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從大型三維影像中擷取適應式等值亮度表面 

 
學生：倪安廷                           指導教授：陳永昇 

 

國立交通大學資訊工程學系﹙研究所﹚碩士班 

摘 要       

從磁振造影或斷層掃描之影像當中擷取的等值亮度表面，可以幫

助我們了解潛藏在影像中實體的三維結構。利用走訪立方體法可以擷

取單一解析度的三角形網格，但針對非常大型的三維影像可能會產生

過多的三角形，造成儲存及顯像上的困難。針對這個問題，我們提出

一個適應式等值亮度表面擷取法，可以在實體表面變化較劇烈的地方

用較精細的三角形來建構，而表面較平坦之處則用較大的三角形來建

構，如此可以兼顧三角形數量與表面模型準確性。首先，我們會在三

維影像當中，以多維搜尋樹的方式快速找到有等值亮度表面通過的區

域，然後利用一個快速演算法來分析其表面變化情形，並產生適應於

表面的多重解析度三角形網格。根據我們的實驗結果，經由我們所提

出的方法所產生的網格，其三角形個數最多只有走訪立方體法的四分

之一，且並沒有損失過多的表面模型精準度。 
 
 



Abstract

Isosurface extracted from volume data, such as CT, SPECT and MRI, can provide 3D struc-

ture information. The marching cubes algorithm has been extensively applied in isosurface

extraction from volume data. This algorithm generates spatially regular triangle meshes

and can be very storage-consuming and hard rendering when the volume data is huge. We

present an adaptive isosurface extraction algorithm which can reduce the triangle number

of isosurface by adapting to the variation of the isosurface. The adaptive isosurface con-

tains larger but fewer triangles for low variation area and smaller but more triangles for

high variation area. We use kd-tree method to rapidly locate the area containing the iso-

surface. Then a novel recursive algorithm is applied to analyze the volume data and to

generate the triangles with sizes adaptive to the surface. According to our experiments, the

triangle number obtained by using the proposed method can be at least four times fewer

than that can be obtained by using the marching cubes method without losing significant

surface accuracy.
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Chapter 1

Introduction



2 Introduction

Figure 1.1: The image slices of brain MRI volume data.

1.1 Isosurface Extraction

MRI (Magnetic Resonance Imaging) has been extensively utilized for scanning human

body. They can provide volume data composed of a series of 2D image slices as shown

in Figure 1.1. In clinical diagnosis and medical research, it is often useful to reconstruct

the 3D surface structure of targeted tissues from volume data because 3D surface provides

more information for physicians to penetrate the complex structure of the tissue.

Under the assumption of homogeneity, the same tissue results in the same intensity

value in MRI volume data. By analyzing the intensity distribution of tissues in the vol-
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ume data, we can specify the intensity value of the tissue we want to reconstruct. This

intensity value is referred to theisovalue. Isosurface represents the surface with the same

intensity value that we want to extract in the volume data. We can obtain the boundary sur-

face between two adjoining tissues by extracting the isosurface with the isovalue specified

between the intensity values of these two tissues.

Marching cubes algorithm proposed by Lorensen and Cline [1] is considered as a stan-

dard approach to extract isosurface. It is a simple and practical algorithm which can extract

a 3D triangle mesh to approximate the isosurface and can calculate the normal direction

for each triangle. We can then render this 3D triangle mesh to visualize the surface struc-

ture of the tissue. Besides visualization, isosurface reconstruction is useful in functional

brain mapping research. We can use the 3D triangle mesh of brain to calculate the BEM

(Boundary Elementary Method, Figure 1.2) volume conductor model and use the model to

calculate the brain activity [2].

1.2 Challenges of Isosurface Extraction

Due to the improvements of acquisition device, the volume data resolution is getting

higher and higher rapidly. The triangle number of reconstructed 3D triangle mesh is also

increasing when we use marching cubes to regularly extract the isosurface from a large

volume data. It often exceed millions of triangles and will be very inefficient to extract,

store, and visualize such a huge amount of triangles.

Many mesh simplification algorithms [3] [4] [5] have been proposed in the literature.

Most of them take each triangle in the triangle mesh as a decimation target and decide to

remove it or not under some error criteria. It is storage-consuming because a huge amount
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Figure 1.2: The reconstructed triangle mesh for building a BEM model of the brain [2].

of small triangles still have to be extracted first. It is also time-consuming to process such

a huge amount of data by applying these algorithms. time-consuming by applying these

algorithms to the isosurface with huge triangles reconstructed from large volume data.

The algorithm proposed by He et al. [6] successively applies low pass filter to downsam-

ple the volume data. The triangle number can be reduced when extracting isosurface from

lower resolution volume data. However, some surface structure may be lost at the same

time. Another similar algorithm proposed by Kraus and Ertl [7] downsample the volume

data while retaining the critical points to preserve more surface structure. These algorithms

reduce a larger amount of triangles and are also efficient. However, downsampling process

may lose information that result in the possibility of missing important surface structure.

We propose in this thesis an adaptive isosurface extraction method that can reduce the
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triangle number, preserve the topology, and speed up the surface extraction process, We

reduce the triangle number of isosurface by adapting to the variation of the isosurface. The

adaptive isosurface contains larger but fewer triangles for low variation area and smaller

but more triangles for high variation area. We uses kd-tree method to rapidly locate the

area containing the isosurface. Then a novel recursive algorithm is applied to analyze the

volume data and to generate the triangles whose sizes are adaptive to the surface.

1.3 Thesis Organization

The dissertation is organized as follows: Chapter 2 presents the background and related

works. Chapter 3 depicts an overview of our method. Chapter 4 introduces volume data

analysis, including both kd-tree construction and k-d search, and the detail about simple

cubic boxes construction. Chapter 5 introduces triangle mesh generation, including both

isoline loop extraction and merging extraction, and describes the detail about vertex ad-

justment of final triangle mesh. Chapter 6 presents the experiment results and discussion.

Chapter 7 draws the conclusions.
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Background and Related Works
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Figure 2.1: The cube can be defined as eight neighboring voxels between two consecutive
2D images [1].

2.1 Marching Cubes

Since we want to extract isosurface, we have to understand the most representative

algorithm, marching cubes (MC). Lorensen and Cline proposed the first isosurface extrac-

tion algorithm marching cubes in 1986. By visiting the whole volume, it locates the cubes

containing isosurface and then generates corresponding 3D triangle or triangles. A cube

consists of eight neighboring voxels between two consecutive 2D slices (Figure 2.1) and

there exits the isosurface if the intensity values of eight voxels are not all larger or all

smaller than the isovalue. A voxel is usually called inside if its intensity value is larger

than the isovalue and is called outside if its intensity value is smaller than the isovalue.

According to the inside and outside conditions of the eight voxels, MC can determine how

to extract triangle or triangles inside the cube. There are 256 situations to locate triangle or

triangles in a cube. A look up table with 256 entries can be utilized to rapidly determine
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Figure 2.2: The reduced 15 cases of marching cubes algorithm when symmetry is consid-
ered [1]. Black voxel usually means inside the isosurface and white voxel means outside
the isosurface.

the situation. Figure 2.2 shows the 15 situations when symmetry is considered. After look-

ing up the table, the MC algorithm uses linear interpolation to obtain actual triangle vertex

coordinate for each triangle. Before outputting the triangles, the MC algorithm calculates

the surface normal (Gx(i, j, k), Gy(i, j, k), Gz(i, j, k)) for each triangle vertex(i, j, k) by

using central differences along the three coordinate axes:

Gx(i, j, k) =
D(i + 1, j, k)−D(i− 1, j, k)

∆x
,

Gy(i, j, k) =
D(i, j + 1, k)−D(i, j − 1, k)

∆y
,
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Gz(i, j, k) =
D(i, j, k + 1)−D(i, j, k − 1)

∆z
,

whereD(i, j, k) is the intensity value of voxel(i, j, k).

2.2 Acceleration of Isosurface Extraction

Marching cube will visit all the cubes in the volume data and check whether the cube

containing isosurface or not. Actually, it is time-consuming because only a few cubes

contain isosurface and the effort of checking empty cubes are a waste of time. Thus, there

are algorithms proposed in the literature that can improve the efficiency by skipping empty

cubes, referred to a survey study performed by Philip M. Sutton et al. [11] in 2000, in which

they compared the extraction time and memory overhead of different isosurface extraction

method.

Wilhelm and Van Gelder proposed an octree method [8] in 1992. They used an octree

to decompose the volume data into eight subvolume hierarchically until reaching eight unit

cubes. The root node of the octree covers the region of whole volume and its eight child

nodes cover the region of eight subvolumes. For each octree node, their method analyzes

the minimum and maximum intensity values that this octree node covers. Then, depth-first-

search strategy is used to traverse the octree to locate the leaf nodes whose isovalues are

between the minimum and maximum values. Finally, corresponding triangles are generated

for the located nodes.

T. Itoh and K. Koyyamada proposed Extrema Graph method [9] in 1994. It searches

the whole volume from a seed cube containing isosurface and propagates to adjacent cubes

containing isosurface by knowing the coherence of isosurface It keeps propagating until
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all the cubes containing isosurface have been visited. The seed cube can be found by

employing Extrema Graph [9].

Yaden Livnat et al. proposed kd-tree technique [10] in 1996. This technique is incor-

porated in our method and we will discuss the details of the kd-tree technique in Chapter

4.

2.3 Adaptive Isosurface Extraction

Besides accelerating extraction time, a large number of triangles generated by marching

cubes hinder both the calculation and rendering. To solve this problem, many adaptive iso-

surface extraction algorithms have been proposed. We classify these algorithms as follows:

• Discretized-based method:

C. Montani et al. proposed Discretized Marching Cubes (DMC) method [12] in 1994.

This approach assumes discretization of the data set space and replaces cube edge in-

terpolation with midpoint selection. Figure 2.3 illustrates all possible midpoints in

this method. Under certain assumptions, the extracted isosurface consists of poly-

gons with finite number of incidences (Figure 2.4). There are only 13 different kind

of incidences and can be modeled as follows:

x = c, y = c, z = c,

x± y = c, x± z = c, y ± z = c,

x± y ± z = c.

We can apply simple merging of the facets with the same incidence and then produce
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Figure 2.3: Midpoint selection. All possible 13 different kinds of midpoints in DMC algo-
rithm [12].

larger and fewer coplanar facets. This technique will be adopted in our method and

we will discuss the details in Chapter 5.

• Box-based method:

Renbeb Shu et al. proposed the cubic box method [13] in 1995. This approach

decomposes the volume data into initial blocks with equal size N, where N is the

factor of two. Their method decomposes each initial block into cubic boxes with

different resolutions according to the variation of isosurface. For each cubic box,

their method uses marching cubes to extract corresponding triangles with different

sizes. Unfortunately the crack problem will occur between the triangles in high- and

low-resolution boxes. This problem can be solved by patching extra triangles.

In 1998, Tim Poston et al. proposed Adaptive Skeleton Climbing (ASC) method [14].

This method also decomposes the volume data into initial blocks, but it analyzes each

block as simple rectangle boxes by climbing from vertices (0-skeleton) to edges (1-

skeleton), to faces (2-skeleton), and then to boxes (3-skeleton). The rectangle box is

simple if there is at most one inside-outside exchange of voxels along each of the x,
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Figure 2.4: All possible 13 different kinds of incidences in DMC algorithm [12].

y and z direction. For each simple rectangle box, it will use isoline loop method to

extract triangles without suffering the crack problem. This technique is also adopted

in our method and we will discuss the details in Chapter 5.

• Tetrahedral-based method:

Yong Zhou et al. proposed Tetrahedral method [15] in 1997. This approach initially

decomposes volume data into 12 initial tetrahedrons and then hierarchically subdi-

vides each initial tetrahedral into tetrahedral pairs by using the so-called bisection

process. Then, it uses bottom-up method to fuse tetrahedral pairs according the error

criterion called EBM and extracts triangles for these multi-resolution tetrahedrons
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by using the marching tetrahedral method [16]. Based on the property of tetrahedral,

this method also has the advantage that it does not suffer from any crack problem. In

2000, T. Gerstner et al. proposed another fusion method [17] which can preserve and

control the simplification of topology.

• Volume-warping-based method:

In 2002, Laurent Balmelli et al. proposed volume warping method [18]. By using

a relaxation algorithm [19] with a variation map, this approach warps the volume

data to inflate the high variation area. Then, it extracts the inflated triangle mesh and

then shrinks the triangle mesh back to the original scale. Here, the variation map can

be manually specified by user or can be generated by using neighborhood-crossing

method [18].



Chapter 3

Overview of Our Method
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In this work, we improve the ASC and DMC methods and then incorporate both of them

with the kd-tree method. The following flowchart illustrates an overview of our method.

Volume
Data

kd-tree
co nstruc tio n

Deco mpo se  vo lume
data into  initial blo cks

with equal s ize  (N* N* N)
k-d search

Data analysis  fo r
no n-empty blo ck

Cubic  bo x
catego rizatio n

Extrac ted by
Iso -line  lo o p

Extrac ted by
DM C table

M erge  face ts  with same
slo pe  &  same reso lutio n

Fix c rack

Isovalue

c ontaining
isosurfac eSim ple m ulti-resolution

c ubic  boxes

UnsharedShared

13 different
inc idents  of

fac ets

Fix info

Adap tive
triangle mesh

Adjustment

Figure 3.1: The flowchart of our method. The kd-tree construction, marked in the circle
area is in the preprocessing stage.

We first take volume data as input and then decompose it into initial blocks with equal

sizeN × N × N , where N is the factor of two. The total voxels containing in each initial

block will be(N +1)× (N +1)× (N +1). The choice of N will be discussed in Chapter 6.
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The kd-tree will be constructed from the volume data in a preprocessing stage. We will use

k-d tree and k-d search [10] to locate the blocks containing isosurface after user specifies an

isovalue. After locating the blocks containing isosurface, we will analyze these blocks to

construct simple cubic boxes. The cubic box is simple if there is at most one inside-outside

exchange of voxels along each of the x, y and z direction. The size of cubic box must be the

factor of 2 and the size of the largest cubic box will beN ×N ×N . Then, we will classify

these simple cubic boxes as shared or unshared. A cubic box is called shared if there are

higher resolution cubic boxes adjacent to it. Details about k-d tree, k-d search, volume data

analysis and simple cubic box classification will be discussed in chapter 4.

There may exist crack problem around a shared box if we use marching cubes algorithm

to extract triangles directly. Thus, we use isoline loop method with division information

to extract triangles in these shared cubic box [14]. The other unshared cubic boxes can be

extracted by marching cubes algorithm, considering only the intensity value of the voxels

on the eight corners. This is because there is only one inside-outside exchange and we do

not lose any structures in the simple cubic box when only the eight corner voxels are con-

sidered. However, we extract all the triangles for these multi-resolution unshared simple

cubic boxes by looking up DMC table. Then we merge the triangles with the same slope

and same resolution by using DMC method. In order to increase the accuracy of surface

model, we adjust the vertices of facets extracted by DMC method to their actual intersec-

tion positions. Here, two kind of cracks may occur and are considered in our method.

Details about isoline loop extraction, DMC extraction, adjustment, and crack fixing will be

discussed in chapter 5.
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Chapter 4

Volume Data Analysis
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4.1 k-d Tree and k-d Search

As we mentioned previously, many methods have been proposed to improve the effi-

ciency of isosurface extraction. In this work, we use k-d tree and k-d search to accelerate

isosurface extraction. We describe the steps of k-d tree construction in our method as fol-

lows:

1. analyze the minimum and maximum intensity value of voxels in each initial block

and store the min-max value and block address(x, y, z), which is the coordinate

relative to the volume origin, in a k-d node.

2. sort these k-d nodes as a list with quick sort according to the minimum/maximum

values (minimum or maximum value will be chosen alternatively).

3. pick the median one as root node and partition the list into left-sub list and right-sub

list.

4. take the kd-nodes in left and right sub-list and go back to step 2 respectively .

In this way, we can get k-d tree recursively.

When user specifies an isovalue, we will locate the blocks containing isosurface by

searching the k-d nodes whose isovalue is between the minimum and maximum value.

Since k-d tree is a multi-dimensional search tree, it can apply multi-dimensional tree search

techniques such as search-min-max and search-max-min methods presented in [10]. As

Figure 4.1 illustrates, we only need to search the nodes at left-up corner when user spec-

ifies v as the isovalue such that the search process can be very efficient. When we find

these nodes which contain a part of isosurface, we keep the block address for the analysis

procedure.
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Figure 4.1: The k-d tree construction and the concept of k-d search. All the lines means
a k-d node in k-d tree. The vertical line means the minimum value is used for sorting.
The horizontal line means the maximum value is used for sorting. The value v means the
specified isovalue [10].

4.2 Simple Cubic Boxes Construction

As we mentioned previously, we need to analyze each non-empty block to construct

simple cubic boxes. First of all, we explain the lign and dike used in [14]. As shown in

Figure 4.2 (a), a line with2n + 1 number of voxels is called a lign, wheren = logN
2 .

As shown in Figure 4.2 (b), a line coversa2b to (a + 1)2b voxels is called a dike, where

0 ≤ a < 2n−b and0 ≤ b ≤ logN
2 .

All dikes in a lign can be organized in an binary tree as shown in Figure 4.3 (a).

The tree size will be2N−1 in which we never use the first node. There are four kinds of

variation situations among the voxels in each dike. We can use 2 bits to represent these



22 Volume Data Analysis

Figure 4.2: Lign and dike. The block size is 4 in this example and the maximum size of
dike is equal to the block size.

Figure 4.3: All the dikes in a lign can be organized in a binary tree and the variation
information can be stored in the tree nodes.

four situations:

V er[i] =



00, No variation for dikei.

01, Variate from inside to outside for dikei.

10, Variate from outside to inside for dikei.

11, Variate more than once for dikei.

Figure 4.3 (b) illustrates the value in the variation binary tree of a lign where isosurface

pass through. We can construct the binary tree from bottom to top by OR operation as
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Figure 4.4: The example of all possible ligns in each farm along the x direction.

follows:

V er(i) =
{

V er(2i) OR V er(2i), i is the index of current dike in the variation tree

A dike is simple if there is at most one inside-outside variation. We will construct the

variation binary trees for all the ligns along each of the x, y and z direction. As shown in

Figure 4.4, there are Verxij, Veryij, and Verzij , wherei : 0 ∼ N, j : 0 ∼ N , in all the slices

of a block. These slices in a block are also called farms and there will be farmx, farmy and

farmz respectively.

Now, we can construct the simple cubic boxes for each initial block by a recursive

algorithm. Figure 4.5 explains the main idea of this algorithm by a 2D example. In the 2D

example, we will check relative dikes on relative ligns among each of x and y direction.

If there is only one dike which is varied more than once, we will break this farm as four

parts recursively. It is strategy forward to extend this algorithm to 3D case by considering
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Figure 4.5: The 2D example of our fast recursive algorithm.

z direction.

4.3 Simple Cubic Boxes Classification

As shown in Figure 4.6, a simple cubic box may suffer crack problem if there are higher

resolution cubic boxes adjacent to it. For each simple cubic box, we have to classify it as

shared or unshared before generating triangles.

Before showing how to classify these simple cubic boxes, we first explain strip and plot

used in [14]. As shown in Figure 4.7 (a), a strip is composed of two consecutive ligns in a

farm. As shown in Figure 4.7 (b), a plot is composed of two consecutive dikes in a farm.

All plots in a strip can be organized in a binary tree. The tree is of size2N−1 and its

first node will never be used. Each plot in a farm may be divided by the simple cubic box
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Figure 4.6: The crack problem occurs between low and high resolution simple cubic boxes.
It occurs if we directly extract both of them by marching cube algorithm.

and we use a boolean variable to represent the division information:

Div[i] =


false, Does not divide by simple cubic boxes for ploti.

true, Divided by simple cubic boxes for ploti.

Figure 4.8 illustrates the value in the division binary tree when simple cubic boxes locate

on it.

After traversing all the simple cubic boxes in each block, we can configure Divxij,

Divyij, and Divzij, wherei : 0...N, j : 0...N . Then, we need to use OR operation for the

division information of strip pairs between neighboring blocks:

Divc(i) = Divc(i) OR Divn(i),

wherei is the index of the plot in the division tree,

c means current block, andn means an adjacent block of c.

This is because the adjacent simple cubic boxes may come from neighboring blocks.
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Figure 4.7: Strip and plot. The block size in this example is 4. The maximum size of a plot
is equal to the block size.

Figure 4.8: All the plots can be organized in a binary tree and the division information can
be stored in the tree nodes.

For each box, we can check the division information for the six box faces to classify

whether it is shared or unshared. If there is only one plot which is divided, it means the

simple cubic box is shared.
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Triangle Mesh Generation
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Figure 5.1: Crack on the shared face of low resolution cubic box. It can solve by dividing
the low resolution face as squares and and extract corresponding isoline for each square.

5.1 Isoline Loop Extraction

As we mentioned before, we will use isoline loop method with division information to

extract triangles for the shared simple cubic boxes. Before showing isoline loop extrac-

tion, we will explain the terminology isoline. Isoline, analogous to isosurface, is a line

with the same intensity value. It shows on the face of cubic box when isosurface passes

through. When isosurface passes through between different resolution simple cubic boxes,

the isolines may mismatch each other and the crack problem occurs (Figure 4.6).

As shown in Figure 5.1, we can divide the low resolution face as squares and extract

isoline for each square to avoid the crack. By checking the division information of the plots

located on the low resolution face, we can divide the shared face with following algorithm:
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Pro_Squares(x, y)
{

if(size of Square > 1){
Check Div[x] of relative strips according y index.
Check Div[y] of relative strips according x index.
if(all are false)

Output this Square
else{

Pro_Squares(2 * x, 2 * y);
Pro_Squares(2 * x+1, 2 * y);
Pro_Squares(2 * x, 2 * y+1);
Pro_Squares(2 * x+1, 2 * y+1);

}
else Output this Square

}

For each shared simple cubic box, we will divide the six faces with the algorithm described

above and extract the corresponding isolines. In [14], these isolines can be chained as

loops and will take 3 consecutive vertices as a triangle each time but different vertex order

will result in different surface geometry. Sometimes, the geometry may be incorrect and

thus ASC algorithm will check the normal information of each triangle vertex to correct

isosurface [14].

5.2 Merging Extraction

As we mentioned before, we extract and merge triangles by DSC algorithm for unshared

simple cubic box. Under the assumption of midpoint selection, this algorithm generates a

new loop-up table as Figure 5.2. For each unshared cubic box, the facets can be extracted

by looking up this table. DMC algorithm will prepared 13 hash tables and then push these

facets to corresponding hash table according to the incidence. After finishing facets extrac-

tion of the whole volume, this algorithm starts merging operation for the facets in each hash
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Figure 5.2: The discretized marching cubes look-up table [12].

table. For each facet in a hash table, this algorithm finds the neighboring facets by a hash

function and uses Freeman’s chain algorithm [20] to chain these facets as a DMC loop.

For each DMC loop, this algorithm removes unnecessary vertices and then triangulates it.

In our multi-resolution simple cubic boxes, we will utilize the DMC method for different

resolution cubic boxes respectively.
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Figure 5.3: (a) The first kind of crack problem occurs between DMC loops. (b) The second
kind of crack problem occurs between DMC and ASC loops.

5.3 Vertices Adjustment of Triangle Extracted from Merg-

ing Extraction

All possible vertices from DMC algorithm will locate on the mid-position of cube edge

thus lower the accuracy. We will interpolate the actual position by adjusting the vertices of

triangle extracted from DMC to increase accuracy. This adjustment will cause two kinds

of crack problems that will be discussed in later section.

5.4 Crack Problem

The first kind of crack is due to the lack of some vertices on a segment of a DMC

loop(see Figure 5.3 (a)) and we will add these vertices before we triangulate the DMC

loop.

In order to find these vertices quickly, we can perform the following procedure:
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1. Push all the vertices of DMC loops in a hash table by taking the coordinate of vertex

as hash key in advance.

2. Get the coordinate of possible added vertex coordinate on each DMC loop segment.

3. Check whether the possible added vertex is in the hash table or not.

4. Add the vertex in current DMC loop if it exist.

As shown in Figure 5.3 (b), the second crack may occur when we blend ASC loop and

DMC loop . This crack causes if isoline loop retain some vertices but DMC loop remove

them (see Figure 5.3 (b)). For these isoline loop, we will adjust the position of a vertex if

this vertex is on the boundary of the shared simple cubic box. If the vertex is not on the

boundary of the shared simple cubic box, we will remove it.

5.5 Triangle Degeneration

The triangle in the shared or unshared simple cubic box will degenerate to line or point

if the voxels in the box contain intensity values equal to the isovalue. It means that the

isosurface passes through the edge or corner point of the simple cubic box. We will remove

these degenerated triangles by checking vertex coordinates for each triangle.
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We will compare our method with ASC method, DMC method and MC method accord-

ing to triangle number, accuracy corresponding with triangle mesh extracted from MC, and

extraction time. According to ASC results [14], the triangle number is fewest in most cases

when block size N is 4. Thus, we chose the block size N as 4 in the experiments when

needed. The accuracy of the surface model is measured by the tool MESH [21]. MESH

samples the two triangle mesh as two group of sample point and then calculates the average

Hausdorff distance between them. The average error will be represented as the percentage

of diagonal distance of volume data. We will evaluate these methods by using volume data

sets, including engine, teapot, skull, and cortical surface. The hardware platform contained

a AMD Athlon XP 2.01GHz CPU and 1G bytes memory. We also evaluate our method

with different block size, (2,4, and 8), in our method.

Table 6.1, Table 6.2, Table 6.3, and Table 6.4 show the comparison results. Compared

with other methods, we have the highest reduction percentage of triangles for the four vol-

ume data sets. The triangle numbers are 4 to 15 times fewer than marching cubes method.

The reduction percentage depends on the complexity and smoothness of the volume data

and thus the engine data has the highest reduction percentage and the cortical surface data

has the lowest reduction percentage. We has the best reduction percentage but we lose the

accuracy of reduced triangle mesh. However, the increased amount of surface deviation

is small. The efficiency of our method is at least 2 times faster than ASC method but at

most 2 times slower than MC and DMC . Figure 6.1, Figure 6.2, Figure 6.3, and Figure 6.4

show the major difference between ASC and our method. As shown in the zoom area, our

method merges triangles to generate fewer triangles than ASC does.
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Table 6.5 shows the experiment result with different block size in our method. In most

case, our method will reduce more triangles when we enlarge N. This is because we may

generate larger and fewer triangles for lager block. When N is too small, our method is

relatively slow because more efforts are required to analyze the volume data and to generate

triangles. When N is too large, our method is also relatively because the kd-tree method is

of no use. The efficiency of our method is best when N is 4 for these four data sets.
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Table 6.1: Performance comparison for engine data.

Method Triangle number Mean error Extraction time(secs)

MC 584950 0 2.297

DMC 132336 0.244 1.344

ASC 59835 0.117 8.641

Our 49693 0.193 2.922

Data size:256× 256× 128, Isovalue:50

Figure 6.1: The triangle mesh of engine data generated by (a) ASC method and (b) Our
method.
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Table 6.2: Performance comparison for teapot data.

Method Triangle number Mean error Extraction time(secs)

MC 713144 0 3.062

DMC 155630 0.242 1.797

ASC 66989 0.051 10.891

Our 43351 0.268 3.844

Data size:256× 256× 178 , Isovalue:50

Figure 6.2: The triangle mesh of teapot data generated by (a) ASC method and (b) Our
method.
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Table 6.3: Performance comparison for skull data.

Method Triangle number Mean error Extraction time(secs)

MC 1044777 0 4.485

DMC 405680 0.255 4.789

ASC 217805 0.114 17.75

Our 213639 0.127 8.266

Data size:256× 256× 256, Isovalue:50

Figure 6.3: The triangle mesh of skull data generated by (a) ASC method and (b) Our
method.
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Table 6.4: Performance comparison for cortical surface data.

Method Triangle number Mean error Extraction time(secs)

MC 976826 0 1.813

DMC 408470 0.213 2.485

ASC 265575 0.127 10.704

Our 256954 0.124 5.547

Data size:157× 189× 156, Isovalue:100

Figure 6.4: The triangle mesh of cortical surface data generated by (a) ASC method and
(b) Our method.
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Table 6.5: Performance of our method regarding to block size.

Data Set Our method, N=2 Our method, N=4 Our method, N=8

engine 61100∆\ 5.328 sec. 49693∆\ 2.922 sec. 47094∆\ 5.344 sec.

teapot 61702∆\ 6.828 sec. 43351∆\ 3.844 sec. 46202∆\ 5.688 sec.

skull 228076∆\ 13.875 sec. 213639∆\ 8.266 sec. 212923∆\ 14.437 sec.

brain 274544∆\ 11.297 sec. 256954∆\ 5.547 sec. 256603∆\ 8.828 sec.

∆: means triangle count
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We proposed in this thesis an adaptive isosurface extraction algorithm which can re-

duce the triangle number of isosurface by adapting to the variation of the isosurface. The

adaptive isosurface contains larger but fewer triangles for low variation area and smaller

but more triangles for high variation area. We use kd-tree method to rapidly locate the area

containing the isosurface. Then a novel recursive algorithm is applied to analyze the vol-

ume data and to generate the triangles whose sizes are adaptive to the surface. According

to our experiments, the triangle number obtained by using the proposed method can be at

least four times fewer than that can obtained by using the marching cubes method without

losing much surface accuracy.

Compared to the ASC method, our method has advantages and disadvantage listed

below:

• Advantages:

– The proposed method can reduce more triangles than ASC method in most

cases. The reason is that we can merge the triangles to get larger one which

stride through the initial block. The more smooth volume data will make our

method to extract the isosurface with fewer triangles.

– The extraction time of our method is at least double faster than the ASC method

because we use the kd-tree to locate the non-empty blocks rapidly and our sim-

ple recursive algorithm is very efficient.

• Disadvantages:

– On the average, the structure extracted by using our method has larger surface

deviation than that extracted by using the ASC method.



Bibliography

[1] William E. Lorensen and Harvey E. Cline. Marching cubes: A high resolution 3D sur-

face construction algorithm. InProceedings of ACM SIGGRAPH Computer Graphics,

pages 163–169, 1987.

[2] John J. Ermer, John C. Mosher, Sylvain. Baillet, and Richard M. Leahy. Rapidly re-

computable EEG forward models for realistic head shapes.Physics in Medicine and

Biology, 46(4):1265–1271, 2001.

[3] William J. Schroeder, Jonathan A. Zarge, and William E. Lorensen. Decimation of

triangle meshes. InProceedings of ACM SIGGRAPH Computer Graphics, 26:163–

169, 1992.

[4] Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle.

Mesh optimization. InProceedings of ACM SIGGRAPH Computer Graphics, 27:19–

26, 1993.

[5] Raj Shekhar, Elias Fayyad, Roni Yagel, and J. Fredrick Cornhill. Octree-based dec-

imation of Marching Cubes surfaces. InProceedings of IEEE Visualization, pages

335–342, 1996.



44 BIBLIOGRAPHY

[6] Taosong He, Lichan Hong, A. Kaufman, A. Varshney, and S. Wang. Voxel based

object simplification. InProceedings of IEEE Visualization, pages 296–303, 1995.

[7] M. Kraus and T. Ertl. Topology-guided downsampling. InInternational Workshop on

Volume Graphics, 2001.

[8] Jane Wilhelms and Allen Van Gelder. Octrees for faster isosurface generation.ACM

Transactions on Graphics, 11(2):201–227, 1992.

[9] Takayuki ITOH and Koji KOYAMADA. Surface: Isosurface generation by using

extrema graphs. InProceedings of IEEE Visualization, pages 77–83, 1994.

[10] Yarden Livnat, Han-Wei Shen, and Christopher R. Johnson. A near optimal isosurface

extraction algorithm using the span space.IEEE Transactions on Visualization and

Computer Graphics, 2(1):73–84, 1996.

[11] Phil Sutton, Chuck Hansen, H.-W. Shen, and Dan Schikore. Surface: A case study of

isosurface extraction algorithm performance. In2nd Joint Eurographics-IEEE TCCG

Symposium on Visualization, 2000.

[12] C. Montani, R. Scateni, and R. Scopigno. Discretized marching cubes. InProceedings

of IEEE Visualization, pages 281–287, 1994.

[13] Renben Shu, Chen Zhou, and Mohan S. Kankanhalli. Adaptive marching cubes.The

Visual Computer, 11:202–217, 1995.

[14] Tim Poston, Tien-Tsin Wong, and Pheng-Ann Heng. Multiresolution isosurface ex-

traction with adaptive skeleton climbing. InEUROGRAPHICS, 17(3):137–148, 1998.



BIBLIOGRAPHY 45

[15] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multiresolution tetrahedral frame-

work for visualizing regular volume data. InProceedings of IEEE Visualization, pages

135–142, 1997.

[16] Yong Zhou, Baoquan Chen, and Arie Kaufman. Multiresolution tetrahedral frame-

work for visualizing regular volume data. InComputers and Graphics, 19(3):355–

364, 1995.

[17] Thomas Gerstner and Renato Pajarola. Topology preserving and controlled topology

simplifying multiresolution isosurface extraction. InProceedings of IEEE Visualiza-

tion, pages 259–266, 2000.

[18] Laurent Balmelli, Christopher J. Morris, Gabriel Taubin, and Fausto Bernardini. Iso-

surfaces: Volume warping for adaptive isosurface extraction. InProceedings of IEEE

Visualization, pages 467–474, 2002.

[19] Laurent Balmelli, Gabriel Taubin, and Fausto Bernardini. Space-optimized texture

maps. InEUROGRAPHICS, 21(3):411V-420, 2002.

[20] Herbert Freeman. Computer Processing of Line-Drawing Images.ACM Computing

Surveys, 6(1):57–97, 1974.

[21] Nicolas Aspert, Diego Santa-Cruz, and Touradj Ebrahimi. MESH: Measuring errors

between surfaces using the hausdorff distance. InIEEE International Conference on

Multimedia and Expo, 1:705V-708, 2002.




