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一個在二元轉譯中連結原生函式庫且可重定目標之方法 

學生：郭政錡 

 

指導教授：楊武 教授 

 
 

國立交通大學資訊科學與工程研究所碩士班 

摘 要       

二元轉譯是一種對移植應用程式到不同指令集常用的手

段，動態連結共享函式庫也是經常被使用在以作業系統為主的

系統上，但是在二元轉譯中，如何去處理動態連結的二元檔，

尚未被廣泛討論。在二元轉譯系統中，有兩種方法可用來連結

轉譯過後的可執行檔和其共享函式庫: (1) 我們可以使用轉譯

過後的原始共享函式庫 (在原始平台的共享函式庫，稱作已轉

譯共享函式庫) (2) 在我們的二元轉譯系統中，我們嘗試去連

結目標平台的已經存在的共享函式庫 (稱作原生共享函式

庫)。 

   連結原生共享函式庫的好處是可以增進執行效率和節省系

統硬碟空間。然而，因為已轉譯可執行檔和原生共享函式庫有

不同的 ABI，如何去處理它們之間的互動是一個很艱鉅的挑

戰。 

   我們提出一個在二元轉譯中連結原生函式庫且可重定目標

之方法，並實作在一個靜態二元轉譯系統 LLBT中，它可轉譯
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ARM 二元碼到 LLVM 中介碼，然後利用 LLVM 的後端產生

已轉譯二元碼，這是一個無關目標平台的方法。 

   在我們的實驗中，已轉譯的 SPEC2006 程式並連結原生共

享函式庫在 i7 的機器上跑得比其換成原本連結已轉譯共享函

式庫還快，連結原生共享函式庫可以達到平均 1.18的加速比。
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ABSTRACT 

Binary translation is commonly used to migrate 

applications from one ISA to another and dynamic 

linking of shared libraries is widely used in OS-based 

systems. But how to handle dynamically linked binaries 

in a binary translation system has not been widely 

discussed. There are two ways in a binary translation 

system to link a translated executable with shared 

libraries: (1) We may use the shared libraries that are 

translated from the original shared libraries, which are on 

the source platform (which are called the translated 

shared libraries). (2) In our binary translation system, we 

attempted to link with the target shared libraries, which 

are compiled for and already on the target platform 

(which are called the native shared libraries). 

 

  Advantages of linking with native shared libraries 
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include improving execution efficiency and saving 

system disk space. However, it is a significant challenge 

to handle the interactions between the translated 

executable and the native shared libraries since they may 

have different abstract binary interfaces (ABIs).  

 

  We present a retargetable approach for linking 

translated executables with native shared libraries. We 

implement it on a static binary translation system, called 

LLBT, which translates ARM binary to LLVM IR in a 

target-independent way and then generates the translated 

binary by the LLVM infrastructure. The generated IR has 

been available to be retargeted to different architectures, 

such as MIPS, without modification. 

 

  In our experiment, the translated programs in the 

SPEC2006 CINT benchmarks linked with native shared 

libraries ran faster than the ones linked with translated 

shared libraries on an i7 machine. Linking with native 

shared libraries can achieve an average speedup of 1.18. 
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Chapter 1

Introduction

Binary translation techniques have been actively researched and developed

for the past two decades and have become a standard approach for migrat-

ing applications from one ISA to another. As there are many different ar-

chitectures, it is desirable to develop a binary translation system that can

be re-targeted to different architectures even though binary translation is

highly dependent on the target machine architecture [15, 13]. In the past

few years, dynamic binary translation (DBT) has been used more often than

static binary translation, since there are challenging problems in static binary

translation (SBT) such as the code location and code discovery problems.

However, SBT could perform more aggressive optimizations [10] and have a

shorter start-up time than DBT,

On most operating systems, there are two kinds of binary executables:

statically linked ones and dynamically linked ones [20]. A statically linked

1



executable is a complete binary executable that includes all the necessary

code and data from libraries. Linking is done at static time. In contrast, a

dynamically linked executable contains only a partial program and may re-

quire loading and linking with the libraries by a dynamic linker at run time.

Although incurring run-time overhead, dynamic linking is still attractive in

that (1) the dynamically linked executable has a smaller size and hence disk

space is saved; (2) dynamically linked libraries can be shared among pro-

cesses on a virtual memory system; and (3) it is unnecessary to recompile

application programs when the shared libraries are upgraded. Nowadays,

dynamic linking is widely used in OS-based systems.

Up to now, how to handle dynamically linked binaries in a binary transla-

tion system has not been widely discussed. A traditional binary translation

system translates both source executables and source shared libraries. How-

ever, many common shared libraries, such as libc, are already compiled,

optimized, and available on the target platform. It would be advantageous

to use the shared libraries on the target platform instead of translating the

source shared library. In this thesis, we discuss the details of linking trans-

lated executables with native shared libraries on an SBT system. The ad-

vantages of our approach are

1. Reduce translation time since only executables, but not shared libraries,

need to be translated.

2. Avoid translation difficulties that are found often in special library
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functions, for example, handcrafted assembly code.

In addition, the native shared libraries on the target platform are usu-

ally highly optimized for the target platform and outperform the translated

shared libraries, which are taken from the source platform.

The abstract binary interface (ABI), in particular, the calling conventions,

of the source and the target platforms may differ. This prevents most existing

binary translators from linking with the target shared libraries. Our binary

translator managed to resolve the ABI differences so that it can link the

translated binary with native shared libraries on the target platform. We

make use of LLVM IR [7], which is target-independent, and leave the target

code generation to LLVM. In this way, our binary translator is re-targetable

to many architectures as long as they are supported by LLVM.

We implemented our method on the LLVM-based static Binary Trans-

lator (LLBT)[21], which translates ARM binary into LLVM IR. Currently,

our implementation can work for binaries compiled from C code. For the

discussion in this thesis, we use the Executable and Linking Format (ELF)

as the format for the dynamically linked binaries, ARM/Linux as the source

platform and x86/Linux as the target platform but notice that our translator

has been available to be retargeted to other architectures, such as MIPS.

The rest of this thesis is organized as follows. Section 2 briefs the related

work. The LLBT overview is described in section 3. The issues related to

binary translation and their implementation are discussed in section 4. The

experiment results are shown in section 5.
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Chapter 2

Related Work

In this section, we will brief some existing static binary translators. The

focus is on the interoperability with native binaries and the retargetability

to different architectures. We will also discuss binary tools related to LLVM

IR.

2.1 Static Binary Translator

VAX Environment Software Translator (VEST)[22] is an SBT, which trans-

lates OpenVMS VAX images to OpenVMS Alpha images. The translated

images can run just like native images on OpenVMS Alpha systems with the

help of the translated images environment(TIE). Besides, VEST provides in-

teroperability between native and translated images by jacket routines that

are created automatically except certain cases that needs to be written by

hand.
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FX!32[19, 11] is an emulator/binary translator that migrates x86 Win32

applications to Windows NT/Alpha platforms. It combines emulation and

static binary translation which uses the execution profiles, and provides in-

teroperability with native Win32 API by jacketing native Win32 API and

translated callback functions. Most jacket routines for native Win32 API are

generated automatically at static time based on the API documentation and

header files, and are embedded in FX!32 runtime library.

In contrast to VEST and FX!32, which can only handle the interoperation

between specific source and target architectures (such as Windows NT on x86

and Alpha platforms in FX!32), LLBT uses a machine-independent IR, i.e.,

LLVM IR, to represent the translated code that can be retargeted to different

platforms and can cooperate with native binaries.

UQBT[14, 16] is a retargetable SBT. It uses the high-level register-transfer

language (HRTL) as the intermediate representation. HRTL can be trans-

lated into various forms, such as low-level C code, depending on the trans-

lation purposes. In addition, UQBT recovers functions from binary to high-

level IR with explicit arguments and return values that are represented by

four low-level types: integers, floating-point values including the sizes and

signs, and pointers to data or to code. The number and types of arguments

are obtained from an analysis of the source binary or are extracted from the

header files. Once procedure calls are recovered, the translated code may use

the native calling convention of the target platform rather than emulating

the unclear source calling convention. Compared with UQBT, LLBT uses

5



not only the target calling convention but also the target library code.

2.2 Decompilation to LLVM IR

SecondWrite[24] is a static binary rewriter that decompiles x86 binary into

LLVM IR and then generates x86 binary by the LLVM backend. The advan-

tage of LLVM IR as the intermediate representation is that SecondWrite may

leverage the rich set of existing LLVM optimizations and transformations.

Furthermore, SecondWrite recovers functions with symbols, arguments, and

return values from binary and replaces register and memory locations by

LLVM symbols. The high-level LLVM IR helps SecondWrite to do the secu-

rity checks.

RevGen[12] is a tool that also statically converts x86 binary into LLVM

IR. Its purpose is to analyze legacy binaries indirectly by analyzing the trans-

lated LLVM IR with existing LLVM tools.

Both SecondWrite and RevGen convert x86 binary into LLVM IR and

generate the binary that is also x86. Our translator handles the issues par-

ticularly encountered in binary translation.

6



Chapter 3

LLBT Overview

This section will describe an overview of LLBT and the new components for

linking with native shared libraries.

LLBT is an SBT system which uses several existing tools in order to

improve retargetability and speed up development. The translation flow is

shown in Figure 3.1. The ELF reader and the disassembler disassembles the

source ELF binary. The translator translates the assembly code to LLVM

IR. Following that, LLBT leverages the LLVM infrastructure to optimize

LLVM IR and generate the target assembly. Finally, LLBT uses the target

assembler and linker to generate a binary executable for the target platform.

Some parts of source (ARM) binary contain data that would be used

in execution, such as the .rodata and .data sections. These sections are

included in the target binary and will be directly used by the translated

binary.

7



In the original binary, we may use or calculate a value that is actually

an address that points to somewhere in the data sections (including .data,

.rodata, etc.). The translated binary will calculate exactly the same value.

In order to avoid the difficulties of mapping the addresses in the two binary

executables, the data sections in the translated binary are placed at exactly

the same location as the data sections in the original ARM binary (through

a specification in the linker script).

The .text section contains data as well as instructions. The instructions

are all translated into the corresponding instructions for the target platform.

The data could be jump tables or are addressed through program-counter-

relative (PC-relative) addressing mode. The jump tables are recovered and

represented directly in the LLVM instructions while pc-relative addressing is

in-lined in the LLVM instructions. Therefore, the .text section need not be

kept in the translated binary.

There are a few sections that are used for dynamic linking, such as

.interp, .dynsym, and .hash in the source binary. These sections are sim-

ply discarded. New information for dynamic linking on the target platform

will be generated by the target linker.

8



3.1 Overview of the LLVM IR Generated by

LLBT

The LLVM IR generated by LLBT (see Figure 3.2) consists of three kinds of

LLVM functions:

1. All the instructions in the source binary are translated and put into

an LLVM internal function called unexported text section. Each

source instruction is translated into a sequence of LLVM instructions

that follow an LLVM label named with the corresponding source ad-

dress, such as L 8308.

2. The function main is the entry point of the translated executable. In the

beginning of main, there are several instructions that perform allocation

and initialization for emulating the source architecture state. Once the

emulated architecture state is ready, it passes a pointer of the emulated

architecture state to the unexported text section function, which

starts executing the translated code.

3. For every exported function, which would be called by functions in

the native library, LLBT creates a wrapper function. In Figure 3.2,

compare wrapper is the wrapper for the exported compare function.

Similar to the above main function, this wrapper function will perform

allocation and initialization and then invoke the above unexported text section

function. The signature of the wrapper function is obtained from the

9



header file.

3.2 Registers and Stack

The registers and stack of the source architecture are emulated by LLVM

local variables. We use the alloca instruction to allocate an i32-type local

variable for each 32-bit register. Since only load and store operations are

performed on these local variables, LLVM optimization may promote as many

local variables into registers as possible, which makes the execution much

faster. On the other hand, because these variables are local variables rather

than global or static variables, the translated binary is reentrant.

3.3 Handling Indirect Branches

Unlike direct branches, whose branch targets are specified by constant value

thus are known at static time. The branch target of an indirect branch is un-

known only until it is about to be executed. For handling indirect branches,

LLBT prepares an address mapping table that contains pairs of a source ad-

dress and the LLVM label of the corresponding translated instruction. An

indirect branch is translated to a branch to a piece of code that searches

the address mapping table for a source address. If found, the corresponding

LLVM label, instead of the source address, becomes the target of the indirect

branch in the translated binary.

10



A naive address mapping table would contain one pair for every instruc-

tion in the source binary. This makes the address mapping table very big.

A bigger table also takes longer time to search. We should remove as many

pairs from the address mapping table as possible.

Our method is to remove the pairs which represent instructions that will

never be the target of an indirect branch. The instructions that are function

entry points, return points, function pointers are potential targets of an in-

direct branch. Their addresses are kept in the address mapping tables. The

addresses of other instructions will not.

3.4 Linking with Native Shared Libraries

In order to link with native shared libraries, we modified LLBT and added

some components (which are in italic font in Figure 3.1). The header parser

extracts the prototypes of library functions from the header files. The func-

tion prototypes are used in the subsequent translation. The LLBT runtime

library is responsible for the translation that cannot be performed at static

time. It contains subroutines such as the wrapper of variadic functions. The

details will be described in section 4.
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Figure 3.1: Translation flow of LLVM-based static Binary Translator

(LLBT). The components in the italic font are intended for linking with

native shared libraries.
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LLVM IR :

1 %r egT y pe = t y p e { i 32 , i 32 , . . . , i 3 2 }
2
3 d ef i n e i n t e r n a l v o i d
4 @u n ex p o r t ed t ex t sec t i o n (%r egT y pe∗ %r eg s 0 ) {
5 en t r y :
6 ; A l l o c a t e t h e new l o c a l v a r i a b l e s f o r em u l a t i n g t h e ARM a r c h i c t u r e
s t a t e .

7 %r eg s = a l l o c a %r egT y pe
8 ; Copy t h e ARM a r c h i t e c t u r e s t a t e f r om %r egs 0 t o %r egs .
9 . . .
10 b r l a b e l %i n d i r ec t b r a n c h st u b
11
12 L 8308 :
13 ; T he t r a n s l a t ed i n s t r u c t i o n s f r om ARM bi n a r y a t t h e a d d r ess 0x8308 .
14 . . .
15 r et u r n :
16 ; R est o r e t h e ARM a r c h i t e c t u r e s t a t e t o %r egs 0 .
17 . . .
18 i n d i r ec t b r a n c h st u b :
19 ;A s t u b f o r l o o k i n g up t h e a d d r ess mappi n g t a b l e .
20 %b r an ch T ar get = l o ad i 3 2 ∗ %ARM pc
21 %t mp 0 = l sh r i 3 2 %b r an ch T ar get , 3
22 %k ey = and i 3 2 %t mp 0 , 31
23
24 ;A t wo− l e v e l t a b l e f o r sp eed i n g up l o o k u p t i m e .
25 sw i t ch i 3 2 %key , l a b e l %l o o k u p f a i l u r e [
26 i 3 2 1 , l a b e l %t a b l e 1
27 . . .
28 ]
29 t a b l e 1 :
30 sw i t ch i 3 2 %b r an ch T ar get , l a b e l %l o o k u p f a i l u r e [
31 i 3 2 33544 , l a b e l %L 8308
32 . . .
33 ]
34 t a b l e 2 :
35 . . .
36 l o o k u p f a i l u r e :
37 . . .
38 }
39
40 d ef i n e i 3 2 @main ( i 3 2 %ar gc , i 8 ∗ ∗ %ar gv , i 8 ∗ ∗ %env p ) {
41 en t r y :
42 ; A l l o c a t e l o c a l v a r i a b l e s f o r em u l a t i n g t h e ARM a r c h i t e c t u r e s t a t e .
43 %r eg s = a l l o c a %r egT y pe
44 . . .
45 ; I n i t i a l i z e t h e em u l a t ed a r c h i t e c t u r e s t a t e .
46 st o r e i 3 2 33748 , i 3 2 ∗ %ARM pc ; Set t h e en t r y p o i n t
47 . . .
48 ; P ass c o n t r o l t o t h e u n ex p o r t ed t ex t sec t i o n f o r s t a r t i n g t o ex ec u t e
t h e t r a n s l a t ed code .

49 c a l l v o i d @u n ex p o r t ed t ex t sec t i o n (%r egT y pe∗ %r eg s )
50 %r e t 0 = l o ad i 3 2 ∗ %ARM r0
51 r et i 3 2 %r e t 0
52 }
53
54 ; O t her ex p o r t ed f u n c t i o n s l i k e c a l l b a c k w r apper s
55 d ef i n e i 3 2 @compar e w r apper ( i 3 2 a r g 0 , i 3 2 a r g 1 ) {
56 ; A l l o c a t e and i n i t i a l i z e as w e l l as mai n .
57 . . .
58 ;M ove i n com i n g ar gum en t s t o em u l a t ed r e g i s t e r s / s t a c k .
59 . . .
60 c a l l v o i d @u n ex p o r t ed t ex t sec t i o n (%r egT y pe∗ %r eg s )
61 ; R et u r n t h e r e s u l t f r om em u l a t ed r e g i s t e r s
62 . . .
63 }

1

Figure 3.2: An overview of the LLVM IR generated by LLBT
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Chapter 4

Issues in Implementation and

Their Soulutions

If the libraries on the source and target platforms share the the same ap-

plication programming interface (API), e.g. µClibc[4] and glibc[2], but are

possibly implemented with different application binary interfaces (ABI), our

system can link the translated executable with native shared libraries by re-

solving the differences in ABI. Obviously, native shared libraries are more

efficient than the translated ones.

ABI is a standard or convention in software. It details the rules that

must be followed by binaries when they interoperate with one another. The

rules may involve the calling convention, data format (i.e. type, size, and

alignment), system call number, binary format (e.g. ELF), and so on. To

link translated executables with native shared libraries, the most challenging
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issue is to resolve the differences between two different ABIs (for the source

and target platforms, respectively). We will present a retargetable approach

to make the translated binaries cooperate with native binaries.

Unfortunately, even if we resolve all the ABI differences, there are still

certain translated shared libraries or library functions which could not be

replaced by the corresponding native ones in some situations. We will discuss

this issue later.

Despite this, we hope that we can still use as many functions from native

shared libraries as possible. To this end, the translated binary is linked

with both translated and native shared libraries at the same time. The

translated binary will invoke the function from the native library if it is

available. Otherwise it will use the one from the translated library.

4.1 Header Parser

It is possible to recover the arguments and return value of a function invoca-

tion by analyzing the register and memory accesses in the binary[25]. These

methods are complicated and incomplete, especially for variable-length argu-

ment lists.

We implement a header parser that, together with the GCC compiler[1]

(gcc -E), parses header files of the shared library to collect type and func-

tion declarations. The output of the header parser is a text file containing

function prototypes that are composed of primitive types (e.g. void, int,
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float, double, etc.)[18] and derived types (e.g. struct(int, int)). Fur-

thermore, in order to generate wrappers for callbacks (which will be discussed

in section 4.4.3), the type of a function pointer argument must be recorded

precisely. For example:

void qso r t ( addr , ulong , ulong ,

funcaddr ( i n t compar ( addr , addr ) ) ) ;

Here funcaddr is a new keyword for simplifying parsing. The above

string means that the function qsort returns void and takes four arguments

whose types are pointer to data (i.e. addr), unsigned long, unsigned long

and function pointer, respectively. The fourth argument, compar, points to

a function that takes two pointers to data and returns an integer.

The header parser extracts the function prototypes of the shared library

for both the source and target platforms. The function prototypes on both

platforms are compared. If they are compatible, LLBT will translate calls

to external functions into calls to native library functions using the function

prototypes. Otherwise, calls to external functions are translated into calls to

the corresponding functions in the translated library.

4.2 External Function Calls

In order to link with the native libraries for arbitrary target platforms, ex-

ternal function calls are translated into the LLVM call instructions. The

LLVM call instruction is a machine-independent IR that takes the function

16



name and a list of explicitly typed arguments. The LLVM backend will gen-

erate function calls following the calling convention of the target platform.

The resulting object will be linkable with other objects with the target linker.

Consider the ELF dynamically linked ARM binaries[8]. An external func-

tion call is a (direct or indirect) branch instruction that jumps to one of the

entries in the Procedure Linkage Table (PLT) instead of the actual address

of the external function. There are two cases to consider:

1. The function call is a direct branch.

2. The function call is an indirect branch.

4.2.1 Direct External Function Calls

Because the branch target address of a direct external function call is known

at static time, we can find the corresponding function name based on the

address from the table of dynamic symbols 1 The function name is used in

the LLVM call instruction. Furthermore, the LLVM call instruction needs

a list of explicitly typed arguments. LLBT builds a list of arguments. The

arguments are taken from emulated registers/stack according to the calling

convention of the source architecture[9] and its function prototype (obtained

from the header parser). Similarly, the return value must be moved from an

LLVM variable to an emulated register after the external function returns.

1The table of dynamic symbols is preserved even in a stripped binary since the dynamic

linker will need it to resolve function names at run time.
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Lines 11-20 in Figure 4.1 is an example of a direct external function call in

LLVM.

Dynamic linking is done with the target dynamic linker (rather than the

translated source dynamic linker). This approach saves a lot of overhead

emulating the linkage operations if the translated source dynamic linker is

used. Specifically, a bl (branch-and-link) instruction for an external function

call in the source (ARM) binary will save the return address in a register.

This return address is useless when the bl instruction is translated into an

LLVM call instruction directly (by LLBT). The call instruction is compiled

into target instructions which will not use the return address saved by bl.

This brings several benefits:

1. On the call site, the instruction that stores the return address to the

link register can be eliminated (line 17 in Figure 4.1).

2. The pair of source address and the corresponding LLVM label of the

next source instruction (line 22 in Figure 4.1) become useless. It is

unnecessary to put the pair in the address mapping table. This results

in a smaller table and reduction of its lookup time.

3. When the external function returns, the return is an indirect branch

with native instructions. Compared with a return of an internal func-

tion call that is also an indirect branch but is emulated by several

instructions which load the branch target from the emulated register

and look up the corresponding LLVM label in the address mapping
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table, the native return is much faster.

In summary, using the native call instruction is certainly much more efficient

than emulating the source call instruction.

4.2.2 Indirect External Function Calls

As we discussed in section 3.3, the address of an indirect branch is unknown

until it is about to be executed. LLBT prepares an address mapping table for

indirect branches. An indirect external function call is also an indirect branch

instruction, such as blx r3 in Figure 4.1 except that its branch target

is one of the entries in PLT. Unlike direct external function calls, indirect

external function calls do not have the branch target address at static time.

So neither the function name nor the function prototype is known.

Further, an indirect branch could be either an external function call or

an internal branch. Therefore, we do not translate indirect function calls to

LLVM call instructions. Instead, they are translated to indirect branches.

In other words, an indirect branch will reach the corresponding LLVM label

of its branch target via the address mapping table. If the indirect branch is

an external function call, it will reach the PLT entry of the external function

after emulating the indirect branch. As a result, instead of translating the

original source instructions in PLT, we translate each PLT entry into a se-

quence of instructions emulating the corresponding direct external function

call, setting up the argument list, and emulating the function return via the
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emulated link register (i.e. %ARM lr). See lines 27-30 in Figure 4.1.

4.3 Tail Call Elimination Handling

Tail call elimination is an optimization often used in a compiler. For a tail

call, its return is combined with a previous return into a single return.

The combined return may drop off multiple stack frames at once. This

saves several run-time overhead.

Note that translated functions and native library functions do not share

the same registers/stack: The translated functions use an emulated register-

s/stack while the native functions use the native registers/stack. Consider

Figure 4.2(a). A translated function, say foo(), calls another translated

function, say bar(). Then bar() makes a tail call to a native library func-

tion external function(). When the native function returns (which is done

via the native link register), it does not return to the intended caller foo().

But rather, it returns to the original translated function bar(). In this case,

LLBT needs to add code to return from bar() to foo(). In Figure 4.2(b),

Lines 4-6 are the added instructions for the emulated return. These instruc-

tions move the register lr to pc and indirectly branches to the address of pc.

On the other hand, the stack frame of the source stack has not been adjusted

as well (the callee adjusts only the target stack). In the case of ARM source

binary, we only have to deal with the return problems. It is not necessary to

adjust the stack frame since the ARM stack is adjusted before a tail call.
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The indirect branch of an emulated return is still necessary even if external func

is a translated library function. Therefore, the overhead for handling tail call

elimination is merely the native return. The native return uses the target

address with target instructions, so the overhead is very small.

4.4 Arguments

When translating an external function call, LLBT adds instructions to move

the arguments from the emulated registers or the stack to LLVM variables

(according to the calling convention of source platform and the function

prototype obtained from header parser). In this sections, we discuss how to

handle special arguments that might raise issues while linking with native

shared libraries.

4.4.1 Variable-length Argument List

A variadic function function may accept a different number of arguments

at different call sites. To recover an external function call with a variable-

length list of explicitly typed arguments, we need to figure out the length

and types of the arguments at the call site. But it is difficult to determine

the argument list by static analysis[17]. Although the arguments passed

in registers can be easily determined by data flow analysis, the arguments

passed in the stack cannot. Therefore, we replace a call to a variadic function

with a wrapper function that has a fixed-length argument list and translates
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the calling convention at run time.

In the standard C library, a variadic function usually has a corresponding

function that has a fixed-length argument list and one of the arguments

determines the number of arguments and argument types if necessary. For

example:

i n t p r i n t f ( const char ∗ format , . . . ) ;

i n t vp r i n t f ( const char ∗ format , v a l i s t ap ) ;

The variadic function printf has a corresponding function vprintf, which

has a va list type argument ap, which is actually a pointer to an array that

holds the variable-length arguments. The first argument format, which is a

string, determines the number and types of arguments.

For variadic functions, we create a wrapper that uses an argument (e.g.

the format string in the printf) to determine the number of arguments and

how to copy them from the emulated registers/stack, and then copies the rest

of arguments to a variable (e.g. ap) which will be passed to the corresponding

function (e.g. vprintf).

The above method is useful only if we know how to determine the num-

ber of arguments of the variadic function. If a function has an unknown

way to determine the number of arguments, the wrapper cannot be created

correctly. In this situation, we have to call the translated library function

(rather than the function in the native shared library), which emulates the

calling convention of the source platform.
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4.4.2 64-bit Data Type

In the 32-bit architecture, the double-precision floating-point type (double)

occupies two registers. There are two ways to compose a 64-bit data value:

the first register holds either the lower or the higher 32 bits; the rest is in

the second register. In LLBT, the translator recovers each double argu-

ment to a double LLVM variable, and then the arguments in the translated

program will be passed to the callee obeying the appropriate calling conven-

tion. Recovering double arguments needs not only the function prototypes

but also the source architecture’s floating-point format. All other primitive

types whose lengths are more than 32 bits, such as long long, are treated

similar to double.

Different hardware platforms may enforce different double-word align-

ments. In translating the source binaries to LLVM IR, it is necessary to

consult the double-word alignment on the specific hardware platform when

a double-word argument is encountered.

4.4.3 Callbacks

Callback is a function usually located in the executable. It is passed as an

argument (i.e, a function argument) when another function calls a library

function. The library function then calls (directly or indirectly) the callback

via the argument. A function argument is passed as a pointer to the callback

function. We need to be careful that this pointer contains the address of

23



the callback function in the source binary, which is not the address in the

translated binary.

When linking the translated binary with the native libraries, a native-

library function cannot invoke the callback directly through the function

argument. This situation is similar to an indirect jump instruction.

For each callback function, a wrapper function is created. The function

argument actually contains the address of the wrapper, not the address of the

callback function. The wrapper function has the same function prototype as

the corresponding callback function. Hence, when a library function invokes

a callback, it actually jumps to the corresponding wrapper function. The

wrapper function will transform the arguments (which are in the target-

platform’s calling convention) to the calling convention of the source platform

and then invoke the actual callback. Return from the callback function is

handled analogously.

There is another method to handle callbacks[23], which places the instruc-

tions that redirect the program to where the translated callback is located

at all the callback source addresses. It’s straightforward, but it needs to find

out all the callback addresses at static-time for the placement of redirection

instructions with a SBT system, or it needs run-time help. Moreover, the

analysis of finding callbacks at static-time is not trivial and the redirection

instruction are target-dependent and required being written in assembly, thus

LLBT chooses another method.
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4.5 Architecture-specific Functions

Some functions are architecture-specific in that they make use of unique

features in the architecture. Examples are setjmp and longjmp. These

architecture-specific functions on the source platform cannot be replaced by

the corresponding architecture-specific functions on the target platform di-

rectly; we must always execute their translated binaries. For example, the

setjmp and longjmp functions save and restore a program’s calling environ-

ment (i.e. registers) to the env argument for non-local jumps, respectively.

If the translated program calls the native setjmp, the program’s calling en-

vironment saved by the setjmp is the target registers, but not the emulated

source registers, which means that the emulated program’s calling environ-

ment is lost and subsequent program execution is meaningless.

An alternative way to avoid translating shared libraries is to write an

emulated function by hand. The benefit is that the hand-written shared

library is smaller since only architecture-specific functions are included.

4.6 Linking with Translated Shared Libraries

As discussed previously, there are still translated shared libraries or library

functions that could not be replaced by the corresponding native ones, which

occur in the following situations:

1. The API of the library is unknown. Our implementation will not work
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without the header files of the library.

2. The corresponding native shared library is not available on the target

platform. For example, the library has not been ported to the target

platform.

3. The function has a variable-length argument list but we do not know

how to determine the number of arguments. In this case, a wrapper

for it cannot be created.

4. The function is architecture-specific and its result depends on the source

architecture.

In our implementation, we link the translated executables with both the

translated shared library and the native shared library. It will attempt to

use the functions in the native library whenever possible.

In translated shared libraries, the prototype of all exported functions is

identical to that of the unexported text section function. All function

names end with a suffix (i.e. LLBT). For example, the prototype of the

printf function is

void @printf LLBT(%regType∗ %regs )

This translated printf takes only one argument regs, which is a pointer

to a structure of type regType that contains all the variables for emulat-

ing the source architecture state. That is to say, we pass the emulated

source-architecture state to the callee when the caller calls a translated li-
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brary function. Once the translated library function can access the emulated

architecture state, it executes with the caller’s emulated architecture state.

In particular, it could retrieve the arguments from the emulated registers/s-

tack. The return values are handled similarly.

Unfortunately, because the emulated architecture state are stored not in

the local variables but in the memory pointed by an argument, the callee’s

translated instructions that operate on emulated architecture state cannot

be promoted into registers as we discussed in section 3.2. Performance of the

translated shared libraries hurts.

As an improvement, the translated library function may allocate local

variables, copy the architecture state to local variables, do its normal work,

and finally copy the contents of the local variables back to the architecture

state upon return. This approach creates extra overhead but may save time

in the execution of the translated library function.
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Funct ion porot ot ype of puts in C:

i n t pu t s( con st char ∗ s ) ;

ARM A ssembly :

; t he PLT en t r y of t he f un ct i on pu t s.

82a8 : add i p , pc , # 0

82ac : add i p , i p , # 32768 ; 0x8000

82b0 : l d r pc , [ i p , # 528] ! ; 0x210

;A d i r ec t ex t er n a l f un ct i on c a l l .

839c : l d r r 0 , [ pc , # 20] ; l oad dat a at 0x83b8

83a0 : b l 82a8 ; br anch t o t he PLT en t r y

83a4 : . . .

. . .

;An i n d i r ec t ex t er n a l f un ct i on c a l l v i a r 3 .

83ac : b l x r 3

. . .

; T he addr ess of a const an t st r i n g.

83b8 : .wor d 0x83e4 ; pc− r el a t i v e dat a

LLVM IR :

1 ;PLT en t r y of t he f un ct i on put s .

2 L 82a8 :

3 %ar g 0 = l oad i 32∗ %ARM r0

4 %r et 0 = c a l l i 32 @put s( i 32 %ar g 0 )

5 ; emulat ed r et u r n

6 st o r e i 32 %r et 0 , i 32 ∗%ARM r0

7 %l r 0 = l oad i 32∗ %ARM lr

8 st o r e i 32 %l r 0 , i 32∗ %ARM pc

9 br l ab el %i n d i r ect b r an ch st u b

10 . . .

11

12 ;A d i r ec t ex t er n a l f un ct i on c a l l .

13 L 839c :

14 st o r e i 32 33764 , i 32∗ %ARM r0 ; st or e 0x83e4

15 br l ab el %L 83a0

16 L 83a0 :

17 st o r e i 32 33700 , i 32∗ %ARM lr ; st or e 0x83a4

18 %ar g 1 = l oad i 32∗ %ARM r0

19 %r et 1 = c a l l i 32 @put s( i 32 %ar g 1 )

20 st o r e i 32 %r et 1 , i 32 ∗%ARM r0

21 br l ab el %L 83a4

22 L 83a4 :

23 . . .

24

25 ;An i n d i r ec t ex t er n a l f un ct i on c a l l v i a r 3 .

26 L 83ac :

27 st o r e i 32 33712 , i 32∗ %ARM lr

28 %pc 0 = l oad i 32∗ %ARM r3

29 st o r e i 32 %pc 0 , i 32∗ %ARM pc

30 br l ab el %i n d i r ect b r an ch st u b

31 . . .

Figure 4.1: A translation example of the external function calls to the library

function puts. Lines 1-8 shows an entry of the PLT. Lines 11-20 shows a direct

external function call. Lines 24-29 shows an indirect external function call.
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(a)

foo() bar() external_function()

call tail call

intended return

native returnemulated return

(b)

ARM A ssembly :

;A t a i l c a l l t o ex t er n a l f u n c t i on ( )

8438: b 0x82cc

LLVM IR :

1 L 8438 :

2 c a l l i 32 @ex t er nal f u n ct i on ( )

3 ; For handl i n g t a i l c a l l el i m i n at i on

4 %l r 0 = l oad i 32∗ %ARM lr

5 st o r e i 32 %l r 0 , i 32∗ %ARM pc

6 br l ab el %i n d i r ect b r an ch st u b

Figure 4.2: Tail call elimination. (a) A translated function bar makes a tail

call to a native library function external func. When external func re-

turns, it returns to bar but not intended foo. Thus, in (b), we add additional

instructions (lines 4-6) for the emulated return to the intended foo function.
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Chapter 5

Experimental Result

In the following experiments, we use ARM as the source architecture and x86

as the target architecture, and we run the SPEC2006 CINT [6] benchmarks

on a 3.07GHz 4-core Intel i7 PC running Ubuntu 11.10. The ARM binaries

and x86 binaries were both compiled with gcc version 4.4.6 using optimization

flag -O2 and linked with µClibc library. The translated binaries were gener-

ated by LLVM 3.0 using optimization flag -O2. In our experiments, LLBT

(as well as QEMU[5]) cannot handle the ARM binary 400.perlbench. In

addition, our LLBT cannot handle C++ programs. Therefore, the bench-

marks 471.omnetpp, 473.astar, and 483.xalancbmk are C++ programs

and are excluded in our experiment. The results in this section were ob-

tained from the remaining 8 benchmarks of SPEC2006 CINT: 401.bzip2,

403.gcc, 429.mcf, 445.gobmk, 456.hmmer, 458.sjeng, 462.libquantum,

and 464.h264ref.
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5.1 Native Shared Libraries vs. Translated

Shared Libraries

We compare two approaches in translating dynamically linked ARM binaries.

The first is to link with native x86 shared libraries (call this the native con-

figuration) and the other is to link with translated ARM shared libraries(call

this the translated configuration). In order to demonstrate the performance

improvement obtained from linking with native shared libraries, we added

some changes:

1. The names of all helper functions in the translated ARM executables

were replaced with the names of the equivalent functions in the x86

libgcc or x86 CompilerRT library. For example, the function aeabi fmul

in ARM libgcc is essentially the function mulsf3 in x86 libgcc. Only

its names in the two libraries differ. We used a table to translate one

name to the other in such cases.

2. A hand-written wrapper function is added for each variadic function as

we discussed in section 4.4.1.

3. We add an emulated version of the architecture-specific functions (i.e.

setjmp and longjmp).

With the above three changes, it is possible to work only with the native

x86 shared libraries. The translated ARM libraries can be no longer needed.
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5.1.1 Execution Time
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Figure 5.1: Ratio of execution times in the translated and native configura-

tions.

We measured the execution time of the native and translated configu-

rations. On the average, the ratio of the execution time of the translated

configuration to that of the native configuration (i.e. speedup) is 1.18 (See

Figure 5.1). For 401.bzip2 and 429.mcf, there is almost no speedup. We

also break down the execution time in different parts of the benchmarks

(i.e. executable and libraries) using the performance analysis tools for Linux

(perf). Figure 5.2 is the breakdown of execution time in the translated con-

figuration and Figure 5.3 is for the native configuration. From Figure 5.2, we

can see that, for 401.bzip2 and 429.mcf, the time spent in the translated

shared libraries were very small. That is why it is not possible to obtain much
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Figure 5.2: Breakdown of execution time in the translated configuration.

improvement by replacing the translated libraries with the native shared li-

braries.

In addition, we examined the execution time in different parts of the

benchmarks. The result is shown in Table 5.1 and Table 5.2. We can see

that the time spent in executables in the two configurations is almost the

same; since the LLVM IR generated by our translator in the two configu-

rations are very similar. In Table 5.1, native configuration is slightly faster

because argument passing is handled differently in the two configurations.

In the native configuration, every external function call has an explicit ar-

gument list and several instructions for copying the arguments. The LLVM

optimizer has a chance to optimize the call site. In contrast, in the translated

configuration, all external function calls have an argument (which points to
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Figure 5.3: Breakdown of execution time in the native configuration.

the emulated architecture state), as we discussed in section 4.6. If the caller’s

emulated registers have been promoted into target registers, the caller needs

to move them back from target registers to the memory where the emulated

architecture state is located. Furthermore, the callee in translated shared

libraries also needs to restore the emulated registers before it returned for a

similar reason. In summary, external function calls incur more calling over-

heads in the translated configuration.

In Figure 5.1, the speedups for 445.gobmk and 456.hmmer are 1.54 and

1.6, respectively, in the native configuration. The large speedup is due to

the following reason: The two benchmarks spent a large portion of time in

the shared libraries (See Figure 5.2). This part of the execution has been

reduced by 26.22 and 15.59, respectively for 445.gobmk and 456.hmmer (see
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Table 5.2).

There are two reasons why the two benchmarks takes so much time in

the translated configuration:

benchmark trans conf native conf trans/native

401.bzip2 899.73 899.02 1.00

403.gcc 1468.07 1471.65 1.00

429.mcf 321.25 318.55 1.01

445.gobmk 1323.93 1230.57 1.08

456.hmmer 1173.63 1153.48 1.02

458.sjeng 1367.63 1300.82 1.05

462.libquantum 575.78 580.39 0.99

464.h264ref 1651.19 1636.12 1.01

Table 5.1: The time (sec) spent in the executable and the time ratio of the

translated configuration and the native configuration.

1. The two benchmarks contains many calls to helper functions that ex-

ecute floating-point operations. Helper functions in the ARM library

emulate floating-point operations in software and the library is emu-

lated again by our translator, which makes the translated helper func-

tions much slower than the native ones, in which the floating-point

operations are executed with x86 hardware instructions directly.

2. As we discussed in section 4.6, the translated library functions needs to
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benchmark trans conf native conf trans/native

401.bzip2 3.71 1.44 2.57

403.gcc 128.77 25.84 4.98

429.mcf 0.45 0.16 2.83

445.gobmk 609.19 23.24 26.22

456.hmmer 746.32 47.88 15.59

458.sjeng 29.38 2.35 12.51

462.libquantum 99.67 16.41 6.07

464.h264ref 337.64 72.38 4.67

Table 5.2: The time (sec) spent in the shared libraries and the time ratio of

the translated configuration and the native configuration.

copy/restore the emulated registers to/from the caller’s registers. This

increases the calling overhead in each external function call. Unfortu-

nately, the two benchmarks make a lot calls to external functions (see

Table 5.3, which shows the numbers of external function calls including

helper function calls and total library function calls. The statistics is

collected with the library-call tracer ltrace[3] with -c flag) and most

of the called library functions run too short to compensate the calling

overhead.
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benchmark helper total

401.bzip2 0 305,403

403.gcc 0 25,160,973

429.mcf 37,197 470,604

445.gobmk 458,547,244 723,632,501

456.hmmer 5,932,217,722 6,489,272,725

458.sjeng 0 273,340,052

462.libquantum 1,242,026,165 1,294,635,444

464.h264ref 42,787,106 1,079,500,458

Table 5.3: Number of external function calls: helper function calls and total

library function calls.

5.2 Binary Translation vs. Recompilation of

Source Code

It is interesting to investigate the quality of our LLBT binary translator by

comparing the performance of the translated code against the best possible

performance. The best possible performance is usually achieved by recompil-

ing the source code directly for the target platform. For the comparison, we

measured the execution time of the recompiled x86 program, the translated

ARM executable linked with native x86 shared libraries and the translated

ARM executable but linked with translated ARM shared libraries. The in-

verse of the execution time is considered as the performance. Figure 5.4
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Figure 5.4: Performance compared with the recompiled x86 program

shows the performance comparison using the recompiled x86 program as the

baseline.

For the benchmark 462.libquantum, the performance of the translated

code linked with the native shared libraries is 97.8% of the recompiled code.

In comparison, the performance of the binary translation that links with the

translated shared libraries is 86.4% of the recompiled code. The average

performance of the two approaches of binary translation is 56.0% and 47.4%,

respectively.
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5.3 Limitation and Future Work

The focus of our study is dynamic linking with the native shared libraries

in binary translation. Currently our implementation does not support C++

programs because in a C++ program, a member function might be invoked

by a native library function through a class pointer. This is an implicit

callback. Our implementation cannot handle this implicit callback.

Our implementation also requires the header files of the shared libraries

in order to determine the function prototypes. If the files are unavailable,

our implementation cannot make use of the native libraries.
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Chapter 6

Conclusions

In this thesis, we studied linking translated executables with native shared

libraries in binary translation. Intuitively, native shared libraries is faster

than the translated one. Our approach is retargetable because we use LLVM

IR as an intermediate representation of the binary code. Part of the work in

retargeting to different platforms is delegated to existing LLVM framework.

We identified several problems and proposed their solutions related to linking.

Our experiments show that the translated programs linked with native shared

libraries can achieve an average speedup of 1.18 when comparied with the

ones linked with the translated shared libraries and kept 55.9% performance

when compared with recompiling the source programs for the target platform.
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