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Abstract

Isosurface extracted from volume data, such as CT, SPECT and MRI, can provide 3D struc-
ture information. The marching cubes algorithm has been extensively applied in isosurface
extraction from volume data. This algorithm generates spatially regular triangle meshes
and can be very storage-consuming and hard rendering when the volume data is huge. We
present an adaptive isosurface extraction algorithm which can reduce the triangle number
of isosurface by adapting to the variation of the isosurface. The adaptive isosurface con-
tains larger but fewer triangles for low variation area and smaller but more triangles for
high variation area. We use kd-tree method to rapidly locate the area containing the iso-
surface. Then a novel recursive algorithm is applied to analyze the volume data and to
generate the triangles with sizes adaptive to the surface. According to our experiments, the
triangle number obtained-by using the proposed method can be at least four times fewer
than that can be obtained by using the marching cubes method without losing significant

surface accu racy.
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Figure 1.1: The image slices of brain MRI volume data.

1.1 Isosurface Extraction

MRI (Magnetic Resonance Imaging) has been extensively utilized for scanning human
body. They can provide volume data composed of a series of 2D image slices as shown
in Figure 1.1. In clinical diagnosis and medical research, it is often useful to reconstruct
the 3D surface structure of targeted tissues from volume data because 3D surface provides
more information for physicians to penetrate the complex structure of the tissue.

Under the assumption of homogeneity, the same tissue results in the same intensity

value in MRI volume data. By analyzing the intensity distribution of tissues in the vol-
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ume data, we can specify the intensity value of the tissue we want to reconstruct. This
intensity value is referred to theovalue Isosurface represents the surface with the same
intensity value that we want to extract in the volume data. We can obtain the boundary sur-
face between two adjoining tissues by extracting the isosurface with the isovalue specified
between the intensity values of these two tissues.

Marching cubes algorithm proposed by Lorensen and Cline [1] is considered as a stan-
dard approach to extract isosurface. Itis a simple and practical algorithm which can extract
a 3D triangle mesh to approximate the isosurface and can calculate the normal direction
for each triangle. We can then render this 3D triangle mesh to visualize the surface struc-
ture of the tissue. Besides visualization, isosurface reconstruction is useful in functional
brain mapping research. We can use the'3D triangle mesh of brain to calculate the BEM
(Boundary Elementary Method, Figure 1.2) volume conductor model and use the model to

calculate the brain activity-[2].

1.2 Challenges of Isosurface Extraction

Due to the improvements of acquisition device, the volume data resolution is getting
higher and higher rapidly. The triangle number of reconstructed 3D triangle mesh is also
increasing when we use marching cubes to regularly extract the isosurface from a large
volume data. It often exceed millions of triangles and will be very inefficient to extract,
store, and visualize such a huge amount of triangles.

Many mesh simplification algorithms [3] [4] [5] have been proposed in the literature.
Most of them take each triangle in the triangle mesh as a decimation target and decide to

remove it or not under some error criteria. It is storage-consuming because a huge amount
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Figure 1.2: The reconstructed triangle mesh.for building a BEM model of the brain [2].

of small triangles still have to be extracted first. 1tis also time-consuming to process such
a huge amount of data by applying these algorithms. time-consuming by applying these
algorithms to the isosurface with huge triangles reconstructed from large volume data.

The algorithm proposed by He et al. [6] successively applies low pass filter to downsam-
ple the volume data. The triangle number can be reduced when extracting isosurface from
lower resolution volume data. However, some surface structure may be lost at the same
time. Another similar algorithm proposed by Kraus and Ertl [7] downsample the volume
data while retaining the critical points to preserve more surface structure. These algorithms
reduce a larger amount of triangles and are also efficient. However, downsampling process
may lose information that result in the possibility of missing important surface structure.

We propose in this thesis an adaptive isosurface extraction method that can reduce the
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triangle number, preserve the topology, and speed up the surface extraction process, We
reduce the triangle number of isosurface by adapting to the variation of the isosurface. The
adaptive isosurface contains larger but fewer triangles for low variation area and smaller
but more triangles for high variation area. We uses kd-tree method to rapidly locate the
area containing the isosurface. Then a novel recursive algorithm is applied to analyze the

volume data and to generate the triangles whose sizes are adaptive to the surface.

1.3 Thesis Organization

The dissertation is organized as follows: Chapter 2 presents the background and related
works. Chapter 3 depicts an overviewsof our method. Chapter 4 introduces volume data
analysis, including both kd-tree construction.and k-d search, and the detail about simple
cubic boxes construction: Chapter-5 introduces triangle mesh generation, including both
isoline loop extraction and"merging extraction, and describes the detail about vertex ad-
justment of final triangle mesh. Chapter 6 presents the experiment results and discussion.

Chapter 7 draws the conclusions.
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Figure 2.1: The cube can be defined as eight neighboring voxels between two consecutive
2D images [1].

2.1 Marching Cubes

Since we want to extract isosurface, we have.to understand the most representative
algorithm, marching cubes (MC). Lorensen and Cline proposed the first isosurface extrac-
tion algorithm marching cubes in 1986. By visiting the whole volume, it locates the cubes
containing isosurface and then generates corresponding 3D triangle or triangles. A cube
consists of eight neighboring voxels between two consecutive 2D slices (Figure 2.1) and
there exits the isosurface if the intensity values of eight voxels are not all larger or all
smaller than the isovalue. A voxel is usually called inside if its intensity value is larger
than the isovalue and is called outside if its intensity value is smaller than the isovalue.
According to the inside and outside conditions of the eight voxels, MC can determine how
to extract triangle or triangles inside the cube. There are 256 situations to locate triangle or

triangles in a cube. A look up table with 256 entries can be utilized to rapidly determine
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Figure 2.2: The reduced 15 cases of-marching cubes algorithm when symmetry is consid-

ered [1]. Black voxel usually'means inside the isosurface and white voxel means outside
the isosurface.

the situation. Figure 2.2 shows the 15 situations when symmetry is considered. After look-
ing up the table, the MC algorithm uses linear interpolation to obtain actual triangle vertex
coordinate for each triangle. Before outputting the triangles, the MC algorithm calculates
the surface normalX, (i, j, k), G, (i, j, k), G.(1, j, k)) for each triangle vertexi, j, k) by

using central differences along the three coordinate axes:

G.’E(i7j7 k) - Ax )

Ay ’

Gy(iaja k) =
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o DG, jk+1)—=D(i, j k—1
G k) = PSR I V= DOSEZ)

whereD(i, j, k) is the intensity value of voxél, j, k).

2.2 Acceleration of Isosurface Extraction

Marching cube will visit all the cubes in the volume data and check whether the cube
containing isosurface or not. Actually, it is time-consuming because only a few cubes
contain isosurface and the effort of checking empty cubes are a waste of time. Thus, there
are algorithms proposed in the literature that can improve the efficiency by skipping empty
cubes, referred to a survey study performed by Philip M. Sutton et al. [11] in 2000, in which
they compared the extraction time and memory overhead of different isosurface extraction
method.

Wilhelm and Van Gelder proposed an octree method [8] in 1992. They used an octree
to decompose the volume data into eight subvolume hierarchically until reaching eight unit
cubes. The root node of the octree covers the region of whole volume and its eight child
nodes cover the region of eight subvolumes. For each octree node, their method analyzes
the minimum and maximum intensity values that this octree node covers. Then, depth-first-
search strategy is used to traverse the octree to locate the leaf nodes whose isovalues are
between the minimum and maximum values. Finally, corresponding triangles are generated
for the located nodes.

T. Itoh and K. Koyyamada proposed Extrema Graph method [9] in 1994. It searches
the whole volume from a seed cube containing isosurface and propagates to adjacent cubes

containing isosurface by knowing the coherence of isosurface It keeps propagating until
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all the cubes containing isosurface have been visited. The seed cube can be found by
employing Extrema Graph [9].

Yaden Livnat et al. proposed kd-tree technique [10] in 1996. This technique is incor-
porated in our method and we will discuss the details of the kd-tree technique in Chapter

4.

2.3 Adaptive Isosurface Extraction

Besides accelerating extraction time, a large number of triangles generated by marching
cubes hinder both the calculation and rendering. To solve this problem, many adaptive iso-

surface extraction algorithms have-been'proposed. We classify these algorithms as follows:

¢ Discretized-based method:
C. Montani et al. proposed Discretized Marching Cubes (DMC) method [12] in 1994.
This approach assumes.discretization of the data set space and replaces cube edge in-
terpolation with midpoint selection. Figure 2.3 illustrates all possible midpoints in
this method. Under certain assumptions, the extracted isosurface consists of poly-
gons with finite number of incidences (Figure 2.4). There are only 13 different kind

of incidences and can be modeled as follows:
r=cy==cz=0c,

rty=crtz=cytz=c,
rEtytz=c

We can apply simple merging of the facets with the same incidence and then produce
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Figure 2.3: Midpoint selection. All possible 13 different kinds of midpoints in DMC algo-
rithm [12].

larger and fewer coplanar facets. This technique will be adopted in our method and

we will discuss the details in Chapter 5.

Box-based method:

Renbeb Shu et al. proposed the cubic box method [13] in 1995. This approach
decomposes the volume data. into initial blocks with equal size N, where N is the
factor of two. Their method decomposes each initial block into cubic boxes with
different resolutions according to the variation of isosurface. For each cubic box,
their method uses marching cubes to extract corresponding triangles with different
sizes. Unfortunately the crack problem will occur between the triangles in high- and

low-resolution boxes. This problem can be solved by patching extra triangles.

In 1998, Tim Poston et al. proposed Adaptive Skeleton Climbing (ASC) method [14].
This method also decomposes the volume data into initial blocks, but it analyzes each
block as simple rectangle boxes by climbing from vertices (0-skeleton) to edges (1-
skeleton), to faces (2-skeleton), and then to boxes (3-skeleton). The rectangle box is

simple if there is at most one inside-outside exchange of voxels along each of the x,
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Figure 2.4: All possible 13-different-kinds of incidences in DMC algorithm [12].

y and z direction. For each simple rectangle box, it will use isoline loop method to
extract triangles without suffering the crack problem. This technique is also adopted

in our method and we will discuss the details in Chapter 5.

e Tetrahedral-based method:
Yong Zhou et al. proposed Tetrahedral method [15] in 1997. This approach initially
decomposes volume data into 12 initial tetrahedrons and then hierarchically subdi-
vides each initial tetrahedral into tetrahedral pairs by using the so-called bisection
process. Then, it uses bottom-up method to fuse tetrahedral pairs according the error

criterion called EBM and extracts triangles for these multi-resolution tetrahedrons
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by using the marching tetrahedral method [16]. Based on the property of tetrahedral,
this method also has the advantage that it does not suffer from any crack problem. In
2000, T. Gerstner et al. proposed another fusion method [17] which can preserve and

control the simplification of topology.

Volume-warping-based method:

In 2002, Laurent Balmelli et al. proposed volume warping method [18]. By using

a relaxation algorithm [19] with a variation map, this approach warps the volume
data to inflate the high variation area. Then, it extracts the inflated triangle mesh and
then shrinks the triangle mesh back to the original scale. Here, the variation map can
be manually specified by user or can be generated by using neighborhood-crossing

method [18].
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Overview of Our Method
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In this work, we improve the ASC and DMC methods and then incorporate both of them

with the kd-tree method. The following flowchart illustrates an overview of our method.

kd-tree
construction
\ Decompose volume
datainto initial blocks k-d search

with equal size (N*N*N) aini
containing

Simple multi-resolution isosurface
cubic boxes

Volume
Data

Isovalue

Cubic box Dataanalysis for
categorization non-empty block

Shared /\Unshared

Extracted by Extracted by
Iso-line loop DMC table

13 different
incidents of
facets

M erge facets with same
slope & same resolution

Fix info

Fix crack Adjustment

o

Adaptive
triangle mesh

Figure 3.1: The flowchart of our method. The kd-tree construction, marked in the circle
area is in the preprocessing stage.

We first take volume data as input and then decompose it into initial blocks with equal
size N x N x N, where N is the factor of two. The total voxels containing in each initial

block will be (N +1) x (N +1) x (N +1). The choice of N will be discussed in Chapter 6.
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The kd-tree will be constructed from the volume data in a preprocessing stage. We will use
k-d tree and k-d search [10] to locate the blocks containing isosurface after user specifies an
isovalue. After locating the blocks containing isosurface, we will analyze these blocks to
construct simple cubic boxes. The cubic box is simple if there is at most one inside-outside
exchange of voxels along each of the x, y and z direction. The size of cubic box must be the
factor of 2 and the size of the largest cubic box willlgex N x N. Then, we will classify
these simple cubic boxes as shared or unshared. A cubic box is called shared if there are
higher resolution cubic boxes adjacent to it. Details about k-d tree, k-d search, volume data
analysis and simple cubic box classification will be discussed in chapter 4.

There may exist crack problem around a shared box if we use marching cubes algorithm
to extract triangles directly. Thus, we use.isoline loop method with division information
to extract triangles in these shared-cubic box{14]. The other unshared cubic boxes can be
extracted by marching cubes algorithm,.considering only the intensity value of the voxels
on the eight corners. This is'because there‘is only one inside-outside exchange and we do
not lose any structures in the simple cubic box when only the eight corner voxels are con-
sidered. However, we extract all the triangles for these multi-resolution unshared simple
cubic boxes by looking up DMC table. Then we merge the triangles with the same slope
and same resolution by using DMC method. In order to increase the accuracy of surface
model, we adjust the vertices of facets extracted by DMC method to their actual intersec-
tion positions. Here, two kind of cracks may occur and are considered in our method.
Details about isoline loop extraction, DMC extraction, adjustment, and crack fixing will be

discussed in chapter 5.
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4.1 k-d Tree and k-d Search

As we mentioned previously, many methods have been proposed to improve the effi-
ciency of isosurface extraction. In this work, we use k-d tree and k-d search to accelerate
isosurface extraction. We describe the steps of k-d tree construction in our method as fol-

lows:

1. analyze the minimum and maximum intensity value of voxels in each initial block
and store the min-max value and block addresgy, =), which is the coordinate

relative to the volume origin, in a k-d node.

2. sort these k-d nodes as a list with quick sort according to the minimum/maximum

values (minimum or maximum,value will'be:chosen alternatively).

3. pick the median one as root node and partition-the list into left-sub list and right-sub

list.

4. take the kd-nodes in left and right'sub-list and go back to step 2 respectively .

In this way, we can get k-d tree recursively.

When user specifies an isovalue, we will locate the blocks containing isosurface by
searching the k-d nodes whose isovalue is between the minimum and maximum value.
Since k-d tree is a multi-dimensional search tree, it can apply multi-dimensional tree search
techniques such as search-min-max and search-max-min methods presented in [10]. As
Figure 4.1 illustrates, we only need to search the nodes at left-up corner when user spec-
ifles v as the isovalue such that the search process can be very efficient. When we find
these nodes which contain a part of isosurface, we keep the block address for the analysis

procedure.
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i

Figure 4.1: The k-d tree construction-and the concept of k-d search. All the lines means
a k-d node in k-d tree. The vertical line means the minimum value is used for sorting.
The horizontal line means the maximum value is used for sorting. The value v means the
specified isovalue [10].

4.2 Simple Cubic Boxes Construction

As we mentioned previously, we need to analyze each non-empty block to construct
simple cubic boxes. First of all, we explain the lign and dike used in [14]. As shown in
Figure 4.2 (a), a line witle" + 1 number of voxels is called a lign, where = log'.

As shown in Figure 4.2 (b), a line coves&’ to (a + 1)2° voxels is called a dike, where

0<a<2""and0 < b < logl.

All dikes in a lign can be organized in an binary tree as shown in Figure 4.3 (a).
The tree size will b@¥~! in which we never use the first node. There are four kinds of

variation situations among the voxels in each dike. We can use 2 bits to represent these
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Figure 4.2: Lign and dike. The block size is 4 in this example and the maximum size of
dike is equal to the block size.
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Figure 4.3: All the dikes in a lign can be organized in a binary tree and the variation
information can be stored in the tree nodes.

four situations:

00, No variation for dikei.

01, Variate from inside to outside for dike
Verli] =
10, Variate from outside to inside for dike

11, Variate more than once for dike

Figure 4.3 (b) illustrates the value in the variation binary tree of a lign where isosurface

pass through. We can construct the binary tree from bottom to top by OR operation as
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Lo
Block .i
origin
Farmx ' & X
Verxij i
y

Figure 4.4: The example of all possible ligns in each farm along the x direction.

-

follows:

Ver(i) = { Ver(2i) OR < Ver(2u)seisthe index of current dike in the variation tree

A dike is simple if there is at most one inside-outside variation. We will construct the
variation binary trees for all the ligns along each of the x, y and z direction. As shown in
Figure 4.4, there are Vegrx Very,;, and Verz; , wherei : 0 ~ N, j : 0 ~ N, in all the slices

of a block. These slices in a block are also called farms and there will be féarm, and
farm, respectively.

Now, we can construct the simple cubic boxes for each initial block by a recursive
algorithm. Figure 4.5 explains the main idea of this algorithm by a 2D example. In the 2D
example, we will check relative dikes on relative ligns among each of x and y direction.
If there is only one dike which is varied more than once, we will break this farm as four

parts recursively. It is strategy forward to extend this algorithm to 3D case by considering
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if all dikes else:;

< 11: output subdivide

Figure 4.5: The 2D example of our fast recursive algorithm.

z direction.

4.3 Simple Cubic Boxes Classification

As shown in Figure 4.6, a simple cubic box may suffer crack problem if there are higher
resolution cubic boxes adjacent to it. For each simple cubic box, we have to classify it as

shared or unshared before generating triangles.

Before showing how to classify these simple cubic boxes, we first explain strip and plot
used in [14]. As shown in Figure 4.7 (a), a strip is composed of two consecutive ligns in a

farm. As shown in Figure 4.7 (b), a plot is composed of two consecutive dikes in a farm.

All plots in a strip can be organized in a binary tree. The tree is of 3izé and its

first node will never be used. Each plot in a farm may be divided by the simple cubic box
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crack

Vs

Figure 4.6: The crack problem occurs between low and high resolution simple cubic boxes.
It occurs if we directly extract both of them by marching cube algorithm.

and we use a boolean variable to represent the division information:

Di] false; Does not divide by simple cubic boxes for piot
e true, +.Dividedby'simple cubic boxes for plot
Figure 4.8 illustrates the value in the'division binary tree when simple cubic boxes locate
on it.
After traversing all the simple cubic boxes in each block, we can configure; Divx

Divy,;, and Divz;, wherei : 0...N, j : 0...N. Then, we need to use OR operation for the

division information of strip pairs between neighboring blocks:
Div.(i) = Div.(i) OR Div,(7),
wherei is the index of the plot in the division tree,

¢ means current block, andmeans an adjacent block of c.

This is because the adjacent simple cubic boxes may come from neighboring blocks.
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Figure 4.7: Strip and plot. The block size in this example is 4. The maximum size of a plot
is equal to the block size.
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Figure 4.8: All the plots can be organized in a binary tree and the division information can

be stored in the tree nodes.

For each box, we can check the division information for the six box faces to classify

whether it is shared or unshared. If there is only one plot which is divided, it means the

simple cubic box is shared.

. 2 & 8 9
. * 8 @

False

. o @
e @
¢ o &
e s ®
¢ s
(h) Plot

True

False

False

False

.8 & & 9
. 8 & & 9
* & & & B

True

False

. & & % @



Chapter 5

Triangle Mesh Generation
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squares
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Shared face lor low resolution box

Figure 5.1: Crack on the shared face|of low resolution cubic box. It can solve by dividing
the low resolution face as squares and and extract corresponding isoline for each square.

5.1 Isoline Loop Extraction

As we mentioned before, we will use isoline loop method with division information to
extract triangles for the shared simple cubic boxes. Before showing isoline loop extrac-
tion, we will explain the terminology isoline. Isoline, analogous to isosurface, is a line
with the same intensity value. It shows on the face of cubic box when isosurface passes
through. When isosurface passes through between different resolution simple cubic boxes,
the isolines may mismatch each other and the crack problem occurs (Figure 4.6).

As shown in Figure 5.1, we can divide the low resolution face as squares and extract
isoline for each square to avoid the crack. By checking the division information of the plots

located on the low resolution face, we can divide the shared face with following algorithm:
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Pro_Squares(x, Y)

{
if(size of Square > 1){
Check Div[x] of relative strips according y index.
Check Div[y] of relative strips according X index.
if(all are false)
Output this Square
else{
Pro_Squares(2 =*x, 2 *y);
Pro_Squares(2 *x+1, 2 *y);
Pro_Squares(2 =*X, 2 *y+1);
Pro_Squares(2 =*x+1, 2 xy+1);
}
else Output this Square
}

For each shared simple cubic box, we will divide the six faces with the algorithm described
above and extract the corresponding isolines. In [14], these isolines can be chained as
loops and will take 3 consecutive vertices as a triangle each time but different vertex order
will result in different surface geometry.- Sometimes, the geometry may be incorrect and
thus ASC algorithm will check the normal information of each triangle vertex to correct

isosurface [14].

5.2 Merging Extraction

As we mentioned before, we extract and merge triangles by DSC algorithm for unshared
simple cubic box. Under the assumption of midpoint selection, this algorithm generates a
new loop-up table as Figure 5.2. For each unshared cubic box, the facets can be extracted
by looking up this table. DMC algorithm will prepared 13 hash tables and then push these
facets to corresponding hash table according to the incidence. After finishing facets extrac-

tion of the whole volume, this algorithm starts merging operation for the facets in each hash
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P

Figure 5.2: The discretized marching cubes look-up table [12].

table. For each facet in a hash table, this algorithm finds the neighboring facets by a hash
function and uses Freeman’s chain algorithm [20] to chain these facets as a DMC loop.
For each DMC loop, this algorithm removes unnecessary vertices and then triangulates it.

In our multi-resolution simple cubic boxes, we will utilize the DMC method for different

resolution cubic boxes respectively.
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Figure 5.3: (a) The first kind of crack problem occurs between DMC loops. (b) The second
kind of crack problem occurs between DMC and ASC loops.

5.3 \Vertices Adjustmentofiriangle Extracted from Merg-
ing Extraction

All possible vertices fromDMC algorithm will locate on the mid-position of cube edge
thus lower the accuracy. We will interpolate the actual position by adjusting the vertices of
triangle extracted from DMC to increase accuracy. This adjustment will cause two kinds

of crack problems that will be discussed in later section.

5.4 Crack Problem

The first kind of crack is due to the lack of some vertices on a segment of a DMC
loop(see Figure 5.3 (a)) and we will add these vertices before we triangulate the DMC
loop.

In order to find these vertices quickly, we can perform the following procedure:
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1. Push all the vertices of DMC loops in a hash table by taking the coordinate of vertex

as hash key in advance.
2. Get the coordinate of possible added vertex coordinate on each DMC loop segment.
3. Check whether the possible added vertex is in the hash table or not.
4. Add the vertex in current DMC loop if it exist.

As shown in Figure 5.3 (b), the second crack may occur when we blend ASC loop and
DMC loop . This crack causes if isoline loop retain some vertices but DMC loop remove
them (see Figure 5.3 (b)). For these isoline loop, we will adjust the position of a vertex if
this vertex is on the boundary of the shared,simple cubic box. If the vertex is not on the

boundary of the shared simple cubic box, we will remove it.

5.5 Triangle Degeneration

The triangle in the shared or unshared simple cubic box will degenerate to line or point
if the voxels in the box contain intensity values equal to the isovalue. It means that the
isosurface passes through the edge or corner point of the simple cubic box. We will remove

these degenerated triangles by checking vertex coordinates for each triangle.
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We will compare our method with ASC method, DMC method and MC method accord-
ing to triangle number, accuracy corresponding with triangle mesh extracted from MC, and
extraction time. According to ASC results [14], the triangle number is fewest in most cases
when block size N is 4. Thus, we chose the block size N as 4 in the experiments when
needed. The accuracy of the surface model is measured by the tool MESH [21]. MESH
samples the two triangle mesh as two group of sample point and then calculates the average
Hausdorff distance between them. The average error will be represented as the percentage
of diagonal distance of volume data. We will evaluate these methods by using volume data
sets, including engine, teapot, skull, and cortical surface. The hardware platform contained
a AMD Athlon XP 2.01GHz CPU and 1G bytes memory. We also evaluate our method

with different block size, (2,4, and 8),:in-our method.

Table 6.1, Table 6.2, Table 6.3;and Table 6.4 show the comparison results. Compared
with other methods, we have the highest reduction percentage of triangles for the four vol-
ume data sets. The triangle numbers are 4 to 15 times fewer than marching cubes method.
The reduction percentage depends on the complexity and smoothness of the volume data
and thus the engine data has the highest reduction percentage and the cortical surface data
has the lowest reduction percentage. We has the best reduction percentage but we lose the
accuracy of reduced triangle mesh. However, the increased amount of surface deviation
is small. The efficiency of our method is at least 2 times faster than ASC method but at
most 2 times slower than MC and DMC . Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4
show the major difference between ASC and our method. As shown in the zoom area, our

method merges triangles to generate fewer triangles than ASC does.
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Table 6.5 shows the experiment result with different block size in our method. In most
case, our method will reduce more triangles when we enlarge N. This is because we may
generate larger and fewer triangles for lager block. When N is too small, our method is
relatively slow because more efforts are required to analyze the volume data and to generate
triangles. When N is too large, our method is also relatively because the kd-tree method is

of no use. The efficiency of our method is best when N is 4 for these four data sets.
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Table 6.1: Performance comparison for engine data.

Method | Triangle number, Mean error| Extraction time(secs

MC 584950 0 2.297

DMC 132336 0.244 1.344

ASC 59835 0.117 8.641

Our 49693 0.193 2.922

Data size256 x 256 x 128, Isovalue:50

Y N NN rer=
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(b)

Figure 6.1: The triangle mesh of engine data generated by (a) ASC method and (b) Our
method.
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Table 6.2: Performance comparison for teapot data.

Method | Triangle number; Mean error| Extraction time(secs

MC 713144 0 3.062

DMC 155630 0.242 1.797

ASC 66989 0.051 10.891

Our 43351 0.268 3.844

Data size256 x 256 x 178, Isovalue:50

(b)

Figure 6.2: The triangle mesh of teapot data generated by (a) ASC method and (b) Our
method.
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Table 6.3: Performance comparison for skull data.

Method | Triangle numben Mean error| Extraction time(secs
MC 1044777 0 4.485

DMC 405680 0.255 4.789

ASC 217805 0.114 17.75

Our 213639 0.127 8.266

Data size256 x 256 x 256, Isovalue:50

Figure 6.3: The triangle mesh of skull data generated by (a) ASC method and (b) Our
method.
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Table 6.4: Performance comparison for cortical surface data.

Method | Triangle number| Mean error| Extraction time(secs
MC 976826 0 1.813

DMC 408470 0.213 2.485

ASC 265575 0.127 10.704
Our 256954 0.124 5.547

Data size:157 x 189 x 156, Isovalue:100

(a)

(b)

Figure 6.4: The triangle mesh of cortical surface data generated by (a) ASC method and
(b) Our method.
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Table 6.5: Performance of our method regarding to block size.

Data Set

Our method, N=2

Our method, N=4

Our method, N=8

engine

61100A\ 5.328 sec,

49693A\ 2.922 sec.

47094A\ 5.344 sec.

teapot

61702A\ 6.828 sec.

43351A\ 3.844 sec.

46202A\ 5.688 sec.

skull

228076A\ 13.875 sec,

213639A\.8.266-sec.

212923A\ 14.437 sec,

brain

274544A\ 11.297 sec;|

256954A\ 5.547 sec.

256603A\\ 8.828 sec.

A: means triangle count
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We proposed in this thesis an adaptive isosurface extraction algorithm which can re-
duce the triangle number of isosurface by adapting to the variation of the isosurface. The
adaptive isosurface contains larger but fewer triangles for low variation area and smaller
but more triangles for high variation area. We use kd-tree method to rapidly locate the area
containing the isosurface. Then a novel recursive algorithm is applied to analyze the vol-
ume data and to generate the triangles whose sizes are adaptive to the surface. According
to our experiments, the triangle number obtained by using the proposed method can be at
least four times fewer than that can obtained by using the marching cubes method without
losing much surface accuracy.

Compared to the ASC method, our method has advantages and disadvantage listed

below:

e Advantages:

— The proposed method-can- reduce-more triangles than ASC method in most
cases. The reason is that we can merge the triangles to get larger one which
stride through the initial block. The more smooth volume data will make our

method to extract the isosurface with fewer triangles.

— The extraction time of our method is at least double faster than the ASC method
because we use the kd-tree to locate the non-empty blocks rapidly and our sim-

ple recursive algorithm is very efficient.

¢ Disadvantages:

— On the average, the structure extracted by using our method has larger surface

deviation than that extracted by using the ASC method.
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