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摘   要 

 

    於本論文中，我們提出了一個快速、精確、對稱且微分同構的核磁共振影像(MRI)

對位演算法。我們利用一個對數－歐幾里德的架構以建立微分同構的模型，在此模型中，

微分同構的李代數是由不隨時間變化的速度場表示，此速度場的模型是由多個具緊支撐

的 Wendland 徑向基底函數的線性組合構成。最佳化所用的目標函數是由一有對稱性質

的相關比及經過權重後的拉普拉斯算子模型組成。我們使用一具區域性及貪婪演算法性

質的最佳化架構，藉以增進演算法的速度。在此架構中，我們使用一具對稱性的單純形

演算法，來分別且逐一地找出各個徑向基函數的係數。為了在與仿射對位的結果合併時

仍能保有整體對稱性，我們設計出一個應用“中途空間”概念的架構。藉由此架構，如

果使用具對稱性的仿射對位演算法，則能確保整體對位流程也具對稱性。我們使用一個

階層式的架構以增加演算法的速度及準確度，在此架構中，徑向基底函數是以由粗略至

精細的順序逐一地被部署及估計。我們利用 LPBA40 數據集的 40 個 T1-權重 MRI 影像

的共 1560 對影像對的對位以驗證本論文提出的演算法。經由驗證可得知此演算法完全

滿足微分同構的性質，且對稱性的誤差也小於體素寬度。為了驗證準確度，我們利用

Klein 等人於 2010 年提出的驗證架構評估本演算法，並與其他 14 種對位演算法進行比

較。驗證結果顯示本演算法的中位目標重疊值高於全部 14 個演算法。另外，在使用 5

層規模級別時，本演算法較 14種演算法中所有具微分同構性質者快速。 
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Abstract 

 

A fast symmetric and diffeomorphic non-rigid registration algorithm for magnetic 

resonance images (MRIs) is proposed in this work. A log-Euclidean framework is used to 

model diffeomorphisms, in which the Lie Algebra of the diffeomorphism is modeled by 

time-invariant velocity fields. The velocity fields are modeled using linear combinations of 

compactly-supported Wendland radial basis functions. A symmetric correlation ratio 

combined with a weighted Laplacian model is used as the objective function for optimization. 

We used a greedy local optimization scheme to increase the speed of the algorithm. In this 

setup, a symmetric downhill simplex method is used to estimate the coefficient of each radial 

basis function separately and consecutively. To incorporate the result of initial affine 

registration while maintaining overall symmetry, a framework utilizing the concept of 

“halfway space” is devised. This framework can ensure overall symmetry if the affine 

registration algorithm is symmetric. To increase the speed and accuracy, we used a 

hierarchical framework in which the RBFs are deployed and estimated in a coarse-to-fine 

manner. The proposed algorithm was evaluated using the results of 1560 pairwise 

registrations of 40 T1-weighted MRIs in LPBA40 dataset. According to the evaluation results, 

the proposed algorithm is completely diffeomorphic and has sub-voxel accuracy in terms of 

symmetry. The accuracy of the proposed algorithm was evaluated and compared with 14 

registration methods using the evaluation framework by Klein et al., 2010. The median target 

overlap of the proposed algorithm using LPBA40 dataset is higher than all 14 registration 

methods. In addition, the proposed algorithm is faster than all diffeomorphic registration 

methods in the comparison when using 5 scale levels. 
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Chapter 1

Introduction



2 Introduction

1.1 Backgrounds

In a nutshell, image registration is a procedure that warps an image toward another such

that these two images will match one another as well as possible under a certain criterion. It

is an important operation for the analysis of brain magnetic resonance images (MRI), and,

more specifically, the central procedure of the spatial normalization. Spatial normalization

involves moving multiple images to a single reference frame for further analysis. It enables

the researchers to analyze the intra-subject and inter-subject anatomical variation on the

same basis. As a result, spatial normalization has been used in a large number of studies for

various purposes such as the investigation of various brain diseases such as dementia [9],

schizophrenia [16] and epilepsy [25].

Registration can be categorized into two types: Affine (or global) registration and non-

rigid (or local) registration. Affine registrations (Φ(g)) transform images globally by mod-

elling the transformations as affine transformation matrices (
[
Φ(g)(x) 1

]T
= T [x 1]T ).

Affine registrations are simple but can only roughly match two images. In contrast, non-

rigid registrations model transformations as mapping functions (Φ : <3 → <3). Non-rigid

registrations can account for local deformations and can hence achieve better correspon-

dence between two images. However, non-rigid registration is in general a more difficult

task. The speed and accuracy of non-rigid registrations are likely to be affected if the im-

ages in the image pair are very different from one another. In practice, most non-rigid

registration algorithms entail affine registrations in pre-processing steps for the sake of

stability:

Φ = Φ(l) ◦ Φ(g) (1.1)

Our work mainly focused on the non-rigid registration.

In this thesis, the two images in the image pair used in the registration is referred to

as the source image (Is : <3 → <) and the target image (It : <3 → <) respectively, in

which the source image denotes the image to be warped and the target image is the static

reference image. The registration process is the estimation of the optimal mapping such

that the warped source image will match the target image best under a certain cost function
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(a) (b) (c)

Figure 1.1: An example of folding. (a) The image before transformation. (b) The mapping

function along y-axis (non-injective). (c) The image after transformation. The center part

of the image is folded together, causing unrecoverable volume loss.

(or objective function):

Φ̄ = arg min
Φ
E (Is, It,Φ) (1.2)

1.2 Small-Deformation Registration Frameworks

According to Ashburner [7], registration methods can be divided into two general cate-

gories: Small-deformation frameworks and large-deformation (or diffeomorphic) frame-

works. Most conventional registration algorithms use a small-deformation framework,

in which transformations are encoded in the form of displacement fields (d): Φ (x) =

x + d (x). Registration algorithms using such framework include FNIRT [2], SPM5 nor-

malization algorithm and BIRT [22]. Registration algorithms using this type of framework

assume transformations to be Euclidean and allows transformations to be processed by Eu-

clidean operations. The main advantage of this type of framework is its simplicity and

efficiency in terms of the calculation of the mapping function, since the relationship be-

tween the mapping function and the displacement field can be established through a single

vector addition. However, it does not naturally guarantee a one-to-one mapping and, in
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other words, the existence of the inverse transformation. This means that the topology of

the image is not necessarily preserved after transformation in this type of framework. Loss

of topology leads to artifacts such as folding (see Figure 1.1), which is physically impossi-

ble and also causes unrecoverable loss of volume after transformation as well. In the light

of this problem, some small-deformation methods attempted to ensure the preservation of

topology by imposing regularization constraints [31]. Another major drawback of small-

deformation based methods is that the inverse transformation in this type of framework

cannot be found in a straightforward manner. This may be a fatal flaw for applications such

as the construction of brain templates [20], in which the informations of inverse transfor-

mations is necessary. Some works tackled this problem by estimating forward and inverse

transform simultaneously [27, 30].

1.3 Diffeomorphic Registration frameworks

The development of diffeomorphic registration frameworks has provided a more elegant

solution to these limitations of small-deformation frameworks [7,8,10,14,38]. Diffeomor-

phic frameworks represent the mapping using the well-defined mathematical structure of

diffeomorphism. A diffeomorphism is a smooth and invertible function whose inverse is

also smooth and invertible. This type of framework ensures one-to-one relationship of both

the mapping function and its inverse, and thus guarantees to preserve local structures after

transformation. Moreover, inverse transformations (Φ−1) in diffeomorphic frameworks are

readily available once the forward transformations (Φ) is found (detailed explanations are

given in Section 2). Diffeomorphisms form a Lie Group under composition of functions,

and, as a result, the composition of multiple diffeomorphic transformations will also be

diffeomorphic. Same as Lie Groups, the space of diffeomorphisms is also a manifold.

1.4 Symmetric Registration

With guaranteed invertibility and readily available inverse transformations, diffeomor-

phic registration facilitates the imposition of another important property: symmetry (or
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inverse-consistency). Symmetric registrations can produce consistent result when the source

and the target image are interchanged. Let Φ̄B→A denote the estimated transformation ob-

tained by registering image A to image B, fully symmetric registrations will satisfy the

following:

∀A,B, Φ̄B→A =
(
Φ̄A→B

)−1 (1.3)

This property is crucial especially for applications in which pairwise registrations are in-

volved. If a registration algorithm is asymmetric, the transformation of registering image

A to image B will be inconsistent to that of registering image B to image A. This means

the result of the registration somehow depends on the choice of which image in the image

pair is to be warped onto one another. This dependency may introduce bias and algorithm-

induced artifacts in subsequent analysis. Reuter et al. [27] pointed out that the bias caused

by asymmetric registrations in longitudinal image processing may lead to incorrect results

and potentially flawed interpretation of outcome measures. Artifacts induced by asym-

metric registrations have also been reported in various works [37, 41]. Using symmetric

registrations can prevent this kind of problem and generate more valid analysis result.

Some symmetric registration methods using the small-deformation framework has been

proposed [27, 36]. The method in [27] transforms two images in both directions simulta-

neously in order to achieve symmetry. However, these small-deformation-based methods

merely approximate symmetry by including penalties in the optimization algorithm. On

the other hand, diffeomorphic frameworks provide the well-formed mathematical model

of diffeomorphism. Using this type of framework, the design of symmetric registration

algorithms can be greatly simplified, and the accuracy in terms of the symmetry can be

improved as well.

1.5 Motivation

Despite all the advantages of diffeomorphic frameworks, the computation of diffeo-

morphic transformations are rather computationally expensive when compared to simple

displacement-field models in small-deformation frameworks. For example, registrations
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using DARTEL [7] usually take more than an hour, while some small-deformation based

methods such as BIRT only need a few minutes to achieve similar accuracy. Therefore, our

goal in this work is to design a diffeomorphic and symmetric registration algorithm which

is free of the typical long computation time of diffeomorphic registration algorithms and

hopefully also surpasses other diffeomorphic registration algorithms in other aspects.

1.6 Thesis Overview

The remaining part of this thesis is organized as follows. In Chapter 2, some background

knowledge and related works are briefly explained, which includes the concepts of dif-

feomorphisms, Lie Algebra and basis functions. Chapter 3 gives a detailed description of

the proposed registration algorithm. Chapter 4 explains various implementation details in-

volved in our work. In Chapter 5, the results and the evaluations of the proposed algorithm

in different aspects are given. Chapter 6 discusses various issues related to the proposed al-

gorithm, which includes discussions on the result of evaluation as well as the potential flaws

of the proposed algorithm and their possible solutions. Finally, the concluding remarks and

our future goals are given in Chapter 7.



Chapter 2

Background Knowledge and Related

Works
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Before giving a detailed description of our algorithm, some prerequisite background

knowledge related to our work are explained in this chapter. Diffeomorphisms and Lie

Algebra are two key elements to most diffeomorphic registration methods. The theories as

well as the implementations of these two terms are briefly explained in this chapter. Ad-

ditionally, the role of basis functions in registration algorithms is also discussed. Previous

works related to these topics are also included in this chapter.

2.1 Diffeomorphisms and Lie Algebra

As mentioned, diffeomorphisms forms a manifold of Lie Group under composition of

functions. In other words, a diffeomorphism only resembles an Euclidean space in a local

scale. The non-Euclidean property of diffeomorphisms becomes apparent when the defor-

mation is large. As a result, it cannot be directly modeled using a simple Euclidean vector

field (e.g. a displacement field as in the small-deformation framework). However, diffeo-

morphisms can be implicitly modelled as Euclidean vector fields by using the concept of

Lie algebra. By doing so, operations on the manifold of diffeomorphisms can be simplified

to simple Euclidean operations, and the property of diffeomorphism can be also preserved

after operations. As a result, the concept of Lie Algebra was utilized in most diffeomorphic

registration algorithms.

For a Lie Group (G), its Lie Algebra (g) is the Euclidean tangent space at the identity el-

ement. The conversion between Lie Groups and Lie Algebras is defined as the exponential

and the logarithm operators:

exp (·) : g → G (2.1)

log (·) = exp−1 (·) : G→ g (2.2)

To be simple, the logarithm operator projects a point on a manifold of Lie Group to a

Euclidean tangent space, and the exponential operator projects a point on the Euclidean

tangent space back to the Lie group. In our case, a diffeomorphism (Φ), which belongs to

a Lie Group G, can be modeled by its Lie algebra (V ), which is an Euclidean vector field:

V = log (Φ) (2.3)
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Figure 2.1: A simple illustration of the relationship between the Lie Group of diffeomor-

phisms and its Lie Algebra. A diffeomorphism (Φ) is a point on the Lie Group of diffeo-

morphisms (The gray curved surface). The logarithm operator projects a diffeomorphism

to a point in the Euclidean space of Lie Algebra (The purple plane). Conversely, the expo-

nential operator projects a point in the Lie Algebra back to the Lie Group.

Conversely, a diffeomorphism can be found through exponentiation of its Lie algebra:

Φ = exp (V ) (2.4)

A simple illustration is given in Figure 2.1. Since a Lie algebra is an Euclidean space, oper-

ations of diffeomorphisms can be simplified to simple Euclidean operations. For instance,

combinations of diffeomorphisms can be done through simple vector additions:

(exp aV ) (exp bV ) = exp (a+ b)V (2.5)

And the inverse transformation of a diffeomorphism is simplified to the negation of its Lie

Algebra:

(expV )−1 = exp (−V ) (2.6)



10 Background Knowledge and Related Works

This simplicity for combination and inversion of transformations is a highly desirable prop-

erty for applications where operations of transformations are needed.

2.2 Models of Diffeomorphisms

The concept of Lie algebra is used in many diffeomorphic registration algorithms, al-

though the definitions of the Lie Algebra of diffeomorphism vary. Christensen et al. [14]

and Beg et al. [10] modelled the Lie Algebra of a diffeomorphism as a time-dependent ve-

locity field (V (t, ·)), and the exponential operator is modeled as the flow (ϕ) of this velocity

field at a unit time:

exp(V ) = ϕV (·, 1) (2.7)

ϕV (·, t) denotes the flow of the partial differential equation (PDE) ẋ(t) = V (t, x(t)) at

time t.

This model was used in many diffeomorphic registration algorithms. In the work by

Christensen et al. [13, 14], diffeomorphisms were modeled as a highly viscous fluid, and

the registrations were done by solving PDE’s derived from continuum mechanics for de-

formable bodies. Beg et al. [10] proposed the LDDMM (larger deformation diffeomorphic

metric mapping) algorithm, which finds the optimal velocity fields that will minimize the

geodesic distance on the manifold of diffeomorphisms.

A simpler model was also proposed [3, 7]. These works modelled transformations using

one-parameter subgroups of diffeomorphisms, which can be modelled as flows of time-

independent velocity fields (V (·)) at a unit time. The flows involved in the exponentiation

in these works are simplified to finding a the solution of a stationary PDE (ẋ(t) = V (x)).

An example is given in Figure 2.2. This model greatly alleviated the computational bur-

dens when calculating diffeomorphisms, since diffeomorphisms can be generated through

estimating a single time-invariant velocity fields instead of a series of velocity fields at

different time.
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(a) (b)

V (·) ϕV (·, 1)

Figure 2.2: A diffeomorphism is obtained by calculating the flow of its velocity field. (a)

A velocity field. (b)The resultant diffeomorphism is the flow of this velocity field at a unit

time.
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2.3 Basis Functions

Basis functions have been used as the models of local deformations in many registration

algorithms, regardless of the type of framework used. In these works, mapping functions

(either in the form of displacement fields as in small-deformation frameworks or veloc-

ity fields as in diffeomorphic frameworks) are estimated by linear combinations of basis

functions:

u(x) =
∑
i

αiρi(x) (2.8)

Where α is a vector coefficient and ρi is the ith basis function. u can be either a displace-

ment field or a velocity field, which depends on the type of framework used. For registration

approaches based on the small-deformation framework, basis functions are used to describe

the displacement fields. On the other hand, basis functions are used to estimate velocity

fields in diffeomorphic registration approaches. For example, Ashburner [7] parametrizes

the velocity fields using combinations of B-spline basis functions. These basis functions

can either be deployed regularly [22] or according to other mechanisms (e.g. around mis-

registered regions [31] or on user-identified landmarks [21]).

The use of basis functions greatly reduces the parameters to be estimated. For example,

for a 256 × 256 × 128 MR image, there are a total of 25 million parameters if no basis

function is used. If the mapping function is described by basis functions on regular grids

with width W , the number of parameters can be reduced by a ratio of W 3. Many types

of basis functions have been used in previous works on registration. This includes thin-

plate splines, Gaussian, inverse-multiquadratics [33] , multiquadratics [21], wavelets [1],

discrete cosine transform [4], B-splines [32], and Wendland’s RBFs [22, 31].



Chapter 3

Methods
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3.1 Model of Diffeomorphism

In our work, a framework similar to that of Ashburner [7] and Arsigny et al. [3] is used.

A diffeomorphism (Φ) is implicitly parametrized by its Lie Algebra, which is an time-

independent velocity field (denoted as V ):

V = log(Φ) (3.1)

Or, conversely, a diffeomorphism is the exponential map of its velocity field:

Φ = exp(V ) = log−1(V ) (3.2)

The exponential operator proposed by Arsigny et al. is defined as the flow of the PDE

ẋ(t) = V (x) at time 1:

exp(V ) = ϕV (·, 1) (3.3)

ϕV denotes the flow of the velocity field V . The diffeomorphism is obtained through

the exponentiation of its Lie Algebra (i.e. velocity field). Details of calculation of flows are

further discussed in Chapter 4.

3.2 Radial Basis Functions

Recalling (2.8), the velocity fields can be modelled as linear combinations of basis func-

tions. In the proposed algorithm, the velocity field is estimated using the linear combination

of radial basis functions (RBF):

V (x) =
∑
i

αiρi(x) (3.4)

Where:

ρi(x) = ΨSi
(‖x− ci‖) (3.5)

α is the vector coefficient representing the orientation and the magnitude. ΨS(‖x− c‖) is a

radial basis function centered at c with support extent s. In this work, a type of the Wend-

land Ψ-functions [40], Ψ3,1, is used as the radial basis function. Wendland Ψ-functions
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Figure 3.1: Wendland’s RBF (Ψ(r))

(shown in Figure 3.1) is a piecewise polynomial and compact supported radial basis func-

tion:

Ψ3,1(r) =

(1− r)4(4r + 1) if 0 ≤ r < 1

0 if r =≥ 1
(3.6)

The support extent of Wendland Ψ-functions is restricted to a sphere with unit length,

meaning the RBF Ψ3,1(r) is always zero when r is larger than 1. An additional parameter

S can be used to specify variable support extents:

ΨS(r) = Ψ(
r

S
) (3.7)

The characteristics of Wendland Ψ-functions are highly beneficial for the speed of the

proposed algorithm in several aspects. First, piecewise polynomial RBFs can be calculated

much faster than other types of RBFs such as Gaussian since only calculations of polynomi-

als are involved (while Gaussian requires numerical calculations of exponentials). Second,

the support of a Wendland’s RBF is confined to a certain local region. This means that

adding a Wendland’s RBF to the velocity field will only affect a certain local region. In
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contrast, adding a RBF without compact support (e.g. Gaussian) to the velocity will ef-

fect the whole velocity field, meaning all points in the velocity field have to be included

in the calculation. As a result, the use of Wendland’s RBF can greatly reduce the time of

summing basis functions or optimizing the vector coefficient of a certain RBF.

3.3 The Objective Function

Generally, the objective function for the registration algorithm is a measure of how good

the parameter set (v) is for registering a dataset (D). The maximization of the objective

function can be formulated as the maximum a posteriori probability (MAP) estimate:

vML = arg max
v
p(v|D) (3.8)

Where the objective function is in the form of the posterior probability:

p(v|D) =
p(D|v)p(v)

p(D)
(3.9)

p(D|v) is the likelihood, which indicates the probability of the data given the parame-

ters. p(v) is the prior probability. p(D) is the probability of the data, which is a constant.

Normally, the probabilities are represented in the form of their logarithms (or negative log-

arithms) in order to simplify the calculation. In this work, the probabilities are represented

by their negative logarithms:

− log p(v|D) = − log p(D|v)− log p(v) + log p(D) (3.10)

The negative logarithm of the probabilities can also be thought of as the energy of the

transformation. The constant term log p(D) is neglected since it does not affect the result.

We rewrite the objective function as follows:

E(Is, It, exp(V )) = E1(Is, It, exp(V )) + λE2(exp(V )) (3.11)

E1 is the likelihood term and E2 is the prior term. The likelihood term is a measure which

indicates the similarity (or dissimilarity) between the warped source image and the target

image. The prior term regularizes the transformation to conform to a given prior knowl-

edge. λ is a weight (usually user-specified) indicating the comparative importance of the
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prior term to the overall objective function. The best set of parameters is the one which has

the minimum energy:

vML = arg min
v
E(Is, It, exp(V )) (3.12)

The definitions of the likelihood and the prior term vary between different registration

approaches. The rest of this section will focus on different implementations of these terms

in previous works as well as the choice of these terms in the proposed algorithm.

3.3.1 The Likelihood Term

Likelihood term, which is often referred to as the similarity measure, is an intensity-

based measure which indicates the similarity between two images. To choose a suitable

similarity measure for the MRI registration algorithm, some characteristics of MRIs should

be taken into considerations. First, there is a considerable variability of the brightness and

the contrast among MRIs acquired from different scanners (see Figure 3.2). Second, there

is a universal phenomenon of so-called inhomogeneity (or non-uniformity) among MRIs

(see Figure 3.3). Due to the some technical factors, the intensity of a certain tissue may

vary between local regions. As a result, correction of inhomogeneity is an indispensable

preprocessing step for most registration algorithms. Third, MRIs acquired using different

pulse sequences have distinct properties and intensity modalities. For images of different

modalities, the intensity charastics of tissues could be totally different (see Figure 3.4). For

example, the white matter has higher intensity than the gray matter T1-weighted images but

has lower intensity in the gray matter in T2-weighted images. In some cases of research, re-

searchers need to incorporate the results from images of different intensity modalities (e.g.

T1-weighted MRIs and CT images) through registration. Since the intensity relationship

between images of different modalities is even more complex, the similarity measure used

in this kind of multi-modal registration needs to be chosen carefully.

The similarity measure used in the MRI registration algorithm should be able to account

for these attributes of MRIs. Various types of similarity measures have been used to ac-

count for the differences between images. Similarity measures can be categorized into
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(a) (b) (c)

Figure 3.2: T1-weighted MR images acquired from different scanners present quite differ-

ent intensity properties. MR images (a), (b), and (c) were scanned on a Bruker MedSpec

S300 3T system, GE Signa EXCITE 1.5T system, and Siemens Magnetom 1.5T system,

respectively.

Figure 3.3: Intensity inhomogeneity of T1-weighted MR images. The right-posterior tis-

sues highlighted in yellow boxes show obviously higher intensity compared to other re-

gions.
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(a) (b) (c)

Figure 3.4: MR images acquired using different pulse sequences. The intensity charac-

teristics of tissues vary between different modalities. (a) T1-weighted MR image. (b)

T2-weighted MR image. (c) Diffusion weighted image.

four types of hypothesis: Identity relationship, affine relationship, functional relationship

and statistical relationship (For details, see [28]). Similarity measures assuming identity

relationships (e.g. sum of squared intensity differences) cannot account for variable bright-

ness and contrast or the inhomogeneity of MRIs. Measures assuming affine relationships

(e.g. cross-correlation) prove to perform decently for uni-modal registrations of MRI [8].

Measures assuming functional relationship (e.g. correlation ratio [29]) and statistical re-

lationship (e.g. mutual information) are more well-formed statistically. These two kinds

of measures are robust against the variable brightness and contrast of MRIs. Additionally,

they are also fairly suitable for multi-modal registration.

In our work, a symmetric version of correlation ratio (CR) is used as the likelihood term.

Correlation ratio is a similarity measure which assumes that the intensities of perfectly

matched images conform to a certain functional relationship (i.e. It ≈ f(Is)). Intuitively

speaking, for voxels with same (or similar) intensity in the target image, CR assumes the

corresponding points of these voxels in a perfectly matched source image should have a

certain uniform intensity (see Figure 3.5a). Conversely, intensity dispersion of these corre-

sponding points is interpreted as the dissimilarity between the source image and the target
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image (see Figure 3.5b). The similarity can thus be quantified by measuring the degree of

intensity dispersion of these corresponding points. Comparing to other conventional simi-

larity measures that assume identity or affine relationships, CR is a more robust similarity

measure against the variations of intensity and contrast as well as different modalities.

The definition of CR is given in the following. First, the intensity range of the target

image is divided into NB bins: Bi, i = 1, , NB. Given an evaluation region Ω with N

voxels, Xi denotes the voxels in the region Ω of the source image whose corresponding

points in the target image belong to the ith intensity bin, Bi:

Xi = {x|x ∈ Ω, It(Φ(x)) ∈ Bi} (3.13)

We denote Ni as the number of voxels in Xi. The correlation ratio is formulated as:

CR(Is, It,Φ) = 1−
∑NB

i=1 Ni Var(Is(Xi))

N Var(Is(Ω))
(3.14)

Figure 3.6 shows a real example of two T1-weighted MR images. In Figure 3.6a, a

badly-matched image pair has no clear functional relationship and thus large variance in

each bin. On the other hand, Figure 3.6b shows the intensity relationship of a registered

image pair, and we can see a clearer intensity relationship and hence smaller variances.

Although CR is a powerful similarity measure, it is not symmetric. To achieve symmetry

while preserving the advantages of CR, a symmetric version of CR inspired by Lau et

al. [19] is used. For image A and B, the symmetric correlation ratio (SCR) is formulated as

follows:

SCR(A,B,Φ) = SCR(B,A,Φ−1) =
(CR(A,B,Φ) + CR(B,A,Φ−1))

2
(3.15)

The proposed symmetric correlation ratio is similar to that of Lau et al. [19] except for

the normalization term. The SCR in our work is normalized to the range of [0 1]. Using the

SCR, the likelihood term can be formulated as follows:

E1(Is, It,Φ) = SCR(Is, It,Φ) (3.16)



3.3 The Objective Function 21

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

It(Φ(x))

I s
(x
)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

It(Φ(x))

I s
(x
)

Figure 3.5: An illustration of CR. Red circles represent the intensity correspondence be-

tween the target image and the warpped source image at each point. For each point, its

X coordinate indicates its intensity in the target image and its Y coordinate indicates the

intensity of its corresponding point in the warped source image. The vertical dotted lines

represent the borders of intensity bins, and the blue bar in each bin indicates the range of

standard deviation for all points within that bin. (a) Similar image pair leads to smaller

variance within each bin, which indicates that the intensity of the image pair conforms to

a certain functional relationship. (b) Dissimilar image pair has larger variance within each

bin.



22 Methods

(a) (b)

0 0,.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

It(x)

I s
(x
)

0 0,.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

It(Φ(x))

I s
(x
)

Figure 3.6: An example of CR using a real image pair. (a)The unmatched image pair

does not has clear intensity relationships, leading to larger intensity variance in each bin.

(b)A better-matched image pair has a clearer intensity relationship and smaller intensity

dispersion in each bin.
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When calculating the correlation ratio, one should note that the width and the number of

bins are important factors pertaining to the performance and the validity of CR. The perfor-

mance of CR may drop significantly if the bin width is either too large or too small. Addi-

tionally, the choice of the evaluation region is also important. To increase the efficiency, the

evaluation region should be as compact as possible. Also, the calculation of CR(A,B,Φ)

and CR(B,A,Φ−1) involves different evaluation regions. For now we simply denote the

evaluation region CR(A,B,Φ) as Ω and the evaluation region for CR(B,A,Φ−1) as Ωinv.

Selection of the optimal bin width and the evaluation regions is further discussed in Chap-

ter 4.

3.3.2 The Prior Term

The prior term is a measure which indicates how probable the transformation function

is. This term can ensure the transformation to be realistic according to a certain prior

knowledge such as smoothness of deformation or preservation of topology. Various types

of prior terms have been used in previous works of registrations. This includes membrane

energy, bending energy and linear-elastic energy [5].

The prior term used in our work is the membrane energy of the velocity field, which is

also known as the Laplacian model:

ELaplacian(V ) =
1

Ω

∫∫∫
[(
∂V

∂x
)2 + (

∂V

∂y
)2 + (

∂V

∂z
)2]dx dy dz (3.17)

And:

λE2(exp(V )) = λELaplacian(V ) (3.18)

In here, Ω is the volume involved in the estimation. In our case, V is the support of the

current RBF. The membrane energy is term that favors smoother deformation. This prior

term was also used in other works [7, 22]. Unlike Liu et al. [22], in which the membrane

energy was used to regularize the displacement field, this term was used to regularize the

velocity field in the proposed algorithm. The user-specified weight (λ) controls how much

the prior term effects the optimization. Large weight leads to results with smoother defor-

mations and lower similarity measures. The registration results using small weight have
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higher similarity but may be unrealistic. In our work, we set the value of λ empirically to

0.05 according to experiments using T1-MRIs.

3.4 Optimization

This section is divided into two parts. The first part explains how we designed the

optimization problem as separate optimization problems in different local regions. The

second part describes the symmetric optimization algorithm used in our work.

3.4.1 Local Optimization Scheme

In most registration approaches, coefficients of all basis functions are estimated simul-

taneously. This involves optimization in an extremely high-dimensional parameter space.

Even with the use of basis functions to reduce the number of parameters, the number of pa-

rameters to be estimated can still easily reach millions. The curse of dimensionality arises

when finding the parameter set in such extremely high-dimensional search space, causing

the typical high time complexity of registration algorithms. In the light of this problem,

Rohde et al. [31] proposed a greedy approach which optimizes the basis functions sep-

arately. In their work, 8 RBFs are applied to each identified region of mis-registration,

and the vector coefficients of these 8 RBFs are estimated simultaneously. By doing so,

the high-dimensional optimization problem is reduced to a sequence of 24-parameter op-

timization problems. Liu et al. [22] further elevated this idea by optimizing all regularly

deployed basis functions separately, which results in a sequence of 3-parameter optimiza-

tion problems. The results of these works have showed that separating the optimization of

parameters yields significant improvement in term of the speed while maintaining decently

high accuracy.

A similar greedy approach to Rohde et al. and Liu et al. is used in our work. In the

proposed algorithm, a cumulative velocity field Vk is used to store the sum of all previously
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estimated RBFs from the start to the current step k:

Vk =
k∑
i=1

αiρi(x) (3.19)

Each RBF is estimated such that the objective function will be minimized when this RBF

is added to the cumulative velocity field:

αi = arg min
αi

E(Is, It, exp(Vi−1 + αiρi(x))) (3.20)

The estimated RBF is then added to the cumulative velocity field to form a new one:

Vi ← Vi−1 + αiρi(x) (3.21)

Repeating these steps through all N RBFs yields the velocity field representing the overall

transformation:

Φ = exp(VN) (3.22)

Since RBFs are estimated sequentially, the order of RBFs in this optimization scheme

may affect the accuracy of the final result. In our work, the order of RBFs is given according

to the distance of each RBF from the brain center such that RBFs closer to the brain center

are estimated before those farther from the brain center. This design is based on the fact

that the cerebral cortex has higher structural complexity and anatomical variability than

the structures near the center of the brain (e.g. corpus callosum). As a result, registering

tissues near the brain surface is more difficult than registering tissues around the brain

center. In the light of this fact, RBFs are designed to be estimated in the ascending order

of their distances from the brain center. Registering around the brain center first may warp

the cortex area to better initial positions, potentially leading to better estimation and thus

higher accuracy.

3.4.2 Optimization Algorithm

The symmetry of the objective function alone still does not guarantee the symmetry

of the whole registration algorithm. To make the registration algorithm symmetric, all

elements in the algorithm must be unbiased toward the order within the image pair, i.e.,
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which image in the image pair is the target image and which image is the source image.

Therefore, a symmetric optimization algorithm is necessary in our work.

The optimization algorithm used in our work is a modified version of the downhill sim-

plex method. Downhill simplex method [26] is an optimization algorithm that is also used

by BIRT. This method is efficient but is rather unstable in terms of the initial positions of

the simplex points. A slight change in the initial positions of simplex points may gener-

ate a very different result. Furthermore, the original downhill simplex method initializes

the simplex points in a random manner. As a result, BIRT cannot reproduce the same

registration result in different trials using the same pair of image. This makes BIRT an

unstable algorithm. To solve this problem, we use the gradient of the objective function

at the origin of the orientation coefficient (α = [0 0 0]T ) to initialize the simplex points.

By doing so, we can ensure the symmetry of the optimization algorithm. An example is

shown in Figure 3.7. According to the result of our expreiment, this symmetric downhill

simplex method has similar speed and accuracy to the original downhill simplex method

using random initial simplex points.

3.5 Incorporation of Affine Registrations

In this work, we mainly focused on designing a symmetric non-rigid registration algo-

rithm. However, a symmetric affine registration algorithm is also necessary for a com-

plete symmetric registration framework, since a registration process typically consists of

an affine registration followed by a non-rigid registration. Therefore, it is important for the

proposed algorithm to incorporate the results of symmetric affine registrations.

We must point out that it is extremely crucial to choose a proper manner to incorporate

the result of a symmetry affine registration. Improper collaboration with affine registration

result will lead to asymmetry of the overall registration framework even if both the affine

and non-rigid registration algorithms are symmetric. However, few previous researches

has covered this issue as to combine the results of affine registration while maintaining

symmetry.
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Figure 3.7: An illustration of symmetric initialization of downhill simplex method. The

initial simplex points are determined by the gradient direction at the origin of the orientation

coefficient.

To understand this problem in a more intuitive perspective, we can view the registration

process as a processing pipeline which consists of a sequence of compositions of affine

transformations and non-rigid transformations. Inversion of a registration result can be

seen as a result from the reverse of the original processing pipeline. To achieve symmetry

for the overall registration (provided that all registration algorithms are symmetric), the

processing pipeline must be symmetric as well, i.e. the reversed pipeline must be equivalent

to the original pipeline.

We give an example in the following to show how a asymmetric processing pipeline

of framework affects the symmetry of the final results. For registration form image A to

image B, we denote Φ
(l)
A→B and Φ

(g)
A→B as the resultant mapping function of non-rigid and

affine registration respectively. We assume that these registration algorithms are perfectly

symmetric, i.e. , Φ
(g)
B→A = (Φ

(g)
A→B)−1 and Φ

(l)
B→A = (Φ

(l)
A→B)−1. Typically, the registration

of a pair of images involves an affine registration followed by a non-rigid registration:

ΦA→B = Φ
(l)
A→B ◦ Φ

(g)
A→B (3.23)
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This conventional framework is asymmetric. The inversion of the backward registration

(registering image B to image A) results in a transformation which consists of a non-rigid

transformation followed by a affine transformation:

(ΦB→A)−1 = (Φ
(l)
B→A ◦ Φ

(g)
B→A)−1 = (Φ

(g)
B→A)−1 ◦ (Φ

(l)
B→A)−1 = Φ

(g)
A→B ◦ Φ

(l)
A→B (3.24)

This inversion is not equivalent to the pipeline of the forward registration (ΦA→B = Φ
(l)
A→B◦

Φ
(g)
A→B). Instead, it belongs to a totally different processing pipeline than the processing

pipeline of a registration. As a result, it does not impose symmetry to the final results even

if all registration algorithms are symmetric.

To ensure the overall symmetry when incorporating with the result of symmetric affine

registrations, a framework inspired by the concept of ”half-way space” [27] is used. This

concept involves warping both two images toward one another by half-way simultaneously

instead of warping one image onto the other. For a registration framework using half-way

space, it estimates the transformation such that the objective function will be minimized

after the two images are warped by its square root and the inversion of its square root

respectively:

Φ = arg min
Φ
E(Φ0.5(Is),Φ

−0.5(It), I) (3.25)

I without lower index denotes an identity mapping function. The overall transformation

consists of an affine transformation followed by a non-rigid transformation. Combining

these two steps of registration yields:{
Φ(g) = arg minΦ(g) E((Φ(g))0.5(Is), (Φ

(g))−0.5(It), I)

Φ(l) = arg minΦ(l) E((Φ(l))0.5 ◦ (Φ(g))0.5(Is), (Φ
(l))−0.5 ◦ (Φ(g))−0.5(It), I)

(3.26)

Figure 3.8a gives an intuitive illustration of ((3.26)). For an affine transformation, the

square root of the transformation function can be obtained using the square root of the

transformation matrix ([(Φ(g))0.5 1]T = T 0.5 [x 1]T ). And for a non-rigid diffeomorphic

transformation, the square root of a diffeomorphism can be found by dividing its Lie Alge-

bra (which is the velocity field in our case) by two ( (expV )0.5 = exp(0.5V ) ).
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In practice, the simultaneous warping of two images can be simplified into only the warp-

ing of the source image based on the hypothesis of E(Φ(Is),Γ(It)) ≈ E(Γ−1(Φ(Is)), It):{
Φ(g) = arg minΦ(g) E(Is, It,Φ

(g))

Φ(l) = arg minΦ(l) E(Is, It, (Φ
(g))0.5 ◦ Φ(l) ◦ (Φ(g))0.5)

(3.27)

And the overall registration result will be (Φ(g))0.5 ◦ Φ(l) ◦ (Φ(g))0.5. A simple illustration

of this framework is shown in Figure 3.8b. This processing pipeline is symmetric and can

thus ensure the overall symmetry of the registration framework:

(ΦB→A)−1

= ((Φ
(g)
B→A)0.5 ◦ Φ

(l)
B→A ◦ (Φ

(g)
B→A)0.5))−1

= (Φ
(g)
B→A)−0.5 ◦ (Φ

(l)
B→A)−1 ◦ (Φ

(g)
B→A)−0.5)

= (Φ
(g)
A→B)0.5 ◦ Φ

(l)
A→B ◦ (Φ

(g)
A→B)0.5

= ΦA→B

(3.28)

Therefore, the optimization formula in (3.20) can be re-formulated as follows:

αi = arg min
αi

E(Is, It, (Φ
(g))0.5 ◦ exp(Vi−1 + αiρi) ◦ (Φ(g))0.5) (3.29)

In addition to maintaining symmetry, this framework also benefits the registration greatly

in other aspects. First and foremost, generating warped images involves re-sampling from

the original image, which inevitably comes with some extent of degradation of image qual-

ity. As a result, using affine matrix yields better accuracy of the registration result than

directly using affine-transformed images due to better image quality. Our experiment has

shown that using initial affine matrices instead of affine-transformed images does yield im-

provement in the accuracy of registrations. In addition, if affine matrices are used, the final

warped images will have better quality since only a single time of re-sampling is involved

instead of two.

3.6 A Hierarchical Framework

In our work, a hierarchical framework is used to increase the accuracy and stability.

The resolutions of the images and the support extents of RBFs are divided in a coarse-

to-fine manner. In the initial step, transformations are initially roughly estimated using
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Figure 3.8: An illustration of the proposed symmetric framework for incorporating affine

registration.(a) This framework is equivalent to transforming both images simultaneously

during each step of registration. (b) The simplified framework which involves only the

transformation of the source image.
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low-resolution images and few RBFs with wider support extents. These coarse estima-

tions are then gradually refined in later steps through increasingly detailed estimations (by

using higher-resolution images and more RBFs with smaller support extents). A similar

framework is used in other previous works [22, 31].

Applying the concept of hierarchical framework to (3.4), the overall velocity field can

be formulated as follows:

log(Φ) = VL,Kj
=

L∑
j=1

Kj∑
i=1

αj,iρj,i(x) (3.30)

Where:

ρj,i(x) = ΨSj,i
(‖x− cj,i‖) (3.31)

L specifies the total number of scale level, and Kj denotes the number of local diffeomor-

phisms at level j. Vl,m is the cumulative sum of all RBFs from the start to the ith RBF at

level m:

Vl,m =
l−1∑
j=1

Kj∑
i=1

αj,iρj,i(x) +
m∑
i=1

αl,iρl,i(x) (3.32)

The center and the support extent of each RBF in each level are specified by the following

manner. First, the algorithm finds a minimum bounding cube of the union of the brain

region of source and the target image (Bs ∪ Bt), so that such bounding cube encompasses

all brain tissues when applied to each of the images. Brain regions is generally given by

the brain masks from the preprocessing of skull-stripping (In our experiment, we simply

used the skull-stripped brain images as the brain masks, i.e. Bs = {x|Is(x) > 0}, Bt =

{x|It(x) > 0}, since skull-stripped images intrinsically contains the information of their

brain masks). The width of such bounding cube is denoted as W . In each scale level j, this

minimum bounding cube is divided into 8j−1 equally-volumed cubes with width W
2j−1 , and

a RBF is deployed at the center of each cube. The support extent of each RBF at each level

is set to be proportional to the edge length of their corresponding cube with a fixed ratio

r, i.e., ∀i, Sj,i = rW
2j−1 . r must be chosen in a way such that the support extent of every

RBF completely covers its corresponding cube. Larger r results in larger overlaps between
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different RBFs and higher accuracy, since small-scaled local deformations can propagate

each other to represent large deformations.

Notice that in some circumstances the evaluation point set of a certain weighted RBF

may not contain any brain tissue in neither of the source nor the target image. In these

cases, the estimated weighted RBF will not provide any valid information. So it is better to

skip the estimation when no brain tissue is in the both Bs(Ω) nor Bt(Ω). In the proposed

algorithm, the estimation of a local diffeomorphism is skipped if its evaluation point set

(of both the forward and inverse transformation) does not intersect with the union of brain

regions Bs ∪Bt. Also, brain images are re-sampled hierarchically using pyramid represen-

tation. The number of levels of the image pyramid (p) is a user-specified parameter. For

each scale level l, the downsampling factor (M ) of the image used for estimation is:

M = 2p−l+1 (3.33)

Along with variable support extents, the number of the voxels within the support of ρj,i
is approximately:

∀i, card(supp(ρj,i)) ≈
4

3
πrW2−p (3.34)

According to (3.34), the number of voxels in the support of any RBF is independent

to the scale level. As a result, using down-sampled images can increase the speed of opti-

mizations, and the stability can be increased by this multi-resolution set-up as well.

The vector coefficient of each RBF is estimated through the optimization algorithm con-

secutively. For an RBF ρj,i(x), the optimization estimates the optimal vector coefficient

αj,i that lead to minimum objective function when this weighted RBF is added to the cu-

mulative velocity field, Vj,i−1:

αj,i = arg min
αj,i

E(Is, It, (Φ
(g))0.5 ◦ exp(Vj,i−1 + αj,iρj,i) ◦ (Φ(g))0.5) (3.35)

After optimization, the estimated weighted RBF is then added to the cumulative veloc-

ity field:

Vj,i ← Vj,i−1 + αj,iρj,i (3.36)
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Figure 3.9: An illustration of the proposed hierarchical framework. The yellow circle repre-

sents the supports of RBFs. In this framework, the transformation is first roughly estimated

using low-resolution images and large RBFs. As the level increases, the transformation is

gradually refined by using more detailed images and smaller RBFs. The RBFs are placed

along grid points. The estimation of the coefficient of an RBF is skipped if the evaluation

point set of this RBF does not contain any brain tissues.

RBFs are estimated and added to the cumulative velocity field consecutively from lower

level to higher level. In addition, RBFs in the same level are estimated in the ascending

order of the distance from the brain center, as described in Section 3.4.1. This is repeated

until the user-specified scale level is reached. The proposed hierarchical framework is

illustrated in Figure 3.9.

The algorithm is summarized in Table 3.1.
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Table 3.1: Summary of proposed algorithm

V ← 0

Find the minimum bounding cube of Bs ∪Bt and its width W

For scale level j = 1 : L

Calculate RBF support extent in level j:∀i, Sj,i = rW
2j−1

For RBF number i = 1 : Kj

Find the evaluation point set Ωj,i and Ωinv
j,i

If (Bs ∪Bt) ∩ (Ωj,i ∪ Ωinv
j,i ) 6= ∅ :

αj,i = arg minαj,i E(Is, It(Φ
(g))0.5 ◦ exp(V + αj,iρj,i) ◦ (Φ(g))0.5)

V ← V + αj,iρj,i

The result of non-rigid registration is: Φ(l) = exp(V )

The result of the overall registration is: Φ = (Φ(g))0.5 ◦ Φ(l) ◦ (Φ(g))0.5
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There are some issues in detail that should be treated carefully when implementing the

algorithm. For the readability of this thesis, these detailed issues were discussed in this

separate section.

4.1 Solving Partial Differential Equations

The exponentiation of velocity field involves solving the PDE of the flow numerically.

In general, the numerical solution of a PDE is found by incrementing the result of many

small consecutive time steps of length h. For example, the simplest way of solving PDEs,

the Euler method, is as follows (for simplicity, we denote x(t) as the location of x at time

t):
x(0) ← x

x(t+h) = x(t) + hV (t, x(t)) +O(h2)

ϕV (x, 1) ← x1

(4.1)

The velocity field in the equation above has two variables which indicates time and loca-

tion respectively. Since the velocity field in our case is time-invariant, the first variable

indicating time can be ignored. The second term in the last equation in (4.1) indicates

the numerical error. It indicates how rapidly the error drops when the step size decreases.

Larger power in the error term is more desirable since the error decreases more quickly

when using smaller step sizes.

The O(h2) error term of the Euler method makes it impractical in applications with

strong demands for speed and accuracy. Many other methods can solve PDEs with higher

accuracies than the Euler method. Our implementation uses the modified midpoint method,

which can achieve O(h3) error term with only n + 1 steps. Euler method and fourth-order

Runge-Kutta method are also available in our algorithm. The modified midpoint method is

as follows:
x(0) ← x

x(h) = x(0) + hV (t, x(0))

x(t+h) = x(t−h) + hV (t, x(t)) +O(h3)

ϕV (x, 1) ← 1
2
(x1 + x(1−h) + hV (1, x1))

(4.2)
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Fourth-order Runge-Kutta method can achiever O(h5) with 4n steps. It is formulated as

follows:
x(0) ← x

k
(t)
1 = hV (t, x(t))

k
(t)
2 = hV (t, x(t) + k1

2
)

k
(t)
3 = hV (t, x(t) + k2

2
)

k
(t)
4 = hV (t, x(t) + k3)

x(t+h) = x(t) + k1
6

+ k2
3

+ k3
3

+ k4
6

+O(h5)

ϕV (x, 1) ← x1

(4.3)

Smaller step size leads to higher accuracy while increases the computation time. By

default, our implementation uses 16-time-step modified midpoint method to solve the PDE.

This proved to be adequate to achieve sub-voxel accuracy of symmetry in the proposed

algorithms.

4.2 Re-sampling Algorithms

Image re-sampling is a frequently-used operation which greatly affects the quality of the

result. All images in our implementation are only discrete approximations of continuous

scalar fields and, as a result, finding the intensity value on a certain point usually involves

some form of re-sampling (since, in most cases, this point does not fall on the lattice points

with specified intensity values). Similarly, the flow fields as well as the mapping functions

in our implementation are only discrete approximations of continuous vector fields. As a

result, the implementation of registration algorithms usually entails a large number of re-

sampling. For example, each step of calculation of the flow involves finding the velocity

at a given point through re-sampling of the flow field. Also, the calculation of CR requires

the intensity of each warped lattice point (Recalling (3.13) and (3.14)). The image intensity

at each of these points are calculated through image re-sampling since they usually do not

fall on the fixed lattice points. In addition, after the registration is done, the warped source

image is generated through re-sampling from the original source image. This dependency

of our algorithm on re-sampling implies that the speed and accuracy of our algorithm is
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also highly dependent on the choice of the re-sampling algorithm. Our goal is to choose

a re-sampling algorithm which is as accurate as possible while not degrading the speed of

our algorithm too much.

Four kinds of re-sampling algorithms were implemented and tested in our work. This in-

cludes nearest-neighbor interpolation, trilinear interpolation, tricubic interpolation and sinc

interpolation. These interpolation will be explained and discussed in following subsections.

4.2.1 Nearest Neighbor Interpolation

Nearest-neighbor interpolation is an algorithm which choose the intensity of the nearest

voxel to the point to be resampled as its estimated intensity. In here, the actual image

intensity at fixed lattice points is denoted as I(·), and the estimated image intensity obtained

through nearest neighbor is denoted as Inn(·). Assuming the point to be re-sampled is at

location u ∈ <3, and the location of the nearest voxel of u is denoted as NN(u), the nearest

neighbor interpolation can be formulated as:

NN(u) = arg minx∈Ω ‖x− u‖2

Inn(u) = I(NN(u))
(4.4)

This re-sampling algorithm can preserve the original voxel intensities and, due to its sim-

plicity, has the highest speed among all interpolation algorithms. However, the quality

of the images degrade dramatically after re-sampling when using this algorithm (see Fig-

ure 4.2b). As a result, nearest neighbor algorithm is seldom used in re-sampling MR images

as well as flow fields and mapping functions. However, it is very useful when warping the

label images since it can preserve the original label numbers.

4.2.2 Trilinear Interpolation

Trilinear interpolation involves consecutive linear interpolations along each dimension

using the 23 = 8 adjacent voxels surrounding the point to be resampled. For a point to be

resampled u = [x, y, z]T , we denote x0 as the X coordinate of the closest X-grid below

x, and x1 as the X coordinate of the closest X-grid above x. y0, y1, z0 and z1 are all
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defined in similar manners. The 8 adjacent voxels are denoted in the form of ua,b,c =

[xa, yb, zc]
T , where a, b, c ∈ {0, 1} (e.g. u0,1,0 = [x0, y1, z0]T , u1,0,1 = [x1, y0, z1]T ). The

interpolated intensity at point u using trilinear interpolation is denoted as Īl(u). trilinear

interpolation involves consecutive linear interpolation along X,Y and Z dimension. First,

the interpolation is done along X dimension to obtain the interpolated intensity on ub,c =

[x, yb, zc]
T , b, c ∈ {0, 1}:

∀b, c ∈ {0, 1}, Īl(ub,c) = (1− wx)I(u0,b,c) + wxI(u1,b,c) (4.5)

where:

wx =
(x− x0)

(x1 − x0)
(4.6)

Then, the interpolation is done along Y dimension to obtain the interpolated intensity on

uc = [x, y, zc]
T , c ∈ {0, 1}:

∀c ∈ {0, 1}, Īl(uc) = (1− wy)I(u0,c) + wyI(u1,c) (4.7)

where:

wy =
(y − y0)

(y1 − y0)
(4.8)

Finally, the interpolation along Z dimension yield the interpolated intensity on point u:

Īl(u) = (1− wz)I(u0) + wzI(u1) (4.9)

where:

wz =
(z − z0)

(z1 − z0)
(4.10)

An illustration of trilinear interpolation is shown in Figure 4.1a. Trilinear interpolation is

a commonly used re-sampling method due to its simplicity and speed. However, it comes

with larger degradation in image quality when compared with other more complex inter-

polation algorithms. Since trilinear interpolation involves the calculation of the weighted

average of intensities, re-sampled images using this interpolation method are all ”blurred”

in some measure (see Figure 4.2c). This drawback make trilinear interpolation less fa-

vorable if the image quality is highly-demanded or multiple times of consecutive image

re-sampling are necessary.
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Figure 4.1: An illustration of trilinear and tricubic interpolation. Both interpolation meth-

ods involved interpolating along each dimension sequentially. (a) Trinilear interpolation.

(b) Tricubic interpolation.
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4.2.3 Tricubic Interpolation

Similar to trilinear interpolation, tricubic interpolation involves consecutive cubic in-

terpolation along X,Y and Z dimension. Unlike trilinear interpolation, which requires only

adjacent lattice points from the closest two grids in each dimension, tricubic interpolation

needs four closest grids along each dimension in order to calculate the re-sampled intensity.

In here, x0 are x1 are defined in the same manner as in trilinear interpolation, while x−1

and x2 are denoted as the second closest X-grid below and above u, respectively. y−1, y2,

y−1 and y2 are all defined in similar manners. Tricubic interpolation require 43 = 64 lat-

tice points, which are denoted as ua,b,c = [xa, yb, zc]
T , where a, b, c ∈ {−1, 0, 1, 2}. Using

these lattice points, tricubic interpolation applies single-dimensional cubic interpolation

along X, Y and Z dimension consecutively. In the one-dimensional case, given I−1, I0, I1

and I2 as the intensity value at -1, 0, 1 and 2 respectively, the the cubic interpolation at

point x ∈ [0, 1] is formulated as :

CINT
x

(I−1, I0, I1, I2) =
1

2


−x3 + 2x2 − x
3x3 − 5x2 + 2

−3x3 + 4x2 + x

x3 − x2


T 

I−1

I0

I1

I2

 (4.11)

Tricubic interpolation can thus be formulated as:

∀b, c ∈ {−1, 0, 1, 2} :
ub,c ≡ [x, yb, zc]

T , Īc(ub,c) = CINT
(

x1−x
x1−x0

)
(I(u−1,b,c), I(u0,b,c), I(u1,b,c), I(u2,b,c))

uc ≡ [x, y, zc]
T , Īc(uc) = CINT

(
y1−y
y1−y0

)
(Īc(u−1,c), Īc(u0,c), Īc(u1,c), Īc(u2,c))

Īc(u) = CINT
(

z1−z
z1−z0

)
(Īc(u−1), Īc(u0), Īc(u1), Īc(u2))

(4.12)

An illustration of tricubic interpolation is shown in Figure 4.1b. Tricubic interpolation

yields higher accuracy and less degradation in image quality when compared with trilinear

interpolation. The re-sampled image using tricubic interpolation has less blurring artifact

than that using trilinear interpolation (see Figure 4.2d).
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4.2.4 Sinc Interpolation

Sinc interpolation is an interpolation method which re-samples the image in Fourier

space. Sinc interpolation involves convolution of the image with a normalized sinc func-

tion. In practice, for the sake of speed, the sinc function is usually modulated by a Hanning

window to limit the number of sample points used in interpolation. When using N nearest

voxels (denoted as ui, 1 ≤ i ≤ N ) to the point to be re-sampled, the sinc interpolation is

formulated as:

Isinc(u) =
N∑
i=1

(
I(ui)sinc(di)Hann(di))∑N
j=1(sinc(dj)Hann(dj))

)
(4.13)

where di denotes the distance from the ith voxel to the point to be re-sampled:

di = ‖ui − u‖2 (4.14)

sinc(·) denotes the normalized sinc function:

sinc(x) =
sinc(πx)

x
(4.15)

and Hann(·) denotes the Hanning window function:

Hann(x) = 0.5

(
1− cos

(
2πx

N − 1

))
(4.16)

The number of nearest voxels is a user-specified parameter which directly affects than

accuracy and the speed of the interpolation. Empirically, we set N = 20 as the default

number in our experiments. Sinc interpolation can generate re-sampling images with much

higher quality than that from trilinear interpolation and tricubic interpolation. As can be

seen in Figure 4.2e, the re-sampled image using sinc interpolation is nearly as clear as

the original image, while the images re-sampled using trilinear interpolation and tricubic

interpolation all have some degree of quality deterioration. However, the high quality of the

sinc interpolation comes with the price of much longer computation time. For a 256×256×
124 T-1 MR image, resampling using sinc interpolation take slightly more than a minute

while it takes only a few seconds when using trilinear or tricubic interpolation. As a result,

using sinc interpolation during the optimization process will result in a long computation

time for the registration process.
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(a) (b)

(c) (d)

(e)

Figure 4.2: Comparison between different interpolation methods. (a) Image before inter-

polation (b) Nearest-neighbor interpolation (c) Trilinear interpolation (d) Tricubic interpo-

lation (e) Sinc interpolation using 20 nearest sample points.
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Although theoretically sinc and tricubic interpolation can generate re-sampled images

with less distortion, in some cases the simple trilinear interpolation is more favorable even

in terms of accuracy. This is especially true when re-sampling velocity fields and mapping

funcitons. While the complex sinc and tricubic interpolation have less blurring artefacts,

they may tend to overfit the approximated value. And since the velocity fields and map-

ping functions for the transformation is smooth by nature, blurring them in fact causes little

harm. On the contrary, over-fitting of the velocity fields or mapping functions caused by

the sinc and tricubic interpolation may induce larger error than that of the blurring effect

caused by trilinear interpolation. In addition, when calculating the objective function, us-

ing blurred images surprisingly has its advantage. Since using blurred image smooths the

implicit objective function, the optimization process is less likely to be trapped in a local

optimum. As a result, all re-samplings involved in the optimization process are imple-

mented using trilinear interpolation, and we only uses complex interpolation methods as

options for generating warped images.

4.3 The Evaluation Point Set

There is an issue that should be treated carefully when calculating the correlation ra-

tio. Since calculating the flow of diffeomorphism is very computationally expensive, large

evaluation point set will result in an extremely slow program. Therefore, it is better to

keep the evaluation point set as compact as possible. After estimating the coefficient of a

RBF, say, the ith RBF, it will be added with Vi−1 to form Vi. Since the Wendland RBFs

have compact supports, the difference between expVi−1 and expVi will also be limited to

a certain local region. Therefore, the best choice of evaluation point set will be the set of

points whose diffeomorphic mapping is affected by adding αiΨi to the cumulative velocity

field Vi−1. Including points which are unaffected by this local diffeomorphisms will only

add unnecessary time cost to the algorithm.

When i = 1, with no previously accumulated velocity field, the evaluation point set is

simply the support of the 1st RBF (supp(Ψ1)). But for the cases of i > 1, this point set

are no longer limited to supp(Ψ1) since the previously accumulated velocity field Vi−1 has
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to be taken into considerations. Recalling ΦV (·) = ϕV (·, 1), a point x will be affected

by the changes within supp(Ψi) if and only if it has passed through supp(Ψi) at any time

t between [0 1] when moving along the velocity field. The evaluation point set, Ωi , can

be formulated as follows (For simplicity, the pre-calculated affine transformation is not

included in the formulation):

Ωi = {x | ∃ t, 0 ≤ t ≤ 1, ϕVi−1
(x, t) ∈ supp(Ψi)} (4.17)

And since the inverse transform also needs to be evaluated, we formulate the evaluation

point set for the inverse transform at step i as Ωinv
i :

Ωinv
i = {x | ∃ t, 0 ≤ t ≤ 1, ϕ−Vi−1

(x, t) ∈ supp(Ψi)} (4.18)

However, it is impractical calculating the flow of all voxels in the image just to find this

tiny portion of points. A more efficient way of finding the evaluation point set is through

backward propagation. Instead of calculating the flows of all voxels and determine if they

has passed through supp(Ψ(i)), the evaluation point set in our work is found by tracing

backward from the points in supp(Ψ(i)) (see Figure 4.3):

Ωi =
⋃

x∈supp(vi)

⋃
−1≤t≤0

Q(ϕVi−1
(x, t)) (4.19)

Similarly, the evaluation point set for the inverse transformation is:

Ωinv
i =

⋃
x∈supp(vi)

⋃
−1≤t≤0

Q(ϕ−Vi−1
(x, t)) (4.20)

Q(·) is the quantization function that forces the evaluation points to voxel centers in

current image resolution. Using this method, only the flows of the points within supp(Ψi)

need to be calculated to find the evaluation point set.

4.4 The Selection of Bin Width

The choice of the bin widths for the correlation ratio is extremely important since im-

proper choice of bin width directly affects the performance and the validity of the correla-

tion ratio. If the bin width is too small, the voxels in each bin may be too few to calculate
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Figure 4.3: An illustration of finding the evaluation point set. The process involves tracking

backwards from all voxel in the current RBF support (blue circle). A voxel is put into the

evaluation point set (light blue squares) if any flow trajectory(red line) passes through that

voxel.
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variance correctly. And if the bin width is too large, multiple tissues may be included in a

single bin. For a uni-model PDF with n sample points and estimated standard deviation σ̄,

Scott [34] stated that its optimal bin width is:

hn = 3.49σ̄n−1/3 (4.21)

More sophisticated methods for finding optimal bin size are proposed by Wand [39] .

However, due to the consideration of speed, we use the simpler estimation proposed by

Scott [34]. In our algorithm, the optimal bin sizes are estimated in every step of local

optimization using the evaluation point sets. The optimal bin sizes for the source and

target image are estimated separately, since the source and target image may have different

intensity ranges. The result shows that this mechanism of bin width selection can produce

decent results.
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In this section, numerous aspects of performance for the proposed registration algo-

rithm are evaluated, which includes diffeomorphism, symmetry, speed and accuracy. The

proposed algorithm proves to be diffeomorphic and symmetric according to the results of

registration. The speed and the accuracy of the algorithm are also evaluated and compared

with other methods using the frameworks provided by Klein et al. [18].

5.1 Data and Registration

The evaluations in this section are done using the LPBA40 dataset provided by the Lab-

oratory of Neuro Imaging (LONI) at UCLA [35]. LBPA40 contains 256 × 256 × 124

T1-wieghted brain MR images of 40 healthy and normal volunteers with manually delin-

eated labels. These 40 brain images were skull-stripped in the preprocessing according to

the protocols in Shattuck et al. [35]. These skull-stripped images were registered to the

MNI305 atlas [15] using rigid-body transformations to correct head tilts and alignment. 56

different structures were labeled manually for each brain. These images then underwent

non-uniformity correction.

The registration process for each image pair consists of a 12-parameter affine registra-

tion (FLIRT) followed by the proposed non-rigid registration. The registration process is

done on all P40,2 = 1560 source-target pairs. The registration process was run on a Linux

workstation with 16 Genuine Intel CPU cores and 48 GB main memory. An example of

the registration result is given in Figure 5.2.

5.2 Evaluation of Diffeomorphism

First and foremost, we need to prove that the proposed algorithm conforms to the prop-

erty of diffeomorphism and symmetry. Evaluation of diffeomorphism can be done using
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(a) (b)

Figure 5.1: An example of LPBA40 dataset. (a) T1-weighted image (b) Labels of 56

structures

the determinants of the Jacobian matrices of the transformation functions:

det JΦ(x) = det(∇ΦT ◦ x) =

∣∣∣∣∣∣∣∣
∂Φ1(x)
∂x1(x)

∂Φ1(x)
∂x2(x)

∂Φ1(x)
∂x3(x)

∂Φ2(x)
∂x1(x)

∂Φ2(x)
∂x2(x)

∂Φ2(x)
∂x3(x)

∂Φ3(x)
∂x1(x)

∂Φ3(x)
∂x2(x)

∂Φ3(x)
∂x3(x)

∣∣∣∣∣∣∣∣ (5.1)

This measure indicates the volume ratio before and after transformations. A region with

non-positive determinants indicates that the one-to-one mapping is lost [7]. For a mapping

function, the error measure in terms of diffeomorphism can defined by counting the the

ratio of volume with non-positive determinants among the whole image space (D). These

measures are named as volume loss (VL):

VL (Φ) =
card({x|x ∈ D, det JΦ(x) ≤ 0})

card(D)
(5.2)

This measure is calculated for all 1560 registered source-target pairs. Table 5.1 shows the

average and the standard deviation of 1560 VL values. The result indicates that non-positive

determinant value is non-existent. According to this evaluation, the proposed algorithm is

fully diffeomorphic at least for all 1560 registrations using LPBA40 dataset.
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(a)

(b)

Figure 5.2: An example of registration result. The red lines are the edges of the source

image. (a) Before registration (b) After registration
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Table 5.1: Volume Loss values for the proposed algorithm. These values are acquired by

averaging the result of 1560 registrations of LPBA40 dataset. All 0’s are exact values.

number of scale levels 1 levels 2 levels 3 levels 4 levels 5 levels 6 levels

VL (averaged) 0 0 0 0 0 0

VL (std. dev.) 0 0 0 0 0 0

5.3 Evaluation of Symmetry

As mentioned, perfectly symmetric registration algorithms would yield:

∀A,B, Φ̄B→A =
(
Φ̄A→B

)−1 (5.3)

Or, in another form:

∀A,B, Φ̄A→B ◦ Φ̄B→A = I (5.4)

where I is an identity function. (5.4) can be rewritten in the form of logarithms:

∀A,B, log(Φ̄A→B) + log(Φ̄B→A) = 0 (5.5)

The ”0” here symbolizes a zero function. According to this equation, for a perfectly sym-

metric registration algorithm, the sum of the velocity fields for forward and backward reg-

istration should be zero for all points, i.e. the velocity field form the forward registration

should be the exact negation of that from the backward registration.

In this evaluation, we used two different error measures of symmetry which are derived

from (5.4) and (5.5) respectively. From (5.4), we define the residual for a point x :

r(A,B)(x) = ‖(Φ̄A→B ◦ Φ̄B→A − I)(x)‖2 (5.6)

For a image pair, its mean residual is the average residual of all points in the image space:

r(avg)(A,B) = avg
x∈I
{r(A,B)(x)} (5.7)

And the maximum residual is the maximum single-voxel residual within the image space:

r(max)(A,B) = max
x∈I
{r(A,B)(x)} (5.8)
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The error measure for symmetry derived from (5.5) is the inconsistency of velocity fields

(ICV) of forward and backward registrations. This measure is calculated by the absolute

sum of two velocity fields in each locations:

ICV (A,B)(x) = ‖VA→B(x) + VB→A(x)‖ (5.9)

Similar to the residual terms, inconsistency of velocity fields can be divided into two types:

averaged inconsistency of velocity fields and maximum inconsistency of velocity fields:

ICV (avg)(A,B) = avg
x∈I
{ICV (A,B)(x)} (5.10)

ICV (max)(A,B) = max
x∈I
{ICV (A,B)(x)} (5.11)

In reality, perfect symmetry is difficult to achieve due to numerical errors. In theory, a

velocity field belongs to a infinite dimensional vector space, which requires infinite amount

of memory to store. As a result, the velocity field in our implementation is only a finite

dimensional approximation for a fixed lattice. This means that the velocity in each step

of calculating flows is only an approximation through interpolation of discrete grid-points.

Other than the velocity field, the flows in our work are also finite-dimensional approxima-

tions, since a flow theoretically should consists of infinite number of time steps. Also, the

mapping function representing the transformation are represented using fixed lattices. As

a result, the function composition for calculating Φ̄A→B ◦ Φ̄B→A also involves resampling

of the transformation functions, which also induces some extents of numerical errors. Due

to these reasons, even if the estimated velocity fields for forward registration and backward

registration are perfectly consistent, one cannot guarantee the residual to be zero. As a

result, the interpretations of errors from these two kinds of error measures are somehow

different. ICV indicates how well the registration algorithm itself conforms to the property

of symmetry, and, on the other hand, the residuals better reflects the real error of symmetry

in real-world applications.

A useful threshold of tolerance for residuals is the voxel width of the input images. For

a symmetric registration method, the maximum residual should be always below the width
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of voxel for all registration results. With the cost of more memory spaces and computa-

tion time, the error for symmetry can be reduced by using more time steps when calculating

flows can using velocity fields and mapping functions with higher resolutions. In this evalu-

ation, the calculation of flow involves 16-step modified midpoint methods. The resolutions

of velocity fields and mapping functions are the same as that of the input images.

In general, a registration process consists of an affine registration followed by the pro-

posed non-rigid registration, and the symmetry of the overall registration entails the sym-

metry of the affine registration algorithm used as well as the symmetry of the proposed non-

rigid registration algorithm. In this evaluation, we only focused on the the symmetry of the

proposed algorithm given a perfectly symmetric affine registration algorithm. Since FLIRT

is asymmetric, the symmetry of affine registrations is achieved only in a simulative manner.

For each pair of forward affine registration (e.g. Φ
(g)
A→B) and backward affine registration

(e.g. Φ
(g)
B→A), the transformation of the backward affine registration is estimated directly

by the inverse transformation of the forward affine registration (Φ(g)
B→A ≡ (Φ

(g)
A→B)−1). By

this manner, the forward and inverse registration use consistent results from a single affine

registration and thus can achieve simulated symmetry.

In this evaluation, all
(

40
2

)
= 780 pairs of forward and inverse registrations in LPBA40

data are used to evaluate the symmetry of the proposed algorithm. The result of evaluation

is shown in Table 5.2. The result shows that the mean residual is far below the width of

the voxels, and the largest residual among all results is still within the width of the voxels.

Furthermore, the ICV is always zero in all registrations. This implies that the proposed al-

gorithm is perfectly symmetric in estimating velocity fields. The error in the residual term

is solely due to the finite-dimensional approximations of mapping functions and the finite-

step approximations of flows. As a result, the residuals is guaranteed to reduce when using

more accurate (i.e. more steps) calculation of flows and mapping functions in higher res-

olutions. Nevertheless, according to our experiments, sub-voxel accuracy can be achieved

simply using the same resolution of input images and 16-step flow calculations.



56 Results

Table 5.2: Error of symmetry for the proposed algorithm. These values are acquired by

averaging the result of 780 pairs of forward and inverse registrations of LPBA40 dataset.

The error measures used are (a) residual (b) inconsistency of velocity fields. All 0’s are

exact values.

(a)

number of scale levels
r(avg) (mm) r(max) (mm)

avg. std. dev. max. avg. std. dev. max.

1 levels 0.0002 0.0001 0.0005 0.0024 0.0013 0.0105

2 levels 0.0004 0.0001 0.0008 0.0114 0.0049 0.0394

3 levels 0.0014 0.0002 0.0022 0.0393 0.0179 0.1673

4 levels 0.0047 0.0006 0.0074 0.0747 0.0242 0.2747

5 levels 0.0125 0.00111 0.0153 0.2676 0.0780 0.8471

6 levels 0.0200 0.00129 0.0228 0.3802 0.0744 0.8503

(b)

number of scale levels
ICV (avg) ICV (max)

avg. std. dev. max. avg. std. dev. max.

1 levels 0 0 0 0 0 0

2 levels 0 0 0 0 0 0

3 levels 0 0 0 0 0 0

4 levels 0 0 0 0 0 0

5 levels 0 0 0 0 0 0

6 levels 0 0 0 0 0 0
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5.4 Evaluation of Accuracy

The purpose of this section is to provide a objective comparison of accuracy between the

proposed algorithm and other registration methods. To do this, the criterion of comparison

must be chosen carefully. Improper choice of comparison criterion may lead to result with

poor validity. For example, choosing the similarity measure used in any registration method

to be compared will lead to biased comparison results since this similarity measure would

favor the methods which uses it for optimization. Another example of improper comparison

criterion is CR. CR is extremely biased towards blurred images since it is generally based

on measuring intensity variances. A extreme case is when comparing a completely blank

image with a brain image. In this case, the CR value would be 1 since the variance of the

blank image is always zero. This makes CR unsuitable for comparisons between different

registration methods. Since different registration methods might use different re-sampling

methods or different times of re-sampling, the result of comparison might be dominated by

the image quality if CR is used as the criterion for comparison.

To give a objective comparison, the evaluation of accuracy was done using the procedure

proposed by Klein et al. [18]. The evaluation framework by Klein et al. [18] is generally

based on manually-marked labels. For a given dataset of N images, the procedure by Klein

et al. registers all P40,2 permutations of source-target image pairs. And accuracy of each

registered image pair is evaluated through the overlap agreement of labelled brain structures

between the target image and the transformed source image. The target overlap (TO) is

used as the overlap agreement measure in our evaluation. It measures the intersection of a

similarly labelled region r in the source image S and target image T divided by the volume

of the region in T. The volume is calculated by the number of voxels:

TOr =
|Sr ∩ Tr|
|Tr|

(5.12)

And the target overlap of a given registration result is calculated by summing over the

whole set of labelled regions:

TO =

∑
r |Sr ∩ Tr|∑

r |Tr|
(5.13)
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Distributions of the target overlap values of all 1560 registration results of LPBA40 data

are shown in Figure 5.3. The median value for level-5 results (registration using 5 RBF

scale levels) and level-6 results are 0.731 and 0.742 respectively, while the highest median

TO value reported by Klein et al. [18] is approximately 0.725. However, a recent work by

Ashburner et al. [6] has reported a median TO value of 0.753. It suggests that although our

algorithm is superior than all 14 methods listed in [18], the method by Ashburner et al. [6]

still has higher accuracy.

The mean TO value in each region is visualized in Figure 5.4. The regional TO values

of the proposed algorithm are compared with that of other methods listed in the work of

Klein et al. [18] are shown in Figure 5.5.

5.5 Evaluation of Speed

The speed for our registration algorithm depends on the number of scale level used in

the registration. Increasing the total number of scale levels will increase the accuracy with

the cost of longer computation time. For 256 × 256 × 124 T1-MRI images of LPBA40

dataset, more then 5 scale levels are required for usable result. The evaluation of speed

was done using registration results of 100 randomly chosen LPBA40 image pairs. This 100

registrations are done sequentially in order to reflect the true computational costs (since, in

practice, large amounts of registrations are usually parallelized to reduce the total compu-

tational cost). The averaged computation time of 100 5-level registrations is approximately

4 minutes. When using 6 scale levels, the averaged computation time increases for nearly

7 times to about 30 minutes. The speed performance of the proposed algorithm was com-

pared with the reported speed of the diffeomorphic registration algorithms listed in the work

of Klein et al. [18]. These algorithms includes SyN [8], DARTEL [7], JRD-fluid [11], Dif-

feomorphic Demons [38] and SICLE [12]. Since the speed performances reported in the

work of Klein et al. was derived using similar datasets and computing environments to that

of our evaluations, this comparison still gives adequate validity.
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Figure 5.3: TO value for LPBA40 dataset. The line in the middle of each box represents

the median TO value for all 1560 registrations, and each box represents the interquartile

range. Whiskers at each end of the box extends to the most extreme value within 2.5 times

the interquartile range from the median value. Values beyond 2.5 times the interquartile

range from the median value are marked as outliers (+).
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(a)

(b)

Figure 5.4: Visualization of mean TO values for each brain region. (a) Using 5 RBF levels

(b) Using 6 RBF levels
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Figure 5.5: Plot of mean TO value in each region for different methods. Only methods

ranked higher than 3 are listed. This plot is visualized in similar manner as in Ashburner et

al., 2011.
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Table 5.3 shows the comparison between the speed of the proposed algorithms the and

the diffeomorphic registration algorithms listed in the work of Klein et al.. In similar com-

puting environments, the proposed algorithm is faster than all diffeomorphic algorithms

listed when using 5 scale levels. The proposed algorithm is slower than JRD-fluid and Dif-

feomorphic Demons when using 6 scale levels. However, accuracy should be also taken

into considerations. When using more than 5 scale levels, the proposed algorithm is more

accurate than all algorithms listed while having higher speed than the highest-ranked dif-

feomorphic algorithm in the work of Klein et al..

Multiple registration tasks can be parallelized to further reduce the total computation

time. In our evaluation, the registration processes are run on a worksation with 16 CPU

cores with a maximum of 14 parallel tasks allowed, and registering all 1560 image pairs

takes approximately 12 hours when using 5 scale levels. When using 6 scale levels, 1560

registrations take about 60 hours.
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Table 5.3: Comparison of speed with other diffeomorphic registration methods. All statistic

data (including run time and mean rank) of other methods are cited from Klein et al., 2009.

Lower mean rank number indicates higher accuracy. This comparison is rough but still

valid since our experiments were run on similar computing environment as in Klein et al.,

2009.

Algorithm Mean rank Run time(min)

Proposed(level 5) n/a ∼4.5

Proposed(level 6) n/a ∼25

SyN 1.00 77(15.1)

ART 1.00 20(1.6)

DARTEL 1.88 71.8(6.3)

JRD-fluid 2.50 17.1(1.0)

Diffeomorphic Demons 3.00 8.7(1.2)

SICLE > 4 33.5(6.6)
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6.1 Validity of Evaluation Results

The first thing we would like to emphasize is that one should remain conservative to the

result of the comparison of the proposed algorithm with the reported results in the work

of Klein et al. [18]. Although Klein et al. [18] has provided an accurate and convenient

evaluation framework for nonlinear registration algorithms, there seems to be several in-

consistencies between the result reported by Klein et al. [18] and those by Ashburner et

al. [6] and our work. First, according to the rigidly-registered LPBA40 dataset provided

by Klein et al., the median TO value after 9-parameter rigid registration (using FLIRT) for

LPBA40 is 0.639, while the median TO value for FLIRT registration reported by Klein et

al. is about 0.60. The second inconsistency is between the reported result of DARTEL by

Klein et al. (∼0.71) and that by Ashburner et al. [6] (0.753). Another anomaly of the result

in the work by Klein et al. [18] is that the TO values in some cases deteriorate dramatically

after non-rigid registration. This phenomenon is most apparent for the result of DARTEL

and SPM’s Normalize. Furthermore, the median TO value of SPM’s Normalize is even

lower than that of rigid registration (FLIRT).

Instead of concluding that these registration algorithms are inferior, we conjecture that

this phenomenon is more probably due to trivial technical issues when using the algorithms

(e.g. the choice of parameters, the format of the images). For example, one image in

the LPBA40 dataset has a different intensity range than other images. Some registration

algorithms clearly perform badly when registering images with different intensity ranges

(e.g. BIRT). This assumption may explain the inconsistent results between different works.

The higher performance of DARTEL reported by Ashburner et al. is more possible to be

the actual performance when all technical issues are eliminated. On the other hand, the

validity of the results reported by Klein et al. becomes questionable if the performances

of registration algorithms are likely to be lowered due to technical issues. Therefore, it

is better to use more than one evaluation frameworks to produce more credible results of

evaluations.
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Figure 6.1: Poor robustness of symmetry of the proposed algorithm. Errors as small as

10−8 can lead to total loss of symmetry.

6.2 Robustness of Symmetry

We have shown that our algorithm is symmetric by itself and can also achieve symmetry

when incorporating with a symmetric affine registration. However, the symmetry of the

proposed algorithm is not robust against the error of symmetry in initial affine registrations.

Our experiment has shown that minor errors in symmetry in affine registration will result in

a total deviation from symmetry after non-rigid registration. In our experiment, an image

pair is registered by proposed algorithm for 10 trials. In each trial, random noises are

added to the translation components of the affine matrix. Figure 6.1 shows the relationship

between the noise in the affine matrix and the averaged resultant symmetry. As can be

seen, error as small as 10−7 in the affine transformation matrix can lead to complete loss

of symmetry. This instability is extremely undesirable. If the transformation matrix is

stored using single-precision floating-point format, The numerical error induced by matrix

inversion may already exceeds 10−7 in some cases. In this situation, even if the affine

registration method is perfectly symmetric, the overall symmetry may still be lost solely

due to some numerical errors.
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One possible cause for this instability is the optimization algorithm as well as how the

optimization problem is defined in our work. Downhill simplex method is an fast optimiza-

tion method but it is rather unstable in terms of the choice of the initial simplex points. In

addition, the optimization problem in the proposed algorithm is modelled as a sequence of

lower-dimensional optimization problems. This means that each optimization problem is

dependent on previous ones. This sequential optimization set-up added with the effect of

the instability of downhill simplex method may cause small errors in the affine transfor-

mation matrix to eventually accumulate to scale that seriously compromises the symmetry

of the results. For example, registrations using 5 scale levels involve about 2000 optimiza-

tions of RBF coefficients, while registrations using 6 scale levels involves about 10000

optimizations. Since each RBF overlaps with its adjacent RBFs, the error of symmetry in-

duced during the optimization of this RBF will be propagated to its adjacent RBFs, causing

even larger errors when optimizing the coefficients of its adjacent RBFs. After repeating

this error propagation for thousands of optimizations, the symmetry would be completely

lost.

A possible solution is to use other optimization methods which are more stable than

downhill simplex method, but this may compromise the speed of our algorithm. Another

possible solution is to reduce the extent of error accumulation through reducing the long

”chains” of dependencies in the proposed sequential optimization framework. In our orig-

inal framework, each optimization of RBF coefficient is dependent to its last previous op-

timization. As a result, the extent of error is proportional to be number of RBFs in the

optimization (ε = O(n)). However, we can divide the RBFs in each scale level into sets

of non-overlapping RBFs. Since each RBF in a set does not overlap with other RBFs in

the same set, the optimizations of the RBFs in the same set are all independent from each

other. As a result, optimizing all RBFs in a non-overlapping RBF set yields no error prop-

agation. If the optimization in each level is done set-by-set, the length of the dependencies

will reduce from n to log(n). The extent of accumulated error can thus be reduced to

O(log(n)).
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The second possible cause to the instability may come from the ”rugged” objective func-

tion caused by improper binning methods. This phenomenon has been reported by Maes

et al. [24]. In the work by Maes et al., different binned approaches for building joint his-

tograms were compared. A common binning approach is to use trilinear interpolation to

find the re-sampled intensity of a point using its adjacent voxels, and then find the corre-

sponding bin of the re-sampled intensity. However, trilinear interpolation may introduce

new intensity values which are originally not present, which may result in unpredictable

behaviors in the marginal distribution. And Maes et al. shows that the MI function using

this binning method has many noises and local maxima around the optimal solution, which

potentially damages the accuracy of optimizations. This phenomenon may also exist in the

proposed algorithm, since the calculation of CR in our work also involves binning trilinear-

interpolated intensity values. Noisy objective functions may be one of the causes for the

extremely low robustness against the error of symmetry in initial affine registrations.

The solution of this problem is also proposed in the same work by Maes et al. [24]. Maes

et al. proposed to use trilinear partial volume distribution (PV) as the binning method. This

method does not interpolate the intensity value directly. In contrast, it uses interpolation

as a way to find the ”membership” of the adjacent voxels. After the membership for each

voxel is found, the corresponding bin for each voxel is added by the real-numbered mem-

bership value. Since the value of the each bin is added by a fuzzy membership instead of

discrete one-or-zero count, the resultant MI function using PV is much smoother toward the

change of transformation. By utilizing this concept, we may modify the binning method

and the variance calculation in CR to make it compatible to fuzzy membership values. This

smoother objective function may help to increase the robustness of the proposed symmetric

framework.

6.3 Effect of Basis Functions on Accuracy

As mentioned in Chapter 3, we used Wendland’s RBF to model the velocity field. The

compact support of Wendland’s RBF can greatly reduce the evaluation region and thus in-

crease the speed of the proposed algorithm. However, it has some specific disadvantages.
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Unlike basis functions such as cubic spline, Wendland’s RBFs are independent and does

not incorporate with each other when being combined to form the overall approximation

of a certain function. As a result, the velocity fields modelled by Wendland’s RBFs tend

to produce rugged artifacts. Figure 6.2 illustrates artifacts produced when approximating a

smooth function (f(x) = 1) using Wendland’s RBFs. In this figure, the distance between

the centers of two adjacent RBFs is 0.3 times the support extent of RBFs. This RBF distri-

bution is denser than that in our implementation (∼ 0.33), and still produces clearly visible

artifacts. Figure 6.3 shows an example of the resultant warping in the form of displacement

field. The ”grains” of RBFs are clearly visible even around the center of the volume where

the displacements should be small. The results of these ”grainy” mapping function is the

artifacts in the warped images. An example is shown in Figure 6.4. In this example, some

tissues in the cerebellum are warped in a unreasonable manner. This type of artifact may

reduce the validity of the registration result, and this phenomenon may also exist among

other kinds of RBFs due to their similar characteristics. In our work, the solution to this

problem was to use a proper weight for the prior term in order to limit to scale of this kind

of artifacts. However, this solution is only a trade-off between validity and accuracy. In-

creasing the weight for the prior term also in some way compromises the accuracy of the

registration result. In contrast, using other basis functions such as cubic spline can achieve

the same level of accuracy with smoother velocity field. In other words, given the same

weight of regularization, even higher accuracy may be achieved if cubic splines are used

as the basis functions. However, basis functions such as cubic splines entails much more

computation time, which is yet another problem to be solved.

6.4 Similarity Measure

This part focuses on the discussion of limitations the similarity measure used in our work.

As mentioned, CR is a robust similarity measure suitable for multi-modal registration.

However, CR has a limitation which can greatly affect the performance of the proposed

algorithm. First, the calculation of CR needs a sufficient amount of sample points in order

to generate valid estimations of variances. This is contradictory to the philosophy of the
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Figure 6.2: An example of artifacts produced by RBF approximation. The black wave-like

line symbolizes the the approximation of f(x) = 1 using Wendland’s RBFs (blue line) with

support extents of 1 and spacings of 0.3 between each other.

(a) (b) (c)

Figure 6.3: An example of resultant mapping function visualized in the form of displace-

ment field. (a) displacements in X-direction. (b) displacements in Y-direction. (c) displace-

ments in Z-direction.
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(a) (b)

Figure 6.4: Artifacts in a registered image. Artifacts are clearly visible in some parts of

the cerebellum (the yellow box). (a)The image before non-rigid registration. (b)The image

after non-rigid registration.
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proposed algorithm that the set of sample points should be as compact as possible in order

to increase the speed. This forms a limitation when we want to use smaller down-sampled

images to increase the speed. One possible solution to this problem is using other simi-

larity measures such as cross-correlation. Cross-correlation (CC) is a similarity measure

which is robust against the variability of brightness and contrast as well as inhomogeneity.

It can be correctly computed using relatively few sample points when compared with CR.

The only disadvantage of CC is it can only handle uni-modal registrations. But when an

application only involves uni-modal registrations, CC may be a better similarity measure

of choice since it imposes stronger constraints to the intensity relationship between source

and target image.

The second limitation of CR is its flexibility in terms of handling multi-modal registra-

tions. Although CR can handle most multi-modal registration schemes through its hypoth-

esis of functional relationship of intensity, we must point out that there are still cases in

which this assumption fails, that is, CR cannot handle all types of multi-modal registra-

tions. For example, there is no functional intensity relationship between a T1-weighted

MR image and a diffusion weighted image. In a T1-weighted MR image, the intensity

of white matters is generally uniform throughout the image (ignoring the factors such as

intensity non-uniformity). In a diffusion-weighted image, however, the intensity of white

matters varies tremendously due to different directions of the fibers. In such cases when no

functional relationship exists, similarity measures imposing more general assumptions are

more preferable (e.g. mutual information).

Another limitation of the similarity measure used in our work is that the similarity is

determined solely by the intensity of the images, and no anatomical knowledge is incor-

porated. One possible way to remove this limitation is by incorporating anatomical infor-

mation in the similarity measure. For example, in the work by Hellier et al. [17], sulcal

patterns are extracted and used as constraints for non-rigid brain registration. Liu et al. [23]

proposed a hybrid registration method for cortical surfaces. It consists of a volumetric

warping followed by an attribute-based surface warping. Incorporating anatomical infor-

mation such as the cortical surfaces during the registrations may result in better alignment
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of tissues. This may be a promising direction for the improvement of the proposed algo-

rithm.



Chapter 7

Conclusion
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In this work, we have developed an efficient non-rigid registration algorithm which is

symmetric and diffeomorphic. In the proposed algorithm, diffeomorphism is ensured by us-

ing the log-Euclidean framework. An symmetric correlation ratio combined with weighted

Laplacian model is used as the objective function. To increase efficiency, we used a greedy

local optimization approach based on radial basis functions. A hierarchical framework is

used to further improve the speed and accuracy. The proposed algorithm can incorporate

results of symmetric affine registrations without losing overall symmetry. The performance

of the proposed algorithm was evaluated using the result of pairwise registration of LPBA40

dataset. The result of evaluation shows that the proposed algorithm is fully diffeomorphic

and has sub-voxel accuracy in terms of symmetry. The proposed algorithm is faster than

most diffeomorphic registration methods while maintaining high accuracy. According to

the evaluation framework by Klein et al. [18], the proposed algorithm is more accurate than

all 14 non-rigid registration algorithms listed by Klein et al. [18], and is faster than the top-

ranked diffeomorphic registration algorithm. Although the result of the evaluation appears

to be promising, more evaluations are still needed before any solid conclusion is made. Fu-

ture works include further improvements in terms of accuracy and more evaluations based

on different datasets and evaluation methods.
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