ALWAYS then

18: acc_regs = acc_regsUdef regs
19: else

20: MarkCheckPoint(pre_ins)

21: acc_regs =)

22: end if

23: else

24: acc_regs = acc_regsUdef regs

25: end if

26: pre_ins = ins

27: end for

28: end procedure

Figure 5.2: The algorithm for coarse-instruction analysis

24

22 handle predicated instructions. The instrumentation code for verification
is inserted after the instructions marked as checkpoints.

We use an example to demonstrate the coarse-instruction analysis algo-

rithm.

i = aryl[1]; j = aryl[2];
k = ary[3]; m = ary[4];
if (i ==0) {

i += 100; j += 200;
} else {

k += 200; m += 100;
}
i += k;
i -= m;
print (i);
return;

The above code segment is compiled into the following ARM assembly

code. Note that the code from lines 5 to 9 is compiled from if-else block.

1: ldr R1, [RO, #-4]
2: ldr R2, [RO, #-8]
3: ldr R3, [RO, #-12]
4: ldr R4, [RO, #-16]
5: cmp R3, #0

6: addeq R1, R1, #100
7: addeq R2, R2, #200
8: addne R3, R3, #200
9: addne R4, R4, #100
10: add R1, R1, R3

11: sub R1, R1, R4

12: bl <print>

13: mov PC, LR

25

Initially, the value of variable acc_regs is NULL. When the instruction in
line 1 is analyzed, the value of variable acc_regs becomes {R1}. Because
the defined registers are different from line 1 to line 5, the value of acc_regs
is {R1, R2, R3, R4, CPSR} when the instruction in line 5 is analyzed.
When the instructions in line 6 is analyzed, because its condition code is dif-
ferent from the previous instruction, the previous instruction (line 5) should
be marked as a checkpoint and the variable acc_regs is set to {R1}. The
instruction in line 8 is similar to the one in line 6 so the instruction in line 7
should be marked as a checkpoint. Note that when line 10 is analyzed, line
9 is not a checkpoint because the condition code in line 10 is AL. However,
line 11 should be a checkpoint because the defined register is the same as the
one in line 10. Line 12 and line 13 both would change the program flow so
they are marked as checkpoints. In the example, the checkpoints are in line

5, line 7, line 10, line 12 and line 13.

5.2 Quick Verification

The coarse-instruction technique reduces the number of checkpoints to
one third of the number of instruction. However, the resulting instrumented
program is still 9 times slower than the original program. Note that certain
code in a program may be repeatedly executed. The code will be also be
verified repeatedly. In order to speed up the verification, we adopt the code-
coverage technique in our verifier. In short, each instruction will be verified

only when it is executed for the first time. After a piece of instrumentation

26

code is executed, it is turned off so that it will not be executed for the second
time.
Code coverage is a measure of the degree that the source code of a program
has been tested. It has been used in white-box software testing widely [11,12].
In practice, many coverage criteria can be adopted, which are a trade-off

between the performance and the accuracy in testing.

o Function coverage: There is instrumentation code in each function
to indicate whether it has been tested.

o Statement coverage: There is instrumentation code in each block
of code compiled from a statement in source code to indicate whether
it has been tested.

e Decision coverage: There is instrumentation code in each decision
(or edge) to indicate whether it has been tested.

e Instruction coverage: There is instrumentation code in each in-

struction to indicate whether it has been tested.

In order to offer the instruction-level coverage, we adopt the instruction cov-
erage criterion.

According to the 80/20 rule, 80 percent of the execution time is spent on
20 percent of the code. For long-running programs, most of the 20 percent
of code is contained in loops. If the code in loops is verified at most once,
the time spent in the instrumentation code is extremely less than that in the
normal code. Hence, the performance of verification is improved significantly.

We use a short example to illustrate the quick verification.

27

; add R4, R4, #1

L_00000062: ; no need to check condition code
br label %L_00000062 NI

L_00000062_NI:
%tmp_opl_39 = load i32* %ARM_r4
%tmp_result_int_80 = add i32 %tmp_opl_39, 1
store 132 %tmp_result_int_80, i32x %ARM_r4
call @helper_trace(...)
br label %L_00000063

The above code is the LLVM IR which are generated by LLBT from
the ARM instruction add R4, R4, #1. The line call @helper_trace(..)
is the instrumentation code which calls an external function for verifica-
tion. The last line br' label %L 00000063 transfers control to the next
instruction. When the code from br label %L 00000062 NI to store i32
%tmp_result_int_80, i32* %ARM_r4 is executed, the function helper_trace
should be executed and it could record that the code have been tested.

According to our experimental results, total execution time (including
normal program execution and verification) in this verify-once strategy is
only 1.4 to 1.9 times the execution time of the original program. This verify-
once strategy is faster but may produce less accurate results.

In the quick verification mode, all instrumentation code is executed at
most one time. We use dynamic binary instrumentation in QEMU (a dy-
namic binary translator) and self-modifying code (SMC) [8] for the pro-
grams translated by LLBT (a static binary translator) to remove the instru-

mentation code dynamically. Many research focused on the similar issues.

28

Translated x86

Search for TB

Original code

not found (2) Normal Code W
Translator Modify to Instrumentation Code
5 NOPs (just an ext. function call)
Normal Code

Instrumentation Code

Normal Code

Instrumentation Code

valid

Execute External library

| L External Function |
Makes TB invalidate if] (gather state info. and verify it)
instrumentation exists (3)

(a) QEMU - dynamic binary instrumen- (b) x86 - self-modifying code

tation

Figure 5.3: Remove instrumentation code dynamically. TB means a trans-
lation block.

Mustafa [18] used dynamic code patching to achieve dynamic instrumen-
tation for code-coverage testing. Naveen [13] proposed an efficient way to
do program monitoring and profiling. It is available to build customized
program analysis tools with dynamic instrumentation by PIN [14]. Most
research used dynamic code patching or dynamic binary instrumentation to
add or remove instrumentation. However, in our research, the instrumenta-
tion code is added during binary translation and would be removed later.
Figure 5.3 illustrates the process of removing dynamic instrumentation
code. In QEMU (shown as Figure 5.3a), the basic unit of the translated
code is a translation block (TB). When an ARM instruction is executed,

QEMU would search for the corresponding TB first. If the TB is found

29

(this implies the instruction has been translated) and is valid, the TB is
executed; otherwise, QEMU translates the instructions, generates a TB, and
then executes it. In our implementation, each TB would contain one or more
pieces of instrumentation code. After a TB is executed, it will be marked
as invalid. When the TB is encountered the next time, QEMU would check
whether the TB is valid. If the TB is invalid, the TB will be generated again;
however, instrumentation code will not be included this time.

On the other hand, for x86 code that is generated by LLBT (shown as Fig-
ure 5.3b), we cannot use the validate/invalidate mechanism in QEMU. Thus,
a strategy based on self-modifying code is adopted. The steps are shown as
follows: (1) When an ARM instruction is executed, the corresponding in-
strumentation code will be executed. (2) Because the instrumentation code
is essentially a function call, the caller will obtain the function return value,
which is the address of next instruction. Before the caller returns, it modi-
fies the CALL instruction (i.e., the instrumentation code which is 5 bytes in
length) to five NOP (no operation which is 1 byte in length) instructions. (3)
Finally, the program execution continues to the next instruction. When the
ARM instruction is executed the next time, the instrumentation code is just

NOPs.

30

Chapter 6

Experimental Evaluation

Our verifier operates in five modes:

1.

2.

Full mode: Verify after each ARM instruction.

Coarse mode: Verify after each coarse instruction.

Branch mode: Verify only when the branch occurs.

Full quick mode: Verify after each instruction is executed the first
time.

Coarse quick mode: Verify after each coarse instruction is executed

the first time.

Note that, the first two modes are accurate verification which guarantee

all the inconsistent states would be found. The remaining three modes are

inaccurate.

Our verifier is a good debugging tool. Several hidden bugs in the well

developed LLBT! were found with our verifier. We also conducted two exper-

iments on the verifier. The first experiment showed that coarse instructions

ILLBT is a static binary translator developed in our lab for the past 4 years.

31

can significantly reduce the number of checkpoints. The second experiment
showed the execution time when verifying the translated programs in the five
modes.

The experimental environment is an x86 machine equipped with four 12-
core AMD Opteron 6172 processors, and 45 GB memory. The operating
system is Linux x86-64 with kernel 3.2.0. The benchmark is EEMBC 1.1 [1]
which is compiled as ARM statically linked binaries by arm-eabi-gcc 4.4.6
and linked with pClibe library 0.9.30.2 [4]. The version of QEMU underlying

the current verifier is 0.14.0.

6.1 The Bugs in LLBT Discovered by the Ver-

ifier

The verifier discovered three bugs in the 4-year-old LLBT before writing
this thesis. The three bugs were fixed and listed below.

» Load and store double words:
This bug was found when verifying the math program which is a test
case for the math library. In the ARM architectue, two categories of
base-register addressing mode can be used in load and store operations.
(1) Pre-indexed addressing mode. Consider the two instructions: ldr
RO, [R1, #4] and 1dr RO, [R1, #4]!. In both instructions, the value
in the word whose address is R1 + 4 would be loaded into the register

RO, but in the second instruction, the notation ! means to increment

32

the base register R1 by 4, that is R1 + 4. The second instruction
is equivalent to two instructions: 1dr RO, [R1, #4] and then mov
R1, R1, #4. (2) Post-indexed addressing mode. For example, 1dr
RO, [R1], #4 loads the value in the word whose address is R1 to the
register RO, and then increments the value of register R1 by 4.
This bug occurred in the instruction ldrd (load double words) and
strd (store double words) on pre-indexed addressing mode with up-
dating base register (!). When updating a double word data, two
registers would be used to store the value in memory address Addr
and Addr + 4. The cause of the bug is that the value of base register
is updated to Addr + 4 rather than Addr. For example, after executing
the instruction strd RO, [R6, #4], the value of RO and R1 are stored
into mem[R6 + 4] and mem[R6 + 8], and the value of R6 should be
updated to R6 + 4. In the mistranslated x86 code, the value of R6
would be updated to R6 + 8.

e BLX:
This bug was found when verifying the benchmark djpeg in EEMBC’s
consumer test suit. It was a bug in translating blx instruction and
occurred when the operand was the register FP (blx FP). LLBT would
regard the operand FP as an immediate value when translating. The
misunderstanding made the instruction blx FP be translated incor-
rectly.

« Set condition flags:

33

This bug was found when verifying the cast program which is a test
case for casting floating points to integer numbers. The value of the
carry flag (C) was wrong after executing SBC (subtract with carry)
instruction. The C flag shall be set when a carry occurred in the
add operations or “no borrow occurs” in subtract operations, but
the code translated from the SBC instruction set the C flag when “a
borrow occurs”. However, this bug was solved by using LLVM over-
flow intrinsics, which are intrinsics for some arithmetic with overflow
operations provided by LIVM, instead of the old one to update the

condition flags.

6.2 The Number of Times Instrumentation

Code Is Executed

Figure 6.1 shows the number of times instrumentation code is executed
in the coarse mode and branch mode relative to that in the full mode. The
result of the data shows the consequent of coarse instructions in coarse mode.
In coarse mode, the ratio is lower for programs with fewer conditional and
branch instructions. In our experiment, the ratio is between 22% and 52%.
The average ratio is 36%. In other words, it can eliminate 64% cost in
executing instrumentation code. In branch mode, the average ratio is 21%.
The ratios in full quick mode and coarse quick mode are too small, so they

are not be shown in our experiment.

34

trumentation code is executed

imes ins

The number of t

60%

|
I
I
I
I
I
-
»
»
-
I
I
-
L
—
L
L
L
L
X X X X X
o o o o o
n <] ~ —

98esany

¥ ©1ep00g3IA/WOI3|9}
€ e1ep00Q3IA/W023|9}
7 e1ep00QIa3IA/WO23|9}
T e1ep00ga3IA/W023|9}
€ B1BPO0I/W0232}

7 B1BPO0I/W0232}

T~ 18P0/ W0d3|3}

9" e1epQQ|eNd)/ W03
€ e1epQ0|eNq)/Wod3]9]
T e1epQ0|eNd)/wod3|9]
€ 21EPOQUSAUOI/W0I3[3]
7 e1EPOQUSAUOI/W0I3[3]
T e1EPOQUSAUOI /W3]
€ e1epQpJo2Ine/wods|al
7 e1epQQJ02ine/wods|al
T~ e1epQQJ02ine/wods|al
T0¥X31/291440
T0931e304/321340
T0J3Yap/3d130
1e0|JT049123q /321340
PaxIT0431234 /2140
dnyoojainos/3upjiomiau
AZTSqMmolpid/3upiomiau
wpgmolyd/Sunjiomiau
wzgmojyd/Sunjiomiau
wrgmojyd/Sunjiomiau
4dso/3upjiomiau
TobIAq81/1aWwiNsu0d
T08dyqss/1awnsuod
TOoAwdq3.1/1swnsuod
Sadlp/sawnsuod
8adl/1ownsuod
TOY4ds13/aA10WwoINe
T0%00|g1/aA130WoINE
TOpaadsi/aniowolne
Topowmnd/aniowoine
TOY21ud/aaiowolne
TOXI1eW /aA130WOINE
TOMMI/3An0WOINE
TOUJIIPI/aAI0WOINE
T0JpJued/anijowoine
T093Yded/aAn0WOINE
Toduwiig/aAnowoine
T0djaseq/aniowoine
TOMJIE/aAI30WOINE
TOM1Ie/3A130WOINE
T0J1Jle/aA130WOINE
TOPWNZE/3A130WOINE
9T8Y4ds1/HG-9T"8
918pa2dsi/19-9T" 8
9TgpowMNd/Ng-9T" 8
9T8Y243ud/119-9T"8
9T820BWAW/NG-9T" 8
9T84pJuBd/NG-9T 8
918duwIq/19-9T" 8

0%

35

B Branch mode

M Coarse mode

Figure 6.1: The number of times instrumentation code is executed in coarse mode and in branch mode relative

to that in full mode.

6.3

Execution Time

Figure 6.2 and Figure 6.3 show the execution time for EEMBC applica-

tions in the five modes. All the execution time are normalized by adjusting

the execution time of the original benchmarks emulated by QEMU (i.e., ones

without the instrumentation code) as 1. From Figure 6.2, we can see the ex-

ecution of a naive implementation of the instrumentation can be 59 times

that of the original program.

In Figure 6.2, two observations are listed.

The execution time is between 10 and 59 in the full mode. The reason
for the large variation the difference of program behaviors. For a CPU-
intensive program, the execution time of the instrumentation code is
huge relative to the CPU-computation operations. For a memory-
intensive process, the execution time of the instrumentation code is
relatively small.

The overhead of verification is very huge so that the execution time
decreases significantly when we reduce the number of times instru-
mentation code is executed. In the Figure 6.1, it shows the executed
instrumentation code in coarse mode is approximately one-third, and
the Figure 6.2 also shows the execution time is approximately one-

third compared to full mode in average.

On the average, the execution time is 26.7 in the full mode and 9.5 in the

coarse mode. In other words, the performance of verification in the coarse

36

mode is about 3 times better than in the full mode. The fastest verification is
in the branch mode, in the execution time is 5.3. However, the branch mode
is less accurate in that it does not guarantee to identify the mistranslated
instructions.

The experimental results of the full quick mode and the coarse quick
mode are shown in Figure 6.3. As shown in the figure, the execution time of
the verification with the coarse-instruction mechanism is smaller than that
of the one without coarse-instruction mechanism. The verification time are

0.3 for the coarse quick mode and 0.8 for the full quick mode on average.

37

Execution time to verify translated EEMBC benchmarks

TTTtTTrrTT TR

& ¥ £1ep00gJ91A/WO03|3)

S

SRR LY

S
2

Vit

CRULLLRY

oo

ol

ST

:

RN RN
B o

EETRTTRRN RS

EEREERANNN
&

EEETTTTTIRYY
ESSRTTYRYY
ERTTRRRRY

[

S

ral

60

TTTTRTRLLLY)

RRRRN R

|

ESEERERETELIICY

SSTTTTRLTLLLeY

98esany

2 £ e1epO0GI9HA/WOID)

T e1epQQ0gJa1IA/W03|3]
T e1BPOOQI3HA/WOI3|3}
€ B1EPOOI/W0233)
7 e1epQOl4/Wod3|9]
17 1epQ03/ w0333}
9" e1epQO|eNqy/ w0233}

& £ e1epQQ|eNq)/wods|R}
= ¢ e1epQQ|elgy/woda|ay
= £ e1ePOQUSAUOI/WO0I3[3)

T e1BpOQUaAU0D/W03|3)
T~ B1ePOQUSAUOI/WOI3[3)
€ ©1ePOQJ00INE/W0I3|3}
¢ e1ePQQJ09INE/WO0I3[3)
T~ e1epQQJ021ne/wods|ay

= T0MX31/2010

T091€30./321}40

£ T0J9Yup/adiy0

O LTI YTy

1e0}41049123q/3d140
Pax|yT043129q/3d10
dnyoojaino./3unjiomiau
AzTSamold/3upiiomiau
wygmoppid/3uniomisu

s Wwzgmoppd/3uniomiau

wigmoppid/3uniomiau
Jdso/3unjiomiau
TobiAg31/18wnsuod
108dyq8s/19wnsuod
TOAwOQ31/18WNsu0d

2 Sadlp/iswinsuod

8adf/1awnsuod
TOM4ds1/aAiowoine
T0%00]|g1/sA130W0INe
Topaadsi/aniowoine

= TOpowmnd/anowoine
=== [0Y2J3ud/ani30Wo0INE
== TOXlew/aAnowoline

TOMHII/aA130W0INE

= T0UJIdpI/aAn0WOoINE

T0JpJued/aniowoine
T0g3Yyoea/aaowoine
Toduwiig/aaiowoine
T0djoseq/annowoine
TOM4lIe/2A10WOINE
TOMIIe/aAII0WOINE
T0J)4le/2A10WOINE

== T(09Wllze/aA10WOINe

.

CoTTTTTIR LY

o o o
< [l ~

3w} uoinyIaxy

RIS

bk

EEEENTERTLR LR

i

ETTeTTTTTI Y

EESESTRTRLL LR RN

o o
—

w

9T®Mdsn/Ug-9T 8
918pa3ds.i/19-9T"8
9T8powMnd/11g-9T"8
9T8Y2.0ud/19-9T" 8
9T820BWAW/1]-9T" 8
9T84pJued/1g-9T"8
9T8duWlIq/19-9T" 8

8

H Coarse B Branch

& Full

The

Figure 6.2: Execution time when verifying EEMBC applications in the branch, coarse, and full modes.

base line is the execution time of emulated ARM programs without verification.

,,
H A

A

Execution time to verify translated EEMBC benchmarks

35

a8esany

¥ ©1epO0GIIUA/W0I3]R}
€ e1epQgJa1A/Wod3|a]
7 e1epO0g491IA/WO0I3|91
T~ e1epQ0Qg4a1A/Wod3|91
€ E1epOON4/W0233)

7" e1EpOO}4/W023]3)

T~ e1epOON4/W0233)

9" e1epQ0|eIg)/ W03}
€ E1epQ0|eNqy/ w0233
T e1ep00|eNd)/Wod3]9)
€ e1epOQUaAU0D/W03|3)

R N
 — ——

OO
———

e
 ———

R R U RN
 ———

L
 — —— —

e
 E—m— (—

ORI
 ————

e
 — — ——

N NN W |
 ———

L LR LY
 ——

7 e1BpQQUAAU0D/WO023|3)
T~ e1EPOOUSAUOI/WO0I3|3)
€ e1eppQpJod1ne/wods|e)
¢ e1epQ04023INE/W03|3}
T~ e1epQQJod1ne/woda|e)
T0¥X31/301)40
T021e104/321340
T0J3Y1Ip/321440
1e0|§T0J2123q/3d140
paxy10491zaq/a0140
dnyoojainol/8uyiomiau
AzTSgMold/3uptiomiau
wpgmo|jd/3uniomiau

AR R RN R RN
 ——

Y
 ———(——

R LN
 E——" ———

SRR A AR, |
 — —— —

R
 ——

ESSARRRRRRRRNNN
 ——

AR
 — —————

R R R S ey
 ——

PRI
———

OO,
——

ERAAEAARRARARARNY
 ———

AR
 ———

NSNS,
i Se—
wzgmo|d/Suniomiau

ESSEEERERENENNSS
 ——

T wramopyd/Buniomiau
SRR

Jdso/3upjiomiau

Ry
—————
TOb1Aq84/19wnsuod

PR
s e
T08dyqsu/1swnsuod

O
 ——

T0Awdq8i/13Winsuod
8adlp/iawnsuod
8ad/1awinsuod
TOY4ds1/a2An0WoINe
10%00|g1/aA130WoINe
Topaadsi/aAizowoine

L Y
 ——

R)
 ———

ORI,
 ——

R Y
 ———

ERRRRRRRRRRRN
 ——

NRIOSIRNINN,
——

e Topowmn d/aAuo woine
ySSSSSNSSSSSY

Ty T0youd/sanowoine
SESINEEENEES

TOX141eWw /aAiowoine

TOMHII/2An0WOINE

TOuJIopI/aA10WOINE

TOJpJued/aAi0WoINe

[OOSR,
——

R Ry
 ———

OO
 ———

ERRERRRRRRNRNRS
———

ARSI [OqGHOED/a/\DOwOlne
pSSSESSRASY

Toduwiig/annowolne

PR MM ANNN
——
T0djaseq/annowoine

TOWJ!le/aAn0WOINE
ANV TOM1yle/aA10WOINE
| IOJ;}J!E/SA[JOUJOJI’IE
[oaumze/a/\uowome
9184ds1/19-91" 8
918paadsi/1g-9T"8
9T8powMNd/1g-9T" 8
918Y243ud/19-9T"8
9T822eWAW/NA-9T "8
9T84pIued/1g-97" 8
978duWq/)g-9T"8

ORISR,
 ——

e S
 E— —— ——

nHA
¥ 7]
‘N

RN
 ——

POCOOOOCOWY,
 ——

ORI R
 ——

AR
 ———
AR AR, |
——

[ERERRRRRRRRRRNNNN
———

PR
 —— — —

R

~ n — n o
— o
2w} uonndaxy

L
~

39

B Full quick m Coarse quick

Figure 6.3: Execution time when verifying EEMBC applications in the coarse quick and full quick modes. The

base line is the execution time of emulated ARM programs without verification.

Chapter 7

Conclusion

We developed a verifier for binary translation which can indicate the mis-
translated instruction if it discovers the program is translated incorrectly.
Furthermore, in order to speed up verification, we propose the coarse in-
structions, which reduces the number of instrumentation code. The results
also show the number of times the instrumentation code is executed in the
coarse mode is only 36% of that in the full mode. Finally, the code-coverage
technique enables the quick verification. The verification time is only 30% of

the normal execution (i.e., without verification).

40

Bibliography

1] EEMBC.

[2] Google android emulator.

[3] Microsoft Hyper-V.

[4] pClibe.

[5] VMware Workstation.

[6] Vikram Adve and Chris Lattner. The LLVM compiler infrastructure.

[7] Fabrice Bellard. QEMU, a fast and portable dynamic translator. In
Proceedings of the annual Conference on USENIX Annual Technical

Conference, pages 41-46, April 2005.

[8] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified self-
modifying code. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation, volume 42, pages

6677, June 2007.

41

[9]

[10]

[12]

[13]

[14]

Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman
Rubin, Tony Tye, S. Bharadwaj Yadavalli, and John Yates. FX!32 a
profile-directed binary translator. [EEE Micro, 18(2):56-64, March/

April 1998.

Cristina Cifuentes and Mike Van Emmerik. UQBT: Adaptable binary

translation at low cost. Computer, 33(3):60-66, March 2000.

Sebastian Elbaum, David Gable, and Gregg Rothermel. The impact of
software evolution on code coverage information. In Proceedings of Inter-

national Conference on Software Maintenance, pages 169-179, Novem-

ber 2001.

Fabio Del Frate, Praerit Garg, Aditya P. Mathur, and Alberto Pasquini.
On the correlation between code coverage and software reliability. In
Proceedings of the 6th International Symposium on Software Reliability

Engineering, pages 124-132, October 1995.

Naveen Kumar, Bruce R. Childers, and Mary Lou Soffa. Low over-
head program monitoring and profiling. In ACM SIGSOFT Software

Engineering Notes, volume 31, pages 28-34, September 2005.

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur
Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim

Hazelwood. Pin: building customized program analysis tools with dy-

namic instrumentation. In Proceedings of the 2005 ACM SIGPLAN

42

[16]

[17]

[18]

[19]

[20]

conference on Programming language design and implementation, PLDI

‘05, pages 190-200. ACM, 2005.

George C. Necula. Translation validation for an optimizing compiler. In

ACM SIGPLAN Notices, volume 35, pages 83-94, 2000.

Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. LLBT:
an LLVM-based static binary translator. In International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, October

2012.

James E. Smith and Ravi Nair. Virtual Machines: Versatile Platforms

for Systems and Processes. Morgan Kaufmann, June 2005.

Mustafa M. Tikir and Jeffrey K. Hollingsworth. Efficient instrumenta-
tion for code coverage testing. In International Symposium on Software

Testing and Analysis, July 2002.

Jean-Baptiste Tristan, Paul Govereau, and Greg Morrisett. Evaluating
value-graph translation validation for llvm. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Imple-

mentation, June 2011.

Cindy Zheng and Carol Thompson. PA-RISC to [A-64: Transparent

execution, no recompilation. Computer, 33:47-52, March 2000.

43

