5 17 A% 7 N

EABE2E T

18+ & X

flo GF R B T E R E oy 0T

Real-Time Finger Motion Estimation from Depth Images

N
A)

TR S SRR

oy o2 i1k

FERB 101 £ 9 A

FIH FRP GRS ir

Real-Time Finger Motion Estimation from Depth Images

Moy oA i3I ER Student : Hsing-Han Wang

ERER RS Advisor : I-Chen Lin

Computer Science

September 2012

Hsinchu, Taiwan, Republic of China

P e R 101 & 9

I &

AR - BATS R AURR B ooF R B S IH S - & Al e

R T RS IR E s U L T B AR o PR T - BEER

7 Ede FIEE R L d PR RT] - BREE DR SR e @ R

WWERAPGRTAFEA €L FL AR S RE S AR A e o AP ek

RELVETRE] ORI o FRAT AFER R LR BT F Y
2 E ot B iR T St o

77k SIS B AR T 3 e ST T B s TR ARG e S e BT U

B RARGERE Y B ORE O BT AP E T T - BT AR

FAk PR Y B e dy 6 (T ehg oS eh 3D 2N A o

BaEs t R®E - I & 45~ JFRARF o~ KINECT »

Real-Time Finger Motion Estimation from Depth Images

Student: Hsing-Han Wang Advisor: I-Chen Lin

Institute of Computer Science and Engineering

National Chiao Tung University

Abstract

We propose a new method to efficiently estimate hand articulation configurations
from a depth image sequence. Following a data-driven strategy that combines gesture
reconstruction with temporal retrieval process, we take an object recognition approach
that maps difficult finger motion estimation problem into a simpler histogram
classification problem. Using a depth camera allows our novel classifier to estimate
finger motion invariant to hand shape, clothing, accessories, etc. Our framework further
provides more flexibility and applicability in hand estimation issue. In particular, it
allows players to operate the system in extensive space with both full-body and finger
motion.

The system runs at interactive frame rates on consumer-level PCs. Our evaluation
shows its high compatibility and stability on real test sets. We demonstrate efficient 3D
game scenarios using both body and finger motions by our estimation system.

Keywords: Computer animation, interactive interfaces, depth image, KINECT.

Acknowledgement

tF 5 A _&ﬁzg]“gl,—r , i’éﬁ’éﬁ‘i’“'ﬁ’f'}% ol oo AP F AN R B

A RBRFADTA LG R P AR B 5 R A
RRIEHHY c HAAFREHA d Bk AR T o N Y
BAB AR L FEOF L 0 TG A R A BAERHETERERE > AT

A 4 aF S mpeh A > 5t s-i [E R T fR A

Content

B s s i
ADSTIACT. .. I
ACKNOWIBAGEMENT. .. . i
(O] 1 =T 3| P v
I Ao N T 1N = PP %
1. Introduction... S . P gl A 1
2. Related WOIK......oo e e e 3
3. Data Collection and Normahization............cociiiiiinen it 6
3.1 DI Maginiieme—d . 0. ol e 9. Wy % .. A€ _o.......... 7
3.280ENE yooeinir——— e T ST W 8
3. ZunbiDlN | i Za T O iy s 3L B Baamn 9
4. Gesture Inference....... oo il i e e 11
4.1 888 Me extraglBnAr e .. A 13
4.2. Candidate generation.co.e..ooues it e e i e e 15
4.3. Feature SPace loOKUP.........viriniit it e e 18
4.4, HYPOtheSIS VOTING. . uiine ittt e aie e et e 20
4.5, Motion bIending. ... oo e 21
. EX P IMBNTS . .. ettt 22
5.1 TSt dala. ..ttt 23
5.2, EStIMALION ACCUIACYuiniint ittt et et e et e 27
B. DISCUSSION. ... ettt e e 31
RO O BNCES. ..t e 32

List of Figures

Figure 1.1: XBOX 360 KINECT [MIicrosoft].........cccooiiiiiiiiiiiiiieieee 2
Figure 3.1: Data recording SCENAMiO........c.ooviiriiriirt it 6
Figure 3.2: Our depth imMaging SPACE..........oouiiritint i 7
Figure 3.3: Noisy input depth Stream.............ccooiiiiiiii e 8
Figure 3.4: FSM controller... ... 10
Figure 3.5 NOrmalization PrOCESS.cu.irertie ittt et eeaae e e 10
Figure 4.1: Overview of our gesture estimation framework.............................. 12
Figure 4.2: Independent blocks for feature extraCtion.............co.ooeviiviniinnnn.n. 14
Figure 4.3: A feature vector (point histogram)..............ccieieeeiiinineineineiennn 14
Figure 4.4: Spatial candidate generation...........cocoeieniiniiiie it ieeeennnn, 15
Figure 4.5: Temporal candidate’s central position (blue).................................. 16
Figure 4.6: Capture with-different window Size...............ocieiiiiiiiiiiei e, 17
Figure 4.7: Normalization Of OCCIUSION CASE. uiuun. v ittt ettt iieian e eeaennn, 19
Figure 4.8: Feature space l00KUP...........ooort it it e 19
Figure 5.1: A screenshot Of Our SYStEM.......c.....iiiriiiieiiiee i, 22
Figure 5.2: OUr USEd geSTUIBS. ittt it ettt et ee e e s e e 23
Figure 5.3: Recognition accuracy (USer 1)........ccoiiiniiniiiiiiiiiienieienaneeennns 27
Figure 5.4: Recognition accuracy (USer 2)....... iiiiiiiiiiiieaiiienennnn 27

Figure 5.5: The distribution of the best-matched candidate for static OK sign.........28
Figure 5.6: The distribution of the best-matched candidate for dynamic OK sign.....28

Figure 5.7: The distribution of the best-matched candidate for static Five sign........ 29
Figure 5.8: The distribution of the best-matched candidate for dynamic Five sign....29
Figure 5.9: Performance COMPAriSON.ooiiintumitorenenaieneareeanaearenannaens 30
Figure 5.10: Accuracy convergence of search-depth.................................... 30

1. Introduction

In recent years, depth cameras, like Microsoft Kinect and ASUS Xtion, have
become consumer-level hardware. It means that depth-image-based motion
recognition system will be easily accessible in day life. Additionally, depth cameras
offer several advantages compared with RGB cameras, including capability in low
illumination conditions, giving a calibrated scale estimate, color and texture
invariance, and resolving silhouette ambiguities in pose. They also greatly simplify
the task of background subtraction.

While full-body motion expresses emation through large movement like hand
waving, finger motion implies further information with subtle motion detail.
Combining the result of both full-body and finger motion recognition help to bring
virtual characters to life and do more delicate operations. We can find applications
including human-computer interaction, gaming, telepresence, and even health-care.

Recent state-of-the-arts show that real-time human pose recognition is. feasible.
However, finger motion recognition and hand tracking with depth sensors is still
challenging and with defects. In other words, even the best existing systems still
exhibit limitations. For example, obtrusive equipment like retro-reflective markers
[HRM12, PY06] or special glove [WP09] is used in these frameworks. However, the
cost and setup of hardware is burdensome. Other systems achieve high accuracy of
tracking bare hands from depth or color images [OKA12, RYZ11, WPP11], but they
are highly influenced by operating space and so are not robust. In this thesis, we focus
on finger motion estimation from full-body depth images and introduce a new
user-input system that captures subtle full-body command.

To tackle this problem, we project the depth images into 3D space as a point cloud

and separate the space to independent blocks. Evaluating each block separately

extracts a low dimension feature of the depth image. To estimate gesture hypotheses,
we extract feature from the input data and compare with the 3D gesture features in
database. However, within a feature, there are still unpredictable differences in the
contextual appearance. In order to address this problem, a realistic and highly varied
data set is generated from humans with many shapes and sizes. For further accuracy,
we generate spatial and temporal candidates dealt with the noise of hand position
estimation and provide a set of parameter which avoids unreasonable transformation
between gestures. Finally, the classifier combines Kalman filter to facilitate real-time
tracking with stable results even for fast and complex motions.

Our system performs-up-to-15ms per frame and the operating region is valid by
2m x 2m x 1.8m space. Our main contribution is to treat gesture estimation as
database lookup procedure, and we use a novel feature representation designed to

recognize pose at high flexibility and low computational cost.

KINECT

e s Wi

Figure 1.1: XBOX 360 KINECT [Microsoft].

2. Related Work

Many optical motion capture systems with markers have been applied to finger
motion capture, and they acquired satisfactory results. Park et al. used LEDs to design
an interactive system [PYO06]. Ludovic et al. solved the synchronization problem of
body and finger motion from reduced marker sets [HRM12]. However, they still
needed obtrusive markers and complicated cameras setup.

On the other hand, bare-hand tracking is still a challenging topic now. Edge
detection and silhouettes are the most common features used to recognize the pose of
the hand [SMF04, STT06, DDHO06] but their performance is still far from real-time.
Shakhnarovich et al. proposed an upper body pose estimation system which searches
a database of synthetic poses [SVDO03]. Athitsos et al. developed fast and approximate
nearest-neighbor techniques to estimate 3D hand pose [AS03, AAS04]. Ren et al.
built a database of silhouette features for controlling animated human characters
[RSHO5]. Wang and Popovi‘c used a color glove to map the hand configuration to a
database of hand poses [WPQ9]. Later, they introduced data-driven bare hand tracking
system for efficient 3D mechanical assembly of computer aided design (CAD) models
using [WPP11].

After the launch of inexpensive depth cameras, like Kinect, we can handle a full
range of body shapes and sizes at interactive rates on consumer hardware. Ren et al.
focused on a specific gesture set. They employed Finger-Earth Mover’s Distance to
measure hand shape dissimilarity such that the classifier can tackle parts of
challenging cases for hand gesture recognition [RYZ11]. However, it still requires a
black belt on the user’s wrist for hand segmentation and is easily affected by users’
silhouette. Oikonomidis et al. use Particle Swarm optimization to track the full

articulation of two strongly interacting hands observed by an RGB-D sensor [OKA12].

Since they used expensive evolutionary optimization method, the system ran at 4fps
and was still far from real-time. This precludes their use for interactive applications.

Human motion reconstruction from multiple cameras has produced an numerous
literatures. Bregler and Malik used twists motions and exponential maps to produce
motion estimation even with complex self-occlusion [BM98]. Rosales and Sclaroff
reconstructed human poses from low-level visual features [RS00]. loffe and Forsyth
grouped parallel edges as candidate body segments and pruned the search of such
segments combinations [IFO1]. Mori and Malik matched shape context with multiple
2D exemplars [MMO3]. Ramanan and Forsyth clustered candidate body segments
found by pairs of parallel-lines, finding all individuals in each frame [RF03]. Agarwal
and Triggs reconstructed poses by learning a regression against shape vectors
extracted from image silhouettes [AT04]. In [SBRO04], Sigal et al. implemented
Eigen-feature detectors for head, upper arms, lower legs and shouters as desired.
Felzenszwalb and Huttenlocher employed pictorial structures for efficiently finding
the best match to an image [FHO5]. Navaratnam et al. showed marginal distribution
sampling of unlabeled data to improve pose fitting [NFCO7]. Okada and Stenger built
a search tree on a hierarchy of body shape to capture human motion [OS08]. Based on
a local mixture of Gaussian Processes, Urtasun and Darrel proposed a regression
scheme to inference human poses [UDO08]. In [TUOQ8], Tu used auto-context to label
body parts, but it did not define localized joints and took about 40 seconds per frame.
Randomized decision forests was built in [RRR08] on classes defined by human
action patterns and camera viewpoints. Bourdev and Malik introduced ‘poselets’ that
used tightly clustered in both 3D pose and 2D image appearance by using SVM
classifier [BMO09].

While real-time estimation of full-body motions from monocular intensity image

sequences is still an open problem, the gradually popular depth cameras spur further

opportunity for human pose reconstruction. It allows more reliable 3D pose estimation
from a single viewpoint. Grest et al. estimated the body poses of a known size and
starting position using an Iterated Closest Point (ICP) algorithm [GWKO5]. Based on
MRFs, Anguelov et al. segmented puppets in 3D scan data into body parts and
background [ATCO5]. In [ZF07], Zhu and Fujimura used a linear programming
relaxation to solve body component identification for coarse upper body parts, but
they required a T-pose initialization to size the model. Bleiweiss et al. use 3D model
fitting to track human skeletons [BEK09]. Siddiqui and Medioni used a data-driven
Markov chain Monte Carlo (MCMC) model to find optimal pose and showed
significant improvement-over ICP [SM10]. Kalogerakis et al. labeled and segmented
3D meshes into different parts [KHS10], but they did not deal with occlusions and the
results were sensitive to training sets. Ganapathi et al. showed that data-driven
evidence is crucial for tracking self-occlusion [GPT10]. Plagemann et al. [PGK10]
built an interest point detector for 3D meshes, finding geodesic extrema, and
localizing body parts. Their method generated both a location and orientation estimate
of each part, but the use of interest points limits the choice of parts, such that left or
right is unable to be recognized. Shotton et al. segmented the different human body
parts using a random forest classifier implemented in the Kinect system [SFC11]. The
segmentation was used to generate joint positions of a skeleton. Baak et al. combined
generative and discriminative methods to estimate full-body pose at interactive frame
rates [BMB11]. Girshicky et al. extended Hough forests and directly predict the

positions of body joint [GSK11].

3. Data Collection and Normalization

Extracting useful information from incomplete and noisy data is often a key issue
of human pose estimation from cameras. While multi-view tracking systems require
solving challenging non-linear optimization to eliminate ambiguity [WPP11],
single-view pose estimation is hampered by the huge color and texture variability,
including hair, skin and clothing. In recent years, depth cameras capture 2.5D scene
geometry [KBK10] at interactive frame rates, and therefore significantly reduce this
difficulty. However, intensive noises in the depth data disturb the estimated skeleton
configurations.

Fig. 3.1 illustrates the process that how we collect depth data. In this chapter, we
review depth imaging, introduce our hand model configuration and show how we

normalize real depth capture data to fit our framework.

Depth
Imaging

Buffering Normalization

-

Figure 3.1: Data recording scenario.

3.1. Depth imaging

We choose Microsoft Kinect as the depth camera in our system. The depth camera
captures depth data at 30 frames per seconds with about 1cm distance resolution.
Opposed to color cameras, pixels in a depth image indicate the calibrated distance
between camera and corresponding 3D positions by projection and receive of infrared
light. Several advantages are benefited from the above property, including working in
low illumination conditions, being color and texture independent, giving a calibrated
distance estimate, and reducing shape ambiguities. The most important issue for our
framework is its simplicity in the task of background detection.

Unfortunately, there are still several challenges, including exhibiting low
resolution, generating intensive random noise and performing a systematic bias
[KBK10]. The defects are even obvious under fast motions and show unstable results

at some thin body parts, leading to jiggling motion estimation.

N

1.2m

1.8m

2m

Figure 3.2: Our depth imaging space.

3.2. Hand model

A human hand has 27 DOFs and they thus create an enormous variety of gestures
which are difficult to simulate. However, there are only a few gestures are widely
used and intuitive in message passing. Based on this idea, we built our gesture
database mostly on meaningful and memorable gestures, like paper sign, scissor sign,
forward pitch, etc. We take these gestures as analog of instruction to indicate
corresponding motions.

Unrestricted 3D body postures actions are the ultimate goal of interaction but it is
computationally expensive to consider all varieties. Additionally, changes in gesture
from one frame to the next are often small and insignificant. Inspired by biological
structure, we thus remove nearly identical 3D maotions to a single representation pose
by the vector from elbow to wrist, so that only small key gestures are necessary. In
our implementation, we captured 150 depth frames per gesture that form a cluster in
database, and they provided acceptable result against the noisy depth stream.

In conclusion, the reduced gesture database constitutes a suitable representation
for real hand gestures. Each element retains most of its detailed discriminative ability

even under noisy input data.

Figure 3.3: Noisy input depth stream.

3.3. Normalization

In the proposed framework, we use a depth frame database. It contains a set of
gestures that people would perform in an entertainment scenario, and is used to help
local optimization.

We apply Microsoft Kinect [KINECT] to capture depth images and get joint
position estimation. For training data generation, we capture hand depth images
within 1.7m ~ 1.9m from the sensor. There are several states in our depth stream
capture process. Fig 3.4 illustrates our data collection process as a finite state machine.
At first, we use a simple gesture signal for data collection initialization. Here the
system enters a countdown state which gives user time for gesture preparation. Then
system starts capturing when. countdown is over. We here record depth stream into
memory buffer eliminating huge 10 operations. Whenever user is about to stop
capturing, we also prepare a gesture signal for the stop operation. The gesture signal
must be rarely used in data collection process. This helps us to avoid unpredictable
state transformation in capture scenario. Afterward users can divide recorded depth
stream with specified frame number.

For each recorded frame, we firstly use estimated hand positions to clip depth data
of hands. Secondly, we apply a filter that shifts depth values of hand frames to 0 ~ 255
range. Based on idea referred in Sec. 3.2, we thirdly rotate hand frames by the vector
from elbow to wrist. Finally, we obtain 64x64 pixels hand depth frames with upward

wrist configuration as illustrated in Fig. 3.5.

@ Receive a specified signal
@ No signal received

@ Countdown is over

Gesture Recording &

C esture
N recognition gestur:
recognition

Preparation Depth stream
waiting . recording

R Figure 3.4: FSM controller.-.

Clipping & Filtering

@ Rotation

-

Figure 3.5: Normalization process.

10

4. Gesture Inference

Our framework has two phases, data preprocessing phase and real-time estimation
phase, as illustrated in Fig. 4.1. In the data preprocessing phase, we obtain the image
set of depth frame first. For each frame, the next step is to compute the point cloud
M, < R*from the depth image 1. We extract a low-dimensional feature vector from
M, , and represent the 3D point distribution of point cloud by 3D position histogram
(Sec. 4.1). Afterward, with respective gesture configuration, the features become a
discriminative feature space.

In the real-time estimation phase, there are six stages to estimate the final pose of

our framework. The first stage is to acquire depth frame |, and estimated positions
of full-body joints X, at time t. Using previous estimated positions X, ;, the second
stage generate a set of candidates, including spatial candidates and temporal
candidates (Sec. 4.2). In third stage, we apply feature extraction (as explained in Sec.

4.1) to the candidates and transform possible depth images into feature vectors F. Let

G, , bethe final gesture estimate of previous frame t-1. The fourth stage is to find K

nearest neighbors for each candidate in F by querying the feature database (Sec. 4.3),

and then obtain spatial gesture hypotheses G° and temporal hypothesis G, . Based

on a voting scheme, the fifth stage uses a distance function to find optimum estimate

G, from the set of retrieved gestures (Sec. 4.4). Finally, we employ Kalman filter

with G,, and G, for motion blending (Sec. 4.5).

11

Data preprocessing Real-time estimation

Depth frame

database Depth imaging

g

Feature Candidate
extraction generation

Clustering Feature extraction

Low-dimension
feature space

Hypothesis voting

Kalman filter on
motion smoothing

g

Final pose

Figure 4.1: Overview of our gesture estimation framework.

12

4.1. Feature extraction
We employ block histogram feature, inspired by the point cloud concept in
[BMB11]. In this section, we detail the feature extraction process of our framework.
For each depth frame I, we project depth values into 3D space and obtain a 3D
point cloud M, c R®. Let a 3D subspace S < R® be a bounding box, comprising

all points of M, . Afterward, we divide X and Y ranges into 4 partitions and divide Z

range into 8 partitions. Thus, we can get 128 independent blocks B'*® in S (Fig 4.2).

128 _ L 128

For each block, we compute sum of point number in such subspace and then get a

128-dimension vector F**°, i.e.

F128=(f1,..., f128)€N (2)

, Where
fi=|m (3)
m' = {p|p € b',p € M;} (4)

Here f' represent the number of point in block i. Since all hand depth image
blocks are normalized, we prune the last 32 bins, which represent point distribution at

the bottom blocks. They are easily affected by wrist rotation.

13

NN

Figure 4.2: Independent blocks for feature extraction.

Number

30

25

20

15

10

Figure 4.3: A feature vector (point histogram).

14

4.2. Candidate generation

The novel full-body reconstruction approaches [SFC11l, BMB11] produce
state-of-the-art results on several data sets. However, there are still some drawbacks,
e.g. jiggling position estimate for limbs joints (elbow, wrist, hand, etc.).

To overcome above problem, we introduce a candidate generation method which
is based on spatial and temporal relationships. Here a candidate means an image block
with 2D central position (u,v). We define the candidates Cy,:,; Which consist of
Coriginatr Cspatiat N0 Cremporq:- TO generate candidate Coyiging,» We Obtain the
central position” H, H, from hand joint position of full-body joint estimation.

In spatial part, the candidates Csyq¢iq; Capture image blocks surround H..H,,.

Their central position (u,v).are

(u,v) = (H, +ycos6,H, +ysinb) (5)

0 = 45° 90°, ...,315°,360° (6)

, parameter y describe an offset from 2D hand joint position.

Figure 4.4: Spatial candidate generation.

15

In temporal part, we use 2D position-velocity model of Kalman filter on previous

position and new position estimate to evaluate central position (u,v) of candidate

CTemporal :

<

~

S

N\~
S oo
S o O

=16

dt 0q[vm—1)
0 dt||v(n—=Df @)
1 0 ||lu(n—1) wu(n -1
0. 1dlpn—1] Iw(n—1)
u(n)
v(n) |, [mu(n)
a(n) | *lmy 0 ®)
v(n)

The function w(n) is the change in velocity and the function m(n) means the

measurement error.

Y
%
%
1)
J"‘"
o
»
J..
13
t.‘.
o
-
-
-
< 3
b4
] ;‘
= .8
“..‘. .t:.
LN
.o LR l:‘

‘.‘.|\Qit\t‘

Orange : New estimate

Purple : Predicted position

Blue : New candidate center

Figure 4.5: Temporal candidate’s central position (blue).

16

These candidates help us to find correct hand position for each depth frame.
However, the distance between camera and hand obviously affects hand size on depth
image. To address this problem, as the distance change we use different window size

to capture hand depth image block and then resize the images with unified resolution.

Capture and downsize

Capture and upsize

Figure 4.6: Capture with different window size.

17

4.3. Feature space lookup

As described in Sec. 4.1, we compute features using point histogram. In data
preprocessing phase, we capture 150 depth frames per gesture for more flexible result
and therefore we obtain several sets of features. These features provide a feature space
of our classifier.

In real-time estimation phase, the candidates (Sec. 4.2) often provide correct real
hand position against the jiggling problem. Unfortunately, we find that even though
the full-body joint estimation gives almost correct hand position estimate, but it
provides unstable elbow position estimate in the self-occlusion case. Therefore, the
rotation step in the normalization process often inherits incorrect information and
creates unpredictable result.

To address this problem, we calculate the angle between normal of XY-plane and
the vector from elbow to wrist. If the angle is less than threshold A, we rotate the
captured image by the vector from wrist to hand since the self-occlusion occurred.
This helps the classifier to do reliable normalization of all candidates (Fig. 4.7).

Finally, we calculate features F of all normalized candidates and query the feature
space for K nearest neighbors (Fig. 4.8). Thus, we obtain classification result ¢ of

each feature vector.

18

Incorrect normalization

Rotate with vector (wrist > hand)

Correct normalization

A
A 'Y
A 5
Paper &
Y
-]
[-]
Scissor
o
-]
. L]
L]
¢ L]
* o
Three ° A
* o
Stone

Figure 4.8: Feature space lookup.

19

4.4. Hypothesis voting

In this section we show how the classification results of candidates are used to
find optimized gesture estimate. Firstly, we compute distance values D* between

gestures in data preprocessing phase, i.e.

dij = Xrea|Angley, — Angleji| (10)

, Where symbol G means total captured gesture, and symbol A describes all hand

articulations. These values provide main probability p;; for gesture transformation.

pij = dtgj . . (ll)

, Where € 1s a constant for transformation between the same gesture.

In the real-time estimation phase, we compute optimized gesture estimate ¢

¢* = argmaxy V*(¢, 5) (12)

Pys, ¢ € COriginal

13
A * p¢6' ¢ € CSpatial U CTemporal ()

V(9.6 =

, Where ¢ mean classification results of all candidates Cr,:q;, 0 IS previous final

estimate and 4 gives Cspatiai aNd Cremporar lOWEr probability.

20

4.5. Motion blending

We use a practical set of all gestures to construct the feature space. In order to
create finger motion which is not in the gesture set, we propose a modified motion
blending method.

Based on optimized estimate ¢~ (Sec. 4.4), we assume that the gesture with

feature ¢ is the fundamental of final pose. Rotating the hand articulations by
negative angle of normalization produces an appearance G, which is similar to real

user’s gesture. However, such configuration gives visually discontinuous motion.

To address this problem, we use 1D position-velocity model of Kalman filter on

each hand. articulation 6 of previous final pose G, ; and new gesture configuration

G, , ie

6(n) 1 0 dt 01[6(rn—1) 0
0 |_|ooo 0.0 0 0 (14)
H(n) 0 0 1 0 H(n—l) Wg(n—l)
0 00 00 0 0
6(n)
zg(m)] _[Co O O 011 O mg(n)
[90]_ oe 0 0 ollom) +[90] (15
0

The function w(n) means the change in velocity and the function m(n) describes
the measurement error. A final confidence estimate G, is given as a combination of

smoothly variable articulation 6, .

21

5. Experiments

In this chapter we describe the experiments used to verify our method. Firstly, we
introduce the detail of our gesture configuration and collection. Afterward, we
perform the experiments, involving normalization indispensability and different

parameter setting. We demonstrate results on several entertainment scenarios.

443 Kinect Hand Tracking i RS o=)

Display | Data processing | Estimation

| Estimation Start]

[Replay Mode (ON / OFF) |

(Game Start |

Game Setting Progress
7] Calculator

] Moving

] Pitch ball

[Left hand position] 184 , 86
[Left hand depth] 1736
[Right hand position] 422 , 270
[Right hand depth] 1800
Elapsed Time : 4 ms
Frame : 1016

Kinect Angle Set

Figure 5.1: A screenshot of our system. The bottom six images show the hand depth
images, hand color images and normalized hand depth images respectively. The blue
skeleton shows the full-body joints estimated by Microsoft Kinect SDK, and the two

blue hands show our finger motion estimation results.

22

5.1. Test data

We collect a new gesture dataset using a Kinect sensor. As illustrated below, our

dataset is composed of 18 common gestures.

Class Gestures Articulation configuration (Left / Right)
OK
No idea
Emotion
Shining
Stone

23

Forward

Backward
Direction
Inside
Outside
Number Zero

24

One

Two

Three

Four

Five

25

Six

Seven

Eight

Nine

Figure 5.2: Our used gestures. We capture 150 depth frames per gesture and all depth

frames in the dataset is normalized.

26

5.2. Estimation accuracy

In this section, we investigate the effect of several system features on estimation
accuracy. By the way, we implemented a KD-tree structure on the feature space for
faster KNN searching. Thus, we also verify the performance progress and the effect of
search depth to accuracy.

Recognition accuracy. We test all 18 gestures through about 30 seconds estimation
per gesture to verify the recognition accuracy. In particular, all test cases were
operated 1.8m from the depth camera. This shows the ability against the noisy input

and the application use. In Fig. 5.3 we show the recognition success rate respectively.

100 —
80
60 -
40 -
20 -

Percentage

100
80 1
60 -
40 -
20 A

Percentage

Sign

Figure 5.4: Recognition accuracy (User 2).

27

Candidates’ contribution. Here we show the necessity of spatial candidate and
temporal candidate respectively. When candidate Cpriging Qgenerated a failed
estimation, the spatial candidate Cg,qriq; and the temporal candidate Cremporar
sometimes provide other estimation which helps the system to get correct result.

Fig. 5.5 and Fig. 5.6 show the contribution rate of OK sign when user is at static
state or dynamic state respectively. In the same way, Fig. 5.7 and Fig. 5.8 show the

contribution rate of Five sign..

M Spatial
H Temporal

i Original

Figure 5.5: The distribution of the best-matched candidate for static OK sign.

H Spatial
E Temporal

i Original

Figure 5.6: The distribution of the best-matched candidate for dynamic OK sign.

28

M Spatial
H Temporal

i Original

Figure 57Thedlstr|but|on of the best-matched cgnd'i‘daté_"fb,r: static Five sign.

M Spatial
 Temporal

i Original

Figure 5.8: ‘fheldiStrit‘iﬁ:ti_on of the best-matched gapdiq”_éte' féjf dynamic Five sign.

Performance. Since linear search usually generate slower performance, we
implement a KD-tree structure on the feature space for faster KNN searching. Fig. 5.9
illustrates the searching time variation against the search depth. In Fig. 5.10, we show

the accuracy convergence of search depth.

18
16 /.
14
) /
E 1
£ O
> 10
T
c /
S 8
b /
Z 6
4 4
2
0 T T T 1
10 100 1000 10000
Search depth
Figure 5.9: Performance comparison.
100
90 — —
80 7
70 7
@©
g yaV4
< 40
30 /4/
20 7/
10 /
O T T T 1

0 10 20 30
Search depth

e==Total candidates == Qriginal only

Figure 5.10: Accuracy convergence of search depth.

30

6. Discussion

In this thesis, we present how we obtain efficient finger motion estimation from
noisy depth image. We introduced gesture recognition as a feature space lookup
problem for finger motion estimation. Using a simple feature allowed us to generate a
discriminative feature space using normalized depth images without overfitting, and
enabled real-time performance (200fps). Generating spatial and temporal candidates
helped us to obtain further accuracy under noisy input data. Finally, by introducing a
reliable distance appearance for candidates voting, we further increased stability and
therefore generated realistic finger motion.

As future work, we plan to integrate multi-resolution and synthetic dataset for
more accurate estimation. under. occlusion. Furthermore, employing interacting hand

gesture may help us to generate more interesting motions.

31

References

[AAS04] V. Athitsos, J. Alon, S. Sclaroff, and G. Kollios. BoostMap: A method for
efficient approximate similarity rankings. In Proc. Computer Vision and
Pattern Recognition (CVPR), vol. 2, 268-275, 2004.

[AS03] V. Athitsos and S. Sclaroff. Estimating 3D hand pose from a cluttered image.
In Proc. Computer Vision and Pattern Recognition (CVPR), vol. 2, 432-439,
2003.

[AT04] A. Agarwal and B. Triggs. 3D human pose from silhouettes by relevance
vector regression. In Proc. Computer Vision and Pattern Recognition (CVPR),
2004.

[ATCO5] D. Anguelov, B. Taskar, V. Chatalbashev, D. Koller, D. Gupta, and A. Ng.
Discriminative learning of markov random fields for segmentation of 3D
scan data. In Proc. Computer Vision and Pattern Recognition (CVVPR), 2005.

[BEKO9] A. Bleiweiss, E. Eilat, and G. Kutliroff. Markerless motion capture using a
single depth sensor. In SIGGRAPH ASIA Sketches, 2009.

[BM98] C. Bregler and J. Malik. Tracking people with twists and exponential maps.
In Proc. Computer Vision and Pattern Recognition (CVVPR), 1998.

[BMO09] L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3D
human pose annotations. In Proc. International Conference on Computer
Vision (ICCV), 20009.

[BMB11] A. Baak, M. M"uller, G. Bharaj, H. Seidel, and C. Theobalt. A Data-Driven
Approach for Real-Time Full Body Pose Reconstruction from a Depth
Camera. In Proc. International Conference on Computer Vision (ICCV),

2011.

32

[DDHO06] G. Dewaele, F. Devernay, R. Horaud, and F. Forbes. The alignment between
3-d data and articulated shapes with bending surfaces. In Proc. European
Conference on Computer Vision (ECCV), 578-591, 2006.

[FHO5] P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object
recognition. International Journal of Computer Vision (IJCV), 61(1):55-79,
Jan. 2005.

[GPT10] V. Ganapathi, C. Plagemann, S. Thrun, and D. Koller. Real time motion
capture using a single time-of-flight camera. In Computer Vision and Pattern
Recognition (CVPR), 2010.

[GSK11] R. Girshicky, J.-Shottony, P. Kohliy, A. Criminisiy, and A. Fitzgibbony.
Efficient Regression of General-Activity Human Poses from Depth Images.
In Proc. International Conference on Computer Vision (ICCV), 2011.

[GWKO5] D. Grest, J. Woetzel, and R. Koch. Nonlinear body pose estimation from
depth images. In Proc. Deutsche Arbeitsgemeinschaft fir Mustererkennung
(DAGM), 2005

[HRM12] L. Hoyet, K. Ryall, R. McDonnell; and C. O’Sullivan. Sleight of Hand:
Perception of Finger Motion from Reduced Marker Sets. In Proc. Interactive
3D Graphic (13D), 2012.

[IFO1] S. loffe and D. Forsyth. Probabilistic methods for finding people. International
Journal of Computer Vision (IJCV), 43(1):45-68, 2001.

[KBK10] A. Kolb, E. Barth, R. Koch, and R. Larsen. Time-of-flight sensors in
computer graphics. In proc. Computer Graphics Forum (CGF), 29(1):141—
159, 2010.

[KHS10] E. Kalogerakis, A. Hertzmann, and K. Singh. Learning 3D mesh

segmentation and labeling. ACM Trans. Graphics, 29(3), 2010.

33

[MMO03] G. Mori and J. Malik. Estimating human body configurations using shape
context matching. In Proc. International Conference on Computer Vision
(ICCVv), 2003.

[NFCO07] R. Navaratnam, A.W. Fitzgibbon, and R. Cipolla. The joint manifold model
for semi-supervised multi-valued regression. In Proc. International
Conference on Computer Vision (ICCV), 2007.

[OKA12] I. Oikonomidis, N. Kyriazis, and A. Argyros. Tracking the Articulated
Motion of Twa Strongly Interacting Hands. In Proc. Computer Vision and
Pattern Recognition (CVPR), 2012.

[0OS08] R. Okada and B. Stenger. A single camera motion capture system for
human-computer interaction. The Institute of Electronics, Information and
Communication Engineers (IEICE), E91-D:1855-1862, 2008.

[PGK10] C. Plagemann, V. Ganapathi, D. Koller, and S. Thrun. Real-time
identification and localization of body parts from depth images. In Proc.
International Conference on Robotics and Automation (ICRA), 2010.

[PYO06] J. Park and Y. Yoon. LED-glove based interactions in multi-modal displays for
teleconferencing. In International Conference on Artificial Reality and
Telexistence (ICAT), 2006.

[RFO3] D. Ramanan and D. Forsyth. Finding and tracking people from the bottom up.
In Proc. Computer Vision and Pattern Recognition (CVPR), 2003.

[RRRO8] G. Rogez, J. Rihan, S. Ramalingam, C. Orrite, and P. Torr. Randomized
trees for human pose detection. In Proc. Computer Vision and Pattern
Recognition (CVPR), 2008.

[RSO0] R. Rosales and S. Sclaroff. Inferring body pose without tracking body parts.

In Computer Vision and Pattern Recognition (CVPR), pages 721-727, 2000.

34

[RSHO5] L. Ren, G. Shakhnarovich, J. Hodgins, H. Pfister, and P. Viola. Learning
silhouette features for control of human motion. ACM Transactions on
Graphics 24, 4, 1303-1331, 2005.

[RYZ11] Z. Ren, J. Yuan, and Z. Zhang. Robust Hand Gesture Recognition Based on
Finger-Earth Mover’s Distance with a Commodity Depth Camera. In
Multimedia, 2011.

[SBRO4] L. Sigal, S. Bhatia, S. Roth, M. Black, and M. Isard. Tracking loose-limbed

people. In Proc. Computer Vision and Pattern Recognition (CVPR), 2004.

[SFC11] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore, A.
Kipman, and A. Blake. Real-time human pose recognition in parts from a
single depth image. In Proc. Computer Vision and Pattern Recognition
(CVPR), 2011.

[SM10] M. Siddiqui and G. Medioni. Human pose estimation from a single view
point, real-time range sensor. In Computer Vision for Computer Games
(CVCG) at Computer Vision and Pattern Recognition (CVPR), 2010.

[SMFO04] E. Sudderth, M. Mandel, W. Freeman, and A. Willsky. Distributed occlusion
reasoning for tracking with nonparametric belief propagation. In Neural
Information Processing Systems (NIPS), 2004.

[STTO6] B. Stenger, A. Thayananthan, P. Torr, and R. Cipolla. Model-based hand
tracking using a hierarchical bayesian filter. IEEE Trans. Pattern Analysis and
Machine Intelligence (PAMI), 28, 9, 1372-1384, 2006.

[SVDO03] G. Shakhnarovich, P. Viola, and T. Darrell. Fast pose estimation with
parameter-sensitive hashing. In Proc. International Conference on Computer
Vision (ICCV), 750-757, 2003.

[TUO8] Z. Tu. Auto-context and its application to high-level vision tasks. In Proc.

Computer Vision and Pattern Recognition (CVPR), 2008.

35

[UD0O8] R. Urtasun and T. Darrell. Local probabilistic regression for
activity-independent human pose inference. In Proc. Computer Vision and
Pattern Recognition (CVPR), 2008.

[WP09] R. Wang and J. Popovi'c. Real-time hand-tracking with a color glove. ACM
Trans. Graphics, 2009.

[WPP11] R. Wang, S. Paris, and J. Popovi'c. 6D Hands: Markerless Hand Tracking
for Computer Aided Design. In User Interface Software and Technology
(UIST), 2041.

[ZFO7] Y. Zhu and K. Fujimura. Constrained optimization for human pose estimation
from depth sequences. In Proc. Asian Conference on Computer Vision
(ACCV), 2007.

[KINECT] Microsoft Kinect for Windows

http://www.microsoft.com/en-us/kinectforwindows/

36

http://www.microsoft.com/en-us/kinectforwindows/

