

 I

國 立 交 通 大 學

資訊科學系

碩 士 論 文

提升嵌入式系統圖形化介面測試之精確度

On the Accuracy of Automated GUI Testing for Embedded Systems

研 究 生：余尚哲

指導教授：林盈達 教授

中 華 民 國 101 年 9 月

 II

提升嵌入式系統圖形化介面自動化測試之精確度

On the Accuracy of Automated GUI Testing for Embedded Systems

研 究 生：余尚哲 Student：Shang-Zhe Yu

指導教授：林盈達 Advisor：Ying-Dar Lin

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所 t

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Electrical Engineering and Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

September 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 9 月

 I

提升嵌入式系統圖形化介面測試之精確度

學生：余尚哲 指導教授：林盈達

國立交通大學資訊科學與工程研究所碩士班

摘 要

本基於省電與成本考量，嵌入式系統所配有的運算資源通常有限，要將

現有的圖形界面測試技術套用在嵌入式系統軟體開發流程上是非常困難的。

隨著智慧型手持裝置(如手機、平板)的普及，在嵌入式系統上進行自動化圖

形化介面測試的需求也大幅提高，但現有的測試工具在使用時會有自動化

不精確的問題。我們基於現有的測試工具 Sikuli 以遠端測試架構為基礎實作

了圖形化介面自動化測試工具 SPAG，以提升測試事件重播的精確度。SPAG

將遠端手持式裝置的畫面顯示在本機端，讓使用者可以透過本機端畫面操

作手持式裝置並錄製自動化測試項目。我們設計批次事件傳送與智慧等待

兩種方法並實作在 SPAG 中，用以改善滑動等手勢的重播精確度，同時避

免待測程式延遲造成的測試失敗。SPAG 會自動評估待測程式是否產生延遲，

並等待額外的時間讓待測程式完成反應，以提高測試指令的完成機率。基

於輔助功能技術，SPAG 能錄製流程中自動偵測待測程式狀態的改變，產生

驗證指令，並在測試時自動驗證手持式裝置之狀態。我們選定一常用自動

化測試工具 monkeyrunner 來比較測試精確度。在指定待測系統負荷工作量

的情況下，SPAG 自動化測試的精確度仍然達到 90%以上。若依照一般測試

流程估計，SPAG 將可以比 monkeyrunner 少用 11%~71%的測試回數。

關鍵字: 嵌入式系統，圖形化介面，自動化測試，Android

 I

On the Accuracy of Automated GUI Testing for Embedded Systems

Student: Shang-Zhe Yu Advisor: Dr. Ying-Dar Lin

Department of Computer Science and Engineering

National Chiao Tung University

Abstract

The embedded systems are built with limited computation resources.

Therefore, it is hard to apply conventional GUI testing tools on embedded

systems. However, with the popular of smart handheld device, e.g. smart phone

and pads, more software run on handheld devices and rising the need of software

testing on handheld device. Current testing tools on embedded systems all have

defect on reproducing GUI operations, so we design a Smart Phone Automated

GUI testing tool (SPAG) based on Sikuli, in order to reduce testing defects. We

design Batch Event and Smart Wait method to reproduce GUI operations

accurately and ensure the device under test (DUT) can fully process all test

operations. We also design the Hybrid Verifying method based on accessibility

technology to generate most verify operations and verify them automatically.

We use an experiment to compare our SPAG with monkeyrunner on test

accuracy and time efficiency, in which SPAG archives 90% testing accuracy

with all types of workload while monkeyrunner only has test accuracy of

27%~88%. We use the second experiment to analyze the contribution of our

methods. The testing result shows our Smart Wait method brings more

improvement on test accuracy.

Keywords: GUI, automated testing, embedded system, Android

 II

誌 謝

本篇論文能從實作之中逐步發展成型直到今日所見成果，在這段求學期間最要感謝

的是我的指道教授 林盈達老師。在每次的討論過程中孜孜不倦地指引我對於做研究的

嚴謹態度與撰寫論文所需的知識與技巧。除此之外，林老師讓我了解人生中應重視的方

向並以自身做了完美的示範，使我這兩年來受益匪淺。期許自己能夠牢記並掌握這些做

事態度與技巧，來迎接將來人生各階段的挑戰。萬分感謝 朱宗賢老師花費極大心力在

我的論文上，能夠不辭辛勞地指導我論文的撰寫方向與多次指導我修訂這篇論文，讓我

最終能夠完成這篇論文。我也要感謝交大嵌入式測試中心(NCTU Embedded Benchmarking

Lab)的甘東杰經理與 Shown的指導與討論，讓我能夠從實做中逐步發覺現有測試工具有

具有的議題，促成了本篇論文形成的動機；也感謝 EBL能夠提供所需實驗器材，讓開發

與實驗能夠順利進行。感謝我的母親與姊姊支持我在新竹的求學歷程，讓我能夠無須憂

慮的完成學業。感謝我的女友雅婷，能夠在我遭遇到挫折的時候給予大量的支持與鼓勵。

最後，感謝關心我、幫助過我的人。僅以此小小成就與大家分享！

余尚哲 謹誌

 III

Contents

摘 要 ..I

Abstract ...I

誌 謝 .. II

Contents ... III

List of Figures ... V

List of Tables .. VI

Chapter 1 Introduction ... 1

Chapter 2 Background and Related Work ... 4

2.1 Challenges of automated GUI testing ... 4

2.2 Sikuli ... 4

2.3 Android Software Testing ... 5

2.4 Related Work .. 6

Chapter 3. Definitions and Problem Statement .. 8

3.1 Definitions .. 8

3.2 Problem Statement .. 14

Chapter 4. SPAG Design ... 15

4.1 Batch Event... 16

4.2 Smart Wait .. 18

4.3 Hybrid Verifying .. 21

Chapter 5. Implementation ... 24

5.1 Device under Test ... 24

5.2 Recording and Replaying Events Sequence ... 25

Recording input events from live demo. ... 25

Reproducing Event Sequence with Batch Event ... 27

5.3 Smart Wait .. 27

5.4 Hybrid Verifying .. 28

Chapter 6. Experiment Result .. 30

6.1 Testbed ... 30

6.2 Comparison of test accuracy and time efficiency ... 31

6.3 SPAG Solution analysis .. 32

Batch Event and Smart Wait .. 33

 IV

Hybrid Verifying .. 34

Chapter 7. Conclusions and Future Work .. 36

References .. 38

 V

List of Figures

Figure 1. System architecture of record/replay method with DUT.. 8

Figure 2. Operations in a GUI test case ... 9

Figure 3. GUI events in GUI operation
 .. 10

Figure 4. Two approaches for sending event sequence ... 17

Figure 5. Flow of Batch Event method in replay stage ... 18

Figure 6. pesudo code of Smart Wait .. 20

Figure 7. Flow of Hybrid Verifying method in record stage ... 21

Figure 8. Flow of Hybrid Verifying method in replay stage ... 23

Figure 9. Screenshot of SPAG with screen of DUT .. 24

Figure 10. SPAG architecture in record stage ... 25

Figure 11. Example of SPAG’s test script ... 26

Figure 12. SPAG architecture in replay stage ... 27

Figure 13. Testing with SPAG and monkey runner... 31

Figure 14. the time efficiency of GUI testing .. 32

Figure 15. Testing with Batch Event and Smart Wait ... 33

Figure 16. Test case writing time with/without hybrid verifying .. 34

 VI

List of Tables

Table I. List of notations and definitions used in problem statement .. 12

Table II. List of commands used in SPAG design ... 16

 1

Chapter 1 Introduction

Automated GUI (Graphical User Interface) testing tools are software programs used to

test application user interface and to verify the functionalities. In the process of testing

embedded software, engineers first design a test case consist of operations, which include

several GUI operations and a set of conditions devised to determine whether an application

works correctly or not. After engineers convert the test cases to a script file, the script

performs predefined operations on a device under test (DUT), such as a smart phone or tablet

PC. To verify the result, the DUT captures the screen and sends it to host PC, where an

automated GUI testing tool performs verify operation. Take a popular open source automated

GUI tool Sikuli, an Android device controlling tool AndroidScreenCast, and an Android

smart phone for examples. Software engineers first write a Sikuli script to describe the timing

and order of GUI operations, such as scroll screen and key press actions. At runtime, each

action of the Sikuli script is performed on DUT screenshot window provided by

AndroidScreenCast. These actions are interpreted into multiple motion events and key press

events and transmitted to an Android smart phone, which is the DUT. After performing all

received events, the AndroidScreenCast captures the screen of DUT and sends it back to the

host PC, where the Sikuli verifies the correctness.

However, due to the uncertainty of runtime execution environment, such as timing delay

variation in communication, interpreted events may not be reproduced at the DUT on time. As

a result, intervals between events may be different from those expected. The

non-deterministic event sequences may lead to an incorrect GUI operation. For example,

Android Fling action happens when user scrolls on touch panel and then quickly lifts his

finger. A sequence of motion events is used to represent the action. When replaying these

event sequences, each motion event should be triggered on time in order to reproduce the

Fling action with the same scrolling speed. Otherwise, the scrolling speed of the reproduced

 2

filing action will be different from what is expected and therefore result in an incorrect result.

In order to address the issue of non-deterministic events, a commonly used method is to use

trackball instead of Fling action. However, trackball is not always equipped with a smart

phone.

Uncertain runtime execution environment may cause another problem because it may

interfere or delay the execution of application, especially under the circumstance that the

DUT is in a heavy load condition. A delayed application may fail to process an event

correctly if the response to previous event is not yet completed. For example, an event may be

dropped if AUT receives the event ahead of time and is not ready to process it yet. To solve

the problem, an intuitive method is to delay the executing of the operations. However, it

requires experienced engineers to set the delay for each operation properly, so that the

application can receive the reproduced events.

 The other problem is how to verify test results efficiently. Traditional pixel-based

takes relative long time on image transferring and processing. The situation becomes even

worse for smart phones due to limited computation and communication capacities. This

creates a strong need to develop a new method for automatically verifying the response of

GUI operations.

In summary, based on our observations, automated GUI testing for smart phones faces

three major challenges: non-deterministic events, execution interference and

non-deterministic layout. In order to overcome the challenges, we design a Smart Phone

Automated GUI testing tool (SPAG), which is based on Sikuli. To avoid non-deterministic

events, we batch the event sequence and reproduce them on the DUT. In addition, SPAG can

monitor the CPU usage of target application at runtime and dynamically change the timing of

next operation so that all event sequences and verifications can be performed on time, even

though the DUT is under a heavy load condition. Finally, SPAG adopts Android accessibility

service to get necessary information for verifying DUT status. While cooperating with

 3

traditional image matching method, SPAG can automatically generate most verify operations

and check the testing results faster.

We conducted several experiments on a popular Acer Liquid smartphone in order to

investigate the applicability and performance of SPAG. We compared our method with

monkeyrunner[1]. In our experiments, we first investigated the effect of resource utilization of

system during test. In addition, we studied the improvement of test accuracy achieved by our

batch event and smart wait method. Finally, we explored how our hybrid verifying method

reduces the cost of generating test cases.

The rest of the work is organized as follows. Chapter 2 mentions a GUI automated tool

named Sikuli, and gives a survey of related works. Chapter 3 gives the definition of variables

we used in this work, and describes our statement our problem. Chapter 4 details our solutions

of batch event, smart wait and hybrid verifying. Chapter 5 is the implementation details of

these three solutions based on Android system. Chapter 6 presents the experiment results and

discussion. Finally, Chapter 7 concludes this work and future works.

 4

Chapter 2 Background and Related Work

The chapter first describes the challenges of automated GUI testing. It then introduces

two well-known open source projects of automatic GUI testing. Finally, related works are

described.

2.1 Challenges of automated GUI testing

Based on the automated GUI testing process, we divide it into two parts: reproducing the

interaction between human and DUT, and verifying testing results. For a simple event, such

as pressing a hardware key, it can be reproduced by inserting a proper event. However, for

multi-touch and complicated gestures, it becomes non-trivial to reproduce the interaction

between human and DUT due to the timing constraints. In addition to reproduce predefined

events accurately, it is also challenging to verify results. There are three commonly used

methods for verifying testing results: bitmap comparison, objects identification and optical

character recognition (OCR). Although bitmap comparison is easy to implement, it is

extremely sensitive to the changes of GUI. The sensitivity can lead to extra maintenance cost,

especially for immature software, which is frequently modified over the period of

development. Objects identification relies on system provided API (Application Programming

Interface) to obtain object information of the screen. By compared with the reference objects,

we can evaluate the correctness of the testing results. However, system-provided APIs are

very different from OS to OS, which limits the portability of this method. In addition, not all

OS provide enough APIs for objects identification. OCR is an alternative method to reduce

sensitivity and increase portability, which converts scanned images into machine-encoded text.

However, OCR may be slow and inaccurate, especially for non-text content identification.

2.2 Sikuli

Sikuli is a framework [2-4] which automates and tests GUI applications by using images

(screenshots) on multiple platforms. Sikuli framework includes Sikuli Script, which is a visual

 5

scripting API for Jython. Sikuli Script supports three types of visual scripting APIs: Find,

Actions, and Event Observation. All visual scripting APIs requires an image as an operating

target. By using find-type APIs, Sikuli can find target's location, check the existence of target,

and wait until the target appears or disappears. In addition, Sikuli can adopt action-type APIs

to search and click target, hover mouse pointer to target, or drag-and-drop between two

targets. Furthermore, with Event-Observation-type APIs, programmers can register their event

handling function to wait target to appear or vanish, or wait for the changes of the GUI

contents.

Sikuli framework also contains an IDE, which is an integrated development environment

for writing visual scripts with screenshots. By using Sikuli IDE, engineers can easily write

GUI test cases, execute the script, automate GUI operations on desktop and verify GUI

elements presented on screenshot. Although Sikuli provides several handy functions to ease

the process of GUI testing, it’s pixel-based image search and comparison mechanism can

consume significantly system resources and prolong the testing process. As a result, Sikuli

may not be able to apply to embedded systems with limited computation resources. In this

work, based on Sikuli, we develop SPAG to support the automated GUI testing of embedded

systems.

2.3 Android Software Testing

There are several GUI testing utilities for developers to test their programs, such as

Android Instrumentation Framework provided by Android software development kit (SDK)

and Robotium. Profiling codes are inserted into proper locations in order to collect necessary

information at runtime. These utilities require partial or full source codes of tested

applications and are not suitable for black box testing. On the contrary, SPAG does not rely

on the availability of source codes. Monkeyrunner is another testing tool provided by Android

SDK. This tool can reproduce predefined actions, such as key press and screen touch, by

generating associated events. However, Monkeyrunner is sensitive to external interference,

 6

especially under the circumstance that the DUT is in a heavy load condition. SPAG, however,

monitors the status of AUT at runtime and dynamically changes the timing to issue

commands.

Android 1.6 provides new accessibility features to help users with disabilities use GUI

applications. The accessibility features also allow developers to create accessibility services

that work in the background and receive notifications of various GUI events. For example,

special events are triggered when the state of the activities is changed or some GUI

components are focused. These events provide useful hints about the widget where the event

originated, such as the type of widget and its text content. However, Android accessibility

currently does not allow programmers to list the full contents of the screen. This omission

clearly limits the usefulness of accessibility because a GUI screen might some important

widgets, labels or objects that are not focusable.

Hierarchy Viewer is the other utility provided by Android SDK that allows application

developers to examine the layout of the Android GUI. Hierarchy Viewer communicates with

an Android emulated device through the Android Debug Bridge (adb). Hierarchy Viewer

provides the detail information of GUI layout, such as the ID, type, text content, location and

size of all the GUI widgets in the screen. However, Hierarchy Viewer can only run on the top

of an emulator, which limits its applicability.

2.4 Related Work

They have been many research efforts dedicated to automated GUI testing. The most

common approach of automated GUI testing is model-based testing (MBT), which models the

behaviors of target software and then uses the test cases generated from the models to validate

the DUT[5] [6] [7]. T. Takala et al. adopted Monkey and Window services to generate GUI

events [6]. L. Zhifang [8] utilizes the concept of virtual devices to test applications. Their

method relies on image-based pattern matching which is sensitive to the quality of images. On

the contrary, SPAG uses GUI components for pattern matching in order to improve the

 7

stability and the speed of the validation.

Constructing a universal testing framework has been discussed in [8-11]. Several

techniques and architectures were developed to realize complex application test. MoGuT [8],

a variant of the FSM based test framework, used image flow to describe event changes and

screen response. However, it lacks flexibility. Gray-box testing adopted APIs to construct

calling context and parameters from input files [11]. Based on a logging mechanism, the

gray-box testing verifies testing results. This method is simple and powerful for testing

predictable software components. However, for complex software, it becomes difficult to

describe the testing logic and calling context. MoibleTest [7, 9, 10] is a SOA based

framework, which includes extendable script interpreter, universal communication interface

and agent-based testing mechanism. Although MobileTest can be used for testing mobile

devices, the accuracy of the test results is not clear.

Accessibility technologies provide different aids to disabled computer users. Most

computing platforms nowadays support accessibility functionalities because it is mandated by

the law [12] in U.S.. For GUI testing, the accessibility technology is a useful mechanism that

provides an interface for programs to access to GUI objects. Grechanik, et al. [13] used

accessibility technologies to obtain GUI structure information of the GUI-based applications

(GAPs) for maintaining and evolving test scripts. They also used GUI metadata to generate

programming objects in order to automate GUI testing [14] on windows. These research

results demonstrate that accessibility technologies are applicable to black-box GUI testing.

Recently Chang, et al. [4] claimed that accessibility API can be used to assist pixel-based GUI

interpreting in order to obtain a more accurate association between the visual representation

and internal structure of a GUI. However, the major limitation of the accessibility-based

methods is coverage, which differs from machine to machine. For example, accessibility API

on Android 1.6 does not allow developers to list the full contents of the screen. A GUI view

might also contain certain widgets or labels that are not focusable, and are thus inaccessible.

As a result, there is a clear need to develop a new method to overcome the limitation.

 8

Chapter 3. Definitions and Problem Statement

3.1 Definitions

We adopt a commonly used software testing technique called record-replay for

embedded systems, which includes record stage and replay stage. In the record stage, shown

in Figure 1(a), the screen of the DUT is first redirected to the host PC, on which the test tool

runs. The test engineer then interacts with the DUT remotely. Whenever the engineer

performs a GUI action on the host PC, such as key press and finger touch, the test tool sends

associated GUI event sequences to the DUT in order to control the DUT on live. The

performed GUI actions are also saved into test cases with verifications. In the replay stage

showed in Figure 1(b), the test executer reads GUI actions and replays them on the DUT. The

test executer then verifies the testing results based on the response of the DUT.

Based on record-replay technique, engineer generates a GUI test case by recording test

steps and adding verifications into it. In order to generate executable test cases, the GUI

actions and verifications are stored as GUI operations and verify operations respectively,

where executing a GUI operation will reproduce the GUI actions recorded by tool and

Device under test

Device under test

Host PC

Host PC

Test tool

Engineer
Test case

Remote GUI of SUT
Screenshot

GUI actions

Script IDE
Verifications

Test tool

Engineer

Test case

Test executer
Screenshot

Operations (GUI actions & Verifications)

Test result

Start testing

(a) Record stage

(b) Replay stage

Add verification

Demonstrate GUI testing GUI actions

Diagram symbols

Component

Document

Control Data

Substance

GUI actions

Figure 1. System architecture of record/replay method with DUT

 9

executing verify operation will performs the verification inserted by engineer. In additional,

the intervals between each operation are also specified in test case, in order to let DUT has

enough time to respond to operations. Following the description above, we define as a

GUI test case, which contains several operations and intervals between each two adjacent

operations. We define the pattern of by regular expression (()) , in which

is a GUI operation used to reproduce desired GUI actions such as key press and finger touch,

 is a verify operation used to verify the DUT’s response is desired one or not, and is the

interval between the occurrence times of each two adjacent operations. If necessary, we will

use to represent an operation which cloud be or in the following description.

With the defined pattern (()) , a test case can be denoted by a sequence of intervals

and operations

 , in which
 is a GUI operation defined

above and also the -th operation in the sequence of ,
 is a verify operation defined

above and also the -th operation in the sequence of and is the interval between the

occurrence times of and . For example, the test case showed in Figure 2 can be

denoted by

 .

To define the GUI operation in detail, a GUI operation is actually constituted by many

GUI events. Similarly, delays between the occurrence times of each two adjacent GUI events

are stored into test case in order to mimic the desired GUI action when executing test case.

0

20

40

60

80

100

0 5 10 15 20 25 30

Time (Sec)

GUI event

Verify operation

G

2O

G

1O

G

3O

G

4O
G

5O
V

6O G

7O

G

8O
V

9O
2T 3T 4T 5T 6T 7T 8T

Ev
e

n
t

C
o

u
n

t
9T

G

V

T: Interval between operations

O : GUI operation

O : Verify operation

1T

Figure 2. Operations in a GUI test case

 10

We define the pattern of by regular expression () , in which is a GUI event and

is a delay between the occurrence times of each two adjacent GUI events. In additional, we

define

 as the -th GUI operation which consists of GUI events to be reproduced.

With the defined pattern () , a GUI operation

 can be denoted by sequence

, in which the means

 is the -th GUI operation in , is

the number of events in this GUI operation, is the j-th event and is the delay

between the occurrence times of and . For example, Figure 3 shows the first GUI

operation
 in with detail timing of GUI events, in which the x-axis is the execution

time of the GUI operation, y-axis is the event count number and each data point is a GUI

event. With the defined pattern () , the
 showed in Figure 3 can be denoted by

 , in which are defined above.

In replay stage, all operations are scheduled with predefined intervals and all GUI events

are scheduled with predefined delays. Since all intervals and delays may have error during

replaying, we use to describe the executed . We define the pattern of by regular

expression (()) and the pattern of by regular expression () , in

which is a executed GUI operation generated from executing , is a executed

verify operation with the verifying result generated from executing , and is the

0

5

10

15

20

25

0 50 100 150 200 250 300 350
1,1e 1,2e 1,3e 1,4e 1,5e 1,6e 1,7e 1,8e 1,9e 1,10e 1,11e 1,12e 1,13e 1,14e 1,15e 1,16e 1,17e 1,18e 1,19e 1,20e 1,21e 1,22e

1,2d
1,3 1,4 1,21, ,...,d d d 1,22d

Ev
e

n
t

C
o

u
n

t

Time (millisecond)

1,1d

1,19e

 : GUI event

 : delay of GUI event

e

d

Figure 3. GUI events in GUI operation

 11

reproduced interval between the occurrence times of each two adjacent executed operations. If

necessary, we will use to represent an operation which cloud be or in the

following description. With the defined pattern (()) , a test case can be denoted

by a sequence of reproduced intervals and executed operations

 , in which

 is a executed GUI operation defined

above and also the -th executed operation in ,

 is a executed verify operation with

verifying result defined above and also the -th executed operation in . For example,

executing showed in Figure 2 will generate
 , which can be denoted by

. With the defined

pattern () , a executed GUI operation

 can be denoted by sequence

 , in which the means

 is the -th executed GUI operation in

 , is the number of events in this GUI operation,
 is the j-th reproduced event and

 is the delay between the occurrence times of

 and
 . For example, the executed

GUI operation

 generated by executing
 showed in Figure 3 can be denoted by

 .

In contrast to the past work focused on the accuracy of bug detection, this work

addresses the accuracy of testing method, thus we only test bug-free test cases and consider

that the accuracy of all verify operations are a little and can be ignored. In practical, the GUI

testing procedure retries failed test case to ensure that the failure is due to bugs from AUT

rather than other issues, such as system becomes unresponsive under heavy disk I/O. If a test

case fails first time and passes on retry, the failure may be considered as a false positive result.

Since a retry is raised by failed test and each retry costs extra time, an efficient test method

should cost as little time as possible on a test case while keep the test success rate.

In order to evaluate the accuracy of the GUI testing method, we use to denote

 test case. The test procedure repeats testing each test case until a passing result is obtained.

 12

We define

 as executed test case generated by executing , in which the first

 testing are failed and generate executed test cases

 until the last testing

returns passing result and generate executed test case

 . In order to quantify the quality of

a test method, we define ()

∑

 to evaluate the test accuracy, or the success ratio

of executing bug-free test cases, in which is the test method used in testing, is the

number of test cases and is how many times is reproduced. We also define

 ()
 ∑ ()

∑ ∑ (
)

 to evaluate the test efficiency, or the ratio of expect test time

against the real test time of test cases, in which is the test method used in testing, ()

is expected test time of and (
) is real test time of the j-th reproduced result of .

For example, if we use method to execute single test case with 10 seconds expected

test time. If the test fails 4 times before passes and takes 2,2,7,5,11 second respectively, the

 () is

 and the () is

 .

Table I. List of notations and definitions used in problem statement

Symbol Definition

A test case generated based on record-replay technique. In general,

consists of several GUI operations, verify operations with proper

intervals between each two adjacent operations.

 test cases

(()) A regular expression describing the pattern of .

 A operation which could be or .

 An interval between the occurrence times of each two adjacent .

A GUI operation used to reproduce desired GUI actions such as key

press and finger touch.

A verify operation used to verify the DUT’s response is desired one or

not.

A sequence which denotes .

The -th operation in the sequence denoted , which could be

 or

 .

 13

The -th interval between the occurrence times of and in the

sequence which denotes .

 is in the sequence which denotes , which is also a GUI

operation.

 is in the sequence which denotes , which is also a verify

operation.

() A regular expression describing the pattern of .

 is
 in the sequence which denotes , in which is the

number of events also the number of delays in
 .

A sequence which denotes

 .

The -th GUI event in

, which the basic element

to compose a GUI action.

The -th delay in

, which is between the

occurrence times of and .

A executed test case, which consists executed GUI operation,

executed verify operations with verifying result and reproduced

intervals between each two adjacent operations.

 executed test case generated by executing for times.

 The -th executed test case generated by executing

(()) A regular expression describing the pattern of

 A operation which could be or

 An interval between the occurrence times of each two adjacent .

 A executed GUI operation generated by executing .

A executed verify operation generated by executing . also

contains the verifying result from executing .

A sequence which denotes .

The -th executed operation in the sequence denoted , which could

be

 or

.

The -th reproduced interval between the occurrence times of

and
 in the sequence which denotes .

 is
 in the sequence which denotes , which is also an executed

GUI operation.

 14

3.2 Problem Statement

Given a test case with the pattern of test case (()) and the pattern of GUI

operation () . For example, the test case showed in Figure 2 can be denoted by

 and the GUI operation

showed in Figure 3 can be denoted by . We design a test system to

record and replay with replay method , aim to increase the () and ()

on embedded system GUI testing.

 is
 in the sequence which denotes , which is also an

executed verify operation.

() A regular expression describing the pattern of .

 is in the sequence which denotes , in which is the

number of reproduced events also the number of reproduced delays in

 .

A sequence which denotes

.

The -th reproduced GUI event in

 , which the

basic element to compose a GUI action.

The -th reproduced delay in

 , which is between

the occurrence times of
 and

 .

 ()
The test accuracy, or the success ratio of executing bug-free test cases,

in which is the test method used in testing.

 ()
The test efficiency, or the ratio of expect test time against the real test

time of test cases, in which is the test method used in testing

 15

Chapter 4. SPAG Design

Accurately reproducing GUI operations and dynamic controlling intervals between

operations are two key design requirements of SPAG. In this chapter, we design Smart Phone

Automated GUI (SPAG) to improve the accuracy of reproducing GUI operation and assist

writing of verify operations automatically. SPAG includes three key mechanisms. They are

event batching, smart waiting and hybrid verifying.

In the SPAG system design, all key mechanisms have record stage and replay stage. In

order to store test cases in record stage and execute test cases in replay stage, SPAG records

test case in form of () , transforms all , , into commands and store these

commands into a test script in record stage. The commands are executed to perform the test

later in replay stage. In record stage, SPAG accepts
 added by user or SPAG itself to

generates (
). the (

) performs GUI verification. SPAG monitors and

 to generate (), in which is -th interval between the occurrence time

of each operation and is the target application’s CPU usage during . The

 () delays all following commands for or more time depend on the actual

CPU usage
 during testing. For a GUI operation, SPAG tracks the delay between each

recorded GUI event and generate a sequence of commands in order to replay the GUI events

with their delay in replay stage. SPAG receives

 (

) and

transforms

 into () (

), in which is the number of

delays and events contained in

 .

 16

Table II. List of commands used in SPAG design

Command Definition

 ()
A command used to perform the , in which is i-th verify

operation in a test case.

 ()

A command used to delay its next command for , in which is

 -th interval between occurrence of operations and it the CPU

usage of target application during interval .

 ()
A command used to reproduce with , in which is l-th GUI

event in k-th GUI operation in a test case and is the delay of .

4.1 Batch Event

In practice, A GUI operation may consist of more than one GUI event. The application

under test (AUT) monitors incoming GUI events and recognizes GUI operations among the

GUI events. For example, when a user performs a gesture like a swipe action on the Android

operation system, the system pulling multiple touch events sampled from hardware and

dispatch events to current on-top application. The on-top application keeps tracking GUI

events internally to recognize GUI operations, or gestures, among the received GUI events.

Since GUI operations are recognized inside of application, SPAG can’t directly reproduce

GUI operations in a black box testing. As a substitute, SPAG records GUI events on host PC

and replays GUI events into DUT, thus the GUI events are dispatched to AUT and trigger the

desired GUI operations inside of AUT.

In order to trigger the GUI operation

 (

) correctly,

SPAG has to reproduce
 into the mobile device on time. However, for

time-sensitive GUI operation, such as onFling gesture, the reproduced delays times

 between GUI events need to be absolutely exact as
.

Otherwise, the

 may trigger an GUI operation with different property. For example, the

onFling gesture has properties velocityX and velocityY. Both velocities are calculated from

the displacement and time difference between GUI events. Therefore, velocityX and

velocityY may be different if the reproduced delays vary for each reproduced onFling gesture.

A conventional approach is to wait , inject and go on, but this approach may be

 17

error-prone, especially for mobile applications. For example, Figure 4 shows two approaches

used to replay GUI events with the control delay variation, which cause the control data

transferring between host PC and device vary from time to time. Figure 4 shows the two

approaches to reproduce a GUI operation
 () . The conventional

approach in Figure 4(a) sends to DUT with separately. The delay

between transferred GUI events

 are affected by the control delay variation and

become different from . As a result,

 may triggers a different GUI operation

with different property. On the contrary, our proposed batch event in Figure 4 (b) transfers all

GUI events and their delays in a batch to reduce the effect of the control delay variation.

(a) Conventional approach

Host Device

TCP/USB

,2id

,3id

,4id

,5id

,1ie

,2ie

,3ie

,4ie

,5ie

,1ie

,2ie

,3ie

,4ie

,5ie

,2id

,3id

,4id

,5id

,1(0)id

,1(0)id

G

,5Oi

G

,5O i

Batch Event

Extract &
Reproduce

Host Device

(b) Batch event method

,5 ,1

,2 ,2

,3 ,3

,4 ,4

,5 ,5

O (0, ,

, ,

, ,

, ,

,)

i i

i i

i i

i i

i i

e

d e

d e

d e

d e

,1ie

,2ie

,3ie

,4ie

,5ie

,2id

,3id

,4id

,5id

TCP/USB

G

,5Oi

Figure 4. Two approaches for sending event sequence

 18

 (13)

(12)

End

No

(9)

(10)

Yes

(11)

Start (on device)

(8) 1 1Receive E(, , , ,)m md e d e

0i

i

reproduce ()ie

wait ()id

is ?i m

Start (on host)

Yes

No

End

(3) Read CMD(,)i id e

(4) E (E, ,)i id e

(2) 1;E ()i i

(1) 0i

(5)
*is E {regex: (,)(,) (,)}?down move upd e d e d e

(6) Send E to devicei

(7) is record stage stopped ?

Yes

No

Figure 5. Flow of Batch Event method in replay stage

Figure 5 illustrates how batch event replays GUI actions, in which SPAG keeps reading

 () from the test script (step 3) and appends them to a sequence container (step 4)

until the sequence of matches a predefined pattern ()() () (step 5).

The pattern is defined in Android framework used to identify any gestures among all inputs,

in which is GUI event delay, are GUI events with action state

ACTION_DOWN, ACTION_MOVE and ACTION_UP respectively. When the pattern of

gesture is matched, SPAG sends through a UAB cable to DUT in once (step 6).

Meanwhile, the device receives (step 8) and reproduces each events with delay

 respectively (step 9 to 13) to trigger expected GUI operation on AUT.

Therefore, SPAG reduces the variance between by sending control data at

once rather than several times for each GUI operation.

4.2 Smart Wait

By experience of our smart phone test team, it is more frequent that GUI testing gets

 19

failure when DUT is under a heavy loading. Therefore, engineers usually test the test case for

several rounds to tune the delays until they are long enough to tolerate the delays may

happened on DUT but as short as possible for the test efficiency. The efficiency problem can

be solved by executing commands with event driven, which is to keep waiting until the

expected event comes, then continue to next command. However, the event driven approach

is not applicable in the black-box or gray-box testing because the accessible text-based events

may not cover all state transitions. Even if the image comparing is used to fill the rest

coverage, the large number of images is too trivial to create and maintain.

In order to reduce the cost on writing a test case and to improve the test efficiency, our

Smart Wait automatically handles application delay by extending part of the waiting times in

the test case based on the AUT’s CPU usage. For example, if there is a test case containing 10

steps and each step delays 7 seconds, the total execution time is around 70 second. However,

the engineer needs to extend each delay to 20 seconds to avoid any failures happened due to

the application delay. The modified test case now spends 200 seconds to finish testing, which

is 186% more time than original. On the contrary, the smart wait method uses original delays

and extends only a part of delays during testing. If 20% of delays are extended to 20 second

by smart wait, the average test execution time will be 96 seconds, which is still slower than

original but faster than conventional approach. In addition, it also reduces the process of test

case tuning. The reason SPAG dose not monitor on other system resource such like disk IO is

because the AUT still needs CPU resources to process other system resource. For example, to

downloading a file with size of 1 megabyte, AUT always costs similar CPU time no matter

how much real time spends on waiting for data.

In record stage, SPAG tracks the and between and and generate

CMD() in script. When replay stage starts, SPAG also tracks
 during executing

operation and judge whether or how long to wait based on . When AUT dose not

finish yet, the
 is expected to be smaller than , and if it does, SPAG will

 20

postpone all rest operations for a certain time to wait AUT processing . For example, in

record stage, if AUT uses 5 milliseconds CPU time during 4 seconds executing time on an

operation , SPAG will generate command () after generated

CMD() in test case. During testing, SPAG also tracks
 on DUT. When SPAG reads

to (), it waits for 4 seconds then checks
 . If only cost 2

ms when time is up to 4 second, SPAG will estimate a new execution time by calculating

 and postpone all following operations for 6 second more to wait

to finish.

 ()
 ()

 (

)

Figure 6. pesudo code of Smart Wait

 Figure 6 shows the pseudo code of smart wait approach. The function

 () is called every time when SPAG reads CMD(), in which is

the interval between and and is the CPU time cost on . After waiting

for predefined (line 1), SPAG gets the actually consumed CPU time
 during (line

3) and compares it with . If the actual consumption is small then expected, SPAG will

decide to wait more time (line 4) and start estimating a longer interval time
 (line 5), in

which the
 is the new expected interval estimated by equation

. This

equation assumes that AUT will use the same speed to consume the CPU time in the rest time

of processing , thus AUT will finally reach consumption at
 . Finally, SPAG

waits another time

 for AUT (line 6). However, the actual executing time should

have a distribution around the idea executing time. The probability of that estimated executing

time is actually on time is 0.5. Therefore, SPAG performs another round of checking and

 21

waiting begins (line 4,8,4,5,6) and repeat the procedure until
 or reaches

predefined timeout, in order to approach the actual executing time of .

4.3 Hybrid Verifying

By using accessibility APIs, SPAG can access the GUI layout data, such as activity name

and listed items. Retrieving and comparing GUI layout data can be very quick, while the

pixel-based method takes relative long time on image transferring and processing. Therefore,

using accessibility technology to verify GUI testing result is faster than using pixel-based

method. Based on accessibility APIs, SPAG automatically generates command of verification

operations when the DUT GUI layout is changed. This mechanism is greatly helpful when

writing GUI test cases. However, the accessibility technology may have access limitations

from machine to machine. In order to improve coverage of GUI verification, we use

pixel-based method to verify those accessibility technology cannot apply on. For example, the

accessibility API on Android cannot access GUI elements not in focus, such like elements

Engineer SPAG (on host) Agent (on DUT)

(1) use SPAG

(2) Request SUT state

(5) Generate state
verification command

[Perform GUI action]
(e.g., mouse drag)

(3) Get SUT state

(6) Generate
event commands

[State is changed]

(4) Check SUT state

(7) Reproduce
event sequence

[Stop recording]

[Continue recording]

[Add an image
compare command]

(8) Generate
image compare

command

[State is unchanged]

Figure 7. Flow of Hybrid Verifying method in record stage

 22

behind a popup dialog. The engineer needs to add an image-comparing command manually,

which contains the image of expected element layout, in order to verify such element with

image.

The hybrid verifying works in record stage, in which SPAG monitors any changes on

AUT’s GUI layout, or AUT state, and automatically generate verify operations into test case.

In order to save the generated operations for replaying latter, SPAG converts those operations

into commands and saves them into a test script.

Figure 7 shows the flow of hybrid verifying in record stage, in which the engineer uses

SPAG to record the test case by demonstration. some image-based verify operations may be

inserted during the demonstration (step 1). In most of time, SPAG receives GUI operations

performed by engineer and prepares to generate commands for each operation. After is

committed by engineer, hybrid verifying starts to check if the GUI layout has been changed or

not since has been performed. The checking procedure includes sending a GUI state

request to the agent (step 2), the agent retrieve GUI layout data by accessibility API and

returns to host PC (step 3), and SPAG compares the current GUI state after with the

GUI state checked before is performed (step 4). If the GUI state is changed, SPAG will

generated a command of verify operation with current GUI layout data, in order to verify if

same change happens in replay stage (step 5). After the checking procedure finishes, SPAG

then generates commands from received into the script (step 6). Finally, The is sent

to DUT to be performed in order to archive the live interaction between the engineer and the

DUT during record stage (step 7). The engineer may add an image based verify command in

order to verify those GUI layout not covered by accessibility API based verify command (step

8).

Because SPAG generates all commands in proper order during record stage, it can

execute the script without reordering any command to perform the testing. Figure 8 shows the

flow of hybrid verifying working in replay stage. When test starts (step 1), SPAG starts

 23

reading commands in the executing script one by one (step 2). Based on each command read

from script, SPAG may verify the DUT state using same method described in record stage

(step 3,4,5), handles a single GUI event as mentioned in section 4.1 (step 6,7) or verify the

GUI layout by pixel-based method (step 8). The testing continues until any verification fails

or all commands in the script are executed.

(2) Read command

Engineer SPAG (on host) Agent (on SUT)

(1) Replay
script

(6) Append

event to

event

sequence

(7) Reproduce
event sequence

[Event

command]

[Sequence is

complete]

[State

verification

command]

[Image

verification

command]

(4) Get SUT state

(5) Verify GUI

layout by

accessibility API

(9) Terminate test round

(8) Verify GUI

layout by

pixel-based

method

[Verify fail]

[Sequence is

incomplete]

[Verify success]

(3) Request

SUT state

[End of

script]

Figure 8. Flow of Hybrid Verifying method in replay stage

 24

Chapter 5. Implementation

In this section, we first give an overview of our framework: Smart Phone Automated

GUI testing tool (SPAG) while we introduce the mechanism of batch event and dynamic

delay estimating. Finally, we describe the methodology of hybrid testing verification.

Figure 9. Screenshot of SPAG with screen of DUT

Figure 9 shows the result of implementation, in which our SPAG provides two windows

on the host PC machine. The main window in right side is our test case editor based on Sikuli

IDE, which records any GUI operations during record stage and generates corresponding

commands in the script text area. The sub window on left side is our device window. The

device window shows remote screenshot of DUT and updates its screenshot in 1 or 2 times

per second, which allows engineers to interact with DUT through it.

5.1 Device under Test

We adopt Acer Liquid, a popular and powerful smart phone, as our DUT. The Acer

Liquid quips with a Qualcomm 8250 768MHz processor, a 512 MB Flash ROM, a 256 MB

RAM and a Wi-Fi IEEE 802.11 b/g interface. The operating system of Acer Liquid is

Android 2.2. We use Jave language to implement SPAG framework, which is a user space

program with root privilege.

 25

5.2 Recording and Replaying Events Sequence

Recording input events from live demo.

Android platform under testSPAG

Engineer

(2)adbd
(1)Remote Device

Screen
GUI actions

(5)Test Script

(7)Sikuli
Image API

(9)CPU/state
monitor

(4)Control
handler

SPAG Agent

Image comparing
command

(12) Accessibility
Service

/proc/<PID>/stat

Script Executer
(6) Window
Manager

Screenshots

(3)Device
Controller

Add image
comparison
command

Event or state verifying
commands

Activity
Manager

Figure 10. SPAG architecture in record stage

Figure 10 shows the architecture of SPAG in record stage, in which the DUT screen

listens for any GUI operations comes from engineer (engineer->1) and update the screen

image by calling the screencap function of adb in time (2->1). When the DUT screen receives

any GUI operation, it passes the operations to device controller(1->3). The device controller

sends those operations to the agent(3->4) and generates commands into test script(3->5). The

control handler in agent receives operations and reproduce them by inject each GUI event into

DUT(4->6) to trigger the desired GUI operations in order to record the GUI session on live.

During the demonstrating, the engineer may insert the image comparing command after any

GUI operation. When the insert button in Sikuli IDE is pressed(engineer ->6), it triggers

Sikuli’s command inserting procedures to lead engineer to select the region on the screen that

engineer wants to verify in replay stage. SPAG then generates the pixel-based verify

command and insert it into current editing script(6->5).

 26

During the recording, SPAG will generate a test script such like Figure 11. In Figure 11,

the commands the commands with prefix Device_0000003458763848 are all generated by

SPAG, which consist of three types of command: pointer, verify, and sleep. The three types

represent () , () and () of our design in chapter 4. In

addition, engineer may manually insert image compare command such like

 to verify some GUI layout can’t be verify by accessibility API.

Device_0000003458763848 = AndroidDevice.getDevice("0000003458763848")

Device_0000003458763848.sleep(2213, 28)

Device_0000003458763848.verify("com.android.contacts",

"com.android.contacts.ContactsListActivity")

Device_0000003458763848.pointer(0, ACTION_DOWN, 197, 625)

Device_0000003458763848.pointer(81, ACTION_UP, 197, 625)

Device_0000003458763848.sleep(3376, 33)

Device_0000003458763848.verify("com.android.contacts",

"com.android.contacts.DialtactsActivity")

Device_0000003458763848.pointer(0, ACTION_DOWN, 244, 664)

Device_0000003458763848.pointer(6, ACTION_MOVE, 246, 664)

Device_0000003458763848.pointer(8, ACTION_MOVE, 247, 659)

Device_0000003458763848.pointer(6, ACTION_MOVE, 249, 647)

Device_0000003458763848.pointer(6, ACTION_MOVE, 249, 621)

Device_0000003458763848.pointer(5, ACTION_MOVE, 249, 583)

Device_0000003458763848.pointer(6, ACTION_MOVE, 249, 546)

Device_0000003458763848.pointer(6, ACTION_MOVE, 254, 496)

Device_0000003458763848.pointer(6, ACTION_MOVE, 262, 438)

Device_0000003458763848.pointer(5, ACTION_MOVE, 270, 389)

Device_0000003458763848.pointer(6, ACTION_MOVE, 275, 355)

Device_0000003458763848.pointer(6, ACTION_MOVE, 282, 323)

Device_0000003458763848.pointer(6, ACTION_MOVE, 285, 300)

Device_0000003458763848.pointer(5, ACTION_MOVE, 286, 284)

Device_0000003458763848.pointer(6, ACTION_MOVE, 288, 274)

Device_0000003458763848.pointer(6, ACTION_MOVE, 289, 262)

Device_0000003458763848.pointer(6, ACTION_MOVE, 290, 256)

Device_0000003458763848.pointer(6, ACTION_UP, 290, 256)

Device_0000003458763848.sleep(5524, 122)

Device_0000003458763848.pointer(0, ACTION_DOWN, 211, 444)

Device_0000003458763848.pointer(70, ACTION_UP, 211, 444)

if exists():

 print 'found him!'

Figure 11. Example of SPAG’s test script

 27

Reproducing Event Sequence with Batch Event

Android platform under testSPAG

Engineer

(2)adbd
(1)Remote Device

Screen

(8)Test Script

(7)Sikuli
Image API

(9)CPU/state
monitor

(4)Control
handler

SPAG Agent

(Accessibility
Service

(11)
/proc/<PID>/stat

(5)Script Executer
(6) Window
Manager

Screenshots

(3)Device
Controller

Diagram symbols

Component

Document

External
compoment

Control Data

Start replaying

(10) Activity
Manager

Figure 12. SPAG architecture in replay stage

Figure 12 shows how SPAG works in the replay stage, in which SPAG executes the test

script and interacts with DUT. When the engineer starts the testing with a test

script(engineer->5), the script executer starts reading commands from the specified test

script(8->5). For each GUI event command, script executer calls the device controller to

perform the reproducing(5->3). However, the batch event method buffers all GUI events until

the events pass a predefined parsing rule, which is a pattern defined for a gesture:

()() () . The pattern is described in the reference of

SimpleOnGestureListener[15] on Android’s develop supporting website. The

SimpleOnGestureListener is the default component used to detecting gesture in Android

framework. When the GUI event matches the pattern, device controller will groups all events

into a batch and sends the batch to the control handler(3->4) to reproduce the action on DUT.

The batch event controlling procedure in both stage are the same, thus the GUI controlling in

both stages are the same feeling to DUT.

5.3 Smart Wait

To implement Smart Wait algorithm, SPAG traces the delay between each command

sent to agent and the CPU time used to process each action to estimate the response time in

record stage. A piece of code is inserted into begin of the event sending function in the device

controller(3), thus command delay can be calculated from the difference between each

 28

command sending time. In order to get the command processing time in replay stage, the

CPU/state monitor(9) obtains the PID of current process through the activity manager(10) to

retrieve the total consumed CPU time of AUT written in file /proc/<PID>/stat(11). The

consumed CPU time is measured in clock ticks, which is 100Hz in current Linux system. The

consumed CPU time for each operation is calculated and feed back to SPAG when agent

receives next command. In section 4.2 we use the pseudo code to describe rest implement of

smart wait.

5.4 Hybrid Verifying

Verifying by Pixel-based image comparing is slower than program-level comparing; it is

also error-prone due to the inexactly triggered GUI operations, which makes result screen

different from expected. Based mainly on Android’s Accessibility Services supplemented by

Sikuli’s image search API, SPAG increases the speed of verifying and reduce the verifying

error. In Figure 10, SPAG uses the accessibility service(12) to monitor the current activity’s

package name and class name(12->9->4->3). Any changes on these two names will trigger

the device controller to generate a verification command into test script(3->5). The engineer

may use Sikuli image API(7) to insert image verify commands such as exists, find, findAll

(showed in Figure 9) if monitoring the activity’s package name and class name is not enough

for verifying the test objective.

In the replay stage(Figure 12), when the script executer reads to a layout data verify

command, it calls device controller to retrieve the activity’s package name and class

name(3,8->5) and compare the retrieved names with the those written in the command. For

example, the layout data verify command

Device_0000003458763848.verify("com.android.contacts",

"com.android.contacts.DialtactsActivity")

 is a verification command generated with hybrid verifying method. If the activity name

and class are different in replay stage, the testing fails. In another hand, if the script executer

 29

reads to an image verify command such as , it will call Sikuli’s image

matching API to compare the DUT screen with the image written in command (1,8->5). If the

image is missed on DUT screen, the verification fails.

 30

Chapter 6. Experiment Result

In this chapter, we first introduce the experiment environment. Next, Section 6.2

compares the test accuracy among GUI test tools. Finally, Section 6.3 adopts analysis of the

proposed method.

6.1 Testbed

As we described in Chapter 5, the testbed includes a host PC with SPAG test IDE and an

Acer Liquid smart phone with SAPG test agent. The test manager provides test case recording,

editing, and replaying function. The test agent receives command and reproduces events on

DUT. In addition, test agent may monitor DUT state and report the current state to test

manager if we enable SPAG’s Smart Wait. The SPAG testing flow includes four parts: input

events recording; event sequence grouping and replaying; dynamically delaying command;

and Hybrid Verifying.

In order to estimate the test accuracy of proposed methods, we design two experiments

that use test accuracy to compare SPAG and another GUI testing tool and analyze the

improvement of SPAG’s event reproducing solutions. The experiments are running five test

cases with fix different system workloads. We run 40 rounds test on every combination of

these test cases and workloads. The tested workloads include CPU usage 0%, 25%, 50%, 75%,

100% and read/write flash memory. As mentioned in 4.2, embedded systems are highly

influenced by heavy system workload. Therefore, this case study focuses on how the test

accuracy changes under different system workloads. The test scenarios we choose are: browse

a contact entry, install application over Wi-Fi, take a picture, Shoot a video, and browse

Google map over Wi-Fi. We select the test scenario in accordance with two rules. First, the

scenario must be a user behavior often happens in normal usage. Second, the scenario should

contain CPU/IO intensive behavior, which is easily affected by system’s CPU/IO workload,

thus the test results are easier to distinguish.

 31

We perform 40 round tests on each of all combination of 6 workloads and 5 test case and

score each round by test result of each test round.

6.2 Comparison of test accuracy and time efficiency

The subject of first experiment is to compare the test accuracy of tools including our

SPAG and monkeyrunner. The SPAG has implemented three solutions we proposed. The

monkeyrunner can act like a record-replay test tool and it works in remote testing

environment too. We use monkeyrunner to perform GUI test by using it’s API to send one

event at a time and uses fixed delay between each event. As a result, the beaver of

monkeyrunner is similar to a GUI test tool without event reproducing solutions we proposed.

Therefore, we consider monkeyrunner as a naïve GUI testing tool and compare the test

accuracy between SPAG and monkeyrunner.

Figure 13. Testing with SPAG and monkey runner

Figure 11 shows the test result of test accuracy, in which the x-axis is the different

workload types and the y-axis is the test accuracy. For example, in the case of 100% CPU

workload in Figure 11(a), the test accuracy can archive 93% and 55% when the when the

testing is executed by SPAG and monkeyrunner. As Figure 11 shows, the accuracy becomes

lower when the CPU workload gets heavier. This is because the less CPU resource to AUT is

assigned, the more frequent delay of AUT happens. In a result, testing failed when application

88.0% 85.5%
77.5%

65.5% 64.5%

26.5%

99.5% 97.5% 98.5% 96.5% 96.5%
91.0%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Normal 25% CPU 50% CPU 75% CPU 100% CPU IO busy

Accuracy

Addtional
workload

monkeyrunner

SPAG

 32

level event is triggered with different properties or next command executes when current

command is not finished yet.

Compare to monkeyrunner, our solutions deliver the best test accuracy for all workloads.

For instance, in the case of install Apps, a script running on system repeats installing and

removing three apps in parallel. As result, the IO workload costs most IO resource part of

DUT, which makes AUT encounter more IO waiting, decrease CPU utilization, and finally

cause AUT delays for seconds. However, monkeyrunner cannot bear such delay and fail on

response timeout error.

Figure 14. the time efficiency of GUI testing

Figure 12 shows the time efficiency of SPAG and monkeyrunner, in which the x-axis is

the different workload types and the y-axis is the time efficiency. For example, when testing

under IO busy workload, the SPAG has 84% of time efficiency while monkeyrunner has

103% time efficiency. The test result is the rate of expect testing time against actual testing

time, as the defined in chapter 2. Figure 12 shows the two GUI testing tools have

similar time efficiency. The reason is that the monkeyrunner retries more times but costs less

time for each testing due to its lower test accuracy.

6.3 SPAG Solution analysis

We have compared the accuracy of out proposed tool. Now we are going to test proposed

solutions separately in order to understand what contribution each solution provides on

85% 87% 86% 86% 84% 86% 86% 85% 86% 85%

103%

89%

0%

20%

40%

60%

80%

100%

25% CPU 50% CPU 75% CPU 100% CPU IO busy Normal

Ti
m

e
 e

ff
ic

ie
n

cy
(E

FF
)

workload type

SPAG monkeyrunner

 33

automated GUI testing.

Batch Event and Smart Wait

Figure 15. Testing with Batch Event and Smart Wait

Figure 13 shows the test result of Batch Event and Smart Wait methods, in which the

x-axis is different workloads and the y-axis is the test accuracy. For example, in the case of

100% CPU workload, SPAG archives 77.5% and 92% accuracy by testing with Batch Event

method and Smart Wait method separately. We use the test result of monkeyrunner as naïve

test result in order to compare how much accuracy each method improves. In Figure 13, the

SPAG with Smart Wait method is better than SPAG(Batch Event) because the Smart Wait

can apply on all commands while the Batch Event only improves the accuracy on gesture

input. However, the Batch Event method has a better performance if the test case focuses on

gesture testing. There are no suitable tools for gesture testing currently.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Normal 25% CPU 50% CPU 75% CPU 100% CPU IO busy

Accuracy

Addtional
workload

SPAG(All)

SPAG(Smart Wait)

SPAG(Batch Event)

monkeyrunner

 34

Hybrid Verifying

The hybrid verifying method we proposed is used to automate the testing process. It

monitors DUT’s state and dynamically generates commands for verifying whether the

package name and class name of current activity in testing are the same as recorded names.

This method can reduce the cost on test writing case because it automatically adds verification

commands for activity-level GUI layout changes on DUT. Engineer now can record a test

case that moves between activities without writing codes to check whether the result activity

changes especially.

In order to analyze how much cost spent on test case writing, we perform an experiment

to test how much time costs on writing test cases with and without hybrid verifying. Figure 16

shows the experiment result with/without hybrid verifying, in which the x-axis is different test

cases mentioned in section 6.1 and the y-axis is the time spent on writing those test cases. The

result shows we can reduce small amount of writing time for contact UI testing, browser

testing and installation testing. However, the writing time for recording video and taking

picture can be reduced 63%~77% by applying the hybrid verifying method. The reason is that

the recording video and taking picture are using customized UI and cause a class name change

when press the shutter button, which makes the test case writing without hybrid verifying

spent more time to check the shutter button has been pressed after a press operation, while the

Figure 16. Test case writing time with/without hybrid verifying

219
188

213

68 69

235

195

247

304

188

0

50

100

150

200

250

300

350

browse a
contact entry

browse
Google map
over Wi-Fi

install
application
over Wi-Fi

Shoot a
video

take a
picture

Te
st

 c
as

e
 w

ri
ti

n
g

ti
m

e
 (

se
co

n
d

)

Tesr case

with hybrid

with out hybrid

 35

verify command is automatically generated with hybrid verifying method. Since the smart

wait reduces most test cases writing time, the time left for hybrid verifying to improve is very

limited, but the improvement still exists based on our experiment.

 36

Chapter 7. Conclusions and Future Work

In this work, we design three solutions and implement a GUI testing tool based on Sikuli

for improving the test accuracy and simplifying the testing process on embedded systems. The

solution is based on manipulating the events reproducing and adopting GUI layout

information provided by DUT. Our first contribution is to improve the accuracy of

reproducing GUI operations and make the test process more robust against to application

delay. We propose the Batch Event to reproducing the action consisting of several GUI events

accurately by transferring the events in a batch. We also propose the Smart Wait method to

extend the delay between operations dynamically by considering the CPU usage of target

application during processing each operation. Unlike previewers tools, which consider only

touch events inherited from conventional software testing, our SPAG is suitable for testing

complex gesture inputs and testing with heavy system loading. The second contribution is to

simplify the test case writing process. Based on the accessibility technology, SPAG can

access the GUI layout information and automatically generating state verification commands

to reduce the cost on manually writing verification commands. More state verifications also

can reduce the chance to use pixel-based verifications, which is more error-prone, slower and

resource-intensive.

In our experiment, we present the comparison on test accuracy and time efficiency under

different workloads. Test cases are more likely to succeed by using SPAG. As result, SPAG

can archive the test accuracy of 90% while the test accuracy of monkeyrunner is 27%~88%.

The SPAG and monkeyrunner have similar time efficiency, it is due to the earlier failure

caused by monkeyrunner’s lower test accuracy.

In the future, we plan to adopt the new function of accessibility API in Android version

4.0 or higher in order to access detailed information on DUT. Moreover, we may adopt

accessibility API to make the Smart Wait method can optionally check GUI layout

 37

information in order to become more event-driven and increase the test accuracy. Since our

methods assumes there is single pointer operating on DUT, if the input point are more than

one, known as multi-touch gesture, our method might be invalid. Therefor another feature

work is to support the recording and replaying on multi-touch gesture for embedded systems.

 38

References

[1] (2012). Android SDK Tools: monkeyrunner. Available:

http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

[2] T. Yeh, T.-H. Chang, and R. C. Miller, "Sikuli: using GUI screenshots for search and

automation," presented at the Proceedings of the 22nd annual ACM symposium on User

interface software and technology, Victoria, BC, Canada, 2009.

[3] T.-H. Chang, T. Yeh, and R. C. Miller, "GUI testing using computer vision," presented at

the Proceedings of the 28th international conference on Human factors in computing

systems, Atlanta, Georgia, USA, 2010.

[4] T.-H. Chang, T. Yeh, and R. Miller, "Associating the visual representation of user

interfaces with their internal structures and metadata," presented at the Proceedings of the

24th annual ACM symposium on User interface software and technology, Santa Barbara,

California, USA, 2011.

[5] Q. Xie and A. M. Memon, "Using a pilot study to derive a GUI model for automated

testing," ACM Trans. Softw. Eng. Methodol., vol. 18, pp. 1-35, 2008.

[6] T. Takala, M. Katara, and J. Harty, "Experiences of System-Level Model-Based GUI

Testing of an Android Application," in Software Testing, Verification and Verification

(ICST), 2011 IEEE Fourth International Conference on Software Testing, Verification and

Verification, 2011, pp. 377-386.

[7] L. Zhifang, L. Bin, and G. Xiaopeng, "Test automation on mobile device," presented at the

Proceedings of the 5th Workshop on Automation of Software Test, Cape Town, South

Africa, 2010.

[8] O.-H. Kwon and S.-M. Hwang, "Mobile GUI Testing Tool based on Image Flow,"

presented at the Proceedings of the Seventh IEEE/ACIS International Conference on

Computer and Information Science (icis 2008), 2008.

[9] J. Bo, L. Xiang, and G. Xiaopeng, "MobileTest: A Tool Supporting Automatic Black Box

Test for Software on Smart Mobile Devices," presented at the Proceedings of the Second

International Workshop on Automation of Software Test, 2007.

[10] L. Zhi-fang and G. Xiao-peng, "SOA Based Mobile Device Test," presented at the

Proceedings of the 2009 Second International Conference on Intelligent Computation

Technology and Automation - Volume 04, 2009.

[11] V. R. Vemuri, "Testing Predictive Software in Mobile Devices," presented at the

Proceedings of the 2008 International Conference on Software Testing, Verification, and

Verification, 2008.

[12] Section 508 of the Rehabilitation Act. Available: www.access-board.gov/508.htm

[13] M. Grechanik, Q. Xie, and C. Fu, "Maintaining and evolving GUI-directed test scripts,"

presented at the Proceedings of the 31st International Conference on Software Engineering,

http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://www.access-board.gov/508.htm

 39

2009.

[14] M. Grechanik, Q. Xie, and C. Fu, "Creating GUI Testing Tools Using Accessibility

Technologies," presented at the Proceedings of the IEEE International Conference on

Software Testing, Verification, and Verification Workshops, 2009.

[15] GestureDetector.SimpleOnGestureListener | Android Developers. Available:

http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureLi

stener.html

http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html

