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A Retargetable Approach for Linking Native Shared Libraries in
Binary Translation

Student : Cheng-Chi Kuo Advisor : Dr. Wuu Yang

Institute of Computer Science and Engineering
National Chiao Tung University

ABSTRACT

Binary translation is commonly “used to migrate
applications from one ISA to- another and dynamic
linking of shared Tlibraries is widely ‘used in OS-based
systems. But how to handle dynamically linked binaries
in a binary translation system has not been widely
discussed. There are two ways in a binary translation
system to link a translated executable with shared
libraries: (1) We may use the shared libraries that are
translated from the original shared libraries, which are on
the source platform (which are called the translated
shared libraries). (2) In our binary translation system, we
attempted to link with the target shared libraries, which
are compiled for and already on the target platform
(which are called the native shared libraries).

Advantages of linking with native shared libraries



include improving execution efficiency and saving
system disk space. However, it is a significant challenge
to handle the interactions between the translated
executable and the native shared libraries since they may
have different abstract binary interfaces (ABISs).

We present a retargetable approach for linking
translated executables with native shared libraries. We
Implement it on a static binary translation system, called
LLBT, which translates ARM binary to LLVM IR in a
target-independent way and then generates the translated
binary by the LLVM infrastructure. The generated IR has
been available to be retargeted to different architectures,
such as MIPS, without modification:

In our experiment, the translated programs in the
SPEC2006 CINT benchmarks linked with native shared
libraries ran faster than the ones linked with translated
shared libraries on an, i7" machine. Linking with native
shared libraries can achieve an average speedup of 1.18.



A iR F o F AR R Py ERERY SRR XA g
AR EAN ALY EY A HY o MR AR LS - KT
BAERAAUGABMLRDER KRG JFEREFAL L PP B REFAL
P BEERAERE o ¥ orha BT A A TR R KRR
Ko FGRPaE Ry g e PREAL OB RS BEGE 2 A
LEITUY LB AR ERFRIFI B RELEHY L (e

R R s FRMENET S (AT R IhEER A

FHE AT CFRENEF B RS (RSP ik o ¥

2

3

FHREORE -FERE S RAFF A2 b EOHLL R

=
|4
PRRE RS A S B i AendlB s R A T R

The work reported. in this paper is partially supported by National
Science Council, Taiwan, Republic -of China, ‘under grants NSC
100-2218-E-009-010-MY3and-NSC 100-2218-E-009-009-MY 3.



Contents

% i
Abstract iii
EX v
List of Figures viii
List of Tables X
1 Introduction 1
2 Related Work 4
2.1 Static Binary Translator . . . . . ... ... ... ... ... .. 4
2.2 Decompilation to LLVM IR . .. ... .. ... ... ..... 6
3 LLBT Overview 7
3.1 Overview of the LLVM IR Generated by LLBT . . . ... .. 9
3.2 Registersand Stack . . . . . .. ... 0L 10
3.3 Handling Indirect Branches . . . . .. .. ... .. ... ... 10

vi



3.4 Linking with Native Shared Libraries . . . . . . .. .. .. ..

4 Issues in Implementation and Their Soulutions
4.1 Header Parser . . . . . . .. .. ...
4.2  External Function Calls . . . . . .. ... ... .. ... ...
4.2.1 Direct External Function Calls. . . . . . ... ... ..
4.2.2 Indirect External Function Calls . . . . . . . . .. . ..
4.3 Tail Call Elimination Handling . . . .. ... ... ... ...
4.4 Arguments . . . . . ...
4.4.1 Variable-length-Argument List «. . . . . . .. ... ..
4.4.2 64-bit.Data Type . . ..« o . oo
443 Callbacks . . . . .. o0 Lo
4.5 Architecturesspecific Functions . . . . . ./ ;. ... ...

4.6 Linking with Translated Shared Libraries . . . . . . . . . . ..

5 Experimental Result
5.1 Native Shared Libraries vs. Translated Shared Libraries . . . .
5.1.1 Execution Time . . . . . . . ... ... ... ... ..
5.2  Binary Translation vs. Recompilation of Source Code . . . . .

5.3 Limitation and Future Work . . . . . . . . . . .. .. ... ..

6 Conclusions

Bibliography

vil

14

15

16

17

19

20

21

21

23

23

25

25

30

31

32

37

39

40

41



List of Figures

3.1

3.2

4.1

4.2

5.1

Translation flow of LLVM-based static Binary Translator (LLBT).
The components in the italic font are intended for linking with
native shared libraries.” . . . . . oL Lo Lo 12

An overview of the LEVM IR generated by LLBT . . . . . .. 13

A translation example of the external function calls to the
library function puts. Lines 1-8 shows an entry of the PLT.
Lines 11-20 shows a direct external function call. Lines 24-29
shows an indirect external function call. . . . . . . . . . . . .. 28
Tail call elimination. (a) A translated function bar makes a
tail call to a native library function external func. When
external_func returns, it returns to bar but not intended
foo. Thus, in (b), we add additional instructions (lines 4-6)

for the emulated return to the intended foo function. . .. . 29

Ratio of execution times in the translated and native configu-

ratlons. . . . . . ... 32

viii



5.2 Breakdown of execution time in the translated configuration. . 33
5.3 Breakdown of execution time in the native configuration. . . . 34

5.4 Performance compared with the recompiled x86 program . . . 38

X



List of Tables

5.1

5.2

2.3

The time (sec) spent in the executableand the time ratio of
the translated configuration and the native configuration. . . . 35

The time (sec) spent in the shared librariesand the time ratio

of the translated configuration and the native configuration. . 36
Number of external function calls: helper function calls and

total library function ealls.«. . ... . . o0 oL 37



Chapter 1

Introduction

Binary translation techniques-have been actively researched and developed
for the past two decades and have become a standard approach for migrat-
ing applications from.one ISA to another. As there are many different ar-
chitectures, it is desirable to develop a binary translation system that can
be re-targeted to different ‘architectures-even though binary translation is
highly dependent on the target machine architecture [15, 13]. In the past
few years, dynamic binary translation (DBT) has been used more often than
static binary translation, since there are challenging problems in static binary
translation (SBT) such as the code location and code discovery problems.
However, SBT could perform more aggressive optimizations [10] and have a
shorter start-up time than DBT,

On most operating systems, there are two kinds of binary executables:

statically linked ones and dynamically linked ones [20]. A statically linked



executable is a complete binary executable that includes all the necessary
code and data from libraries. Linking is done at static time. In contrast, a
dynamically linked executable contains only a partial program and may re-
quire loading and linking with the libraries by a dynamic linker at run time.
Although incurring run-time overhead, dynamic linking is still attractive in
that (1) the dynamically linked executable has a smaller size and hence disk
space is saved; (2) dynamically linked libraries can be shared among pro-
cesses on a virtual memory system; and (3) it is unnecessary to recompile
application programs when the shared libraries are upgraded. Nowadays,
dynamic linking is widely used in OS=based systems.

Up to now, how to handle dynamically linked binaries in a binary transla-
tion system has not been widely diseussed. A traditional binary translation
system translates both-source executables-and souree shared libraries. How-
ever, many common shared libraries, such as 1ibc, are already compiled,
optimized, and available on the target platform. It would be advantageous
to use the shared libraries on the target platform instead of translating the
source shared library. In this thesis, we discuss the details of linking trans-
lated executables with native shared libraries on an SBT system. The ad-

vantages of our approach are

1. Reduce translation time since only executables, but not shared libraries,

need to be translated.

2. Avoid translation difficulties that are found often in special library



functions, for example, handcrafted assembly code.

In addition, the native shared libraries on the target platform are usu-
ally highly optimized for the target platform and outperform the translated
shared libraries, which are taken from the source platform.

The abstract binary interface (ABI), in particular, the calling conventions,
of the source and the target platforms may differ. This prevents most existing
binary translators from linking with the target shared libraries. Our binary
translator managed to resolve the ABI differences so that it can link the
translated binary with native shared librariesron the target platform. We
make use of LLVM IR [7], which-is target-independent, and leave the target
code generation to LIV M. In this way, our binary translator is re-targetable
to many architectures as long as they are supported by LLVM.

We implemented our method on the LLVM-based static Binary Trans-
lator (LLBT)[21], which translates ARM.binary into LLVM IR. Currently,
our implementation can work for binaries compiled from C code. For the
discussion in this thesis, we use the Executable and Linking Format (ELF)
as the format for the dynamically linked binaries, ARM /Linux as the source
platform and x86/Linux as the target platform but notice that our translator
has been available to be retargeted to other architectures, such as MIPS.

The rest of this thesis is organized as follows. Section 2 briefs the related
work. The LLBT overview is described in section 3. The issues related to
binary translation and their implementation are discussed in section 4. The

experiment results are shown in section 5.



Chapter 2

Related Work

In this section, we will-brief some existing static 'binary translators. The
focus is on the interoperability with native binaries and the retargetability
to different architectures. We will-also discuss binary tools related to LLVM

IR.

2.1 Static Binary Translator

VAX Environment Software Translator (VEST)[22] is an SBT, which trans-
lates OpenVMS VAX images to OpenVMS Alpha images. The translated
images can run just like native images on OpenVMS Alpha systems with the
help of the translated images environment(TIE). Besides, VEST provides in-
teroperability between native and translated images by jacket routines that

are created automatically except certain cases that needs to be written by

hand.



FX!132[19, 11] is an emulator/binary translator that migrates x86 Win32
applications to Windows NT/Alpha platforms. It combines emulation and
static binary translation which uses the execution profiles, and provides in-
teroperability with native Win32 API by jacketing native Win32 API and
translated callback functions. Most jacket routines for native Win32 API are
generated automatically at static time based on the API documentation and
header files, and are embedded in FX!32 runtime library.

In contrast to VEST and FX!32, which can only handle the interoperation
between specific source and target-architectures (such as Windows NT on x86
and Alpha platforms in EX!32), LIuBT uses a machine-independent IR, i.e.,
LLVM IR, to represent the translated code that can be retargeted to different
platforms and can cooperate with native binaries.

UQBT(14, 16] is a retargetable SBT. Tt uses the high-level register-transfer
language (HRTL) as the‘intermediate representation. HRTL can be trans-
lated into various forms, such as low-level C code, depending on the trans-
lation purposes. In addition, UQBT recovers functions from binary to high-
level TR with explicit arguments and return values that are represented by
four low-level types: integers, floating-point values including the sizes and
signs, and pointers to data or to code. The number and types of arguments
are obtained from an analysis of the source binary or are extracted from the
header files. Once procedure calls are recovered, the translated code may use
the native calling convention of the target platform rather than emulating

the unclear source calling convention. Compared with UQBT, LLBT uses



not only the target calling convention but also the target library code.

2.2 Decompilation to LLVM IR

SecondWrite[24] is a static binary rewriter that decompiles x86 binary into
LLVM IR and then generates x86 binary by the LLVM backend. The advan-
tage of LLVM IR as the intermediate representation is that SecondWrite may
leverage the rich set of existing LLVM optimizations and transformations.
Furthermore, SecondWrite recovers functions with symbols, arguments, and
return values from binary and replaces registerrand memory locations by
LLVM symbols. The high-level LLVM IR helps SecondWrite to do the secu-
rity checks.

RevGen[12] is a tool that also statically converts x86 binary into LLVM
IR. Its purpose is to analyze legacy binaries indirectly by analyzing the trans-
lated LLVM IR with existing LLV M- tools.

Both SecondWrite and RevGen convert x86 binary into LLVM IR and
generate the binary that is also x86. Our translator handles the issues par-

ticularly encountered in binary translation.



Chapter 3

LLBT Overview

This section will describe an overview of LLBT and the new components for
linking with native shared libraries.

LLBT is an SBT.system which uses several existing tools in order to
improve retargetabilityand speed up development:: The translation flow is
shown in Figure 3.1. The ELF reader.and the disassembler disassembles the
source ELF binary. The translator translates the assembly code to LLVM
IR. Following that, LLBT leverages the LLVM infrastructure to optimize
LLVM IR and generate the target assembly. Finally, LLBT uses the target
assembler and linker to generate a binary executable for the target platform.

Some parts of source (ARM) binary contain data that would be used
in execution, such as the .rodata and .data sections. These sections are
included in the target binary and will be directly used by the translated

binary.



In the original binary, we may use or calculate a value that is actually
an address that points to somewhere in the data sections (including .data,
.rodata, etc.). The translated binary will calculate exactly the same value.
In order to avoid the difficulties of mapping the addresses in the two binary
executables, the data sections in the translated binary are placed at exactly
the same location as the data sections in the original ARM binary (through
a specification in the linker script).

The .text section contains data as well as instructions. The instructions
are all translated into the corresponding instructions for the target platform.
The data could be jump.tables or areraddressed through program-counter-
relative (PC-relative) addressing mode.-The jump tables are recovered and
represented directly in.the LLVM instructions while pc-relative addressing is
in-lined in the LLVM instructions. Therefore, the .text section need not be
kept in the translated binary.

There are a few sections that “are used for dynamic linking, such as
.interp, .dynsym, and .hash in the source binary. These sections are sim-
ply discarded. New information for dynamic linking on the target platform

will be generated by the target linker.



3.1 Overview of the LLVM IR Generated by
LLBT

The LLVM IR generated by LLBT (see Figure 3.2) consists of three kinds of

LLVM functions:

1. All the instructions in the source binary are translated and put into
an LLVM internal function called unexported text_section. Each
source instruction is translated into a sequence of LLVM instructions
that follow an LLVM label named with the corresponding source ad-

dress, such as L_8308.

2. The function main is the entry point of the translated executable. In the
beginning of main, there are several instructionsthat perform allocation
and initialization for emulating the source architecture state. Once the
emulated architecture state is ready, it passes a pointer of the emulated
architecture state to the unexported text_section function, which

starts executing the translated code.

3. For every exported function, which would be called by functions in
the native library, LLBT creates a wrapper function. In Figure 3.2,
compare _wrapper is the wrapper for the exported compare function.
Similar to the above main function, this wrapper function will perform
allocation and initialization and then invoke the above unexported text_section

function. The signature of the wrapper function is obtained from the



header file.

3.2 Registers and Stack

The registers and stack of the source architecture are emulated by LLVM
local variables. We use the alloca instruction to allocate an i32-type local
variable for each 32-bit register. Since only load and store operations are
performed on these local variables, LLVM optimization may promote as many
local variables into registers as possible; which makes the execution much
faster. On the other hand, because these variables are local variables rather

than global or static variables, the translated binary is reentrant.

3.3 Handling Indirect Branches

Unlike direct branches, whose branch targets are specified by constant value
thus are known at static time. The branch target of an indirect branch is un-
known only until it is about to be executed. For handling indirect branches,
LLBT prepares an address mapping table that contains pairs of a source ad-
dress and the LLVM label of the corresponding translated instruction. An
indirect branch is translated to a branch to a piece of code that searches
the address mapping table for a source address. If found, the corresponding
LLVM label, instead of the source address, becomes the target of the indirect

branch in the translated binary.

10



A naive address mapping table would contain one pair for every instruc-
tion in the source binary. This makes the address mapping table very big.
A bigger table also takes longer time to search. We should remove as many
pairs from the address mapping table as possible.

Our method is to remove the pairs which represent instructions that will
never be the target of an indirect branch. The instructions that are function
entry points, return points, function pointers are potential targets of an in-
direct branch. Their addresses are kept in the address mapping tables. The

addresses of other instructions 'will-not.

3.4 Linking-with Native Shared Libraries

In order to link with native shared libraries, we modified LLBT and added
some components (which are in italic font in Figure 3.1). The header parser
extracts the prototypes of library functions from the header files. The func-
tion prototypes are used in the subsequent translation. The LLBT runtime
library is responsible for the translation that cannot be performed at static
time. It contains subroutines such as the wrapper of variadic functions. The

details will be described in section 4.

11
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Figure 3.1:

Translation flow of LLVM-based static Binary Translator

(LLBT). The components in the italic font are intended for linking with
native shared libraries.
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LLVM IR:

1|%regType = type { i32, i32, ... , i32}

2

3| define internal void

4| @unexported_text_section(%regTypex %regs-0) {

5/ entry:

6 ;Allocate the new local variables for emulating the ARM archicture
state.

7 %regs = alloca %regType

8 ;Copy the ARM architecture state from %regs_0 to %regs.

9

10 br label %indirect_branch_stub

11

12| L_8308:

13 ;The translated instructions from ARM binary at the address 0x8308.

15 ret-lj}n:
16 ;Restore the ARM architecture state to %regs_0.
17

18| indirect _branch_stub:

19 ;A stub for looking up the address mapping table.
20 %branchTarget = load i32*% %ARM _pc

21 %tmp_0 = Ishr i32 %branchTarget, 3

22 %key = and i32 %tmp_0, 31

23

24 ;A two-level table for speeding up lookup time.

25 switch 132 %key, label %look_up_failure [

26 i32 1, label %table_1

27

28 ]

29| table_1:

30 switch i32 %branchTarget, label %look_ up_failure [
31 i32 33544, label %L_-8308

32

33 ]

34| table_2:

35

36| look_up_failure:

37

38|}

39

40| define i32 @main(i32 %argc, i8%% %argv, i8%% %envp) {
41| entry :

42 ;Allocate local variables for emulating the ARM architecture state.
43 %regs = alloca %regType

44

45 ;Initialize the emulated architecture state.

46 store 132 33748, i32*% %ARM_pc ;Set the entry point
47

48 ;Pass control to the unexported_text_section for starting to execute

the translated code. .
call void @unexported_text._section(%regType* %regs)

50 %ret_0 = load i32% %ARM_r0
51 ret i32 %ret_0
52|}

54| ;Other exported functions like callback wrappers
55| define i32 @compare_wrapper(i32 arg.0, i32 arg_1) {

56 ;Allocate and initialize as well as main.

gg ;.Mbve incoming arguments to emulated registers/stack.
gg (-:.a-ll void @unexported_text_section(%regType* %regs)
61 ;Return the result from emulated registers

853

Figure 3.2: An overview of the LLVM IR generated by LLBT

13



Chapter 4

Issues in Implementation and

Their Soulutions

If the libraries on the source and target platforms share the the same ap-
plication programming interface (API); e.g. nClibe[4] and glibc[2], but are
possibly implemented with different-application binary interfaces (ABI), our
system can link the translated executable with native shared libraries by re-
solving the differences in ABI. Obviously, native shared libraries are more
efficient than the translated ones.

ABI is a standard or convention in software. It details the rules that
must be followed by binaries when they interoperate with one another. The
rules may involve the calling convention, data format (i.e. type, size, and
alignment), system call number, binary format (e.g. ELF), and so on. To

link translated executables with native shared libraries, the most challenging

14



issue is to resolve the differences between two different ABIs (for the source
and target platforms, respectively). We will present a retargetable approach
to make the translated binaries cooperate with native binaries.

Unfortunately, even if we resolve all the ABI differences, there are still
certain translated shared libraries or library functions which could not be
replaced by the corresponding native ones in some situations. We will discuss
this issue later.

Despite this, we hope that we can still use as many functions from native
shared libraries as possible. - To this-end, the translated binary is linked
with both translated and native shared libraries'at the same time. The
translated binary will invoke the function from the native library if it is

available. Otherwise it will use the one from the translated library.

4.1 Header Parser

It is possible to recover the arguments and return value of a function invoca-
tion by analyzing the register and memory accesses in the binary|[25]. These
methods are complicated and incomplete, especially for variable-length argu-
ment lists.

We implement a header parser that, together with the GCC compiler[1]
(gcc -E), parses header files of the shared library to collect type and func-
tion declarations. The output of the header parser is a text file containing

function prototypes that are composed of primitive types (e.g. void, int,

15



float, double, etc.)[18] and derived types (e.g. struct(int, int)). Fur-
thermore, in order to generate wrappers for callbacks (which will be discussed
in section 4.4.3), the type of a function pointer argument must be recorded

precisely. For example:

void qsort (addr, ulong, ulong,

funcaddr (int compar(addr,addr)));

Here funcaddr is a new keyword for simplifying parsing. The above
string means that the function gsort returns void and takes four arguments
whose types are pointer to‘data (i.e. addr), umsigned long, unsigned long
and function pointer, respectively. The fourth argument, compar, points to
a function that takes two pointers to data and returns an integer.

The header parser extracts the function prototypes of the shared library
for both the source and target platforms. The funetion prototypes on both
platforms are compared. If they-are compatible, LLBT will translate calls
to external functions into calls to native library functions using the function
prototypes. Otherwise, calls to external functions are translated into calls to

the corresponding functions in the translated library.

4.2 External Function Calls

In order to link with the native libraries for arbitrary target platforms, ex-
ternal function calls are translated into the LLVM call instructions. The

LLVM call instruction is a machine-independent IR that takes the function

16



name and a list of explicitly typed arguments. The LLVM backend will gen-
erate function calls following the calling convention of the target platform.
The resulting object will be linkable with other objects with the target linker.

Consider the ELF dynamically linked ARM binaries[8]. An external func-
tion call is a (direct or indirect) branch instruction that jumps to one of the
entries in the Procedure Linkage Table (PLT) instead of the actual address

of the external function. There are two cases to consider:
1. The function call is a direct branch.

2. The function call istan indirect branch.

4.2.1 Direct External Function Calls

Because the branch target address of a direct external function call is known
at static time, we can find the corresponding function name based on the
address from the table of dynamie symbols ! The function name is used in
the LLVM call instruction. Furthermore, the LLVM call instruction needs
a list of explicitly typed arguments. LLBT builds a list of arguments. The
arguments are taken from emulated registers/stack according to the calling
convention of the source architecture[9] and its function prototype (obtained
from the header parser). Similarly, the return value must be moved from an

LLVM variable to an emulated register after the external function returns.

!The table of dynamic symbols is preserved even in a stripped binary since the dynamic

linker will need it to resolve function names at run time.

17



Lines 11-20 in Figure 4.1 is an example of a direct external function call in
LLVM.

Dynamic linking is done with the target dynamic linker (rather than the
translated source dynamic linker). This approach saves a lot of overhead
emulating the linkage operations if the translated source dynamic linker is
used. Specifically, a bl (branch-and-link) instruction for an external function
call in the source (ARM) binary will save the return address in a register.
This return address is useless when the bl instruction is translated into an
LLVM call instruction directly (by LLBT). The call instruction is compiled
into target instructions which will notruse the return address saved by bl.

This brings several benefits:

1. On the call site;the instruction that stores the return address to the

link register can be eliminated (line 17in Figure 4.1).

2. The pair of source address and the corresponding LLVM label of the
next source instruction (line 22 in Figure 4.1) become useless. It is
unnecessary to put the pair in the address mapping table. This results

in a smaller table and reduction of its lookup time.

3. When the external function returns, the return is an indirect branch
with native instructions. Compared with a return of an internal func-
tion call that is also an indirect branch but is emulated by several
instructions which load the branch target from the emulated register

and look up the corresponding LLVM label in the address mapping

18



table, the native return is much faster.

In summary, using the native call instruction is certainly much more efficient

than emulating the source call instruction.

4.2.2 Indirect External Function Calls

As we discussed in section 3.3, the address of an indirect branch is unknown
until it is about to be executed. LLBT prepares an address mapping table for
indirect branches. An indirect external function call is also an indirect branch
instruction, such as blx r3 in Figure 4.1 except that its branch target
is one of the entries in. PLT. Unlike direct external function calls, indirect
external function calls'do not have the branch target address at static time.
So neither the function name nor the funetion prototype is known.

Further, an indirect.branch could be either an external function call or
an internal branch. Therefore, we do not translate indirect function calls to
LLVM call instructions. Instead, they are translated to indirect branches.
In other words, an indirect branch will reach the corresponding LLVM label
of its branch target via the address mapping table. If the indirect branch is
an external function call, it will reach the PLT entry of the external function
after emulating the indirect branch. As a result, instead of translating the
original source instructions in PLT, we translate each PLT entry into a se-
quence of instructions emulating the corresponding direct external function

call, setting up the argument list, and emulating the function return via the

19



emulated link register (i.e. %ARM_Ir). See lines 27-30 in Figure 4.1.

4.3 Tail Call Elimination Handling

Tail call elimination is an optimization often used in a compiler. For a tail
call, its return is combined with a previous return into a single return.
The combined return may drop off multiple stack frames at once. This
saves several run-time overhead.

Note that translated functions-and native library functions do not share
the same registers/stack: «Thetranslated funetions use an emulated register-
s/stack while the native functions use the native registers/stack. Consider
Figure 4.2(a). A translated function, say foo(), calls another translated
function, say bar (). Then bar() makes a tail call to a native library func-
tion external_function()..When the native function returns (which is done
via the native link register), it/doesrnot return to the intended caller foo ().
But rather, it returns to the original translated function bar (). In this case,
LLBT needs to add code to return from bar() to foo(). In Figure 4.2(b),
Lines 4-6 are the added instructions for the emulated return. These instruc-
tions move the register 1r to pc and indirectly branches to the address of pc.
On the other hand, the stack frame of the source stack has not been adjusted
as well (the callee adjusts only the target stack). In the case of ARM source
binary, we only have to deal with the return problems. It is not necessary to

adjust the stack frame since the ARM stack is adjusted before a tail call.
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The indirect branch of an emulated return is still necessary even if external func
is a translated library function. Therefore, the overhead for handling tail call
elimination is merely the native return. The native return uses the target

address with target instructions, so the overhead is very small.

4.4 Arguments

When translating an external function call, LLBT adds instructions to move
the arguments from the emulated.registers or the stack to LLVM variables
(according to the calling eonvention of source platform and the function
prototype obtained from header-parser). In this sections, we discuss how to
handle special arguments that might raise issues while linking with native

shared libraries.

4.4.1 Variable-length Argument List

A wariadic function function may accept a different number of arguments
at different call sites. To recover an external function call with a variable-
length list of explicitly typed arguments, we need to figure out the length
and types of the arguments at the call site. But it is difficult to determine
the argument list by static analysis[17]. Although the arguments passed
in registers can be easily determined by data flow analysis, the arguments
passed in the stack cannot. Therefore, we replace a call to a variadic function

with a wrapper function that has a fixed-length argument list and translates
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the calling convention at run time.

In the standard C library, a variadic function usually has a corresponding
function that has a fixed-length argument list and one of the arguments
determines the number of arguments and argument types if necessary. For

example:

int printf(const char sformat, ...);

int vprintf(const char sformat, va_list ap);

The variadic function printf has a corresponding function vprintf, which
has a va_list type argument ap, which is-actually a pointer to an array that
holds the variable-length arguments. The first argument format, which is a
string, determines the number and types of arguments.

For variadic functions, we create a wrapper that.uses an argument (e.g.
the format string in the printf) to determine the number of arguments and
how to copy them from the emulated registers/stack, and then copies the rest
of arguments to a variable (e.g. ap) which will be passed to the corresponding
function (e.g. vprintf).

The above method is useful only if we know how to determine the num-
ber of arguments of the variadic function. If a function has an unknown
way to determine the number of arguments, the wrapper cannot be created
correctly. In this situation, we have to call the translated library function
(rather than the function in the native shared library), which emulates the

calling convention of the source platform.
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4.4.2 64-bit Data Type

In the 32-bit architecture, the double-precision floating-point type (double)
occupies two registers. There are two ways to compose a 64-bit data value:
the first register holds either the lower or the higher 32 bits; the rest is in
the second register. In LLBT, the translator recovers each double argu-
ment to a double LLVM variable, and then the arguments in the translated
program will be passed to the callee obeying the appropriate calling conven-
tion. Recovering double arguments needs not only the function prototypes
but also the source architecture’s-floating-point_format. All other primitive
types whose lengths are.more than 32 bits, such as long long, are treated
similar to double.

Different hardware platforms may enforce different double-word align-
ments. In translating the source binaries to LLVM IR, it is necessary to
consult the double-word alignment. on the specific hardware platform when

a double-word argument is encountered.

4.4.3 Callbacks

Callback is a function usually located in the executable. It is passed as an
argument (i.e, a function argument) when another function calls a library
function. The library function then calls (directly or indirectly) the callback
via the argument. A function argument is passed as a pointer to the callback

function. We need to be careful that this pointer contains the address of
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the callback function in the source binary, which is not the address in the
translated binary.

When linking the translated binary with the native libraries, a native-
library function cannot invoke the callback directly through the function
argument. This situation is similar to an indirect jump instruction.

For each callback function, a wrapper function is created. The function
argument actually contains the address of the wrapper, not the address of the
callback function. The wrapper function has the same function prototype as
the corresponding callback function. Hence; when a library function invokes
a callback, it actually jumps to the corresponding wrapper function. The
wrapper function will transform the arguments (which are in the target-
platform’s calling convention) to the calling convention of the source platform
and then invoke the actual callback. Return from the callback function is
handled analogously.

There is another method to handle callbacks|23], which places the instruc-
tions that redirect the program to where the translated callback is located
at all the callback source addresses. It’s straightforward, but it needs to find
out all the callback addresses at static-time for the placement of redirection
instructions with a SBT system, or it needs run-time help. Moreover, the
analysis of finding callbacks at static-time is not trivial and the redirection
instruction are target-dependent and required being written in assembly, thus

LLBT chooses another method.
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4.5 Architecture-specific Functions

Some functions are architecture-specific in that they make use of unique
features in the architecture. Examples are setjmp and longjmp. These
architecture-specific functions on the source platform cannot be replaced by
the corresponding architecture-specific functions on the target platform di-
rectly; we must always execute their translated binaries. For example, the
setjmp and longjmp functions save and restore a program’s calling environ-
ment (i.e. registers) to the env argument for non-local jumps, respectively.
If the translated program calls the native setjmp, the program’s calling en-
vironment saved by the set jmp is the target registers, but not the emulated
source registers, which means that the emulated program’s calling environ-
ment is lost and subsequent program execution is meaningless.

An alternative way" to avoid translating shared libraries is to write an
emulated function by hand.  The benefit is that the hand-written shared

library is smaller since only architecture-specific functions are included.

4.6 Linking with Translated Shared Libraries

As discussed previously, there are still translated shared libraries or library
functions that could not be replaced by the corresponding native ones, which

occur in the following situations:

1. The API of the library is unknown. Our implementation will not work
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without the header files of the library.

2. The corresponding native shared library is not available on the target
platform. For example, the library has not been ported to the target

platform.

3. The function has a variable-length argument list but we do not know
how to determine the number of arguments. In this case, a wrapper

for it cannot be created.

4. The function is architecture-specific and its result depends on the source

architecture.

In our implementation, we link the translated executables with both the
translated shared library and the native shared library. It will attempt to
use the functions in themative library whenever possible.

In translated shared libraries, the prototype of all exported functions is
identical to that of the unexported text_section function. All function
names end with a suffix (i.e. _LLBT). For example, the prototype of the

printf function is
void @printf LLBT (%regTypex %regs)
This translated printf takes only one argument regs, which is a pointer
to a structure of type regType that contains all the variables for emulat-

ing the source architecture state. That is to say, we pass the emulated

source-architecture state to the callee when the caller calls a translated li-
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brary function. Once the translated library function can access the emulated
architecture state, it executes with the caller’s emulated architecture state.
In particular, it could retrieve the arguments from the emulated registers/s-
tack. The return values are handled similarly.

Unfortunately, because the emulated architecture state are stored not in
the local variables but in the memory pointed by an argument, the callee’s
translated instructions that operate on emulated architecture state cannot
be promoted into registers as we discussed in section 3.2. Performance of the
translated shared libraries hurts.

As an improvement;.the translated library function may allocate local
variables, copy the architecture state tolocal variables, do its normal work,
and finally copy the contents of the local variables back to the architecture
state upon return. This approach creates extra overhead but may save time

in the execution of the translated library function.
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Function porototype of puts in C:

int puts(const char *s);

ARM Assembly:

; the PLT entry of the function puts.

82a8: add ip, pc, #0

82ac: add ip, ip, #32768 ; 0x8000

82b0: Idr pc, [ip, #528]! ; 0x210

;A direct external function call.

839c: Idr r0, [pc, #20] ;load data at 0x83b8
83a0: bl 82a8 ;branch to the PLT entry
83a4:

;An indirect external function call via r3.
83ac: blx r3

;The address of a constant string.
83b8: .word 0x83e4 ;pc-relative data

LLVM IR:

1/;PLT entry of the function puts.
2| L_82a8:

3| %arg.-0 = load i32% %ARM0

4| %ret_0 = call «i32 @puts(i32 %arg_0)
5 ;emulated return

6| store i32 %ret_0, i32 *%ARMr0
7| %lr_0 = load i82*% %ARM-Ir

8 store i32 %Ir.0, i32% %ARM_pc
9| br label %indirect_branch_stub
10| .

11

12| ;A direct external function call:

13/ L_839c:

14 store 132733764, i32% %ARMr0 ;store 0x83e4
15| br label %L_83a0

16| L_83a0:

17 store i32 33700, i32* %ARM_Ir ;store 0x83a4
18| %arg-1 = load i32% %ARM_r0

19| %ret_1 = call i32 @puts(i32-%arg_-1)

20 store i32 %ret_1, i32 *%ARM_r0

21 br label %L _83a4

22| L _83a4:

24

25|;An indirect external function call via r3.
26| L _83ac:

27 store i32 33712, i32% %ARM_Ir

28| %pc_0 = load i32*% %ARM_r3

29 store 132 %pc_0, i32% %ARM_pc

30| br label %indirect_branch_stub

31

Figure 4.1: A translation example of the external function calls to the library
function puts. Lines 1-8 shows an entry of the PLT. Lines 11-20 shows a direct

external function call. Lines 24-29 shows an indirect external function call.
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(a)

call tail call

[ foo() ] [ bar() ] [ external_function() ]

emulated return native return
w P

N
~ -
e —-—

intended return

(b)

ARM Assembly:

;A tail call to external_function()
8438: b 0x82cc

LLVM IR:

1/ L_8438:

2 call i32 @external_function ()

3 ;For handling tail call elimination

4] %Ilr_0 = load i32% %ARM._Ir

5 store 132 %Ir_0, i32% %ARM_pc

6| br label %indirect_branch_stub

Figure 4.2: Tail call elimination. (a) A translated function bar makes a tail
call to a native library function external func. When external_func re-
turns, it returns to bar but not intended foo. Thus, in (b), we add additional

instructions (lines 4-6) for the emulated return to the intended foo function.
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Chapter 5

Experimental Result

In the following experiments, we use ARM as the source architecture and x86
as the target architecture; and we run the SPEC2006. CINT [6] benchmarks
on a 3.07GHz 4-core Intel i7 PC running Ubuntu 11.10. The ARM binaries
and x86 binaries were both compiled with gee version 4.4.6 using optimization
flag -O2 and linked with uClibe library.-The translated binaries were gener-
ated by LLVM 3.0 using optimization flag -O2. In our experiments, LLBT
(as well as QEMUI5]) cannot handle the ARM binary 400.perlbench. In
addition, our LLBT cannot handle C++ programs. Therefore, the bench-
marks 471.omnetpp, 473.astar, and 483.xalancbmk are C+-+ programs
and are excluded in our experiment. The results in this section were ob-
tained from the remaining 8 benchmarks of SPEC2006 CINT: 401.bzip2,
403.gcc, 429.mcf, 445.gobmk, 456 .hmmer, 458.sjeng, 462.1libquantum,

and 464 .h264ref.
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5.1 Native Shared Libraries vs. Translated

Shared Libraries

We compare two approaches in translating dynamically linked ARM binaries.
The first is to link with native x86 shared libraries (call this the native con-
figuration) and the other is to link with translated ARM shared libraries(call
this the translated configuration). In order to demonstrate the performance
improvement obtained from linking with native shared libraries, we added

some changes:

1. The names of all helper functions. in the translated ARM executables
were replaced with the names of the equivalent functions in the x86
libgce or x86 Compiler RT library. For example, the function __aeabi_fmul
in ARM libgce is ‘essentially the funetion < mulsf3 in x86 libgcc. Only
its names in the two libraries differ. We used a table to translate one

name to the other in such cases.

2. A hand-written wrapper function is added for each variadic function as

we discussed in section 4.4.1.

3. We add an emulated version of the architecture-specific functions (i.e.

setjmp and longjmp).

With the above three changes, it is possible to work only with the native

x86 shared libraries. The translated ARM libraries can be no longer needed.
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5.1.1 Execution Time

trans / native

Ratio of execution time

Figure 5.1: Ratio of execution times in the translated and native configura-

tions.

We measured the execution-time of the native and translated configu-
rations. On the average, the ratio of the execution time of the translated
configuration to that of the native configuration (i.e. speedup) is 1.18 (See
Figure 5.1). For 401.bzip2 and 429.mcf, there is almost no speedup. We
also break down the execution time in different parts of the benchmarks
(i.e. executable and libraries) using the performance analysis tools for Linux
(perf). Figure 5.2 is the breakdown of execution time in the translated con-
figuration and Figure 5.3 is for the native configuration. From Figure 5.2, we
can see that, for 401.bzip2 and 429.mcf, the time spent in the translated

shared libraries were very small. That is why it is not possible to obtain much
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Figure 5.2: Breakdown of execution time in the translated configuration.

improvement by replacing the translated libraries with the native shared li-
braries.

In addition, we examined.the execution time in different parts of the
benchmarks. The result is shown in Table 5.1 and Table 5.2. We can see
that the time spent in executables in the two configurations is almost the
same; since the LLVM IR generated by our translator in the two configu-
rations are very similar. In Table 5.1, native configuration is slightly faster
because argument passing is handled differently in the two configurations.
In the native configuration, every external function call has an explicit ar-
gument list and several instructions for copying the arguments. The LLVM
optimizer has a chance to optimize the call site. In contrast, in the translated

configuration, all external function calls have an argument (which points to
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Figure 5.3: Breakdown of execution time in the native configuration.

the emulated architecture state), as we discussed in section 4.6. If the caller’s
emulated registers have been promoted into target registers, the caller needs
to move them back from target registers to the memory where the emulated
architecture state is located. Furthermore, the callee in translated shared
libraries also needs to restore the emulated registers before it returned for a
similar reason. In summary, external function calls incur more calling over-
heads in the translated configuration.

In Figure 5.1, the speedups for 445.gobmk and 456 .hmmer are 1.54 and
1.6, respectively, in the native configuration. The large speedup is due to
the following reason: The two benchmarks spent a large portion of time in
the shared libraries (See Figure 5.2). This part of the execution has been

reduced by 26.22 and 15.59, respectively for 445.gobmk and 456 . hmmer (see
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Table 5.2).
There are two reasons why the two benchmarks takes so much time in

the translated configuration:

benchmark trans conf | native conf | trans/native
401.bzip2 899.73 899.02 1.00
403.gcc 1468.07 1471.65 1.00
429.mcf 321.25 318.55 1.01
445.gobmk 1323.93 1230.57 1.08
456.hmmer 1173.63 1153.48 1.02
458.sjeng 1367.63 1300.82 1.05
462.libquantum 575.78 580.39 0.99
464.h264ref 165119 1636.12 1.01

Table 5.1: The time (sec) spent in the executable and the time ratio of the

translated configuration and the native configuration.

1. The two benchmarks contains many calls to helper functions that ex-
ecute floating-point operations. Helper functions in the ARM library
emulate floating-point operations in software and the library is emu-
lated again by our translator, which makes the translated helper func-
tions much slower than the native ones, in which the floating-point

operations are executed with x86 hardware instructions directly.

2. As we discussed in section 4.6, the translated library functions needs to
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benchmark trans conf | native conf | trans/native
401.bzip2 3.71 1.44 2.57
403.gcc 128.77 25.84 4.98
429.mcf 0.45 0.16 2.83
445.gobmk 609.19 23.24 26.22
456.hmmer 746.32 47.88 15.59
458.sjeng 29.38 2.35 12.51
462.libquantum 99.67 16.41 6.07
464.h264ref 337.64 72.38 4.67

Table 5.2: The time (sec) spent-in the shared libraries and the time ratio of

the translated configuration and the native configuration.

copy /restore the'emulated registers to/from the caller’s registers. This
increases the callingoverhead in each-external function call. Unfortu-
nately, the two benchmarks make a lot calls to external functions (see
Table 5.3, which shows the numbers of external function calls including
helper function calls and total library function calls. The statistics is
collected with the library-call tracer ltrace[3] with -c flag) and most
of the called library functions run too short to compensate the calling

overhead.
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benchmark helper total

401.bzip2 0 305,403
403.gcc 0 25,160,973
429 . mcf 37,197 470,604
445.gobmk 458,547,244 | 723,632,501
456.hmmer 5,932,217,722 | 6,489,272,725
458.sjeng 0| 273,340,052

462 libquantum | 1,242,026,165 | 1,294,635,444

464.h264ref 427787,106 4 1,079,500,458

Table 5.3: Number of.external function calls:" helper function calls and total

library function calls:

5.2 Binary Translation vs. Recompilation of

Source Code

It is interesting to investigate the quality of our LLBT binary translator by
comparing the performance of the translated code against the best possible
performance. The best possible performance is usually achieved by recompil-
ing the source code directly for the target platform. For the comparison, we
measured the execution time of the recompiled x86 program, the translated
ARM executable linked with native x86 shared libraries and the translated
ARM executable but linked with translated ARM shared libraries. The in-

verse of the execution time is considered as the performance. Figure 5.4
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Figure 5.4: Performance comparéd with the recompiled x86 program

shows the performance comparison using the recompiled x86 program as the
baseline.

For the benchmark 462.1ibquantum, the performance of the translated
code linked with the native shared libraries is 97.8% of the recompiled code.
In comparison, the performance of the binary translation that links with the
translated shared libraries is 86.4% of the recompiled code. The average

performance of the two approaches of binary translation is 56.0% and 47.4%,

respectively.
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5.3 Limitation and Future Work

The focus of our study is dynamic linking with the native shared libraries
in binary translation. Currently our implementation does not support C++
programs because in a C++ program, a member function might be invoked
by a native library function through a class pointer. This is an implicit
callback. Our implementation cannot handle this implicit callback.

Our implementation also requires the header files of the shared libraries
in order to determine the function prototypes. If the files are unavailable,

our implementation cannot. make use of the native libraries.
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Chapter 6

Conclusions

In this thesis, we studied linking translated executables with native shared
libraries in binary translation. Intuitively, native shared libraries is faster
than the translated one. Our approach is retargetable because we use LLVM
IR as an intermediate representation of the binary code. Part of the work in
retargeting to different platforms-is.delegated to existing LLVM framework.
We identified several problems and proposed their solutions related to linking.
Our experiments show that the translated programs linked with native shared
libraries can achieve an average speedup of 1.18 when comparied with the
ones linked with the translated shared libraries and kept 55.9% performance

when compared with recompiling the source programs for the target platform.
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