TR SRRy

A novel parallel Bees Algorithm for optimization problems on

GPU

oyt w e

hEFaE R Fp

- BANEVRILE DT FRREFE
LAEPE E LS E A A Y

A novel parallel Bees Algorithm for optimization problems on

GPU
Foyo4 Ly B Student : Sheng-Kai Huang
R 2T Advisor : Shyan-Ming Yuan
P L B~ &
FaRpePge sy
I TR
AThesis

Submitted to Department of Computer and Information Science
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master
in
Computer and Information Science

June 2012

Hsinchu, Taiwan, Republic of China

- BRI FTET (T ITE
FOFAR TR
SRR T B TR

i &
FRAERAT RSN 1 EAERG A RE R - Tk KA F R
FRESS NP R AT > P 2 2 FiT ik B R s 2 » AR &k4x % - Swarm Intelligence &_
GRS RY AL GUE IR SRR AT AR KRR AT MR
He — B od W3 F ik Ef2au7 5 2+ CPU bound job s — & T (7 A2 chug B 2
Tt AR AR A P B P A G0 0 @0 AR BEFEIE B2 0T (T ik

B9 AL B(GPU) b P8 54 A AL ik e % 1 4 T2 B RILE £ F A

&

T {7 i gtk g e T GRGPU el B - 5 SaRE g 4 Bl GPU (74 £ ehT 7
¥ o1& > d NVIDIA & &% GPGPU %4+ % CUDA(Compute Unified Device
Architecture):g B 2 4 FI* RE _rnC/C++)TAFl NAabta BgEpe T FRY £
AHEYAHIE AT ISR RN ERETF0 2§ £ 4 CUDA
T FERE T T AES B Lk & 1R AR TR0 o ciRIGE o R P en
2% > ¥ g T i3 i a1 CUDA Bees Algorithm (CUBA) 1 # it < #ic & cryad@ % > & &

T B i 1 B 4L vC A= @ 2ien Bees Algorithm(BA) 2 > 3 3X & #xiy eite i@ o

A novel parallel Bees Algorithm for optimization problems on

GPU

Student: Sheng-Kai Huang Advisor: Shyan-Ming Yuan
Department of Computer Science and Engineering

National Chiao Tung University

Abstract

Searching the solution of optimization problems is a very important work in computer
science and engineering field. The problems are belong to NP problem, so more and more
algorithms are developed to find approximate solutions instead of the real solutions. Swarm
Intelligence is the collective behavior of the system of social animals in nature. The concept is
used in algorithm on_artificial intelligence(Al). The Bees Algorithm is one of the works.
Because these algorithms are computational bound jobs, ‘some parallel swarm based
algorithms are proposed in recent years. Even so, few works are developed base on The Bees
Algorithm.

GPU is a special architecture of graphic processor. The highly parallel features of
graphic processing made the rapid development of General Purpose GPU(GPGPU). A lot
works for massive parallel computing on GPU are proposed. NVIDIA provide a general
purpose parallel model, thus programmer could use their familiar language C/C++ to develop
own parallel applications.

In this paper, we do many modifications for The Bees Algorithm and make it adapt to run
in the parallel architecture of CUDA. We also test the performance accelerations for numerous
famous optimization problems. Finally, the result shows the CUDA Bees Algorithm(CUBA)
we proposed perform at least 3x times faster than traditional BA in numerous different

optimization problems.

Acknowledgement

ALY B AR EE A iR - > BTG AT EHRE o AV R FH
A ERRETH A EAFHAT REFORE > XFRP 2 pd dpEo N R
AN AAITIY B RN PR EA R p s XEF AL LS B4 tg;z#;}g:;}f{ﬁq;jﬁ;)

gt S LRFF R o hied E o ZHREAS AN ERE > SR
HE AP T2 g » XFLA2Y 5 hfles o FEA Rz e T ?55;34, &
AFRHRAITL AR » AP EIMFRITOFGE » B3 A - L E XD %)
FAOLY O RARRAE R RHAETE CRBF R ARG
HEAFE o B faf;hﬁﬁég;%‘_év’w%frﬂ.&.ﬁ\?i;lg~ rm’fj hipd EFRL o A ANEL
dEIEANHEY AR c FRSNBIVAZ- Ehber > EFH T { AohEE R
??‘ FrPAf pd FE-ZVEFTRI LB FD F > F BT E > 2 3)
B R REFAPDCSLABRG s « R Bt R LA FELELE o Ah{EAR
BB DRA o G R ’TI.*L;‘;’;% £x s F 0 ek s Al 4 EE AR

Table of Contents

ACKNOWIBAGEMENT. ...ttt bbbt b Rt b e s e et e bbb bt b nrenen s iii
TaDIE OF CONLENES ...t e bbbttt iv
LISE OF TADIE ... bbbttt v
TS 0 o O S vi
(@ P o] (=1 I {0 T [1Tod 1 o] 3 RS 1
LI PIEIACE ...ttt bbbttt 1
1.2 IMIOTIVATION <. i Bt sttt ettt bbbt b e b e s e 1
1.3 RESEAICN ODJECTIVE ittt cesiiii s i iibre s eatsene e shete e et e testeestesseessesesseensesseensensesseensenes 2
1.4 Research ContriDULION i it vi i it smsmesne e siihehe e b sse st esesesre e s e ere e b sae e e snene 2
Chapter 2 Background and Related WOTK...........ccouiiiiieiiiieisissesie e 3
2.1 OPtIMIZAtiON PrODIEIMS wucsuissiesrissesssssseentonseennessessasssssuionsensesseessessnssnessasssassessesssensesseessesseessessesssensens 3
2.2 Intelligent swarm-based optimization AIGOTItNM .co.cc.ccviiiimriiriibiiii s 3
2.3The Bees AIQOrItAMIL ... ol s e ot o et e st e e eesaeeane s 4
2.4 General Purpose COmMPULation 0N GPUcc..iiu it ettt sinsnne e seesie e seeseeneeneeeenens 6
2.5 Compute Unified Device ArchiteCture (CUDA)ocuvoveciiinccie sttt ste e ee e sve e steeanene 9
2.6 REIAIEA WOTK ..ottt b ettt eaaiieh e e ab et se s st et ese e b et ebe e b et e b e ese e e s nnene 11
2.6.1 Parallel Bees Algorithm for ATC Enhancement in Modern Electrical Network 11
Chapter 3 Parallel Bees Algorithm 0N GPU..........coiiiiiiiiiie et sees 12
3.1 SYSIEM OVEIVIEW......ecieeieeciieeiee e ete ettt e s e s e e s taesateeste e teesteessaesatessteenteenteeseesssesssesnseenseensanns 13
3.2 Parallel APPrOACKHES.........cceiieieriesteeeete ettt ettt e e s e et e sre e b e teesa e sesreensesteensensesseensenns 13
3.2.1 Parallel INFAlIZAtIONc.coviviiiiiieicc s 14
3.2.2 OUG—EVEN SOM ...ttt ettt 14
3.2.2 Group Bees into Different ColONIES........cvccveveeierieieeereeeere et 16
3.2.3 Modified Bees AIGOTthIM.........cccvoiiiiieecicesee ettt 16
Chapter 4 Experimental ReSUITS and ANAIYSIScceiveiiiiiie it sre e sre e sre e snesraeaesnes 19

4.1 EVAIUATION ENVIFONMENT. ...eeiiiiieiee ettt ettt e eeeeteeseseeeesesaeeesesseeeessaseeesseseeessaeseessaseeessasseeessans 19

4.2 BENCMAIK FUNCHIONS. ..ottt 19
4.3 ANAIYSIS QNG RESUIL.......oouiiiieieeceee ettt et s be b e steesa e besreenee e 30
4.3.1 ANAIYSIS OF NP ..vieeiiiicteee ettt ettt st e et e s be e s e s beesa e teereensesreenaenrens 31
4.3.2 Analysis of the NUMDEr 0f COIONIES........ccviiiiiieecece e 32
4.3.3 Analysis of the NUMDEr OF DEESc..evuiiiieei s 34
4.3.4 RODUSENESS ANA SPEEAUPDvevititertertetetet ettt 35
Chapter 5 Conclusion and FULUIE WOTK...........oouiiiiiiiiieieieisise st 39
RETEIENCE. ...ttt bttt Rt R R R bR R Rk R Rt R R et n e 41
N 0] 0 1=] 410 (< G PSP U PP PP PPRPR 43
sourcecodercubaii o NI o g RN 43
source code:cubaict g FE...... Bl B ool Fo W PR ... QK @ 44

Table 3 - 1 Odd-Even Sort Algorithm.........cii i 15
Table 4 - 1 Hardware configurationsccoeevueeieiieiie e 19
Table 4 - 2 Benchmark FUNCLIONS........cccooivirieieieieeseseeeeee e 29
Table 4 - 3 nep INCreasing (LME) ...cc.eecieecieeieecee e 31
Table 4 - 4 nep increasing (ItErationNs)ccceeveeevieereeeieeree e 32
Table 4 - 5 colonies increasing (tIMe)occeeveeiiierie e 33
Table 4 - 6 colonies increasing (Iterations)cccceeveeecieereecie e 33
Table 4 - 7 bees INCreasing (LME)cocvvecieeiieee et 34
Table 4 - 8 bees increasing (ItErations)........cceeveeecieereeecieeree e 34
Table 4 - 9 Combinations of Bees Algorithm parameters..........ccccccevveeiveennnnnne. 35
Table 4 - 10 Combinations of CUDA Bees Algorithm parameters..................... 36
Table 4 - 11 The successful rate iN 50 FUNSccccoeieviriinieneeeeeee e 37
Table 4 - 12 SPEEAUPSeovieiiriieieeeeeeie ettt sttt et s eea s 38
Table 4 - 13 SUCCESSIVE ITEFAtIONSc..covuieiiriierieeieeeesieeie et 38

List of Figures

Figure 2 - 1 Flowchart of the basic Bees Algorithm [6]........cccoovevievinineninenenne. 5
Figure 2 - 2 The comparison of computation power between CPU and GPU . ..7
Figure 2 - 3 Floating-Point Operations per second and memory bandwidth for

the CPU and GPU [11] ..ottt 8
Figure 2 - 4 The GPU Devotes More Transistors to Data Processing [12] 9
Figure 2-5 hardware viewpoint of CUDA architecture.........c..ccccccecevvevnnennee 10
Figure 2 -6 Software viewpoint of CUDA architecturec.cccccceevenvevnnennee. 10
Figure 2 - 7 (a)Serial Approach (b)Parallel Approach [21]ccccccevirinennene 11
Figure 2 - 8 Comparison of Elapsed Time for Different Algorithms in seconds

[21] ... R . B P PR AW 12
Figure 3 -1 Framework of the CUBAc.. ..ot e 13
Figure 3 -2 Algorithm of the CUBAcoooi o it 14
Figure 3 - 3 Procedure of Odd-EVEN SOFt............ccccoceviminieiiieieieeese e 15
Figure 4 - 1 The surface plot of Ackley’ function.........cc.oocvvvveveecienceeneeceeeene 20
Figure 4 - 2 The surface Easom fUNCLION.............titeriiieneneneeieeeesee e 21
Figure 4 - 3 The surface Gold and Price funetionccccecveieiienenenenenennens 22
Figure 4 - 4 The surface Martin and Gaddy functionc..cccceeeverenenenennens 23
Figure 4 - 5 The surface Schaffer functionc.ccocvvevinenienenenenene s 24
Figure 4 - 6 Schewefel TUNCTION ..o 25
Figure 4 - 7 The surface Hyper Sphere function..........ccocceeevveeveecesceseece e 26
Figure 4 - 8 Griewank TUNCLIONcoccoviiiririeieieeresee e 27
Figure 4 - 9 R0SeNDroCk fUNCHIONccoiiiiiiiieieieeee e 28

vi

Chapter 1 Introduction

1.1 Preface

Optimization problems have been the subject of much research in recent years. It’s a
NP-problem, so many different alternative techniques have been developed. The swarm
intelligence is one of those methods which is used to solve the near optimal solution. Many
researchers have introduced various algorithms by modeling the behaviors of the swarm of
animals in nature [1-5]. Self-organization is the feature of the system which gets global-level
response by means of many different low-level interactions.

The Bees Algorithm was proposed by DT Pham [1] in 2005 for optimizations problems,
and the improved performance of the algorithm have been proposed several years latter [6].
Researchers have come up with several real-word applications such as data mining [7], robot

controlling [8], electronic engineering [9], job scheduling for the Bees/Algorithm [10].

1.2 Motivation

Because of the optimization problems are computational issues, we want to find a
parallel way that can speed up the Bees Algorithm. Nowadays modern Graphic Processing
Units (GPU), which can be seen as highly fast parallel general-purpose systems. Developers
have designed many algorithms and applications on GPU for better performance. Moreover,
several general purpose languages for GPUs have become popular such as CUDA [11, 12]. It
supports many graphic programming APIs, so developers do not have to consider more
complexity of low-level problems while programming with CUDA. Although much work has
be done on developing parallel swam intelligence algorithm on GPU such as Ant Colony

Optimization[13-15], Genetic Algorithm[16, 17] and so on, no attention has been paid to

develop the parallel bees algorithm on GPU. The purpose of this paper is to develop a novel

parallel Bees Algorithm which is adapt running on GPU.

1.3 Research Objective

For the reasons we mentioned above, we implemented a parallel Bees Algorithm to test
the speedup for several common functions of optimizations problems. We evaluated and
compared both of the execution time with CUDA on GPU and the execution time with C++

on CPU to verify efficiency of the algorithm.

1.4 Research Contribution

The following are our research contributions:
1. Anovel parallel Bees Algorithm on GPUs

2. Tens times speedup than traditional version on CPU

Chapter 2 Background and Related Work

2.1 Optimization problems
The standard form of a (continuous) optimization problem is
minimize f(x)

subject to g;(z) <0, i=1,...,m
hi(z)=0, 1=1,....p

where

. f(I) :R" - R is the objective function to be minimized over the variable ,
. 91'(1’) <0 are called inequality constraints, and

- N (I) =0 are called equality constraints.

By convention, the standard form defines a minimization problem. A maximization
problem can be treated by negating the objective function.[18-20]

2.2 Intelligent swarm-based optimization Algorithm

Many complex multi-valuable optimization problems can’t be solved within polynomial
computation times. For the reason, many researchers interested in search algorithms which
finding approximate optimal solutions in reasonable running time. Swarm intelligence is the
field of optimization and researchers have developed various algorithms by modeling the
behaviors of different swarm animal with social organization such as ants, bees, birds...and so
on. In 1990s, Those algorithm inspired by ants like Ant Colony Optimization had been
proposed by Marco Dorigo [1]. Kennedy also developed the Particle swarm optimization
(PSO) [3]. Those algorithm inspired by honey bees such as The Bees Algorithm by DT Pham

[2] in 200, and the Artificial Bee Colony Algorithm (ABC) by D. Karaboga [5] in 2007.

http://en.wikipedia.org/wiki/Marco_Dorigo
http://en.wikipedia.org/wiki/James_Kennedy_(social_psychologist)
http://en.wikipedia.org/wiki/Particle_swarm_optimization

2.3 The Bees Algorithm

The Bees Algorithm is population-based method to search optimization of the problems
which is inspired by the behavior of honey bees in nature[2, 6]. It requires several parameters
to be set as following: n (number of scout bees), m (number of sites to be selected from n
visited sites), nep(number of bees recruited for top e sites from the m visited sites),
nsp(number of bees recruited for the other (m-e) selected sites), ngh initial size of patches
which includes site and its neighbourhood and stopping criterion. The algorithm begins with
the n scout bees which randomly being placed in the searching domain. The basic Bees

Algorithm is shown in followingand the corresponded flowchart is in Figure 2-1

1. Initialize populations with random-solutions.

2. Evaluate Fitness of the population.(see the fig.)

3. While(the stopping criterion is not met)
//[Forming new population.

4. Select sites for neighbourhood search.

5. Recruit bees for selected sites(.nep bees for top e sites.and nsp bees for remain (m-e) sites)
and evaluate fitness.

6. Select the fittest bee from each patch.

7. Assign remaining bees (n-m) to search randomly and evaluate fitness.

8. End While

Random Initialization :
Selection
h
»| Fitness Evaluation
¥ / Elite Site (e) Best Site (m-e)
Local Search nep bees per patch nsp bees per patch
v Fitness Evaluation Fitness Evaluation
Global Search v v
Select Patch Fitness Select Patch Fitness
h

New Population

Random n-m
Stop lr

Fitness Evaluation

Solution

Figure 2 - 1 Flowchart of the basic Bees Algorithm [6]

The Bees Algorithm above is the most basic version. Pham DT proposed an improved
version for the Bees Algorithm that increases the search accuracy and avoid superfluous
computations in 2009. Two new procedures were introduced as follows:

1. neighbourhood shrinking

The size of ngh is initially set to a large value as following:

ngh(0) = (maxV - minV)

where the maxV, minV means the max and min searching site in the global area. The local

search is initially defined over a large neighbourhood (equal to the range of the global

search), and has largely explorative feature. The local search procedure finds any better
site with higher fitness, it keeps the size of ngh unchanged. If no improvement during the

step, then the size of ngh be decreased. The updating formula is shown by following:

5

ngh(i+1) = 0.8 *ngh(i) if no improvement
ngh(i+1) = ngh(i) else

2. Site abandonment
When no fitness improvement after a number of times (stlim) local search even by
neighbourhood shrinking method, it means the local search procedure perhaps to reach the
top of the local fitness peak, in other words, no further progress will be made. For
efficiency, the exploration of the patch is stopped. If no better fitness of other site is

generated during the remaining random search procedure then abandons this site.

Although there are several researchers come up with new models based on honeybees our

work is based on this model proposed by Pham DT.

2.4 General Purpose Computation on GPU

GPGPU is the use of a GPU (graphic processing unit) as a co-processor to accelerate
GPUs for general purpose scientific and engineering computing .

The GPU accelerates computations and applications running on the CPU by loading part
of the code with high compute-loading. The rest of the code is runs on CPU. To accelerating
application by using the massively parallel processing power of the GPU to get high

performance is also call “hybrid” way of computation.

.llI : N

CPU GPU

Figure 2 - 2 The comparison of computation power between CPU and GPU .

As illustrated by Figure 2-2, nowadays a CPU consists of 4 to 8 cores while the GPU
consist of hundreds of cores. They cooperate with each other in the application. The
massively parallel computing architecture gives the application higher performance.

GPUs now offer much faster floating-point calculation than CPU as illustrated by Figure
2-3, moreover, several high-level languages for GPGPU such as CUDA and OPENCL have
developed for programmers. The main difference between CPU and GPU is that the GPU is
specialized for compute-intensive, highly parallel computations, GPU devotes more
transistors to process data rather than to-cache data and flow control as illustrated by Figure

2-4.

Theoretical GBfs

GeForceGTX 680

200
neForceGT X 480
180 GeForceGTX
Y
160
=8=GPU (ForcecTx 280
140
120

100 - — /
GeForce8800G V

B0

650 eForce 7800 ;TZ-”./ Sandy Bridge

§Fpree6s0o ;T/ Westmere

_ _ / Eloomfield

,_-eF:r-:lEF..E-?W Woodcrest

Prescatt

Harpertown

u -Hﬂrtnm T T T T T T T T 1
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

Theoretical
GFLOP/s
3250

3000
=== V1A GPU Single Predsion

2750 g Y1 DIA GPU Double Predision
2500 =g | ritel CPU Single Predision
e | Mtel CPU Dauble Predsion

23250
2000
1750
1500
1250
1000

750

Tesla C2050 .
Sandy Bridge
500

Tesla C1060
‘Woodcrest

250

0
. Westmere
sep-PENHUM4 40 04 Mar-07 12"PEMtoVN o "t Aug-12

Figure 2 - 3 Floating-Point Operations per second and memory bandwidth for the CPU
and GPU [11]

[[1 |
[[] |
[[] |
[[] IR
e
[T [T]
[T TTT]

Figure 2 - 4 The GPU Devotes More Transistors to Data Processing [12]

L

2.5 Compute Unified Device Architecture (CUDA)

NVIDIA provides CUDA that is a general purpose parallel programming model, thus the
programmers don’t need to consider the complex low-level issues of GPU. What they have to
concern is how to design an parallel algorithm for their applications. The CUDA
programming model provides various-languages including C/C++ for developers.

From the perspective of hardware, A GPU consists of a number of multiprocessors, there are
many stream processors in a multiprocessor and each stream processor is a smallest
computational unit. There is shared memory in a multiprocessor among numerous stream
processors, they could communicate by using shared memory. In addition to shared memory,
other types of memory like constant memory, texture memory that could be used in different
situations. Figure 2-5 is a diagram of the hardware viewpoint of CUDA architecture.
From the perspective of software, the code running sequentially on CPU is called “Host” and
the code running paralleled on GPU is called “Kernel”. A kernel is launched as a grid of
thread blocks, the thread blocks are executed on multiprocessors. The software viewpoint of

CUDA architecture and memory model is shown in Figure 2-6

Figure 2 -6 Software viewpoint of CUDA architecture

10

2.6 Related Work

2.6.1 Parallel Bees Algorithm for ATC Enhancement in Modern

Electrical Network

The paper has proposed a parallel Bees Algorithm for determining the optimal allocation
of FACTS devices[21]. The PAB(parallel Bees Algorithm) simultaneously for nearby searches.
In PAB computations are distributed among the CPUs by matlab workers, thus it’s faster to
search a solution and getting better accuracy of solution compared to other technique. It’s the
first application of parallel Bees Algorithm in application of FACT devices. The method to
parallel the algorithm-is to distribute the computations of evaluating fitness, and the main
difference between serial and parallel approach is shown in Figure 2-7. When they compared
the elapsed time for_the application on Intel Quad Core Q6600 running at 2.4GHz system in

matlab 7 environment, the result is illustrated by the Figure 2-8 and getting 2~4 times better.

Start Start
EV_E”UE’CE Evaluate Evaluate Evaluate
Fitness Fitness Fitness Fitness
End End
(a) (b)

Figure 2 - 7 (a)Serial Approach (b)Parallel Approach [21]

11

8000 -

7000 4
6000 -
5000 + HBA
4000 -+ W BA Parallel
3000 A GA
2000 H GA Parallel
1000
0

TCSC SV TCPST UPFC MULTI-TYPE

Figure 2 - 8 Comparison of Elapsed Time for Different Algorithms in seconds [21]

Chapter 3 Parallel Bees Algorithm on GPU

The key that decides the accelerated effect is the level of parallelization. In the traditional
Bees Algorithm, the most_computational loading is in neighbourhood search procedure. A
nawve method is to take the neighbourhood search procedure as a kernel to distribute the
computations in loop of the procedure. In fact, the optimal number of the neighbourhood size
is fluctuant according to different features of functions. However, if the size of the
neighbourhood is not larger than number of the total threads within the GPU then the
accelerated effect would not be obvious. Another common solution is “multi-colonies” that
means we should run many Bees Algorithms independently in each threads. There are two
major disadvantages. The first disadvantage is each thread contains many conditional branch,
we could not avoid the divergent branch, so the overhead would be too expensive. The second
one is that the communication among the threads after a round would be more complex to do.
For these reasons, we design a new Bees Algorithm of parallel multi-colonies that bring good

efficiency.

12

http://tw.wrs.yahoo.com/_ylt=A3eg.83PcJ9PfH4AidXhbB4J/SIG=12tgge2ao/EXP=1335877967/**http%3a/tw.dictionary.yahoo.com/dictionary%3fp=accelerated%26docid=1000708

3.1 System Overview

We choose CUDA framework to implement our multi-colonies Bees Algorithm on GPU
called CUBA. In our algorithm, we group the threads within a block to several colonies. To
explain clearly, each thread is assigned to a honey bee to search the solution for its colony. We
divide a block into different colonies by thread ID, and running Bees Algorithm independently.
When one iteration finished, we will change the information between colonies in the same
block by using shared memory. The colonies will not communicate with each other if they are
in different blocks because the shared memory is shared by threads in the same block, and it’s
not efficient if we shared the information by using global memory. The communication step is
critical for converge time. The Figure 3-1 shows an overview of our system, and the detail

will be described latter.

Grid

Thread block 0 Thread block 1

AORSS8HT | 44488888 |

7/ AN
/Shared memor\k Shared memory

r 4 h Y

yd N
’4 N
@ communication @

Colony O Colony 1

Figure 3 - 1 Framework of the CUBA

3.2 Parallel Approaches

To parallel The Bees Algorithm, we have overcome many issues. Our CUDA bees algorithm
shows in Figure 3-2, and the detail will be explained in this section.

13

Parallel random generating new sites

Parallel computing each bee’s Fitness

Parallel sorting

[
Thread, ==+ Thread,, esessss Thread, H

/N NS r

1 vvatw 2 nd asse m th I’emalh J-‘BIOCI(O BIOCkl
Nearby Nearby Nearby Reassign
search search search
New side

ngh; shrink ngh, shrink ngh,, shrink

Parallel sorting

Change information with shared memory

Figure 3 - 2 Algorithm of the CUBA

3.2.1 Parallel Initialization

In BA approach, the initialization of population and the evaluation of the fitness of the
population achieve one after one whereas CUBA distributes and computes them among the

threads of GPU. Ideally, it accelerates times of the numbers of threads for this procedure.

3.2.2 Odd-Even Sort

It’s necessary to sort the fitness of all populations to get the best m sites. Because the size
of the sorting data in this application is small respect to others, we sort the colonies in the
same block individually by using Odd-Even Sorting algorithm [22, 23] that is based on the

Bubble Sort technique of comparing two elements and switching them by the comparing rule.

14

This method only requires n/2 iterations of the two phase sort. The procedure diagram of

Odd-Even Sorting in Figure 3-3 and the algorithm in Table 3-1

>

1 phase 2" phase

Figure 3 - 3 Procedure of Odd-Even Sort

Algorithm Odd-Even Sort

Input: array A

Declare max = sizeof(A)
Run max/2 times:
For iis odd and i <max do in parallel:
If A[i] > A[i+1] then swap(A[i], A[i+1])
For iiseven and i < max do in parallel:
If A[i] > A[i+1] then swap(A[i], A[i+1])
Output: sorted array A

Table 3 - 1 Odd-Even Sort Algorithm

15

3.2.2 Group Bees into Different Colonies

We divide threads in the blocks to different colonies according to their thread ID, each
thread is assigned to a honey bee and searching the solution for its colony, so there are a
number of colonies run Bees Algorithm parallel. The number of bees and colonies in the
algorithm is depending on what the number of blocks per grid and number of threads per
block we set.

The number of colonies in a block = number of threads per block / number of bees per colony.

3.2.3 Modified Bees Algorithm

3.2.3.1 Modification of local search

The local search in traditional BA approach, more bees (nep) recruit for elite sites and
fewer bees (nsp) recruits for the rest of sites from e sites. It’s reasonable because the
mechanism is based on probability. But in our system, we just assign nep bees to recruit m
sites for balancing the loading among the threads, to be more precisely, it’s not make sense in
parallel architecture if some threads would do-nothing after finishing their jobs and waiting

for the others.

3.2.3.2 Random Seeds

We have different threads in GPU with different random seeds, so we get more random

effect.

3.2.3.3 Neighbourhood Shrinking

According to the new procedure “neighbourhood shrinking” in BA, ngh constantly

change values, In our approach, we have numerous local searching in different sites
16

simultaneously for parallelism, and we let the recruited bees in different sites with different
ngh. Another adjust is that we don’t need to set a such large number of the recruited bees like
in BA, because we have so numerous colonies to search simultaneously that the risk which
may cause wrong shrink we accept is much lower. In the meanwhile, the rapid decreasing of
ngh could bring a faster converge time. What shrinking equation we use is the same with the

equation in the Bees Algorithm. Initially, the size of ngh is set to a large value.

3.2.3.4 Communication with shared memory

In general parallel architectures may use shared memory or message passing method to
communicate between the multiple processing units. There is a shared memory in the same
block in CUDA architecture, so we use it to implement the communication in the end of the
each iteration. In this strategy, there-are three issues we have to concern. The first is what
information to share, the second one Is who to share with, and the last is how long to
communicate once.

We had tried and compared several mechanisms for communication. For example, we
sort the best results which are gained from individual colonies in the same block after
neighbourhood search, and sharing the best to-others. To explain in detail, the site with lowest
fitness in each colony is replaced by best one with highest fitness in the block. The result
shows that converge rate is quite good. However, a sorting procedure often impact on the
execution time, finally, we develop the two-phase communication that avoiding sorting and
with good converge rate, too. The paired exchange take few time to share, and the second
phase improve the global convergence over time. The method is shown as follow:

Adjacent exchange (first phase):
If colony ID is odd, then exchange with colony (ID+1) % number of colonies per block
If colony ID is even, then exchange with colony (ID-1) % number of colonies per block

Skip one exchange phase(second phase)
17

If colony ID is odd, then exchange with colony (ID+2) % number of colonies per block
If colony ID is even, then exchange with colony (ID-2) % number of colonies per block

The two kinds of communication are executed alternately one after one iteration.

18

Chapter 4 Experimental Results and Analysis

4.1 Evaluation Environment

We adopt AMD Athlon (tm) Il and GeForce GTX 460 for our computation platform. The
configuration information is described as following. The host is AMD Athlon(tm) Il which
has 4 cores, and each core has clock rate with 3.0GHz. The device is GeForce GTX 460
which has 7 multiprocessors (MPs) and each MP has 48 CUDA cores. Totally, there are 336

CUDA cores in the device. Table 4-1 shows the experiment environment.

Device CPU GPU
Processor AL Atr):fn(tm) ! GeForce GTX 460
Number of cores 4 cores 336 cores(7 MPs)
Clocks 3.0GHz 675 MHz
Memory DDR3-1333 GDDR5
Memory Size 4 GB 512 MB
0OS Win7(32 bit)
Compute Capability -- 2.1
CUDA Version -- 4.1

Table 4 - 1 Hardware configurations

4.2 Benchmark Functions

Table 4-2 shows the equations of 9 continuous function minimization benchmarks. The
equations are given together with the range of the variables and global minimum. These
functions are widely used multi-modal test functions. The definitions and surface graphs of

the 9 functions are shown as following :

19

Ackley function:

- 1 1242 1
f(x,x,) = 20 — 20 OHNZETRD _ paleos@madteos@un)] 4 o 37 <y < 32

i
o

A
.i!‘.ﬂ

l
T
SOPHIE,

I,

1'H+r
I

(e

L

il

'IJ"I |
s
NN AN

i

-26.6
-12.755993

0.0
12.799939
f

25599935

Figure 4 - 1 The surface plot of Ackley’ function

20

Easom function:

f(xy,x,) = —cos(x;) * cos(x,) e~ (=M= (2=m?® _100 < x; < 100

03439935

0.045393952 | 1

-0.2

-0.5498395

-39.9999398 T

a0.0

Figure 4'- 2 The surface Easom function

21

Goldstein and Price function
A(xl, xz) =1 + (x1 + Xy + 1)2(19 - 14x1 + 3X12 - 14x2 + 6x1x2 + 3x22)
B(xl, xz) = 30 + (le - 3x2)2(18 - 32x1 + 12x12 + 48x2 - 36xle + 27x22)

m
P

| :: II||
iy I:I

-———-—'0'

il {
lﬂ\ llllld'l.l‘l!‘\”!_l_!|nw;!

.IH 11y

Figure 4 - 3 The surface Gold and Price function

Martin and Gaddy function

3

f(xlvxz) = (x1 - xz)z + []2 ,—20 < x; < 20

roo0.ao

00.0

0.0

-16.0
Figure 4 - 4 The surface Martin-and Gaddy function

23

Schaffer function

[Sin(\/x12+x22)]2 - 0.5

[1.0 + 0.001(x,%+x,2)]2’

f(x,x,) =05+ —100 < x, < 100

| l‘ WI
JIAY I
k lll, : ll'| | ' '||‘ I*!"lllll:hil"h. :

oL g

Figure 4 - 5 The surface Schaffer function

Schwefel function

f(xy,x,) = —x;sin(y/ || — —x, sin (1/ |x2|),—500 < x;, < 500

Figure 4 - 6 Schewefel function

25

Hyper Sphere

10
f(x) = inz,—IOO < x; < 100
i=1
180000 =
140000 ——(140(
10000.0
i 7 100¢
60000 — -
L '“\-q____
i - 500C
20000 +——
H-H"-\-__
200 2000
a0.0
0.0
-70 999995 = =0 999995 "800
800 a0.0 :
80.0 ¥

Figure 4 - 7 The surface Hyper Sphere function

26

hi™
b "" |||l l'l','h“ll“lﬁ I

I II:MI‘H}'ll""'\ﬂ"l \ 'l i H‘l |"|n
0 ”:':“”"5"’}“:’ i'*:l'uﬁ '~h"+*l‘|* i

i ';Wl. |l|+;i | i

= —-—-_.___ e

X i th J
L M"l\l\n‘\\'\\\\ f'\"ﬁ \W\\'l n}»ll'h/!'b i]«l :

Figure 4 - 8 Griewank function

Rosenbrock function

f(f) = Zl’gzl 100(xi+1 - xiz)z + (1 - xi)zv

|'|||
|II \ IIllll
\" .t.\l

|| IE\'“"'I:: 'lll
I\\\i\\‘ h ‘I.\fl\ﬁuﬂﬂL't:“;'flkn,ﬂ:k“".:.l I

\ I\ '|l' '|E:-|{|L|{IL|'I||

| |1 n
't.h'v:a.
|'|IE||III:!| i)
.‘L'ﬂL' I.'I'Il."
'1'l 1! i

\\n

| I‘E't 1.&{{![{&}\&1{1\ '| ;

At b
'IIMM i 1|L,I'Il.

it II|:|||l1 il
i

t I II1II
|:;|;:',|I:II i iy

'll' f

I

| "'Il"I IIII||I I||

l'h,,lu
1!

||'|l'|"' f

I1|'I
i

! I,"III |:|| |i::|: I:Il: 1

—50 < x;, < 50

22680.0

1750.0

1250.0

—1 F80.0

Figure 4 - 9 Rosenbrock function

28

Function Equation Minimum
perered Flra) = 20 — 20 OHNOTHD _ Fleostamreosem] 4 o 3 =)
< x < 32 fx) =0
Easom(2D) Fryx,) = —cos(x,) * cos(x,) e”Cr7™*= G=m* _100 < x, < 100 x= (m, m)
f(x) = -1
Goldstein and Price(2D) | A(xy, x;) = 1+ (3 + x5 + 1)2(19 - 14x; + 3x,2 — 14x, + 6x,%, + 3%,2) x=(0,-1)
B(xy, x5) = 30 + (2x; — 3x,)2(18 — 32x; + 12x,2 + 48x, — 36X, X, + 27x,%) f(x) =
f(x,x,) = AB,—2 < x;, < 2
Martin and Gaddy(2D) Floun) = (n — L)2 4 [(x1 + x23— 10)]2 220 % x < 20 = (5,5)
f(x)=0
Schaffer(2D) [sin(\/m)]z 05 X= (6)
f(xx,) = 0.5+ O 0001 T T P W00 =100 () = 0

Schwefel(2D)

f(xy, %) = =x;5in(+y/ |x;| = —2;, sin (w/ |x2|) ,—500 < x; < 500

x= (420.97)

f(%) = —837.97

Hyper Sphere(10D)

10

fx) = inz,—loo < x; < 100
i=1 f(x) =0
Griewank(10D) 1 & X= (ﬁi)
fX) = — Z(xi—um)z
4000 & f(@) = 0
10
1_[(xi _ 100) 1,600 < x, < 600
- +1,— X;
g COS \/l_l__l
Rosenbrock(10D) f@ =Y, 100(x,,, = %)+ @ - x)? =50 < x, < 50 X= (6)

Table 4 - 2 Benchmark Functions

29

4.3 Analysis and Result

For CUBA, there are 5 parameters we have to set, GridDim, BlockDim, N, M and nep.
In CUDA programming, the code running parallel is called “kernel”, the job size of kernel is
so called “grid”. The programmer should set a dimensional number of grid. CUDA will divide
the job to many smaller jobs and distribute them to different multiprocessors to execute. The
size of each smaller job is called “block”. As setting dimensional number of grid, the
programmer has to set the dimensional number of block, meaning how many threads in a
block. In our algorithm, there are BlockDim / N colonies per block. For example if we set
BlockDim = 256 and N = 8, then there are 32 colonies.in a block. The parameters are set
according to the results of the experiments in the next chapter, we will discuss in more detail

later.

All the programs both of BA and CUBA in the following experiments were run until
either the minimum of the function was approximated to better than 0.001, or reached a
maximum number of cycles (here we set 5000).In BA, because there is only one colony
foraging, if it make a wrong ngh shrinking, the global optimum solution will never be found.
To overcome this, BA set a quite large nep and nsp to avoid as possible. Ideally, CUBA has
more colonies foraged parallel in the same time, so we can afford more risks that we making a
wrong ngh shrinking procedure. To prove this assumption, we test the 9 functions with
various nep, 1, 2, 4, 8, 16 and 32. At first we set GridDim=4, BlockDim=256. It is a
reasonable number of BlockDim. In most of GPUs, there are 32 or 64 stream processors (the
smallest computation unit) in a multiprocessors, so we take the number as multiple of number

of stream processors.

30

When we found adaptive nep for each function, we tried to decrease the number of
BlockDim, that means we decreased the number of colonies. Another issue is what will
happen if we increase the N and BlockDim with the same factor, in other words, we increase
the bees for every colony and fix the number of colonies in a block. Finally, we will use the
best parameters set we found from the three experiments, and take the result compare with

The Bees Algorithm.

4.3.1 Analysis of nep

The result shows in Table 4-3 and Table 4-4. For low dimensional functions, we only
need very small nep to get a good solution with less time..But for high dimensional functions,

we need bigger nep, too small nep will lead the solution converge to the number with big

error.
e
Functions
Ackley 8.13ms 7.51ms 9.50ms 14.28ms 19.87ms 42.35ms
Easom 6.17ms 6.81ms 8.03ms 14.28ms 15.04ms 25.07ms
Goldstein and 6.01ms 5.56ms 7.57ms 9.14ms 12.92ms 18.49ms
Price
Martin and 4.58ms 4.72ms 4.92ms 5.67ms 5.52ms 5.74ms
Gaddy
Schafter 7.11ms 7.27ms 9.24ms 11.81ms 16.20ms 33.28ms
Schwefel 5.52ms 6.35ms 6.48ms 8.33ms 11.18ms 16.20ms
HyperSphere X X 12ms 17.12ms 32.95ms 63.10ms
Gricwank X 52.51ms 70.95ms 125.23ms 219.76éms 439.90ms
Rosenbrock X X X 1796.32ms 3140.61ms 4857.48ms

Table 4 - 3 nep increasing (time)

31

Benchmark nep=2 nep=8 | nep=16 | nep=32
Functions
25 24 26 22 26

Ackley 38

Easom 27 25 23 26 20 20
Goldstein and 22 12 17 14 13 11
Price

Martin and 17 16 14 15 8 5
Gaddy

Schaffer 29 22 22 19 16 20
Schwefel 27 30 22 23 21 19
HyperSphere x X 41 42 52 59
Griewank X 51 43 44 42 44
Rosenbrock X X X 439 410 329

Table 4 - 4 nep increasing (iterations)

4.3.2 Analysis of the number of colonies

The result shows in Table 4-5 and Table 4-6, most of the functions get good performance
and fewer execution time with small number of BlockDim, excluding the three high
dimensional functions. For these high dimensional function, small number of BlockDim not
always bring the benefit, the best number of BlockDim for HyperSphere and Griewank are

128, and 512 for Rosenbrock.

32

Benchmark blockDim=32 blockDim=64 blockDim=128 | blockDim=256 | blockDim=512 | blockDim=768
Functions

Ackley 6.89ms 6.05ms 6.76ms 8.13ms 8.341ms 12.66ms
Easom X 5.27ms 6.02ms 6.28ms 7.76ms 10.88ms
Goldstein and Price 5.73ms 5.01ms 7.25ms 6.01ms 7.08ms 9.99ms
Martin and Gaddy 3.83ms 3.27ms 4.17ms 4.58s 5.43ms 8.33ms
Schaffer X 6.32ms 7.02ms 7.11ms 7.85ms 10.32ms
Schwefel 4.90ms 5.03ms 5.29ms 5.52ms 7.08ms 9.89ms
HyperSphere 19.71ms 22.36ms 15.79ms 17.12ms 20.15ms 25.45ms
Griewank 55.58ms 50.01ms 48.02ms 52.51ms 61.75ms 80.98ms
Rosenbrock X X 810.83ms 1796.32ms 432.984ms 598.962ms

Table 4 - 5 colonies increasing (time)

Benchmark blockDim=32 blockDim=64 blockDim=128 | blockDim=256 | blockDim=512 | blockDim=768
Functions
40 Sl 32 38 27 30

Ackley

Easom X 31 32 29 26 25
Goldstein and Price 32 24 19 22 28 17
Martin and Gaddy 24 7 14 17 12 17
Schaffer X 33 33 29 22 17
Schwefel 34 35 32 27 28 24
HyperSphere 67 56 42 42 41 41
Griewank 6l 54 49 51 52 51
Rosenbrock X X 177 439 94 102

Table 4 - 6 colonies increasing (iterations)

33

4.3.3 Analysis of the number of bees

Table 4-7 and Table 4-8 also show that we could set smaller number of BlockDim and N
in low dimensional functions. In high dimensional function, for some functions, we could set
a small bees number for shorter execution time like HyperSphere and Griewank. But
sometimes the number of bees could not be too small, or the solution will converge with big

error like Rosenbrock.

Benchmark blockDim=128 | blockDim=256 | blockDim=512
Functions N=4 N=8 N=16

Ackley 6.76ms 8.13ms 9.68ms
Easom 5.72ms 6.28ms 7.87ms
Goldstein and Price 5.35ms 6.01ms 7.13ms
Martin and Gaddy 4.11ms 6.01ms 6.00ms
Schaffer 6.76ms 6.35ms 8.72ms
Schwefel 4.70ms 5.52ms 7.61ms
HyperSphere 15.88ms 17.12ms 25.12ms
Griewank 53.62ms 52.51ms 65.10ms
Rosenbrock X 1796.32ms 2166.75ms

Table 4 - 7 bees increasing (time)

Benchmark blockDim=128 | blockDim=256 | blockDim=512
Functions N=4 N=8 N=16
36 38 33

Ackley

Easom 31 29 26
Goldstein and Price 23 22 17
Martin and Gaddy 22 22 19
Schaffer 18 23 26
Schwefel 26 27 30
HyperSphere 46 42 49
Griewank 57 51 53
Rosenbrock X 439 463

Table 4 - 8 bees increasing (iterations)
34

4.3.4 Robustness and Speedup

We calculated the execution times and the successful rates of fifty running times for the
two algorithms. For estimating the execution time of BA, the parameters for all benchmark
functions are given in table 4-9 according to the original set in the paper [6], and the table

4-10 shows the parameters set of CUBA by using the best parameters set we have found

before.

Benchmark n m e nep nsp stlim
Ackley 30 8 1 20 10 5
Easom 20 14 1 30) 10
GoldsteinAndPrice | 10 4 2 30 10 10
MartinAndGaddy | 10 7 1 30 10 10
Schaffer 10 4 2 30 10 10
Schwefel 20 14 1 30 5 10
HyperSphere 10 4 2 30 10 10
Griewank 20 18 1 10 5 5
Rosenbrock 10 4 2 30 10 10

Table 4 - 9 Combinations of Bees Algorithm parameters

35

Benchmark GridDim BlockDim n m nep
Ackley 4 64 8 6 1
Easom 4 64 8 6 1
GoldsteinAndPrice 4 64 8 6 1
MartinAndGaddy 4 64 8 6 1
Schaffer 4 64 8 6 1
Schwefel 4 32 8 6 1
HyperSphere 4 128 8 6 8
Griewank 4 128 8 6 2
Rosenbrock 4 512 8 6 8

Table 4 - 10 Combinations of CUDA Bees Algorithm parameters

As the result in Table 4-11 We found the solutions of those functions within the error,
and getting 100% successful rates by using both of the algorithms in 50 times, The Bees
Algorithm and CUBA. Finally, we compared the execution times of the functions and

evaluated the speedup. The result shows that CUBA has 1x ~5x times faster than BA in
36

different functions. CUDA supports fast math library and encourages programmers to use
them as often as possible. The Griewank function with more trigonometric functions than
others may bring the peak performance, because we could call more CUDA fast math libraries
on it. The speed test results are shown in Table 4-12, and the time units are given in
milliseconds. Not only the execution time of CUBA less than BA, but also less iterations to
execute. As the result in Table 4-13, CUBA takes less iterations to find the solutions. It makes

huger difference while running the high dimensional functions.

Benchmark BEES CUBEES
Functions

Ackley 100% 100%
Easom 100% 100%
Goldtein and Price 100% 100%
Martin and Gaddy 100% 100%

Schaffer 100% 100%
Schwefel 100% 100%
HyperSphere 100% 100%
Griewank 100% 100%
Rosenbrock 100% 100%

Table 4 - 11 The successful rate in 50 runs

37

Benchmark BEES CUBEES SPEEDUP
Functions

Ackley 273ms 6.05ms 45.12
Easom 70ms 5.27ms 13.28
Goldstein and Price 92ms 5.01ms 18.36
Martin and Gaddy 76ms 3.27ms 27.24
Schaffer 231ms 6.32ms 36.55
Schwefel 279ms 4.90ms 56.93
HyperSphere 389ms 15.79ms 24.63
Griewank 2520ms 48.02ms 52.47
Rosenbrock 5595ms 432.98ms 12.92

Table 4 - 12 Speedups

Benchmark BEES CUBEES
Functions

Ackley 20 31
Easom 44 31
Goldstein and Price 49 24
Martin and Gaddy 50 7

Schaffer 55 33
Schwefel 141 34
HyperSphere 158 42
Griewank 1487 49
Rosenbrock 4456 94

Table 4 - 13 Successive iterations

38

Chapter 5 Conclusion and Future work

Using GPU to solve problems with high density computation normally brings
remarkable improving of performance. Of course, these problems should be able to parallel.
Many applications have already been accelerated by GPGPU. In this paper, we proposed first

parallel Bees Algorithm base on CUDA.

We modify the local search procedure. Running in SIMT (Single Instruction Multiple
Thread) hardware architecture, we merge the two parts of the local searching sites avoiding
wasting the computing powers of GPU. For the same reason, we have no site abandonment
procedure. Another difference is that we let the bees recruiting in different sites maintain own
ngh, meaning they shrink independently. \We sort the colonies in the same block individually
by using Odd-Even Sorting algorithm to get the benefit of parallel. The communication
mechanism between colonies in the same block is also important point to decrease the

convergence time, in our algorithm, we choose two-phase communication for better result.

To find the features of this new algorithm, we modify the parameters, and getting the
result of the most of low dimensional functions could be run with good performance by using
small nep. That’s one of the key points why CUBA runs with faster convergence time than
The Bees Algorithm. We also try to decrease the number of colonies in a CUDA block and
decrease the number of bees per colony to optimize the parameters set for each functions. The

result shows in section 4.3.

Finally, we compare the convergent time (error < 0.001) of CUDA Bees Algorithm with

The Bees Algorithm. The experiment result shows CUBA performs at least 1x times faster
39

than BA from 9 different functions of optimization problems.

In the future, we will compare the CUBA to other parallel swarm based algorithm, and
try more parallel sorting algorithm and communication mechanism to optimize. Not only for
solving the optimization problem, we would also test the performance of the proposed
algorithm on real world applications. Today, cloud computing becomes more and more
important and popular. There are some platforms like Hoopoe which provides GPU based
cloud computing service. We would improve the proposed algorithm and testing in GPUs

clusters environment.

40

Reference

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]
[13]

M. Dorigo, "Optimization, Learning and Natural Algorithms," Ph.D. thesis,
Politecnico di Milano, Italie, 1992.

D.T. Pham, E. Koc, A. Ghanbarzadeh, S. Otri, S.Rahim, M. Zaidi "The Bees
Algorithm-a novel tool for complex optimisation problems," Proceedings of the
Second International Virtual Conference on Intelligent Production Machines and
Systems, pp. 454-461, 2006.

J. Kennedy, R. Eberhart, "Particle Swarm Optimization," Proceedings of IEEE
International Conference on Neural Networks, vol. 1V, pp. 1942-1948, 1995.

E. Bonabeau, M. Dorigo, G. Theraulaz, "Swarm Intelligence: from Natural to
Artificial Systems.," Oxford University Press, New York, 1999.

D. Karaboga, B. Basturk "A powerful and Efficient Algorithm for Numerical
Function Optimization: Artificial Bee Colony (ABC) Algorithm,” Global
Optimization, vol. 39, pp. 459-171, 2007.

D.T. Pham, M. Castellani "The Bees Algorithm: modelling foraging behaviour to
solve continuous optimization preblems," Proc Inst Mech Eng, C: J Mech Eng
Sci, vol. 223, pp. 2919-2938, 20009.

D.T. Pham, S. Otri, A. Afify, M. Mahmuddin, H. Al-Jabbouli, "Data clustering
using the Bees Algorithm," Proceedings of the 40th CIRP International
Manufacturing Systems Seminar, 2007.

D.T. Pham, A.H. Darwish, E.E. Eldukhri, S. Otri, "Using the Bees Algorithm to
tune a fuzzy logic controller for a robot gymnast,” Proceedings of International
Conference on Manufacturing Automation, pp. 28-30, 2007.

K. Guney, M. Onay "Bees Algorithm for design of dual-beam linear antenna
arrays with digital attenuators and digital phase shifters,” Int J RF Microwave
Comput Aided Eng, vol. 18, pp. 337-347, 2008.

D. T. Pham, E. Koc, J. Y. Lee, J. Phrueksanant "Using the Bees Algorithm to
schedule jobs for a machine,” Proc Eighth International Conference on Laser
Metrology, CMM and Machine Tool Performance, LAMDAMAP, Euspen, pp.
430-439, 2007.

NVIDIA CUDA Programming Guide Version 4.2: NVIDIA Corporation, 2012.
NVIDIA CUDA Best Practices Guild, 4.2 edition: NVIDIA Corporation, 2012.
Hongtao Baia, Dantong OuYang, Ximing Lia, Lili Hea, Haihong Yua,
"MAX-MIN Ant System on GPU with CUDA," Innovative Computing,
Information and Control (ICICIC), 2009 Fourth International Conference, pp.
801-804, 20009.

41

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

[22]

[23]

J. C. Weihang Zhu, "Parallel Ant Colony for Nonlinear Function Optimization
with Graphics Hardware Acceleration,” Proceedings of the 2009 IEEE
International Conference on Systems, Man, and Cybernetics, pp. 1803-1808
2009.

J.M. Cecilia, M. Ujaldon, A. Nisbet, M. Amos, 2011 IEEE International Parallel
& Distributed Processing Symposium, pp. 339-346 2011.

Jian-Ming Li, Xiao-Jing Wang, Rong-Sheng He, Zhong-Xian Chi "An Efficient
Fine-grained Parallel Genetic Algorithm Based on GPU-Accelerated,” 2007 IFIP
International Conference on Network and Parallel Computing Workshops, pp.
855-862, 2007.

Petr Pospichal, Jiri Jaros, Josef Schwarz, "Parallel Genetic Algorithm on the
CUDA Architecture,” APPLICATIONS OF EVOLUTIONARY COMPUTATION,
vol. 6024, pp. 442-451, 2010.

P. S. Boyd, "Convex Optimization," Cambridge University Press, p. 129, 2004.
Ausiello, Giorgio, et al., Complexity and Approximation (Corrected ed.):
Springer, 2003.

Available: http://en.wikipedia.org/wiki/Optimization_problem

A. K. R. Mohamad Idris, M.W. Mustafa "A Parallel Bees Algorithm for ATC
Enhancement in Modern Electrical Network," 2010 Fourth Asia International
Conference on Mathematical/Analytical Modelling and Computer Simulation, pp.
450-455, 2010.

S. Lakshmivarahan, S. K, Dhall,, L. L. Miller, L. Alt Franz and C. Marshall,
Yovits, ed., "Parallel Sorting Algorithms," Advances in computers (Academic
Press), vol. 23, pp. 295-351, 1984.

M. Phillips. (2011). Available:
http://homepages.ihug.co.nz/~aurora76/Malc/Sorting_Array.htm#Exchanging

42

http://en.wikipedia.org/wiki/Optimization_problem
http://homepages.ihug.co.nz/~aurora76/Malc/Sorting_Array.htm#Exchanging

Appendex

source code: cuba.h
/***/
// Normal math set
/***/
#define M_PI 3.141592653589793238462

#define M_E 2.71828182845904523536

/***/

// CUDA parameter set
/***/
#define GRID_SIZE 4

#define BLOCK_SIZE 128

/***/

// CUBA parameter set
/***/
#define EXETIMES 10

#define FUNCTION Griewank

#define FUNCTION_NAME "Griewank"

#define MAX_CYCLE 50

#define GLOBAL_MIN 0@

#define DIM 10

#define N 8 //number of scout bees

#define M 6 //number of sites selected out of n visited site
#define NEP 8 //number of bees recruited for best e sites
#define LB -600 //lower bound of the parameters.

#define UB 600 //upper bound of the parameters. 1b and ub can be defined as arrays
for the problems of which parameters have different bounds
#define NGH UB - (LB)//neighbourhood size

#define COLONY_PER_BLOCK BLOCK_SIZE/N

#define THREADS_PER_COLONY

#define TOTAL_BEES GRID_SIZE*BLOCK_SIZE

#define RAND_OFFSET @

#define NGH_UP 1

#define NGH_DOWN 0.8

43

source code: cuba.cu

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#include <math.h>

#include <conio.h>
#include <curand_kernel.h>
#include "device_launch_parameters.h"
#include "cuda_runtime.h"
#include <windows.h>
#include <ctime>

#include <algorithm>
#include <cstring>
#include <iostream>
#include <fstream-

#include "cuba.h"

using namespace std;

float params[TOTAL_BEES*DIM];
float fitness[TOTAL_BEES];
float values[TOTAL_BEES];

__device__ float sphere(float* sol) {

int j;
float top=0;
for(j=0; j<DIM; j++)
{
top=top+sol[j]*sol[j];
}

return top;

}

__device__ float Rosenbrock(float* sol) {
int j;
float top=0;

for(j=0; j<DIM-1;j++) {
44

top=top+100*pow((sol[j+1]-pow((sol[j]),(float)2)),(float)2)+pow((sol[j]-1),
(float)2);

}

return top;
}
__device__ float Rastrigin(float* sol) {

int j;

float top=0;

for(j=0; j<DIM; j++)
{
top=top+(pow(sol[j],(float)2)-10*__cosf(2*M_PI*sol[j])+10);
}
return top;
ks
__device__ float Griewank(float* sol) ¢
int j;
float topl,top2,top;
top=0;
topl=0;
top2=1;
for(j=0;j<DIM; j++)
{
topl=topl+pow((sol[j1),(float)2);
top2=top2*__cosf((((sol[j1)/sqrt((float)(j+1))D*M_PI)/180);
¥
top=C1l/(float)4000)*topl-top2+1;

return top;

__device__ float MartinAndGaddy(float* sol) {
float top = 0;
top = pow((sol[@]-sol[1]),2) + pow((sol[@]+sol[1]-10)/3, 2);

return top;

__device__ float Easom(float sol[DIM]) {

45

float top = 0;

float topl (sol[@]-M_PI)*(sol[@]-M_PI);

float top2 = (sol[1]-M_PI)*(sol[1]-M_PI);

top = (-1D*__cosf(sol[@])*__cosf(sol[1])*pow(float(M_E), - topl - top2);

return top;

__device__ float Ackley(float sol[DIM]) {
float top = 0;
float topl = 0;
float top2 = 0;
for(int i=0; i<DIM; i++) {
topl += sol[i]*sol[i];
top2 += __cosf(2*M_PI*sol[i]);

b
topl = 20.0*exp(-0.02*sqgrt(topl/DIM));
top2 = exp(top2/DIM);

top = 20.0 - topl - top2 + exp(l.0);

return top;

__device__ float GoldsteinAndPrice(float sol[DIM]) {

float topl = 1 + pow((sol[@] + sol[1l] + 1),
float(2))*(19-14*s0l1[@]+3*sol [@]*sol[0]-14*sol[1]+6*sol[@]*sol[1]+3*sol[1]*sol[
11D;

float top2 = 30 + pow((2*sol[@] - 3*sol[1]),
float(2))*(18-32*s0l[@]+12*s01[@]*sol[@] + 48*sol[1] - 36*sol[@]*sol[1] +
27*sol[1]*sol[1]);

float top = topl*topZ;

return top;

__device__ float Schaffer(float sol[DIM]) {
float topl = pow(__sinf(sqrt(sol[@]*sol[@]+sol[1]*sol[1])), float(2));
float top2 = pow(float(1l.0+0.001*(sol[@]*sol[@] + sol[1]*sol[1])), float(2));
float top = 0.5 + (topl - @.5)/top2;

return top;

46

__device__ float Schwefel(float sol[DIM]) {
float top = (-1)*sol[@]*__sinf(sqrt(abs(sol[@]))) -
sol[1]*__sinf(sqrt(abs(sol[1])));

return top;

/***/

// Calculate Fitness Function

/***/

__device__ float CalculateFitness(float fun) {
float result=0;

if(fun>=0)
{
result=1/Cfun+l);
}
else
{
result=1+fabs(fun);
}

return result;

/***/

// Random initialize the point with given
// index in global memory

/***/

__device__ void init(int idx, curandState_t* s, float* d_params, float* d_values,

float* d_fitness) {

float r = curand_uniform(s);

float solution[DIM];

for(int j=0; j<DIM; j++) {
r = curand_uniform(s);
d_params[j*TOTAL_BEES+idx] = r * (UB - LB) + LB;

solution[j] = d_params[j*TOTAL_BEES+idx];

47

d_values[idx] = FUNCTION(solution);
d_fitness[idx] = CalculateFitness(d_values[idx]);

/***/

// Random initialize the point with given
// index in shared memory
/***/
__device__ void init2(int idx, curandState_t* s, float* s_params, float* s_values,
float* s_fitness) {
float r = curand_uniform(s);
float solution[DIM];
for(int j=0; j<DIM; j++) {
r = curand_uniform(s);
s_params[jJ*BLOCK_SIZE+idx] = r * (UB - LB) + LB;
solution[j] = s_params[j*BLOCK_SIZE+idx];
}
s_values[idx] = FUNCTION(Csolution);

s_fitness[idx] = CalculateFitness(s_values[idx]);

/***/

// Initial w@all, bees positions

/***/

__global__ void initial(float* d_params, float* d_values, float* d_fitness) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;
int new_tb = TOTAL_BEES / (gridDim.x * blockDim.x); //the bees number of each
thread has
int new_start = idx*new_tb;

int new_end = (idx + 1)*new_tb;
curandState_t state;//record the random sequence state
unsigned long long seed = @ + (unsigned long long) idx;

curand_init(seed, RAND_OFFSET, @, &state);

for(int i=new_start; i<new_end; i++) {

init(i, &state, d_params, d_values, d_fitness);

48

__host__ __device__ void swap(float& a, float& b){
float c=a;
a=b;
b=c;

/***/

// Swap two positions in global memory

/***/

__host device__ void mySwap(float* d_params, float* d_values, float* d_fitness,

int x, int y) {
swap(d_values[x], d_values[y]);
swap(d_fitness[x], d_fitness[yl);
for(int j=0; j<DIM; j++) {

swap(d_params[j*TOTAL_BEES+x], d_params[j*TOTAL_BEES+y]);

/***/

// Swap two positions in_shared memory

/***/

__host device__ void mySwap2(float* s_params, float* s_values, float* s_fitness,

int x, int y) {
swap(s_values[x], s_values[y]);
swap(s_fitness[x], s_fitness[y]);
for(int j=0; j<DIM; j++) {

swap(s_params[j*BLOCK_SIZE+x], s_params[j*BLOCK_SIZE+y]);

__device

start, int end, int offset) {

void b_sort2(float* s_params, float* s_values, float* s_fitness, int

int len = end - start + 1;

49

for(int i=0; i<len/offset; i++) {
for(int j=start+l; j<end; j+=offset) {
if(s_fitness[j] > s_fitness[j-1])

mySwap2(s_params, s_values, s_fitness, 7j-1, j);

/***/

// Nearbysearch
/***/
__device__ bool n_search(int idx, curandState* s, float ngh, float* s_params, float*
s_values, float* s_fitness) {
float tmpParam[DIM];
float tmpValue;
float tmpFitness;
for(int j=0; j<DIM; j++) {
float r = curand_uniform(s);
tmpParam[j] = 2*Cr - 0.5)*ngh + s_params[j*BLOCK_SIZE+idx];
if(tmpParam[j] > UB)
tmpParam[j] = UB;
if(tmpParam[j] < LB)
tmpParam[j] = LB;
ks
tmpValue = FUNCTIONCtmpParam);
tmpFitness = CalculateFitness(tmpValue);
if(tmpFitness > s_fitness[idx]) {
s_values[idx] = tmpValue;
s_fitness[idx] = tmpFitness;
for(int j=0; j<DIM; j++)
s_params[jJ*BLOCK_SIZE+idx] = tmpParam[j];
return true;
3

return false;

50

/***/

// Replace data b from a

/***/

__device__ void replace(int a, int b, float* s_params, float* s_values, float*

s_fitness) {
s_values[a] = s_values[b];
s_fitness[a] = s_fitness[b];
for(int j=0; j<DIM; j++)

s_params[J*BLOCK_SIZE+a] = s_params[j*BLOCK_SIZE+b];

ks
__host__ __device__ int findMax(float*values, int start, int end, int offset) {
int maxIdx = start;
for(int i=start+offset; i<end; i+=offset) {
if(values[i] > values[maxIdx]){
maxIdx = 1i;
}
}
return maxIdx;
}

/***/

// Ngh shrinking
/***/
__device__ float ngh_shrinking(float ngh, bool imp) {
if(imp)
return ngh*NGH_UP;
else
return ngh*NGH_DOWN;

/***/

// Run CUBA

/***/

__global__ void cubees(int m_cycle, int r_offset, float* d_params, float* d_values,
float* d_fitness) {
int idx = blockIdx.x * blockDim.x + threadIdx.x;

51

int double_idx = threadldx.x*2; //The index for odd-even sort
idx/N; //The colony which the bee belong to
1dx%N; //The colony ID which the bee with

int colonyNum

int colonyIdx

curandState_t state;//Record the random sequence state
unsigned long long seed = (unsigned long long) idx;

curand_init(seed, r_offset, seed, &state);

bool improved = false;
float ngh = NGH;

//Claim shared memory for communication
__shared__ float s_params[BLOCK_SIZE*DIM];
__shared__ float s_values[BLOCK_SIZET;
__shared__ float s_fitness[BLOCK_SIZE],

//Initialize the.shared memory
s_values[threadIdx.x] = d_values[idx];
s_fitness[threadldx.x] = d_fitness[idx];
for(int j=0; j<DIM; j++)
s_params[[J*BLOCK_SIZE+threadldx.x] = d_params[j*BLOCK_SIZE+idx] ;

//0dd-even sort
__syncthreads;
if(threadIdx.x < BLOCK_SIZE/2) {
for(int 1=0; 1<=N/2; 1++) {
if(s_fitness[double_idx+1] > s_fitness[double_idx])
mySwap2(s_params, s_values, s_fitness, double_idx+1,
double_1idx);
if(colonyldx < N-2) {
if(s_fitness[double_idx+2] > s_fitness[double_idx+1])
mySwap2(s_params, s_values, s_fitness, double_idx+2,
double_idx+1);
}

52

__syncthreads;
for(int c=0; c<m_cycle; c++) {
improved = false;
if(colonyldx < M) {
for(int 1=0; i<NEP; i++) {
if(n_search(threadIdx.x , &state, ngh, s_params, s_values,
s_fitness)) {

improved = true;

}
}
}
else {
init2(threadIdx.x, &state, s_params, s_values, s_fitness);
}

ngh = ngh_shrinking(ngh, improved);

//0dd-even sort
__syncthreads;
if(threadIdx.x < BLOCK_SIZE/2) {
for(int 1=0; 1<=N/2; 1++) {
if(s_fitness[double_idx+1] > s_fitness[double_idx])
mySwap2(s_params, s_values, s_fitness; double_idx+1,
double_1idx);
if(colonyldx < N=2) {
if(s_fitness[double_idx+2] > s_fitness[double_idx+1])
mySwap2(s_params, s_values, s_fitness, double_idx+2,
double_idx+1);

__syncthreads;
//Two phase communication
if(colonyldx == M-1){
int target = (threadIldx.x + (c%2+1)*int(pow(-1, float(colonyNum)))*N
- M+ 1 D%BLOCK_SIZE; //odd colony get the best from left, even get the best from
right

53

replace(threadldx.x, target, s_params, s_values, s_fitness);

//Copy the data to global memory from shared memory
__syncthreads;
d_values[idx] = s_values[threadIdx.x];
d_fitness[idx] = s_fitness[threadIdx.x];
for(int j=0; j<DIM; j++)
d_params[J*TOTAL_BEES+idx] = s_params[j*BLOCK_SIZE+threadIdx.x];

/***/

// Initialize memory and call CUBA
/***/
float callCUBEES(int m_cycle, int r_offset, float* h_params, float* h_values, float*
h_fitness) {

cudaEvent_t start, stop;

float elapsedTime;

float *dev_params = 0;

float *dev_values = 0;

float *dev_fitness = 0;

cudaError_t cudaStatus;

//Record algorithm execution time
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);

//Choose which GPU to run on, change this on a multi-GPU system.
cudaStatus = cudaSetDevice(0);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "cudaSetDevice failed! Do you have a CUDA-capable GPU
installed?™);
goto Error;

}
//Allocate GPU buffers for three vectors

54

cudaStatus = cudaMalloc((void**)&dev_params, TOTAL_BEES * DIM * sizeof(float));
if (cudaStatus '= cudaSuccess) {

fprintf(stderr, "dev_params cudaMalloc failed!");

goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_values, TOTAL_BEES * sizeof(float));
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "dev_values cudaMalloc failed!");
goto Error;
}
cudaStatus = cudaMalloc((void**)&dev_fitness, TOTAL_BEES * sizeof(float));
if (cudaStatus !'= cudaSuccess) {
fprintf(stderr, "dev_fitness cudaMalloc failed!");
goto Error;
}

//Copy the host wectors to devicewectors.
cudaStatus = cudaMemcpy(dev_params, h_params, TOTAL_BEES * DIM * sizeof(float),
cudaMemcpyHostToDevice);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "dev_foods cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_values, h_values, TOTAL_BEES * sizeof(float),
cudaMemcpyHostToDevice);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "dev_values cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpy(dev_fitness, h_fitness, TOTAL_BEES * sizeof(float),
cudaMemcpyHostToDevice);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "dev_fitness cudaMemcpy failed!");

goto Error;

//Call kernal functions
initial<<<GRID_SIZE, BLOCK_SIZE>>>(dev_params, dev_values, dev_fitness);

55

cubees<<<GRID_SIZE, BLOCK_SIZE>>>(m_cycle, r_offset, dev_params, dev_values,

dev_fitness);

cudaStatus = cudaDeviceSynchronize();
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "cudaDeviceSynchronize returned error code %d after
launching cuabc!\n", cudaStatus);

goto Error;

// Copy the device vectors to host vectors
cudaStatus = cudaMemcpyCh_params, dev_params, TOTAL_BEES * DIM * sizeof(float),
cudaMemcpyDeviceToHost);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "h_foods cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpyCh_values, dev_values, TOTAL_BEES * sizeof(float),
cudaMemcpyDeviceToHost);
if (cudaStatus != cudaSuccess) {
fprintf(stderr, "h_values cudaMemcpy failed!");
goto Error;
}
cudaStatus = cudaMemcpyCh.fitness, dev_fitness, TOTAL_BEES * sizeof(float),
cudaMemcpyDeviceToHost);
if (cudaStatus '= cudaSuccess) {
fprintf(stderr, "h_values cudaMemcpy failed!");

goto Error;

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

cudaEventElapsedTime(&elapsedTime, start, stop); // that's our time!
cudaEventDestroy(start);

cudaEventDestroy(stop);

//Free device memories

56

Error:

cudaFree(dev_params);

cudaFree(dev_values);
cudaFree(dev_fitness);

return elapsedTime;

int main(){
float exec_time = 0,
int maxID = 0@;
ofstream recordFile;
exec_time = callCUBEESCMAX_CYCLE, RAND_OFFSET, params, values, fitness);
maxID = findMax(fitness, @

cout<<"value: "<<values <<exec_time<<endl;
system("Pause™);

return 0;

57

