
 

 

國 立 交 通 大 學 
 

資訊科學與工程研究所 
 

碩 士 論 文 
 

 

 

 

 

使用核關聯之非剛性形體對齊與對應 

 
Non-Rigid Shape Registration Using Kernel Correlation 

 

 

 

 

 

研 究 生：林育右 

指導教授：莊榮宏  教授 

           黃世強  教授 

 

 

 

中 華 民 國  １０1  年  12  月 



 

使 用 核 關 聯 之 非 剛 性 形 體 對 齊 與 對 應 

Non-Rigid Shape Registration Using Kernel Correlation 

 

 

 

 

研 究 生：林育右          Student：Yu-Yu Lin 

指導教授：莊榮宏          Advisor：Jung-Hong Chuang 

             黃世強                   Sai-Keung Wong 

 

 

國 立 交 通 大 學 

資 訊 科 學 與 工 程 研 究 所 

碩 士 論 文 

 

 
A Thesis 

Submitted to Institute of Computer Science and Engineering 

College of Computer Science 

National Chiao Tung University 

in partial Fulfillment of the Requirements 

for the Degree of  

Master 

in 

 

Computer Science 

 

December 2012 

 

Hsinchu, Taiwan, Republic of China 

 

 

中華民國 101 年 12 月 



 

 i 

 

 

 

 

使用核關聯之非剛性形體對齊與對應 

 

 

研究生 : 林育右             指導教授 : 莊榮宏 博士 

                                       黃世強 博士 

                                        

 

國立交通大學 

資訊學院資訊科學與工程研究所 

 

 

 

 

摘 要 

我們提出一個非剛性形體間之對齊與對應的方法。許多基於形變的方法改進迭代

最近點法，並且將形體之對齊與對應的問題轉化為最佳化問題。然而，基於迭代

最近點法的非線性能量系統必須在每次迭代時改變對應的最近點，並且移除當中

被認為是不好的對應。此項行為造成最佳化的過程中改變了能量系統，因此最佳

化處理時無法直截了當地求解。相反地，我們使用基於核關聯的方法來表示非線

性能量系統，此法間接地給了動點一個方向，並且保證最佳化過程中擁有固定的

數學表示式。我們的演算法不將每個形變物表上的取樣點對應到目標表物表上的

另一個取樣點，而是將其對應到目標物表上的一個合理位置，因此獲得更合意的

對齊與對應結果。此外，我們的演算法因擁有固定的數學表示式而能更有效率地

求出最佳解。 
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ABSTRACT

We present an algorithm for shape registration of non-rigid partial scans.

Many deformation-based methods adapt their algorithm based on iterative

closest point (ICP) and formulate the registration as an optimization prob-

lem. However, non-linear energy systems based on ICP should change the

set of closest points iteratively and remove some of them for filtering out bad

correspondence. This behavior changes the formulation during energy min-

imization and the optimization process can not be solved straightforwardly.

On the contrary, we formulate the energy system using kernel correlation

(KC), which implicitly gives a direction for a moving point and guarantees

a fixed formulation during optimization. Our algorithm gains a more prefer-

able result since each point on the source surface is not fitted to a point but

a reasonable 3D position on the target surface, and can be more efficient due

to the fixed formulation of energy equations.
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CHAPTER 1

Introduction

Shape registration is a fundamental task for geometry and motion recon-

struction. Recent acquiring systems provide partial scanned surface data

with high spatial and temporal coherence, but tracking of the surfaces is re-

maining a challenge due to the noise and partial overlap of the input range

images. We consider the problem of tracking a sequence of input range scans

under the assumption of high frame coherence.

A number of deformation-driven approaches have been proposed for the

registration problem. Such approaches define a deformation model as well as

a shape fitting function that provides a mapping between two scanned sur-

faces and solve the problem by energy minimization. Most proposed methods

adapt iterative closest point (ICP) as the fitting function to explicitly map

a point on the deforming source to the closest point on the target surface.

In real case of registration problem, the scanned range images are usually

composed of point samples, and mapping a point on the source to a point on

the target is not reasonable since two sets of point samples are not always

matched. Instead, two surfaces represented as point sets should be matched

in the basis of point-to-position mapping. Another problem of ICP is that
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it must filter out some closest points when they are recognized as bad corre-

spondence, resulting in the formulation changes during energy minimization.

As a result, optimization process may not be solved straightforward.

We introduce a different method that defines the shape fitting function

using kernel correlation (KC) to implicitly give a moving direction for each

point on the deforming source. A point on the source surface will move ac-

cording to a kernel function and finally reach an extreme position on the

target surface. The kernel function considers all points covered by its ker-

nel, opposing to ICP which only considers the closest point on the target

surface. The major advantage of the fitting function defined by using kernel

correlation is that points in the kernel region on the target surface for each

source point are unchanged through the entire optimization process. Such

a formulation matches points on the deforming surface to more reasonable

3D positions on the target surface and leads to fast computation due to the

fixed formulation of fitting function. It is opposite to the function defined

based on ICP which explicitly matches a point on the deforming source to

its closest point on the target surface and changes the set of closest points

at each iterative step.

The contributions of the thesis are as follows:

• Proposes a kernel-correlation-based approach to formulate the shape

fitting function. It implicitly gives a moving direction for a point on

the source surface at each iteration step. The direction will changes

gradually over steps, which is opposite to ICP in which the direction

given to a moving point may change greatly according to the change of

the closest point at each iteration step. The moving point will finally

be fitted to a 3D position instead of a point on the target surface, which

is more reasonable for the mapping between two point samples.

2



• The optimization process for non-rigid shape registration benefits from

the fixed formulation of the shape fitting function, leading to fast com-

putation for energy minimization procedure since the non-linear system

can be solved straightforward. This is opposite to ICP-based methods

since the set of the closest points is changed at each iteration, which

result in different energy systems at each iteration.

The rest of the thesis is organized as fallows. Chapter 2 gives a back-

ground knowledge and reviews the related works of shape registration. Chap-

ter 3 introduces the proposed framework and the details of the registration

algorithm. Chapter 4 shows the experimental results with different parame-

ters and also depicts the comparison between the non-rigid registration using

kernel correlation and ICP. Finally, the summary, limitations and the future

works are discussed in Chapter 5.
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CHAPTER 2

Related Work

In this chapter we review some methods for shape registration, including rigid

registration and non-rigid registration. We will focus on methods which are

driven by surface deformation.

2.1 Rigid Registration

Early registration researches focus on reconstructing a complete digital model

from a real world object. Such a registration process captures a sequence of

partial scans of the object from different views and aligns these partial scans

to a common space for reconstruction. A number of approaches have been

proposed to accomplish the process [AMCO08, PB09, ART10] and we only

mention about the approach using iterative closest point (ICP) [BM92].

The registration process using ICP aims to find a transformation between

two partial scans S and T , and seeks to minimize an energy system by al-

ternating between a matching step and a transformation step. The energy
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2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

system is written as

E(S, T,A) =
∑
s∈S

dist(A(s), t(s)), (2.1)

where A is an affine transformation and A(s) is the new position of s trans-

formed by A, t(s) is the closest point of s in T , and dist(s, t) calculates the

distance between two points s and t. In each iteration, the matching step

maps each point s ∈ S to its closest point t(s) ∈ T and the transformation

step finds an optimal affine transformation A that minimizes the energy sys-

tem E(S, T,A). The whole energy system is optimized when some stopping

criteria are satisfied.

The idea of ICP is simple and works well on registration problem. Plenty

of researches have been proposed based on ICP. One main drawback of ICP is

that the initial positions of two shapes must be close to get correct alignment

or the registration process will reach a local minimum of the energy system.

2.2 Non-Rigid Registration for Range Images

Modern 3D geometry acquisition equipments such as structured light scan-

ner and Microsoft Kinect can capture object’s depth information in high

frame rate and produce a sequence of range images with high spatial and

temporal coherence, but with no point correspondences. The main task of

non-rigid registration is to collect and align frames so that point samples

between each frame become in correspondence. This is the basic step for

shape reconstruction or applications that require surface tracking informa-

tion. One challenge in non-rigid registration process is that the range data

from 3D scanners are usually noisy and can have large regions of holes due

to unreliable settings of acquisition or data occlusion. How to handle this

5



2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

problem carefully and build fine correspondence relation between frames is

no longer straightforward. There are several approaches for non-rigid shape

registration. One class uses a template as the knowledge of underlying sur-

face and transforms it into the space of point samples, while the others do

their registration process without using template.

2.2.1 Template-Based Registration

Non-rigid registration using a template reduces the complexity of the process.

It does not consider the problem of shape reconstruction since the template

depicts the topology and geometry of the shape. In the situation of scanning

the real world object, the template helps us to know the potential motion of

the input range data and to capture fine registration results from the data

sequence [LAGP09, LLV+12]. In addition, a template surface can naturally

handle the noise and holes of the input range data, leading to a more ro-

bust registration when the noise and holes become larger, compared to the

methods without using a template.

Typically, non-rigid registration using a template surface focuses on how it

fits the input range data by deformation [ACP03, SSP07, LSP08]. Methods

that help to find such deformation and transform the template to fit the

input range data will be described in Section 2.2.3. One main drawback of

this approach is that it is sometimes hard to have a proper template for the

input range data and usually requires filtering to remove geometry details.

Another disadvantage is that the template must be designed in case-by-case.

Nevertheless, the use of template leads to a more straightforward registration

since we know what the object is.
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2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

2.2.2 Registration Without Using A Template

Non-rigid registration without using a template means that we do not know

what the input object is. How to recognize the correct shape and trace the

correspondence along with shape motion is more complicated compared to

the template-based registration. It must handle input data sequence with

noise and holes carefully and merges the shapes from frames to form a com-

plete shape. It should also consider the topology of the merged shape, which

can not be detected instantly until the whole input data sequence is pro-

cessed.

Many methods have been proposed for building such framework; for ex-

ample, Wand et al. [WJH+07, WAO+09, TBW+12] used a template-like

approach to build their framework by alternating between a registration

step and a reconstruction step. In the registration step, they registered two

adjacent frames by surface deformation. In the reconstruction step, they

merged the registered frames to form a more complete surface. Popa et al.

[PSDB+10] first constructed model of each frame independently and find

frame-to-frame correspondence by applying cross-parameterization on suc-

cessive models. Each pair of two parameterized models are merged into a

new common model and the overall reconstruction is done in a bottom-up

fashion. These kind of methods not only focus on registration between frames

but also deal with surface reconstruction problem. The main advantage is

that it provides a general framework for non-rigid shape reconstruction and

registration. However, shape reconstruction step will break down when the

noise and holes of the partial scans become serious. Hence, the whole process

is less robust compared to the template-based methods.

7



2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

2.2.3 Non-Rigid Registration by Deformation

An important property of the range image sequence is that it usually has high

spacial and temporal coherence between frames. Many proposed methods are

developed under this assumption, but have different ways finding the frame-

to-frame correspondence.

One class of non-rigid registration methods use deformation-driven ap-

proach that transforms one frame of the input range data into another. Usu-

ally, this kind of approach defines a deformable model and designs a fitting

function that can be found via an energy minimization process. The most

popular way for defining such surface fitting is ICP. It fits two surfaces in an

iterative fashion, each iteration the deformed one moves towards the target

by a small step until two surfaces are close enough. Another common ap-

proach for surface fitting employs feature points, similar to the problems in

correspondence finding. It usually starts with a small set of feature match-

ings, and then propagates the matching to the whole surface.

ICP-Based Surface Fitting. ICP is widely used in rigid and non-rigid

registration problems. The operation of non-rigid ICP is similar to the way

described in Section 2.1 except that points on the source surface S is now

transformed by a set of affine transformations A = {A1, A2, A3, ...}, i.e., each

point has its own transformation, and the new position A(s) is updated by the

non-rigid transformation according to a deformation model. Various methods

have been proposed for non-rigid registration problem. Li et al. [LSP08,

LAGP09, LLV+12] used a template and formulate their non-rigid ICP process

as an energy minimization problem. The template captures the large scale

motion while fine scale geometry details is appended by synthesizing texture

maps obtained from another energy minimization.
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2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

Although ICP-based algorithm handles registration problems well, it re-

lies on some assumptions and has several drawbacks. First, the initial po-

sitions of two models to be registered should be roughly aligned first when

doing ICP; otherwise, the process may be trapped at local minimum of the

energy system and hence result in wrong registration result. Second, since

the input range images may have noise and hole regions, the displacement

mapping of two adjacent surfaces may not form a smoothing field. Papazov

et al. [PB11] indicated that such cases could be refined by smoothing the dis-

placement field. They first built an initial fitting from the closest points, and

then applied smoothing algorithm to these fittings by calculating an energy

minimization; see Figure 2.1.

Source 

Target 

Initial fitting 

Source 

Target 

Smoothed field 

(a) 

(b) 

Figure 2.1: (a) An ICP displacement field may not form a smoothed vector

field from the source (blue) to the target (green). (b) By applying smoothing

algorithm on displacement field one cloud get a better mapping result.

A potential problem may rise in solving the ICP process. Since in each

iteration the non-linear system must recompute the set of closest points, the

9



2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

formulation of the non-linear system may change from iteration to iteration.

Moreover, by deformation, some of the computed closest points may need to

be removed since the mapping from the source to the target are recognized

as bad correspondences. As a result, the whole minimization process can

not be solved straightforwardly since the energy system between iterations

are almost different. A more detailed description will be discussed in Section

2.2.4.

Feature-Based Surface Fitting. Features are a set of points on the

surface. If we have matched features between frames then we can explic-

itly use these matching information in the registration process. The main

advantage of feature-based method is that the mapping between surfaces is

more preferable and robust compared to the methods depend only on local

surface mapping. Typically, the fitting algorithm starts with a sparse set of

matched features between frames and propagates them to the whole surface

fitting. However, the process may become difficult when it tries to find fea-

ture matching between non-rigid surfaces. In addition, the computation cost

for propagating the matching from sparse to dense may become expensive

when the number of required matchings is large.

Features can be extracted based on pure geometry and represented as

surface descriptors on points [GMGP05]. A point on the source surface is

matched to the point with the most similar descriptor on the target surface.

In addition to pure geometry approach, features can also be traced by re-

sorting to image tracking technique if the related images of input range data

are given. One popular image tracking method is optical flow [BHB+11,

PSDB+10], in which each pixel is traced from frame to frame in 2D image

space.

A hybrid method that combines feature matching and surface deformation

10



2.2. NON-RIGID REGISTRATION FOR RANGE IMAGES

is often used for a robust non-rigid registration [GMGP05, TBW+12]. It first

matches a sparse set of features between two frames and then registers the

rest region via surface deformation.

2.2.4 Non-Rigid ICP-Based Energy System

By using deformation, the non-rigid registration process is usually formulated

as an energy minimization problem. Non-rigid ICP is a way to define the

surface fitting function which is used to map the source to the target. Li et

al. [LAGP09] used non-rigid ICP for their fitting function and the equation

is written as

E(S, T,A) =
∑

(s,t(s))∈C

αpoint‖A(s)− t(s)‖2 + αplane|nT
t(s)(A(s)− t(s))|2, (2.2)

where S and T stand for source and target shape, and A is a set of affine

transformations A = {A1, A2, A3, ...} define in the deformation model, A(s)

stands for the new position of the source point s according to the set A,

and t(s) ∈ T is the closest point of s on target surface with corresponding

normal nt(s), and C is a correspondence set that matches a point s to its

closest point t(s). There are two terms in the fitting function with two

corresponding weighting values αpoint and αplane. The first one means that

the new position A(s) of the source point should get closer to the closest

point t(s) ∈ T on target, which is a typical term of ICP. The second term

means that A(s) should lie on the tangent plane of t(s), in other words, A(s)

should lie on the surface of the target. The equation sums over the source

points if A(s) and t(s) are in correspondence.

For surface deformation, removing points in bad correspondence is neces-

sary since they will lead to a bad deformation. The correspondence set C may

change frequently according to the computed closest points in each iteration
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2.3. A CORRELATION-BASED APPROACH FOR POINT SET
REGISTRATION

of the minimization process. A potential problem may arise in minimizing

the energy system based on ICP that the minimization process can not be

solved straightforwardly since the equations between iterations are almost

different. Methods for speeding up will be useless since they are interrupted

by recomputing the resources such as the linear system of each iteration.

2.3 A Correlation-Based Approach for Point

Set Registration

A correlation-based approach was proposed in Tsin et al. [Tsi03, TK04] for

rigid registration of point sets. The method is able to obtain correct results

for the poses with larger deviation. The idea of correlation-based approach

for shape registration is to minimize the distance of two rigid entities by

maximizing a kernel function which produces a smoothed vector field over

3D space. One rigid entity on the source is moved according to the kernel

function and finally matched to the target.

The concept between ICP and correlation-based approach is quite differ-

ent. ICP directly selects one target as the reference point to indicate where a

source should move to, whereas the correlation-based approach considers all

targets points that have influence on the movement of the source point. The

main advantage of correlation-based approach is that the objective function

is smooth since the formulation of energy system is fixed over the entire min-

imization process; on the contrary in ICP the closest points must be changed

over iterations to guarantee the convergence.
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CHAPTER 3

Non-Rigid Registration Using Kernel

Correlation

3.1 Overview

Non-rigid registration problem can be regarded as one kind of surface corre-

spondence problems that seeks a mapping function between two surfaces. A

deformation-driven surface correspondence tries to find a way of fitting the

source surface to the target surface; as show in Figure 3.1. Such a registration

process defines a deformation model and a fitting function, and is usually for-

mulated as an energy minimization problem. The deformation model defines

how a point on the source surface is moved and the fitting function drives a

mapping that maps the point on the source to one on the target.

13



3.1. OVERVIEW

Source 

Target 

Fitting 
function 

Figure 3.1: A deformation process defines a deformation model and a fitting

function that transforms the source (blue) to the target surface (green).

For surface deformation, most recent methods adopt ICP-based algorithm

for the fitting function [LAGP09, HCTW11]. ICP-based approach always

finds the closest point in the target shape as a reference to which one point

on the deforming surface moves. Such a fitting approach will change the

closest points frequently in each iteration of the non-linear energy system,

and the whole optimization process can not be solved straightforward. For

the input range images with high spatial and temporal coherence between

adjacent frames, the matched point on the target of one point on the source

should be found in a small region, as shown in Figure 3.2. We wish to collect

all points in the small region for that one point on source. Each point in

the small region will have an affection and lead the point on source to move

to the surface of target. Since the small region for each point on source is

assumed to be fixed, we can write our fitting function as a fixed formulation

for the non-linear energy system, opposing to ICP-based method which must

recompute the closest points in each iteration.
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3.1. OVERVIEW

A fixed small region with 

correct fitting position 

Source 

Target 

Figure 3.2: A point on the source (blue) should find the correct matching

position on the target (green) in a small region (red circle) according to the

assumption of high frame coherence. The extracted small region for each

source point is fixed during the whole optimization process.

We use a different method, called kernel-correlation-based approach [Tsi03,

TK04], as our fitting function in which each point of the deforming surface

is not directly linked to its closest point, but multiply-linked to all points

in a kernel as illustrated in Figure 3.3. Each point of the deforming source

is associated with a kernel function and gain a moving direction at each

time step according to all points in the kernel. This moving direction is

changed smoothly in the movement of the source point, which is opposite to

ICP-based method that one point may change its moving direction greatly

according its closest point.
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3.1. OVERVIEW

(a)                                  (b) 

Figure 3.3: (a) An ICP-based method directly selects its closest point on

the target as the reference point. (b) A kernel-correlation-based approach

considers all targets within its kernel. The blue and green points stand for

source and target surface, respectively.

Our non-rigid registration process by surface deformation is similar to

that of Li et al. [LAGP09] and formulated as an energy minimization prob-

lem. To this end, we define our surface deformation model using deformation

graph [SSP07] and the fitting function using kernel correlation. The defor-

mation graph can be seen as a control mesh that embeds the object to deform

as it deforms. The kernel-correlation fitting can be seen as a point equipped

with a kernel function moving around the point samples and finally reach-

ing an extreme position on the target surface. The formulated optimization

problem is as follows: Given two point sampled sets, S and T , and a deforma-

tion graph embedded in a template, we define a set of affine transformations

A = {A1, A2, A3, ..., Ak}, each of which represents the transformation for a

node in the deformation graph. Find the set A which minimizes the energy

system

Etotal(S, T,A) = Efit(S, T,A) + Econstraint(S,A), (3.1)

where Efit means the cost of fitting function that fits the deforming surface

S to the target shape T and Econstraint is the cost that constrains the defor-
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mation over the deforming surface. When the system is minimized and we

get the desired non-rigid transformation from one frame to the next frame.

We consider the problem of registering a template surface and transform-

ing it into the space of the target range images. The template depicts the

shape of the input range images and is selected from one of them. Since the

input range image may have noise and hole regions, we design the template

by first applying hole filling and smoothing algorithm and then simplification

to obtain a simplified template in order to reduce the computation cost. The

main steps of the proposed non-rigid registration process is shown in Figure

3.4.

Figure 3.4: The pipeline of our non-rigid registration process. Given the

input range images and the corresponding surface template, our algorithm

transforms the template into the space of range image at each time step.
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3.2. DEFORMATION MODEL

3.2 Deformation Model

In conventional surface deformation, each one point is treated as a moving

entity and transform with an affine transformation [ACP03]. The main idea

of deformation graph proposed in [SSP07] is that a set of points in a local re-

gion is considered as one entity and transformed by an affine transformation.

That is, deformation graph can be seen as a control mesh that embeds the

object to deform as it deforms. Each graph node represents a moving entity

and is equipped by a 3 by 3 rotation matrix R and a 3 by 1 translation vector

t. To embed deformation graph on the underlying surface, each node is also

associated with a radius and affects all points on the underlying surface that

are covered by the region of the radius in Euclidean space. The connectivity

of deformation graph is defined by the graph edges. An edge links two nodes

if the regions associated with two nodes overlap. In other words, each edge

links two nodes that have influence on some points on the underlying surface.

Our deformation model adapt the deformation graph proposed in Sumner

et al. [SSP07]. Each node on the deformation graph holds four variables

{R, t, g, r} where R is the rotation matrix, t is the translation vector, g is the

node position, and r is the radius. The point s on the underlying surface is

transformed to s̃ by some nodes in a linear combination way like radial basis

functions as follows:

s̃ =
∑
j

wj(s)[Rj(s− gj) + gj + tj], (3.2)

where j means the j’th node and wj(s) is a normalized weighting value that

decreases when the distance between s and gj increases. Here we use wj(s) =

max(0, (1 − ||s − gj||2/r2j )3), where rj is the distance from the j’th node to

its k-nearest neighbors [SSP07, LAGP09] (We use k = 4).
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3.2. DEFORMATION MODEL

The use of deformation graph was proposed for shape manipulation. The

surface deformation process was formulated as an optimization problem and

the energy system was written as

Etotal = Efit + Erotate + Eregular. (3.3)

User specified surface fitting. Users can specify a set of mappings F =

{{sk1 , pk1}, {sk2 , pk2}, ...} that fits each point sk on the underlying surface to

the desired target 3D position pk. The cost of fitting function was formulated

as

Efit =
∑

(s,p)∈F

‖s̃− p‖2, (3.4)

where s̃ is the new position of s. The cost function minimize the square

distance between s̃ and p in order to satisfy shape manipulation.

Rotation matrix constraint. This constraint ensures that the 3 by 3

matrix R of each node truly presents a rotation instead of other operations

such as scaling or sheering.

Erotate =
∑
j

Rot(Rj), (3.5)

where

Rot(R) =(c1 · c2)2 + (c2 · c3)2 + (c2 · c3)2

+ (1− c1 · c1)2 + (1− c2 · c2)2 + (1− c3 · c3)2,
(3.6)

and c1, c2 and c3 are the three columns of R. The cost function ensures that

each column c1, c2 and c3 of a matrix R must be orthonormal. Equation 3.5

sums the square error over all nodes in deformation graph.

Surface regularization constraint. This constraint preserves surface

regularity that the transformations of a local surface should be as rigid as

possible.

Eregular =
∑
j

∑
k∈Kj

‖Rj(gk − gj) + gj + tj − (gk + tk)‖2, (3.7)
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3.3. KERNEL CORRELATION AS A FITTING FUNCTION

where Kj is the neighbor set of node j. The cost function sums the square

error of surface regularization over all nodes in deformation graph.

For the given set of mappings F , minimizing the energy system in Equa-

tion 3.3 results in a set of Rj and tj for the desired deformation of the un-

derlying surface. Our surface deformation model employs deformation graph

and the cost of constraint energy in Equation 3.1 becomes as

Econstraint = Erotate + Eregular. (3.8)

We overwrite the surface fitting energy Efit for non-rigid shape registration

using kernel correlation, which will be described in the following section.

3.3 Kernel Correlation as A Fitting Function

Kernel correlation was proposed in Tsin [Tsi03] and Tsin et al. [TK04] for

rigid registration. It measures the affinity between two shapes and gains a

higher affinity if the poses of the shapes are similar. Considering the affinity

measurement between two points s and t, the definition of kernel correlation

using Gaussian kernel is

KC(s, t) = e
−‖t−s‖2

2σ2 , (3.9)

which has a higher value when the distance between two points become

smaller. This implies that two points are getting closer when the affinity

value is maximized. For the affinity measurement between a point s and a

point set T , we define kernel correlation as

KC(s, T ) =
∑
t∈T

e
−‖t−s‖2

2σ2 . (3.10)

This formulation shows that a point s in 3D space is relevant to all points in

the set T and the Gaussian kernel is centered at s with deviation σ. Notice
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3.3. KERNEL CORRELATION AS A FITTING FUNCTION

that we don’t care about the normalized term of Gaussian function because

we directly sum up the values at points instead of calculating the area under

Gaussian function, as shown in Figure 3.5.

s 
tj tj+1 

. . . tk 

Figure 3.5: The kernel correlation between a point and a point set sums up

the values of each point sample on the kernel function centered at s.

To explain the interaction between s and T , we take the first differentia-

tion upon s and see the gradient

∂KC(s, T )

∂s
∝

∑
t∈T

e
−‖t−s‖2

2σ2 (t− s), (3.11)

which is proportional to the sum of weighted directions between s and points

t in T . Each point t in T implies a direction outgoing from s with a weighting

value e
−‖t−s‖2

2σ2 , which means that with the larger distance deviated from s, t

has the smaller weighting. Maximizing the affinity value of kernel correlation

defined on a point s with respect to a point set T means moving the point s

through the gradient field and finally reaching an extreme position, as shown

in Figure 3.6.
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3.3. KERNEL CORRELATION AS A FITTING FUNCTION

s 

T 

Figure 3.6: The moving point s (blue) will reaches an extreme position where

the gradient of the KC(s, T ) is zero and the KC(s, T ) is maximized.

This behavior can also be seen as a point s equipped with a kernel func-

tion moving around the point samples t ∈ T . At each time step, t affects s

according to the kernel function and become noneffective to s when the dis-

tance between t and s is too large. In Figure 3.7, we see that the weighting

value is below 3.73× 10−6 when the distance between t and s is large then 5

times the deviation σ. The weighting value could be clamped to zero since it

almost has no affect to the gradient. We say that each source point has an

effective kernel region for the point samples in T . For Gaussian kernel, the

kernel size is related to the value σ.

1 

0 
0 -5 5 

2

2

2

st

e





st 

Figure 3.7: When the distance is larger then 5 times the deviation σ, the

weight is almost zero.

Different values of σ can lead a moving point s to different extreme po-
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sitions. In Figure 3.8, point s reaches the extreme position at t1 in Figure

3.8(a), while it reaches an extreme position in the middle between t1 and t2

in Figure 3.8(b). Different initial positions of s can also result in different

extreme positions. For example, the point s in Figure 3.8(c) has the same

kernel size as in Figure 3.8(a) but reaches the extreme position at t2.

(a)                                              (b)                                              (c) 

t1                       t2 t1                   t2 t1                       t2 

s s s 

Figure 3.8: Different kernel sizes and initial positions can result in different

extreme positions.

The aforementioned reveals that it is possible to have a point closer to a

point set via maximizing kernel correlation when the kernel size is appropri-

ately set up. For non-rigid registration process using kernel correlation, we

equip each point s on the deforming source S with a kernel function. Each

point s considers all points in its kernel and gains a moving direction accord-

ing to the gradient field of the kernel function and finally reaches the extreme

position on the target surface T when the kernel correlation is maximized.

To define the fitting function of non-rigid registration between the deforming

source S and the target T , we sum up the kernel correlation of each point

in S and maximize it, or we sum up the negative kernel correlation of each
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point in S and minimize the following function:

Efit(S, T,A) = −
∑
s∈S

KC(s, T ) = −
∑
s∈S

∑
t∈T

e
−‖t−s̃‖2

2σ2 , (3.12)

where the new position s̃ is transformed according to the deformation graph.

The fitting function will lead each point s to its own extreme position as

close as possible.

As mentioned before, different kernel sizes can result in different extreme

positions for each moving point s. If kernel size is large enough to cover all

points t ∈ T , points in S will move to extreme positions which might be close

to each other, leading to a stretched surface; as illustrated in Figure 3.9(a).

By appropriately setting the kernel size, we can get a better result as show

in Figure 3.9(b). Conceptually, each point s ∈ S can have its own kernel

size, but we use the same size for all s ∈ S for simplicity. How to set the

size appropriately is currently decided by user. An important observation

is that the size should be able to cover a small set of point samples for

effective motion, otherwise the moving point may get stagnated due to the

noneffective gradient.
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(a)                                         (b) 

Figure 3.9: Point set registration using different kernel sizes.

A heuristic method can be used for setting the kernel size. For simplicity

here we define the kernel size rkernel = 5σ. We need a way to set appropriate

σ. Given an arbitrary value of Gaussian deviation σ, one can observe how

many point samples will be covered by the region with rkernel. From the

observation that rkernel is suggested to cover a small local neighborhood on

the point samples. For example, Figure 3.10 illustrates the neighborhood of

point samples in 1D, 2D and 3D space. A set of points in a 3 by 3 window

forms a neighborhood for range images. We tune the Gaussian deviation

σ for different data sets such that the region with rkernel covers 9 point

samples. Since the exact calculation of the number of points covered by the

region with rkernel over Euclidean space is too computationally expensive, we

approximate the value by calculating the number of points covered by the

region with rkernel at each point sample and extract the median number from

them. Finally, σ is decided when the median number is 9, which means that
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3.4. SOLVING THE OPTIMIZATION PROCESS

the region with rkernel covers 9 point samples.

(a)                   (b)                          (c) 

Figure 3.10: (a) Point samples in 1D space, each 3 adjacent points form a

neighborhood. (b) Point samples in 2D space, each 3 by 3 adjacent points

form a neighborhood. (c) Point samples in 3D space, each 3 by 3 by 3

adjacent points form a neighborhood.

3.4 Solving The Optimization Process

Problem statement: Given two point sampled sets, S = {s1, s2, ..., s|S|} and

T = {t1, t2, ..., t|T |}, we set up a deformation graph G = {N,E} represent-

ing the deformation of S and associated with a set of affine transformations

A = {R1, t1, R2, t2, ..., R|N |, t|N |}. Find the set A∗ that minimizes the energy

system

Etotal = wfitEfit + wrotateErotate + wregularEregular. (3.13)

This is a non-linear system which can not be trivially solved by a simple

gradient descent method if we combine the fitting function with constraints.

Following Sumner et al. [SSP07], the non-linear system is solved using non-

linear least square problem. To do so, we have to modify our fitting function

in Equation 3.12 since the non-linear least square problem minimizes an

equation from a positive value to zero, but the range of Equation 3.12 is
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from zero to a negative value. The modified fitting function is

Efit =
∑
s∈S

(U −KC(s, T ))2 =
∑
s∈S

(U −
∑
t∈T

e
−‖t−s̃‖2

2σ2 )2. (3.14)

We add an upper bound U and take square to each term of summation over

S. This bound ensures that the maximum correlation value of a moving

point s will be under this bound so that U−
∑

t∈T e
−‖t−s̃‖2

2σ2 is larger than zero

when minimizing the system using least square solvers. The value of bound

is important and should be sufficiently tight since it affects the gradient

of the non-linear system. A too large U may lead to poor convergence in

optimization process, while a too small U , on the other hand, will lead the

term of summation to a negative value and the optimization process may

never converge to the right result.

How to evaluate the bounding value U is related to the size of the kernel

function. Considering a point s ∈ S moving around the point samples t ∈ T ,

the maximal value of KC(s, T ) may appear when s moves to the densest

region of point samples, as shown in Figure 3.11. Since exact calculation of

the bounding value over Euclidean space costs too much, we approximate the

bound by calculating an approximated value of kernel correlation KC(t, T )

at each point sample t ∈ T , defined by

KC(s, T ) =
∑
t∈T

e
−1
2
(b ‖t−s‖

σ
c)2 . (3.15)

As described above, kernel correlation has an effective region on the target

T . We collect all points t ∈ T in the region with kernel size 5σ and compute

Ut = KC(t, T ) for each t ∈ T , as shown in Figure 3.12. The bounding value

U used for Equation 3.14 is selected from the maximal value of Ut.
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(a)                                         (b) 

Figure 3.11: The maximal value of KC(s, T ) tends to appear in the densest

region of point samples as shown in (a), compared to the region shown in

(b).

1 

0 

σ 

Tt

Figure 3.12: An approximated bound value of kernel correlation Ut =

KC(t, T ) is calculated at each t ∈ T . The red line represents the func-

tion KC(t, T ). The approximated bounding value U is selected from the

maximal Ut.

Finally, we solve the non-linear least square system in Equation 3.13

by Levenberg-Marquardt algorithm [MNT04], and the number of unknown

variables in the energy system is 12n where n is the number of nodes in

deformation graph. First, find a vector function f(x) such that f(x)Tf(x) =
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wfitEfit + wrotateErotate + wregularEregular. This vector function f(x) can be

easily designed since we formulate all the terms in least square form. In our

experience, using supernodal sparse Cholesky factorization for solving the

linear system at each iteration of Levenberg-Marquardt is the fastest way

for the entire non-linear system. The inputs to the objective function, say

point samples T for each moving point s do not need to be changed through

the entire optimization process, which is opposite to ICP in which the set

of closest points always changes from iteration to iteration. Our non-linear

system is solved straightforward and reaches fast computation compared to

ICP since the system is not interrupted by recomputing the resources between

iterations.

3.5 The Trusted Set of Fitting Function

Recall that each point s in Equation 3.14 can be seen as a point equipped

with a kernel function moving around the point samples on T . The moving

point s has an effective kernel region on T according to the kernel function at

each time step. It is not necessary to collect all points on T for each moving

point s when calculating the summation of KC(s, T ) since there are many

point samples on T whose distance to s is larger than 5σ and have weights

approaching to zero. These point samples with distance larger than 5σ can

be filtered out for reducing computation time.

We introduce a smaller set of point samples Ts ⊆ T for each point s in

Equation 3.14 and call such set Ts a trusted set of s. For the moving point s,

Ts covers a set of point samples in T within its kernel for all time steps. The

consecutive movements of s forms a trajectory; as illustrated in Figure 3.13.

The trusted set Ts is the union of point sets inside the regions with kernel size
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of moving point along the trajectory. However, collecting the point samples

to form Ts must rely on the prediction of the movement, which can not be

easily achieved.

s 

T 
Ts 

(a)                                  (b)                                     (c) 

Figure 3.13: (a) The movement of the point s at each time step. (b) The

consecutive movements of s forms a trajectory. (c) The trusted set Ts is the

union of point sets inside the regions with kernel size of the moving point s

along the trajectory.

We use an approximated method to calculate Ts. As mentioned in Sec-

tion 3.1, the matched point of s should be found in a small region under

the assumption of high frame coherence, which means that the consecutive

movements of s can be constrained in the small region Ms. If we have such

region Ms for each s, then the trusted set Ts is a bigger set expanding from

Ms according to kernel correlation, as illustrated in Figure 3.14.
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Source 

Target 

Source 

Target 

Ms 

s s 

Kernel size Ts 

(a)                                                                      (b) 

Figure 3.14: (a) The region Ms covered by red ellipse is the set that we

assume the moving point s will find a matched point on T according to the

assumption of high frame coherence. (b) Based on Ms and the effective size

of the kernel function, we can find a trusted set Ts ⊆ T for the point s such

that all points in Ts will affect s effectively during the entire optimization

procedure.

Associating each s with such a trusted set posts several benefits. It re-

duces computation cost when summing KC(s, T ) in Equation 3.14 since T is

reduced to Ts, and more importantly Ts can hook the result of extreme posi-

tion of the point s. We define the trusted set as follows: since the input range

images have high spatial and temporal coherence between adjacent frames,

the moving distance of each point s is assumed to be small. We assume that

each point s ∈ S will move within a distance rmove from s. The small set Ms,

which is expected to include a matched point, is defined by a spherical region

centered at s with radius rmove, as illustrated in Figure 3.15(a). Based on

Ms, the trusted set Ts is calculated by collecting the point samples bounded

by the spherical region centered at s with radius rtrust = rmove+rkernel, where

rkernel is the effective size of the kernel function, as shown in Figure 3.15(b).

We set rmove = 5σ and rkernel = 5σ.
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(a)                                                                (b) 

Ts 
rmove Ms rkernel 

s s 

Figure 3.15: (a) The moving point s ∈ S is assumed to move within a small

distance rmove to find a matched point on the target T within Ms. (b) Based

on Ms, the trusted set Ts for the moving point s is bounded approximately

by the sphere with radius rtrust = rmove + rkernel.
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CHAPTER 4

Experimental Results

In this chapter we first describe our implementation details and discuss the

parameter settings for various experiments, and then we compare our method

to ICP-based methods in terms of the registration errors and time statistics.

4.1 Implementations and Parameters

As illustrated in Figure 3.4, our non-rigid registration process takes a surface

template and a sequence of range images as input and produces a sequence

of deformed templates as output. To this end, the process needs to design a

template that depicts the shape of the input range images and to generate

a deformation graph that embeds the template for deformation. For energy

minimization, the registration process also needs to tune some parameters for

various different registration results. We use two data sets to demonstrate the

implementation details and to reveal results for different parameter settings.

The surface template is selected from one of the input range images. First

we edit the selected range image and keep the region which can capture the

motion of the input range images. Then we apply hole filling and surface
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smoothing algorithms to fill up hole regions and smooth the noisy surface.

We additionally edit the mouth region to make it open and finally simplify

the template for reducing the computation cost. The acquisition steps of the

template is illustrated in Figure 4.1.

Figure 4.1: (a) The selected range image represented in mesh form. (b) A

clean surface edited from the selected range image. (c) A hole filled surface.

(d) A smoothed surface. (e) A simplified surface with opened mouth.

The deformation graph for the template is built as follows. Graph nodes

are distributed by uniform sampling on the template. Since the template

is selected from one of the input range images, we project the template on

xy-plane and partition the plane into uniform grids. Each grid holds a graph

node if it covers the template. A graph node is placed at the grid center

with the original z-values of the template vertices in 3D space, as shown in

Figure 4.2(a). We also associate each node with a radius r which is used in

Equation 3.2. The value of r is given by calculating the distance from the

node to its k-nearest neighbors. We use k = 4. A graph edge links two nodes

that can affect the same point on the template. In other words, an edge links

two nodes if the distance between them is less than r1 + r2, where r1 and r2

are the radii of the nodes. Figure 4.2(b) shows the deformation graph for the

template. The connectivity in the nose region is complex since the radius of
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each node is large due to the variations in z-values.

(a)                                                                      (b) 

Figure 4.2: (a) Generate graph nodes by uniform sampling. The yellow lines

partition the xy-plane into uniform grids and the blue points stand for graph

nodes. (b) The deformation graph for the template. Blue lines show the

connectivities of the graph.

For energy minimization, different parameters may lead to different regis-

tration results. We describe the affection of each parameter to our non-rigid

registration process by examples.

The weights of the energy system. The weights wfit, wrotate, and

wregular in Equation 3.13 should be set with care. During the optimization,

the non-linear system regards the energy with largest scale as the most im-

portant term and minimizes it firstly since the gradient in the non-linear

system descends most from the energy with largest scale. The non-linear

system then minimizes the energy with middle scale, and so on. In our expe-

rience, Erotate is the most important energy and the weight wrotate should be

the largest. The weights wfit and wregular can be set with small and middle-
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scale values, respectively. We start the system with wfit = 1, wrotate = 100,

and wregular = 10. The registration results shown in Figure 4.3 are bad since

the rotation matrix constraint energy Erotate can not preserve the property

of a rotation matrix and the template is scaled and sheered.

(a)                               (b)                               (c)                               (d) 

(e)                               (f)                               (g)                               (h) 

Figure 4.3: Registration with wfit = 1, wrotate = 100, and wregular = 10. The

mouth region of the template is obviously scaled and sheered. In fact, the

whole region of the template is scaled and sheered.

With the weights wfit = 1, wrotate = 106, and wregular = 10, it seems that

the rotation matrix constraint energy Erotate has been constrained, but the

template is stretched when the registration process goes farther; as illustrated

in Figure 4.4.
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(a)                               (b)                               (c)                               (d) 

(e)                               (f)                               (g)                               (h) 

Figure 4.4: Registration with wfit = 1, wrotate = 106, and wregular = 10. The

template is not scaled and sheered, but is stretched when the registration

process goes farther.

With the weighting values wfit = 1, wrotate = 106, and wregular = 100,

the registration result looks reasonable. Notice that this is not the only one

setting for the weights. One can adjust the weights for different data sets as

long as the scales of the weights are appropriately designed.

The size of the kernel function. This value affects the searching of

extreme position for a moving point and is defined in terms of the deviation

σ when using Gaussian kernel. Typically, an effective kernel size is 5σ but

we use 4σ in experiments since any point sample with distance larger then

4σ is already small enough in computation. Basically, a too large σ leads

the template to shrink since many points on the template move to the same

extreme position; as shown in Figure 4.5. On the other hand, a too small σ
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leads the template to bend and distort since many points on the template

are stagnated due to noneffective motion, as illustrated in Figure 4.6. The

appropriate size of σ is currently chosen by user and a suggestion for setting

the size is described in Section 3.3.

(a)                               (b)                               (c)                               (d) 

(e)                               (f)                               (g)                               (h) 

Figure 4.5: A too large kernel size leads the template to shrink.
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(a)                               (b)                               (c)                               (d) 

(e)                               (f)                               (g)                               (h) 

Figure 4.6: A too small kernel size leads the template to bend and distort.

The initial point of the non-linear system. Since we assume the

input range images have high spatial and temporal coherence between adja-

cent frames, the initial point of the non-linear system is generally assigned

with R = I and t = ~0 for each graph node. The kernel size σ, on the other

hand, is expected to be small for correct registration. If the coherence be-

tween two adjacent frames becomes lower, which means the motion is large,

some moving points on the template are stagnated as mentioned above. To

handle this problem, we need a good initial point for the non-linear system

and employ an adaptive kernel size strategy for optimization.

The adaptive kernel size strategy is illustrated in Figure 4.7. We divide

the entire minimization process into several subsystems and each subsystem

is solved using different parameters. In our implementation, we use two-

pass optimization. The first pass is considered as an initial guess of the
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initial point for the non-linear system. We solve the first pass with a larger

kernel size with 10 maximum iterations. The second pass is the main step

that the resultant affine transformations A∗ will be used to transform the

template. We solve the second pass with a smaller kernel size and with

initial point that is the results of the first pass. The termination condition is

‖Ak−Ak+1‖ < 10−6, where Ak is the set of affine transformations in the k-th

iteration of the non-linear optimization. Notice that the adaptive kernel size

strategy is not the only way to obtain a good initial point for the non-linear

system. It is better to use feature matchings between adjacent frames if we

have such matched features since it is more robust for shape registration.

Initial guess 

solver 

A’ 

solver 

solver 

0,:0


 tIRA

A* 

0,:0


 tIRA

A* 

With larger kernel size 

(a)                                         (b) 

With smaller kernel size 

Figure 4.7: (a) A general solver that takes a set of initial affine transfor-

mations A0 as input and produces A∗ as output, which contains the desired

transformation of the template. (b) An adaptive kernel size strategy that

contains an extra step of guessing the initial point for the non-linear system.

Finally, our energy minimization process is solved with aforementioned

parameters and the registration results are shown in Figure 4.8 and 4.9.
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Figure 4.8: Non-rigid registration results of the face data set.

Figure 4.9: Non-rigid registration results of the hand data set.

4.2 Registration Errors and Time Statistics

In this section we compare our non-rigid registration method to ICP-based

methods in terms of registration errors and time statistics. We implement the

non-rigid ICP-based method proposed in Li et al. [LAGP09]. The ICP-based

formulation for energy system is as follows [LAGP09]:

Etotal = wfitEfit + wrotateErotate + wregularEregular, (4.1)
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where Erotate and Eregular are the same as Equation 3.5 and 3.7, and the

surface fitting function is

Efit =
∑

(s,t(s))∈C

αpoint‖A(s)− t(s)‖2 + αplane|nT
t(s)(A(s)− t(s))|2, (4.2)

where s is a point on the source surface and A(s) is the transformed position

of s, and t(s) is the closest point of s on the target surface with the corre-

sponding surface normal nt(s), and C is the set of mappings that maps one

source point to its closest point and in which some of them may have been

removed to filter out bad correspondences. The weights used in the test are

wfit = 1, wrotate = 106, wregular = 10, αpoint = 0.1, and αplane = 1.

For comparison, the registration error of two surfaces is measured by cal-

culating the distance between the shapes. The Hausdorff distance can be used

to calculate the distance between two shapes. But calculating the maximum

of minimum distances is bad for measuring the error between two shapes if

there exists a large minimum distance between the shapes. We use an error

measurement that averages the minimum distances between two shapes as

follows. Given the registered surface template S and the corresponding range

image T , we associate each s ∈ S with a distance ds = ‖s−t(s)‖ where t(s) is

the closest point of s in T . The registration error is measured by calculating

the root-mean-square error (RMSE) on the template,

RMSE(S) =

√∑
s∈S d

2
s

|S|
, (4.3)

where |S| is the number of points in S.

Figure 4.10 shows the registration errors of the face data set. Colors on

the template represent the distance ds of each point s and a red color means

a larger distance whereas a blue color means a smaller distance. The colors

of the nose regions on the template in Figure 4.10 are always near red since
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hole regions in the range image there result in large distances ds. Another

similar result is shown in Figure 4.11 for the hand data set.

Registration errors of the kernel correlation method 

Registration errors of the non-rigid ICP method 

Figure 4.10: Registration errors of the face data set.

Registration errors of the kernel correlation method 

Registration errors of the non-rigid ICP method 

Figure 4.11: Registration errors of the hand data set.

The corresponding error statistics of the two data sets are shown in Table

4.1. The numbers in Table 4.1 show the average RMSE of 90 frames in the

face data set and 100 frames in the hand data set using two methods. In
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summary, the average RMSE between the proposed method and non-rigid

ICP are quite close, but ours are smaller. It makes sense that our RMSE is

smaller since our surface fitting function fits a point on the source surface to

a reasonable 3D position rather than another point on the target surface.

Face Hand

Avg. RMSE per Frame (KC) 0.78597 0.383834

Avg. RMSE per Frame (N-ICP) 0.823858 0.480465

Table 4.1: The average RMSE of the face and hand data set.

The time statistics for the two data sets are listed in Table 4.2. The com-

putations are performed on a 2.3GHz Intel R© Core
TM

i5-2410M processor

with 4GB RAM. In general, our registration algorithm is more efficient com-

pared to the non-rigid ICP since the minimization process does not need to

recompute the resources from iteration to iteration in the non-linear system

and is solved straightforwardly. The gap of computation time for the two

methods are smaller when the number of graph nodes is small, and becomes

larger when the number of graph nodes grows; as listed in Table 4.2.

Face Hand

] of Frames 90 100

Avg. ] of Points per Frame ∼56k ∼37k

] of Template Vertices 8032 1441

] of Graph Nodes 802 142

Avg. Registration Time per Frame (KC) 9m:23s 7s

Avg. Registration Time per Frame (N-ICP) 1h:0m:4s 20s

Table 4.2: The time statistics for the face and hand data sets.
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CHAPTER 5

Conclusions

We give a summary for the proposed non-rigid shape registration algorithm

in this chapter and also discuss the limitations and some future works.

5.1 Summary

For non-rigid registration problem, many methods based on non-rigid ICP

have been proposed to formulate the surface fitting function. The non-rigid

ICP needs to find the set of closest points at each iteration of the non-linear

energy optimization. Instead, in the proposed kernel-correlation based sur-

face fitting function is fixed during the entire optimization process. The en-

ergy optimization can be solved straightforwardly and more efficiently. The

non-rigid registration algorithm we have presented relies only on the knowl-

edge of point samples in 3D space and does not use any color images for

additional information between adjacent frames. In summary, we have pre-

sented a different way of formulating the surface fitting function for non-rigid

shape registration, with better result and better computational efficiency,

compared to an ICP-based method [LAGP09].
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5.2 Limitations

The input range images are assumed to have high spatial and temporal co-

herence between adjacent frames. If there exists two adjacent frames with

large motion gap, then the process will result in incorrect registration since

it can be trapped into the local minimum of the non-linear energy system.

Figure 5.1 shows an example in which the motion gap between two adjacent

frames is large, especially in the mouse region. The registration result for

the second frame is bad.

(a)                                            (b)                                          (c) 

Figure 5.1: Image (a) and (b) are adjacent frames. (c) is the registration

result of the latter frame.

To handle this problem, we provide a good guess for the initial point of

the non-linear system. We manually select a set of graph nodes and adjust

initial translation vector t for each selected graph node. Figure 5.2(a) shows

the adjusted result, which is better than before.
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(a)                                         (b)                                          (c) 

Figure 5.2: (a) The surface template before doing registration. (b) A set of

graph nodes are selected and each node is given a motion vector as an initial

guess for the non-linear system. (c) The adjusted registration result.

5.3 Future Works

There are several issues for enhancing the robustness of our non-rigid reg-

istration process. First, we set the same kernel size σ to each source point

s using Gaussian kernel and solve the optimization process with the fixed

σ over the entire minimization process. Setting the same σ for each s is

fine. However, the size of σ is currently chosen by user and fixed in the

optimization process, which may lead a bad registration result if the motion

gap between two adjacent frames is large. As described in Section 4.1, we

use adaptive kernel size strategy that employs two different sizes to handle

the problem with large motion gap. It is recommended to study the adap-

tive kernel size strategy to see if the size of kernel σ can be automatically

computed. The Gaussian kernel, on the other hand, is an isotropic kernel.

In some cases the surface fitting function using kernel correlation always fits

a point to a wrong 3D position, as shown in Figure 5.3(a). It is desired
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to design an anisotropic kernel for kernel correlation. Figure 5.3(b) and (c)

show that an anisotropic kernel can be designed according either the source

or the target surface, depending on the problem we have. For non-rigid shape

registration problem, the input range images have high spatial and temporal

coherence between adjacent frames. The anisotropic kernel can be designed

according to the source surface since the deformation between the source and

the target is small. It is also suggested to employ feature matchings between

shapes if we have such matched features. Figure 5.4 shows that if we have

a guess of the matched position on the target surface, the anisotropic kernel

for the source point s is designed according to the target surface. In fact,

the anisotropic kernel should always be designed according the target surface

since we are transforming the source to the target.

Source 

Target 

Isotropic kernel 

Source 

Target 

Anisotropic kernel 

Source 

Target 

Anisotropic kernel 

(a)                                         (b)                                       (c) 

Figure 5.3: (a) Kernel correlation with isotropic kernel function may lead

a source point to a wrong 3D position. Anisotropic kernel can be designed

according to either the source surface (b), or the target surface (c).
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(a)                                                             (b) 

Target 

Source 

A guess of matched position 

Target 

Source 

Anisotropic kernel 

Figure 5.4: If we have a guess of matched position on the target surface

for the source point as shown in (a), then the anisotropic kernel should be

designed according to the target surface (b).

For reducing the computation time of our non-rigid registration algo-

rithm, it is worth to reduce the computation cost of the energy minimization

process. The number of unknown variables in the non-linear energy system

is 12n where n is the number of nodes in deformation graph. The com-

putation cost can be reduced if we reduce the number of graph nodes. In

deformation graph, a node presents a transformation entity. It is worth to

distribute graph nodes by importance sampling on the underlying surface

rather than uniform sampling. Furthermore, the number of unknown vari-

ables in the non-linear energy system can be reduced from 12n to 7n if we

replace the 3 by 3 rotation matrix R for each graph node with a quaternion.

Using a quaternion to present a rotation only needs 4 variables compared to

a rotation matrix which needs 9 variables.
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