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SIMD Instruction Generation in the DBT Engine
of the HQEMU System Simulator

Student: Bo-Jyu Lee Advisor: Dr. Wei-Chung Hsu

Degree Program of Computer Science
National Chiao Tung University

ABSTRACT

This thesis is to enhance the DBT-engine of the HQEMU system emulator so that it can
efficiently translate  SIMD instructions from the  target architecture into the SIMD
instructions in the host machine. In the process of augmenting the DBT engine with SIMD
instruction code generation capability, we also propose an optimization, called vector type
state mapping for eliminate redundant SIMD load/store instructions. With the enhancement
and associated optimization, we have.observed 35% of speed up on average over the
original HQEMU when emulating the SPEC 2006 CFP benchmarks in x86-32 binary on the

x86-64 host.
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|. Introduction

Audio, video and communication applications are the core activities of embedded
systems. A trend of adding SIMD style instructions, such as. MMX, SSE, and AVX, to the
CPU in order to enhance media processing.has been-available on desktop computers for
years. Now this trend has also found:its way to embedded processor architectures such as
the NEON extension on ARM and the MDMX extension-on-MIPS. Furthermore, such
SIMD-style instructions are perfectly suitable for speeding up Floating Point computations.
They are similar to vector instructions in_supercomputers, except that their length of vector
is much shorter than vectors in supercomputing. As such SIMD. style media extensions are
commonly available, many software.applications contain'such instructions.

Dynamic binary translation is one commonly used technique to speed up whole system
simulation, such as QEMU [1], or legacy application migration such as the Rosetta and
IA32-EL. With the increasingly popular use of SIMD-style instructions, how to translate
SIMD instructions dynamically has attracted much attention. Effective translation of SIMD
instructions is critical in such dynamic binary translation systems. In this work, we focus
more on the SIMD translation in QEMU-based simulation tools. This is because QEMU is a
very widely used system simulator for embedded systems, and the current QEMU does not

have adequate support for SIMD instruction translation.
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The purpose of this work is to come up with a solution applicable to retargetable
dynamic binary translation systems that can make effective use of the SIMD computing
power of the host computers. In the current QEMU, a SIMD instruction in the guest
architecture is not translated into a respective SIMD instruction available in the host
architecture. Instead, it is translated to call a helper function. Usually, such helper functions
for the host architecture are implemented using scalar instructions rather than SIMD
instructions.

We replace such helper functions .of  SIMD instruction, implemented in scalar
instructions, by functions implemented-in GCC vector IR (Intermediate Representation), and
such functions will eventually get converted from vector IRs to SIMD instructions available
on the host machine. In addition=to the effective use of SIMD instructions of the host
machine for simulating the SIMD instructions of the guest machine, we further implement
an optimization called vector state mapping in HQEMU [2] to eliminate redundant vector
load /store instructions and achieve a greater speed up.

The remainder of this thesis is as follows. In Chapter 2, we deseribe the background and
the related work. In Chapter 3, weuintroduce the-design and implement of the SIMD
instruction generation of the DBT engine in HQEMU. In Chapter 4 and 5, we evaluate the

performance of our design and implementation. Finally, Chapter 6 concludes this thesis.



II. Background and Related Work

In this section we first introduce binary translation. Then we explain what is SIMD
(Single Instruction Multiple Data) instruction. After that, we give a simple overview of

QEMU and HQEMU. The remaining of this section will discuss related works.

2.1 Binary Translation

Binary translation is aiming at transforming instructions of one ISA to another. This
process can be carried out at.two different times: offline, so called static binary translation
(SBT) [3], [4], and on-line, so called-dynamic binary translation (DBT) [5], [6]. DBT has
been widely used i various applications, such as instruction set architecture (ISA)

migrations, fast architecture simulations, runtime optimizations and binary instrumentations.

2.1.1 Static® Binary = Translation.~vs. Dynamic Binary

Translation

Static binary translation translates guest. binary code into host binary code. The
advantage of static binary translation is that it can avoid the translation overhead at runtime.
On the other hand, the static binary translation has code discovery problems and code
location problems. For example, the branch target of an indirect branch will not be known at
static time.

Dynamic binary translations (DBT) that can speed up the emulation of an application
binary migration from one ISA to another is gaining importance. DBT has become the core

technology of system virtualization, an often required system support in the new era of



cloud computing and mobile computing. DBT could also be used in binary instrumentation,
security monitoring and other important applications.

However, there are several factors that could impede the effectiveness of a DBT:
(1) emulation overhead before the binary translation; (2) translation and optimization
overhead; and (3) the quality of the translated code. Retargetablity of the DBT is also an
important requirement in system virtualization. It is highly desirable to have a single DBT to
take on application binaries from several different ISAs and retarget them to host machines
also in several different ISAs. This requirement imposes additional constraints on the
structure of a DBT and, thus, additional overheads.

As a DBT is running.at the same time the application is being executed, the overall
performance of the translated binary-on the host machine. is thus very sensitive to the
overhead of the DBT itself. A DBT could ill-afford to have sophisticated techniques and
optimizations for better codes. However, with the ubiquity of the multicore processors today,
most of the DBT overheads could be off-loaded to other cores. The DBT could thus take
advantage of the multicore resources and become multithreaded itself. This allows it to
become more scalable when it needs to.take on more and more large-scale multithreaded
applications in the future. For example, the DBT In'HQEMU is taking such a multi-threaded

approach to effectively minimize the code optimization overhead.

2.1.2 Same-ISA Translator vs. Cross-1SA Translator

When the guest ISA and the host ISA are the same, we refer the binary translator as a
same-ISA translator. The purpose of this translator is to improve the performance or to
instrument the binary code.

On the other hand, when the guest ISA is different from the host ISA, we refer the

4



binary translator as a cross-ISA translator. The purpose of this translator is to migrate an
application from one hardware platform to another or to provide a virtual platform that the
application can execute without specific hardware. QEMU is a whole system simulator

using cross-ISA dynamic binary translation techniques.

2.2 SIMD instructions

Single instruction, multiple data (SIMD), is a class of parallel computers in Flynn's
taxonomy. It refers to computers with multiple processing elements that can perform the
same operation on multiple data simultaneously.-Thus, such machines exploit data level
parallelism. Figure 1 is aschematic diagram for.SIMD processing.

Small-scale (64 or 128 bits)-SIMD has become popular on general-purpose CPUs in
the early 1990s. SIMD instructions can be found, to one degree or another, on most CPUs,
including IBM's AltiVec and SPE for PowerPC, HP's PA-RISC Multimedia Acceleration
eXtensions (MAX), Intel's MMX and SSE; SSE2, SSE3 SSSE3 and SSE4.x, AMD's
3DNow!, ARM's NEON technology, MIPS" MDMX and MIPS-3D.

Modern graphics processing units (GPUs) can~be considered as very wide SIMD
implementations, capable of processing thousands of words at a time.

SIMD instructions are now available on desktop PCs, servers and embedded systems.
Among all the SIMD variations, Intel’s SSE and ARM’s NEON are the most popular and

widely used, so this section explains a little more on Intel’s SSE and ARM’s NEON.
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Figure1. SISD and SIMD

2.2.1 Intel’s SSE

Streaming SIMD Extensions (SSE) is introduced by Intel in 1999-in Pentium IlI
processor. As its name implies, SSE is a SIMD instruction set. SSE instructions include four
main parts: single-precision floating-point-arithmetic instructions, integer arithmetic
instructions, cache control instructions, and state control-instructions. SSE architecture
includes eight 128-bit registers, XxmmO0 ~ xmm?7. The xmm registers can be used to store
four 32-bit single-precision floating-point numbers or two 64-bit double-precision numbers,
depending on programmer’s specification. SSE instructions for FP (Floating Point)
computation are different from the x87 floating-point instructions where the xmm register
must be cleared with the EMMS instruction. SSE instructions can be mixed with x87 FP
instructions or earlier MMX instructions, because they are using different registers.
However the main drawback is that the cost of context switch would be much greater since
all registers (xmm, FP, MMX) must be saved and restored. SSE has Scalar version and
vector version, where the vector version is also called Packed instruction. Figure 2 is a
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schematic diagram of the SSE register and an example of scalar SIMD addss and vector

type addps.
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Figure 2. Intel’s SSE registers and Scalar SIMD addss and Vector SIMD addps operation

2.2.2 ARM’s NEON

The ARM’s NEON general-purpose SIMD extension supports current and future
multimedia formats. NEON instruction set is designed to accelerate multimedia and signal
processing such as video encode / decode, 2D / 3D graphics, gaming, audio and speech
processing, image processing, telephony, and sound synthesis, by at least 3x the

performance of ARMvV5 and at least 2x the performance of ARMv6 SIMD. NEON
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technology is a 128-bit SIMD architecture extension for the ARM Corte-A series processors.
NEON’s SIMD registers can be used as 32 register with 64 bits wide or 16 registers with
128 bits wide.

NEON instructions perform "Packed SIMD" processing with the following specifics:

(1)Registers are considered as vectors of elements of the same data type.

(2)Data types can be: signed/unsigned 8-bit, 16-bit, 32-bit, 64-bit, single precision

floating point.

(3)Instructions perform the same operation in all lanes.

Unfortunately, the NEON-instruction set doesn't:support double precision data types and
its single precision format.is not fully IEEE754 compliant. Figure 3 shows one example of

ARM’s NEON "Packed SIMD" instructions.

Elements %
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Operation—gf ‘W kT’ LT‘
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Figure 3. ARM’s NEON "Packed SIMD"



2.3 LLVM

Low Level Virtual Machine (LLVM) [7] is a compiler infrastructure developed by
University of Illinois. LLVM is used for optimizing programs written in arbitrary
programming language during compile-time, link-time, run-time and idle-time. LLVM is
also a retargetable compiler in that it can emits code for many different target machines.
Since LLVM has a reliable and comprehensive optimization infrastructure, and since
LLVMN is very retargetable, we would like to leverage its robust infrastructure to improve
the quality of code generated in QEMU. HQEMU uses two translation pipelines to conduct
dynamic binary translation: 1t uses the original TCG (Tiny Code Generator) in QEMU to
perform quick but low quality code-generation for infrequently executed portions and uses
the LLVVM to translate and optimize-frequently execution paths. Furthermore, since LLVM is

an open source project and is well-documented, it is'well suited for the research community.

2.3.1 LLVM:iIntermediate Representation

LLVM IR (Intermediate Representation) [12] plays a central role in this process. LLVM
IR has three formats serving for different purposes. The three formats are an in-memory
compiler IR, an on-disk bitcode representation for fast loading by a Just-In-Time compiler
or a human readable assembly language representation. LLVM provides a rich API for
optimizations to be performed at runtime. All code optimizations are implemented as
“LLVM IR to LLVM IR transformation passes” and code analysis is also implemented as
passes, generated results can be shared between passes. We will add a new pass optimizing
SIMD instructions, more detailed design will bedescribed later.

LLVM identifiers which begin with the “@’character are Global identifiers such as



functions and global variables, the remaining LLVM identifiers which begin with the
‘% character are Local identifiers such as register names and types. Because the LLVM IR
must follow SSA form, LLVM has unlimited number of virtual registers and each LLVM
register can only be defined once. We can’t use single LLVM register to represent a guest
register due to the constantly changing of LLVM register, so we need a dynamic mapping

table from guest CPU state register to LLVM registers.

24 QEMU

QEMU is an efficient and retargetable DBT. system that enables both full-system
virtualization and proeess-level emulation. - QEMU. is . based on an intermediate
representation so that the complete-process of binary translation can be described in a
two-phases manner, as proposed on Figure 4. QEMU can run unmodified guest operating
system on the host operating system. The operating system can be X86; PowerPC, ARM or

Sparc. The guest OStand the host OS can be different.

Target TCG Code Host
; translator )
insns IR generator instns

Figure 4. Machine adaptable dynamic binary translation process

QEMU uses guest basic block as a unit for translation and execution. The guest
instructions in the guest basic block will be replace by several micro operations which is
implemented in C programming languages, and then the micro operations will be compiled

to host instructions. Therefore, there is no optimization for the guest basic block and we

10



need specific GCC compiler to ensure the correctness of the translation.

After QEMU version 0.10, QEMU uses tiny code generator (TCG) to parse the micro
operations, which provides a small set of IR operations (about 142 operation codes) and
generates the host binary code. The translation ability of TCG is still insufficient because
TCG can’t directly generate real host code for all guest instructions. For example, until now
QEMU doesn’t really support SIMD instructions because the SIMD operation will be
simulated by all to scalar operations, which results in poor performance. Since most host
machines have SIMD instructions available, it would be a waste not to use the host SIMD

instructions to simulate the guest machine’s SIMD.

2.5 Related Work

The DBT engine in the official QEMU does not translate guest machine’s SIMD
instructions into the host machine’s SIMD instructions. In this section we will first review a
related work which was about SIMD instruction generation-of QEMU[8]. We also introduce
HQEMU which is a derivation of QEMU with much faster simulation speed. HQEMU is
the base system where we experimented with our.design and implementation of a new

SIMD code generation component.

2.5.1 Speeding-up SIMD instructions via Dynamic Binary

Translation

In this section we describe a related study which tries to solved a similar problem as we
do. This work attempts to enable the DBT engine in QEMU to emit host SIMD instructions.
The approach proposed is to add new TCG IR micro operations for SIMD instructions.

The TCG in QEMU with the vector IR extensions can translate guest SIMD instructions
11



into the new TCG vector IR, and TCG will map the vector IRs to real host SIMD
instructions . T Their goals is emulate ARM’s NEON extensions with SSE on executed on
an Intel Pentium based machine (guest: ARM NEON, host: Intel SSE).

Their work is based on a simple 3-addresses vector IR designed to support most
existing SIMD instructions. The approach will be illustrated with concrete examples of
translation from ARM NEON instruction set to Intel MMX/SSE in this section. In the
subsequent examples, they divide all instructions into three translation cases. We will
discuss each case and give appropriate examples.

a)  One-to-one mapping between-instructions:

It is the presence of an exact equivalence between a target SIMD instruction and a host
SIMD instruction. The behavior of the SIMD DBT in this situation is quite similar to the
one of the scalar DBT. All we have to do Is to guarantee to convey operands to correct
registers and retrieve'the results from the correct registers. Figure 5 illustrates the translation

of an ARM Neon vadd.i16 into an Intel MMX/SSE paddw:.

w IR micro-operation Host code
vadd i16 simd_128 add_il6 paddw
J translation generation

ARM NEON instruction IR micro-operation x86 SSE instruction

Figure 5. Direct mapping between vadd. i16 NEON instruction and paddw SSE instruction

b)  No direct mapping available:
There exists no direct mapping between guest SIMD instructions and the host SIMD
instructions. Most of the cases are due to a lack of generality of the operations performed by

the target SIMD instructions. In this case it is not very useful to have a vector IR for that

12



instruction. The strategy in such a case is to split the target SIMD instruction into more
elementary operations available in the IR. Figure 6 gives an example of this situation with
the translation of the ARM Neon vsra.u32 instruction (which is performing a right shift on
operands and accumulate the shifted results in the output register) to two elementary IR
micro-operations simd_128 shr_i32 and simd_128_add_i32. The code generator can then

find an equivalent for each micro-operation, i.e. psrld and paddd.

( Host code (. )
simd_128 shr_i32 > psrid
i ) seneration [ i
vsra u32 - N - N
Host code
IR micro-operatior?™ el ISR AGE= 2 _t) paddd
generation
translation N 4 4
ARM NEON instruction IR micro-operation x86 SSE instruction

Figure 6. The wsra Neon.instruction.is translated-into two TCG micro-operations

c) Exceptional cases:

This situation happens when an SIMD instruction of the target can be translated into
a corresponding IR but no equivalent translation is available in the host SIMD instruction
set. As shown in Table 1, all .versions of the shift are available in ARM Neon SIMD
instruction set. As it can be realized from this table, there exists no instruction for shifting 8
bits values. As this operation is available in all other instruction sets, it is included in the IR.
The code generator has to solve this situation by generating multiple host instructions, as
shown in Figure 7. The example given in Figure 7 is for the translation of an 8 bits logical

left shift emulated by a 16 bits version.

13



psllw
/
=
movd
w IR micro-operation v,
vshl u8 simd_128 _shl_il6
J translation 0
pinsrw
W/
Host code T
generation pand
/
ARM NEON instruction IR micro-operation x86 SSE instruction
Figure 7. The left shift vector IR is translated into multiple SSE instructions
Table 1. Mapping between left shift instructions
Operation Neon instruction SSE instruction
shl 8 bits vshl i8 Qd, Qm, #imm N/A
shl 16 bits Vshlile Qd, Qm, #imm psllw xmm1, xmm2
shl 32 bits Vshli32 Qd, Qm, #imm pslld xmm1, xmm?2
shl 64 bits Vshli64 Qd, Qm, #imm psllg xmm1, xmm2

In summary, their approach is to add the SIMD IR into TCG for different targets and
hosts, then mapping new TCG vector IR to the host SIMD instruction. This approach is
difficult to implement since both the front-end translation and the back-end code generation
must be modified for every guest and every host machine with SIMD instructions. In our
evaluation work, we choose to take a more efficient implementation which is readily
compatible to the current QEMU, to get a reasonably good performance on SIMD

emulation.
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252 HQEMU

Hybrid-QEMU(HQEMU) is a multi-threaded hybrid DBT system, using QEMU and
LLVM as building blocks. HQEMU uses QEMU exiting DBT as its frontend for fast binary
code emulation, and uses LLVM, a popular compiler infrastructure with sophisticated
compiler optimizations as its backend, for hot code optimization. With the hybrid QEMU
(frontend) + LLVM (back-end) approach, HQEMU effectively achieves high performance
emulation with good code quality and low translation overhead. Figure 8 shows the main

idea of HQEMU and its difference with QEMU.

Guest TCG Host
- it ey e pesmay m

QEMU DBT engine

Hot Code Hot Code
Path

Trace
Level
General Code Path

HQEMU DBT engine, two path

Figure 8. Mainly difference between QEMU and HQEMU
HQEMU’s highlights are listed as follows:

HQEMU develops a multi-threaded and retargetable DBT on multi-cores that achieved
low translation overhead and good translated code quality on the target binary
applications. This hybrid approach is good for both short-running and long-running

15



applications.

« HQEMU proposes a trace combination technique to improve existing trace selection

algorithms. It could effectively combine/merge separated traces based on the
information provided by the on-chip HPM (Hardware Performance Monitor). They
demonstrate that such feedback-directed trace merging optimization can significantly
improve the overall code performance.

« Experimental results show that HQEMU could improve the performance by a factor of
2.4X and 4X over QEMU, and are only 2.5X and,2.1X slower than the native execution

for x86 to x86-64 emulation using SPEC2006 integer and- floating point benchmarks,

respectively.

Multi-thread App Optimization Thread Pool

g e e e e - - -
A F
i

i i

v Optimization s .
Emulation Requast ! !
FIFO Quaue ' Dynamic
Module ! LLVM : 1I"
i " I Translator | Binary
! TCG ! | Optimizer
| Translator ! !
1 I 1 3
*.Core 1~m-2 h ' Core m—1.", 1 core m .

Block Code Cache 44— Trace Cache

I

Figure 9. The architecture of HQEMU’s DBT system on a multi-core platform.

Execution Profile

Figure 9 illustrates the organization of HQEMU. It has an enhanced QEMU as its
frontend, and an LLVVM together with a dynamic binary optimizer (DBO) as its backend.
DBO uses a HPM-based feedback-directed runtime optimization scheme. In its current
implementation, QEMU is running on one thread and LLVM+DBO are running on a
different thread. Two code caches: a block-code cache and a trace code cache, are built in
the DBT system to store host translated binary codes with different optimization levels.

Although HQEMU adds a lot of optimizations, but there are still some places that can
16



be improved. For example, its current DBT engine does not generated good SIMD
instructions. The issue is that when the DBT engine encounters guest SIMD code, the DBT
engine will translate the SIMD instruction into scalar instructions, regardless of whether the
host's hardware support for SIMD instructions. This paper is mainly to improve the SIMD

code generation of the DBT engine in HQEMU.
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[11. Design of a SIMD Code Generation
Phase in the DBT Engine

In this chapter, we first describe the problem that we observed from the SIMD code
generation in the DBT engine of QEMU/HQEMU. Then we introduce our proposed solution
for SIMD code generation step by step. Finally, this approach was implemented on HQEMU
to demonstrate its performance. The remainder of this section describes an optimization we
included to enhance the performance of generated SIMD-code in HQEMU, called vector

type state mapping.

3.1 Objective

Before explaining the problem, we must state our goals. The goalis to enable the DBT
engine of HQEMU to generate INTEL SSE SIMD instructions with minimal modifications
to the HQEMU DBT engine. Since HQEMU uses QEMU as a basis, we shall discuss the
design and implementation of the SIMD code generation-phase based on QEMU, and then

test it on HQEMU.

3.2 Design Issues

In general, the DBT engine of QEMU will translate the guest instructions into the
corresponding TCG IR and then mapping the IR’s to host binary instructions. The SIMD
type instructions are different in that the DBT translates them (guest SIMD instructions) into
acall in TCG IR and then the call will be mapped to a function call which jumps to a helper

function with scalar operations. Figure 10, and 11 shows the difference of general code
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generation and SIMD code translation process in QEMU.

Figure 10. An example of translating add instruction in QEMU

Figure 11. An example of translating addps instruction in QEMU

From Figure 11, we can observe that several improvements can be made to the current
SIMD emulation in QEMU. Instead of splitting the 128-bit operation into four 32-bit
operations, we could replace the four scalar operations with one real SIMD host instruction.
Furthermore, the function call could be inlined to avoid calling overhead. The parameters
can be bounded to the SIMD instruction during function inlining. Our design is trying to

realize the above optimizations.
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3.3 Using the Gcce Vector Extensions

In order to replace scalar operations with a SIMD operation, we adopt the Gcc vector
extension to realize SIMD code generation. A more formal approach is to add new TCG IR
for SIMD instructions. However, this formal approach requires more work in both the
front-end and the back-end. In the front-end, a new code generator to translate the guest
SIMD into the vector IR is needed. In the back-end, a code generator to convert the vector
IR into the host SIMD instruction must be in place. In this work, we use the Gcc vector
extension to replace the scalar instructions in the vector helper function. When the helper
function is called, the Gee vector IR will become host SIMD -instruction, and the helper

function call may be inlined to eliminate the calling overhead.

3.3.1 Gcc Vector Extension

The Gcce vectorextension is a very powerful extensions to use SIMD code in a portable
way. For example, it'supports Intel SSE, ARM NEON,-PowerPC AltiVec and Alpha. Gcc
would choose the best paossible.extensions during compile time. When you compile code
without SIMD options, the binary will.remain.compatible. The downside is that this
extension doesn't allow using all the features of all SIMD code. Therefore, using this
method can not completely replace all helper functions of INTEL SSE. A detailed
explanation of the design will be in the next section. Figure 12 shows the example of using

the Gcce vector extension with/without SSE options.
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3.4 Using the'G Replace SSE

k/ﬁOl’ Xtensions e
\d /

Helper Function in QEML

In this work we focus on Intel SSE instruction generation. For our convenience, we
classified SSE instructions into several types, which are data move instructions, data type
conversion instructions, arithmetic instructions, logic instructions and other special
instructions, as shown in Table 2. As we mentioned above, this extension doesn't allow
using all the features of all SSE instructions. SSE has many different versions, we
implement SSE2 in this work. SSE2 has 223 instructions and we select 29 instructions

which are more commonly used. We use Oprofile to analysis the benchmark 410.Ibm from
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the SPEC2006 CFP suite, and found the most time-consuming function is
LBM_performStreamCollide() where SSE instructions account for 76% of all executed
instructions, and among these SSE instructions, ALU and shift SIMD instructions are
responsible for half of them.. Table 2 list the Gcc vector extensions supported in our

prototype system.

Table 2. Some examples of classified SSE instructions and the GCC vector extensions

supported
SSE Instructions Type Example Gcce Vector
Support
Data Move movaps, movss ...etc No
Data Type Conversion cvtps2dq, cvtpd2dq ...etc No
Arithmetic addps, sqrtps ...etc Yes
Logic or, xor, and, shift ...etc Yes
Other paddusb, punpckhbw ...etc No

We will explain how to implement these instructions in the next section. We have
added some flags into the . QEMU. configure file (QEMU_CFLAGS = -msse2 -mfpmath=sse)
to enable Gee to compile with SSE instruction set-of the host. Then we replace the QEMU
helper functions for SIMD instructions with the Gcc extensions, as well as adding
appropriate cflags to execute QEMU program which might generate segmentation faults due
to misaligned accesses from SIMD loads/stores. We found this bug is because of the original
QEMU designers just translate SSE into scalar instruction does not take into account the
alignment of executing real SSE. Figure 13 shows how our solution fixes the alignment

problem of QEMU.
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Original QEMU
float_status sse_status; /* for SSE ops */
uint32_t mxcsr;
XMMReg xmm_regs[CPU_NB_REGS];
XMMReg xmm_t0;
MMXReg mmx_tO0;
target_ulong cc_tmp; /* temporary for rcr/rcl */

\ 4

Modify
float_status sse_status; /* for SSE ops */
uint32_t mxcsr;
/* adding padding bits for align*/
char xmm_regs_padding[8];
XMMReg xmm_regs[CPU_NB_RE
XMMReg xmm_t0;
MMXReg mmx_tO0;
target_ulong cc_tmp; /* temporary for rcr/rcl */

Figure 13. Fixing mis-alignment problems of SSE load/store in QEMU

3.4.1 Arithmetic and Logic instructions

The arithmetic and logic instructions are calculating the xmm registers. Most of them
need two source operands to calculate the result then store to the destination. Because of
these two types of instruction format are similar, we put together for explaining how they
are implemented.

We will describe two methods of implementation and choose the better method to use.
The first approach is obtained from the Gcc vector extension website which can be executed
correctly, but not efficiently because it has excessive load/store instruction overhead. The

second approach is using a casting method to avoid generating multiple load/stores , so we
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select the second approach to implement. Figure 14 shows that the helper function

implementation and the differences between method 1 and method 2.

typedef float v4sf __attribute__ ((mode(V4SF)));

union f4vector

{ Method 1
vast v; General Usage
float f[4];

float64 df[2];
-

void helper_addps(Reg *d, Reg *s)
{
union f4vector a,b,c;
//multi-load
a.f[0]=d->XMM_S(0); a.f[1]=d->XMM_S(1); a.f[2]=d->XMM_S(2); a.f[3]=d->XMM_S(3);
b.f[0]=s->XMM _S(0); b.f[1]=s->XMM_S(1); b.f[2]=s->XMM _S(2); b.f[3]=s->XMM_S(3);
//will produce one addps instruction
c.v=a.v+b.v;
//multi-store
d->XMM_S(0)=c.f[0]; d->XMM_S(1)=cf[1]; d->XMM_S(2)=cf[2]; d->XMM_S(3)=cf[3];

typedef float v4sf __attribute__ ((mode(V4SF)));

void helper_addps(Reg *d, Reg *s)

{
// casting more efficient
vasf *src = (v4sf*)s; Method 2
vasf *dst = (v4sf*)d; Using Casting
// will produce one addps
*dst += *src;

}

Figure 14. Function implementation and differences between method 1 and method 2
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3.4.2 Shift instructions

The shift instructions we implemented with the same casting method to replace the
original QEMU helper function yield errors at the compilation stage. The problem here is
due to the use of an inadequate Gcc version. The version we initially used was 4.5.2, yet the
version 4.6.x is required to support SSE shift instructions. But even with version 4.6.x, this
issue will still introduce some bugs when combined with HQEMU, more details will be

explained in the next subsection.

3.5 Working with HOEMU

In HQEMU, the LLVM IR also-supports vector type IRs, so we just convert the helper
function of SSE instructions at compile time into respective LLVM IR code.

When the modified helper functions are combined with HQEMU, there have been some
problems incurred. The first problem is.that HQEMU can only identify the smallest units of
vector instructions at the LLVVM IR stage. In order to solve this‘problem, we must prepare
128-bits data types with smallest units before doing real operations and store back. Figure
15 shows the solution when combined with HQEMU. The second problem is that the shift
instructions are only supported with Gcce versions newer than 4.6.x, but the LLVM version
used was based on Gcc 4.5.2. We have to adjust the implementation of shift instructions,
reserve the vector type load and store before and after the shift operator, then extract each
element from the vector to do shift operations individually. However, this approach is
slower than the Gcc vector extension, but is more efficient than the original QEMU.
Because the implementation of QEMU is to read each element from the memory and

perform shift operation and then store it back to memory. Our method does not reduce the
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scalar shift operations but would avoid several load and store operations, as shown in Figure

16.
void helper_addps(Reg *d, Reg *s)
{
//add smallest units
v16qi* src = (v16qi*)s;
v16qi* dst = (v16qi*)d;
void helper_addps(Reg *d, Reg *s) v4sf srcv = (v4sf) *src;
{ vasf dstv = (v4sf) *dst;
// casting more efficient dstv+=srcv;
vasf *src = (v4sf*)s;
vasf *dst = (v4sf*)d; //store back
// will produce one addps *dst=(v16qi)dsty;
*dst += *src;
} }

(a) Using Gcce Vector Extension (b) Modified with Smallest Units

Figure 15. (a): Original Gcce Vector Extension (b): Add Smallest Units Vector for HQEMU
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void glue(helper_psrlw, SUFFIX) (Reg *d, Reg *s)

{
//load form memory void glue(helper_psrlw, SUFFIX) (Reg *d, Reg *s)
//then do shift operator {
//final store back to memory T p—
d->W(0) = d->W(0) >> s->W(0); v16qi *dst = (v16qi*)d;
d->W(1) = d->W(1) >>s->W(1); uv8hi v = (uv8hi) *dst"
d->W(2) = d->W(2) >> s->W(2) ; ’
d->W(3) = d->W(3) >>s->W(3);
d->W(4) = d->W(4) >> s->W(4); {J{Z;(;Iri:;p ¢
Sl 3) =SSP s V16ui(v,0) >> shift
d->W(6) = d->W(6) >>s->W(6) ; V16ui(v’1) >> shift,
d->W(7) = d->W(7) >> s->W(7); V16ui(v.2) >> shift.
} ’ ’

V16ui(v,3) >> shift,
V16ui(v,4) >> shift,

(a) Original Helper Function of Shift on QEMU V16ui(y,5) >> shift,

void glue(helper_psrlw, SUFFIX) (Reg *d, Reg *s) V16ui(v,6) >> shift,
{ V16ui(v,7) >> shift
//load once, shift once, store one }
v8hi *dst=(v8hi*)d;
v8hi *src=(v8hi*)d; //store once
*dst >>= *src; *dst = (v16qi)temp;}
1 1
(b) Using Gcc Vector Extension (c) Using Extract Individual Element from Vector

Figure 16. (a): QEMU Version (b). Gcc Vector Extension Version(c): Modified for
HQEMU

3.6 Optimization: Vector Type State Mapping on

HQEMU

We implemented a vector type state mapping optimization to improve the code quality
for SIMD instruction execution on HQEMU. The reason why we do this optimization is
because we want to eliminate the unnecessary load / store instructions. This concept is to
promote some SIMD data to host xmm registers to avoid unnecessary load/stores when

accessing the guest xmm registers. Figure 17 shows the example of doing vector type state

mapping.
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Consider the code segment

Prolog
%3 = load <16 x i8>* %XMM1, align 16
[~ entry: %6 = load <16 x i8>* %XMM1, align 16
%3 = load <16 x i8>* %XMM1, align 16 %7 = load <16 x i8>* %XMMS3, align 16

%4 = icmp ne i32 %3, 0
br il %4, %loopback, %exit

entry: b

loopback: , %4 = icmp ne 132 %3, 0
%5 = load <16 x i8>* %XMM?2, align 16 bril %4 %Ioopback %exit
%6 = load <16 x i8>* %¥XMM1, align 16
%7 = load <16 x i8>* %XMM3, align 16 loopback:

%8 = inttoptr i32 %6 to i32* %8 = inttoptr i32 %6 to i32*

St S [Eais, e Gl Mol galimila store <16 x i8> %5, <16 x i8>* %7, align 16
%13 = load <16 x i8>* %XMM1, align 16 %14 = add i32 %13, -1

%14 = add i32 %13, -1

store <16 x i8> %14, <16 x i8> * %XXMM1
store <16 x i8> %12, <16 x i8> * %XMM3

br label %entry, lexit 10

Epilog
store <16 x i8> %14, <16 x i8> * %XMM1
store <16 x i8> %12, <16 x i8> * %XMM3

br label %entry, lexit |0

Figure 17. An example of doing vector type state mapping

We observed that the original SIMD code generated from HQEMU produced more
redundant SIMD load / store instructions - when translate vector type instructions. Because
HQEMU only implemented state- mapping for scalar type operation, vector instructions
cannot enjoy the redundant load/store elimination benefit from state.mapping. Therefore, we
have to implement the vector type state mapping-optimization to deliver the expected
performance from SIMD code generation.. To achieve this purpose, we created a data
structure called CPUX86State array for recording the usage of each xmm registers to
determine which load / store can be merged and using the Mem2Reg pass of LLVM to
complete the function of vector type state mapping. Figure 18 shows the process of

implementing the vector type state mapping at the LLVM IR stage.
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CPUX86State

entry:
1: %3 =load <16 x i8>* %XMM1, align 16
2: %4 =icmp nei32 %3, 0
3: bril %4, %loopback, %exit

loopback:

: %5 =load <16 x i8>* %XMM2, align 16
%6 = load <16 x i8>* %XMM1, align 16
%7 = load <16 x i8>* %XMM3, align 16
%8 = inttoptri32 %6 to i32*

store <16 x i8> %5, <16 x i8>* %7, align 16
%13 = load <16 x i8>* %XMM1, align 16
10: %14 =addi32 %13, -1

11: store <16 x i8> %14, <16 x i8> * XXMM 1
12: store <16 x i8> %12, <16 x i8> * % XMM3

13:  br label %entry, lexit 10

xmms8

xmm1 xmm?2 xmm3 | e
11(128) L4(128) 16(128)
15(128) $12(128)
511(128)
Prolog

%XMM1.a = Alloca(128)
%XMM2.a = Alloca(128)
%tmpl = load <16 x i8>* %XXMM1
store <16 x i8>%tmp1l, %XMM1.a

Yy
%3 = load <16 x i8> * %XMM1.a

%6 = truncate( (load <16 x i8>* %XMM1.a), i128)

store <16 xi 8> %14, <16 x i8>* %XMM1.a

Epilog

%tmp2 = load <16x i8>* %XMM1.a
store <16 x i8> tmp2, <16 x i8>* %BXMM1

Figure 18. (a): Using CPUX86State array to help us do the mapping

Prolog

%XMM1.a = Alloca(128)
%XMM2.a = Alloca(128)

%tmpl = load <16 x i8>* %XMM1
store <16 x i8>%tmp1l, %XMM1.a

Mem2Re,

%3 = load <16 x i8> * %XMM1.a

%6 = truncate( (load <16 x i8>* %XMM1.a), i128)

store <16 xi 8> %14, <16 x i8>* %XMM1.a

Epilog
%tmp2 = load <16x i8>* %XMM1.a
store <16 x i8> tmp2, <16 x i8>* %XMM1

%3 = load <16 x i8>* %XMM2

%4 = load <16 x i8>* %XMM1

%5 = load <16 x i8>* %XMM3

%6 = bitcast i64* %env to i32*

%7 = getelementptr i32* %6, 132 13
%8 = load <16 x i8> %7

br label %entry

—> entry:

%edi.a.0 = phii32 [ %5, %init ], [ %12, %loopback ]
%9 = icmp ne i32 %ecx.a.0, 0
br il %9, label %loopback, label %false_dest

loopback:
%10 = inttoptr i32 %edi.a.0 to i32*
store volatile i32 %3, i32* %10
%11 =shli32 %8, 2
%12 = add i32 %edi.a.0, %11
%13 = add i32 %ecx.a.0, -1
—— br label %entry, lexit !0

false_dest:
store <16 x i8> %XMM1.a.0, <16 x i8> * %XMM1
store <16 x i8> %¥XMM3.a.0, <16 X i8> * %NXMM3

Figure 18. (b): Using Mem2Reg to complete the process

%ecx.a.0 = phii32 [ %4, %init ], [ %13, %loopback ]

Figure 18. The process of doing state mapping at the LLVM IR stage

29




After the implementation of the vector type state mapping optimization, we verify that

this method is correct and indeed generate better code quality. Figure 19 shows the host

code generated from HQEMU with vector type state mapping optimizations.

Figure 19.
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V. Sanity Check Tests

In this section, we use some simple experiments (e.g. micro-benchmarks) to verify our
modification for SIMD instructions generation and discuss the performance obtained. In the
simple micro-benchmark test, we evaluate the performance of QEMU and HQEMU by
using the Gcc vector extensions to translate the x86 front-end with SSE instruction into the
x86-64 binary code. We use QEMU version 0.13.0 as the emulation engine module, and use

LLVM version 2.8 to implement the translation module.

4.1 Experimental Environment

Our experiments run on an Intel Xeon CPU X5550 @ 2.67GH with 24GB RAM
machine. The operating System is 64-bit Ubuntu distribution Linux: The benchmark we used
in this section is a loop full of SIMD instructions. The benchmark is compiled by gcc-4.5.2
with “-msse2 -mfmath = sse” flags for QEMU. Then we compare the performance of our

version called QEMU-Vector to the original QEMU.

4.2 Experiments Results

Our test bench is a loop full of addps SSE instruction which does four single precision
floating-point additions at once. We expect this SSE instruction filled loop will have 4X
speedup over the original QEMU when our SIMD code generator is used by QEMU. First,
we compare the performance between QEMU-Vector and QEMU-Ori, the difference
between these two versions is only the helper function is replaced. Comparing the runtime,

QEMU-Vector is 1.56X times faster than QEMU-Ori. In the second step, we use HQEMU
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which would inline the helper function to eliminate the function call overhead without other
optimizations. This time, HQEMU-Vector is 2.86X times faster than HQEMU-Ori. This is
much better than the first round where QEMU-Vector and QEMU-Ori are compared. This
indicates the importance of function inlining for this SIMD code generation. However,
2.86X is still away from the ideal 4X. Why our SIMD code generation can’t yield 4X
acceleration? To understand the limitations, we conduct another set of analysis. We
observed that SIMD instructions on x86-64 have a longer latency than an x86 scalar floating
point instruction. Although the bandwidth .of.a SIMD instruction is 4X then scalar version,
the latency is not. Whenever the instruction latency plays a role, it is difficult to achieve 4X

speedup.
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V. EXxperiments and Results

In this section, we use separate compilers (GCC and ICC) to evaluate the performance
of running the SPEC2006 CFP benchmarks for our SIMD code generator. Our ultimate goal
is to improve the performance of HQEMU when simulating guest binaries containing SIMD
instructions. We first show the impact of our code generator approach on the original
QEMU. Since our design is influenced by the features in HQEMU, so the full performance
potential of our SIMD DBT engine can only be fully unlocked on HQEMU, not on QEMU.
We use Gcc version 4.5.2 and 'lcc-version 10.0 in our experiments. In HQEMU, we use

LLVM version 2.8 and llvm-gcc version 4.2.1 with default optimization options.

5.1 Experimental Environment

Our experiments run on an Intel Xeon CPU X5550 @ 2.67GH with 24GB RAM
machine. The operating system is 64-bit Ubuntu distribution'Linux. The benchmarks we use
in the experiments are SPEC2006 CFP. All benchmarks are compiled by gcc-4.5.2 with

“-03 -m32 -msse2 -mfpmath=sse -fno-strict-aliasing -ftree-vectorize” flags and icc-10.0
with default options.

We run all benchmarks via the standard SPEC runspec script with configuration files.
Then we compare the performance of QEMU-Ori, QEMU-Vector, HQEMU-Ori and

HQEMU-Vector. QEMU-Vector and HQEMU-Vector have our SIMD DBT engine.
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5.2 Experiment Results

5.2.1 Using the GCC Compiler

In this section, we first compare the performance between QEMU and QEMU-Vector
with the GCC compiler. Then we evaluate the performance gain from our SIMD DBT with
helper function inlined and vector state mapping optimization in HQEMU-Vector with the
GCC compiler. Finally, we analyze the composition of SSE instructions of SPEC 2006 CFP
at static time and dynamic time to help explaining our results. The results of QEMU-Ori and

QEMU-Vector are shown in Figure 20.

Compiler: GCC
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Figure 20. Speedup of QEMU-Vector compared to QEMU-Ori
In Figure 20, the execution time of QEMU-Vector has improved about 1.05X over

QEMU-Ori, on average, for SPEC 2006 CFP. Several benchmarks (e.g. 433.milc,
444.named, 465.tonto, and so on) observed no performance gains. The overall improvement

is also not impressive. This is due to two main reasons: the lack of helper function inlining
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in QEMU is one major performance limiter and the proportion of real SSE instructions is
not high in the SPEC binaries generated by the GCC compiler.
Then we evaluate the performance gain with helper function inlined and vector state

mapping optimization in HQEMU-Vector. The results are shown in Figure 21.

Compiler: GCC
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Figure 21. Speedup of HQEMU-Vector compared to HQEMU-Ori

From Figure 21, the execution time of HQEMU-Vector with helper function calls
inlined and vector type state mapping optimization improves about 1.26X over
HQEMU-Ori, on average, for the SPEC 2006 CFP benchmark. As shown in Figure 21, the
improvement in 436.cactusADM and 437.leslie3d are very significant because these two
benchmarks have a greater portion of instructions are real SSE instructions thus can benefit
more from our SIMD code generation and optimization. Figure 22 and 23 show the
proportion of SSE instruction at static time and dynamic time. From the results of Figure 20,
21, 22 and 23, we can observe that those benchmarks with low SSE proportions also have

low speedups..
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Compiler: GCC
Proportion of SSE instruction in Static Time
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Figure 22. Proportion of SSE instruction at static time, using GCC
Compiler: GCC
Proportion of SSE instruction in Dynamic Time
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Figure 23. Proportion of SSE instruction at dynamic time, using GCC
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5.2.2 Using the ICC Compiler

Different from the previous subsection, we use the ICC compiler instead of the GCC
compiler for generating the guest binaries for testing our SIMD DBT approach. We want to
compare the difference between using the GCC compiler and the ICC compiler, because it is
well known that the ICC compiler would optimize for Intel architecture better and likely to
generate more effective SSE instructions. The same sets of experiments in the previous
subsection are conducted again using the ICC compiler generated binaries, and the results

are shown in Figure 24 to 27.

Compiler: ICC
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Figure 24. Speedup of QEMU-Vector compared to QEMU-Ori

From Figure 24, the execution time of QEMU-Vector improves about 1.11X over
QEMU-Ori, on average. The speedup of from our SIMD DBT approach is greater here since
the proportion of real SSE instructions in the benchmarks compiled by the ICC compiler is

higher.
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Compiler: ICC
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Figure 26. Proportion of SSE instruction at static time, using ICC
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Figure 27. Proportion of SSE instruction at dynamic time, using ICC
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Comparing Figure 22 and 23 to Figure 26 and 27, respectively, we can see that the
proportion of SSE instructions is greater for ICC generated binaries than for GCC generated
binaries. In particular, GCC generated binaries contain lots more Scalar SSE which do not
benefit from our SIMD code generation approach. ICC is well-known for its “vectorization”
capability. If a FP computation loop is vectorized, Vector SSE instructions will be generated,
otherwise, Scalar SSE is generated instead. The higher portion of Vector SSE in ICC
generated binaries shows that ICC can vectorize more effectively than GCC.

Note that there was a segmentation fault.when emulating 410.bwaves, 453.povray,
481.wrf and 482.sphinx3 when compiled by 1cc10.0.on HQEMU. 410.bwaves and 481.wrf
also failed on the original QEMU, so'we did not include these benchmarks in our
benchmark set of the experiments:in:this section.

The next two figures show the speedup of QEMU-Vector compared to QEMU-Ori and

HQEMU-Vector compared to HQEMU-Ori'with GCC and ICC.
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Figure 28. Speedup of QEMU-Vector compared to QEMU-Ori with GCC and ICC
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Figure 30. The scalar SIMD-instructions ratio between using GCC and ICC

In Figure 30, we can see that the ratio of scalar SIMD instructions is from 10% to 50%
except for 436.cactusADM and 437.leslie3d; which are lower than 10%. The lower the
Scalar SSE ratio, the greater the speedup potential. This explains why 470.Ibm compiled by
ICC achieved 1.85X speedup, and both 436.cactusADM and 437.leslie3d gains more than
2X.

On average, using GCC generated code, the speedup from our SIMD DBT approach
is 1.05X (as shown in QEMU-Vector) and 1.26X (as shown in HQEMU-Vector). The
speedup for ICC generated binaries is 1.10X and 1.35X, in QEMU-Vector and
HQEMU-Vector, respectively. This result indicates that the performance of our SIMD DBT
approach will be heavily dependent on the proportion of Vector SSE instructions in the

guest binaries.
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V1. Conclusions and Future Work

In this thesis, we enhance the SIMD instruction generation capability in the DBT engine
of QEMU/HQEMU to drastically improve their emulation efficiency for applications with
SIMD operations. We using the Gcc vector extension which is powerful and portable, to
replace the scalar instructions in the helper functions of SSE instructions to trigger host
SIMD instructions to be generated on the host. Further inlining the helper functions can
reduce function call overhead, as shown by the HQEMU. implementation. In addition, we
design and implemented.a vector type state mapping optimization at the LLVM IR stage to
increase the speed up from generated SIMD code.. We have verified the implementation with
the SPEC 2006 CFP. benchmark suite, and we have conducted sanity.check with simple
loops on the performance achieved with our SIMD code generation:method for the DBT
engine of QEMU. Finally we use Gec and lIcc as-.compilers for SPEC 2006 CFP to test our
improvement. The results.of SPEC 2006 CFP show that the performance of HQEMU-Vector
is 1.26X faster than HQEMU-Qri with-the Gcc compiler, and 1.35X faster with the Icc
compiler on average. The best case is 437.leslie3d where the speedup is 2.31X because it
has more SSE instructions and benefits more from the vector state mapping optimization.

About future work, we have two directions. The first direction is to add new front-end,
such as ARM NEON instruction generation of DBT engine. The other direction is to extend
the built-in function of the Gcc vector extensions connected to HQEMU so that can generate

more SSE instructions could be generated for x86 hosts machines.
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