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調適提前讀取技術與重疊延遲排程之三

維寬頻記憶體 

 研究生：郭泰均       指導教授：陳添福博士 

國 立 交 通 大 學   資 訊 學 院   資 訊 學 程   碩 士 班  

摘 要       

隨著記憶體與中央處理器存取速度的差距，記憶體已經成為系統效能的瓶頸，提

升記憶體存取速度將有助於改善系統效能，由於近來 TSV技術的成熟，晶片將可以用

堆疊的方式來減少存取延遲時間。然而當系統晶片整合朝向三維發展，設計將會更複

雜且效能更難被評估。 

本篇研究我們實作一個三維記憶體模擬平台並且支援 JEDEC寬頻記憶體傳輸介面

來評估系統效能。 同時模擬器支援多執行緒平行處理來加快模擬時間。藉由分析寬

頻記憶體的特性，我們提出了兩個機制來提升三維架構下的記憶體效能，調適提前讀

取技術藉由分析記憶體區塊的存取密集程度及狀態並且參考指令列隊的數量來進行

提前讀取，並且提高堆疊層間的平行度。重疊延遲排程則是利用 TSV 傳輸延遲來提前

執行充電指令，達到重疊延遲時間。 
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Adaptive Prefetching Techniques and Latency Overlapping 

Scheduling for 3D Wide I/O Memory 

 

Student: Tai-Chun Guo     Advisor: Dr. Tien-Fu Chen 

Degree Program of Computer Science 

National Chiao Tung University 

ABSTRACT 

 Due to the gap between memory and CPU speed, memory has become a bottleneck in 

computing systems. Improving memory access latency will improve system performance. 

As TSV technology matures, chips stacked in different stratums can reduce access latency. 

However, as SoC development moves towards 3D, it becomes increasingly difficult to 

evaluate complex systems designs. 

 In this thesis an ESL platform is implemented which can support JEDEC wide I/O 

interface to evaluate memory performance. The simulator supports multi-threaded modeling 

and speedups the simulation time. After analyzing address mapping methods and properties 

of wide I/O, this thesis proposes two mechanisms to improve the performance of 3D 

architecture. Adaptive-prefetching will analyze memory intensive blocks and reference 

command queue status to prefetch data and improve RLP. Latency overlapping scheduling 

executes precharge command by beforehand analyzing TSV bus utilizaion. 
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I. Introduction 

1.1  Motivation and Introduction 

 Memory System is one of the most important in computer architecture, but the speed of 

memory access is improving much slower than CPU. The gap of memory and CPU speed is 

called “Memory Wall” and it has been a system bottleneck for two decades. One of the 

reasons is due to the different between memory and logic IC fabrication process. DRAM is 

made by high-density NMOS transistors which emphasize on capacity or leakage power. On 

the other hand, processors use CMOS transistors and optimize for performance. The 

difference means that logic layer and DRAM layer can’t coexist because IC fabrication 

process constraints.  

 Recently, memory bandwidth demands and chip size are still increasing since multicore 

era. The new technology called “TSV” may solve this problem. With the advancement of 

technology, 3D SoC integration can stack multiple stratums of chips and breaks area and pin 

count constraints. It also brings other advantage such as lower latency and more power 

efficiency. Although 3D stacked memory is more powerful than traditional designs, it’s hard 

to evaluate the complex SoC design. In order to analyze performance of this new 

technology, building an accuracy model to simulate and provide some information for the 

3D stacking technology in the early stage is necessary. Using a platform which is built by 

high level language to evaluate the system performance is a common way for large complex 
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design and this flow is generally called ESL[1][2]. 

 

 Logic layer is designed to be at the bottom stack of the stacked chip architecture for 

mobile wide-I/O DRAM, as shown by Kim[3]. Traditional memory is constrained by the 

specifics of processors and is hard to improve performance. Memory controller design can 

be more complex and separates from processor side to memory logic layer. One of the 

advantage is the memory controller can be optimized by its own memory manufacturers. 

Figure 1 show the design of 3D stacked memory. There are some issues that need to be 

addressed in order to improve memory performance in wide I/O. 

 

 

Figure 1 Memory with 3D stacking 

 

 First, balance resource’s utilization by analyzing memory address mapping. Address 

mapping affects the banks or ranks usage. It is hard to decide optimized mapping method 

for different memory systems because diverse memory hardware constrains and distinct 

properties. This work explores wide I/O property with different mapping method by traces 

analysis. 

 Second, prefetching mechanism can help to reduce memory access latency. It is 
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difficult for prefetcher to get memory state information traditionally because it is designed 

close to CPU. With 3D SoC integration, memory controllers can combine more complex 

logic design. This thesis proposes adaptive prefetching technique by analyzing memory 

block intensively and the possibility of continuous adjacent addresses. In order to reduce 

useless prefetch requests, this work further use a set of counters to observe the command 

queue state and improve memory rank level parallelism. 

 Third, open-page row buffer policy is widely used because most programs have spatial 

locality when access memory. DRAM controller will issue precharge command to close row 

buffers until other command use other rows in the same bank. It may waste power if the row 

buffer is not used more efficiently. Moreover, TSV data bus is shared by each rank and 

transfers data with burst length mode. The following data commands have to wait for the 

transmission complete. This thesis try to pre-issue precharge command when TSV bus is 

busy and overlapping the latency. 

 Finally, discuss the extra hardware cost in our experiment. 

 

1.2  Contribution 

 

1 Provide an ESL platform that can model Wide I/O interface. It can help to evaluate 3D 

IC integration development in the early-stage. 

2 Using pthread to speed up simulation time. 

3 Analyze the address mapping method and property of wide I/O interface. 

4 Provide two mechanism: Adaptive prefetching techniques and latency overlapping 

scheduling to improve system performance. 
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1.3  Report Organization 

 The remainder of this thesis’ structure is as follow. Section II introduces the 

background of DRAM and the policies to improve system performance like prefetching or 

predict precharge. Section III describes the framework of our 3D DRAM simulator. Section 

IV describes the scheduler and policy to hide latency policy in order to improve the DRAM 

access latency. Section V introduces our experiment environment. The result and cost are 

also taken into consideration. Finally this thesis compares our method with others and 

evaluates the advantage and disadvantage. 
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II. Background and Related Work 

 TSV technology is the trend of future design. This chapter will briefly describe some 

basic concepts of DRAM property and 3D wide I/O interface backgrounds. Next, this work 

introduces previous works that utilize prefetching and scheduling method to improve 

DRAM performance. Finally, we will present a table of analysis advantage and drawback 

analysis on those control method in 3D IC era. 

 

2.1.1 Row Buffer 

 Row buffer is like a cache of bank arrays. It is a very important component in the 

DRAM system because every access will go through this buffer and transfer by amplifier to 

enlarge the signal. Figure 2 shows a typical row buffer design. Upon memory access, the 

entire row of DRAM bank is amplified by a sense amplifier before loading into row buffer 

and in the process, the row data in DRAM is destroyed. This action is called “ACTIVATE”. 

After the row buffer is activated, the following row access is related to the row buffer. 

Because activate is a destructive access, data must be restored into DRAM before another 

row is used. The restore action is called “PRECHARGE”. The maximum number of 

activated row buffers is limit per rank. For example, DDR2 and DDR3 use FAW(Four 

activated windows), but Wide I/O uses TAW(Two activated windows). Activated command 

also has a timing constraint for issuing called “tRRD”. The timing diagrams show the 
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relationship to each operation. “tRCD” is the minimum time interval that can issue memory 

access command after the activated action. “tCL” is the minimum timing interval between 

memory access command and data put into the data bus. “tRP” is the minimum timing 

interval between recharge. “tRCD”, “tRP”, and “tCL” are the most frequently discussed 

timing parameter in memory systems.  

 

 

Figure 2 Row Buffer 

2.1.2 Row Buffer Page Policy 

 While the memory is accessing data, there are three common timing parameters: 

precharge, activated, and access column. If the row being accessed is currently opened, it 

can directly access data without precharging or activating the row. These three primary row 

buffer page policies are open page policy, closed page policy and timing policy. 

 Open Page Row Buffer Policy 

Open page policy will keep opening and holding a row of data. The policy is good 
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for data with spatially locality because the row buffers do not have to be activated 

twice in a period. If the access commands are mapped to the same opening row, it can 

directly access the DRAM data without other commands. And it will issue 

PRECHARGE command until a new command accesses a different row. The open 

page policy is widely used in general-purpose computer. 

 

 Close Page Row Buffer Policy 

Close page policy will close the row buffer as soon as the command access is 

completed. It will take advantage of random memory access because it may save 

precharge time. If the rate of row buffer hit is low, close page policy may be better than 

open page policy. 

 

 Timeout Policy 

Timeout policy will close the opening row after a time interval. This policy will 

provide tradeoff between open and close page policy. 

 

2.1.3 Memory System 

 Recently the DRAM system has one or more channel controllers design. Each 

controller controls a separate portion of the memory system. Because of the command and 

data bus are also duplicated, each controller can issue command or access data concurrently 

without any dependency.  

 The basic DRAM system consists of one or more ranks. Each rank has many Banks and 

shares the same command and data bus. When the data have to access across the rank, the 
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system must delay command and pay the rank to rank switch time penalty.  

 Bank is the basic component of the DRAM system just like a two dimension data array 

which is composed by many bit cells. Because each bank in the same rank can work 

concurrently, it can hide the latency if multiple banks are activated and accessed data in 

parallel. Each bank has a row buffer and the data access must go through the row buffer.  
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Figure 3 Memory System Overview 

 

2.1.4 TSV Technology 

 TSV is abbreviated from Through-Silicon-Via. The new technology lay chips stack by 

stack 3 dimensionally. The delay of TSV is also shorter than tradition horizontal bus. 

Memory can be stacked as a cube then add a new dimension call layer. The delay is directly 

proportional to the distance from controller to the layer. 
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 Wide I/O is based on the TSV technology to control data transfer of the stacked 

memory. The feature of this device is it can stack up to four layers of memory. There are 

four channel controllers in the Wide I/O interface, and each controller controls section of 

the memory stack independently. The data bus is 128 bits wide. The total memory size can 

be up to in 32 Gb in density. The voltage is only 1.2V and the frequency is 200MHz. Each 

layer is an independent system, so the timing constraint is different from transition design. 

For example, DRAM system can issue access commands to different rank in succession in a 

3D memory system, but traditionally the timing delay constraint is exists which is call Rank 

to Rank Switch time. Previous researches [4][5][6] analysis of TSV shows that 3D 

integration technology will impact not only memory stacks, CPU caches and cores may also 

need to be re-designed. 
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Figure 4 TSV Technology 
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2.2  Memory Controller Scheduling 

 Scheduling policy plays an important role in the Memory system. Because of the 

destructive access control in DRAM, the access ordering will impact numbers of precharge 

and activate new row into row buffer. Unsuitable access ordering will cause power 

consumption and longer access latency. There are many researches about reorder the 

command requests to improve the system performance. Different polices optimizes the 

scheduler to adapt to a particular property. A good scheduling will improve the DRAM 

bandwidth and delay. In this section, this thesis will introduce some state-of-the-art 

scheduling policy about DRAM. 

 

2.2.1 FR-FCFS Schedule 

 Because DRAM access pays less latency penalty when accessing already opened rows, 

read latency can be significantly reduce with more page hits. Rixner proposed a scheduling 

policy which is called “First Ready-First Come First Serve”[7] and it is the common policy 

in today’s memory system. This scheduler will reduce latency as the following timing 

diagram. FR-FCFS issues commands to already opened row buffer over other requests. It is 

just like a greedy algorithm scheduling policy for improving row buffer hit ratio. If there are 

no opening requests that can be issued now, the scheduler will prioritizes and issue oldest 

request just like FCFS scheduling policy.  
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Figure 5 FR-FCFS Command Scheduling 

 

2.2.2 Fairness Scheduling 

 Because FR-FCFS scheduling policy is a greedy algorithm, it may cause starvation 

when some requests are continuously served in the period. A memory intensive program 

will send a lot of memory requests to DRAM and be issued quickly because the possibility 

of those rows being opened is higher than other request. Other requests will delay for a long 

time and programs will be stall because the data is not return from memory. Some 

researches take requests waiting time into consideration and adjust the controller’s request 

priority periodically. For example, the scheduler can give basic priority number for requests 

and increase it after a time interval. This action gives higher priority to the older requests, 

thus the read request delay times are more balance. The priority aging[8] concept will 

reduce the unfairness situation for solving starvation and it is important since it affects the 

CPU waiting time. There is a tradeoff between performance and fairness because it breaks 

the continuous row buffer access times for fairness scheduling. Memory timing constraints 

should also be taken into considers. Virtual writing queue[9] reduces memory read to write 

delay penalty. By handling write command separate from read, this mechanism helps to 

issue continuously read and minimalize read to write delay in overall memory system. 
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 Thread status can also issue to the memory scheduling, because of shared cache 

replacement and data bus, many resource may cause contentions. ATLAS[10] is a memory 

scheduling algorithm that improves system throughput by prioritizing threads that have 

smaller attained memory service. Those threads may more likely be memory non-intensive 

and improve performance significantly by serving those threads’ request soon. PAR-BS[11] 

focuses on thread fairness and prevent short term and long term starvation by taking 

registers info per request and thread ranking. Although there are many method to improve 

memory performance, most of them have to bypass some information from CPU to memory 

controller and the design must also be constrained. 

2.2.3 Scheduling Summary 

 

Table 1 Comparison of Scheduling 

  

 Many scheduling are based on FR-FCFS policy to improve performance, and pass 

information from CPU by adding extra cache tag. This method will increase bus 

communication traffic and hardware overhead. In this work, we use a prediction table to 



 

13 

 

issue precharge command early and overlap the bus transmission time. 

2.3  Prefetch Policy 

 Prefetching mechanism can predict the next address and fetch data beforehand. Stream 

prefetcher can keep track of multiple access streams. “Prefetch Distance” and “Prefetch 

Degree” determine the aggressiveness of the prefetcher. Aggressive prefetching mechanism 

can improves performance, but miss fetch in some benchmark decreases system 

performance. 

 In order to reduce the miss predict ratio some papers proposes to analyze the feedback 

information and adjust the prefetcher dynamically. Feedback Directed Prefetching[12] 

provides three factors to control prefetcher’s behavior: “Prefetch Accuracy”, “Prefetch 

Lateness”, and “Cache Pollution” as show in Table 3.  

Prefetch Accuracy Prefetch Lateness Cache Pollution Action

No Polluting Increase

Polluting Increase

No Polluting No

Polluting Decrease

No Polluting Increase

Polluting Decrease

No Polluting No

Polluting Decrease

No Polluting Decrease

Polluting Decrease

No Polluting No

Polluting Decrease

Medium

Low

Late

No Late

Late

No Late

Late

No Late

High

 

 Table 2 FDP Control Table   

 As soon as the prefetching data returns, it will update the information and determine 

whether to use prefetcher or not. These prefetchers are often incorporated in cores and 

observe program behavior to predict whether to prefetch data or not. In order to keep track 
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of the prefetch requests, the Last Level Cache has to add the entry to identify the demand 

requests and prefetching requests. It is an overhead in overall architecture and does not fit 

the DRAM property. Coordinated control [13] solves the problem about inter-core prefetch 

requests conflict in cache. Prefetcher causes inter-core interference and may diminish 

prefetching’s potential performance. In order to reduce conflict, it adds an extra center 

controller to manage which prefetch requests can be sent into memory system. Lee et al.[14] 

combines the prefetcher and memory architecture to improve bank level parallelism. Bank 

is the basic component of the memory system, each bank can work independently. The 

concept of bank level parallelism is to overlap delay by access bank concurrently. 

BLP-Aware Prefetch Issue will keep track of which bank the prefetching requests will be 

issued to and issue them out of order to improve the bank utilization. Furthermore, 

BLP-Preserving Multi-core Request Issue Policy also considers the prefetching requests 

from multi-core. It controls the order of prefetching requests and issues those from the same 

core first. This mechanism minimizes the destructive interference in the BLP of each 

program. 

 The general priority schedulers that deals with prefetch requests can be put into two 

categories, one type of prefetching request schedulers[15–17] gives less priority to 

prefetching requests than normal request. Since the prefetcher is assigned lower priority, the 

normal request will be issued faster than the predicted prefetching requests. It will drop the 

prefetching request if the prefetching requests waiting time is too long, as it is more likely 

te be a useless demand. The other policy[18] treats prefetching requests as a demand request. 

So it will schedule equally and fairly performance if the prefetcher prediction hit rate is 

high. 
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2.3.1 Comparison of Prefetch Mechanism 

 

Table 3 Comparison of Prefetching 

 

 Many prefetchers access data and dynamic adaptive current state. There are some extra 

components to record precise and pass into memory controller. In this work, we use a table 

record memory intensive block and prefetch data will improve latency with low hardware 

cost overhead. 
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III. 3DRAMSim Framework 

3.1  Overview 

 This section describes the feature of our 3DRAMSim simulator. 3DRAMsim is a 

DRAM cycle accurate simulator which is based on DRAMSim2[19]. Our simulator can 

provide 3D memory environment to analyze design in an early-stage. In our simulator, we 

also can simulate traditional DRAM like SDRAM or DDR memory from JEDEC protocols. 

Our simulator can easily model different type of memory by modify the system 

configuration files and timing parameters. All DRAM properties are parameterized and 

described in the memory configure file. With the development of TSV technology, system 

can also control different layer independently and share the same data TSV bus. Our 

simulator can also model multi-channel architecture and concurrently operate of DRAM. 

 

 

Figure 6 Program Execution Flow 
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 Figure 6 illustrates the 3DRAMSim flow diagram. The proposed simulator includes 

three parts: trace splitter, memory controller, and memory storage. The trace splitting stage 

includes overall system timing control, and address mapping analysis tool. In order to 

simulate the multi-channel environment, trace must be pre-process, split into sub-traces and 

issued by each channel controller. Trace splitting has to know the address mapping method 

and separate requests mapping into their sub-trace. After the trace splitter, each controller 

increases their own timing domain count. If this counter is less than the trace’s timestamp, 

the trace will issue until the counter equal to the timestamp and another request will not be 

issued in the same channel. After all trace are finish, system will show those information 

and physical execute time to help us evaluate our design. 

 

3.2   Parameter Design 

 Many specifics described as parameters, can improve program flexibility and usability. 

It can simulate other memory architecture by modifying some critical property with low 

overhead. There are two classic configurations for our simulator.  

 First, memory configuration file will provide the timing and current parameter. It also 

gives the architecture structure information for DRAM like number of banks and ranks. 

 Second, system configuration file provides the policies for our target DRAM. These 

policies include row buffer policy, memory address mapping, and scheduling method. With 

many policies, we have to modularize respective functions to make the program more 

readable and easy to expand.  

 Finally, we use indirect pointer to link the function section in the initial time to save the 

comparison time in each simulation cycle. After the pointer is built successfully, we can use 
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this pointer to call specific function directly. It can easily switch to other policies without 

recompilation of the program, making it more efficiency. 

  

3.3  Channel Controller 

 BankState is a table that describe the current bank state including current row buffer 

state, current command issued, and requests action corresponding to reasonable cycle time 

to fit the timing constrain. This state table will determine when the command can be issued 

or not in this cycle and update the table state whenever a command is committed.  

 Channel controller is the main control of the memory system and operates disjointed 

portions of memory stack independently. Command queues store those memory requests 

scheduled by the scheduler in the buffers. Commands sequence will be reordered and issued 

out of order to improve the memory performance. In our 3DRAMsim simulator, this work 

provides the well-know FR-FCFS scheduling policy. 

 Each controller access a portion of the memory stack. They do not cause interference 

and the clocks are maintained by its own domain. The timing clock is store in the controller 

object and increases every time controller update called by the upper system. As soon as the 

timer increases, next cycle will come and schedulers compare the bank state timing 

constraint with the current clock to schedule those commands. 

 

3.3.1 TSV Modeling 

 All ranks are shared by the same TSV bus in region of the same channel controller. The 

signal can be classified into two kinds: control signal and data bus. The total numbers of 
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TSV is 300 in wide I/O interface for each controller. Controller can continuously send a 

command to different ranks every cycle if the command conforms to the timing constrain. 

 Because wide I/O is burst oriented, all the data accesses are uses burst mode to transfer. 

The data bus must be locked a period by data burst transfer with many cycles. In wide I/O 

interface, the burst length is either two or four cycles. Also, the stacked memory property 

only restricts each timing constraint in the current rank. In other word, the data commands 

may be sent continuously. The data bus competed by controllers, so it must have an arbiter 

to determine which one can use TSV data bus in this period and when to release the 

resource. There is a counter in our wide I/O bus model. It will add burst length to reflect 

the bus transfer when the arbiter decides which controller has the next period. Memory 

controller will call the lock function to prevent different ranks using the TSV bus when 

transaction is not complete. After TSV data bus is locked, the counter will count down to 

zero and then unlock the data bus. If the bus is free, the controller will select the earliest 

command for scheduling and lock the data bus. It will simulate command continuously and 

access data sequentially to transfer. Our TSV bus modeling can more accurately describe 

data bus utilization. Simulator can also reflect the bandwidth by calculating the locking 

cycle. It is an important metric for memory intensive programs. 

 In order to save power, it can switch to low power mode if the command queue is 

empty and the state is idle for a rank. If there are other commands injected into the 

command queue, the rank will switch to normal mode after in a period. It can calculate the 

activate time in the power up cycle to reflect utilization for each rank. 
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3.4  Accelerating Simulation 

 In recent development, DRAM has more and more ranks and controllers to improve 

access latency. With the simulation components increasing, simulation time also become 

much longer because each object has to update its state or transfer data every cycle in the 

simulator. Some of them are unnecessary updates only check and increase cycle when the 

command queue is empty. There are many potential opportunities to speed up the DRAM 

simulator. For example, the previously mentioned indirect pointer saves unnecessary 

comparison time when program executes. Also, it can find and improve program parallelism 

issues to speed up simulation time. Our speedup mechanism in the 3DRAMsim focuses on 

channel controllers because the control, data, and clock signals are critical to independent 

control. It means different channel controllers can be executed on their own and the 

executions are likely to be parallelized. Furthermore, the result of the speedup version must 

be the same as original version to prove the correctness. In order to speed up the channel 

controllers, this work has to modify the program execute about the channel update function. 

The original version updates channel use loop and update sequentially whenever system 

cycle increase and the ordering will not be affected because the controllers are independent.  

 If the system only has one trace for simulator, it is hard to reflect concurrent execution 

for a multi-channel architecture. The trace splitter is described in the previous section. After 

the memory system is created, it also creates many threads for each channel controller in 

our simulator. Figure 7 show the concept of the thread creation for each channel. In our 

multi-thread version, each thread updates their own ranks partially without dependency. The 

simulation cycle is the maximum cycles in all the sub-trace returned from the trace splitter. 

Because of threads’ difference in speed, it has to wait for all controller threads to finish its 

job, so there is a synchronous point to check for whether other controllers are completed or 
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not. The program will insert a barrier to wait for the slower job and print all the information 

after all controllers simulate completed. The result in both versions must match to verify the 

speedup version’s correctness.  

 

CPU Model

Trace Porcessor

Channel

Controller 

Ranks 

Channel

Controller 

Ranks 

Channel

Controller 

Ranks 

Channel

Controller 

Ranks 

  

Figure 7 Pthread Accelerating Method 

 

Figure 8 show our simulator speeds up 3.1 times compare to sequential version in 

average. Considering threads diversity, some threads have to wait for the slowest one, the 

degree of speedup is always nearly the number of threads if host machine has enough cores 

and can support threads to execute independently. The maximum speedup will be 

proportional to the number of channels and the upper bound is four times in wide I/O 

interface.  



 

22 

 

 

Figure 8 Simulation Speedup Times 

3.5  Profile Model 

 With the TSV technology coming, there are some differences from traditional DRAM 

memory system. Controllers can issue different command to every rank by interleaving. The 

rank can issue commands only when sharing the same data bus. The timing constraint in 

different ranks only have to consider their layer inside. The property of the parallelism 

factor will also be different because the ranks behavior also changes. For example, the rank 

to rank switch time will impact the rank level parallelism and the activated row buffer 

constraint will impact bank level parallelism. There are more complex factors for 3D IC 

development, and the best addressing mapping policy will become harder to find. Our 

simulator provides some simple methods that can find a better mapping method to fit your 

demand. Better mapping methods can be found by two steps. After mapping analysis, the 

simulator will find the trend of different mappings for the current architecture. 

 First step of evaluation is focused on the rank and channel utilization in the memory 

system. The delay becomes longer because the parallelism factors decrease. If ranks or 
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channels mapping are unbalanced, it will cause some resource to idle, causing violent 

competition in some rank. This step will eliminate the most of the impossible mapping 

methods, but some case is hard to find because the number of commands will continued to 

increase in disperse ranks for a long time. 

 Second, memory level analysis is important to mapping performance. It will run 

3DRAMsim with trace by without timestamp. This step will show parallelism because the 

command dependency will be roughly taken into consideration. The simulation time is 

faster than the complete simulation because it does not have to wait for the trace interval for 

command issues. This work chooses those potential methods as candidates and analyze 

artificially. The traditional mapping methods consider the bank level parallelism and 

column access locality in the simple memory system.  

 The results show mapping channel’s bits to lowest bits is better because when mapped 

to upper bits, the bits are more unbalanced and have less channel level parallelism, since 

having independent channel controllers achieves the maximum parallelism. Moreover, the 

row bits are mapped to higher bits because this way there is no parallelism issue between 

each row. If the row bits are mapped to the lower bits, it may more likely use a different row 

and cause more penalty for row buffer switch. 
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IV. Control Mechanism 

4.1  Address Mapping Analysis 

  

 Semi-automatic method can eliminate those low performance combination mapping. It 

shows the row bits mapping to high and channel bits mapping to low get better performance 

for wide I/O interface. This thesis analyzes the other parallelism issue to fit the 3D 

architecture by run simulation completely. The results of different mapping show in Figure 

9 as follow and find the best mapping method. The value is normalized to the first mapping 

method. 

 The x-axis is mapping sequence’s permutation combination of rank, bank, and column. 

The first and second methods are mapping column bits to lowest. The third and fourth are 

rank lowest, and the others are bank-orient. This work finds the rank will get the best 

performance if mapping to the lowest bits. Because of each layer can work independently 

with low overhead rank to rank switch penalty and only shared the same TSV bus to 

transfer data, ranks are more parallelism than other issue the 3D design.  
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Figure 9 Different Address Mapping Method 

(R: Rank / B: Bank / C: Column) 

  

 Bank level parallelism will not improve well in our simulation result. It may cause by 

opening windows constrain in rank constrain in wide I/O interface. The maximum number 

of row buffer be activated is two. It has to close some row buffer to open another, and the 

delay penalty will decrease the system performance. This work will select the following 

mapping sequence: “Row:Column:Bank:Rank:Channel” to evaluate our following 

experiment. 

  

4.2  Adaptive Prefetching Engine 

 OS manage the all resources allocation in general computer architecture. The memory 

resource is allocated by OS and record in page table. CPU will access memory with virtual 
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address and then convert to physical address by MMU. Memory controller must access data 

with physical address. Page is based on the size of block and must be the same in virtual 

and physical memory. Page size is normally set range size from 2 to 8KB. The same 

application will be allocated to continuous virtual address but it will be mapping to discrete 

physical block. Because programs have spatial locality, the nearly address may appear soon. 

This behavior is the same in physical page block. This thesis analyzes the behavior in 

physical block and prefetch data to improve performance. Our mechanism is much different 

from other that this work not focus on core level prediction but physical behavior to find 

memory intensive block. 

 TSV technology can stack different fabrication process and design more flexible. With 

three-dimension integration memory layers stacked on top of logic memory control layer. 

Memory and CPU can design independently and optimal by themselves. The control can be 

aimed at controller and dynamic adaptive with DRAM state. Prefetching is general way to 

improve DRAM performance and combine with core. Because the Prefetcher is separated to 

DRAM system, it is hard to get the current memory state and only determine by return 

requests’ information. In order to get more power information, the LLC must add column 

and bypass to CPU. This mechanism will increase cache size and power consumption. 

 Prefetcher doesn’t always improve system performance due to some reasons. First, 

miss-predict request will waste the memory bandwidth. Because one channel is shared by 

many banks, the useless prefetching request will block the TSV bus and delay demand 

requests. The extra fetch data will affect the system behavior for example access other row 

buffer. For some critical example, the prefetching mechanism will degrade memory system 

performance a lot. Second, extra prefetch request will replace original data in cache. The 

may cause extra cache miss and is call cache pollution. In order to prevent those drawbacks, 
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our prefetching will combine with controller and depend on memory rank state. This work 

also adds an extra cache for our prefetch requests in the 3D memory logic layer. 

4.2.1 Prefetching Reference Table 

There is address spatial locality property when memory access. Although virtual address 

translates to physical with discrete mapping, the same virtual memory block will be 

mapping to the same physical block. With the memory intensive access program, the 

continuous address would likely access soon with regular address interval. In this case, 

memory access pattern will probability to predict the next memory address. On the other 

hand, Memory non-intensive programs will hard to predict with memory analysis.  

 In order to distinguish memory intensive blocks, there is a cache table to record the 

memory block utilization. The address is based on the block numbers to record the access 

status. The access in the block are using an accuracy counter to reflect the continuously 

access in a restrict region. This thesis selects partial bits in physical address as our tag and 

index as Figure 10 illustrate. For example, if block size is 4KB with 8GB memory system, 

the address has to shift right it mean there are total 2M blocks which size is 
 
in 

our system. In order to reduce extra cost for record all 2M entry block, this work use a 

cache table to store partial of the 2M blocks status with most recently used. 
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Figure 10 Prefetching Table 

 

4.2.2 Adaptive-Prefetching Control 

 In order to reduce useless prefetch requests, the control will not only reference the 

prefetching table but collocation with rank state restriction. Our prefetching control flow is 

show in Figure 11.  

 First, this work adaptives the prefetch degree depend on the accuracy in reference. 

There is a threshold to restrict the Prefetcher. If the counter higher than threshold, the 

different prefetching degree is depend on the accuracy counter. Second, many researches 

show the prefetch requests will more likely useless if the request is delay for a long time. In 

our design, the prefetch request will insert depend on the command queue entry size. If the 

command buffer is already has many requests, prefetch request will be delayed because it 

has to process previous request no matter in FCFS property scheduling or demand first 

priority based scheduling. In other word, prefetch requests will access data and waiting for a 

long time. The advantage of prefetching mechanism will decrease. To prevent this case, our 

prefetch engine will view the number of request in command queue to decide whether insert 
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prefetching request or not.  
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Figure 11 Prefetching Flowchart 

 

4.3  Hide Latency Scheduling 

 Memory Stacked will improve the system performance and change the memory 

property when TSV technology matures. With 3D architecture, there is some opportunity to 

optimize the overall system. For example, controller can continuously issue command to 

each rank because zero rank to rank switch delay. The rank switch overhead will become 

small than before. Continue access different layers data in 3D memory use the same TSV 

bus. Memory controllers have to determine which rank can transfer data. Data will delay 

many cycles because wide I/O is burst orient and single data rate interface. Once, 
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controllers lock the TSV bus, it will release many cycles decide by the data burst length. In 

other word, next data command will be delay by previous request because the TSV bus 

resource is not release yet. In those waiting cycle, other ranks will have opportunity to issue 

command and the delay will be overlapped. 

 FR-FCFS is the most popular scheduling for the DRAM memory system now. It 

schedules ready request first and promote the row buffer hit ratio. Most research is based on 

this algorithm to improve in case study. The scheduling is not optimized for 3D stacked 

memory when the rank to rank switch penalty disappears. 

 

Figure 12 Timing Diagram for Hide Latency Scheduling 

 Figure 12(a) show the case when continue issue data accessing commands to different 

rank. In this case, R0 issue first and R1 after it immediately. The TSV data bus will become 

bottleneck and R1 data has to wait for R0 transfer complete. Figure 12(b) is optimized for 

this situation. As soon as data access command will be served, there is an opportunity to 

issue commands to those not use data bus because the next data will wait for controller 

release the lock. 
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 In order to improve the performance, Memory controllers can previous precharge the 

row buffer when the bus is busy. This work uses a counter which is call BLCD(Bus Length 

Counter Down) to express data utilization and exist in each bank. Whenever controllers 

server a request, the BLCD will increase number of burst length. BLCD counter will count 

down every cycle until zero. 

 Our algorithm will get those requests which not use data bus higher priority when the 

periods of data transferring delay. To reduce miss predict close page probability, there is a 

table to record the last row access status recently. The precharge table provides previous 

row access information. When a new row is activated, controller will search precharge table 

and load value into row predict counter. 

 “Row prediction counter” store last row access times. The other counter is called access 

counter, it will use 4 bit saturating counter and express current row access times. If row 

access counter is larger than row predict counter, the row will probability close soon. 

Predict close row buffer will bring some advantage. First, command issue when TSV bus is 

busy and hide precharge latency as show in Figure 12. Second, predict close row buffer will 

save power because the activated row buffers will cause more power consumption than 

close buffer. Open page policy will hold data until the precharge command issue. In other 

word, more power waste because recharge comes too late.  

 

Figure 13 Bank Precharge Prediction Table 
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 Looking for the BLCD to determine whether issue precharge or not. If the BLCD is not 

equal to zero, the row predict counter will compare to access counter. When the row predict 

counter is bigger the precharge will issue to rank, or it will follow original schedule to issue 

command. The control flow is described in Figure 14. 
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Figure 14 Bank Precharge Prediction Scheduling Flow 
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V. Experimental Results 

5.1  Environment Setup 

5.1.1 System Configuration 

 

Table 4 System Configuration 

 

 This work uses GEM5 which is a full system simulator to get the memory traces. Our 

target is 8 cores with private L1 caches and shared L2 cache architecture. Table5 show our 
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target simulator environment. The memory trace information include timestamp and 

physical memory address are generated by running benchmark on GEM5. This thesis 

evaluate the DRAM system with parsec[20] and spec2006[21] benchmark which supplies 

parallel program and memory intensive workload. The detail benchmark is show detail in 

table 6. 

 

Application

blackscholes  in_64K

bodytrack sequenceB_4 4 4 4000 5 0 8

facesim timing

freqmine kosarak_990k.dat 790

x264 eledream_640x360_128.y4m

401.bzip2 input.program 5

429.mcf inp. in

444.namd --iterations 1

450.soplex m10000

458.sjeng

464.h264ref foreman_encoder_baseline.cfg

470. lbm reference.dat

473.astar lake.cfg

483.xalancbmk xalanc.xsl

spec2006

parsec 8 channel / Large

Parameter

test

 

Table 5 Overview of Benchmark 

 

 The memory configuration is described our memory system timgin constrain parameter. 

The timing parameter is reference by wide I/O specific from JEDEC and show in table 6. 
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Name Description Value

tCK Clock 5ns

RL CAS latency 15ns

tRCD Row to column Delay 18ns

tRP Row recharge delay 18ns

tRAS Row active time 42ns

tRFC Refresh time 210ns

tTAW Two bank active widwow 50ns

tREFI Refresh time interval 3.9 us

tWTR Write to read delay 15ns

tRRD Row to row active delat 10ns

tXP Power down 10ns

BL Burst length 4  

Table 6 Memory Configuration 

5.1.2  Power Model 

 Wide I/O interface is a new technology and not release physical specific with product 

yet. This work selects LPDDR2 as reference target because its property is close to Wide I/O. 

Our power parameter reference Micron LPDDR2 to analysis new design in trend. The 

power formula is voltage multiple current. There are two voltages support in LPDDR2: 

VDD1 is set to 1.8V and VDD2 is set to 1.2V. The current multiple correspond voltage and 

accumulate when following status occur. If controller issue some commands the action 

power will be accumulated. Otherwise, background calculates DRAM idle power and 

different from DRAM power mode and row buffer status. Table 8 shows LPDDR2 power 

parameter. 
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Table 7 LPDDR2 Power Parameter 

 

5.2  Precharge Prediction Analysis 

 Because some compoments of our control mechanism is an extra overhead, this thesis 

takes not only performance but also hardware cost overhead into consider. The extra 

precharge mechanism in our design using a precharge prediction table to record the row 

status and show in Figure 15. 
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Figure 15 Precharge Prediction Table Size 

 

The x-axis is the number of table entries and the y-axis is improvement percentage by 

original. The average line is increasing rapidly before the table entries is 16. It grows slowly 

and saturation when the number is greater than 16 because the buffer will not change row 

frequently in a period. It may be caused by RLP-oriented address mapping and FR-FCFS 

based scheduling. It seems to when 16 entries is most efficiency. 
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Figure 16 Latency Improvement by different Scheduling 

 

 

 

Figure 17 Power Improvement by different Scheduling 
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Figure 16 show the latency in our Latency overlapping scheduling by precharge 

prediction and compare to the MLP scheduling. MLP scheduling separate read/write in 

different command queues and issue write command only when the number of write exceed 

threshold. Our method is less than MLP scheduling by improvement latency because MLP 

save not only read to write timing delay but prioritizes the read command. Figure 17 show 

our method can help to save power because pre-close row buffer can use lower current and 

more power efficiency. Because our scheduling is control those precharge command in bus 

busy slot, it’s independently with MLP scheduling. The result shows our method can 

combine MLP scheduling without conflict. 

 

5.3  Adaptive-Prefetch Analysis 

 

Figure 18 Prefetching Caching Size Tradeoff 
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Figure 18 shows our analysis about prefetch cache size. The x-axis is the number of 

table entries and the y-axis is memory improvement by original version. Because each entry 

size is up to 64B to store full cache block data. The prefetch cache size will increase rapidly 

if the cache extend. In our analysis, when table is larger than 128 entries, the performance 

will improve slowly but double the cache size because the prefetch requests not 

replacement so frequently and the size is enough. This work selects 128 as prefetch cache 

entries. 

  

 

Figure 19 Improvement Relative to No Threshold Prefetching 

 

In order to reduce useless prefetch request and improve rank level parallelism, this 

work proposes constrain the number of prefetch requests when the command buffer exist 

requests more than a threshold. This method not only helps to reduce useless prefetch 

requests but also rank balance. Figure 19 indicates threshold is set to quarter of command 

queue depth. 
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Figure 20 Prefetch Cache Hit Rate 

Figure 20 show the hit ratio is nearly 50% accuracy in our adaptive-prefetching 

technique cache. 

 

Figure 21 Latency Improvements by Adaptive-Prefetching 
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Figure 22 DRAM Power Overhead by Adaptive-Prefetching Technology 

 

Figure 21 show our adaptive-prefetching mechanism performance improvement of 

DRAM latency. It will improve nearly 11.7% in average. Our control will limit prefetch 

requests so the performance is also limited. Figure 11 show the extra energy overhead. 

Although prefetch mechanism can reduce latency, useless data will cause extra power 

consumption. The power cost more 3.68% with our prefetcher. 
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5.4  Hardware Cost 

 

Table 8 Precharge Predict Overhead 

 

 Table 8 show the hardware overhead of latency overlapping scheduling implement. 

Because the precharge predition table is exist in each bank. The table size has to multiple to 

number of bank.   

 

Table 9 Adaptive-Prefetch Overhead 

 

 Table 9 show the cost for Prefetching mechanism and cache. Because the prefetcher 

and cache exist in each channel controller. The table size has to multiple to number of 

channel. 
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VI. Conclusion 

 This thesis provides an ESL platform with TSV architecture that can support wide I/O 

interface. Our simulator is modularize with configurable design parameters so it’s ease to 

model different architecture. This work also speedup the simulation time by using pthread 

acceleration method for each channel. The speedup is approximate 3.1 times with four 

channel controller design relative to sequential version.  

 With analysis of different memory mapping methods in wide I/O, results show that rank 

level parallelsim is good for 3D design because the rank to rank switch penalty decreases 

and the maximum number of activated windows is constrained.  

 Finally, this work proposes two mechanisms to improve system performance. Adaptive 

prefetching techniques analyzes memory intensiveness and access locality to prefetch data 

and considers the number of rank command to improve latency nearly by 13% with 3.5% 

power overhead. Latency overlapping schedules ahead of precharge command by 

overlapping TSV data transfer delay. Latency overlapping scheduling helps to reduce 0.6% 

latency and save 4% power consumption by pre closing row buffers. 

 The hardware cost is an extra overhead in design. This work tradeoff overhead to get 

the proper hardware size. The result shows our mechanism is cost efficienct. 
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