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利用深度影像即時估計手指動作 

 

學生：王星寒              指導教授：林奕成 

 

國 立 交 通 大 學 

資訊科學與工程研究所 

 

摘要 

    我們提出了一個新方法能從深度圖像有效率地估計手部關節。遵從數據驅動

的策略，它結合了手勢辨識與搜尋其他時間點的過程，我們採取了一個辨識物件

的方法把困難的估計手指動作問題對應到一個較簡單的累計分類問題。使用深度

相機讓我們的新分類器不會隨著手的形狀、服裝、飾品等而改變。我們的框架還

提供手部估計問題更多的靈活性和應用性。特別是它允許玩家在廣闊的空間中以

全身和手指動作來操作系統。 

    該系統以足以進行互動的速率運作在消費級個人電腦上。我們的評估顯示它

在實際的測試集中具有較高的兼容性和穩定性。我們展示了一個利用我們的估計

系統來同時使用身體和手指動作的有效率的 3D遊戲劇本。 

 

 

 

關鍵字：電腦動畫、互動介面、深度影像、KINECT。 
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Real-Time Finger Motion Estimation from Depth Images 

 

Student: Hsing-Han Wang          Advisor: I-Chen Lin 

 

Institute of Computer Science and Engineering 

National Chiao Tung University 

 

Abstract 

   We propose a new method to efficiently estimate hand articulation configurations 

from a depth image sequence. Following a data-driven strategy that combines gesture 

reconstruction with temporal retrieval process, we take an object recognition approach 

that maps difficult finger motion estimation problem into a simpler histogram 

classification problem. Using a depth camera allows our novel classifier to estimate 

finger motion invariant to hand shape, clothing, accessories, etc. Our framework further 

provides more flexibility and applicability in hand estimation issue. In particular, it 

allows players to operate the system in extensive space with both full-body and finger 

motion. 

The system runs at interactive frame rates on consumer-level PCs. Our evaluation 

shows its high compatibility and stability on real test sets. We demonstrate efficient 3D 

game scenarios using both body and finger motions by our estimation system. 

Keywords: Computer animation, interactive interfaces, depth image, KINECT. 
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1. Introduction 

In recent years, depth cameras, like Microsoft Kinect and ASUS Xtion, have 

become consumer-level hardware. It means that depth-image-based motion 

recognition system will be easily accessible in day life. Additionally, depth cameras 

offer several advantages compared with RGB cameras, including capability in low 

illumination conditions, giving a calibrated scale estimate, color and texture 

invariance, and resolving silhouette ambiguities in pose. They also greatly simplify 

the task of background subtraction. 

While full-body motion expresses emotion through large movement like hand 

waving, finger motion implies further information with subtle motion detail. 

Combining the result of both full-body and finger motion recognition help to bring 

virtual characters to life and do more delicate operations. We can find applications 

including human-computer interaction, gaming, telepresence, and even health-care. 

Recent state-of-the-arts show that real-time human pose recognition is feasible. 

However, finger motion recognition and hand tracking with depth sensors is still 

challenging and with defects. In other words, even the best existing systems still 

exhibit limitations. For example, obtrusive equipment like retro-reflective markers 

[HRM12, PY06] or special glove [WP09] is used in these frameworks. However, the 

cost and setup of hardware is burdensome. Other systems achieve high accuracy of 

tracking bare hands from depth or color images [OKA12, RYZ11, WPP11], but they 

are highly influenced by operating space and so are not robust. In this thesis, we focus 

on finger motion estimation from full-body depth images and introduce a new 

user-input system that captures subtle full-body command. 

   To tackle this problem, we project the depth images into 3D space as a point cloud 

and separate the space to independent blocks. Evaluating each block separately 
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extracts a low dimension feature of the depth image. To estimate gesture hypotheses, 

we extract feature from the input data and compare with the 3D gesture features in 

database. However, within a feature, there are still unpredictable differences in the 

contextual appearance. In order to address this problem, a realistic and highly varied 

data set is generated from humans with many shapes and sizes. For further accuracy, 

we generate spatial and temporal candidates dealt with the noise of hand position 

estimation and provide a set of parameter which avoids unreasonable transformation 

between gestures. Finally, the classifier combines Kalman filter to facilitate real-time 

tracking with stable results even for fast and complex motions. 

Our system performs up to 15ms per frame and the operating region is valid by 

2m × 2m × 1.8m space. Our main contribution is to treat gesture estimation as 

database lookup procedure, and we use a novel feature representation designed to 

recognize pose at high flexibility and low computational cost. 

 

Figure 1.1: XBOX 360 KINECT [Microsoft]. 
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2. Related Work 

Many optical motion capture systems with markers have been applied to finger 

motion capture, and they acquired satisfactory results. Park et al. used LEDs to design 

an interactive system [PY06]. Ludovic et al. solved the synchronization problem of 

body and finger motion from reduced marker sets [HRM12]. However, they still 

needed obtrusive markers and complicated cameras setup. 

On the other hand, bare-hand tracking is still a challenging topic now. Edge 

detection and silhouettes are the most common features used to recognize the pose of 

the hand [SMF04, STT06, DDH06] but their performance is still far from real-time. 

Shakhnarovich et al. proposed an upper body pose estimation system which searches 

a database of synthetic poses [SVD03]. Athitsos et al. developed fast and approximate 

nearest-neighbor techniques to estimate 3D hand pose [AS03, AAS04]. Ren et al. 

built a database of silhouette features for controlling animated human characters 

[RSH05]. Wang and Popovi´c used a color glove to map the hand configuration to a 

database of hand poses [WP09]. Later, they introduced data-driven bare hand tracking 

system for efficient 3D mechanical assembly of computer aided design (CAD) models 

using [WPP11]. 

After the launch of inexpensive depth cameras, like Kinect, we can handle a full 

range of body shapes and sizes at interactive rates on consumer hardware. Ren et al. 

focused on a specific gesture set. They employed Finger-Earth Mover’s Distance to 

measure hand shape dissimilarity such that the classifier can tackle parts of 

challenging cases for hand gesture recognition [RYZ11]. However, it still requires a 

black belt on the user’s wrist for hand segmentation and is easily affected by users’ 

silhouette. Oikonomidis et al. use Particle Swarm optimization to track the full 

articulation of two strongly interacting hands observed by an RGB-D sensor [OKA12]. 
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Since they used expensive evolutionary optimization method, the system ran at 4fps 

and was still far from real-time. This precludes their use for interactive applications. 

Human motion reconstruction from multiple cameras has produced an numerous 

literatures. Bregler and Malik used twists motions and exponential maps to produce 

motion estimation even with complex self-occlusion [BM98]. Rosales and Sclaroff 

reconstructed human poses from low-level visual features [RS00]. Ioffe and Forsyth 

grouped parallel edges as candidate body segments and pruned the search of such 

segments combinations [IF01]. Mori and Malik matched shape context with multiple 

2D exemplars [MM03]. Ramanan and Forsyth clustered candidate body segments 

found by pairs of parallel lines, finding all individuals in each frame [RF03]. Agarwal 

and Triggs reconstructed poses by learning a regression against shape vectors 

extracted from image silhouettes [AT04]. In [SBR04], Sigal et al. implemented 

Eigen-feature detectors for head, upper arms, lower legs and shouters as desired. 

Felzenszwalb and Huttenlocher employed pictorial structures for efficiently finding 

the best match to an image [FH05]. Navaratnam et al. showed marginal distribution 

sampling of unlabeled data to improve pose fitting [NFC07]. Okada and Stenger built 

a search tree on a hierarchy of body shape to capture human motion [OS08]. Based on 

a local mixture of Gaussian Processes, Urtasun and Darrel proposed a regression 

scheme to inference human poses [UD08]. In [TU08], Tu used auto-context to label 

body parts, but it did not define localized joints and took about 40 seconds per frame. 

Randomized decision forests was built in [RRR08] on classes defined by human 

action patterns and camera viewpoints. Bourdev and Malik introduced ‘poselets’ that 

used tightly clustered in both 3D pose and 2D image appearance by using SVM 

classifier [BM09]. 

While real-time estimation of full-body motions from monocular intensity image 

sequences is still an open problem, the gradually popular depth cameras spur further 
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opportunity for human pose reconstruction. It allows more reliable 3D pose estimation 

from a single viewpoint. Grest et al. estimated the body poses of a known size and 

starting position using an Iterated Closest Point (ICP) algorithm [GWK05]. Based on 

MRFs, Anguelov et al. segmented puppets in 3D scan data into body parts and 

background [ATC05]. In [ZF07], Zhu and Fujimura used a linear programming 

relaxation to solve body component identification for coarse upper body parts, but 

they required a T-pose initialization to size the model. Bleiweiss et al. use 3D model 

fitting to track human skeletons [BEK09]. Siddiqui and Medioni used a data-driven 

Markov chain Monte Carlo (MCMC) model to find optimal pose and showed 

significant improvement over ICP [SM10]. Kalogerakis et al. labeled and segmented 

3D meshes into different parts [KHS10], but they did not deal with occlusions and the 

results were sensitive to training sets. Ganapathi et al. showed that data-driven 

evidence is crucial for tracking self-occlusion [GPT10]. Plagemann et al. [PGK10] 

built an interest point detector for 3D meshes, finding geodesic extrema, and 

localizing body parts. Their method generated both a location and orientation estimate 

of each part, but the use of interest points limits the choice of parts, such that left or 

right is unable to be recognized. Shotton et al. segmented the different human body 

parts using a random forest classifier implemented in the Kinect system [SFC11]. The 

segmentation was used to generate joint positions of a skeleton. Baak et al. combined 

generative and discriminative methods to estimate full-body pose at interactive frame 

rates [BMB11]. Girshicky et al. extended Hough forests and directly predict the 

positions of body joint [GSK11]. 
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3. Data Collection and Normalization 

   Extracting useful information from incomplete and noisy data is often a key issue 

of human pose estimation from cameras. While multi-view tracking systems require 

solving challenging non-linear optimization to eliminate ambiguity [WPP11], 

single-view pose estimation is hampered by the huge color and texture variability, 

including hair, skin and clothing. In recent years, depth cameras capture 2.5D scene 

geometry [KBK10] at interactive frame rates, and therefore significantly reduce this 

difficulty. However, intensive noises in the depth data disturb the estimated skeleton 

configurations. 

   Fig. 3.1 illustrates the process that how we collect depth data. In this chapter, we 

review depth imaging, introduce our hand model configuration and show how we 

normalize real depth capture data to fit our framework. 

 

 

Figure 3.1: Data recording scenario. 
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3.1. Depth imaging 

   We choose Microsoft Kinect as the depth camera in our system. The depth camera 

captures depth data at 30 frames per seconds with about 1cm distance resolution. 

Opposed to color cameras, pixels in a depth image indicate the calibrated distance 

between camera and corresponding 3D positions by projection and receive of infrared 

light. Several advantages are benefited from the above property, including working in 

low illumination conditions, being color and texture independent, giving a calibrated 

distance estimate, and reducing shape ambiguities. The most important issue for our 

framework is its simplicity in the task of background detection. 

Unfortunately, there are still several challenges, including exhibiting low 

resolution, generating intensive random noise and performing a systematic bias 

[KBK10]. The defects are even obvious under fast motions and show unstable results 

at some thin body parts, leading to jiggling motion estimation. 

 

 

 

 

 

 

 

 

 

 

Figure 3.2: Our depth imaging space. 
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3.2. Hand model 

A human hand has 27 DOFs and they thus create an enormous variety of gestures 

which are difficult to simulate. However, there are only a few gestures are widely 

used and intuitive in message passing. Based on this idea, we built our gesture 

database mostly on meaningful and memorable gestures, like paper sign, scissor sign, 

forward pitch, etc. We take these gestures as analog of instruction to indicate 

corresponding motions. 

   Unrestricted 3D body postures actions are the ultimate goal of interaction but it is 

computationally expensive to consider all varieties. Additionally, changes in gesture 

from one frame to the next are often small and insignificant. Inspired by biological 

structure, we thus remove nearly identical 3D motions to a single representation pose 

by the vector from elbow to wrist, so that only small key gestures are necessary. In 

our implementation, we captured 150 depth frames per gesture that form a cluster in 

database, and they provided acceptable result against the noisy depth stream. 

   In conclusion, the reduced gesture database constitutes a suitable representation 

for real hand gestures. Each element retains most of its detailed discriminative ability 

even under noisy input data. 

 

 

Figure 3.3: Noisy input depth stream. 
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3.3. Normalization 

In the proposed framework, we use a depth frame database. It contains a set of 

gestures that people would perform in an entertainment scenario, and is used to help 

local optimization. 

We apply Microsoft Kinect [KINECT] to capture depth images and get joint 

position estimation. For training data generation, we capture hand depth images 

within 1.7m ~ 1.9m from the sensor. There are several states in our depth stream 

capture process. Fig 3.4 illustrates our data collection process as a finite state machine. 

At first, we use a simple gesture signal for data collection initialization. Here the 

system enters a countdown state which gives user time for gesture preparation. Then 

system starts capturing when countdown is over. We here record depth stream into 

memory buffer eliminating huge IO operations. Whenever user is about to stop 

capturing, we also prepare a gesture signal for the stop operation. The gesture signal 

must be rarely used in data collection process. This helps us to avoid unpredictable 

state transformation in capture scenario. Afterward users can divide recorded depth 

stream with specified frame number. 

For each recorded frame, we firstly use estimated hand positions to clip depth data 

of hands. Secondly, we apply a filter that shifts depth values of hand frames to 0 ~ 255 

range. Based on idea referred in Sec. 3.2, we thirdly rotate hand frames by the vector 

from elbow to wrist. Finally, we obtain 64x64 pixels hand depth frames with upward 

wrist configuration as illustrated in Fig. 3.5. 
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Figure 3.4: FSM controller. 

 

 

Figure 3.5: Normalization process. 
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4. Gesture Inference 

   Our framework has two phases, data preprocessing phase and real-time estimation 

phase, as illustrated in Fig. 4.1. In the data preprocessing phase, we obtain the image 

set of depth frame first. For each frame, the next step is to compute the point cloud 

3RM I  from the depth image I. We extract a low-dimensional feature vector from

IM , and represent the 3D point distribution of point cloud by 3D position histogram 

(Sec. 4.1). Afterward, with respective gesture configuration, the features become a 

discriminative feature space. 

In the real-time estimation phase, there are six stages to estimate the final pose of 

our framework. The first stage is to acquire depth frame tI  and estimated positions 

of full-body joints tX  at time t. Using previous estimated positions 1tX , the second 

stage generate a set of candidates, including spatial candidates and temporal 

candidates (Sec. 4.2). In third stage, we apply feature extraction (as explained in Sec. 

4.1) to the candidates and transform possible depth images into feature vectors F. Let 

1tG  be the final gesture estimate of previous frame t-1. The fourth stage is to find K 

nearest neighbors for each candidate in F by querying the feature database (Sec. 4.3), 

and then obtain spatial gesture hypotheses S

tG  and temporal hypothesis T

tG . Based 

on a voting scheme, the fifth stage uses a distance function to find optimum estimate 

*

tG  from the set of retrieved gestures (Sec. 4.4). Finally, we employ Kalman filter 

with 1tG  and *

tG  for motion blending (Sec. 4.5). 
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Figure 4.1: Overview of our gesture estimation framework. 
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4.1. Feature extraction 

   We employ block histogram feature, inspired by the point cloud concept in 

[BMB11]. In this section, we detail the feature extraction process of our framework. 

For each depth frame I, we project depth values into 3D space and obtain a 3D 

point cloud 3RM I  . Let a 3D subspace 3RS   be a bounding box, comprising 

all points of IM . Afterward, we divide X and Y ranges into 4 partitions and divide Z 

range into 8 partitions. Thus, we can get 128 independent blocks 128B  in S (Fig 4.2). 

 

SbbB  ),...,( 1281128

                       (1) 

 

   For each block, we compute sum of point number in such subspace and then get a 

128-dimension vector 128F , i.e. 

 

NffF  ),...,( 1281128

                      (2) 

 

, where 

 

𝑓𝑖 = ‖𝑚𝑖‖                           (3) 

𝑚𝑖 = {𝑝|𝑝 ∈ 𝑏𝑖 , 𝑝 ∈ 𝑀𝐼}                       (4) 

 

   Here 𝑓𝑖 represent the number of point in block i. Since all hand depth image 

blocks are normalized, we prune the last 32 bins, which represent point distribution at 

the bottom blocks. They are easily affected by wrist rotation. 
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Figure 4.2: Independent blocks for feature extraction. 

 

 

Figure 4.3: A feature vector (point histogram). 
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4.2. Candidate generation 

   The novel full-body reconstruction approaches [SFC11, BMB11] produce 

state-of-the-art results on several data sets. However, there are still some drawbacks, 

e.g. jiggling position estimate for limbs joints (elbow, wrist, hand, etc.).  

   To overcome above problem, we introduce a candidate generation method which 

is based on spatial and temporal relationships. Here a candidate means an image block 

with 2D central position (u, v). We define the candidates 𝐶𝑇𝑜𝑡𝑎𝑙 which consist of 

𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙, 𝐶𝑆𝑝𝑎𝑡𝑖𝑎𝑙 and 𝐶𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙. To generate candidate 𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙, we obtain the 

central position 𝐻𝑥𝐻𝑦 from hand joint position of full-body joint estimation. 

In spatial part, the candidates 𝐶𝑆𝑝𝑎𝑡𝑖𝑎𝑙  capture image blocks surround 𝐻𝑥𝐻𝑦 . 

Their central position (u, v) are 

 

(u, v) = (𝐻𝑥 + 𝛾 cos 𝜃 , 𝐻𝑦 + 𝛾 sin 𝜃)                 (5) 

θ = 45°, 90°, … ,315°, 360°                     (6) 

 

, parameter γ describe an offset from 2D hand joint position. 

 

 

Figure 4.4: Spatial candidate generation. 
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In temporal part, we use 2D position-velocity model of Kalman filter on previous 

position and new position estimate to evaluate central position (u, v) of candidate 

𝐶𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙. 

 

[

𝑢(𝑛)
𝑣(𝑛)
�̇�(𝑛)
�̇�(𝑛)

] = [

1 0
0 1

𝑑𝑡 0
0 𝑑𝑡

0 0
0 0

1 0
0 1

] [

𝑢(𝑛 − 1)
𝑣(𝑛 − 1)
�̇�(𝑛 − 1)
�̇�(𝑛 − 1)

] + [

0
0

𝑤𝑢(𝑛 − 1)
𝑤𝑣(𝑛 − 1)

]          (7) 

[
𝑧𝑢(𝑛)
𝑧𝑣(𝑛)

] = [
𝐶𝑢 0
0 𝐶𝑣

0 0
0 0

] [

𝑢(𝑛)
𝑣(𝑛)
�̇�(𝑛)
�̇�(𝑛)

] + [
𝑚𝑢(𝑛)
𝑚𝑣(𝑛)

]             (8) 

The function w(n) is the change in velocity and the function m(n) means the 

measurement error. 

 

Figure 4.5: Temporal candidate’s central position (blue). 
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   These candidates help us to find correct hand position for each depth frame. 

However, the distance between camera and hand obviously affects hand size on depth 

image. To address this problem, as the distance change we use different window size 

to capture hand depth image block and then resize the images with unified resolution. 

 

 

Figure 4.6: Capture with different window size. 
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4.3. Feature space lookup 

   As described in Sec. 4.1, we compute features using point histogram. In data 

preprocessing phase, we capture 150 depth frames per gesture for more flexible result 

and therefore we obtain several sets of features. These features provide a feature space 

of our classifier. 

   In real-time estimation phase, the candidates (Sec. 4.2) often provide correct real 

hand position against the jiggling problem. Unfortunately, we find that even though 

the full-body joint estimation gives almost correct hand position estimate, but it 

provides unstable elbow position estimate in the self-occlusion case. Therefore, the 

rotation step in the normalization process often inherits incorrect information and 

creates unpredictable result. 

   To address this problem, we calculate the angle between normal of XY-plane and 

the vector from elbow to wrist. If the angle is less than threshold λ, we rotate the 

captured image by the vector from wrist to hand since the self-occlusion occurred. 

This helps the classifier to do reliable normalization of all candidates (Fig. 4.7). 

Finally, we calculate features F of all normalized candidates and query the feature 

space for K nearest neighbors (Fig. 4.8). Thus, we obtain classification result ϕ of 

each feature vector. 
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Figure 4.7: Normalization of occlusion case. 

 

 

Figure 4.8: Feature space lookup. 
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4.4. Hypothesis voting 

   In this section we show how the classification results of candidates are used to 

find optimized gesture estimate. Firstly, we compute distance values 𝐷∗ between 

gestures in data preprocessing phase, i.e. 

 

𝐷∗ = {𝑑𝑖𝑗|𝑖 ∈ 𝐺, 𝑗 ∈ 𝐺}                       (9) 

𝑑𝑖𝑗 = ∑ |𝐴𝑛𝑔𝑙𝑒𝑖𝑘 − 𝐴𝑛𝑔𝑙𝑒𝑗𝑘|𝑘∈𝐴                    (10) 

 

, where symbol G means total captured gesture, and symbol A describes all hand 

articulations. These values provide main probability 𝑝𝑖𝑗 for gesture transformation. 

 

𝑝𝑖𝑗 =

{
 
 

 
 휀, 𝑖 = 𝑗

1

𝑑𝑖𝑗
2

∑
1

𝑑𝑥𝑦
2𝑥≠𝑦

2

, 𝑖 ≠ 𝑗                       (11) 

 

, where ε is a constant for transformation between the same gesture. 

   In the real-time estimation phase, we compute optimized gesture estimate *  

 

𝜙∗ = argmax𝜙 𝑉
∗(𝜙, 𝛿)                      (12) 

𝑉∗(𝜙, 𝛿) = {
𝑝𝜙𝛿 , 𝜙 ∈ 𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙

𝜆 ∗ 𝑝𝜙𝛿 , 𝜙 ∈ 𝐶𝑆𝑝𝑎𝑡𝑖𝑎𝑙 ∪ 𝐶𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙
           (13) 

 

, where ϕ mean classification results of all candidates 𝐶𝑇𝑜𝑡𝑎𝑙, δ is previous final 

estimate and λ gives 𝐶𝑆𝑝𝑎𝑡𝑖𝑎𝑙 and 𝐶𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 lower probability. 
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4.5. Motion blending 

   We use a practical set of all gestures to construct the feature space. In order to 

create finger motion which is not in the gesture set, we propose a modified motion 

blending method. 

   Based on optimized estimate *  (Sec. 4.4), we assume that the gesture with 

feature *  is the fundamental of final pose. Rotating the hand articulations by 

negative angle of normalization produces an appearance *

tG  which is similar to real 

user’s gesture. However, such configuration gives visually discontinuous motion. 

To address this problem, we use 1D position-velocity model of Kalman filter on 

each hand articulation θ of previous final pose 1tG  and new gesture configuration 

*

tG , i.e. 

 

[

𝜃(𝑛)
0

�̇�(𝑛)
0

] = [

1 0
0 0

𝑑𝑡 0
0 0

0 0
0 0

1 0
0 0

] [

𝜃(𝑛 − 1)
0

�̇�(𝑛 − 1)
0

] + [

0
0

𝑤𝜃(𝑛 − 1)
0

]           (14) 

[
𝑧𝜃(𝑛)
0

] = [
𝐶𝜃 0
0 0

0 0
0 0

] [

𝜃(𝑛)
0

�̇�(𝑛)
0

] + [
𝑚𝜃(𝑛)
0

]             (15) 

 

The function w(n) means the change in velocity and the function m(n) describes 

the measurement error. A final confidence estimate tG  is given as a combination of 

smoothly variable articulation t .   
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5. Experiments 

   In this chapter we describe the experiments used to verify our method. Firstly, we 

introduce the detail of our gesture configuration and collection. Afterward, we 

perform the experiments, involving normalization indispensability and different 

parameter setting. We demonstrate results on several entertainment scenarios. 

 

 

Figure 5.1: A screenshot of our system. The bottom six images show the hand depth 

images, hand color images and normalized hand depth images respectively. The blue 

skeleton shows the full-body joints estimated by Microsoft Kinect SDK, and the two 

blue hands show our finger motion estimation results. 
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5.1. Test data 

   We collect a new gesture dataset using a Kinect sensor. As illustrated below, our 

dataset is composed of 18 common gestures.  

 

Class Gestures Articulation configuration (Left / Right) 

Emotion 

OK 

  

No idea 

  

Shining 

  

Stone 
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Direction 

Forward 

  

Backward 

  

Inside 

  

Outside 

  

Number Zero 
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One 

  

Two 

  

Three 

  

Four 

  

Five 
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Six 

  

Seven 

  

Eight 

  

Nine 

  

Figure 5.2: Our used gestures. We capture 150 depth frames per gesture and all depth 

frames in the dataset is normalized. 
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5.2. Estimation accuracy 

   In this section, we investigate the effect of several system features on estimation 

accuracy. By the way, we implemented a KD-tree structure on the feature space for 

faster KNN searching. Thus, we also verify the performance progress and the effect of 

search depth to accuracy. 

Recognition accuracy. We test all 18 gestures through about 30 seconds estimation 

per gesture to verify the recognition accuracy. In particular, all test cases were 

operated 1.8m from the depth camera. This shows the ability against the noisy input 

and the application use. In Fig. 5.3 we show the recognition success rate respectively. 

 

 

Figure 5.3: Recognition accuracy (User 1). 

 

Figure 5.4: Recognition accuracy (User 2). 
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Candidates’ contribution. Here we show the necessity of spatial candidate and 

temporal candidate respectively. When candidate 𝐶𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙  generated a failed 

estimation, the spatial candidate 𝐶𝑆𝑝𝑎𝑡𝑖𝑎𝑙  and the temporal candidate 𝐶𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 

sometimes provide other estimation which helps the system to get correct result. 

Fig. 5.5 and Fig. 5.6 show the contribution rate of OK sign when user is at static 

state or dynamic state respectively. In the same way, Fig. 5.7 and Fig. 5.8 show the 

contribution rate of Five sign. 

 

 

Figure 5.5: The distribution of the best-matched candidate for static OK sign. 

 

Figure 5.6: The distribution of the best-matched candidate for dynamic OK sign. 
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Figure 5.7: The distribution of the best-matched candidate for static Five sign. 

 

Figure 5.8: The distribution of the best-matched candidate for dynamic Five sign. 
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Performance. Since linear search usually generate slower performance, we 

implement a KD-tree structure on the feature space for faster KNN searching. Fig. 5.9 

illustrates the searching time variation against the search depth. In Fig. 5.10, we show 

the accuracy convergence of search depth. 

 

 

Figure 5.9: Performance comparison. 

 

 

Figure 5.10: Accuracy convergence of search depth. 
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6. Discussion 

   In this thesis, we present how we obtain efficient finger motion estimation from 

noisy depth image. We introduced gesture recognition as a feature space lookup 

problem for finger motion estimation. Using a simple feature allowed us to generate a 

discriminative feature space using normalized depth images without overfitting, and 

enabled real-time performance (200fps). Generating spatial and temporal candidates 

helped us to obtain further accuracy under noisy input data. Finally, by introducing a 

reliable distance appearance for candidates voting, we further increased stability and 

therefore generated realistic finger motion. 

   As future work, we plan to integrate multi-resolution and synthetic dataset for 

more accurate estimation under occlusion. Furthermore, employing interacting hand 

gesture may help us to generate more interesting motions. 
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