7 1748 1 A

EANER

B+ 8 X

On the Accuracy of Automated GUI Testing for Embedded Systems

SRS X

SIS R 1S

ERBI0F9A

ﬁﬂ%»ﬁ&ﬁ@%@ﬁﬁgﬁﬂmﬁiﬁﬁa

On the Accuracy of Automated GUI Testing for Embedded Systems

o4 L ESY Student : Shang-Zhe Yu
i ERER I HEE Advisor : Ying-Dar Lin
B = 2 <~ F

PN i R R |

A Thesis
Submitted to Institute of Computer Science and Engineering
College of Electrical Engineering and Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

September 2012

Hsinchu, Taiwan, Republic of China

¢ Ea 101 & 9 0

FL N KB A G R R R

g2 bu i fdyae PR

RREEEE ST 1R Ik R

i%*ﬁ?ﬁﬁi%ﬁ’%%ﬁﬁﬁ%mﬁﬁﬁﬁﬁﬁﬁﬁjW’Q%
WG ORA T B ORREAEE T o NOASL R E T e E LW FEpen
%%%%ﬁi%%ﬁwﬁﬁ‘iﬁﬁﬁﬁ’»y%‘fw*ﬁﬁﬁ%”@
2500 A GapliRehE Ke SRR o = R B it E‘*é pooeit
F A FE R AL o 2 PRI G eRlEF 1 & SiKull R s RIGE G s A AT IF
TR m B i piEa B SPAG L 3k PR T 2 E3F chkERE R - SPAG
PR IR N 5 B or b A R —E"? M5 iE A E 5o
wi%*igv&@s%WMémﬁoﬂw P EREETELE
BAfE 2 TR IFLSPAG ¥ 0 * UL FwIELROERFRAR 0 FEE
o IRIAR N A g = EpIER L ProSPAG € B BT (FRARS BT A 4 ik
TR EE B EERAEN RS F B MRS RF RO SIBT o A
o b R P SPAG idk Bl AR p B LRI RIAR SR L e 0 A 2
%%ﬁ4’;_ﬂ$%5%% i%\ﬂEN%@°ﬂW§if#?B@
fLplz# 1 & monkeyrunner kv R EEAEFLR o tidp TLIFR] G SLE P TR
R T s SPAG p B iv RlRRGE R R iﬁéﬂ 90% 12 F o F ik PR — ELPE
A% w3 0 SPAG #-7 12t monkeyrunner - % 11%~71% iR iE ¥ #ic o

MeEF: $r 5% h3t WA 46 0 p 1Rl Android

On the Accuracy of Automated GUI Testing for Embedded Systems

Student: Shang-Zhe Yu Advisor: Dr. Ying-Dar Lin

Department of Computer Science and Engineering
National Chiao Tung University

Abstract

The embedded systems are built with limited computation resources.
Therefore, it 1s hard to-apply conventional GUI testing tools on embedded
systems. However, with the popular of smart handheld device, e.g. smart phone
and pads, more software run on handheld devices and rising the need of software
testing on handheld device. Current testing tools on embedded systems all have
defect on reproducing GUI operations, so we design a Smart Phone Automated
GUI testing tool (SPAG) based on-Sikuli, in order to reduce testing defects. We
design Batch Event and Smart Wait method to reproduce GUI operations
accurately and ensure the device under test (DUT) can fully process all test
operations. We also design the Hybrid Verifying method based on accessibility
technology to generate most verify operations and verify them automatically.
We use an experiment to compare our SPAG with monkeyrunner on test
accuracy and time efficiency, in which . SPAG archives 90% testing accuracy
with all types of workload while monkeyrunner only has test accuracy of
27%~88%. We use the second experiment to analyze the contribution of our
methods. The testing result shows our Smart Wait method brings more
improvement on test accuracy.

Keywords: GUI, automated testing, embedded system, Android

EO
bl

A2 i T2 EHFRELEF S P TR AR AR R AR R
A A g i HREE R o F X anRdiREARY It B gl AR R
BAELEREERR> ”Tmrﬁffﬁﬁfﬁﬁﬂfﬁw hoREFFRA G fRA AP R E AR
PHEUR LR REDTRE O RN ERL TR o PYFp AT T FFSL R
R ARFTEFERRERSY A A
fpENBTeRHmY o EN
bedded Benchmarking
LI RIF1E
BH o ERE

TR HIT ke A 42 RE

A AT H

Contents

I ST USSP PP |
N o151 1 =T OSSPSR USRS |
B . ST PT PP PP PR POPTR PR 1
LO0] 01 (=] 01 ST OO UPTURTURUURUUROR 11
LLEST OF FIQUIES ..ttt b b bbb bbb bbb b e b e bbbt b e e bbb e bbb et b nn st et \%
List of Tables.....cccoconininiinnineereev R T B B VI
Chapter 1 INTrOGUCTIONoiue it et siiheae e eswe iU ket e e sk anes e e abes e e Bttt et estebe b e st et e nbeseebe b eseabe b ene b 1
Chapter 2 Background and Related WOKKccooiiiiiiiiiiiiene st ek sttt et see s 4
2.1 Challenges of QULOMAEA GUI ESTINGcetiueieuinstirenistestesiihesnentaseieeseeeeeeasbe e be b abe ettt e st st e esenbennene e 4
2.2 Sikuli...... "SGR AF....... Bl | [UURON. . IR WO ... 0 W 4
2.3 ANAroid SOTIWAIE TESTING oo it ieeeaestese e sresbeeeana s eesees e antes aneesaabaeneeseessaab eReabaeseenteneensensessessessensens 5
2.4 Related VWEHKEF.............. 00 s .. It e . AN O . W W 6
Chapter 3. Definitions and Problem STAtEMENTcoo. ittt seanie e es b araaaete e seeseeseesseenens 8
3.1 DefifMIONg M........................ CEUNSE——. _Jpr of—, .40 5. B8 8
BT (0] o] (T I =100 e P P 14
Chapter 4. SPAG DESIGN ... itiutitensttaueneentrnssestssssesssssssessssssesssssassssassasessassasessesessessseshassdatanansastesessesessensesessens 15
4.1 Batch EVENT 0 N ... 0 N NRSE— . P L. ... B W 16
4.2 Smart Wall. . i N . T rrrrar ..o " 18
4.3 HYDIIA VEITTYING o ittt aE b 1de bt e Rttt ettt 21
Chapter 5. IMPIEMENTATION. ci ittt E TR e d et st abe bttt be s ebe b et e st ebe e ese st e ene et 24
5.1 DIEVICE UNGEE TS .. euiieeuiereeiueste s eateeeanaeseanaaseesnessenesanaeseanasseesuasbeseanssaseaneesenssessessessesseasensennsessessensensessennenns 24
5.2 Recording and Replaying EVENTS SEQUENCE ...t 25
Recording input events from [IVe ABMO.ouiiiiiie e 25
Reproducing Event Sequence with BatCh EVENL............ccooiiiiiiiie e 27
LTGS2 T A VS PS 27
5.4 HYDEIA VEITTYING 1.ttt b bbbttt ettt bt sne s 28
Chapter 6. EXPerimeEnt RESUIT ... bbbttt 30
G0 1= 1 o PP 30
6.2 Comparison of test accuracy and time effiCIENCYccooriiiiiiiii e 31
6.3 SPAG SOIULION BNAIYSIS ...ttt sttt bbbt s bbbt b bt e s b s 32
Batch EVent and SMArt WALc.ooiiiiiiiiec ettt st sne e see e et nnenteaneens 33

HYDEIA VEFITYING 1.ttt bbbttt sttt e ne e
Chapter 7. Conclusions and FULUFE WOTK ..ottt st

[e (= =] (o<

List of Figures

Figure 1. System architecture of record/replay method With DUTc.ccoiiiiriiiinieee e 8
Figure 2. Operations iN @ GUI TESE CASE €1 .vvvirriiriiieiirieieiisienie sttt bbbt b bbb 9
Figure 3. GUI events in GUI OPEration OFccccocuruiiuiuiiciceecieeecie et 10
Figure 4. Two approaches for Sending EVENT SEQUEINCEcuviieiriirieirieieiisieee sttt 17
Figure 5. Flow of Batch Event method in replay Stagecoioeiiiiiiiicr e 18
Figure 6. pesudo Code OF SMAI Wc.ciiiiiiiiieci bbb 20
Figure 7. Flow of Hybrid Verifying method in reCord Stagecoerveiririiniiiineeese e 21
Figure 8. Flow of Hybrid Verifying method in replay StAgecc...ooiiiiieiiiniiineeees e 23
Figure 9. Screenshot of SPAG. With SCreen OF DUT «.uiiiiiiiiiuummes et iieiiineie e tieste it 24
Figure 10. SPAG architeCture iN FECORA SEAGEoveeieirrieitirteietisteeeeabinetane e bbb et b et sbe bt b e 25
Figure 11. Example Of SPAG S tESt SCIIPL.....cverveiririiiiieiiiiiicite sttt e sttt sne e nesnenne e 26
Figure 12. SPAG architeCture in rePIay STAGEcceieiuiesiiuiesueiatessestestssestasceeeneeeesutiaesaaseeees sk seesessessesesseneesssnenes 27
Figure 13. Testing With SPAG and. MONKEY FUNMNET........c..iitvureeiueteeiisastssesaneasieeesesseesusassanasesssbbecasessesessensesessenes 31
Figure 14. the time effiCiency OFf GUITESTINGoe ittt ettt skb e e Rt 32
Figure 15. Testing with Batch Event and SMAart WAooeveeeeiieiinsiaiisesiesc e sieh e sne i b an e 33
Figure 16. Test case writing time with/without hybrid VErfying ... i 34

List of Tables

Table I. List of notations and definitions used in problem Statementcccveriiiiiiiinie e

Table 1. List of commands used in SPAG design

VI

Chapter 1 Introduction

Automated GUI (Graphical User Interface) testing tools are software programs used to
test application user interface and to verify the functionalities. In the process of testing
embedded software, engineers first design a test case consist of operations, which include
several GUI operations and a set of conditions devised to determine whether an application
works correctly or not. After engineers convert the test cases to a script file, the script
performs predefined operations on a device under test (DUT), such as a smart phone or tablet
PC. To verify the result, the DUT captures the screen and sends it to host PC, where an
automated GUI testing tool performs verify operation. Take a popular open source automated
GUI tool Sikuli, an° Android-device controlling .tool AndroidScreenCast, and an Android
smart phone for examples. Software engineers first write a Sikuli script to describe the timing
and order of GUI operations, such as scroll screen and key press actions. At runtime, each
action of the Sikuli script Is performed on DUT screenshot window provided by
AndroidScreenCast. These actions are interpreted into multiple motion events and key press
events and transmitted to an Android smart phone, which is-the DUT. After performing all
received events, the AndroidScreenCast captures the screen of DUT and sends it back to the
host PC, where the Sikuli verifies the correctness.

However, due to the uncertainty of runtime execution environment, such as timing delay
variation in communication, interpreted events may not be reproduced at the DUT on time. As
a result, intervals between events may be different from those expected. The
non-deterministic event sequences may lead to an incorrect GUI operation. For example,
Android Fling action happens when user scrolls on touch panel and then quickly lifts his
finger. A sequence of motion events is used to represent the action. When replaying these
event sequences, each motion event should be triggered on time in order to reproduce the

Fling action with the same scrolling speed. Otherwise, the scrolling speed of the reproduced

filing action will be different from what is expected and therefore result in an incorrect result.
In order to address the issue of non-deterministic events, a commonly used method is to use
trackball instead of Fling action. However, trackball is not always equipped with a smart
phone.

Uncertain runtime execution environment may cause another problem because it may
interfere or delay the execution of application, especially under the circumstance that the
DUT is in a heavy load condition. A delayed application may fail to process an event
correctly if the response to previous event is not yet completed. For example, an event may be
dropped if AUT receives the event ahead of time and is not ready to process it yet. To solve
the problem, an intuitive method is to delay the executing of the operations. However, it
requires experienced engineers to set the delay for each operation properly, so that the
application can receive the reproduced events.

The other problem is how to verify test results efficiently. Traditional pixel-based
takes relative long time on image transferring and processing. The situation becomes even
worse for smart phones due to limited computation and communication capacities. This
creates a strong need to develop a new method for automatically verifying the response of
GUI operations.

In summary, based on our observations, automated GUI testing for smart phones faces
three major challenges: ' non-deterministic —events, execution interference and
non-deterministic layout. In order to overcome the challenges, we design a Smart Phone
Automated GUI testing tool (SPAG), which is based on Sikuli. To avoid non-deterministic
events, we batch the event sequence and reproduce them on the DUT. In addition, SPAG can
monitor the CPU usage of target application at runtime and dynamically change the timing of
next operation so that all event sequences and verifications can be performed on time, even
though the DUT is under a heavy load condition. Finally, SPAG adopts Android accessibility

service to get necessary information for verifying DUT status. While cooperating with

2

traditional image matching method, SPAG can automatically generate most verify operations
and check the testing results faster.

We conducted several experiments on a popular Acer Liquid smartphone in order to
investigate the applicability and performance of SPAG. We compared our method with
monkeyrunner[1]. In our experiments, we first investigated the effect of resource utilization of
system during test. In addition, we studied the improvement of test accuracy achieved by our
batch event and smart wait method. Finally, we explored how our hybrid verifying method
reduces the cost of generating test cases.

The rest of the work is organized as follows. Chapter 2 mentions a GUI automated tool
named Sikuli, and gives a survey of related works. Chapter 3 gives the definition of variables
we used in this work, and describes our statement our problem. Chapter 4 details our solutions
of batch event, smart wait and hybrid verifying. Chapter 5 is the implementation details of
these three solutions based on Android system. Chapter 6 presents the experiment results and

discussion. Finally, Chapter 7 concludes this work and future works.

Chapter 2 Background and Related Work

The chapter first describes the challenges of automated GUI testing. It then introduces
two well-known open source projects of automatic GUI testing. Finally, related works are

described.

2.1 Challenges of automated GUI testing

Based on the automated GUI testing process, we divide it into two parts: reproducing the
interaction between human and DUT, and verifying testing results. For a simple event, such
as pressing a hardware key, it can be reproduced by inserting a proper event. However, for
multi-touch and complicated gestures, it becomes non-trivial to reproduce the interaction
between human and DUT due to the timing constraints. In addition to reproduce predefined
events accurately, it is also-challenging to verify results. There are three commonly used
methods for verifying testing results: bitmap comparison, objects identification and optical
character .recognition (OCR). Although bitmap comparison is easy to implement, it is
extremely sensitive to the changes of GUI. The sensitivity can lead to extra maintenance cost,
especially for immature software, which is frequently modified over the period of
development. Objects identification relies on system provided APl (Application Programming
Interface) to obtain object information of the screen. By compared with the reference objects,
we can evaluate the correctness of the testing results. However, system-provided APIs are
very different from OS to OS, which limits the portability of this method. In addition, not all
OS provide enough APIs for objects identification. OCR is an alternative method to reduce
sensitivity and increase portability, which converts scanned images into machine-encoded text.

However, OCR may be slow and inaccurate, especially for non-text content identification.
2.2 Sikuli

Sikuli is a framework [2-4] which automates and tests GUI applications by using images

(screenshots) on multiple platforms. Sikuli framework includes Sikuli Script, which is a visual

4

scripting API for Jython. Sikuli Script supports three types of visual scripting APIs: Find,
Actions, and Event Observation. All visual scripting APIs requires an image as an operating
target. By using find-type APIs, Sikuli can find target's location, check the existence of target,
and wait until the target appears or disappears. In addition, Sikuli can adopt action-type APIs
to search and click target, hover mouse pointer to target, or drag-and-drop between two
targets. Furthermore, with Event-Observation-type APIs, programmers can register their event
handling function to wait target to appear or vanish, or wait for the changes of the GUI
contents.

Sikuli framework also contains an IDE, which is an integrated development environment
for writing visual scripts with screenshots. By using Sikuli IDE, engineers can easily write
GUI test cases, execute the script, automate GUI operations on desktop and verify GUI
elements presented.on screenshot. Although Sikuli provides several handy functions to ease
the process of GUI testing, it’s pixel-based image search and comparison mechanism can
consume significantly system resources and prolong the testing process. As a result, Sikuli
may not be able to apply to embedded systems with limited computation resources. In this
work, based on Sikuli, we develop SPAG to support the automated GUI testing of embedded

systems.

2.3 Android Software Testing

There are several GUI testing utilities for developers to test their programs, such as
Android Instrumentation Framework provided by Android software development kit (SDK)
and Robotium. Profiling codes are inserted into proper locations in order to collect necessary
information at runtime. These utilities require partial or full source codes of tested
applications and are not suitable for black box testing. On the contrary, SPAG does not rely
on the availability of source codes. Monkeyrunner is another testing tool provided by Android
SDK. This tool can reproduce predefined actions, such as key press and screen touch, by

generating associated events. However, Monkeyrunner is sensitive to external interference,

5

especially under the circumstance that the DUT is in a heavy load condition. SPAG, however,
monitors the status of AUT at runtime and dynamically changes the timing to issue
commands.

Android 1.6 provides new accessibility features to help users with disabilities use GUI
applications. The accessibility features also allow developers to create accessibility services
that work in the background and receive notifications of various GUI events. For example,
special events are triggered when the state of the activities is changed or some GUI
components are focused. These events provide useful hints about the widget where the event
originated, such as the type of widget and its text content. However, Android accessibility
currently does not allow programmers.to list the full contents of the screen. This omission
clearly limits the usefulness of accessibility because a GUI screen might some important
widgets, labels or objects that are not focusable.

Hierarchy Viewer is the other utility provided by Android SDK that allows application
developers to examine the layout of the Android GUI. Hierarchy Viewer communicates with
an Android emulated device through the Android Debug Bridge (adb). Hierarchy Viewer
provides the detail information of GUI layout, such as the ID, type, text content, location and
size of all the GUI widgets in the screen. However, Hierarchy Viewer can only run on the top

of an emulator, which limits its applicability.

2.4 Related Work

They have been many research efforts dedicated to automated GUI testing. The most
common approach of automated GUI testing is model-based testing (MBT), which models the
behaviors of target software and then uses the test cases generated from the models to validate
the DUT[5] [6] [7]. T. Takala et al. adopted Monkey and Window services to generate GUI
events [6]. L. Zhifang [8] utilizes the concept of virtual devices to test applications. Their
method relies on image-based pattern matching which is sensitive to the quality of images. On

the contrary, SPAG uses GUI components for pattern matching in order to improve the

6

stability and the speed of the validation.

Constructing a universal testing framework has been discussed in [8-11]. Several
techniques and architectures were developed to realize complex application test. MoGuT [8],
a variant of the FSM based test framework, used image flow to describe event changes and
screen response. However, it lacks flexibility. Gray-box testing adopted APIs to construct
calling context and parameters from input files [11]. Based on a logging mechanism, the
gray-box testing verifies testing results. This method is simple and powerful for testing
predictable software components. However, for complex software, it becomes difficult to
describe the testing logic and calling context. MoibleTest [7, 9, 10] is a SOA based
framework, which includes extendable script. interpreter, universal communication interface
and agent-based testing mechanism. Although MobileTest can be used for testing mobile
devices, the accuracy of the test results is not clear.

Accessibility technologies provide different aids to disabled computer users. Most
computing platforms nowadays support accessibility functionalities because it is mandated by
the law [12] in U.S.. For GUI testing, the accessibility technology is a useful mechanism that
provides an-interface for programs to access to GUI objects. Grechanik, et al. [13] used
accessibility technologies to obtain GUI structure information of the GUI-based applications
(GAPs) for maintaining and evolving test scripts. They also used GUI metadata to generate
programming objects In order to automate GUI testing [14] on windows. These research
results demonstrate that accessibility technologies are applicable to black-box GUI testing.
Recently Chang, et al. [4] claimed that accessibility API can be used to assist pixel-based GUI
interpreting in order to obtain a more accurate association between the visual representation
and internal structure of a GUI. However, the major limitation of the accessibility-based
methods is coverage, which differs from machine to machine. For example, accessibility API
on Android 1.6 does not allow developers to list the full contents of the screen. A GUI view
might also contain certain widgets or labels that are not focusable, and are thus inaccessible.

As a result, there is a clear need to develop a new method to overcome the limitation.

Chapter 3. Definitions and Problem Statement

3.1 Definitions

We adopt a commonly used software testing technique called record-replay for
embedded systems, which includes record stage and replay stage. In the record stage, shown
in Figure 1(a), the screen of the DUT is first redirected to the host PC, on which the test tool
runs. The test engineer then interacts with the DUT remotely. Whenever the engineer
performs a GUI action on the host PC, such as key press and finger touch, the test tool sends
associated GUI event sequences to the DUT in order to control the DUT on live. The
performed GUI actions are also saved into test cases with verifications. In the replay stage
showed in Figure 1(b), the test executer reads GUI actions and replays them on the DUT. The
test executer then verifies the testing results based on the response of the DUT.

Based on record-replay technigue, engineer generates a GUI test case by recording test
steps and adding verifications into it. In order to generate executable test cases, the GUI
actions and verifications are stored as GUI operations and verify operations respectively,

where executing a GUI operation will reproduce the GUI actions recorded by tool and

Host PC

Test tool

<Screenshot——(
I ~GUI actions—#»]

Device under test

— | Demonstrate GUI testing——® Remote GUI of SUT
oo T
Add verlflcatlonj GUI actions
Engineer | VerificationsL

Script IDE H Test case

Host PC

Test tool

i ——}—+—Start testing——————p» Test executer <<—Screenshot— pevice under test
—-GUI actions—»

<] ! Test result;‘—C

Operations (GUI actions & Verifications)
@) ;

Engineer Diagram symbols
Testcase i ‘ Component ‘ I Substance I
— - Document
(b) Replay stage Control Data
—» o—=

Figure 1. System architecture of record/replay method with DUT
8

4 GUI event
oY O°¢ . .
6 7 Verify operation
T: Interval between operations
0°: GUI operation

Event Count

0V Verify operation

15 20 25 30
Time (Sec)

Figure 2. Operations ina GUI test case C,

executing verify operation will performs the verification inserted by engineer. In additional,
the intervals between each operation are also specified in test case, in order to let DUT has
enough time to respond to operations. Following the description above, we define C as a

GUI test case, which contains-several operations and intervals between each two adjacent
operations. We define the pattern of C by regular expression (T(OG|OV)) +, in which 0¢

is a GUI operation used to reproduce desired GUI actions such as key press and finger touch,
0V is a verify operation used to verify the DUT’s response is desired one or not, and T is the
interval between the occurrence times of each two adjacent operations. If necessary, we will

use O to represent an operation which cloud be OV or 0% in the following description.
With the defined pattern (T(0G|OV)) +, a test case can be denoted by a sequence of intervals

and operations T, Oy, ..., Ty, O, .. T3, 0, ..., Ty, O, in-which Of is a GUI operation defined
above and also the i-th operation in the sequence of C, 0}‘-’ is a verify operation defined
above and also the j-th operation in the sequence of C and T; is the interval between the
occurrence times of O;_; and O;. For example, the test case showed in Figure 2 can be
denoted by Ty, 0§, T,, 05, T3, 05, T,, 05, Ts, 05, T,, OY, T,, 05, Tg, 05, T, OF .

To define the GUI operation in detail, a GUI operation is actually constituted by many

GUI events. Similarly, delays between the occurrence times of each two adjacent GUI events

are stored into test case in order to mimic the desired GUI action when executing test case.

d
25 otodg, e dygi 0y, dyyy e d J
. ¢
20 - 22
= ’0 ’el,zoel'21
€ * BeED
o 15 - .‘ €17
g ’ "%Mel,lS *
§ 10 1 " g e1,12e1’1 ’
w . 03 e, o e : GUI event
5 R e b’ d : delay of GUI event
+ ge S
O ell 12))))) 1
0’ 50 100 150 200 250 300 350
Time (millisecond)

Figure 3. GUI events in GUI operation 0§

We define the pattern of O by regular expression (de)+, inwhich e isa GUI eventand d
is a delay between the occurrence times of each two adjacent GUI events. In additional, we
define Ofmi as the i-th GUI operation which consists of m; GUI events to be reproduced.
With the defined pattern (de)+, a GUI operation Ofmi can be denoted by sequence
di, €i1) Qimp €im;» IN Which the i means ijmi is the i-th GUI operation in C, m; is
the number of events in this GUI operation, e;; is the j-th event and d;; is the delay
between the occurrence times of e; ;_, and e, ;. For example, Figure 3 shows the first GUI
operation szz in C; with detail timing of GUI events, in-which the x-axis'is the execution
time of the GUI operation, y-axis is the event count number and each data point is a GUI
event. With the defined pattern-(de)+, the 0%,, showed in Figure 3 can be denoted by

dq,1,€11, -, d122, €122, INWhICh d; ;,e; ; are defined above.

J?
In replay stage, all operations are scheduled with predefined intervals and all GUI events
are scheduled with predefined delays. Since all intervals and delays may have error during

replaying, we use C' to describe the executed C. We define the pattern of C’ by regular
expression (T’(O’G|O’V))+ and the pattern of 0’C by regular expression (d'e’)+, in

which 0’¢ is a executed GUI operation generated from executing O€, 0"V is a executed

verify operation with the verifying result generated from executing 0V, and T’ is the

10

reproduced interval between the occurrence times of each two adjacent executed operations. If

necessary, we will use O' to represent an operation which cloud be 0% or 0"V in the
following description. With the defined pattern (T’(O’G|0’V)) +, a test case can be denoted

by a sequence of reproduced intervals and executed operations
T{,04, ..., T,,0'7, .. T;, 0"}, .., T4, 04, in which O'f is a executed GUI operation defined
above and also the i-th executed operation in C’, O’]‘-’ is a executed verify operation with
verifying result defined above and also the j-th executed operation in C’. For example,
executing C; showed in Figure 2 will generate C;, which can be denoted by
T,,0'S,T5,0'5, TS, 05, T}, 05, TL, 0'S, T, 0'Y, T, 0'S T, 0’5, TS, 0% . With the defined

pattern (d'e”)+, a executed -GUI operation O’gmi can be denoted by sequence

i1,€{ 1, Aim , € m, IN Which-the i means O’E’mi is the i-th executed GUI operation in

im;’ ~i,m;’

!

C’, m; is the number of events in this GUI operation, e; ;

is the j-th reproduced event and
d; ; is the delay between the occurrence times of e;;_; and e; ;. For example, the executed
GUI operation O’f’_zz generated by executing szz showed in Figure 3 can be denoted by
di1r €1, - d1,22)€1,22-

In contrast to the past work focused on the accuracy of bug detection, this work
addresses the accuracy of testing method, thus we only test bug-free test cases and consider
that the accuracy of all verify operations are a little and can be ignored. In practical, the GUI
testing procedure retries failed test case to ensure that the failure is due to bugs from AUT
rather than other issues, such as system becomes unresponsive under heavy disk 1/O. If a test
case fails first time and passes on retry, the failure may be considered as a false positive result.
Since a retry is raised by failed test and each retry costs extra time, an efficient test method
should cost as little time as possible on a test case while keep the test success rate.

In order to evaluate the accuracy of the GUI testing method, we use C; ...C, to denote

n test case. The test procedure repeats testing each test case until a passing result is obtained.

11

We define Ci, ...C{Jki as k; executed test case generated by executing C;, in which the first
ki — 1 testing are failed and generate executed test cases C;; ...C;y, _; until the last testing

returns passing result and generate executed test case C{,ki. In order to quantify the quality of

a test method, we define ACC(M) = —— — o evaluate the test accuracy, or the success ratio

i=1"i

of executing bug-free test cases, in which M is the test method used in testing, n is the

number of test cases and k; is how many times C; is reproduced. We also define

Yiz, T(C)

EFF(M) = —=&=—
S,k ()

to evaluate the test efficiency, or the ratio of expect test time

against the real test time of test cases, in which M is the test method used in testing, T(C;)
is expected test time of C; and T(C{,j) is real test time of the j-th reproduced result of C;.
For example, if we use method-mto execute single test case C; with 10 seconds expected

test time. If the test fails 4 times before passes and takes 2,2,7,5,11 second respectively, the

ACC(M) is §= 20% and the EFF(M) is ————— ~ 37%.

2+2+7+5+11

Table I. List of notations and definitions used in problem statement

Symbol Definition

A test case generated based on record-replay technique. In general, C
C consists of several GUI operations; verify operations with proper
intervals between each two adjacent operations.

Cy ...Cy n testcases

(T(OG|OV)) + | Aregular expression describing the pattern of C.

0 A operation which could be 0% or 0V,

T An interval between the occurrence times of each two adjacent O.

06 A GUI operation used to reproduce desired GUI actions such as key
press and finger touch.

oV A verify operation used to verify the DUT’s response is desired one or
not.

Ty, 04, ..., T;, OF, .,
A sequence which denotes C.
T;, 0/, ..., Tn, Op
o, The i-th operation in the sequence denoted C, which could be 0% or
l

0;.

12

The i-th interval between the occurrence times of 0,_; and O; in the

T; .
' sequence which denotes C.
06 0% is 0; in the sequence which denotes C, which is also a GUI
‘ operation.
v 0Y is 0; in the sequence which denotes C, which is also a verify
o
' operation.
(de)+ A regular expression describing the pattern of 0.
. 0% is OF in the sequence which denotes C, in which m; is the
O/, ot .
o number of events also the number of delays in 0.
di,lJ ei'l, .

di,miJ ei,mi

A sequence which denotes Ogmi.

The j-th GUI event in d; 1, €; 1, ..., i my» €i;my» Which the basic element

eis to compose a GUI action.
i The j-th d-elay in d;q, €1, dim;€im, » Which is between the
occurrence times of e;;_; and e; ;.
A executed -test case, which consists executed GUI operation,
S executed verify operations with verifying result and reproduced
intervals between each two adjacent operations.
Ciy..C k; k; executed test case generated by executing C; for k; times.
Ci,j The j-th executed test case generated by executing C;
(T’(O’G|O’V)) + | A regular expression describing the pattern of C’
0’ A operation which could be 0’¢ or 0"V
T’ An interval between the occurrence times of each two adjacent O'.
0'¢ A executed GUI operation generated by executing OC.
oV A executed verify operation generated by executing 0V. 0"V also
contains the verifying result from executing 0V.
Ty, 04, ..., Ty, OF, ...,
A sequence which denotes C'.
T;,0/, ..., Tn, Op
o' The i-th executed operation in the sequence denoted C’, which could
' be 0'Y or 0.
T/ The i-th reproduced interval between the occurrence times of O;_,
' and O; in the sequence which denotes C'.
o6 0'f is 0; in the sequence which denotes C’, which is also an executed
i

GUI operation.

13

0’} is 0/ in the sequence which denotes C’, which is also an

'V
0 executed verify operation.
(d'e")+ A regular expression describing the pattern of 0'°.
0'fm, is 0’ in the sequence which denotes C’, in which m; is the
O’fmi number of reproduced events also the number of reproduced delays in
0'C.
diq,€1)
A sequence which denotes O’Emi.
d{‘mi, el-',mi
) The j-th reproduced. GUI event in d;,, e}, ..., d; €, Which the
iy basic element to compose a GUI action.
g The j-th reproduced delay in d;,, €; 1, -, di s, €im,, Which is between
v the occurrence times of e; _; and e; ;.
ACCM) The test accuracy, or the success ratio of executing bug-free test cases,
in which M is the test method used in testing.
The test efficiency, or the ratio of expect test time against the real test
EFF(M)

time of test cases, in which M is the test method used in testing

3.2 Problem Statement

Given a test case C with the pattern of test case (T(OG|OV)) + and the pattern of GUI

operation (de)+. For example, the test case C; showed in Figure 2 can be denoted by

Ty, 0§, T,, 0§, T3, 05, T,, 05, Ts, 05, Tg, OF, T, 05, Tg, 05, To, 0¥ and . the GUI

operation

showed in Figure 3 can be denoted by d; 1,e; 4, ...,d; 22, €12,. We design a test system to

record C and replay C with replay method M, aim to increase the ACC(M) and EFF(M)

on embedded system GUI testing.

14

Chapter 4. SPAG Design

Accurately reproducing GUI operations and dynamic controlling intervals between
operations are two key design requirements of SPAG. In this chapter, we design Smart Phone
Automated GUI (SPAG) to improve the accuracy of reproducing GUI operation and assist
writing of verify operations automatically. SPAG includes three key mechanisms. They are
event batching, smart waiting and hybrid verifying.

In the SPAG system design, all key mechanisms have record stage and replay stage. In
order to store test cases in record stage and execute test cases in replay stage, SPAG records
test case in form of (T 0)*, transforms all T, 0%, OV into commands and store these
commands into a test script in-record stage. The commands are executed to perform the test
later in replay stage. In record stage, SPAG accepts O} added by user or SPAG itself to
generates CMD(0Y). the CMD(0}) performs GUI verification. SPAG monitors T; and
cpu; to generate CMD(T;, cpu;), in which T; is i-th interval between the occurrence time
of each operation and cpu; is the target application’s CPU usage during T;. The
CMD(T;, cpu;) delays all following commands for T; or more time depend on the actual
CPU usage cpu; during testing. For a GUI operation, SPAG tracks the delay between each
recorded GUI event and generate a sequence of commands. in order to replay the GUI events
with their delay in replay stage. SPAG receives OF, (d1, ;1. dim,€im,) and
transforms O, into CMD(d;,€;1), ..., CMD(dj m,, €;m,), in which m; is the number of

delays and events contained in Offmi.

15

Table Il. List of commands used in SPAG design
Command Definition

A command used to perform the v;, in which v; is i-th verify

CMD(UL) . ;
Operatlon In a test case.

A command used to delay its next command for T;, in which T; is

CMD(T;, cpu;) | i-th interval between occurrence of operations and cpu; it the CPU
usage of target application during interval T;.

A command used to reproduce e; ; with d; ;, in which e; ; isI-th GUI

event in k-th GUI operation in a test case and d; ; is the delay of e; ;.

CMD(di‘j, ei‘j)

4.1 Batch Event

In practice, A GUI operation may consist of more than one GUI event. The application
under test (AUT) monitors incoming GUI events and recognizes GUI operations among the
GUI events. For example, when a user performs a gesture like a swipe action on the Android
operation system, the system-pulling multiple touch events sampled from hardware and
dispatch events to current on-top application. The on-top application keeps tracking GUI
events internally to recognize GUI operations, or gestures, among the received GUI events.
Since GUI operations are recognized inside of application, SPAG can’t directly reproduce
GUI operations in a black box testing. As a substitute, SPAG records GUI events on host PC
and replays GUI events into DUT, thus the GUI events are dispatched to AUT and trigger the
desired GUI operations inside of AUT.

In order to trigger the GUI operation Ofmi(di,l, €inr di2s €20 -+ dim,» ei.mi) correctly,
SPAG has to reproduce e;q,€;5,-,€;m, INt0 the mobile device on time. However, for
time-sensitive GUI operation, such as onFling gesture, the reproduced delays times
di1,dig -, dim, between GUI events need to be absolutely exact as d;s,d;z, -, dim,-
Otherwise, the O’fmi may trigger an GUI operation with different property. For example, the
onFling gesture has properties velocityX and velocityY. Both velocities are calculated from
the displacement and time difference between GUI events. Therefore, velocityX and
velocityY may be different if the reproduced delays vary for each reproduced onFling gesture.
A conventional approach is to wait d; 1, inject e;; and go on, but this approach may be

16

error-prone, especially for mobile applications. For example, Figure 4 shows two approaches
used to replay GUI events with the control delay variation, which cause the control data
transferring between host PC and device vary from time to time. Figure 4 shows the two
approaches to reproduce a GUI operation Ofs(d;1, €4, ..., dis €5). The conventional
approach in Figure 4(a) sends e;,...,e;s to DUT with d;4,...,d;s separately. The delay
between transferred GUI events d; ,, ..., d; ; are affected by the control delay variation and
become different from d; ,, ..., d; 5. As aresult, 0’55 may triggers a different GUI operation
with different property. On the contrary, our proposed batch event in Figure 4 (b) transfers all

GUI events and their delays in a batch to reduce the effect of the control delay variation.

Host Device
Host Device
TCP/USB) TCP/USB)
d'1(= 0) OI5(01e|17
€ o
N\lh ;’O) 9 2 G Extract &
ei,2% i’l d i3 |31 BatCh EVe Reproduce
y d, €. 0QC N o
i5 8 1 d.| " Vis d. e it
To ¢ a0 € e
e d, €3 d. d,' 6.
i,4 ’ di'4 i,5? |5) ir’g—’eig O,G
N ' d i i5
ei,5 i,5 dr ei,4 d;,4_,ei]4
\Li e sl
i,5 i 5
(a) Conventional approach (b) Batch event method

Figure 4. Two approaches for sending event sequence

17

< Start (on host) > < Start (on device) >

A
‘(8) Receive E(d,,e,,...,d,,€,) ‘

(9) i=0 |

(10 i «
A

(1) wait (d,) |

A
(12) reproduce (e;) |
No

Send E; to device | No

(End >
(7) is record stage stopped ?

Yes

e

Figure 5. Flow of Batch Event method in replay stage

=1
2

Figure 5 illustrates how batch event replays GUI actions, in which SPAG keeps reading
CMD(d, e) from the test script (step 3) and appends them to a sequence container E (step 4)
until the sequence of E matches a predefined pattern (d, e%°"™)(d, e™°%¢)*(d, e*?) (step 5).
The pattern is defined in Android framework used to identify any gestures among all inputs,
in which d is GUI event delay, ed°Wn, e™ove ouP gre GUI events with action state
ACTION_DOWN, ACTION_MOVE and ACTION UP. respectively. When the pattern of
gesture is matched, SPAG sends E through a UAB cable to DUT in once (step 6).
Meanwhile, the device receives (step 8) and reproduces each events e, e,, ..., e, With delay
dy, d,, ..., d,, respectively (step 9 to 13) to trigger expected GUI operation on AUT.
Therefore, SPAG reduces the variance between d,,d,, ...,d,, by sending control data at

once rather than several times for each GUI operation.

4.2 Smart Wait

By experience of our smart phone test team, it is more frequent that GUI testing gets

18

failure when DUT is under a heavy loading. Therefore, engineers usually test the test case for
several rounds to tune the delays until they are long enough to tolerate the delays may
happened on DUT but as short as possible for the test efficiency. The efficiency problem can
be solved by executing commands with event driven, which is to keep waiting until the
expected event comes, then continue to next command. However, the event driven approach
is not applicable in the black-box or gray-box testing because the accessible text-based events
may not cover all state transitions. Even if the image comparing is used to fill the rest
coverage, the large number of images Is too trivial to create and maintain.

In order to reduce the cost on writing a test case and to improve the test efficiency, our
Smart Wait automatically handles application delay by extending part of the waiting times in
the test case based on the AUT’s CPU usage. For example, if there is a test case containing 10
steps and each step.delays 7 seconds, the total execution time is around 70 second. However,
the engineer needs to extend each delay to 20 seconds to avoid any failures happened due to
the application delay. The modified test case now spends 200 seconds to finish testing, which
is 186% more time than original. On the contrary, the smart wait method uses original delays
and extends only a part of delays during testing. If 20% of ‘delays are extended to 20 second
by smart wait, the average test execution time will be 96 seconds, which is still slower than
original but faster than conventional approach. In addition, it also reduces the process of test
case tuning. The reason SPAG dose not monitor on other system resource such like disk 10 is
because the AUT still needs CPU resources to process other system resource. For example, to
downloading a file with size of 1 megabyte, AUT always costs similar CPU time no matter
how much real time spends on waiting for data.

In record stage, SPAG tracks the cpu; and T; between 0O;_; and O; and generate
CMD(T;, cpy;) in script. When replay stage starts, SPAG also tracks cpu; during executing
operation O;_; and judge whether or how long to wait based on T;,. When AUT dose not

finish 0;_; yet, the cpu; is expected to be smaller than cpu;, and if it does, SPAG will

19

postpone all rest operations for a certain time to wait AUT processing O;_;. For example, in
record stage, if AUT uses 5 milliseconds CPU time during 4 seconds executing time on an
operation 0;_;, SPAG will generate command SmartWait(4000 ms, 5 ms) after generated
CMD(0;_,) in test case. During testing, SPAG also tracks cpu; on DUT. When SPAG reads
to SmartWait(4000 ms, 5 ms), it waits for 4 seconds then checks cpu;. If 0;_; only cost 2

ms when time is up to 4 second, SPAG will estimate a new execution time by calculating
4 sec X % = 10 sec and postpone all following operations for 6 second more to wait 0;_;

to finish.

Function SmartWait(T;, cpu;)
wait(T;)
T, =T,
cpu; = cpu
while cpu; < cpu; and d; < TIMEOUT

1
2
3 lastChecked
4

, . Cpu;
5 do TV = T/ x —
6
7
8
9

now __ cpu

cpu;
wait(T"" — T/)
Ti’ — Tinew
cpu; = cpui + cpu
return
Figure 6. pesudo code of Smart Wait

now lastChecked

— cpu

Figure 6 shows the pseudo code of smart wait approach. The function
SmartWait(T;, cpu;) is called every time when SPAG reads CMD(T;, cpu;), in which T; is
the interval between 0;_; and O; and cpu; is the CPU time cost on O,_,. After waiting
for predefined T; (line 1), SPAG gets the actually consumed CPU time cpu; during T;(line
3) and compares it with cpu;. If the actual consumption is small then expected, SPAG will

decide to wait more time (line 4) and start estimating a longer interval time T"*" (line 5), in

! new

which the T/**V is the new expected interval estimated by equation CZL! :Tc;m-' This

equation assumes that AUT will use the same speed to consume the CPU time in the rest time
of processing 0;_4, thus AUT will finally reach consumption cpu; at T**". Finally, SPAG
waits another time T"*" — T, for AUT (line 6). However, the actual executing time should
have a distribution around the idea executing time. The probability of that estimated executing
time is actually on time is 0.5. Therefore, SPAG performs another round of checking and

20

waiting begins (line 4,8,4,5,6) and repeat the procedure until cpu; = cpu; or reaches
predefined timeout, in order to approach the actual executing time of O;_;.
4.3 Hybrid Verifying

By using accessibility APIs, SPAG can access the GUI layout data, such as activity name
and listed items. Retrieving and comparing GUI layout data can be very quick, while the
pixel-based method takes relative long time on image transferring and processing. Therefore,
using accessibility technology to verify GUI testing result is faster than using pixel-based
method. Based on accessibility APIs, SPAG automatically generates command of verification
operations when the DUT GUI layout is changed. This mechanism is greatly helpful when
writing GUI test cases. However, the accessibility technology may have access limitations
from machine to machine. In order to improve coverage of GUI verification, we use
pixel-based method to verify those accessibility technology cannot apply on. For example, the

accessibility APl on Android cannot access GUI elements not in focus, such like elements

Engineer SPAG (on host) Agent (on DUT)

[Add an image [Perform GUI action]

(1) SPAG compare command] (e.g., mouse drag)
use v

[(2) Request SUT state]

(4) Check SUT state

L

[State is changed] [State is unchanged]

(5) Generate state
verification command

(8) Generate
image compare

(6) Generate
event commands

command

(7) Reproduce
event sequence

[Continue recording]
[Stop recording]

Figure 7. Flow of Hybrid Verifying method in record stage
21

behind a popup dialog. The engineer needs to add an image-comparing command manually,
which contains the image of expected element layout, in order to verify such element with
image.

The hybrid verifying works in record stage, in which SPAG monitors any changes on
AUT’s GUI layout, or AUT state, and automatically generate verify operations into test case.
In order to save the generated operations for replaying latter, SPAG converts those operations
into commands and saves them into a test script.

Figure 7 shows the flow of hybrid verifying in record stage, in which the engineer uses
SPAG to record the test case by demonstration. some image-based verify operations may be
inserted during the demonstration (step 1). In most of time, SPAG receives GUI operations
performed by engineer and prepares to generate commands for each operation. After O; is
committed by engineer, hybrid verifying starts to check if the GUI layout has been changed or
not since O;_; has been performed. The checking procedure includes sending a GUI state
request to the agent (step 2), the agent retrieve GUI layout data by accessibility API and
returns to host PC (step 3), and SPAG compares the current GUI state after O;,_, with the
GUI state checked before 0;_; is performed (step4). If the GUI state is changed, SPAG will
generated a command of verify operation with current GUI layout data, in order to verify if
same change happens in replay stage (step 5). After the checking procedure finishes, SPAG
then generates commands from received O; into the script (step 6). Finally, The O; is sent
to DUT to be performed in order to archive the live interaction between the engineer and the
DUT during record stage (step 7). The engineer may add an image based verify command in
order to verify those GUI layout not covered by accessibility API based verify command (step
8).

Because SPAG generates all commands in proper order during record stage, it can
execute the script without reordering any command to perform the testing. Figure 8 shows the
flow of hybrid verifying working in replay stage. When test starts (step 1), SPAG starts

22

reading commands in the executing script one by one (step 2). Based on each command read
from script, SPAG may verify the DUT state using same method described in record stage
(step 3,4,5), handles a single GUI event as mentioned in section 4.1 (step 6,7) or verify the

GUI layout by pixel-based method (step 8). The testing continues until any verification fails

or all commands in the script are executed.

Engineer

SPAG (on host)

Agent (on SUT)

(1) Replay
script

]

{(2) Read command}

X

[End of
script]

method

(3) Request
SUT state

‘ s \ [Event
tate command]
veEli?;sgt?on verification
command]
command] (6) Append
event to

event
sequence

(4) Get SUT state

[Sequence is
incomplete]

(8) Verify GUI (5) Verify GUI
layout by layout by | [Sequence is
pixel-based accessibility AP complete]

(7) Reproduce
event sequence

[Verify fail]
V

!—& [Verify success]

[(9) Terminate test round]

Figure 8. Flow of Hybrid Verifying method in replay stage

23

Chapter 5. Implementation

In this section, we first give an overview of our framework: Smart Phone Automated
GUI testing tool (SPAG) while we introduce the mechanism of batch event and dynamic

delay estimating. Finally, we describe the methodology of hybrid testing verification.

0000003458763848 = 8] X (g sikuix-10rc3 - %85 B] |
naé 7 B x. ™ a300w [IEEE R
. 5 m o » -
HREE FABH RTiUSEE Recod BT {BENERT

Q, Google & . - =

@B 10DDODD3458763343
exists(=) T

find(I'®)
findall(=)
wait(=)

waitVanish(I'®)
C-REREF

click(I'sl)
doubleclick(I'®l)
rightClick(=)
hover(')

draghrop(I'®l | I'sl)
- HREE
Acer Setti contacts Messaging Play Store type(text)

EEYE 2R
[info] 0000003458763848 Send PING command
C EE e N .. type(™ text) [info] 0000003458763848 Wait response
- 7 o | paste(text) _| |[info] Agent responed!
Home Menu Back Search Call End call T30

Figure 9. Screenshot of SPAG with screen of DUT

Figure 9 shows the result of implementation, in which our SPAG provides two windows
on the host PC machine. The main window in right side is our test case editor based on Sikuli
IDE, which records any GUI operations during record stage and generates corresponding
commands in the script text area. The sub window on left side is our device window. The
device window shows remote screenshot of DUT and updates its screenshot in 1 or 2 times

per second, which allows engineers to interact with DUT through it.

5.1 Device under Test

We adopt Acer Liquid, a popular and powerful smart phone, as our DUT. The Acer
Liquid quips with a Qualcomm 8250 768MHz processor, a 512 MB Flash ROM, a 256 MB
RAM and a Wi-Fi IEEE 802.11 b/g interface. The operating system of Acer Liquid is
Android 2.2. We use Jave language to implement SPAG framework, which is a user space

program with root privilege.

24

5.2 Recording and Replaying Events Sequence
Recording input events from live demo.

SPAG j] Android platform under test

——GUI actions=jpm- (1)Rer:cc::ee:ev1ce <~—Screenshots — J(2)adbd %j
Engineer " SPAG Agent
3 (3)Device - (4)Control (6) Window
Script Executer Controller L, haMler 7| Manager $:|
Add image Q —
comparison Event or state verifying (Slezrli/::CesSIblllty El
command commands Z/C
(5)Test Script b' (9)CPU/state
i (R~ L
monitor Activity
\C Manager El
Image comparing
command
o 1e /proc/<PID>/stat
) (7)Sikuli
! Image API

Figure 10. SPAG architecture in record stage
Figure 10 shows the architecture of SPAG in record stage, in which the DUT screen

listens for any GUI operations-comes from engineer (engineer->1) and update the screen
image by calling the screencap function of adb in time (2->1). When the DUT screen receives
any GUI operation, it passes the operations to device controller(1->3). The device controller
sends those operations to the agent(3->4) and generates commands into test script(3->5). The
control handler in agent receives operations and reproduce them by inject each GUI event into
DUT(4->6) to trigger the desired GUI operations.in order to record the GUI session on live.
During the demaonstrating, the engineer may insert the image comparing command after any
GUI operation. When the insert button in Sikuli IDE is pressed(engineer ->6), it triggers
Sikuli’s command inserting procedures to lead engineer to select the region on the screen that
engineer wants to verify in replay stage. SPAG then generates the pixel-based verify

command and insert it into current editing script(6->5).

25

Device 0000003458763848 = AndroidDevice.getDevice ("0000003458763848")

Device 0000003458763848.sleep(2213, 28)

Device 0000003458763848.verify("com.android.contacts",

"com.android.contacts.ContactsListActivity")

Device 0000003458763848.pointer (0, ACTION DOWN, 197, 625)

Device 0000003458763848.pointer (81, ACTION UP, 197, 625)

Device 0000003458763848.sleep(3376, 33)

Device 0000003458763848.verify("com.android.contacts",

"com.android.contacts.DialtactsActivity")

Device 0000003458763848.pointer (0, ACTION DOWN, 244, 664)

Device 0000003458763848.pointer (ACTION MOVE, 246, 664)

Device 0000003458763848.pointer (ACTION MOVE, 247, 659)

Device 0000003458763848.pointer (ACTION MOVE, 249, 647)

Device 0000003458763848.pointer (ACTION MOVE, 249, 621)

Device 0000003458763848.pointer (ACTION MOVE, 249, 583)

Device 0000003458763848.pointer (ACTION MOVE, 249, 546)

Device 0000003458763848.pointer (ACTION MOVE, 254, 496)

Device 0000003458763848.pointer (ACTION MOVE, 262, 438)

Device 0000003458763848.pointer (ACTION MOVE, 270, 389)
()
()
()
()
()
()
()
(

N N N N NN

~

~

Device 0000003458763848.pointer ACTION MOVE, 275, 355
Device 0000003458763848.pointer ACTION MOVE, 282, 323
Device 0000003458763848.pointer ACTION MOVE, 285, 300
Device 0000003458763848.pointer ACTION MOVE, 286, 284
Device 0000003458763848.pointer ACTION MOVE, 288, 274
Device 0000003458763848.pointer ACTION MOVE, 289, 262
Device 0000003458763848.pointer ACTION MOVE, 290, 256
Device 0000003458763848.pointer ACTION UP, 290, 256)
Device 0000003458763848.sleep(5524, 122)

Device 0000003458763848.pointer (0, ACTION DOWN, 211, 444)
Device 0000003458763848.pointer (70, ACTION UP, 211, 444)

N N N N SN N~ N

oY O)Y O O)Y U1 Oy O O U1 &Y o) O Ul O O 0O O
~

~

if exists (e) :

print 'found him!'

Figure 11. Example of SPAG’s test script
During the recording, SPAG will generate a test script such like Figure 11. In Figure 11,

the commands the commands with prefix Device_0000003458763848 are all generated by
SPAG, which consist of three types of command: pointer, verify, and sleep. The three types

represent CMD(d; j,e;;), CMD(v;) and CMD(T;, cpy;) of our design in chapter 4. In

J?

addition, engineer may manually insert image compare command such like

if exists(

) to verify some GUI layout can’t be verify by accessibility API.

26

Reproducing Event Sequence with Batch Event

SPAG ! : Android platform under test

l (l)Rer:C(::eerl\)ewce <~—Screenshots —](2)adbd $:|
Start replaying P N
Engineer " SPAG Agent
— (3)Device (4)Control i
. . (6) Window
(S)Script Executer eo Controller At handler | Manager $:|
Diagram symbols @ L 1
(Accessibility
| e o
Document (8)Test Script (9)CPU/state [T
monitor §\C (10) Activity $:|
External %j Manager
compoment
(11)
Control Data (7)Sikuli /proc/<PID>/stat
> o= Image API

Figure 12. SPAG architecture |n repla{y stage
Figure 12 shows how SPAG works in the replay stage, in which SPAG executes the test

script and interacts with DUT. When the engineer starts the testing with a test
script(engineer->5), the script executer starts reading commands from the specified test
script(8->5). For each GUI event command, script executer calls the device controller to
perform the reproducing(5->3). However, the batch event method buffers all GUI events until
the events pass a predefined parsing rule, which is a pattern defined for a gesture:
(d, e®"™)(d,e™°%¢)*(d,e¥P) . The pattern is described in the reference of
SimpleOnGestureListener[15] on Android’s = develop supporting . website. The
SimpleOnGestureListener is the default component used to detecting gesture in Android
framework. When the GUI event matches the pattern, device controller will groups all events
into a batch and sends the batch to the control handler(3->4) to reproduce the action on DUT.
The batch event controlling procedure in both stage are the same, thus the GUI controlling in

both stages are the same feeling to DUT.

5.3 Smart Wait

To implement Smart Wait algorithm, SPAG traces the delay between each command
sent to agent and the CPU time used to process each action to estimate the response time in
record stage. A piece of code is inserted into begin of the event sending function in the device

controller(3), thus command delay can be calculated from the difference between each

27

command sending time. In order to get the command processing time in replay stage, the
CPU/state monitor(9) obtains the PID of current process through the activity manager(10) to
retrieve the total consumed CPU time of AUT written in file /proc/<PID>/stat(11). The
consumed CPU time is measured in clock ticks, which is 100Hz in current Linux system. The
consumed CPU time for each operation is calculated and feed back to SPAG when agent
receives next command. In section 4.2 we use the pseudo code to describe rest implement of
smart wait.
5.4 Hybrid Verifying

Verifying by Pixel-based image comparing is slower than program-level comparing; it is
also error-prone due to the inexactly triggered GUI operations, which makes result screen
different from expected. Based mainly on Android’s Accessibility Services supplemented by
Sikuli’s image search APIl, SPAG increases the speed of verifying and reduce the verifying
error. In Figure 10, SPAG uses the accessibility service(12) to monitor the current activity’s
package name and class name(12->9->4->3). Any changes on these two names will trigger
the device controller to generate a verification command.into.test script(3->5). The engineer
may use Sikuli image API(7) to insert image verify commands such as exists, find, findAll
(showed in Figure 9) if monitoring the activity’s package name and class name is not enough
for verifying the test objective.

In the replay stage(Figure 12), when the script executer reads to a layout data verify
command, it calls device controller to retrieve the activity’s package name and class
name(3,8->5) and compare the retrieved names with the those written in the command. For

example, the layout data verify command

Device 0000003458763848.verify("com.android.contacts",
"com.android.contacts.DialtactsActivity")

is a verification command generated with hybrid verifying method. If the activity name

and class are different in replay stage, the testing fails. In another hand, if the script executer

28

reads to an image verify command such as it exists(, 1t will call Sikuli’s image

matching API to compare the DUT screen with the image written in command (1,8->5). If the

image is missed on DUT screen, the verification fails.

Chapter 6. Experiment Result

In this chapter, we first introduce the experiment environment. Next, Section 6.2
compares the test accuracy among GUI test tools. Finally, Section 6.3 adopts analysis of the

proposed method.

6.1 Testbed
As we described in Chapter 5, the testbed includes a host PC with SPAG test IDE and an

Acer Liquid smart phone with SAPG test agent. The test manager provides test case recording,
editing, and replaying function. The test agent receives command and reproduces events on
DUT. In addition, test agent may monitor DUT state and report the current state to test
manager if we enable SPAG’s Smart Wait. The SPAG testing flow includes four parts: input
events recording; event sequence grouping and replaying; dynamically delaying command;
and Hybrid Verifying.

In order to estimate the test accuracy of proposed methods, we design two experiments
that use test accuracy to compare SPAG and another GUI testing tool and analyze the
improvement of SPAG’s event reproducing solutions. The experiments are running five test
cases with fix different system workloads. We run 40 rounds test on every combination of
these test cases and workloads. The tested workloads include CPU usage 0%, 25%, 50%, 75%,
100% and read/write flash memory. As mentioned in 4.2, embedded systems are highly
influenced by heavy system workload. Therefore, this case study focuses on how the test
accuracy changes under different system workloads. The test scenarios we choose are: browse
a contact entry, install application over Wi-Fi, take a picture, Shoot a video, and browse
Google map over Wi-Fi. We select the test scenario in accordance with two rules. First, the
scenario must be a user behavior often happens in normal usage. Second, the scenario should
contain CPU/IO intensive behavior, which is easily affected by system’s CPU/IO workload,

thus the test results are easier to distinguish.

30

We perform 40 round tests on each of all combination of 6 workloads and 5 test case and

score each round by test result of each test round.

6.2 Comparison of test accuracy and time efficiency

The subject of first experiment is to compare the test accuracy of tools including our
SPAG and monkeyrunner. The SPAG has implemented three solutions we proposed. The
monkeyrunner can act like a record-replay test tool and it works in remote testing
environment too. We use monkeyrunner to perform GUI test by using it’s API to send one
event at a time and uses fixed delay between each event. As a result, the beaver of
monkeyrunner is similar to a GUI test tool without event reproducing solutions we proposed.
Therefore, we consider monkeyrunner as a naive GUI testing tool and compare the test

accuracy between SPAG and monkeyrunner.

Accurac
100%y 99.5% 97.5% 985% 965% 96.5%

o | 880 \ : =
gt W m§ |

: B monkeyrunner
= SPAG
S N

Addtional
Normal 25% CPU 50% CPU 75% CPU 100% CPU 10 busy workload

91.0%

70%
60%
50%
40%
30%
20%
10%

0%

Figure 13. Testing with SPAG and monkey runner

Figure 11 shows the test result of test accuracy, in which the x-axis is the different
workload types and the y-axis is the test accuracy. For example, in the case of 100% CPU
workload in Figure 11(a), the test accuracy can archive 93% and 55% when the when the
testing is executed by SPAG and monkeyrunner. As Figure 11 shows, the accuracy becomes
lower when the CPU workload gets heavier. This is because the less CPU resource to AUT is

assigned, the more frequent delay of AUT happens. In a result, testing failed when application

31

level event is triggered with different properties or next command executes when current
command is not finished yet.

Compare to monkeyrunner, our solutions deliver the best test accuracy for all workloads.
For instance, in the case of install Apps, a script running on system repeats installing and
removing three apps in parallel. As result, the 10 workload costs most 10 resource part of
DUT, which makes AUT encounter more 10 waiting, decrease CPU utilization, and finally
cause AUT delays for seconds. However, monkeyrunner cannot bear such delay and fail on

response timeout error.

B SPAG = monkeyrunner

0,
100% 85%86% 87

%859 86%86% 86%85% 8

80% -

60% -

40% -

Time efficiency(EFF)

20% -

0% n T T T T
25% CPU 50% CPU 75% CPU 100% CPU 10 busy Normal
workload type

Figure 14. the time efficiency of GUI testing

Figure 12 shows the time efficiency of SPAG and monkeyrunner, in which the x-axis is
the different workload types and the y-axis is the time efficiency. For example, when testing
under 10 busy workload, the SPAG has 84% of time efficiency while monkeyrunner has
103% time efficiency. The test result is the rate of expect testing time against actual testing
time, as the EFF defined in chapter 2. Figure 12 shows the two GUI testing tools have
similar time efficiency. The reason is that the monkeyrunner retries more times but costs less

time for each testing due to its lower test accuracy.

6.3 SPAG Solution analysis

We have compared the accuracy of out proposed tool. Now we are going to test proposed
solutions separately in order to understand what contribution each solution provides on

32

automated GUI testing.

Batch Event and Smart Wait

Accuracy
100% T A——————— —
80%
== SPAG(AIl)
0% OSSN
509 H \ SPAG(Smart Wait)
0
50% \ \‘ === SPAG(Batch Event)
40% \ === monkeyrunner
30%
X
20%
10%
0% ' ' ' ' ' ' Addtional

Normal 25% CPU 50%CPU 75% CPU 100% CPU 10 busy workload
Figure 15. Testing with Batch Event and Smart Wait

Figure 13 shows the test result of Batch Event and Smart Wait methods, in which the
x-axis is different workloads-and- the y-axis is the test accuracy. For example, in the case of
100% CPU workload, SPAG archives 77.5% and 92% accuracy by testing with Batch Event
method and Smart Wait method separately. \We use the test result of monkeyrunner as nawve
test result in order to compare how much accuracy each method improves. In Figure 13, the
SPAG with Smart Wait method is better than SPAG(Batch Event) because the Smart Wait
can apply on all commands while the Batch Event only improves the accuracy on gesture
input. However, the Batch Event method has a better performance if the test case focuses on

gesture testing. There are no suitable tools for gesture testing currently.

33

Hybrid Verifying

The hybrid verifying method we proposed is used to automate the testing process. It
monitors DUT’s state and dynamically generates commands for verifying whether the
package name and class name of current activity in testing are the same as recorded names.
This method can reduce the cost on test writing case because it automatically adds verification
commands for activity-level GUI layout changes on DUT. Engineer now can record a test
case that moves between activities without writing codes to check whether the result activity
changes especially.

In order to analyze how much cost spent on test case writing, we perform an experiment
to test how much time costs on writing test cases with and without hybrid verifying. Figure 16
shows the experiment result with/without hybrid verifying, in which the x-axis is different test
cases mentioned in section 6.1 and the y-axis is the time spent on writing those test cases. The
result shows we can reduce small amount of writing time for contact Ul testing, browser
testing and.installation testing. However, the writing time for recording video and taking
picture can be reduced 63%~77% by applying the hybrid verifying method. The reason is that
the recording video and taking picture are using customized Ul and cause a class name change
when press the shutter button, which makes the test case writing without hybrid verifying

spent more time to check the shutter button has been pressed after a press operation, while the

350
5 304
S 300
& 110235 247
& 250 pa 195 213
188 188
£ 200 -
]
& 150 - —
-‘g‘ 100 - 68 69 ___ Ewith hybrid
@ 50 - . . = with out hybrid
S
t; 0 h T T T T 1
s browse a browse install Shoot a take a
contact entry Google map application video picture
over Wi-Fi over Wi-Fi
Tesr case

Figure 16. Test case writing time with/without hybrid verifying

34

verify command is automatically generated with hybrid verifying method. Since the smart
wait reduces most test cases writing time, the time left for hybrid verifying to improve is very

limited, but the improvement still exists based on our experiment.

Chapter 7. Conclusions and Future Work

In this work, we design three solutions and implement a GUI testing tool based on Sikuli
for improving the test accuracy and simplifying the testing process on embedded systems. The
solution is based on manipulating the events reproducing and adopting GUI layout
information provided by DUT. Our first contribution is to improve the accuracy of
reproducing GUI operations and make the test process more robust against to application
delay. We propose the Batch Event to reproducing the action consisting of several GUI events
accurately by transferring the events in a batch. We also propose the Smart Wait method to
extend the delay between operations dynamically by considering the CPU usage of target
application during processing-each-operation. Unlike previewers tools, which consider only
touch events inherited from conventional software testing, our SPAG is suitable for testing
complex gesture inputs and testing with heavy system loading. The second contribution is to
simplify the test case writing process. Based on the accessibility technology, SPAG can
access the GUI layout information and automatically generating state verification commands
to reduce the cost on manually writing verification commands. More state verifications also
can reduce the chance to use pixel-based verifications, which is more error-prone, slower and
resource-intensive.

In our experiment, we present the comparison on test accuracy and time efficiency under
different workloads. Test cases are more likely to succeed by using SPAG. As result, SPAG
can archive the test accuracy of 90% while the test accuracy of monkeyrunner is 27%~88%.
The SPAG and monkeyrunner have similar time efficiency, it is due to the earlier failure
caused by monkeyrunner’s lower test accuracy.

In the future, we plan to adopt the new function of accessibility API in Android version
4.0 or higher in order to access detailed information on DUT. Moreover, we may adopt

accessibility APl to make the Smart Wait method can optionally check GUI layout

36

information in order to become more event-driven and increase the test accuracy. Since our
methods assumes there is single pointer operating on DUT, if the input point are more than
one, known as multi-touch gesture, our method might be invalid. Therefor another feature

work is to support the recording and replaying on multi-touch gesture for embedded systems.

References

[1] (2012). Android SDK Tools: monkeyrunner. Available:
http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html

[2] T. Yeh, T.-H. Chang, and R. C. Miller, "Sikuli: using GUI screenshots for search and
automation," presented at the Proceedings of the 22nd annual ACM symposium on User
interface software and technology, Victoria, BC, Canada, 2009.

[3] T.-H. Chang, T. Yeh, and R. C. Miller, "GUI testing using computer vision," presented at
the Proceedings of the 28th international conference on Human factors in computing
systems, Atlanta, Georgia, USA, 2010.

[4] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual representation of user
interfaces with their internal structures and metadata,” presented at the Proceedings of the
24th annual ACM symposium on User interface software and technology, Santa Barbara,
California, USA, 2011.

[5] Q. Xie and A. M. Memon, "Using a pilot study to derive a GUI model for automated
testing,” ACM Trans. Softw. Eng. Methodol., vol. 18, pp. 1-35, 2008.

[6] T. Takala, M. Katara, and-J.-Harty, "Experiences of System-Level Model-Based GUI
Testing of an Android Application,” in Software Testing, Verification and Verification
(ICST), 2011 IEEE Fourth International Conference on Software Testing, Verification and
Verification, 2011, pp. 377-386.

[7] L. Zhifang, L. Bin, and G. Xiaopeng, "Test automation on mobile device," presented at the
Proceedings of the 5th Workshop on Automation of Software Test, Cape Town, South
Africa, 2010.

[8] O.-H. Kwon and S.-M. Hwang, "Mobile GUI Testing Tool based on Image Flow,"
presented at the Proceedings of the Seventh IEEE/ACIS International Conference on
Computer and Information Science (icis 2008), 2008.

[9] J. Bo, L. Xiang, and G. Xiaopeng, “"MobileTest: A Tool Supporting Automatic Black Box
Test for Software on Smart Mobile Devices,” presented at the Proceedings of the Second
International Workshop on Automation of Software Test, 2007.

[10] L. Zhi-fang and G. Xiao-peng, "SOA Based Mobile Device Test," presented at the
Proceedings of the 2009 Second International Conference on Intelligent Computation
Technology and Automation - Volume 04, 20009.

[11] V. R. Vemuri, "Testing Predictive Software in Mobile Devices," presented at the
Proceedings of the 2008 International Conference on Software Testing, Verification, and
Verification, 2008.

[12] Section 508 of the Rehabilitation Act. Available: www.access-board.gov/508.htm

[13] M. Grechanik, Q. Xie, and C. Fu, "Maintaining and evolving GUI-directed test scripts,”
presented at the Proceedings of the 31st International Conference on Software Engineering,

38

http://developer.android.com/guide/developing/tools/monkeyrunner_concepts.html
http://www.access-board.gov/508.htm

2009.

[14] M. Grechanik, Q. Xie, and C. Fu, "Creating GUI Testing Tools Using Accessibility
Technologies,"” presented at the Proceedings of the IEEE International Conference on
Software Testing, Verification, and Verification Workshops, 2009.

[15] GestureDetector.SimpleOnGestureListener | Android Developers. Available:
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureL i

stener.html

http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html
http://developer.android.com/reference/android/view/GestureDetector.SimpleOnGestureListener.html

