
 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 

 

 

 

 

多通道固態硬碟上能自我調整的平均抹除演算法 

 
An Adaptive, Low-Cost Wear-Leveling Algorithm for 

Multichannel Solid-State Disks 

 

 

 

 

研 究 生：周棟揚 

指導教授：張立平  教授 

 

 

 

 

 

中 華 民 國 101 年 8 月 

 



  

多通道固態硬碟上能自我調整的平均抹除演算法 

An Adaptive, Low-Cost Wear-Leveling Algorithm for Multichannel Solid-State Disks 

 

 

 

 

研 究 生：周棟揚          Student：Tung-Yang Chou 

指導教授：張立平          Advisor：Li-Ping Chang 

 

 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

 
A Thesis 

Submitted to Department of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

August 2012 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國 101 年 8 月 



An Adaptive, Low-Cost Wear-Leveling Algorithm for Multichannel

Solid-State Disks

Student : Tung-Yang Chou Advisor : Li-Ping Chang

Department of Computer and Information Science

National Chiao Tung University

Abstract

Multilevel flash memory cells double or even triple storage density, producing

affordable solid-state disks for end users. Flash lifetime is becoming a critical issue

in the popularity of solid-state disks. Wear-leveling methods can prevent flash-

storage devices from prematurely retiring any portions of flash memory. In modern

solid-state disks, wear leveling must consider wear evenness at the block level and

channel level. In block-level, this study presents an wear-leveling for page-level

mapping FTL. Because realistic workloads introduce uneven channel utilizations,

block-level wear evenness does not guarantee the maximum device lifetime. This

study introduces a channel-level wear-leveling strategy that aims at an eventually-

even state of channel lifetimes. A series of trace-driven simulations show that the

proposed design outperforms existing approaches in terms of wear evenness and

overhead reduction.

i



Acknowledgements

I am greatly indebted to my supervisor, Professor Li-Ping Chang, for his patient and

valuable instructions on my thesis as well as teaching the right attitude toward work.

During my graduate studies, my supervisor encourages me continuously such that I can

accomplish this work.

I also owe a special debt of gratitude to all the professors in Computer Science

and Engineering Institute,from whose devoted teaching and enlightening lectures I have

benefited a lot not only for thesis but also work on the future. Professor Shiao-Li Tsao, you

are a wonderful teacher let me into the world of embedded system. Professor Sheau-Ling

Hsieh, you have led me profoundly known what network is.

I feel grateful to be a member of ESSLAB. Thanks to those graduated last year, Wen-

Hui Lin, Ying-Jie Li, Yi-Cheng Wu and Wei-Han Wang, your selfless sharing experience

and kindly treat us as family. Especially thanks to Ying-Jie Li, I spare amount of his

working time on company to solve my problem. For Wen-Ping Li, Yi-Kang Chang, Po-

Han Sung and Chen-Yi Wen, thanks to your valuable suggestion and critique on my

research. For Sheng-Min Huang, Cheng-Yu Hung, Chao-Yuan Mao, Ting-Chieh Huang,

thanks for making our lab to alive since senior left.

Last but not least, my gratitude also extend to my family and my lover who have

been assisting , supporting and caring for me all of my life without a word of complaint.

It is your faith let me pass through every slump in my research. I would never finish

without your mentally and materially supporting. Thank you, I love you permanently.

ii



Contents

Abstract i

Acknowledgements ii

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1

2 Problem Formulation 3

2.1 Flash Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Flash-Memory Characteristics . . . . . . . . . . . . . . . . . . . . . 3

2.1.2 Flash Translation Layers (FTLs) . . . . . . . . . . . . . . . . . . . 4

2.2 The Need for Wear Leveling . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Block-Level Wear Leveling . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Channel-Level Wear Leveling . . . . . . . . . . . . . . . . . . . . . 9

3 Block-Level Wear Leveling 10

3.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 The Lazy Wear-Leveling Algorithm for Page-level Mapping . . . . . . . . . 11

3.3 Cold Data Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.1 Bitmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.3.2 Least Recently Invalidation List . . . . . . . . . . . . . . . . . . . . 13

3.4 Interacting with Flash-Translation Layers . . . . . . . . . . . . . . . . . . . 14

4 Channel-Level Wear Leveling 16

4.1 Multichannel Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Aligning Channel Lifetime Expectancies . . . . . . . . . . . . . . . . . . . 18

4.3 Adjusting Channel Utilizations . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Performance Evaluation 22

5.1 Experimental Setup and Performance Metrics . . . . . . . . . . . . . . . . 22

iii



5.2 Experimental Results: Block-Level Wear Leveling . . . . . . . . . . . . . . 23

5.3 Experimental Results: Channel-Level Wear Leveling . . . . . . . . . . . . . 25

6 Conclusion 27

Bibliography 27

iv



List of Figures

1 Two flash-translation layer designs based on hybrid mapping. (a) The set-

associative mapping scheme with N=2 and K=2. Every group has two

logical blocks and a group is allocated to up to two log blocks. (b) The

fully-associative mapping scheme. All logical blocks are in one big group

and all the log blocks are shared by the logical blocks in this big group. (c)

The Page-level mapping scheme. Each logical page has it’s own mapping

information in RAM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Physical blocks and their erase recency and erase counts. An upward arrow

indicates that a block is recently increasing its erase count. . . . . . . . . . 10

3 Invalidation Bitmap - One bit is for a flash block, and each bit indicates

whether a flash block recently receives a page invalidation or not. In cold

data selection, it scan the bitmap, and it clears bit of 1’s until it encounters

a bit of 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Least Recently Invalidation list - One entry is for a flash block on the GC

list, and if there is a page be invalidated, the corresponding entry on the

list will be dropped to the end of list.(a) The initial state of LRI. (b) The

LRI list after invalidating sequence 2,3,1. . . . . . . . . . . . . . . . . . . . 14

5 Two cases in doing lazy wear leveling for page level mapping. (a) Case1:

The lastColdBlock is not null, so choosing cold data is necessary. (b)

Case2: The lastColdBlock is null, so continuing copying valid page on

lastColdBlock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

6 Handling three write requests w1, w2, and w3 using (a) synchronized chan-

nels and (b) independent channels. In this example, using synchronized

channels doubles the flash wear, while using independent channels results

in unbalanced flash wear among channels. . . . . . . . . . . . . . . . . . . 18

7 Aligning the lifetime expectancies of two channels Ci and Cj for channel-

level wear leveling. (a) These two channels reach their end-of-life at dif-

ferent times. (b) Change channel utilizations uci and ucj to u′
ci

and u′
cj
,

respectively, such that the lifetime difference becomes zero (i.e., d=0). . . . 19

8 Swapping logical blocks among channels for channel wear leveling. (a)

Before the swap and (b) after the swap. . . . . . . . . . . . . . . . . . . . 21

v



9 Final distributions of block erase counts under the PC workload.(a) Not

using any wear leveling, (b) using Static wear leveling with TH=12, and

(c) using Lazy wear leveling with TH=20. . . . . . . . . . . . . . . . . . . 24

10 Average erase count on each data written. . . . . . . . . . . . . . . . . . . 25

11 Runtime channel erase counts and final distributions of block erase counts

under the PC workload.(a) Not using channel-level wear leveling, (b) using

channel wear leveling with a period length of 512 MB, and (c) using channel

wear leveling with a period length of 1 TB. . . . . . . . . . . . . . . . . . . 25

vi



List of Tables

1 Comparison of existing algorithms for block-level wear leveling. . . . . . . . 7

2 Symbol definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Evaluation results of Lazy wear leveling (LWL)and Static wear leveling

(SWL) under the PC workload. “no WL” stands for not using wear leveling. 23

vii



1 Introduction

Solid-state disks employ flash memory as their storage medium. The physical char-

acteristics of flash memory differ from those of hard drives, necessitating new methods

for data accessing. Solid-state disks hide flash memory from host systems by emulating a

collection of logical sectors, allowing systems to switch from a hard drive to a solid-state

disk without modifying any existing software and hardware. Solid-state disks are superior

to traditional hard drives in terms of shock resistance, energy conservation, random-access

performance, and heat dissipation, attracting vendors to deploy such storage devices in

laptops, smart phones, and portable media players.

Flash memory is a kind of erase-before-write memory. Because any one part of flash

memory can only withstand a limited number of write-erase cycles, approximately 100K

cycles under the current technology [18], frequent erase operations can prematurely retire

a region in flash memory. This limitation affects the lifetime of solid-state disks in ap-

plications such as laptops and desktop PCs, which write disks at very high frequencies.

Even worse, recent advances in flash manufacturing technologies exaggerate this lifetime

issue. In an attempt to break the entry-cost barrier, modern flash devices now use multi-

level cells for double or even triple density. Compared to standard single-level-cell flash,

multilevel-cell flash degrades the erase endurance by one or two orders of magnitude [19].

Without wear leveling, localities of data access inevitably degrade wear evenness of

flash memory in solid-state disks. Partially wearing out a piece of flash memory not only

decreases its total effective capacity, but also increases the frequency of flash erase for

free-space management, which further speeds up the wearing out of the rest of the flash

memory. A solid-state drive ceases to function when the amount of its worn-out space

in flash exceeds what the drive can manage. Wear-leveling techniques ensure that the

entire flash wears evenly, postponing the first appearance of a worn-out memory region.

However, wear leveling is not free, as it moves data around in flash to prevent solid-state

disks from excessively wearing any one part of the memory. As reported in [8], these extra

data movements can increase the total number of erase operations by ten percent.

Wear-leveling algorithms include rules defining when data movement is necessary

and where the data to move to/from. These rules monitor wear in the entire flash, and

intervene when the flash wear develops unbalanced. Wear-leveling algorithms are part of

the firmware of solid-state disks, and thus they are subject to crucial resource constraints

1



of RAM space and execution speeds of solid-state disks’ microcontrollers (or simply con-

troller)1. Prior research explores various wear-leveling designs under such tight resource

budgets, revealing three major design challenges: First, monitoring the entire flash’s wear

requires considerable time and space overheads, which many controllers in present solid-

state disks cannot afford. Second, high implementation complexity discourages firmware

programmers from adopting sophisticated algorithms.

Prior methods sort flash erase units in terms of their wear information. This requires

efficient access to the wear information of arbitrary erase units, and thus these methods

copy the wear information of the entire flash from flash to the RAM of the disk controllers.

However, many controllers at the present time cannot afford this RAM space overhead.

Chang et al. [5] proposed caching only portions of wear information in RAM. However,

the miss penalty and write-back overhead of the cache can scale up the volume of flash-

write traffic by up to 10%. Instead of storing the wear information of all flash erase

units in RAM, Jung et al. [12] proposed using the average wear of large flash regions.

Nevertheless, the low-resolution wear information suffers from distortion whenever flash

wearing is severely biased. Chang et al. [8] introduced a bitmap that indicates whether

a flash erase unit is recently erased or not. However, using the recent erase history can

blind wear-leveling algorithms because the recency and frequency of erasing operations

on flash erase units are mutually independent.

From a firmware point of view, implementation complexity primarily involves the

applicability of wear-leveling algorithms. The dual-pool algorithm [5] uses five priority

queues of wear information and a caching method to reduce the RAM footprints of these

queues. The group-based algorithm [12] and the static wear-leveling algorithm [8] add

extra data structures to maintain coarse-grained wear information and the recent history

of flash wear, respectively. These approaches ignore the information already available in

the disk-emulation algorithm, which is a firmware module accompanying wear leveling,

and unnecessarily increase their design complexity.

This study presents a wear-leveling algorithm for page-level mapping, based on lazy

wear-leveling algorithm [6] to tackle the design challenges mentioned above. Since this

design proposed algorithm stores only a RAM-resident bitmap representing pages inval-

1For example, the GP5086 SSD controller from Global Unichip was rated at 150 MHz and has 64 KB

of SRAM for binary executables, data, and mapping tables [10].
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idation status in addition to average erase count of the entire flash, achieving a tiny

footprint. Second, bitmap structure is easy to maintain, reducing the implementation

complexity.

Modern solid-state disks equip with multiple channels for parallel flash operations.

In this study, a channel refers to a logical unit that independently processes flash com-

mands and transfers data. Multichannel designs boost the write throughput but introduce

unbalanced wear of flash erase units among channels. Prior work address this issue by

dispatching write requests to channels on a page-by-page basis [7, 9] (a page is the smallest

read/write unit of flash). Dispatching data at the page level requires page-level mapping,

whose implementation requires considerable RAM space for large flash. Additionally,

this approach could map logically consecutive data to the same channel and degrade

the channel-level parallelism in sequential read requests. This study introduces a novel

channel-level wear leveling strategy based on the concept of reaching “eventually even”

channel lifetimes. The basic idea is to align channels’ lifetime expectancies by re-mapping

data among channels. The proposed approach has many benefits, including 1) it does not

require a channel-level threshold for wear leveling, 2) it incurs very limited overhead, and

3) it requires only a small RAM-resident data structure.

In summary, this study has the following contributions:

1. An efficient block wear-leveling algorithm with a tiny RAM footprint.

2. An algorithm for wear leveling at the channel level.

The rest of this paper is organized as follows: Section 2 reviews flash characteristics

and prior work on flash translation and wear leveling. Section 3 presents an block-level

wear-leveling algorithm. Section 4 introduces a strategy for wear leveling at the channel

level. Section 5 reports our simulation results. Section 6 concludes this paper.

2 Problem Formulation

2.1 Flash Management

2.1.1 Flash-Memory Characteristics

Solid-state disks use NAND flash memory (flash memory for short) as their storage

medium. A piece of flash memory is a physical array of blocks, and each block contains
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the same number of pages. Typically a flash page is of 2048 plus 64 bytes. The 2048-byte

portion stores user data, while the 64 bytes is a spare area for mapping information, block

aging information, error-correcting code, etc. Flash memory reads and writes in terms of

pages, and overwriting a page requires erasing. Flash erases in terms of blocks, each of

which consists of 64 pages. Under the current technology, a flash block can only sustain a

limited number of write-erase cycles before it becomes unreliable. A single-level-cell flash

block endures 100K cycles [18], while this limit is 10K or less in multilevel-cell flash [19].

Solid-state disks emulate disk geometry using a firmware layer called the flash-

translation layer (FTL). FTLs update existing data out of place and invalidate old copies

of the data to avoid erasing a flash block every time before rewriting a piece of data.

Thus, FTLs require a mapping scheme to translate disk sector numbers into physical

flash addresses. Updating data out of place consumes free space in flash, and FTLs must

recycle flash space occupied by invalid data with erase operations. Before erasing a block,

FTLs copy all valid data from this block to other free space. Garbage collection refers to

a series of copy and erase operations for reclaiming free space.

2.1.2 Flash Translation Layers (FTLs)

Flash-translation layers are part of the firmware in solid-state disks. They use RAM-

resident index structures to translate logical page numbers into physical flash locations.

Mapping resolutions have direct impact on RAM-space requirements and write perfor-

mance. Many entry-level flash-storage devices like USB thumb drives adopt block-level

mapping, which requires only small mapping structures. However, low-resolution map-

ping suffers from slow response when servicing small write requests. Page-level mapping

[11] better handles random write requests, but requires large mapping structures, making

its implementation difficult when flash capacity is high. This paper considers logical pages

as the smallest mapping unit as large as a flash page.

Hybrid mapping combines both page and block mapping. This method groups con-

secutive logical pages into logical blocks as large as physical blocks. It maps logical blocks

to physical blocks on a one-to-one basis using a block-mapping table. If a physical block is

mapped to a logical block, then this physical block is called the data block of this logical

block. Initially, physical blocks other than data blocks are spare blocks. Hybrid mapping

uses spare blocks as log blocks to serve page updates, and uses a page mapping table to

4
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Figure 1: Two flash-translation layer designs based on hybrid mapping. (a) The set-

associative mapping scheme with N=2 and K=2. Every group has two logical blocks and

a group is allocated to up to two log blocks. (b) The fully-associative mapping scheme.

All logical blocks are in one big group and all the log blocks are shared by the logical

blocks in this big group. (c) The Page-level mapping scheme. Each logical page has it’s

own mapping information in RAM.

redirect read requests to the latest versions of data in the log blocks.

Figures 1(a) and 1(b) show two different FTL designs using hybrid mapping, and

Figure 1(c) shows a FTL design using Page-level mapping. Hybrid mapping creates

groups of logical blocks and allocate (flash) spare blocks as log blocks for these logical-

block groups. Let lbn and pbn stand for a logical-block number and a physical-block

number, respectively. Let lpn represent a logical-page number, and let disp be the block

offset in terms of pages. The bold boxes stand for physical blocks, each of which has four

pages. The numbers in the pages indicate the lpns of their storage data. The BMT and

the PMT are the block-mapping table and the page-mapping table, respectively. In Fig.

1(a), every group has two logical blocks, while a group can be allocated to up to two

log blocks. This mapping scheme, developed by Park et al. [16], is called set-associative

mapping (SAST). This scheme uses two parameters N and K to specify the group size

and the largest number of log blocks that a group can have, respectively. Figure 1(b)

depicts another mapping scheme, developed by Lee et al. [14], called fully-associative
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mapping (FAST). This method put all logical blocks in one big group, and has all the

logical blocks in this big group share all the log blocks. Page-level mapping in Fig. 1(c)

create a GC-list to link all flash block was filled up. This mapping scheme, developed by

Gupta et al. [11]. This scheme maintains a log block to store all updates, and a GC block

to reserve the valid page within garbage collection.

The FTL consumes spare blocks for serving incoming write requests. When the

amount of spare blocks becomes low, the FTL starts erasing log blocks. Before erasing a

log block, the FTL finds all logical blocks related to the valid data in this log block. For

each of the found logical block, the FTL collects valid data from the log block and the

data block of this logical block, copies these valid data to a new spare block, and re-maps

the logical block to the copy-destination spare block. Finally, the FTL erases all the

involved data blocks and the log blocks into spare blocks. This procedure is referred to as

merge operations or garbage collection. For example, in Fig. 1(a), for garbage collection

the FTL collects the valid data scattered in the data blocks at pbns 0 and 2 and in the log

blocks at pbns 6 and 3, write them to the spare blocks at pbns 7 and 8, and then erases

the four old flash blocks at pbns 0, 2, 6, and 3 into spare blocks. In Page-level mapping

FTL, the physical block having fewest valid page in GC-list will be selected to do garbage

collection.

Hybrid mapping FTLs exhibit some common behaviors in the garbage-collection

process regardless of their designs, i.e., garbage collection never involves a data block if

none of its page data have been updated. In Fig. 1(a), erasing the data blocks at pbn 5

cannot reclaim any free space. Similarly, in Fig. 1(b), erasing any of the log blocks does

not involve the data block at pbn 5. This is a potential cause of uneven flash wear. This

situation same as in Page-level mapping FTL.

2.2 The Need for Wear Leveling

This section first introduces prior methods, discusses their drawbacks, and then point

out how the method to be proposed improves upon these shortcomings.

2.2.1 Block-Level Wear Leveling

Block-level wear leveling considers the wear evenness of a collection of flash blocks.

Let the erase count of a flash block denote how many write-erase cycles this block has

6



Algorithm Principle RAM-resident data structures

required

Threshold

tuning

Static wear level-

ing [8]

Static wear level-

ing

A block erase bitmap Manual

Group wear level-

ing [12]

Hot-cold swap-

ping

Average erase counts of block

groups

Manual

Dual-pool wear

leveling [5]

Cold-data migra-

tion

All blocks’ erase counts and

their recent erase counts

Manual

Remaining-

lifetime leveling

[2]

Cold-data migra-

tion

All blocks’ age information (re-

maining lifetimes) and block-

data temperature (update fre-

quencies)

Manual

Lazy wear level-

ing (this study)

Cold-data migra-

tion

An average erase count of all

blocks

Automatic

Table 1: Comparison of existing algorithms for block-level wear leveling.

undergone. There have been three representative techniques for this problem: Static

wear leveling, Hot-cold swapping, and Cold-data migration. Static wear leveling moves

static/immutable data away from lesser worn flash blocks, encouraging the flash-translation

layer to start erasing these blocks. Flash vendors including Micron [15] and Spansion [22]

recommend using this approach. Chang et al. [8] described a design of Static wear level-

ing. However, Chang and Du [5] found Static wear leveling failed to achieve even block

wear on the long-term, because Static wear leveling could 1) move static/immutable data

back and forth among lesser worn blocks and 2) erase a flash block even if its erase count

is relatively large. Hot-cold swapping exchanges data in a lesser worn block with data

from a badly worn block. Jung et al. [12] presented a hot-cold swapping design. How-

ever, because the oldest block has a very large (and perhaps still the largest) erase count,

Chang and Du [5] found that Hot-cold swapping risks erasing the most worn flash block

pathologically.

Cold-data migration relocates infrequently updated data (i.e., cold data) to exces-

sively worn blocks to protect these blocks against garbage collection. Preventing badly-

worn blocks from aging further is not equal to increasing the wear of lesser-worn blocks

7



(as Static wear leveling does). This is because frequently updated data occupy only a

small portion of the disk space. Prior work reported that the disk fullness of productive

systems was only about forty percent [1]. In other words, to stop aging the small amount

of badly-worn flash blocks mapped to frequently updated data is more efficient than to

start wearing the large amount of lesser-worn flash blocks. Cold-data migration has been

proven more effective than Static wear leveling and Hot-cold swapping [2, 5]. Based on

Cold-data migration, Argrawal et al. [2] proposed storing the remaining lifetimes and

data temperatures of all flash blocks in RAM, and Chang and Du [5] proposed storing all

blocks’ erase counts and their recent erase counts in RAM. These designs, however, impose

large RAM-space requirements on disk controllers. Consider a 32 GB flash-storage device

with 512 KB flash blocks, storing a four-byte wear information for every block costs the

disk controller 256 KB of RAM. This figure is higher than that a typical disk controller

can afford (64 KB, mentioned in the Introduction section). Reducing the RAM footprint

is always beneficial no matter how much RAM the controller can afford, because the saved

RAM space can be used by the mapping tables and the disk write buffer. Table 1 is a

summary of comparison among prior methods and our algorithm. Our design stores only

an average erase count in RAM, achieving a tiny RAM footprint. However, our design

does not sacrifice wear-leveling performance to footprint reduction. Our experimental

results will show that it outperforms existing methods in almost all cases.

Block-level wear leveling controls the wear variance in all flash blocks within an ac-

ceptable threshold. Existing approaches have difference definitions of this variance: Chang

et al. [8] adopted the ratio of the total erase count to the total number of the recently

erased blocks, Jung et al. [12] and Chang and Du [5] used the difference among blocks’

erase counts, and Argrawal et al. [2] employed the difference among blocks’ remaining

lifetimes. With a smaller threshold, wear leveling aims at a more level wear in flash

blocks, but inevitably introduces more frequent data movement. Wear leveling overhead

can be affected by many conditions of flash management, including the host workload,

flash-translation layer, flash geometry, and flash capacity.

Unfortunately, it is almost impossible to find a universally applicable threshold setting

for various applications of flash storage. For example, in our two tests with Dual-pool

algorithm [5] with a threshold of 14, under the workloads of a multimedia appliance and a

Windows desktop, it increased the total erase count by 0.8% and 3.9% while the resultant
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standard deviations of all blocks’ erase counts were 5.4 and 10.5, respectively1. The latter

case shows that the same threshold setting resulted more data movement but not achieved

a better wear evenness. This study identifies that the overhead of wear leveling is not

linearly related to the threshold value, and the overhead will significantly increase when

the threshold is becoming smaller than a certain critical value. This critical threshold

value will be different for various conditions of flash management. Thus, we propose

subjecting the threshold value to the overhead increase ratio, and introduce a runtime

strategy that dynamically sets the threshold value to the critical value.

2.2.2 Channel-Level Wear Leveling

In this study, a channel refers to a logical unit that independently processes flash

commands and transfers data. Channel-level wear leveling is concerned with the wear

evenness of flash blocks from different channels. This issue is closely related channel

binding of logical pages, i.e., the allocation of free flash pages to host data. Dynamic

channel binding globally manages free pages across all channels. Chang and Kuo [7]

proposed dispatching page write requests to channels based on the update frequencies of

these page data. Dirik et al. [9] proposed allocating channels to incoming page write

requests using the round-robin policy. Even though dynamic channel binding has better

flexibility of balancing the block wear across all channels, it has two drawbacks: 1) it

adds extra channel-level mapping information to every logical page, resulting in larger

mapping tables and 2) it could map consecutive logical pages to the same channel, severely

degrading the channel-level parallelism in sequential-read requests.

Instead of dynamic channel binding, this study considers static channel binding.

Static channel binding uses fixed mapping between logical pages and channels. With

static mapping, effectively every channel manages its free flash pages with its own instance

of flash-translation layer. The most common strategy for static channel binding is the

RAID-0-style striping [2, 17, 20]. RAID-0 striping achieves the maximum channel-level

parallelism in sequential read because it maps a collection of consecutive logical pages

to the largest number of channels. We must point out that RAID-0 striping cannot

automatically achieve wear leveling at the channel level. This is because, as reported

in [4], hot data (frequently updated data) are small, usually between 4 KB and 16 KB.

1These disk workloads were used in our experiments. See Section 5.1.

9



RAID-0 striping statically binds small and hot data to some particular channels, resulting

in imbalanced write traffics among channels. We found that, under the disk workload of

a Windows desktop, a four-channel architecture had a largest and a smallest fractions

of channel-write traffic of 28% and 23%, respectively. Thus, flash blocks from different

channels wear at different rates. Extending the scope of block-level wear leveling to the

entire storage device is not a feasible solution here, because it requires dynamic channel

binding.

3 Block-Level Wear Leveling

This section presents an algorithm for wear leveling at the block level. This algorithm

does not deal with channels so logically all flash blocks are in the same channel.

3.1 Observations

This section defines some key terms for the purpose of presenting our wear-leveling

algorithm in later sections. Let the update recency of a logical block denote the time

length between the current time and the latest update to this logical block. The update

recency of a logical block is high if its latest update is more recent recent than the average

update recency. Otherwise, its update recency is low. Analogously, let the erase recency

of a physical block be the time length since the latest erase operation on this block. Thus,

immediately after garbage collection erases a physical block, this block has the highest

erase recency. A physical block is an senior block if its erase count is larger than the

average erase count. Otherwise, it is a junior block.

Figure 2: Physical blocks and their erase recency and erase counts. An upward arrow

indicates that a block is recently increasing its erase count.
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Temporal localities of updating logical blocks affect the wear of physical blocks. As

previously mentioned, if a physical block is mapped to an unmodified logical block, then

garbage collection will avoid erasing this physical block. On the other hand, updates

to logical blocks produce invalid data in flash blocks, and thus physical blocks mapped

to recently modified logical blocks are good candidates for garbage collection. After a

physical block is erased by garbage collection, it either serves a data block or a log block.

Either way, this physical block is again related to recently modified logical blocks. So

if a physical block has a high erase recency, then it will quickly accumulate many erase

counts. Conversely, physical blocks lose momentum in increasing their erase counts if

they are mapped to logical blocks having low update recency.

Figure 2 provides an example of eight physical blocks’ erase recency and erase counts.

Upward arrows mark physical blocks recently increasing their erase counts, while an equal

sign indicates otherwise. Block a is a senior block with a high erase recency, while block d

is a senior block but has a low erase recency. The junior block h has a high erase recency,

while the erase recency of the junior block e is low. Blocks should keep their erase counts

close to the average. Two kinds of block wear can require intervention from wear leveling.

First, the junior blocks e and f have not recently increased their erase counts. As their

erase counts fall below the average, wear leveling has them start participating in garbage

collection. Second, the senior blocks a and b are still increasing their erase counts. Wear

leveling has garbage collection stop further wear in these two senior blocks.

3.2 The Lazy Wear-Leveling Algorithm for Page-level Mapping

First, we introduce Lazy Wear-Leveling for Hybrid mapping, and then modify some

part of algorithm to adapt in Page-Level mapping. Principle of Lazy Wear-Leveling:

whenever a senior block’s erase recency becomes high, it will re-locate (i.e., re-map) a

logical block having a low update recency to this senior block.

Lazy wear leveling must be aware of the recent wear of all senior blocks, because senior

blocks retire before junior blocks. However, physical blocks boost their erase recency

only via garbage collection. The flash-translation layer can notify Lazy wear leveling

of its decision on victim selection. This way, Lazy wear leveling captures senior blocks

whenever their erase recency become high without repeatedly checking all senior blocks’

wear information.
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How to prevent senior blocks from further aging is closely related to the behaviors of

garbage collection. It is impossible to use the same method for hybrid mapping to choose

cold data as described in [6], since physical pages of a logical block are scattered in lots

of physical blocks in page-level mapping. Therefore, it is hard to select a cold physical

block from the original information; instead, we use some additional structure to tackle

data temperature.

To re-map a logical block from one physical block to another, Lazy wear leveling

moves all valid data from the source physical block to the destination physical block.

Junior blocks are the most common kind of source blocks, e.g., blocks e and f in Fig. 2,

because storing immutable data keeps them away from garbage collection. As moving all

valid data out of the source blocks makes them good candidates for garbage collection,

selecting logical blocks for re-mapping is related to the wear of junior blocks. To give

junior blocks even chances of wear, it is important to uniformly visit every logical block

when selecting logical blocks for re-mapping.

Temporal localities of write change occasionally. New updates to a logical block can

neutralize the latest re-mapping effort involving this logical block. In this case, Lazy

wear leveling will be notified that a senior block is again selected as a victim of garbage

collection, and will perform another re-mapping operation for this senior block.

In page-level mapping Lazy wear leveling copies data having low update recency to

senior blocks to prevent these blocks from aging further. However, the method that choose

a cold data according to mapping info for hybrid mapping proposed in [6] is not available

for page-level mapping.

3.3 Cold Data Selection

This section presents two algorithm for cold data selection. The first is using a bitmap

structure to identify data temperature, and the second is an improvement upon cold data

selection, we called LRI list.

3.3.1 Bitmap

This study proposes using an invalidation bitmap. In Fig.3 is an example of Invali-

dation bitmap, one bit is for a flash block, and each bit indicates whether a flash block

recently receives a page invalidation (i.e., 1) or not (i.e., 0). All the bits are 0 initially,
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Figure 3: Invalidation Bitmap - One bit is for a flash block, and each bit indicates whether

a flash block recently receives a page invalidation or not. In cold data selection, it scan

the bitmap, and it clears bit of 1’s until it encounters a bit of 0.

and there is a pointer referring to the first bit. The bit of a flash block switches to 1 if

any page in this block is updated (i.e., invalidated). Whenever Lazy wear leveling finds

the erase count of a victim block larger than the average by ∆, it advances the pointer

and scans the bitmap. As the pointer advances, it clears bits of 1’s until it encounters

a bit of 0 as shown in Fig.3. Lazy wear leveling then select the flash block owning this

zero bit as cold block. Notice that garbage-collection activities do not alter any bits in

the bitmap.

The rationale behind the design is that, in the presence of temporal localities of write,

if a flash block does not receive page invalidations recently, then this block is unlikely to

receive more page invalidations in the near future. The invalidation bitmap resides in

RAM, and it requires one bit per flash block. Compared to the page-level mapping table,

the space overhead of this bitmap is very limited.

3.3.2 Least Recently Invalidation List

Although Invalidation Bitmap can identify cold data from hot data, but it can’t suffi-

ciently differentiate blocks storing cold data from not-recently invalidated block. Because

we have no idea of the invalidation sequence from the Invalidation Bitmap, the bit’s of

1 in Bitmap just notify that there is a invalidation on the block recently. Therefore, we

can’t pick out the coldest one from the block owning zero bit in bitmap.

We proposed an optimization upon cold data selection to overcome this problem, it
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Figure 4: Least Recently Invalidation list - One entry is for a flash block on the GC list,

and if there is a page be invalidated, the corresponding entry on the list will be dropped

to the end of list.(a) The initial state of LRI. (b) The LRI list after invalidating block

sequence 2,3,1, and each block invalidate one page.

is called Least Recently Invalidated(LRI) list. One entry is for a flash block on the GC

list, and these entry is linked in sequence initially as shown in Fig.4(a). When there is a

page of a block being invalidate, the corresponding entry on the list will be dropped to

the end of list. Obviously, list head of LRI list is the coldest block, and this block will be

selected to do page copy.

LRI list can pick up a cold block more precisely than Invalidation Bitmap. For

example, if there is a block invalidation sequence ”2,3,1”, it means that there are 3 pages

being update in block 2,3 and 1 respectively. In case of Invalidation Bitmap, bits of block

1,2 and 3 will be set to 1 after invalidation. However, it’s impossible to distinguish the

data temperature between block 1,2 and 3. In contrast, it is easy to extract the coldest

one from block 1,2 and 3 after invalidation on LRI list as show in Fig.4(b).

3.4 Interacting with Flash-Translation Layers

This section describes how Lazy wear leveling interacts with its accompanying firmware

module, the flash-translation layer. Algorithm 1 shows the pseudo code of Lazy wear lev-

eling for Page-Level mapping. The flash-translation layer calls Algorithm 1 after it moves

all valid data out of a garbage-collection victim block and before it erases this block.

The input of Algorithm 1 is v, the pbn of the victim block. This algorithm performs

re-mapping whenever necessary, and may impact over than three blocks.

For the example of Page-level mapping in Fig. 1(c), suppose that the flash-translation

layer decides to make a garbage collection at pbn 1. The flash-translation layer calls

Algorithm 1 before erasing pbn 1. In the rest of this section, concept of our algorithm will

be introduced before detail explanation of Algorithm 1

Lazy wear leveling is separated into two cases by detecting the value of lastColdBlock.

14



0

1

2

3

blockC

0

1

2

3

victim

0

1

2

3

blockC2

copy

(a) Case1:xBlock is not exist

0

1

2

3

xBlock

0

1

2

3

victim

0

1

2

3

blockC

copy

(b) Case2:xBlock is exist

A page of valid data A page of available space A page of invalid data

Figure 5: Two cases in doing lazy wear leveling for page level mapping. (a) Case1:

The lastColdBlock is not null, so choosing cold data is necessary. (b) Case2: The

lastColdBlock is null, so continue copying valid page on lastColdBlock.

The lastColdBlock is the block that selected as a cold block in the last lazy wear leveling

and there are valid pages left in the cold block in the end of last wear leveling. Initially,

lastColdBlock is null, and it will be set to null if there is a page be invalidated or the

block be erased before next wear leveling occur. In Fig. 5, blockC and blockC2 are cold

block that selected by cold data selection algorithm we proposed in section 3.3.1 or 3.3.2.

Victim is the block which selected to do garbage collection by flash-translation layer and

trigger wear leveling.In case1 Fig. 5(a), lastColdBlock is not null, thus we use cold data

selection algorithm to select a cold data blockC. All of the valid pages of blockC will be

copied to victim one by one, until fill out free pages of victim. If valid pages of blockC

are exhausted, wear leveling will repeatedly use cold data selection algorithm again to

choose a cold block referred as blockC2, and then copy valid pages of blockC2 to fill

out the left free pages in victim. When all the free pages of victim are satisfied, page

copying will be stopped immediately. If page copying is stopped, and there are still some

valid pages left in blockC2, then lastColdBlock will be marked as blockC2. In case2 Fig.

5(b), lastColdBlock is null, then page copying from lastColdBlock to victim will begin

immediately. If lastColdBlock has no valid page, wear leveling will use cold data selection

algorithm again to choose a cold block referred as blockC2. And the rest of progress is

same as in case1. The rest of this section is a detailed explanation of Algorithm 1.

In Algorithm 1, the flash-translation layer provides the subroutines with leading un-
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derscores, and wear leveling implements the rest. In Step 1, eraseCount() obtains the

erase count ev of the victim block v by reading the victim block’s page spare area, in which

the flash-translation layer stores the erase count. Step 2 compares ev against the average

erase count eavg . If ev is larger than eavg by a predefined threshold ∆, then Steps 3 through

22 will carry out a re-mapping operation. Otherwise, Steps 24 through 26 process the rou-

tine erase. Step 4 check whether lastColdBlock is null or not. If lastColdBlock is not null,

coldBlock is assigned as lastColdBlock in step 5. Otherwise, findColdBlock routine that

we proposed in section 3.2.1 or 3.2.2 is called to find a cold block and assign to coldBlock

in step 7. The loop of Steps 9 through 12 repeatedly copy valid page from coldBlock to

the free page of victim block until coldBlock has no valid page or no more than one free

page on victim block by using pbnHasV alidPages() and pbnHasFreePage() two sub-

routines. Step 10 uses subroutine ppnNextOfBlock(coldBlock) to get the next available

page of coldBlock to p. Then step 11 calls subroutine copy() and map() to copy the

valid page on coldBlock to victim, and modify mapping table respectively.

Step 14 uses the subroutine pbnHasFreePage() to check whether victim has free

space or not. If victim has at least one free page, wear leveling will not stop. It means

that we have to go back to step 7 to get another coldBlock, and page copy will continue

until fill out victim block. Step 14 set lastColdBlock to null, and go back to step 7 in

step 15. Otherwise, the page copy is stop, and step 16 through 22 do post work of wear

leveling. In step 16 uses subroutine pbnHasV alidPage() to check whether there are any

valid page on coldBlock, If there are at least one valid page on coldBlock, lastColdBlock

will be set to coldBlock in step 17, if not, lastColdBlock will be set to null. After that ,

Step 9 increases ev since the former victim block v has been erased, and Step 10 updates

the average erase count.

4 Channel-Level Wear Leveling

4.1 Multichannel Architectures

Advanced solid-state disks use multichannel architectures for high data transfer rates

[2, 13, 20, 17]. In this study, a channel stands for a logical unit which can individually

handle flash commands and perform data transfer. Parallel hardware structures such as

gangs, interleaving groups, and flash planes are part of channels because flash chips in
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Algorithm 1 The lazy wear-leveling algorithm

Input: v: the victim block for garbage collection
1: ev←eraseCount(v)
2: if (ev − eavg) > ∆ then

3: erase(v);
4: if lastColdBlock 6=null then
5: coldBlock←lastColdBlock

6: else

7: coldBlock ← findColdBlock()
8: end if

9: while pbnHasV alidPage(coldBlock)=TRUE AND pbnHasFreePage(v)=TRUE do

10: p ← ppnNextOfBlock(coldBlock)
11: copy(v, p); map(v, p)
12: end while

13: if pbnHasFreePage(v)=TRUE then

14: lastColdBlock←null
15: go to 7

16: else if pbnHasV alidPage(v)=TRUE then

17: lastColdBlock←coldBlock

18: else

19: lastColdBlock←null
20: end if

21: ev ← ev + 1
22: eavg ← updateAverage(eavg , ev)
23: else

24: erase(v);
25: ev ← ev + 1
26: eavg ← updateAverage(eavg , ev)
27: end if

these structures might not be individually programmable.

From the point of view of wear leveling, channels can be synchronized or independent.

Figure 6 is an example. Let the mapping between logical pages and channels use the

RAID-0 style striping. Figure 6(a) depicts that all the channels write synchronously even

if a write request do not access all the channels. Lazy wear leveling directly applies

to a set of synchronized channels because these channels are logically equivalent to a

single channel. A major drawback of synching channel operations is the reduced device

lifetime. As Figure 6(a) shows, the channels writes sixteen flash pages to modify only eight

logical pages. Independent channels need not copy unmodified data for synching channel

operations, as shown in Figure 6(b). However, using independent channels inevitably

introduces unbalanced flash wear among channels.

This study focuses on independent channels because they alleviate the pressure of

garbage collection and reduce flash wear compared to synchronized channels. Let every
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Figure 6: Handling three write requests w1, w2, and w3 using (a) synchronized channels

and (b) independent channels. In this example, using synchronized channels doubles

the flash wear, while using independent channels results in unbalanced flash wear among

channels.

independent channel adopt an instance of flash-translation layer, and let every channel

perform wear leveling on its own flash blocks. Provided that the block-level wear leveling

is effective, the problem of channel-level wear leveling refers to how to balance the total

block erase counts of all channels.

Our design of channel-level wear leveling respects the property of maximum paral-

lelism [21] for the highest parallelism among page reads. A data layout satisfies maximal

parallelism if and only if a set of consecutive logical pages are mapped to the largest num-

ber of channels. This study uses the RAID-0 style striping as the initial mapping between

logical pages and channels, and data updates and garbage collection do not change this

mapping [17].

4.2 Aligning Channel Lifetime Expectancies

Provided that block wear leveling is effective, the erase counts of blocks in the same

channel will be close, and the wear of a channel can be indicated by the sum of all

block erase counts in this channel. Recall that the utilization of a channel stands for the

fraction of host data arriving at this channel. Even though data updates are out of place

at the block level, they do not change the mapping between logical pages and channels, so

temporal localities have affinity with channels. Thus, channel utilizations do not abrupt

change and the wear of channels increase at steady (but different) rates.

This study proposes adjusting channel utilizations to control the wear of channels

for an “eventually even” state of channel lifetimes. In other words, the idea is to project

channels’ lifetime expectancies to the same time point. Figure 7 is an example of two
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Symbol Description

w The total amount of data written to the flash storage during [t−, t)

ē The write-erase cycle limit of flash blocks

nb The total number of flash blocks in a channel

y The total number of channels

Ci The i-th channel

eci The sum of all block erase counts in the channel Ci

uci The utilization of the channel Ci. Note that
∑

uci=1

u′

ci
The expected utilization of the channel Ci

ri The erase ratio of the channel Ci

x The total number of stripes

Si The i-th stripe

usi The utilization of the stripe Si. Note that
∑

usi=1

ui,j The utilization of the logical block at the stripe Si and the channel Cj

Note that
∑x−1

i=0
ui,j = ucj and

∑y−1

j=0
ui,j = usi

Table 2: Symbol definitions.

Figure 7: Aligning the lifetime expectancies of two channels Ci and Cj for channel-level

wear leveling. (a) These two channels reach their end-of-life at different times. (b) Change

channel utilizations uci and ucj to u
′
ci
and u′

cj
, respectively, such that the lifetime difference

becomes zero (i.e., d=0).

channels Ci and Cj . Let every channel have the same total number of flash blocks nb.

Let a flash block endures ē write-erase cycles, and let the erase count of the channel Ci,

denoted by eci , be the sum of all block erase counts in this channel. Let a channel reaches

its end of life when its erase count becomes ē× nb. Let t be the current time, and let w

be the total amount of host data written in the time interval [t−, t). Let uci ≤ 1 be the

utilization of the channel Ci. Thus, in this time interval the total amount of host data

arriving at the channel Ci is uciw. Let the erase counts of the channel Ci at time t− and

t be etci and et
−

ci
, respectively. Let the erase ratio of Ci during [t−, t) be ri, defined as ri =

etci
−et

−

ci

uci
w

. As Fig. 7(a) shows, eci increases by riuciw = etci − et
−

ci
in this time period. Table

2 is a summary of symbols.
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Provided that channels’ erase ratios and utilizations remain steady, the lifetime ex-

pectancies of the channels Ci and Cj will be t+(ēnb−e
t
ci
)( t−t−

riuci
w
) and t+(ēnb−e

t
cj
)( t−t−

rjucj
w
),

respectively. The lifetime difference d will be

d = (ēnb − etci)(
t− t−

riuciw
)− (ēnb − etcj)(

t− t−

rjucjw
).

To align these two channels’ lifetime expectancies (i.e., d=0), the channel wear-leveling

algorithm computes the utilizations u′
ci
and u′

cj
which the channels Ci and Cj are expected

to have after the time t, respectively. Replacing uci, ucj , and d in the equation above with

u′
ci
, u′

cj
and 0, respectively, produces u′

cj
=

ri(ēnb−etcj
)

rj(ēnb−etci
)
u′
ci
. Because the total utilization

is 100%, we have u′
ci
+ u′

cj
= 1. Now solve these two equations to obtain u′

ci
and u′

cj
.

Figure 7(b) shows that, with these new expected utilizations u′
ci

and u′
cj
, the lifetime

expectancies of these two channels will be the same. In the general case of y channels,

solving the following system obtains the expect utilizations u′
c0
. . . u′

cy−1
:















∀k((k ∈ {0, 1, 2, . . . , y − 1}) ∧ (u′
ck

=
r0(ēnb−etck

)

rk(ēnb−etc0
)
u′
c0
))

y−1
∑

k=0

u′
ck

= 1
.

The next section will present a method that swaps logical blocks among channels to adjust

channel utilizations for channel wear leveling.

4.3 Adjusting Channel Utilizations

Independent channels adopt their own instances of flash-translation layer to manage

their flash blocks. Suppose that the flash-translation layer is based on hybrid mapping.

Recall that the initial mapping between logical pages and channels is the RAID-0-style

striping. Let logical blocks be numbered in the channel-major order. For example, if there

are four channels and a logical block is as large as four pages, then the logical block at lbn

0 is in the first channel and this logical block contains the logical pages at lpns 0, 4, 8,

and 12. The logical block at lbn 2 is in the third channel and it contains the logical pages

at lpns 2, 6, 10, and 14. Let a stripe be a set of consecutive logical blocks starting from

the first channel and ending at the last channel. For example, the first stripe contains the

four logical blocks at lbns 0, 1, 2, and 3. Notice that these definitions of logical blocks and

stripes are also applicable to page-level mapping because they are not related to space

allocation in flash.
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Figure 8: Swapping logical blocks among channels for channel wear leveling. (a) Before

the swap and (b) after the swap.

Because real workloads have temporal localities of write, swapping logical blocks

among channels can manipulate channels’ future utilizations. To retain to the property

of maximum parallelism, this swapping is confined to logical blocks of the same stripe.

Let x be the total number of stripes. Let usj be the utilization of the stripe Sj . Thus,

we have
∑

usj=1. Let ui,j be the utilization of the logical block at the stripe i and the

channel j. Therefore, we have
∑x−1

i=0 ui,j = ucj and
∑y−1

j=0 ui,j = usi.

This study proposes invoking channel wear leveling periodically. On each invocation,

channel wear leveling computes the expected utilizations of channels, and then starts

swapping logical blocks for minimizing
∑x−1

i=0 |uci − u′
ci
|. This problem of block swapping

is intractable even for each invocation of channel wear leveling. We can reduce any

instance of the bin packing problem to this block-swapping problem. A key step of this

reduction is to let an item of size s in the bin packing problem be a stripe which has only

one logical block having a non-zero utilization s.

Channel wear leveling should reduce the total number of logical blocks swapped. We

found that, in real workloads a stripe of a high utilization usually has two logical blocks

whose utilization difference is large. This is because frequently updated data are small

and they do not write to all channels [4]. Thus, the swapping begins with the stripe whose

utilization is the highest. The following is a procedure to find and swap a pair of logical

blocks:

Step 1: Find the two channels Cm and Cnwhich have the largest positive value of

(ucm-u
′
cm
) and the smallest negative value of (ucn-u

′
cn
), respectively.

Step 2: Find the stripe Si subject to the following constraints:
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(a) Si have the largest utilization among all stripes.

(b) In this stripe Si, the two logical blocks at Cm and Cn have not yet been

swapped in the current invocation of channel-level wear leveling.

(c) ui,m > ui,n and (ui,m − ui,n)≤min(ucm − u′
cm
,|ucn − u′

cn
|).

Step 3: Exchange the channel mapping of the two logical blocks found in Step 2.

Step 4: Change ucm and ucn to (ucm-(ui,m-ui,n)) and (ucn+(ui,m-ui,n)), respectively.

Step 5: Swap ui,m and ui,n.

In each invocation, channel wear leveling repeats Steps 1 through 5 until 1) uci=u′
ci
for

every i or 2) the total number of logical blocks swapped is larger than a pre-defined

limitation. Figure 8 is an numeric example of channel wear leveling. In this example,

the channel lifetime limit ēnb is 10,000. Figure 8(a) shows the initial data layout and

utilizations of logical blocks, channels, and stripes. Channel wear leveling solves the

expected channel utilizations using u′
c3
=1.4×(10000−3000)

1.0×(10000−4000)
=1.63u′

c0
, u′

c2
= 1.07u′

c0
, u′

c1
=

1.27u′
c0
, and u′

c3
+ u′

c2
+ u′

c1
+ u′

c0
= 1. It then selects the stripe S0 whose utilization

is the highest, and swaps its two logical blocks at the channels C2 and C3. This swap

changes uc2 from 0.25 to 0.22 and and uc3 from 0.3 and 0.33. Next, channel wear leveling

selects the stripe S3 whose utilization is the second highest and swaps two more logical

blocks. Figures 8(b) shows the results after these swaps. The adjusted channel utilizations

match their expected utilizations.

This study proposes caching the utilization information of a small collection of most-

frequently written stripes. Our experiments will show that a small cache is sufficient to

effective channel wear leveling.

5 Performance Evaluation

5.1 Experimental Setup and Performance Metrics

We built a simulator and implemented two wear-leveling algorithms and Page-level

mapping [11] flash-translation layer for evaluation. The simulator also implements the

proposed Lazy wear leveling and Static wear leveling [8].In addition, static wear leveling

is widely used in industry [16,25].
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Algorithm largest EC smallest EC mean STDDEV Threshold Stable

no WL 1790 0 400.31 461.89 — no

LWL 402 69 381.51 23.23 20 yes

SWL 895 98 381.61 86.61 12 no

Table 3: Evaluation results of Lazy wear leveling (LWL)and Static wear leveling (SWL)

under the PC workload. “no WL” stands for not using wear leveling.

Our experiments adopted PC workload. The PC workload was collected from a 40

GB hard drive in a Windows desktop for three months. The disk drive was formatted in

NTFS. The user activities of this workload include web surfing, word processing, video

playback, and gaming. Its write pattern consists of many temporal localities.

This study uses the standard deviation of all flash blocks’ erase counts to indicate

the evenness of flash wear. The smaller the standard deviation is, the more even the flash

wear will be. This study also considers the mean (i.e., the arithmetic average) of all erase

counts. The difference between the means with and without wear leveling reveals the

overhead of wear leveling. It is desirable for a wear-leveling algorithm to achieve a small

standard deviation and a small mean.

Unless explicitly specified, all the experiments adopted the following settings as the

default values: The flash page size and block size were 4KB and 512KB, respectively.

This is a typical MLC-flash geometry [19]. The input workload was the PC workload,

and the FTL algorithm was FAST. The over-provisioning ratio was 2.5%, and thus the

flash size under the PC workload was 40 GB*1.025=41 GB. Each run of the experiments

replayed the input workload until 4 TB of host data were written. These replays help

to differentiate the performance of different wear-leveling algorithms, but they did not

manipulate the experiments.

5.2 Experimental Results: Block-Level Wear Leveling

This part of experiment compares Lazy wear leveling against Static wear leveling

under Page-level mapping flash-translation layer. The definition of threshold on Static

wear leveling is different to Lazy wear leveling. For fair comparison, this experiment fixed

∆ of Lazy wear leveling at 16, and adjusted the Static wear leveling algorithms’ thresholds

to align their final erase-count means to that of Lazy wear leveling. This experiment also
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Figure 9: Final distributions of block erase counts under the PC workload.(a) Not using

any wear leveling, (b) using Static wear leveling with TH=12, and (c) using Lazy wear

leveling with TH=20.

adopts stability as a metric. Let the stable interval of a wear-leveling algorithm be the

longest time interval [t1,t2] in which the standard deviations at t1 and t2 are the same.

A wear-leveling algorithm is stable in an experiment if its stable interval length increases

during the experiment. Otherwise it is unstable.

Table 3 shows the experimental results. First compare the results of using Static

wear leveling and the results of not using wear leveling at all. The standard deviations

of the PC workload is very large without wear leveling, and Lazy wear leveling reduced

the standard deviation by 95% (from 461 to 23). Fig.9(a) is the erase-count distribution

of experimental result of without wear leveling, some erase count of flash blocks are very

high, and some are approaching 0 due to temporal locality of PC workload. Fig. 9(c)

shows that, Lazy wear leveling reduced the standard deviation substantially, because Lazy

wear leveling is very effective in the presence of temporal localities of write.

Next focus on the comparison among Static wear leveling and Lazy wear leveling.

Lazy wear leveling outperformed Static wear leveling in terms of wear evenness in Page-

level mapping. Interestingly, Static wear leveling was unstable under this workloads.

Fig.9(b) shows that, under the PC workload the final erase-count distribution of Static

wear leveling is more imbalanced than that of Lazy wear leveling in Fig.9(c). [6] mentioned

two reasons in Hybrid mapping FTL:First, Static wear leveling moves static data from a

block to another regardless of whether the target block is junior or senior. Second, Static

wear leveling does not prevent the flash-translation layer from writing new data to senior

blocks. Thus senior blocks could repeatedly participate in garbage collection. In contrast

Lazy wear leveling neither re-maps data to a junior block nor allows the flash-translation

layer to write new data to senior blocks. And these reasons are still tenable in Page-level
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mapping FTL.
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Figure 10: Average erase count on each amount of data written.

From Fig.10, we can realize that wear-leveling not only even the erase-count but

also cut-down the total erase-count. This is because wear leveling performs cold data

re-clustering in page-level mapping. Then increase the efficiency of garbage collection by

means of reducing the number of valid pages to be copied in every garbage collection. One

the other hand, it gather valid pages into same blocks, then decrease the need of garbage

collection. In addition, decreasing the times of garbage collection come with reducing

total erase-count of flash blocks. Therefore, total erase-count of with wear leveling will

less than without wear leveling.

5.3 Experimental Results: Channel-Level Wear Leveling
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Figure 11: Runtime channel erase counts and final distributions of block erase counts

under the PC workload. (a) Not using channel-level wear leveling, (b) using channel wear

leveling with a period length of 512 MB, and (c) using channel wear leveling with a period

length of 1 TB.
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This part of experiment evaluates the proposed channel-level wear leveling algorithm.

The experimental settings are as follows: The total number of channels was eight. Each

channel adopts its own instance of flash-translation layer and wear-leveling algorithm.

The flash-translation layer was FAST, and the wear-leveling algorithm was Lazy wear

leveling. Lazy wear leveling enabled its dynamic tuning of ∆. This experiment replayed

the PC workload until 4 TB of host data were written to the flash-translation layer. The

block endurance ē was set to an experimental value 450, because the average block-erase

counts was near this number by the end of this experiment. The rest of the experimental

settings are the same as those in Section 5.1

Figure 11 shows the runtime channel erase counts and the final distribution of block

erase counts. Flash blocks are labeled by pairs (channel number, pbn). For example,

(7,10496) refers to the last flash block in the channel number seven. The upper half of

Fig. 11(a) shows that, without channel-level wear leveling, the channels 4 and 5 were

the most-worn and the least-worn channels, respectively. The bottom half of 11(a) also

indicates that, even though the block wear in every channel was even, the erase counts of

flash blocks from the channels 4 and 5 noticeably deviated from the overall average.

Figures 11(b) and 11(c) show the results of enabling the proposed channel wear-

leveling algorithm. In Fig. 11(b) and Fig. 11(c), channel wear leveling was invoked after

the workload produced every 512 MB and 1TB of data, respectively, and channel wear

leveling could swap up to 50 logical blocks for each invocation. The upper halves of Fig.

11(b) and 11(c) show that the channel erase counts gradually converged at the end-of-

life of channels, i.e., ē × nb=450×10,752=4,838,400. This convergence in Fig. 11(b) was

faster than that in Fig. 11(c), because in Fig. 11(b) channel wear leveling was invoked

more often. In the bottom halves of Fig. 11(b) and 11(c), the final distributions of block

erase counts were both even. Regarding the overhead, the total numbers of logical blocks

swapped were 260 and 150 when the period lengths were 512 MB and 1 TB, respectively.

Compared to the overhead of serving 4 TB of host data, these overheads were almost

negligible.

The proposed strategy requires a table for caching the utilization information of the

most-frequently written stripes and that of their logical blocks. In this experiment, the

table stored 100 stripes, and the table size was 100×(1+8)×4=3,200 bytes.
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6 Conclusion

This study tackles two problems of wear leveling: block-level wear leveling for Page-

level mapping and channel-level wear leveling. Block-level wear leveling monitors the wear

of all flash blocks and intervenes when block wear develops imbalanced. Channel-level

wear leveling aims at even channel lifetimes for maximizing the device-level lifespan.

This study presents two cold data selection way, and use Lazy wear leveling algorithm

to copy cold data to senior block. Our results shows that Lazy wear leveling not only

performs wear leveling, but also decreasing the total erase-count of flash blocks. And Lazy

wear leveling for Page-level mapping is stable under real workload. It performs better on

wear evenness than static wear leveling under Page-level mapping. By evening the wear

and decreasing total erase-counts of flash blocks, life time of SSD will get more extension.

Multichannel architectures has became mandatory in the design of solid-state disks.

Real workloads do not evenly write to all channels, and inevitably introduce imbalanced

flash wear in different channels. For wear leveling at the channel level, we propose a

strategy that swaps logical blocks among channels. The goal of this swapping is to reach

an “eventually even” state of channel lifetimes. Results show that this strategy is very

successful and its overhead is nearly negligible.

Recent study [3] suggests that SSDs in RAIDs should reach their end-of-life at dif-

ferent times for the convenience of drive replacement. Our future work is directed to op-

timizing the drive-replacement periods using the proposed lifetime projection technique.
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