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Deterministic Identification of Linear Dynamic
Systems

Y. C. WU anp Z. V. REKASIUS, MEMBER, IEEE

Abstract—This paper considers the problem of identifying mmitiinput
single-output linear time-invariant discrete-time systems from noise-free
input/ontput measurements. The effect of input on identification is
studied in detail. It is shown that the correctness associated with an
identification is critically dependent on the input sequence used. Further-
more, as long as only finite input /output sequences are used for identifica-
tion, there is always a possibility that the actual system is of higher order
than the identified models reveal. This uncertainty leads to the concept of
tentative identification. Sufficient conditions for correct order determina-

tion and modeling are also investigated.

I. INTRODUCTION

System identification has been studied extensively, most of the re-
search being devoted to the construction of reliable mathematical mod-
els from the noise-corrupted input/output data of systems excited by
sufficiently random input (usually the white noise). Identification involv-
ing arbitrary input has not been widely studied. Recently, Emre, Silver-
man, and Glover [1] showed the possibility of multiple models. Rekasius
and Brasch [14] observed that false models may be obtained from the
input/output data and that false identification is due to the properties of
the input. Furthermore, as long as the length of the input/output data is
finite, there is always a possibility that the actual system is of higher
order than the models reveal. Hence, without the knowledge of the
system order, one is not able to tell if a system has been identified
successfully. The models obtained in this manner are referred to as
tentatively identified [14]. It is shown that the correctness associated with
an identification is intimately related to the input used. Sufficient condi-
tions for correct order determination and modeling are investigated.

. Basic THEORY FOR ORDER DETERMINATION
Consider the following input—output model of an m-input, single-out-
put, linear, time-invariant, discrete-time system:

n
s% >

t=0

wak+)= 2 3 B, =1 (1)
Jj=11t=0

where & denotes the time instant; u(-)=col(#;(-)- - - #,,(-)) is the input;
z(-) is the output; and a,, 8, are constant system parameters. Assume

DV+12 (u(k)eR™ z(k)ER; k=0,1,--,N} @'
is a noise-free input/output time-series of §°. Define the matrices
[ 2(0) 2(p)
200 & z.(l) Z.(P +1) :
i 201 2(p+ M)
4,(0) uq) 3)
o2 1?'(1) 'f’(qﬁ 1
| w0 u(g+ M)
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Unam(M) 2 [ UM L <o 1 US(M) ] )
REgr (M) = [ Z2(M) | U (M)] ®)
oz (M) & 5 [RES (M) [RES ()], ©®
Consider the following function:
R(p;N) £ rank[ RZZ"P(N—p)] —rank[ RES # " #(N = p)]
=rank| Q27 P(N —p)]—rank[ Q25 7~ P(N-p)].  (7)

Note that the only difference between REZ*“P(N—p) and RE_LPP(N
—p) is that the former contains an extra column,

2(p; N) 2 col(z(p)z(p+1)- - - (N)). ®

Thus, R(p;N) can only assume the value of either 0 or 1 for all
nonnegative integers p. Based on the values of R(p; N), we conclude the
following.

1) If R(p;N)=0, then z(p;N) is linearly dependent on the columns
of RZ, 1P P(N—p). Thus, DV*! satisfies a pth order equation,

P m P
z az(k+ )= Z 2 Bk +1), apé I ®
t=0 =] t=0

J

2) If R(p; N)=1, then z(p; N) is linearly independent of the columns
of RE,17"P(N—p). Since this condition also implies that R(p"; N)=1
for all p’ < p, it is clear that D¥*! satisfies no models of the form (9) for
all orders p’ < p. Hence, n>p.

Now start with p=0 and check the value of R(p;N). If R(p;N)=1,
then n>p. Increase p by 1 and repeat the procedure until R(p,; N)=0is
obtained. Then p, is the minimal possible order of § 0 based on the data
D¥*1 We summarize the above conclusions as follows:

1, then n>p

if R(p; N)= { S ey (10)

Finally, some remarks about the relation of S to its state-space model

are in order. Let the equations
8% x(k+1)=Ax(k)+ Bu(k)

y(k)=Cx(C)+ Dx(k)

(11a)
(11b)

be a state-space model of a system S9. Here x(-) is the n’-dimensional
state vector. If the system is completely controllable and completely
observable,

Otherwise,

n >n.
Therefore, we will assume throughout this paper that the system S°,
which we want to identify is completely controllable and completely

observable, i.e., we assume that there are no pole-zero cancellations in
(1), in the sense that the McMillan degree of the transfer matrix is 2.

III. ORDER DETERMINABILITY

In this section, sufficient conditions for correct determination of the
system order are investigated. The question that is of interest here is the
following: based on the data D¥*?, under what conditions can the order
of S° be determined correctly by means of the algorithm (10)?

Definition 1: The order n of the input—output model (1) of the system
S is said to be correctly determined if the inequality

(12)
holds for all p, for which the input—output sequence D™ *! satisfies (9).

n<p
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Next we investigate the sufficient conditions for correct order de-
termination. For convenience, define the advance operator A by

A'F(k) = F(k+1) (13)

for all time functions F(k). Then (1) can be written as

$% L@a= 3 M@0 a9
p2

where L(4) and M,(4) are polynomials in A defined as

n
L) 2 ,an,A', a,=1 and

j=10,m. 15)

M= 2 B,
t=0

Theorem 1: The order n of the m-input, single-output system S can
be determined correctly from the noise-free input/output time-series if

1) §%is completely controllable, and

2) the input {u(k)E R™; k=0,1,---,N} satisfies the inequality

rank[ U212 =N — 20+ 1)] > 2nm

where U =1~ (N—2n+1) is an (N —2n+2)X2am matrix defined
by (4).

Proof: Since SO is assumed to be completely controllable and
completely observable, it is in minimal form; hence, it cannot be reduced
to a lower order model by common factor cancellation of the polynomi-
als L(A) and My(8), j=1,---,m. Assume the noise-free input/output
sequence D¥+1 also satisfies a model §° of order #<n—1 described by
the equation

L@ 3 FOuo (16)
P

where

sm.

[ 7
L& T as and MA)E 3 BA,  j=1,--
t=0 =0
From (14) and (16), one obtains

2 M @ui=0 an

where polynomials M*(A) of degrees less than 2n are defined as

2n—1
M) = LOMB) - LOM )= 2 A"

Evaluating (17) for k=0,1,--- ,N~2n+1, we obtain
[Uz=t YN =20+ 1)]y=0.
where v is a 2nm X 1 vector defined as
Y2 0l(Yio" " Y1,20-1" " Ym0" * Ym2n—1)-
Now if y=0, then above implies that
M) _ H)
L& Iwy’
This means that S® can be reduced to the lower order model §° by
common factor cancellation of L(A) and M;(A), hence contradicting

assumption 2) of Theorem 1. Thus, y+0 and the 2nm columns of
ya-128~Y(N 25 +1) are linearly dependent. That is,

forallj=1,---,m. (18)

rank[ U2~ 12N =20+ 1)] < 2nm. (19)

However, (19) contradicts the assumption 2) of Theorem 1. Q.E.D.
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Define the following (g+ 1)mX(g+ 1)m nonnegative definite matrix:

1

LU D[V 9(a)].

eI M) 2

(20)

Since rank U7 9(M)=rank U7 "9 M), we can also state Theorem 1 as
the following corollary.

Corollary 1.1: The order n of the m-input, single-output system S°
can be determined correctly from the noise-free input/output time-series
if

1) §° is completely controllable, and

2) the input {s(K)ER™, k=0,1,---,N} satisfies the inequality

detf[ U212~ (N—2n+1)]>0. 21)

Remark: To establish assumption 2) of Theorem 1 or (21), the input
sequence needs a length

N+152n(m+1)-1. 22)

Remark: Theorem 1 and Corollary 1.1 represent only the sufficient
conditions. Example 3 illustrates the possibility of correct order de-
termination from an input /output sequence for which the input does not
satisfy assumption 2) of Theorem 1 or (21).

Remark: If an input yields a correct order determination, it does not
necessarily mean that the system can also be modeled correctly. Correct
modeling also requires the uniqueness of the system parameters. This
problem will be discussed in Section IV.

Based on the matrix QU7""2(M) defined by (20), it is obvious that if
det{U2"9(N — g)]=0 for some g=g, then it is true for all g >4. Thus, if
an input is “unsuitable” for order determination of an nth order system,
it is also “unsuitable” for all systems of order n’>n. The vanishing of
det[U?"9(N — g)] is a critical property of an input for order determina-
tion.

One may finally observe that order determination is not a goal in
itself. However, once the order of the system has been determined, one
bas its input—output model with a fixed number of unknown
coefficients.

To complete the identification one has to compute these unknown
coefficients. This relatively straightforward problem is discussed in the
next section.

IV. SySTEM IDENTIFIABILITY

In this section, sufficient conditions for correct system identification is
investigated.

Theorem 2: The nth order, m-input, single-output system S® can be
identified correctly from the noise-free input /output time-series if

1) S$°is completely controllable, and

2) the input {#(k)ERA™, k=0,1,---,N} satisfies the inequality

rank{ U 2(N=2n)] > (2n+ 1)m, 3)

or equivalently,
det[ U "2 (N —2n)} >0 (29)
where U2*"2%(N —2n) and 2" 2(N —2n) are (N—2n+ )X (2n+ Dm
and (2n+ 1)m X (2n+ 1)m matrices defined by (4) and (20), respectively.
Proof: Let D¥*! be a sequence of noise-free input/output

measurements of S$°. Assume that D¥+! also satisfies a different model
59 as described by (16) of order 7 <n. From (14) and (16) we obtain

0= 3 M @uik) (@25)

where polynomials M*(4) are of degrees less than 2n+ 1 defined as

[ — A 2"
Mp() = LQ)M(A) - LA M(8) = PR (26)
Evaluating (25) for k=0,1,-+- ,N—2n, we obtain
(U 2(N—2n)ly=0 @n
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where v is a (2n+ 1)m X 1 vector defined as

Y = col(Yio® * Y1,22" " Ymo" " Ym,20)- (28)
Since S and S° are different models, we have y0; hence, (27) implies

rank] U2 2%( N — 2n)] =rank[ 2" (N —2n)] < (2n+ 1)m. (29)
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yields
a1l p=0
R(p;13) {0, p=1.

Hence, the determined order is =1 and we find a unique model,
z(k+ )= z(k) + uy(k+ 1) + uy (k) + u(k + 1) — uy(k).

However, (29) contradicts the assumption (23) or (24). QED.
Remark: To establish (23), the input sequence needs 2 length Example 2: The possibility of false modeling is illustrated. The in-
N+152n(m+1)+m. (30) put/output time-series
Dt [0 1 2 3 4 5 6 78 9 10 1 121
w®|1T 1 -1 -1 -1 0 1 21 -2 -4 -1 4 2
uk)y{0o -1 1 1 1 -2 -3 0 4 2 -3 -3 0 3
z(k) |0 0 1 -1 0 0 -1 =21 4 1 -6 -7 4
Remark: Theorem 2 represents only the sufficient conditions. In cer-  yields

tain cases, the system may still be identified correctly and uniquely even
if the input does not satisfy (23) [see example 3]

V. MODELING

In this section, modeling of the m-input, single-output system S° from
the noise-free input/output measurements is considered.

Assume 7 is the order of S determined from the procedure described
in Section IV based on the noise-free input/output data D¥*! given by
(2). Then the vector z(#; N ), defined by (8), is linearly dependent upon
the columns of the matrix RZ 7 %% #(N — A). Thus, we can write

z(y‘i;N)=[Rz’;:l;n-..n(N_"i)]a‘ G1)
where & is a vector comprising 7+ im + m parameters. By defining
&gcol(—&o"'—&5-1510"'ﬁm"'ﬁm"’ﬁﬁ)s (32
we obtain an nth order model
n . m AR A
’20 a,z(k+t)=j21 '20 Buk+1), a,=1 33)

Premultiplying (31) by 1/N—a+1[R:, 5% A N—A)|T and using (6) we
obtain

—1;A:-R - 1 —~1;4---R ne
[ 'z (N n)]a N— n+1 [ (N i)] z(n,N).
(39
The parameter vector a can be solved from (34) as follows:
1) if det[ Q77 1% “#(N — n)}5=0, we obtain a unique solution,
=] Qi 1A AN~ ﬁ)]‘ [ REF-HN- ﬁ)] 2(AN);  (35)

2) if det[ Q77 13%"*(N — /)] =0, there are multiple solutions for &. For
each solution of 4, we obtain an 7ith order model of the form (33).
VL ExaMPpLES

In this section, examples are presented for illustrating the effect of the
input on identification. The noise-free input/output data are obtained
from the following two-input single-output second-order model:?

z(k+2)=z(k+1)— z(k) + vk + 1) — (k) + us(k +2) + uy(k). (36)

Example 1: The possibility of false order determination is illustrated.
The input/output time-series®

[ p=01
R(p;13) { 0, p=2.
Hence, the determined order is 7#=2. From (36)—(38), we find that DJ*
satisfies both the model (36) and the following model:*

z(k+2)=—z(k) + uy(k +2) + v, (k) + uy(k +2) + 2u (k).

Example 3: This example illustrates the possibility of correct model-
ing from a theoretically “unsuitable” input sequence and the existence of
higher order models. The input/output time-series®

DJ° | 01 2 3 4 5 6 7 8
y(k)(o 1 0 0 1 -1 -1 4 1 0
u(k)fr 0 0 -1 -1 2 2 -2 -1 0
zk)y|1 1 2 -1 -4 -1 2 3 7 -1
yields
pr=0,1

1
R(p;N=1"
(p 9) { 0, p=2
Hence, the determined order is 7=2 and we find a unique model (36).
However, D40 also satisfies the following fourth-order system:

z(k+4)=z(k+3)—15582(k+2)+23.56z(k+1)
—22.78z(k) — uy(k+4)—0.65u,(k+3)
+0.15u4,(k +2)—0.62u,(k + 1) +4.73u,(k)
+11uy(k+3) 4 31uy(k +2) — 17uy(k + 1) + 40w,y (k).

VII. CONCLUSIONS

In this paper, identification of multiinput single-output systems is
considered. Order determination is based on the rank difference between
two matrices constructed from the input/output data. It has been shown
that the correctness of an order determined or a model identified is
critically dependent on the input used. Also, whenever the input/output
sequence is finite, there is always a possibility that the actual system is of
higher order than the one identified. Thus, in general, one is not able to
tell if the order determined or the model identified is correct. For this
reason, identification is only tentative. Sufficient conditions for correct
order determination and modeling are also derived.

D% o012 3 4 5 6 7 8 9101 12 13
w(|1 00 -1 -1 2 2 -2 -1 0 1 1 -1 -2
u(¥){010 0 1 -1 -1 4 1 0 0 0 1 0O
k(021 0 -1 -2 2 7 1 -1 0 2 3 -1

2Here an unstable model is used for the con of
3The model is satisfied by D4 at k=0 with initial condition : z(—1)=—1L

“The model is satisfied by D}* at k=0,1 with z(— 1)=0 and z(—2)=1.
SThe model is satisfied by D40 at £=0,1,2,3 with z(--1)= —02576821773, z(—2)=
0.3379722520, z(— 3)=0.9647635901, and z(— 4)=0.7114372396.
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The order determination and the modeling procedures presented in
this paper can be extended to stable stochastic systems under ap-
propriate assumptions on the noise statistics. This problem will be
considered in a separate paper.

REFERENCES

E. Emre, L. M. Silverman, and K. Glover, “Generalized dynamic covers for linear
systems with applications to deterministic identification and realization problems,”
1EEE Trans. Auwtomat. Conir., vol. AC-22, pp. 26-35, Feb. 1977.

D. Graupe, D. J. Krause, and J. B. Moore, “Identification of autoregressive

moving-average parameters of time series,” /EEE Trans. Awomat. Contr., vol.

AC-20, pp. 104-107, Feb. 1975.

[3] K. J. Astrom and P. Eykhoff, “System identification—A survey,” Automatica, vol.
7, pp- 123-162, Mar. 1971,

f4] J. C. Chow, “On the estimation of the order of a moving-average process,” IEEE
Trans. Automat. Contr., vol. AC-17, pp. 386-387, June 1972.

[E2] , “On estimating the orders of an autoregressive moving-average process with
uncertain observations,” J/EEE Trans. Automal. Contr., vol. AC-17, pp. 707-709,
Oct. 1972,

[6] C. M. Woodside, “Estimation of the order of linear systems,” Automatica, vol. 7,
pp- 727-733, Nov. 1971,

[71 H. Unbebauen and B. Gohring, “Tests for determining model order in parameter
estimation,” Automatica, vol. 10, pp. 233244, May 1974.

[8] A.J.W. Van Den Boom and A. W, M. Van Den Enden, “The determination of the
orders of process- and noise-dynamics,” Automatica, vol. 10, pp. 245-256, May
1974.

[9] E. Tse and H. L. Weinert, “Structure determination and parameter identification

for multi-variable stochastic linear systems,” IEEE Trans. Awiomar. Contr., vol.

AC-20, pp. 603613, Oct. 1975,

S. J. Merhav and E. Gabay, “On simultaneous structure and parameter identifica-

tion of linear dynamical systems,” JEEE Trans. Automat. Contr., vol. AC-19, pp.

401404, Aug. 1974,

S. J. Merhav and E. Gabay, “Unbiased parameter estimation by means of autocor-

relation functions,” JEEE Trans. Awtoemat. Contr., vol. AC-20, pp. 368-372, June

1975.

J. M. Mendel, “Multistage least-square parameter estimators,” IEEE Trans. Auto-

mat. Contr., vol. AC-20, pp. 775-782, Dec. 1975.

B. Gopinath, “On the identification of linear time-invariant systems from input-out-

put data,” Bell Syst. Tech. J., vol. 48, pp. 1101-1113, May-June, 1969.

Z. V. Rekasius and F. M. Brasch, “A theoretical look at modeling and identifica-

tion,” to be published.

|

2]

10)
(1

2]
0n3
[14]

On the Stabilization of Nonlinear Systems Using
State Detection

M. VIDYASAGAR, SENIOR MEMBER, IEEE

Abstract—In this paper, we study the problem of stabilizing a nonlinear
conirol system by means of a feedback control law, in cases where the
entire state of the system is not available for measurement. The proposed
method of stabilization consists of three parts: 1) determine a stabilizing
control law based on state feedback, assuming the state vector x(7) can be
measured; 2) construct a state detection mechanism, which generates a
vector z(¢) such that z(/)— x(f)—0 as t—oo; and 3) apply the previously
determined control law to z(z). This scheme is well established for linear
time-invariant systems, and its global convergence has previously been
studied in the case of nonlinear systems. Hence, the contribution of this
paper is in showing that such a scheme works in the absence of any
finearity assumptions, and in studying both local asymptotic stability and
global asymptotic stability.

I. INTRODUCTION
In this paper, we consider nonlinear control systems described by
equations of the type
(1.1
(1.2)

2(8)=1t,x(1),u(2))
¥ =r(t,x(5))
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where x(#), ¥(2), and u(?) denote the state, output, and input of the
system, respectively. We assume that x()E R", p(1)€ R™, and u(f) ER’,
Vi >0, and that f; r are continuously differentiable functions that vanish
when all of their arguments except ¢ vanish. The problem under study
here is that of finding a stabilizing control law for the system (1.1)—(1.2),
in the case where only y(¢) can be measured, but not necessarily x(7).

In the special case of linear time-invariant systems, (1.1) and (1.2)
assume the form

#(£)=Ax(t)+ Bu(t) (1.3)
()= Cx(t). (14)

For this case, it is well known [1]} that a stabilizing dynamic feedback
compensator can be constructed if the system (1.3)~(1.4) is both stabiliz-
able and detectable. Specifically, suppose

1) there exists a matrix K such that A — BK is Hurwitz (ie., all
eigenvalues of A — BK have negative real parts), and

2) there exists a matrix F such that 4 — FC is Hurwitz. Assumption 1
implies that the system (1.3) is stabilized by the control law

u(r)= — Kx(1). (1.5)

However, in general, the control law (1.5) cannot be implemented,
because only p(f) can be measured. To circumvent this difficulty, we set
up a “detector” described by!

2(£)=(4 — FC)z(1) + Fy(2) + Bu(?) (1.6)
which has the property that
2()—x(f)>0  as t— o0, for all x(0),z(0). .7
Finally, we apply the control law
u(r)=— Kz(¥). (1.8)

Now, it is easy to show that x=0, z=0 is a (globally) asymptotically
stable equilibrium point of the resulting system

x($) =Ax()— BKz(1)

2(f)=(A — FC— BK)z(r)+ FCx().

(1.9)
(1.10)

The usual proof of the above special result is very easy, but depends in
a crucial way on the fact that the system at band is linear and time
invariant. The objective of this paper is to state and prove results
analogous to the above, without making any assumption about linearity.
The tool that we use to achieve this is a collection of converse theorems
from Lyapunov theory, plus some ideas from [5]. The results given here
pertain to both local and global asymptotic stability. The results on
global asymptotic stability are essentially equivalent to those in [8], and
generalize those in [9]. However, the techniques used here are quite
different from those in [8]). The local asymptotic stability resuits do not
appear to have any parallel in the literature.

The paper is organized as follows. In Section II, we present some
preliminary results, including definitions and converse Lyapunov theo-
rems. In Section III, we present the main theorems concerning asymp-
totic stability and exponential stability, while in Section IV, we present
the main theorems concerning global exponential stability. Section V
contains some illustrative examples, while Section VI contains the con-
clusions.

II. PRELIMINARIES

In this section, we briefly summarize some results from the Lyapunov
theory that are needed in the sequel, and introduce a few definitions.

First of all, following Hahn [2], we say that a function ¢: R, —R,
belongs to class X if ¢ is continuous, strictly increasing, and $(0)=0. If,
in addition, lim__, . ¢(0)= co, We say that ¢ belongs to class KR. Finally,

'To keep the exposition simple, we do not discuss the minimum order observer.
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