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Next we investigate the sufficient conditions for correct order d e  
termination. For convenience,  define the advance operator A by 

AfF( k) A F( k + t )  (13) 

for all time functions F(k). Then (1) can be written as 

So: L(A)z(k)= x Mi(A)u,(k) 
m 

(14) 
j -  1 

where ,?,(A) and MXA) are polynomials in A defied as 

n 

I -0  

n 

L(A) 2 %Ar, %= 1 and 

M ~ &  2 & , ~ f ,  j=1,.. ,m. (15) 

Theorem I :  The order n of the m-input,  single-output  system So can 

1) So is completely  controllable, and 
2) theinput {u (k )€Rm;  k = O , l , - - - , N )  satisfies the inequality 

I -0  

be determined correctly from the noisefree input/output time-series if 

rank[ ~"-'"."-'(~-2n+1)1>2nrn 

where U"-1"'2"-1(N-2n+l) is an  (N-2n+2)X2m matrix defined 

ZJroq? Since So is assumed to be completely  controllable and 
completely  observable, it is in minimal form; hence, it cannot be reduced 
to a lower order model by common factor cancellation of the polynomi- 
als L(A) and M,(A), j = l , - * * , m .  Assume the noisefree input/output 
sequence DN+l also satisfies  a  model go of order R<n-1 descnlbed  by 
the equation 

by (4). 

go: L(A)z(k)= x %(A)u,((k) 
m 

j -  1 

where 

From (14) and (16), one obtains 
m 

Y ( A ) ? ( k ) = O  
j - I  

where  polynomials Mjf(A) of degrees  less than 2n are defined as 

V(A) , C ( A ) ~ . ( A )  - L ( A ) ~ . ( A )  = Z % f ~ f .  
2n- I 

r - 0  

Evaluating(l7)fork=O,l,...,N-2n+l,weobtain 

[ ~ - - 1 - ' " - ~ ( ~ - - 2 n +  i)]y=o. 

where y is a 2nmx 1 vector defined as 

Y ~ c o l ( Y l o . . . Y l , " - l ' - . Y m o . ' . Y ~ s n - l ) .  

Now if y= 0, then above implies that 

This means that So can be reduced to the lower order model  by 
common factor cancellation of L(A) and Mj(A), hence contradicting 
assumption 2)  of Theorem 1. Thus, yfO and the 2nm columns of 
Uh-'"'"-'(N-2n+l) are linearly  dependent. That is, 

rank[ U"-'"'"-'(N-2n+ l ) ]   <2m.  (19) 

However,  (19) contradicts the assumption 2) of Theorem 1. Q.E.D. 
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Define the following (q+ 1)m X(q+ 1)m  nonnegative definite matrix: 

G&,qL44(M) & --1-[U4.'.4(M)IT[Uq..'q(M)]. 
m+ 1 (20) 

Sit% rankG&,q..'q(M)~rankUq'"q(M), we can also state Theorem 1 as 
the following  corollary. 

Corollary 1.1: The order n of the m-input, singboutput system So 
can be determined  correctly from the noise-free input/output timeseries 
if 

1) So is completely  controllable, and 
2) the input {w(k)EW", k=O,l,---,N} satisfies the inequality 

det[G&,"-'~~~"-'(~-2n+I)]>0. (21) 

Remark To establish  assumptiou 2) of Theorem 1 or (21), the input 
sequence needs a  length 

N+1>2n(m+1)-1. (2) 

Remark Theorem 1 and Corollary 1.1 represent  only the sufficient 
conditions.  Example  3 illustrates the possibility of correct order d e  
termi~tim from an input/output sequence for which the input does not 
satisfy assumption 2) of Theorem  1 or (21). 

Remark If an input yields  a correct order determination, it does not 
necssady mean that the system can also be modeled  correctly. Correct 
modeling also requires  the  uniqueness of the system parameters. 'Ibis 
problem will be discussed in Section IV. 

Based on the matrix QF"'q(M) defined by (20), it is obvious that if 
deqG&,q"'q(N-q)]=O for some q=<, then it is m e  for all q > i .  Thus, if 
an input is "unsuitable" for order determination of an nth order system, 
it is also "unsuitable" for all system of order n'>n. The vanishing of 
deqW"'q(N- q)] is a critical property of an input for order determina- 
tion. 

One  may finally observe that order determination is not a goal in 
itself.  However,  once the order of the system has been determined, one 
has its input-output model  with a fixed  number of unknown 
coefficients. 
To complete  the identification one has to compute  these unknown 

coefficients. This relatively straightforward problem is discussed in the 
next  section. 

lv. SYSreMIDBNnmAsm 

In this section,  sufficient conditions for correct system identification is 

Theorem 2: The nth order,  m-input,  single-output  system So can be 
identified correctly from the noisefree input/output time-series if 

1) So is completely  controllable, and 
2) the input {rr (k)~W",  k = O , l , - . - , N }  satisfies the inequality 

investigated. 

rank[ ~ " " ' " ( ~ - 2 n ) ] >  (2n+ I )m,  (23) 

or equivalently, 

det[Q.""'2"(N-2n)]>0 (24) 

where  U".""(N-2n) and Q2".-."(N-2n) are (N-2n+  1)X(2n+ 1)m 
and (2n + 1)m x (2n + I)m matrices defined by  (4) and (20),  respectively. 

Proof: Let DN+' be a  sequence of noise-free input/output 
measurements of So. Assume that DN+ * also satisfies a different model 
so as d e s c r i i  by  (16)  of order A<n. From (14) and (16)  we obtain 

o= x q(Q$o) 
m 

j - 1  
(25) 

where  polynomials Y(A) are of degrees  less than 2n+ 1 defined as 

2n 

I -0  
V(A) ,C(A)$.(A) - L ( A ) ~ . ( A )  Z c~A~.  (26) 

Evaluating(25)fork=O,l,..-,N-2n,weobtain 

[ U2""."(N-2n)]y=O  (27) 
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The order determination and the modeling  procedures  presented in 
this paper can be  extended to stable stochastic  systems  under a p  
propriate assumptions on the noise statistics. This problem will be 
considered in a separate paper. 
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O n  the Stabfiation of Nonlinear Systems Using 
State Detection 

M. VIDYASAGAR, SENIOR MEMBER, IEEE 

I. INTRODUCTION 

In this paper, we consider nonlinear control systems described by 
equations of the type 

where x(t),  At), and u(t) denote the state, output, and input of the 
system,  respectively.  We  assume that x(f )  E R ", y(2) E R "', and u(t) E R', 
VI > 0, and thatf, r are continuously differentiable functions that vanish 
when all of their  arguments  except t vanish.  The  problem under study 
here is that of finding a  stabilizing control law for the  system (1.1)-(1.2), 
in the case where  only At) can be measured, but not necessarily x(r). 

In the special case  of linear time-invariant  systems, (1.1) and (1.2) 
assume the form 

i ( f )=Ax( t )+&( t )  (13) 
y(t)= Cx(2). ( 1.4) 

For this case, it is well known [l] that a  stabilizing dynamic feedback 
compensator can be constructed if the system (1.3)-(I .4) is both stabiliz- 
able and detectable.  Specifically, suppose 

1) there  exists a matrix E such that A - BE is Hurwitz @e., all 
eigenvalues of A - BK have negative real parts), and 

2) there  exists  a matrix F such that A - FC is Hurwik. Assumption 1 
implies that the  system (1.3) is stabilized by the control law 

u( 1) = - Kx( 2 ) .  (1.5) 

However, in general, the control law (1.5) cannot be implemented, 
because only At) can be measured. To circumvent this difficulty, we set 
up a "detector"  described by' 

2 ( 2 ) = ( A - F C ) z ( 2 ) + F y ( 2 ) + ~ ( t )  ( 1 -6) 

which has the property that 

z(t)-x(t)+O as 2-03, for all x(O),z(O). ( 1.7) 

Finally, we apply the control law 

u(t)= -Kz(2). (1.8) 

Now, it is easy to show that x= 0, z =O is a (globally)  asymptotically 
stable equiliirium point of the resulting system 

i ( t )=Ax(z)-BgL(r)  (1.9) 

i(r)=(A-Fc-BK)z(t)+Fcx(t). (1.10) 

The usual proof of the above special result is very easy, but depends in 
a crucial way on the fact that the system at hand is linear and time 
invariant. The objective of this paper is to state and prove results 
analogous to the above, without making any mmnption about linem?y. 
The tool that we use to achieve this is a collection of converse  theorems 
from Lyapunov  theory,  plus  some ideas from [SI. The results  given here 
pertain to both local and global asymptotic stability. The results on 
global  asymptotic stability are essentially  equivalent to those in [SI, and 
generalize  those in [9]. However, the techniques  used here are quite 
different from those in [SI. The local asymptotic stability results do not 
appear to have any parallel in the literature. 

The paper is organized as follows. In Section II, we present some 
preliminary results, including definitions and converse  Lyapunov theo- 
rems. In Section 111, we present  the main theorems concerning asymp- 
totic stability and exponential  stability,  while in Section IV, we present 
the main theorems concerning global exponential stability. Section V 
contains some  illustrative  examples,  while Section VI contains the con- 
clusions. 

II. PRELIMMARIES 

(l.') In this section,  we  briefly summarize some  results from the Lyapunov 
(1.2) theory that are needed in the  sequel, and introduce a few  definitions. 

First of all, following Hahn [2l,  we  say that a  function 9: R,+R, 
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