
國 立 交 通 大 學

資 訊 工 程 學 系

碩 士 論 文

以代理人為基礎的工作流程管理系統中

定義的一致性

Definition Consistency on An agent-based

Workflow Management System

研究生：李吉正

指導教授：王豐堅 教授

中華民國九十三年六月

以代理人為基礎的工作流程管理系統中定義的一致性

Definition Consistency on An Agent-based Workflow

Management System

研究生：李吉正 Student：Chi-Cheng Li

指導教授：王豐堅 博士 Advisor：Dr. Feng-Jian Wang

國立交通大學

資訊工程學系

碩士論文

A Thesis

Submitted to Department of Computer Science and Information Engineering
College of Electrical Engineering and Computer Science

National Chiao Tung University
In Partial Fulfillment of the Requirements

For the Degree of Master
In

Computer Science and Information Engineering
June 2004

HsinChu, Taiwan, Republic of China

中華民國九十三年六月

 II

以代理人為基礎的工作流程管理系統中

定義的一致性

研究生: 李吉正 指導教授: 王豐堅 博士

國立交通大學

資訊工程研究所

新竹市大學路 1001 號

摘要

 一般來說，工作流程管理系統是被設計成以資料庫中的工作流程定義及文件

定義來執行。然而工作流程定義的靜態特性可能會降低系統的實用性。要開發一

個工作流程管理系統的代價很高，所以把彈性和再利用性考慮進來是合理的。本

篇論文中，我們要呈現一個利用代理人動態地修正工作流程定義的方法。在我們

以代理人為基礎的工作流程管理系統中，一個執行中的工作流程可以被視為是一

個（群）代理人，根據工作流程定義，和角色間的互動。代理人本身也能對一個

工作流程作修改。因此，代理人可以修改它們對使用者的導引，而系統在面對規

格異動時也能更有彈性。

Keywords: 工作流程、工作流程管理、代理人、網際網路

 I

Definition Consistency on An Agent-based

Workflow Management System

Student: Chi-Cheng Li Advisor: Dr. Feng-Jian Wang

Institute of Computer Science and Information Engineering

National Chiao Tung University

1001 Ta Hsueh Road, Hsinchu, Taiwan, ROC

Abstract

 Workflow management systems (WfMSs) are usually designed to run with the

workflow (process) definitions and artifact definitions from repository. The static

characteristics for process definitions might reduce the practicability of the systems. The

cost to develop a WfMS is so high that it is reasonable to take the flexibility and

reusability of system architecture into account. In this thesis, we present an approach to

modify the definition of workflow processes with agents dynamically. In our

agent-based workflow system, the running of a workflow can be viewed as an (or a set

of) agent interacting with roles based on the definition of the workflow. The definition

of a workflow can be modified by the agent itself. Therefore, agents can modify their

guidance for workers, and the system will be more flexible to meet the specification

modification.

Keywords: Workflow, Workflow Management, Agent, Internet

 II

誌謝

本篇論文的完成，首先要感謝我的指導教授王豐堅博士兩年來不斷的指導與

鼓勵，讓我在軟體工程及工作流程的技術上，得到很多豐富的知識與實務經驗。

另外，也非常感謝我的畢業口試評審委員楊鎮華博士以及楊仁達博士，提供許多

寶貴的意見，補足我論文裡不足的部分。

其次，我要感謝實驗室的伙伴們，有博士班建偉學長督導我們寫論文，對論

文給予了相當多的寶貴意見，而其餘幾位學長姐熱心地參與幫忙和討論，讓我學

得許多論文技巧，得以順利的撰寫論文。當然，值得一提的是我們這屆畢業生瓊

文、大立及祖年，在各方面彼此不斷的砥礪與照顧下，使得大家在各個領域的技

術及理論上能有所成長。

最後，我要感謝我的家人，由於有你們的支持，讓我能心無旁騖地讀書、作

研究然後到畢業，此外，也要謝謝女友筱晴的細心陪伴，在我遇到挫折時能互相

勉勵。由衷地感謝你們大家一路下來陪著我走過這段研究生歲月。

 III

Table of Contents

摘要.. I

Abstract ... II

誌謝..III

Table of Contents .. IV

List of Figures ... VI

Chapter 1. Introduction……………………………………………………………1

Chapter 2. Background……………………………………………………………4

 2.1 Related Workflow Research…………………………………………...4

 2.2 Related Agent Technology……………………………………………..6

 2.3 Our Background System ……………………………………………...7

Chapter 3. Changes on Process Definitions……………………………………...10

 3.1 Characteristics of the Process Definitions……………………………11

 3.2 Possible Phenomena and Corresponding Decision Policies………….13

 3.2.1 Changes on Static Definitions…………………………………..13

 3.2.2 Changes on Dynamic Definitions……………………………….18

 3.3 Problem Solution to Policies…………………………………………20

 3.4 A WF-Diff Algorithm………………………………………………...23

Chapter 4. Changes on Role and Artifact Definitions……………………………30

 4.1 Changes on Role Definitions…………………………………………30

 4.2 Changes on Artifact Definitions……………………………………...34

 4.3 Compound Changes………………………………………………….38

Chapter 5. Comparison and Conclusion…………………………………………42

 5.1 Comparison…………………………………………………………..42

 IV

 5.2 Conclusion……………………………………………………………42

References…………………………………………………………………………..44

 V

List of Figures

Figure 2.1 System internal view…………………………………………………..8

Figure 3.1 Three kinds of changes on flow graph……………………………….16

Figure 3.2 Examples of changes on flow graph………………………………….17

Figure 3.3 Several basic nodes…………………………………………………..24

Figure 3.4 Common flow structures we used……………………………………25

Figure 4.1 The example of case 1………………………………………………..40

 VI

Chapter 1

Introduction

A workflow management system (WfMS) is an internet application system that

can define, control and manage workflow processes[1][17]. A workflow process can

contain business logics within an enterprise, or between enterprises and their

customers[11][13]. By system’s development tools and design rules, the workflow

process designer can clearly describe all process definitions, which are stored in the

repository of the system for execution[15]. The enactment service instantiates a

workflow instance with the workflow definition[5]. Each workflow instance is

instantiated when the precondition is true, interacts with role and terminates when the

responsibility completes. On the other hand, the workflow engine transfers the output

data to the preconditions which in turn are used for enactment of another process. So

the system can direct all involved workers to cooperate and complete their working

responsibility[11]. The management part of a WfMS is a sub-system monitoring the

enactment services, and the system administrators can supervise, manage, and

configure the whole system through this sub-system[17].

Modern internet software are getting powerful and complex[8][16]. The

complexity of WfMSs increases significantly, so does the cost and time of system

development. While the requirement changes fast, the life cycle of these systems

cannot follow up due to the development or modification capability and cost. It might

be helpful to consider the adaptability of the enactment service for a WfMS. In general,

the enactment service can assist workers to do their job according to the process

definition. A case not considered in the definition may cause the WfMS collapsing[3].

For example, that an enacted workflow process delivers the artifact to a dismissed

 1

person would cause the process to be stopped. This case is solved by allowing

workflow process to detect the expiration time and deliver the artifact to another

person instead. However, this is a pre-defined or static case. The cases which are not

considered might cause exceptions dynamically and the process designer has to modify

the static process definitions. To take all possible changes into account is impractical

and sophisticates the process definition[12][14].

The thesis presents an approach to allow a running workflow instance to continue

its work, when the system administrator modifies the process, artifact, or role

definitions. Our approach, based on an agent-based WfMS[22], lets an agent which is

in charge of controlling process have self-adaptation capability. That is, the agent can

reason and modify its process definitions for dynamic changes, which in general can be

classified into three categories according to the process-, artifact-, and role- submodels

respectively. The accurate adaptation actions usually rely on the concrete process

modeling[9][19], and the essential principles to work around the demands can be

addressed feasibly. To realize the dynamicity of workflow processes, the software

agents should be enhanced with the situation-aware rules and adaptation

functions[18][20]. With the principles discussed in the content, our agents can: (1)

infer differences between original and modified definitions, (2) identify the change

type and reason whether to adapt itself for the changes, and (3) choose a proper

adaptation function for the running process. In order to cope with the changes, a

WF-Diff algorithm is also presented to identify the modified range that affects the

process running afterward. With the identified range, the agent can further decide the

rules to modify its behaviors such as plans or even goals. Besides, we also give

appropriate examples corresponding to each change type to demonstrate the feasibility

of our adaptation approach.

The remains of this thesis are organized as follows. Chapter 2 describes related

 2

discussion and an overview of our background system. Chapter 3 discusses the

solutions to changes on the process sub-models. The changes on the role and artifact

sub-models are described in chapter 4. In addition, the composite changes which

consist of two or more kinds of dynamic changes are also described in chapter 4. Then

we give a comparison and conclude briefly in Chapter 5.

 3

Chapter 2

Background

2.1 Related workflow research

Generally speaking, every change which is unexpected or isn’t concerned in the

process design phase is classified as a request to modify the definition at run time, for

example, an error on operating system or the hardware malfunction[10]. Several

approaches have been developed to make a WfMS behave more flexibly when an

unexpected case occurs[3][9][19][20].

Cardoso[3] defines an survivability architecture distinguishing the exceptions in

four layers. The adaptability on this architecture is achieved by the exception handling

mechanism with case-based reasoning. The goal of the case-based reasoning is to

derive an exception handler, based on the knowledge about the past experience. To

cover a case before the system collects the experience, however, is not considered.

Jie and Stanley[5] proposed a dynamic workflow model (DWM) for

inter-organization WfMSs, which is extended from the underlying meta-model of the

Workflow Management Coalition’s (WfMC’s) workflow process definition language

(WPDL). In this model, a task is encapsulated as an e-service. Within an organization,

an e-service adapter is implemented as a wrapper of its service operations. The

flexibility of the system is achieved according to the dynamic binding of the e-services,

and the dynamic properties of the business process model are specified in terms of

events, triggers, and rules. The activities inside this dynamic workflow model can post

events to trigger business rules during the enactment of workflow processes. The

design of the e-service adapter, however, are not described clearly, and the

constraint-based description of the e-service is too simple to specify most business

 4

tasks.

For dynamic interoperation between WfMSs and dynamic integration of enterprise

applications, Kwak and Han [8] proposed a framework including four main

components: Workflow engine, Adapter, Service Interface Repository, and XML

message. By integrating these four components, an external sub-process can be

determined and bound to the main business process at run time. If needed, the local

workflow system would ask the adapter to search the required service from other

workflow systems and/or enterprise applications. The search and binding of services

are transparent to the user, and they can improve the flexibility, scalability, and

interoperability. The multi-tiered state transition model in this framework would cause

unnecessary complexity when an exception occurs in a process.

Aalst distinguished the changes on process definition into two types, ad-hoc change

and evolutionary change[19]. He presented a generic workflow model to tackle the

problem of change and to get the management information. In the approach, the

process instance whose definitions have been modified would be migrated between

different members of the same process family, which is specified by a set of

inheritance diagrams. Aalst’s approach, however, is restricted to the changes on

control flow.

There is an approach to make WfMSs more flexible by allowing the existence of

inconsistent and incomplete models and involving users during the interpretation of the

situated model [9]. In most workflow engines, the process models are activated by the

system enforcing the “script.” Unlike other workflow systems, this interaction

framework allows users to resolve ambiguities in the situation that the computer can’t

interpret the process model definitely. Thus the process modeling language should be

simple, user-oriented, extensible and adaptable. Briefly, the author proposed a new

look at how models are interpreted, and this inspires us to have a new look at the

 5

relations between the processes and artifacts.

Müller and Rahm[10] proposed a rule-based approach for dealing with logical

failures. Their mechanism for adaptation decides which process has to be informed, and

estimates the temporal and qualitative implications. By the event-condition-action rules

and the negotiation among system components, the automatic handling of “legal

failures” is possible.

Another rule-based, asynchronous approach is to enact a business process by the

assessment of legal status and directives of the system, or the

“Event-Condition-Obligation” style[20]. In contradiction with the classical approach,

this approach facilitates the conflict detection and the corresponding resolution. The

obligations, however, have to be designed with caution to avoid the divergence of the

“triggering” mechanism.

2.2 Related agent technology

Several characteristics of agent technology are helpful for the workflow

management application. With the pro-activeness of the agent, the workflow enactment

mechanism could be sensitive to the changes on the static definition in repository. With

the mobility, the agent could carry data to the destination to do the computation, and

the network traffic and computation time could be reduced significantly[21].

Yan and Maamar[4] analyzed the way how the agent-enhanced and agent-based

technologies to affect a WfMS. They listed the advantages and disadvantages brought

by the agent technology. Several research issues, like system architecture, agent

architecture, and negotiation, etc, are discussed in the paper.

In ADEPT environment[6], the agent offers the service, which corresponds to some

units of the problem solving activity. Several modules are defined to provide the agent

 6

with problem solving capability. All agents in ADEPT have the same architecture. The

agent head of an ADEPT agent is composed of several modules to manage the agent’s

activities, and the agency presents distinct agents’ capability. Although ADEPT model

provides an exception handling mechanism in the situation assessment module for the

service failure cases, it does not cover much on flexibility, and cannot react to the

services changes dynamically.

2.3 Our Background System

In a mobile agent system, the agents can not only collaborate and communicate

with each other, but also migrate to another place to accelerate the problem-solving

process. The Object Management Group (OMG) had proposed a standard specification,

Mobile Agent System Interoperability Facility (MASIF)[7]. This specification defines a

set of interfaces and data types for the interoperability between those heterogeneous

mobile agent platforms of different organizations. Organizations following these

specifications can migrate their agents to another heterogeneous agent platform for

work.

Our agents are based on an extended agent architecture from JAM[2]. We extended

the JAM system by implementing several primitive functions. For an agent’s mobility

and negotiation, our system follows the MASIF specifications to implement the

agent-move and communicate functions.

Figure 2.1 illustrates our system. All the workflow, artifact, and role definitions,

named static definitions, are stored in the script repository and database. The Agent

Manager is responsible to instantiate, manage and destroy all kinds of agents. The

other components are based on the services supported by the Agent Manager. The

Workflow Manager manages authority settings and monitors workflow instances. The

 7

agents can request the Workflow Manager for various services, such as instantiating a

agent, inquiry for system status, starting a workflow process, etc. The administrators

can maintain the static process, role and artifact definitions by administration tools, and

control the running workflow instances through the Workflow Manager. The client

tools provide GUIs for users and can interact with his/her person agent.

Script Repository

<<subsystem>>
Client Tools

User Administrator

<<subsystem>>
Administration Tools

Person
Agent

Process
Agent

Artifact
Agent

Databases

UseUse

Login / Logout Login / Logout

Refer

Supervisor
Agent

Refer / Update
Create / Delete

Process / Artifact / Person Agents
Handle
Tasks

Instantiate / Destroy

Refer / Update

Monitor
& Control

Start / Stop
Workflows

Monitor & Control
Tasks Results Report

▲

▲

Interactions to Accomplish Tasks

<<subsystem>>
Workflow Manager

<<subsystem>>
Agent Manager

▲

▲

Monitor & Control
Flow Status Report

Figure 2.1: System internal view.

There are four kinds of agents which cooperate to accomplish a workflow (instance)

in our system. When a workflow is initiated, a process agent will be instantiated with

corresponding process definitions. The process agent then requests to create the artifact

agents for required artifacts in the workflow. A process agent keeps a “flow graph” for

each artifact agent, takes charge of task dispatching, and makes the routing decision for

each artifact agent. An artifact agent carries the workflow relevant data (an e-form),

keeps the state of these definitions, and communicates with the proper person agents

assigned by the process agent. A person agent has the personal and role information of

 8

the corresponding user, and it would present appropriate contents of the artifact to the

user when he/she interacts with an artifact agent. The supervisor agent is a special

person agent used by the administrator to interact with other agents.

Here is a possible scenario of the running system. Suppose that a user enters the

workflow system with his/her client tool, and the client tool sends an instantiation

request to the Workflow Manager. The Workflow Manager in turn requests the Agent

Manager to instantiate a person agent, which carries the user’s personal and role

information. When user enacts a workflow with the client tool, his/her person agent is

asked to send a request to the Workflow Manager. The Workflow Manager firstly

checks if the user is authorized for the process. If the authentication is not passed, the

request is rejected directly. Otherwise, the Workflow Manager asks the Agent Manager

to instantiate a process agent which is in charge of the enactment of the workflow. This

process agent then requests the Workflow Manager to instantiate one or more proper

artifact agents, and makes the routing decisions for each artifact agent. Each artifact

agent will communicate with the engaged person agents to perform (pre-defined)

actions with the participants respectively. After completing one delegated work, the

artifact agent reports the computation results to the process agent. Meanwhile, these

reports and carried process definition are calculated by the process agent to make the

next routing decision, and notifies the artifact agents of the decision. When the

workflow process completes, the process agent will request to destroy all artifact

agents and then itself be destroyed by the flow manager.

In the following sections we will distinguish the types of changes that may occur

on the agents and the data carried by the agents, and discuss their solutions.

 9

 Chapter 3

Changes on Process Definitions

The processes, roles, and artifacts definitions, which are defined by the process

designer in the design phase and stored in the repository, are the static definitions.

When a workflow is enacted, a process agent is instantiated with the corresponding

workflow definition. When an artifact is requested by a process agent, an artifact agent

is instantiated with the artifact definition. When a user enters the system, a person

agent is instantiated with his/her role definition. The definitions carried by these agents

are called dynamic definitions.

The changes occurring at run time might work either on the static definitions or

dynamic definitions. The changes on the static definitions might occur at the

modification by the process designer, participants, or the other workflow instances.

The modification on the static definitions can also change the dynamic definitions of

the agents, if the administrator enforces to apply the modification immediately. The

dynamic definitions can also be changed when some participants request to modify the

workflow instances.

Basically, our system adapts to the changes in three steps:(1) Recognize: Firstly the

process agent identifies whether there is a change and the type of the change. (2)

Modify: After figuring out the change, the process agent will decide when to halt the

workflow instance, how to modify the carried dynamic definition, and then apply the

modification. (3) Resume: Finally the system records the system status and the process

agent resumes the halted workflow instance. The third activity keeps the history of the

changes and depends on the system implementation. So we will skip the discussion of

the resuming action.

 10

To identify whether there is a change, it is appropriate to periodically check the

difference between the static definitions in the repository and the dynamic definitions

carried by the process agent. If the process designer makes an urgent change on the

static definitions, the workflow manager can actively notify the related agents of the

changes. Besides, the process agent can be aware of the inherent exceptions, such as

the inconsistent definitions caused by the process designer, during the enactment of the

definitions. With the pre-defined rules, it can actively modify its carried definitions to

continue the enactment, or even ask the workflow manager to update the static

definitions and notify the other running instances. If the exceptions cannot be solved,

the process agent might halt the workflow instance to wait for the administrator’s

manipulation.

When the process agent notices the differences between the static and dynamic

definitions or the alert of changes from the workflow manager, it could adopt the

proper actions according to the changes types and the status of the workflow instance.

The rest of this chapter distinguishes the changes on the process sub-models.

3.1 Characteristics of the process definitions

The changes on the static process definitions could be resulted from the

modification by the process designer, the system administrator, or the participants, as

described above. To change the dynamic process definition, a user must have the

authority to make the local change, like the insertion of a sub-flow. As the process

agent detects an inherent exception, it can halt the workflow instance and notify the

administrator to check out the static definition.

The following describes the typical definitions which can be carried by a process

agent and the potential changes on these definitions. The further solutions are

presented in the next section.

 11

1. Workflow requester’s information: If the system administrator modifies the

authority setting of a workflow process, it may cause some contradiction. For

example, a user may not be permitted to initiate the workflow instance that he/she

has initiated.

2. Workflow identifier (unique name, or serial number, etc): The information is used

to recognize the type of workflow instance. When the static definition of a

workflow is changed, we can exactly recognize those workflow instances whose

corresponding static definitions are just modified by compare their workflow

identifiers.

3. Artifact identifier: The process agent can identify if a new artifact is inserted in the

static process definition, or if an obsolete artifact is deleted from the static process

definition, by the number of artifact identifiers. The change of an artifact’s content

cause no addition or deletion of artifact identifier in the process definition. This

case will be discussed in next chapter.

4. Flow graph of an artifact: When the system administrator modifies the flow graph

of an artifact, he/she changes the static artifact definitions. The process agent can

distinguish the difference between the modified flow graph and the carried flow

graph. Then, with the status of the workflow instance, the process agent can make

a correct routing decision for the artifact agents.

5. Authority setting of local change: A local change on the dynamic process definition

means that the change is only applied to the process definition carried by the

process agent. A local change on a workflow instance can be the insertion of a new

sub-flow or the deletion of an original sub-flow. If a person agent wants to make a

local change to a workflow instance, it must be authorized to change the dynamic

definition of the workflow instance.

 12

3.2 Possible phenomena and corresponding decision

policies

The way to adapt to the changes is case by case. Now we state the phenomena and

the corresponding decision policies in our system, and illustrate the examples of the

change types described above.

3.2.1 Changes on static definitions

1 Changes on authority settings: Only the process designer and the system

administrator can modify one process’s authority settings. If the process designer

or the administrator takes off a user’s authority to initiate a workflow process, the

following requests of instantiation of this workflow process from the user will be

rejected by the workflow manager. When a process agent notices the authority

change of the user who is interacting with the artifact agent of the workflow

instance, the process agent has to decide to continue or stop according to business

policy. If the process agent decides to stop, it would cause the destruction of its

artifact agents after their current tasks and notify the process requester of the

situation. Then it would request to be deleted. If the process agent decides to

continue, it would finish the rest of the process as the change on authority setting

does not happen.

For example, every employee can initiate a workflow for applying money.

Now, the system administrator modifies the authority setting to allow that in a

department, the manager is the only person who can initiate the workflow for

employee. In other words, the authority to initiate the workflow is changed.

During the time of authority change, all the unfinished applying processes with

the illegal process requesters will be stopped by their process agents. After

notifying their requesters, these process agent and related artifact agents will be

 13

destroyed by the workflow manager.

2 Changes on artifact settings: The process designer and the system administrator

can add or delete an artifact to or from a workflow process. So do a participant

with the authority of local change and we’ll describe it in next section. After the

modification on the static artifact settings, the process agent would request the

workflow manager to create or destroy the corresponding artifact agents, and lead

the rest artifact agents to complete the process. Although destroying an artifact

agent will not affect the other artifact agents of the same workflow process, the

process agent has to modify its process definition to make the correct routing

decision for the rest artifact agents. For example, the process agent can directly

lead the other artifact agents to the next site without waiting for the task report of

the destroyed artifact agent. When the process designer or the administrator

modify the artifact setting to add a new artifact into the workflow at run time, the

process agent request the workflow manager to create an artifact agent with the

corresponding artifact definition, and directs the artifact agent according to its

flow graph. The process agent would make the routing decisions for the original

artifact agents simultaneously. For consistency, an artifact agent should not be

aware that itself is inserted for a dynamic change. For example, suppose that

there is a new artifact agent added in a workflow instance, which had only one

artifact agent before, and these two artifact agents shares the same one flow

graph. In other words, the process agent has to route the two artifact agents at the

same time. When one artifact agent is ready to enter a site, the process agent has

to check if another artifact agent had arrived already. If not, the process agent

further checks if another artifact agent had passed the site or not. Then the new

artifact agent can finish the early task and catch up another artifact agent.

For example, the system administrator modifies the artifact settings of the

 14

subvention recreation application process, and the workflow requesters are now

asked to provide an additional manifest, like a voucher. All the unfinished

workflow instances would be halted by their process agents. The process agent

requests the workflow manager for a new artifact agent for the manifest. The new

artifact agent will interact with the person agent of the process requester for the

manifest’s content, and follow the process agent’s routing decision to the site the

halted artifact agent stays. Eventually all artifact agents would get together and

the process agent would make the routing decision for them.

3 Changes on flow graphs: The process designer and the system administrator can

modify the flow graphs in the static definitions. A normal participant cannot

change the flow graph of an artifact in the static definition, but a participant with

authority of local change can modify the flow graph in the dynamic definition.

The change on the dynamic definition will be described in the next section. After

noticing the modification on the static flow graph, the process agent must modify

the dynamic definition (the flow graph). Then according to the modified flow

graph and the process status, the process agent will make the decision of how to

adapt to the change. There are three cases. In the first case, the artifact agent has

not moved in the modified region of the flow graph yet. The process agent just

need to update the carried definition and will make the routing decision by the

updated definition in the future. The “modified region” of the flow graph is a

continuous segment within a flow graph, which includes all the nodes affected by

a dynamic change. During execution time, it can also be deemed as an area of the

flow graph starting from the first affected node to the last affected node. There

will be a possible algorithm to find out the modified region in the later section. In

the second case, the artifact agent has already gone through the modified region.

There are two ways for the process agent to handle this kind of case. One is to

 15

ignore the modification and continue to finish the remains of the workflow.

Another is to route the artifact agent backward to the starting node of the

modified region and start over again. In the third case, the artifact agent is inside

the modified region. In this case, the process agent must make the artifact agent

restart from the starting node of the modified region. Figure 3.1 illustrates these

three kinds of cases.

Figure 3.1: Three kinds of changes on flow graph

For example, in Figure 3.2, the original flow graph of an artifact was

A B C D E. After the modification, the flow graph is changed to

A X Y E. After the identifying and updating its definition, if the artifact

agent is now at the node A, the process agent will make the routing decision by

the updated flow graph from now on. If the artifact agent is at the node E, the

process agent may continue making the routing decision by the original flow

graph or route the artifact agent backward to the node X, depending on the

 16

company’s policy. If the artifact agent is now at the node C, B, or D, the process

agent has to ask the artifact agent backward to the node X.

Figure 3.2: Examples of changes on flow graph.

For another example, originally, the flow graph of an artifact was like

A B C, and now it is changed to A X C. The process agent has to ask the

artifact agent backward to the node X. Although this case is a kind of the

transference of the employee or the role, it also can be classified as a case of

changing the flow direction. We will present an algorithm to infer whether the

 17

artifact agent is in the modified region of the flow graph in the later section.

3.2.2 Changes on dynamic definitions

In previous section, we have described the phenomena about the changes on the

static definition. Although the changes on the static definition can cause the

corresponding change on the dynamic definition carried by the agents, the changes on

the dynamic definition might not have to be applied to the static definition. This kind

of change is called local change. The person agent with the authority of the local

change can modify the dynamic definition carried by the process agent at run time. In

most companies’ business processes, only the managers have this authority. The

process designer and the system administrator can also apply a local change to one of

the running processes.

Although the process agent keeps up its workflow identifier and process requester’s

information, it is nonsense for a participant to modify the identifier or to disable the

requester’s authority. If the administrator want to modify the workflow process’s

identifier or take off one role’s authority to initiate the process, it would be more

convenient for him/her to directly modify the static definition as described in previous

section.

When one of the participants requests a local change on the flow graph of an

artifact agent, there are two kinds of the cases. In the first case, a new flow will be

inserted after the node the artifact agent stays in the flow graph. The dynamic process

definition would be modified by the person agent, so that afterward the process agent

can correctly make the routing decision for the artifact agents to pass the inserted

sub-flow. In the second case, a segment of the original flow graph after the node the

artifact agent stays will be deleted. The process designer has to pay more attention on

the authority settings and the structure of the workflow process when designing the

 18

process and making the local change. Consider the authority settings, an employee can

hardly make an artifact agent skip a sub-flow of the artifact’s flow graph, if the

sub-flow includes a node representing his/her manager. The system will be more

powerful and reasonable with this consideration. Removing a sub-flow from the flow

graph may also cause the synchronization problems. For example, there is an artifact

delivered to two managers concurrently. After both managers finished their tasks, the

president of the company signs it. Finally the artifact will be delivered to the

accountancy division for a record. Because the two managers have to check the artifact

at the same time, the process agent will duplicate the artifact agent and let both artifact

agents interact with the two managers’ person agents. If one manager requests for the

local change and makes an artifact agent skip the next node. That is, the corresponding

artifact agent would move directly to accountancy division. This is an inconsistency

problem for the process agent.

After either the addition or the deletion of a sub-flow, the dynamic process

definition carried by the process agent will differ from the static definition of the

workflow in repository. Thereafter the process agent won’t distinguish the difference

between the dynamic and static definition. Similarly, the system administrator can

make a local change on the flow graph of an artifact agent of a workflow instance.

When the administrator makes a local change on a workflow instance, he/she only can

change the region where the artifact agent of the workflow instance has not passed.

When the local change is applied to one of the workflow instances, its process agent

would modify its dynamic definitions and won’t compare with the static definitions

anymore.

A participant might request an additional artifact to follow with the original artifact.

This is a local change on the artifact setting of the process definition. When the system

administrator or a participant with authority of local change request for an additional

 19

artifact, he/she has to define the artifact’s flow graph and authority settings of fields

definitely. When the local change is requested and the related artifact is defined well,

the process agent would halt the original artifact agents and modify its dynamic

definitions. After requesting the workflow manager for the new artifact agent, the

process agent would make the routing decision for all the artifact agents. To delete an

artifact from a running process is another local change on the artifact setting. The

process agent would modify its artifact setting of the carried definition and make the

correct routing decision for the rest artifact agents.

3.3 Problem solution to policies

In previous section, we analyzed the changes and phenomena that could happen on

the process sub-model. In this section, we will present the design concept of each agent

to show how our system adapts to the changes in every case.

1 Process agent:

i、 In the case that the starting authority of process is changed.

1 Identify the change on authority either by receiving the alert from the

system administrator or by actively noticing it.

2 Halt all the artifact agents after their current tasks.

3 Manipulate depending on the new authority setting and the company

policy:

1. If the process requester is still legal, nothing would happen.

2. If the requester is no longer legal and the policy is stopping all

these workflow instances, request the workflow manager for the

destruction of the artifact agents.

3. If the requester is no longer legal and the policy is continuing all

 20

these workflow instances, ignore the authority setting afterward.

4 If the requester is legal, finish the process as normal. Otherwise, request

the workflow manager for destruction and notify the requester of the

situation.

ii、 In the case that the artifact setting of process is changed.

1 Identify the addition or deletion of the artifact identifiers either by

receiving the alert or by actively noticing it.

2 Halt all the original artifact agents after their current tasks.

3 Request the workflow manager for the destruction of the obsolete artifact

agents, if needed.

4 Update its definition of the artifact setting.

5 Request the workflow manager for the instantiation of the new artifact

agents, if needed.

6 Follow the respective flow graphs to make routing decision for the rest

and the new artifact agents.

iii、 In the case that the flow graph of an artifact agent is changed.

1 Identify the changes on the flow graph either by receiving the alert from

the system administrator or by actively noticing it.

2 Decide the modified region with a WF-Diff algorithm.

3 Halt all artifact agents after their current tasks.

4 Manipulate in accordance with the process status:

1. If the artifact agent has not entered or had passed the modified

region, update its definition of the corresponding flow graph.

2. If the artifact agent is within the modified region, update its

definition of the corresponding flow graph, and set itself and the

artifact agent to the state before the starting of the modified region.

 21

5 Follow the new flow graph and make the routing decision as normal.

2 Artifact agent:

i、 In the case that the starting authority of process is changed.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Be destroyed by the workflow manager, if needed. Otherwise, receive the

next routing decision and move to the destination site.

ii、 In the case that the artifact setting of process is changed.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Be destroyed by the workflow manager, if needed. Otherwise, receive the

next routing decision and move to the destination site.

3 The new artifact agent would receive the routing decision and move to

the first site after created.

iii、 In the case that the flow graph of an artifact agent is changed.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the command of change state and change the artifact’s state to a

suitable state, if needed.

3 Receive the next routing decision and move to the destination site.

3 Person agent:

i、 In the case that the starting authority of process is changed.

1 For the requester’s person agent, it may receive a halting notification

from the process agent since the requester becomes illegal to initiate the

process. The user will know the authority change.

2 Afterward, the following request to initiate the corresponding process

 22

will be rejected by the workflow manger.

3 The other person agents have nothing to do with this case.

ii、 In the case that the artifact setting of process is changed.

1 For the person agents of the sites where the original artifact agents had

passed, they may interact with the new artifact agents.

2 For the person agents of the other sites, they may interact with the new

and original artifact agents.

iii、 In the case that the flow graph of an artifact agent is changed.

1 For the person agents of the sites within the modified region, they might

interact with the artifact agent again.

2 For the person agents of the other sites, nothing would happen.

3.4 A Supporting WF-Diff algorithm

To adapt to the dynamic changes as described in previous section, we need an

algorithm to check whether the artifact agent is inside the modified region of the flow

graph, and to verify if the changes affect the process. We will present a representation

for the flow graph firstly. Then we will show the feasibility of this algorithm illustrated

by the representation covering all kinds of flow graph styles.

With the derivation rules like that in a programming language, the whole flow

graph of an artifact agent would be derived from a basic flow graph, or a starting

symbol. By several common, basic blocks and the derivation rules, all kinds of flow

graph structures can then be represented. In addition, by storing the progresses of

derivation for each flow graph, we can figure out the differences between two flow

graphs. We use this mechanism to infer whether an artifact agent is currently within the

modified region of a flow graph.

 23

We firstly define four simple symbols in figure 3.3 as the basic nodes in the later

illustrations.

Figure 3.3: Several basic nodes.

Using these basic nodes, we list several typical flow structures, or blocks, which

are common in most workflow processes. They are illustrated in figure 3.4.

 24

Figure 3.4: Common flow structures we used.

It is trivial for human to judge the difference between the flow graphs, but it’s

difficult for a program to check the diagram directly. So we replace the illustrations

with the alphabetical representations and make the checking with the simple literal

comparison rule in implementation. The basic block, which is deemed as the starting

symbol in the derivation of a flow graph, can derive to other blocks, and is represented

as “P” in the alphabetical representations. The null block can simplify the illustration

of the flow graph in derivation, and it will be the last block to be derived when the

derivation is completed. We represent the null block as “λ”. The single task block is

used to derive a sub-flow with single task, represented as “TP”. The parallel block

shows the concurrent flow graphs, and it can be used to derive an OR-Join or

AND-Join structure by a well-defined condition statement. The parallel block in the

figure is a two branch case, represented as “((P)(P))AP”, and the more “(P)” can be

inserted as more braches are needed. These parentheses distinguish the different blocks

 25

and are used as the borders in our alphabetical representation. The while-do and

do-while blocks are another two optional flow structures used in business, and

represented as “WD(P)P” and “(P)DWP”, respectively. The if-then-else block shows a

simple conditional branch, represented as “I((P)(P))P”. Then the concepts of the

derivation rules follow:

1. All the flow graphs can be derived from the basic block, P.

2. The λ can be omitted in the alphabetical representation. Similarly, in the

illustrations of derivation, those adjacent circles can be combined.

3. The basic block, P, can be derived to other kinds of blocks, like P TP Tλ

T, representing the derivation of a flow graph that has only one task. The above

list showing how P is derived to T is called a derivation list of this flow graph.

The derivation list of each flow graph is supposed to be included in the workflow

definition.

4. When a flow graph is derived in its alphabetical representation, the leftmost P

should be derived at first if more than one P appears in the representation.

These concepts can be organized as the following grammar. The PROCESS and task

used here refer to the part and subpart of the process definitions. We only consider the

flow graph structures of derivations. More definitions and concerns are needed in

implementation.

Grammar = {NONTERMINAL , TERMINAL , PROCESS ,

PRODUCTION-RULE}

NONTERMINAL = {PROCESS}

TERMINAL = {task , parallel , while-do , do-while , if-then-else ,(,) , λ}

PRODUCTION-RULE = {

PROCESS λ;

 26

PROCESS task PROCESS;

PROCESS ({ (PROCESS) }+) parallel PROCESS;

PROCESS while-do (PROCESS) PROCESS;

PROCESS (PROCESS) do-while PROCESS;

PROCESS if-then-else ((PROCESS)(PROCESS)) (PROCESS)

}

With the above grammar, we can describe abstractly most flow graph styles in our

alphabetical representation. The terminal symbol task can be generalized to needed

task’s definition, and the parallel, while-do, do-while, and if-then-else symbols are

conditional statement used in various situations. Note that the non-terminal symbol

PROCESS is the starting symbol of this grammar, corresponding to the P of the

alphabetical representation. So far, we have shown that our alphabetical representation

of the flow graph covers the typical flow graph structures. Next, we’ll present the

feasibility of our WF-Diff algorithm with the alphabetical representation.

When the process agent notices the changes on the flow graph of an artifact agent,

it should distinguish the difference between the flow graphs in the dynamic and static

definitions. The following WF-Diff(A, B) algorithm can differentiate two flow graphs,

A and B, by comparing their derivation lists. Flow graph B is supposed to be the

obsolete flow graph and we want to find which segment in the new flow graph A differ

from the flow graph B. In other words, we would like to find out the modified region

in the flow graph B. After the algorithm finished, the process agent would have

sufficient information to reason whether the artifact agent is before, after, or inside the

modified region. Note that the inputs of the algorithm are the derivation lists, not

themselves, of the flow graphs.

 27

WF-Diff(A, B)

input：A and B are the modified and obsolete derivation lists of the flow

graphs, respectively.

output：return the result of the Decide() function which use the difference

between A and B.

1 pA Head of A；pB Head of B

2 while both pA and pB are not NULL

3 do if pA.Content == pB.Content

4 then pA pA.Next；pB pB.Next

5 else startA pA；startB pB；break

6 if pA and pB are not set yet

7 then return NO_CHANGES

8 pA Tail of A；pB Tail of B

9 end ReverseCompare(pA.Content, pB.Content)

10 return Decide(startA, startB, end)

 On line 3, the comparison must be very complicated in implementation. Besides

the alphabetical comparison, the semantic meaning of the symbols should be

taken into account also. For example, two “T” can represent two different

participants or two distinct tasks, two “C” represents two diverse condition

statements, or two “A” represents two dissimilar parallel structure, such as one is

an AND-Join action and another is an OR-Join action. All the above should be

treated as the situations of comparison failure. So is the comparison in the

function ReverseCompare() on line 9.

 The pA and pB on line 4 are the starting points of the difference of the two

derivation lists, respectively. When the artifact agent needs to restart from the

 28

node before the modified region, it must be set back to the state as if it just

finishes the task at the node pA.Prev.

 On line 9, the ReverseCompare() function would make the comparison in the

alphabetical representations in the reverse order to find the ending points of the

difference of the two derivation lists, respectively. This ending point of the

derivation list of A indicates the last node in the modified region.

 No matter if we find out the starting or the ending point, when the comparison

fails on one character, the comparison fails on the smallest structures, which

includes that character, in the alphabetical representation. For example, when we

fail the comparison on the first T of ((T)(T))AT, we also fail the comparison on

this parallel block.

 Ultimately, the process agent could identify the difference between the two

derivation lists. With the workflow instance status, it would reason whether the

artifact agent is inside the modified region in the Decide() function.

Summarily, we show a representation for the flow graph and its derivation, and

present an algorithm to identify the modified region within the flow graph with the

representation in this section.

 29

Chapter 4

Changes on Role and Artifact Definitions

In this chapter, we present the types of changes on the role and artifact definitions,

respectively. Some noteworthy considerations when implementing the corresponding

solution are provided. Since the changes on one sub-model usually cause the changes

on another sub-model, we would show the way how our system adapts to these

compound changes.

4.1 Changes on Role Definitions

A person agent in the WfMS corresponds to an employee in the company. After the

workflow manager instantiates the employee’s person agent with the static definition,

the person agent would carry the employee’s personal and role information. When the

company makes the transference of roles, the static definition of some person agents

would be modified by the system administrator. Then the WfMS shall actively replace

the related person agents with modified definition. Although the employee cannot

modify his/her role definition, he/she might want to change the personal data by

requesting a workflow process. After the process finished, the person agent would be

replaced with the employee’s new personal information. In other words, the dynamic

definition of the person agent should not be modified directly.

While involved in a workflow process, the participant’s person agent would

interact with the artifact agent. A new person agent might be improper to interact with

those artifact agents of current definition. For example, different roles have different

capability, i.e., different person agents. When a person agent is replaced with new

 30

definition, the running interaction might be different. Even more, in a case that the new

role has the same person agent or the person agent of the same authority as the old one,

the execution results of the process agent will be as expected. In a case that the new

role has higher or lower power of authority, this role owns various capabilities, e.g., it

might own or lack of the authority to write a field of the artifact. For the process agent

whose artifact agent had passed the site of the new person agent, there would be no

change on flow graph of the artifact agent. For the process agent whose artifact agent

has not entered the site yet, its artifact agent might interact with a different person

agent instead. Therefore, when a role is changed, different process agents might have

different modification on the flow graphs of their artifact agents.

Similarly, the change on the role definition usually causes the change on the access

authority of the artifact content. Since the artifact agent may interact with a different

person agent when a role is changed, the authority setting of the artifact content has to

be modified. The change on the artifact definition will be described in next section.

Summarily, the change of an employee’s role definition usually causes the changes

on the other definitions, especially the flow graph and the authority settings of the

artifacts. So the process designer or the administrator has to check and modify the

affected definitions in the repository after modifying the role definition. Then the

workflow manager would notify the process agent of the changes on the flow graph

and the authority setting of the artifact. After the process agent updated its dynamic

definition, the workflow manager would replace the person agents with the new

definition. Then, the process agent would make the correct routing decision. Note that

since the change on process definition might be the side effect of the changes on role

definition, the process agent actually can adopt the solution described in 3.3 to adapt to

the “ripple effect” of the changes.

For example, suppose that the manager B is replaced by the employee X and a

 31

workflow graph is changed correspondingly from A B C to A X C. That is, the

person agent of the node B now has lower power of authority to the artifact agent of

this workflow, and the person agent of the node X has higher one. When a process

agent whose artifact agent had passed the node B notices the changes, it may continue

as the change never happens. In the same case but the artifact agent has not passed the

node B (or, node X now), its artifact agent shall move to the site of X after the site of

A.

The following is the problem solution to the policies described above.

1 Process agent:

i、 In the case that the change on role definition causes the change on flow

graph.

1 Identify the changes on the flow graph either by receiving the alert from

the system administrator or by actively noticing it.

2 Decide the modified region with a WF-Diff algorithm.

3 Halt all artifact agents after their current tasks.

4 Manipulate in accordance with the process status:

1. If the artifact agent has not entered or had passed the modified

region, update its definition of the corresponding flow graph.

2. If the artifact agent is within the modified region, update its

definition of the corresponding flow graph, and set itself and the

artifact agent to the state before the starting of the modified region.

5 Follow the new flow graph and make the routing decision as normal.

ii、 In the case that the change on role definition causes the change on authority

setting of the artifact content.

1 Identify the changes on the authority setting by receiving the alert from

the workflow manager.

 32

2 Halt all artifact agents after their current tasks.

3 Notify the related artifact agents of the modification.

2 Artifact agent:

i、 In the case that the change on role definition causes the change on flow

graph.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the command of change state and change the artifact’s state to a

suitable state, if needed.

3 Receive the next routing decision and move to the destination site.

ii、 In the case that the change on role definition causes the change on authority

setting of the artifact content.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the new authority setting of the artifact content and apply the

modification on the setting carried.

3 Receive the next routing decision and move to the destination site.

3 Person agent:

i、 In the case that the change on role definition causes the change on flow

graph.

1 Replace the obsolete definition with the new one received from the

workflow manager.

2 For the person agents of the sites within the modified region, they might

interact with the artifact agent again.

ii、 In the case that the change on role definition causes the change on authority

setting of the artifact content.

 33

1 Replace the obsolete definition with the new one received from the

workflow manager.

4.2 Changes on Artifact Definitions

The artifact agent is an artifact carrier in a workflow instance. All of the artifact

definitions, including the artifact formats and the read/write authority settings, are

stored in repository. When the process agent requests for an artifact with pre-specified

definition, the artifact agent would be instantiated respectively. It then interacts with

the process agent to get the routing decision and move to the next site. The artifact

agent modifies the carried data after interacting with the proper person agent or the

automatic manipulation. Then it reports the result to its process agent and waits for the

next routing decision again.

Generally speaking, whenever the static definition in database is altered, the

process agent would be notified of this change. Based on the change, the process agent

is defined to ask the artifact agent to modify the carried data, or the dynamic

definitions, after its current task. The information which an artifact agent carries for

modification includes the followings.

1 Artifact identifier: Similar to the workflow identifier, when the static definition of

an artifact agent is modified by the administrator, the process agent can find out

the target agent right away, according to the artifact’s identifier.

2 The names and the value types of the fields: When some fields of an artifact are

renamed, the artifact agent can modify the content carried respectively. When the

value types of fields are changed, the artifact agent modifies the data carried.

Based on the status of the workflow instance, the process agent decides whether

the artifact agent has to request new value from the person agent or not. For

 34

example, let the social security ID field (and its value type) of the artifact

definition be modified as the birthday field (and DATE). When the process agent

is notified of this change (instruction), it would make the artifact agent to adapt to

the change after finishing the current task. After applying the modification to the

data carried, the artifact agent has to request the birth date from the proper person

agent.

In the case of adding a field, the attributes of the new field should be

well-defined in the static definition. After the artifact agent modified the data

carried, the process agent might ask the artifact agent interact with the person

agent to get the new field’s value if the artifact agent had passed the site of the

person agent. On the other hand, the deletion of a field would be trivial at

omitting the deleted field thereafter, and the artifact agent would not reveal it to

the later person agents. The careless deletion, however, might cause the

contradiction of the process agent. For example, the artifact agent may interact

with a person agent which cannot read any data, because all the fields which the

person agent can access were deleted previously. To avoid this contradiction, the

administrator has to check the whole process definition before deleting a field. If

the process definition are modified corresponding to the deletion of the field,

such as changing the flow graph of the artifact agent, the process agent might

change its dynamic definition as described in 3.3, in addition to notify the artifact

agent of the deletion.

3 Read-write authority for each role: The read/write access control for each field of

the artifact should be set correctly. These authority settings decide what will be

shown or can be done by a person agent. After the changes of the read-write

authority settings in the static definitions, the process agent would be notified and

thus the artifact agents for the authority. Similar to the change of a role definition,

 35

if the authority setting for a person agent is changed and the process definitions

are not modified correspondingly, the artifact agent may become illegal to

interact with that person agent. Thus, the workflow process might never be

completed. In fact, the case of deletion of a field in previous paragraph is a

special case of the change of the read-write authority. If all the person agents

involved in this workflow have no authority to access a field, the field seems to

be deleted already.

The following is the problem solution to policies described above.

1 Process agent:

i、 In the case that the names and value types are changed.

1 Receive the change instruction from the workflow manager.

2 Decide whether to ask the artifact agent to request for a new value with a

WF-Diff algorithm.

3 Halt all artifact agents after their current tasks.

4 Ask the related agents to modify carried artifact contents, and to request

for a new value, if needed.

ii、 In the case that the read-write authority for one role is changed.

1 Receive the change instruction from the workflow manager.

2 Halt all artifact agents after their current tasks.

3 Ask the related agents to modify access authority setting.

iii、 In the case that adding a field causes the change on the flow graph.

1 Receive the change instruction and identify the changes on the flow graph

from the workflow manager.

2 Decide the modified region and whether to ask the artifact agent to

request for a new value with a WF-Diff algorithm.

 36

3 Halt all artifact agents after their current tasks.

4 Ask the related agents to add a field into the artifact content.

5 Manipulate in accordance with the process status:

1 If the artifact agent has not entered the modified region, update its

definition of the corresponding flow graph.

2 If the artifact agent had passed the modified region, update its

definition of the corresponding flow graph and ask the artifact agent

to request for a new value.

3 If the artifact agent is within the modified region, update its

definition of the corresponding flow graph, and set itself and the

artifact agent to the state before the starting of the modified region.

6 Follow the new flow graph and make the routing decision as normal.

2 Artifact agent:

i、 In the case that the names and value types are changed.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the new content of the artifact and modify the artifact content by

the notification.

3 Request the corresponding person agent for a new value by the process

agent’s instruction, if needed.

4 Receive the next routing decision and move to the destination site.

ii、 In the case that the read-write authority of a field for one role is changed.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the new authority setting and modify the authority setting of

field.

 37

iii、 In the case that adding a field causes the change on the flow graph.

1 Receive the process agent’s halting command after reporting the task’s

result.

2 Receive the new content of the artifact and modify the artifact content

carried by adding a new field.

3 Request the corresponding person agent for a new value by the process

agent’s instruction, if needed.

4 Receive the command of change state and change the artifact’s state to a

suitable state, if needed.

5 Receive the next routing decision and move to the destination site.

3 Person agent:

i、 In the case that the names and value types are changed.

1 For those person agents of the sites where the artifact agent had passed,

they might be asked for a new value by the artifact agent.

2 For the person agents of other sites, nothing would happen.

ii、 In the case that the read-write authority for one role is changed.

1 The person agent has nothing to do with this case.

iii、 In the case that adding a field causes the change on the flow graph.

1 For the person agents of the sites within the modified region, they might

interact with the artifact agent again.

2 For those person agents of the sites where the artifact agent had passed,

they might be asked for a value by the artifact agent.

3 For the person agents of other sites, nothing would happen.

4.3 Compound Changes

In previous section, we have described the possible single changes on the

 38

components in the system, and presented the corresponding solution discussions. But

in reality these changes appear little alone. For example, the changes on some

processes’ definitions usually come along with the change on one role’s definition. In

this section, we would discuss how the system adapts to a compound change, by

examples.

1. Case 1: The flow graph of an artifact is changed, and the artifact contents are

modified.

 Case description: Suppose that a workflow process for a new project has a static

definition change. With the workflow definition, the process requester fills in the

application artifact before the manager checks it. Then, rather than being

reviewed by executive officer as usual, the application artifact has to be audited

by the accountancy assistant first.

 Solution: According to the modification, a node representing the accountancy

assistants is inserted between the nodes of the manager and executive officer in

the flow graph of the application artifact agent. This is the change on the process

definition. Besides, the fields of checking result and suggestion for the

accountancy assistant are added to this artifact, and the authority settings of these

fields are set for the assistant. These are changes on the artifact definition. After

the changes on the static definition, if artifact agent A is interacting with the

manager’s person agent, the process agent would apply the modifications on the

flow graph and ask the artifact agent A to modify the contents carried after it

leaves the node of manager. Then the process agent would make the routing

decision with the updated process definition. These are illustrated by figure 4.1.

When artifact agent B is interacting with the executive officer’s person agent, the

process agent still has to notify artifact agent B to apply the modifications on the

artifact contents, because change of the routing decision later. After the

 39

modifications, artifact agent B will follow normal routing decision.

Figure 4.1: The example of case 1.

2. Case 2: The authority setting of one role to request a workflow has been changed,

and several additional artifacts have been added into that workflow.

 Case description: Suppose that the workflow process of requesting a new project

can be started only by the department manager now. The report of the last project

of the department should be provided also, as well as a budget table to estimate

the cost of the new project.
 Solution: Firstly, the authority setting of this workflow is modified so that only

the department managers can request this workflow process with their client tool.

 40

This is a change on the process definition. Secondly, two artifact identifiers are

added into the process definition for the project report and the budget table. This

is another change on the process definition. After the modification on the static

definitions, the process agents would be notified of this change. If the

administrator orders that all the related workflow processes which are requested

by illegal person agents have to be stopped, those process agents will make their

artifact agents stop after their current task. Then the starters of those workflow

processes will receive the notification from the process agents. Other process

agents would only be notified of the addition of artifacts for the project report

and the budget table. The process agents will request for the instantiation of the

two artifact agents, and make the routing decision for them. Suppose that the two

new artifacts and the original artifact share the same flow graph. The original

artifact agent would be stalled after the current task, while the other two artifact

agents follow the flow graph to catch up the original artifact agent. Afterward,

they would move together by the process agent’s routing decision. On the other

hand, if the administrator allows that all the running workflow processes can be

completed, their process agents would only be notified of the addition of the

artifacts, and behave as described as their starters are legal.

 41

Chapter 5

Comparison and Conclusion

5.1 Comparison

To adapt to the changes occurring at run time, most current WfMSs adopt the

version control mechanism. A tiny modification, however, might produce a new

version of the workflow, and several workflow instances of various versions might run

simultaneously. Stanley’s work [5] provides the adapter mechanism to allow each

organization maintaining its services, or, the process definitions it involved. They may

replace the version control mechanism with the dynamic binding of the services.

Compared with their models, the advantages of our system are the adaptation

capability, where the process agent of each workflow instance can adapt to the changes

at run time, and the practicability, where the most business logics can be enacted by

our system. Rather than being restricted to the control flow as Aalst’s model [19], we

cover the changes both on data flow and control flow. In our system, the user will not

be aware of the agent system, and the detection and resolution of the dynamic changes

are transparent to the user, similar to Kwak’s framework [8]. As described in chapter 2,

the obligation rules of Abrahams’ approach [20] have to be defined carefully to avoid

the divergence of the number of the rules. It is not necessary in our system to set the

rules to trigger each other rules for the flexibility. By the support of the underlying

agent system, we can easily achieve the flexibility by the agent’s reasoning

mechanism.

5.2 Conclusion

The more quick Internet technologies evolve, the more complex the Internet

 42

software grows. Because requirements are changed rapidly, most software costs arise

from re-developing. To reduce costs and unnecessary reworking, software flexibility

and adaptability are now significantly considered. In this paper, we discuss the

modifications of a workflow and present an approach to increase adaptability on an

agent-based WfMS. An intelligent agent can maintain its knowledge and react to

variant environmental changes along the workflow. Adopting software agents helps the

WfMS create, execute, and manage workflow processes more flexibly. We have

classified all kinds of dynamic changes on process definitions, which are analyzed and

categorized according to role, process, and artifact sub-models. Furthermore, solutions

to adapting each change type are proposed respectively. An efficient algorithm to

differentiate two process definitions is also well-defined. The designed agents therefore

can react to these changes at runtime.

Environmental changes include not only those on user requirements, but several

kinds of resource exhaustion or unexpected hardware/software failures. Some of them

are not caused by humans and beyond our scope in this paper. However, more

consideration and designs for handling unexpected events may bring a software system

more solid and stable. We'll advance the adaptability of the WfMS and take more

factors into account in the future.

 43

References

[1] Gregory Alan Bolcer and Richard N. Taylor. Advanced Workflow

Management Technologies. Journal of Software Process Practice and

Improvement, 1999.

[2] Marcus J. Huber. JAM ： A BDI-theoretic Mobile Agent Architecture.

Proceedings of the third annual conference on Autonomous Agents. Seattle,

United states, 1999.

[3] Jorge Cardoso, Zongwei Luo, John Miller, Amit Sheth and Krys Kochut.

Survivability Architecture for Workflow Management Systems. Proceedings

of the 39th Annual ACM Southeast Conference, Athens, Georgia, 2001.

[4] Yuhong Yan, Zakaria Maamar, and Weiming Shen. Integration of Workflow

and Agent Technology for Business Process Management. Computer

Supported Cooperative Work in Design, The Sixth International Conference

on, 2001.

[5] Jie Meng, Stanley Y.W. Su, Herman Len and Abdelsalam Helal. Achieving

Dynamic Inter-Organizational Workflow Management by integrating

Business Processes, Events and Rules. Proc. of the 35th Hawaii International

Conference on System Sciences. 2002

[6] N.R. Jennings, P. Faratin, T.J. Norman, etc. ADEPT: Managing Business

Processes Using Intelligent Agent. Proc. of BC Expert Systems 96

Conference. 1996

[7] GMD FOKUS and IBM Corporation. Mobile Agent System Interoperability

Facilities Specification. Nov. 1997 Standard proposal.

[8] Myungjae Kwak, Dongsoo Han and Jaeyong Shim. A Framework

Supporting Dynamic Workflow Interoperation and Enterprise Application

 44

Integration. Proceedings of the 35th Hawaii International Conference on

System Sciences. 2002

[9] Håvard D. Jørgensen. Interaction as a Framework for Flexible Workflow

Modeling. Proceeding of the 2001 International ACM SIGGROUP

Conference on Supporting Group Work.

[10] Müller, Robert and Rahm, Erhard. Dealing with Logical Failures for

Collaborating Workflows. Etzion, O.; Scheuermann, P. (Eds.): Proceedings

CoopIS 2000, Eilat, Israel, September 6-8. LNCS 1901: 210-223.

[11] Workflow Handbook 2003. Edited by Layna Fischer. Published by Future

Strategies Inc. with WfMC. 2004. ISBN 0-9703509-4-5

[12] Paul Dourish. Developing a Reflective Model of Collaborative Systems.

ACM Transactions on Computer-Human Interaction. Mar 1995.

[13] Sea Ling and Seng Wai Loke. Advanced Petri Nets for Modeling Mobile

Agent Enabled Interorganizational Workflows. 9th Annual IEEE International

Conference and Workshops on the Engineering of Computer Based Systems

(ECBS’02).

[14] Gary J. Nutt, Scott Brandt, Adam Griff, and Sam Siewert . Dynamically

Negotiated Resource Management for Virtual Environment Applications.

IEEE Transactions on Knowledge and Data Engineering. Jan/Feb 2000.

[15] Ray J.R. Lin. Enacting a Software Development Process. Jun 1996.

[16] Gary J. Nutt. The Evolution toward Flexible Workflow Systems. Distributed

Systems Engineering, Dec 1996.

[17] Workflow Management Coalition. Workflow Management Coalition

terminology and glossary (WFMC-TC-1011). Technical report. Workflow

management coalition. Feb 1999.

[18] Anind K. Dey, Gregory D. Abowd, and Andrew Wood. Cyberdesk: A

 45

Framework for Providing Self-Integrating Context-aware Services. ACM

Symposium on User Interface Software and Technology. 1997.

[19] W.M.P. van der Aalst. Generic Workflow Models: How to Handle Dynamic

Change and Capture Management Information? International Conference on

Cooperative Information Systems. 1999.

[20] Alan Abrahams, David Eyers, and Jean Bacon. An Asynchronous Rule-Based

Approach for Business Process Automation Using Obligations. Third ACM

SIGPLAN Workshop on Rule-Based Programming. 2002.

[21] Weishuai Yang, Shanping Li and Ming Guo. Mobile agent: Enhancing

Workflow Interoperability. International Conference on Info-tech and

Info-net. 2001.

[22] Chiung Wen, Chang and Feng Jian, Wang. Using Software Agents to Design a

Modern Workflow Management System. Master thesis. Dept. of CSIE, National

Chiao Tung University. 2004.

 46

	Chapter 1
	Introduction
	Chapter 2
	Background
	4.3 Compound Changes
	Comparison and Conclusion

