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於社群標記網路上的監督式推薦系統 

研究生: 郭立言                           指導教授: 李素瑛 

 

國立交通大學資訊科學與工程研究所 

 

摘要 

  群眾分類法揭示著一種分散式、去中心化且協同的標記系統，不僅可降低文件

認知的花成本，亦可快速適應常用字彙的變化。社群標記系統中的連結關係包含

使用者產生的內容、對於文件的評比、以及對於文件的標記。一般傳統利用二分

圖來描述使用者與文件之間的評比關係，加入標籤之後，可被視為在使用者與文

件之間一種重要的介面，而這種介面以語義的方式描述文件。縱使社群標記網路

上的推薦系統已被廣泛地探討，然而個人化行為對於推薦結果的影響仍尚待研究。  

  我們提出了一個推薦系統 Supervised FolkRank，以重啟式隨機漫步(Random 

Walk with Restart)為基礎，對於重啟的機率、停滯的機率以及使用者與關鍵字的

權重進行最佳化。本推薦系統關注所有文件的相關性而非僅止於二元地將文件分

為相關與否，如此一來便可掌握整個文件集合就相關性的排序情況，以求得到最

佳化效果。除此之外，透過分析每個使用者的最佳化參數向量而獲得這些向量的

分佈。透過這些分佈，我們發現肇因於使用者行為的不同，而使得最佳化參數向

量存在相當的分歧。從實驗中，比較其他監督式與非監督式的方法，我們所提出

的推薦系統表現出較佳的正確率與取回率。 

 

檢索詞: 社群網路、推薦、隨機漫步、最佳化 
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Institute of Computer Science and Information Engineering 

National Chiao-Tung University 

ABSTRACT 

  Folksonomy represents a distributed, decentralized, collaborative tagging system, 

which lowers the cognition cost and has a quick adaption to changes in vocabulary. 

Social tagging systems contain huge linking relations including user-generated 

content, ratings and annotations. Beyond the bipartite graphs that describe the ratings 

of items for users, annotation by tagging could be taken as an important interface to 

describe content semantically. Although the recommendation in social tagging 

networks has been studied extensively, the influence of personal behaviors on 

recommending results is still unexplored. 

  We propose a recommendation model, Supervised FolkRank, which uses a list-wise 

approach to formulate the objective function so that the ranking of all items could be 

considered. By analyzing the relation among restart probability, self-transition 

probability and the ratio of the target user to the selected query, we discover the 

divergence of the distribution of parameter vectors with the difference of users’ 

behaviors. To find the representatives to describe the distribution, clustering is used 

for analysis. 

  From our experiments on the LibraryThing social tagging graph, we show that our 

approach outperforms other recommendation systems including supervised and 
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unsupervised ones. Finally, by showing that the results by the same model vary with 

different parameter vectors, we demonstrate the influence of the parameter vectors. 

   

Index terms: Social networks, recommendation, random walk, optimization 
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Chapter 1 

Introduction 

 

In recent years, social tagging has transformed the behavior of users from passive 

information receiving to active producing. The influence of authoritative pre-defined 

taxonomy is decreasing, and on the other hand a new type of tagging so-called 

folksonomy has become the most popular way to describe, categorize, and navigate 

content within the Web 2.0 websites.  

Folksonomy is formed by three types of nodes, namely users, items and tags. Users 

use tags to describe items so that items could be categorized by these tagging 

behaviors. Figure 1-1 shows the tagging relation and categorism of each user. A user 

uses his familiar words as tags to describe items. Thus, each user has his own 

categorism. 

 

Figure 1-1 An example of folksonomy. 

 

With the tremendously increasing of information on Internet, taxonomy, which 

constructs a hierarchical categorism by a single authority, would be out of date. 

apple fruit 

iPhone 3C 

iPhone 

apple red 

apple phone 

Users Tags Items 
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Unlike taxonomy, folksonomy represents a distributed, decentralized, collaborative 

tagging system, which lowers the cognition cost and has a quick adaption to changes 

in vocabulary [1, 26]. The main difference is that folksonomy respects to the largest 

possible extent the request of non-expert users not to be bothered with any formal 

modeling overhead [11]. 

Nevertheless, this is a benefit as well as a drawback to the tagging approach. Due to 

lacking of unique authoritative annotations, ambiguous and polysemous tags treated 

as different meanings may decline the accuracy of information retrieval, and 

synonyms would cause the redundancy of information. Moreover, because of 

unawareness of the implicit centralized controlling vocabulary, tagging of a user may 

contravene the mainstream categorical scheme. To reduce the influence of noise, 

personalized recommendation is proposed to make these ‘abnormal’ tags more 

reasonable. 

A. Hotho et al. [11] propose a PageRank-like algorithm, called FolkRank, to 

retrieve information in folksonomies. FolkRank considers the relationship among 

users, tags and resources and converts the relationship formed by triadic hyper-edges 

into an undirected tripartite graph. Thereafter, many random walk-based 

recommendation systems are proposed and the parameters are tuned heuristically. The 

parameters could be taken as a three-tuple vector, which includes restart probability, 

self-transition probability and the ratio of the target user to the selected query. We are 

interested in the relation between the performance of recommendation and the 

distribution of per user optimized parameter vectors. If the distribution is centralized, 

we may use only one parameter vector certainly. However, if the distribution is not 

centralized, is that still meaningful to tune only one parameter vector heuristically?  

In this thesis, we will propose a novel supervised recommendation system, called 

Supervised FolkRank (SFR), to enable collaborative tagging to annotate the available 



3 
 

content. Our model uses a list-wise learning approach to focus on the ranking of all 

items rather than pair-wise ones that split them into two sets. Due to lack of ground 

truth data of recommendation, we use tagging records to simulate the 

recommendation results. To make our model reliable, we define the relevant and 

irrelevant item. The items that are neither relevant nor irrelevant would be pruned. We 

analyze the distribution of the optimized parameter vector of each user. It proves our 

assumption that the distribution may not be centralized. To reduce the influence of the 

divergence of distribution, we find the representatives by clustering. Besides, we also 

discuss the influence of the transition matrices constructed by different protocols that 

reduce the influence of frequent occurring elements in the transition matrix. Though 

the social tagging graph is undirected, the asymmetric transition matrix would 

outperform the symmetric one. The weights of different directions of an edge are 

quite different. Hence, before normalizing each row to sum to one, the transition 

matrix should be built asymmetrically. 
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Chapter 2 

Related Work 

 

2.1 Recommendation Systems in Folksonomies 

The relation in folksonomies could be basically regularized as a ternary relation 

among users, tags, and items [5, 11, 13], where each entry indicates a user tagging an 

item with a tag. Due to the impracticality of using of the ternary relation directly, all 

co-occurrences of users and items, items and tags, users and tags are projected from 

the ternary relation to undirected and weighted edges.  

 

2.1.1 Collaborative Filtering 

Lately, many researches have been revolving around recommendation systems in 

social networks. Collaborative filtering (CF) [10] is one of the most used and 

successfully applied methods for a personalized recommendation system. By and 

large, CF makes a recommendation from the similarity of linking behaviors. Thus, the 

definition of similarity becomes a critical factor. In the past the traditional CF uses a 

bipartite graph which means that users give preference judgments for items as ratings. 

There are two sorts of nodes, i.e. users and items, and weighted edges. Due to the 

bipartite graph, the traditional CF could be divided into two categories, i.e. user based 

and item based.  

A user-based CF algorithm makes a prediction by first finding users who are 

similar to the target user, and then taking a weighted combination of the deviation 

from their mean ratings. The predicted rating could be written as in Eq. (1). 

𝑝𝑟𝑒𝑑(𝑢, 𝑖) = �̅�𝑢 +
∑ (𝑟𝑢′,𝑖 − �̅�𝑢′) 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′)𝑢′∈𝑈

∑ 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′)𝑢′∈𝑈
                                 (1) 

where 𝑢 is the target user, 𝑖 is the target item, 𝑈 is the finite set of users, 𝑟𝑢′,𝑖 is 
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the rating of user 𝑢′ for item 𝑖, �̅�𝑢 and �̅�𝑢′ are the mean ratings of users 𝑢 and 

𝑢′respectively, and 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) stands for the similarity between users 𝑢 and 

𝑢′. 

In an item based CF algorithm, a prediction is made by finding items which are 

similar to the target item which is predicted now, and then taking a weighted 

combination of the deviation from their mean ratings. The predicted rating could be 

written as in Eq. (2). 

𝑝𝑟𝑒𝑑(𝑢, 𝑖) = �̅�𝑖 +
∑ (𝑟𝑢,𝑘 − �̅�𝑘)  𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘)𝑖∈𝐼

∑  𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘)𝑘∈𝐼
                                 (2) 

where 𝐼 is finite set of items, 𝑟𝑢,𝑘 is the rating of user 𝑢 for item 𝑘, �̅�𝑖 is the mean 

rating of item 𝑖, and  𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘) stands for the similarity between items 𝑖 and 

𝑘. 

For calculating the similarity between users or items, several measures of similarity 

can be used. The most used is the Pearson correlation score defined in Eq. (3).  

𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) =
∑ (𝑟𝑢,𝑖 − �̅�𝑢)(𝑟𝑢′,𝑖 − �̅�𝑢′)𝑢′∈𝑈

𝜎𝑢𝜎𝑢′
                                 (3) 

where 𝜎𝑢 is the standard deviation of the ratings of user 𝑢. Moreover, I. Konstas et 

al. [13] combines several different similaritys based on the relation in the data. The 

datasets used is from Last.fm 
1
, which is an online radio website. They use three 

similaritys based on the user’s playcount, users tags and users friendship, and then 

their weighted sum is used to obtain the compound similarity which can be written as 

in Eq. (4). 

𝑆𝑖𝑚(𝑢, 𝑢′) = 𝛼 ∙ 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑢, 𝑢′) + 𝛽 ∙ 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) + 𝛾 ∙ 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′)      (4) 

where 𝛼 + 𝛽 + 𝛾 = 1  and 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑢, 𝑢′) , 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) , 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′)  are 

the similarity obtained from the user tracks, user friendships and user tags. 

Even though the compound similarity is used, from the result in [13], we know that 

the traditional CF does not perform well without using information about tags directly. 

1
 http://www.last.fm  
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In the CF model in [13], 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) is the only term concerned with tags in Eq. 

(4). Could it elaborate the ternary relation among users, tags and items by using 

𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′)  merely? From the definition of 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) , we know that  

𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′)  evaluates the similarity in view of macrocosm, neglecting the 

variation among users. For a polysemous word such as apple, people concerned with 

agriculture may use this tag to refer to a kind of fruit, while others concerned with 3C 

products always use this tag to represent the Apple Inc. Hence, in a personalized 

social recommendation system, the variation among users plays an important role, and 

then the information about the topological structure in a social graph is concerned. 

To consider the influence of tags, D. Parra-Santander et al. [18] introduce the 

BM25-based similarity into the classic CF model [19]. BM25 is a non-binary 

probabilistic model used in information retrieval to rank matching documents 

according to their relevance to a given search query. Given a search query, it 

calculates the relevance of each document in a collection. They compare the tags 

taken as a query with other tags used by the target user. Besides, they also compare 

the set of tags of items. Thus, the neighbor-weighted collaborative filtering (NwCF) 

which combines the BM25 model and the classic CF is proposed. The new predicted 

score can be written as in Eq. (5). 

𝑝𝑟𝑒𝑑′(𝑢, 𝑖) = log(1 + 𝑛𝑏𝑟(𝑖)) ⋅ 𝑝𝑟𝑒𝑑(𝑢, 𝑖)                                 (5) 

where 𝑛𝑏𝑟(𝑖) represents the similarity between the target user 𝑢 and a neighbor 

(i.e., an item 𝑖), while 𝑝𝑟𝑒𝑑(𝑢, 𝑖) is the classic CF. 𝑛𝑏𝑟(𝑖) is taken from the 

calculation of the Retrieval Status Value of an item 𝑖 given a query 𝑞 as in Eq. (6).  

𝑛𝑏𝑟(𝑖) =∑IDF ⋅
(𝑘1 + 1) 𝑡𝑓𝑡𝑖

𝑘1[(1 − 𝑏) + 𝑏(𝐿𝑑 𝐿𝑎𝑣𝑒⁄ )] + 𝑡𝑓𝑡𝑖
𝑡∈𝑞

⋅
(𝑘3 + 1) 𝑡𝑓𝑡𝑞

𝑘3 + 𝑡𝑓𝑡𝑞
           (6) 

where 𝐿𝑑 is the item length (i.e. the sum of the frequencies of each tag of the item 

 𝑖), 𝐿𝑎𝑣𝑒 is the average of the 𝐿𝑑 of every item, 𝑡𝑓𝑡𝑖 is the frequency of the tag 𝑡 
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in the set of tags of the item 𝑖 and  𝑡𝑓𝑡𝑞 stands for the frequency of the tag in the 

query. Besides, 𝑘1 , 𝑘3  and 𝑏  are parameters that are set to 1.2, 1.2 and 0.8, 

respectively, according to the results in [18].  

 

2.1.2 Random Walk Model 

PageRank [3] proposed by S. Brin and L. Page makes use of the link structure of 

the web to calculate a quality ranking for each web page. They use the random walk 

model with the probability to restart to simulate the behavior of user’ surfing on the 

Internet. It exploits the topological structure of a social graph through the stochastic 

process. Moreover, the probability of restart determines the static score of each node 

according to the distance from the start node. Without restart, the static score 

distribution is not affected by the initial state and could only represent the macro 

characteristic of the social graph. From the viewpoint of macrocosm, a social graph 

represents the general behavior of people. To make the recommendation system 

personalized, the influence of starting nodes must be emphasized by introducing the 

probability of restart.  

FolkRank algorithm proposed by A. Hotho et al. [11] is the first approach to apply 

the random walk models to folksonomies. They propose a formal model for 

folksonomies which is a tuple 𝔽 ≔ (𝑈, 𝑇, 𝑅, 𝑌, ≺) where 𝑈, 𝑇 and 𝑅 are finite sets 

whose elements are called users, tags and resources respectively, 𝑌 is a ternary 

relation among them, i.e. 𝑌 ⊆ 𝑈 × 𝑇 × 𝑅 , and ≺  is a user-specific 

subtag/supertag-relation, i.e. ≺ ⊆ 𝑈 × 𝑇 × 𝑇. A folksonomy induces a topological 

structure which would be exploited by the ranking algorithm. 

Their ranking algorithm called Adapted PageRank combines random walk with 

restart and lazy random walk models to provide a topic-specific ranking in a 

folksonomy. The vector of each step could be written as in Eq. (7). 
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𝐰𝐧+𝟏 ← 𝛼𝐰𝐧 + 𝛽𝐀𝐰𝐧 + 𝛾𝐩                                               (7) 

where 𝐀 is the row-stochastic version of the adjacent matrix of the graph constructed, 

𝐩  is a preference vector, i.e. initial vector, 𝛼, 𝛽, 𝛾 ∈ [0, 1]  are constants with 

𝛼 + 𝛽 + 𝛾 = 1 . The constant 𝛼  regulates the speed of convergence, while 𝛾 

controls the influence of the preference vector. 

Notice that the graph constructed is an undirected graph so that the 

undirectedness of the graph makes it very difficult for other nodes than those with 

high edge degree to become highly ranked, no matter what the initial vector is [16]. 

To solve this problem, a differential approach called FolkRank based on Adapted 

PageRank is proposed. The FolkRank algorithm computes a topic-specific ranking as 

follows [11, 16]: 

1. Let 𝐰(𝟎) be the fixed point from (7) with 𝐩 = 𝟏. 

2. Let 𝐰(𝟏) be the fixed point from (7) with 𝐩 = 𝟏, but 𝐩[𝑢] = 1 + |𝑈| and 

𝐩[𝑖] = 1 + |𝐼|. 

3. 𝐰 ≔ 𝐰(𝟏) −𝐰(𝟎) is the final weight vector. 

  Eliminating the influence of the initial vector, the resulting score distribution 𝐰(𝟎) 

represents the macro behavior of all users. This resulting score distribution could be 

taken as the neutral preference of the graph without being affected by the initial vector. 

For an instance, in [11], the tags “software” or “java” are frequently used, so that the 

result of topic-specific ranking would be interfered by these tags. Hence, the neutral 

preference of the graph could be taken as the “background noise”. From their result of 

experiments, it shows that the FolkRank algorithm could cause better ranking by 

diminishing the influence of the background noise 𝐰(𝟎).  

M. Clements et al. [5] use the lazy random walk model which integrates the user’s 

preference and semantically related query terms. To reduce the influence of frequently 

occurring elements, they use TF-IDF weighting on the input matrices. Unlike the 
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differential approach in FolkRank, it does not calculate 𝐰(𝟎)or 𝐰, which costs more 

time and memory. By modifying the transition matrix before computing random 

walks, this approach is more practical in learning phase. They heuristically tune the 

ratio of the weight of a user to a query as an initial state vector in the lazy random 

walk model. Moreover, they assume that a tag assigned to an item by the user is the 

same as they would use as a query to retrieve the item. Thus, they only focus on the 

known data, neglecting what is unknown. 

To evaluate the predicted content ranking, they use the Normalized Discount 

Cumulative Gain (NDCG) proposed by Järvelin and Kekäläinen [12]. Due to lack of 

relevance measures, they assume that the ratings could be taken as the relevance while 

predicting the content ranking. We argue that the assumption is true on the premise 

that the item is relevant in the topic-specific ranking. On the other hand, A. 

Al-Maskari et.al [1] NDCG has its limitation and could not be taken as the only one 

measure for evaluation. 

From their result, with increasing of query length, the influence of personalization 

would decrease gradually. If a user puts more effort in indicating his information need 

by giving more query terms to the system, the influence of personalization and 

smoothing diminishes. These results show that the optimal model whose parameters 

are tuned heuristically converges to the frequency based model, i.e. non-personalized 

model, when the user issues longer queries. 

The construction of transition matrix seems to be a standard basis in social tagging 

networks. So does what I. Konstas et al. [13] propose. They develop a track 

recommendation system integrating the traditional ternary relation and the 

relationship between users (i.e., the user-user relation). However, from their results, 

the direct relation between users might disturb the performance while considering less 
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social knowledge. When the main social knowledge (e.g., the user-item, user-tag, 

item-tag relations) is taken into account, the user-user relation might give the 

performance a little help [21]. Besides, comparing the results of the graph model with 

the ones of the standard collaborative filtering model, it shows that the former 

outperforms the latter. We argue that it is unfair to compare the graph model of the 

ternary relation with the collaborative filtering model of the binary relation. 

Due to their empirical view to evaluate the proposed algorithm, the parameters are 

tuned heuristically without discussing the relation between parameters and results 

further. Besides, it is still obscure that how the variation of behavior between users 

affects the performance and the optimal parameters of the model. Therefore, in our 

model, we obtain the optimal parameters for each user by machine learning, and then 

from the distribution of these parameter sets, we discuss the relation among user’s 

behavior, ranking and parameters. 

 

2.2 Machine Learning 

2.2.1 The Pairwise Approach 

The learning approaches take the entire set of documents associated with a query in 

the training data as an input and predict their ground truth labels. The pair-wise 

approaches calculate the loss function to divide the training data into two 

sub-categories, namely relevant and irrelevant. The supervised random walks (SRW) 

[2] proposed by L. Backstrom et al. is an instance of pair-wise approaches.  

For each edge (𝑢, 𝑣) in the graph 𝐺, they compute the strength 𝑎𝑢𝑣 = 𝑓𝑤(𝜓𝑢𝑣), 

where 𝑓𝑤 parameterized by 𝑤 takes the edge feature vector 𝜓𝑢𝑣 as input. Thus, the 

strength function 𝑓𝑤(𝜓) is what they want to optimize in the training phase. Because 

of avoidance from the occurrence with underflow and overflow of double precision 

floating point numbers, the logistic edge function is suggested.  
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The restart probability controls the expected distance surfing from the start node 

before it restarts. High values of the restart probability give local random walks, while 

low values may diminish the influence of initial state. Notice that in SRW, the restart 

parameter is set heuristically rather than optimized in the training phase because from 

their experiments the restart probability does not affect the result much. On the 

contrary, in our model, the restart probability is in the parameter vector for 

optimization. 

Similarly to formulations of Support Vector Machine, SRW introduces a loss 

function to “soften” the constraints. According to the loss function calculated from the 

stationary distribution of random walk with restart, it penalizes violated constraints. 

Thus, the optimal condition could be found by minimizing the loss function. There are 

three choices of loss function: 

1. Squared loss with margin 𝑏: 

ℎ(𝑥) = max{𝑥 + 𝑏, 0}2                                                        (8) 

2. Huber loss with margin 𝑏 and window z > 𝑏: 

ℎ(𝑥) = {

0                            if 𝑥 ≤ −𝑏,             

   (𝑥 + 𝑏)2 2𝑧⁄         if − 𝑏 < 𝑥 ≤ 𝑧 − 𝑏,
(𝑥 + 𝑏) − 𝑧 2⁄      if 𝑥 > 𝑧 − 𝑏           

                          (9) 

3. Wilcoxon-Mann-Whitney (WMW) loss with width (Proposed to be used when 

one aims to maximize AUC [27]): 

ℎ(𝑥) =
1

1 + exp(−𝑥/𝑏)
                                                 (10) 

The WMW loss is suggested because the model trained with the other two loss 

functions does not perform better than the baseline obtained through unweighted 

PageRank. Compared with other learning methods such as decision tree and logistic 

regression, SRW algorithm obtains the highest AUC (Area Under Curve) and P@20 

(Precision at top 20).  
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2.2.2 The Listwise Approach 

Unlike pair-wise approaches, the list-wise approach assumes that the ground truth 

labels are given in terms of permutations, while the judgments might be in other 

forms [15]. Evaluation measures such as the mean average precision (MAP) and the 

normalized discounted cumulative gain (NDCG) can also be rewritten in the form of 

the permutation set. Hence, how to obtain the approximate permutation sorted by their 

relevance scores, which has not been known yet, becomes an important issue.  

In Softrank [24], it introduces a random process in which each random variable is 

governed by Gaussian distribution to describe the score distribution of all items. 

Given the item set 𝑥 = {𝑥𝑗}𝑗=1
𝑚

 associated with a training query 𝑞, the score 𝑠𝑗 of 

item 𝑥𝑗 is treated as no longer a deterministic value but a random variable. The 

random variable could be written as in Eq. (11). 

𝑝(𝑠𝑗) = 𝑁(𝑠𝑗|𝑓(𝑥𝑗), 𝜎𝑠
2)                                                    (11) 

where 𝜎𝑠 is the variance of the Gaussian distribution, 𝑓(𝑥𝑗) which is the original 

score output by the scoring function is the mean. 

Due to the randomness in the scores, each item has the probability of being ranked 

at any position in the ranking. Thus, the probability of an item 𝑥𝑢 being ranked 

before another item 𝑥𝑣 can be written as in Eq. (12). 

𝑝𝑢,𝑣 = ∫ 𝑁(𝑠|𝑓(𝑥𝑢) − 𝑓(𝑥𝑣), 2𝜎𝑠
2)𝑑𝑠

∞

0

                                    (12) 

Suppose that there is an item 𝑥𝑗 already in the ranked list, while adding another 

one 𝑥𝑢, if 𝑥𝑢 can beat 𝑥𝑗 the rank of 𝑥𝑗 would be increased by one. Otherwise, the 

rank position of 𝑥𝑗 is unchanged. Hence, the probability of an item 𝑥𝑗 being ranked 

at position 𝑟 can be deduced iteratively 

𝑃𝑗
(𝑢)(𝑟) = 𝑝𝑗

(𝑢−1)(𝑟 − 1)𝑃𝑢,𝑗 + 𝑝𝑗
(𝑢−1)(𝑟)(1 − 𝑃𝑢,𝑗)                       (13) 

where 𝑢 is the iteration index, and then the expected position of an item 𝑥𝑢 could 
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be written as follows 

𝜋𝑞(𝑥𝑢) =∑𝑃𝑗
(𝑢)(𝑟)

1

log(1 + 𝑟)

𝑚

𝑟=1

                                                   (14) 

So far, we can use the expected rank position of each item to approximate the 

evaluation measures such as NDCG or MAP which is taken as the basis of the 

objective function. 

Besides Softrank stated above, there are some approaches that perform 

approximation to the rank positions using smooth functions of the ranking scores, 

such that the approximate evaluation measures can consequently become 

differentiable and easier to optimize. Qin et al. [20] approximate the rank positions by 

a sigmoid function. The rank position can be written as 

𝜋𝑞(𝑥𝑗) ≈ 1 + ∑
exp [−𝛼 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

1 + exp [−𝛼 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

𝑚

𝑢=1,𝑗≠𝑖

                      (15) 

where 𝛼 > 0 is a scaling constant. 

H. Valizadegan et al. [25] use a simple logistic model as a smooth function to 

approximate the rank positions. The rank position can be written as 

𝜋𝑞(𝑥𝑗) ≈ 1 + ∑
1 

1 + exp [2 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

𝑚

𝑢=1,𝑗≠𝑖

                                    (16) 

Notice that there is no scaling constant in it. Practically, the ranked list predicted by 

the logistic-based smooth function is not precise enough so that it may interfere with 

the optimization. In our model, we would discuss the problem and introduce a scaling 

constant to reinforce the precision of the predicted ranked list. Moreover, the 

influence of scaling constant upon precision and practicability would be also 

discussed in the next chapter. 
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Chapter 3 

Supervised FolkRank 

 

3.1 Random Walk Model 

A graph is an intuitive representation of data with some topological relations. Thus, 

we use a random walk model over the graph to rank the relevance of items on the 

selected tags as a query. From [11] a folksonomy is a ternary relation 𝒀 = 𝑈 × 𝐼 ×

𝑇 = {(𝑢, 𝑖, 𝑡)|𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇}, where each element indicates that a user u tagged 

an item i with a tag t and U, I, T are finite sets, whose elements are called users, tags, 

items respectively. Using the concept in [5], we can build a matrix D, where 

𝐃(𝑢, 𝑖, 𝑡) = 1 if (𝑢, 𝑖, 𝑡) ∈ 𝒀. Thus, this 3-dimension matrix D can be projected to 

three 2-dimension matrices:  

𝐔𝐓(𝑢, 𝑡) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑖∈𝐼

                                                   (17) 

𝐔𝐈(𝑢, 𝑖) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑡∈𝑇

                                                   (18) 

𝐈𝐓(𝑖, 𝑡) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑢∈𝑈

                                                  (19) 

Semantically speaking, each position in UI matrix indicates how many tags that a 

user assigned to an item. This relation is not useful because the familiarity between a 

user and an item does not rely on how many tags used. An ambiguous item to a user 

semantically may be described by less tags, but it doesn’t mean that the user dislikes 

the item. Hence, due to lack of clear indication of UI, we replace 𝐔𝐈(𝑢, 𝑖) with the 

rating matrix 𝐑(𝑢, 𝑖) where each position indicates that the rating that a user u 

assigned to an item i.  

To reduce the influence of frequent occurring elements in a 2-dimension matrix, we 

use TD-IDF weighting on each 2-dimension matrix [5, 22] with normalization. The 
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definitions of weightings of elements in the sub-matrices are shown below, 

respectively: 

𝐔𝐓′(𝑢, 𝑡) =
1

𝑁UT
∗ 𝐔𝐓(𝑢, 𝑡) ∗ log (

|𝑈|

∑ sgn(𝐔𝐓(𝑢′, 𝑡))𝑢′∈𝑈

)                       (20) 

𝐓𝐔′(𝑡, 𝑢) =
1

𝑁UT
∗ 𝐔𝐓(𝑢, 𝑡) ∗ log (

|𝑇|

∑ sgn(𝐔𝐓(𝑢, 𝑡′))𝑡′∈𝑇

)                        (21) 

𝐈𝐓′(𝑖, 𝑡) =
1

𝑁IT
∗ 𝐈𝐓(𝑖, 𝑡) ∗ log (

|𝐼|

∑ sgn(𝐈𝐓(𝑖′, 𝑡))𝑖′∈𝐼

)                             (22) 

𝐓𝐈′(𝑡, 𝑖) =
1

𝑁TI
∗ 𝐈𝐓(𝑖, 𝑡) ∗ log (

|𝑇|

∑ sgn(𝐈𝐓(𝑖, 𝑡′))𝑡′∈𝑇

)                            (23) 

𝐑′(𝑢, 𝑖) =
1

𝑁R
∗ 𝐑(𝑢, 𝑖) ∗ log (

|𝑈|

∑ sgn(𝐑(𝑢′, 𝑖))𝑢′∈𝑈

)                             (24) 

𝐑T′(𝑖, 𝑢) =
1

𝑁RT
∗ 𝐑(𝑢, 𝑖) ∗ log (

|𝐼|

∑ sgn(𝐑(𝑢, 𝑖′))𝑖′∈𝐼

)                            (25) 

where N is the normalization. For example, the normalization of the 𝐔𝐓′ matrix is 

computed by: 

𝑁UT  = ∑ 𝐔𝐓(𝑢, 𝑡′) ∗ log (
|𝑈|

∑ sgn(𝐔𝐓(𝑢′, 𝑡′))𝑢′∈𝑈

)
𝑡′∈𝑇

 

We then modify the transition matrix proposed and combine these six normalized 

matrices to build the random walk stochastic transition matrix 𝐀 depicted in Figure 

3-1. In Figure 3-1 (a), the transition matrix A combined by the sub-matrices. There is 

no edges to link two nodes with the same type so that UU, II, TT are zero matrices. In 

Figure 3-1 (b), the user and the query are assigned with weights 𝜃 and (1 − 𝜃) 

respectively. In Figure 3-1 (c), all items ranked according to their scores in v𝑛 would 

be taken as an output. Notice that 𝐀 is not a diagonal matrix, and the tripartite graph 

formed by 𝐀 is directed. We argue that in a social tagging graph, the edge direction 

may affect the probability of surfing to a specific adjacent node. Hence, while 

reducing the influence of frequent occurring elements, the edge direction would also 

affect the results of reduction. For an instance, if a user u only used a tag t while t is 

used popularly, the value of 𝐔𝐓′(𝑢, 𝑡) is less because there are many competitive 
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users for t. On the other hand, because the lack of competitive tags for u, the value of 

𝐓𝐔′(𝑡, 𝑢) is quite large. 

 

 
 

U I T 

 U 0 0.5 *R’ 0.5 * UT 

(a) I 
0.5 * 

RT 
0 0.5 * IT 

 T 
0.5 * 

TU 
0.5 *TI 0 

 
 

𝜽 

 

𝟏 − 𝜽 

(b) 𝐯𝟎 
 
𝒖 

   
𝒒 

 

 
    

(c) 𝐯𝒏 
   

 

Figure 3-1 (a) The transition matrix A. (b) The initial state vector v0. (c) The 

stationary state vector v𝑛. 

 

Due to the normalization of the sub-matrices in Eq. (20-25), each row of each 

sub-matrix sums to 1. We multiply each sub-matrix in 𝐀 by 0.5 to make each row of 

𝐀 sums also to 1. Thus, each position in 𝐀 could be used as the transition probability.  

In the initial state vector v0 we use θ to adjust the proportion of the target user to 

the query: 𝐯0(𝑢) = 𝜃 and 𝐯0(𝑞) = 1 − 𝜃, where u is the target user and q is the 

query. The more θ is, the more influence of the target user is, and vice versa.  

The model we used is FolkRank in [11]. FolkRank combines two models: 
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PageRank [3] and Lazy Random Walk. The relation between two adjacent iterations 

could be stated in Eq. (26). 

𝐯𝑛+1 = 𝛼𝐯0 + 𝛽𝐀𝐯𝑛 + 𝛾𝐯𝑛                                              (26) 

where 𝑛 is the iteration index, α is the probability of restart, β is the probability of 

forward-transition, and γ is the probability of self-transition, 𝛼, 𝛽, 𝛾 ∈ [0, 1] are 

constrained by the linear relation: 𝛼 + 𝛽 + 𝛾 = 1. The constant 𝛾 controls the speed 

of convergence, while 𝛼 controls the locality. In the training phase, the speed of 

convergence determines the iterations of transition which affect the cost of time and 

memory usage 

 

3.2 The Optimization Problem 

The training data contains the ternary relation among users, tags and items. Thus 

we could determine whether an item is relevant or not. According to the definition of 

NDCG, items are ranked by its relevance. Due to the lack of the measure of relevance, 

we take the ratings as relevance. However, the relevance of an item to the query is not 

related to its rating directly. The only thing we know is that the ratings could be taken 

as a measure of quality while the items are all relevant. To avoid disturbing the 

precision, we set the rating of an irrelevant item to 0. 

We modify the objective function proposed by H. Valizadegan et al. [25] to 

approximate NDCG in Eq. (27).  

ℒ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑ 〈

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 𝜋𝑞(𝑖))
〉𝐹

𝑖∈𝐼𝑢𝑞∈𝑄

= 
1

|𝑄|
∑

1

|𝐼𝑢|
∑ ∑ Pr(𝜋𝑞|𝐹, 𝑞)

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 𝜋𝑞(𝑖))
𝜋𝑞∈𝑆𝐼𝑢𝑖∈𝐼𝑢𝑞∈𝑄

                       (27) 

where the notation 〈 〉𝐹 is the expectation over all the possible rankings induced by 

the ranking function 𝐹, Q is a query set which we use to train for u, 𝐼𝑢 is the item set 
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in which each item is relevant to u, 𝑆𝐼𝑢 stands for the set of permutations of 𝐼𝑢, and 

𝜋𝑞 is an instance of permutation. Notation 𝜋𝑞(𝑖) stands for the rank position of the 

item 𝑖 by 𝜋𝑞, and 𝑟𝑢,𝑞(𝑖) stands for the conditional rating defined as follows. 

𝑟𝑢,𝑞(𝑖) = {
𝐑(𝑢, 𝑖),   if 𝑖 is relevent to 𝑢 selecting 𝑞 as a query.
0, if 𝑖 is irrelevent to 𝑢 selecting 𝑞 as a query.

 

 ℒ̅(𝑢, 𝑄, 𝐹) can be simplified to ℋ̅(𝑢, 𝑄, 𝐹) in Eq. (28). 

ℋ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 〈𝜋𝑞(𝑖)〉𝐹)
𝑖∈𝐼𝑢𝑞∈𝑄

                              (28) 

Because  1/𝑥  is a convex function while  𝑥 > 0  , therefore  〈1/log(1 + 𝑥)〉 ≥

1/〈log(1 + 𝑥)〉. On the other hand, because 1/log(1 + 𝑥) is a concave function, 

therefore 〈log(1 + 𝑥)〉 ≤ 1/log(1 + 〈𝑥〉). From the two inequality stated above, we 

could get ℒ̅(𝑢, 𝑄, 𝐹) ≥ ℋ̅(𝑢, 𝑄, 𝐹). 

By introducing the difference of the output scores of every two items to the logistic 

function, the rank position could be approximated in Eq. (29). 

〈𝜋𝑞(𝑖)〉 = 1 + ∑ 〈𝜋𝑞(𝑖, 𝑗)〉

𝑗∈𝐼𝑢,𝑖≠𝑗

≈ 1 + ∑
1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗

   (29) 

where 〈𝜋𝑞(𝑖, 𝑗)〉 is the result of the competition between item 𝑖 and item 𝑗, 𝐹𝑢,𝑞(𝑖) 

is the output score given by the ranking function 𝐹𝑢,𝑞 which takes the target user u 

and the selected query q as input. Here, we use FolkRank model proposed above as 

the ranking function. 

  In the real condition, the result of a competition is that the position of a winner who 

has a larger score would add 0, while the position of the loser who has a smaller score 

would be added by one. We could translate the competition into a non-differentiable 

function written as: 

〈𝜋𝑞(𝑖, 𝑗)〉 = {
0,   if 𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗) > 0 

1,   if 𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗) < 0
 

For an instance, the item which has the largest score would never get one in each 
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competition such that from Eq. (29), its rank position is 1. Thus, our goal is to make 

the gap between the approximation and the real condition as close as possible. Due to 

the definition of the logistic function used to simulate the rank positions, while η is set 

to a larger number, the results of competitions of two items are close to the real 

condition. The relation is depicted in Figure 3-2. The larger η is, the more precise the 

approximation is. With the increasing of η, it loses its differentiability gradually. 

However, due to the non-differentiability of 〈𝜋𝑞(𝑖, 𝑗)〉, if η is set too large, though the 

approximation is precise, the derivatives of the objective function might be too large 

to process for the computer because of the occurrence of overflow of double precision 

floating point numbers.  

 

 

Figure 3-2 The relation between η and the precipitation of the logistic function. 

 

Using the above approximation for 〈𝜋𝑞(𝑖)〉, ℋ̅(𝑢, 𝑄, 𝐹) could be written as 

ℋ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑

2𝑟𝑢,𝑞(𝑖) − 1

log(2 + 𝐴𝑖
𝑞)

𝑖∈𝐼𝑢𝑞∈𝑄

                                  (30) 

where 

𝐴𝑖
𝑞 = ∑

1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗

                                (31) 

By the Taylor expansion around 𝑥 = 0  while 〈𝜋𝑞(𝑖)〉 > 0 , we could get the 

h 
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η = 50 

 
𝑭𝒖,𝒒(𝒊) − 𝑭𝒖,𝒒(𝒋) 

〈𝝅𝒒(𝒊, 𝒋)〉 



20 
 

inequation in Eq. (32). 

1

log(2 + 𝐴𝑖
𝑞)
≥

1

log(2)
−

𝐴𝑖
𝑞

2[log(2)]2
                                         (32) 

, �̅�(𝑢, 𝑄, 𝐹) can be obtained by simplifying ℋ̅. Hence �̅� can be written as in Eq. 

(33). 

�̅�(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑(2𝑟𝑢,𝑞(𝑖) − 1) {

1

log(2)
−

𝐴𝑖
𝑞

2[log(2)]2
}

𝑖∈𝐼𝑢𝑞∈𝑄

            (33) 

  ℋ̅, a logarithmic function which is hard to get its differential function in the 

optimization phase, has been approximated as a polynomial function �̅�. However, 

there is a conspicuous difference between ℋ̅ and �̅� depicted in Figure 3-3. The 

NDCG measures may be affected by the rank position of items in the form of 

logarithm. On the other hand, if we approximate it by Taylor expansion, it may be 

affected linearly. From the definition of the NDCG function, we know that the 

relevance of the item in the first rank has the most influence to the NDCG measures. 

With the increasing of the rank position, the influence of the relevance of an item 

decreases gradually in the form of logarithm. Thus, if we use the objective function 

without approximation by the Taylor expansion, in the optimization phase, the 

optimized model may prefer to push a relevant item to the first rank while others may 

be left far behind. Nevertheless, through the approximation by the Taylor expansion, 

the optimization by the objective function may push each item forward equally.  
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Figure 3-3 The NDCG measures may be affected by the rank position of items in the 

form of logarithm. On the other hand, if we approximate it by Taylor expansion, it 

may be affected linearly. 

 

To simplify �̅�, we neglect the constant terms, and then we could obtain the 

objective function in Eq. (34). 

M(𝑢, 𝑄) ≈ ∑∑(2𝑟𝑢,𝑞(𝑖) − 1) ∑
1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗𝑖∈𝐼𝑢𝑞∈𝑄

       (34) 

Because we want to maximize the NDCG, in the training phase, the objective 

function would be minimized. In our implementation, we use the BFGS algorithm [4, 

7, 8, 9, 23] to find the optimization result. There are only 3 parameters that we have to 

train, and then we calculate the inverse Hessian matrix directly rather than 

approximate iteratively like the L-BFGS [14] algorithm does. Because 𝐹𝑢,𝑞(𝑖) is 

polynomial, we could rewrite (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗)) as 𝐹𝑢,𝑞,𝑖,𝑗(𝛼, 𝛽, 𝛾) where 𝛼, 𝛽, 𝛾 

are our parameters to be optimized. Thus the derivatives of M(𝑢, 𝑄) with respect to 

𝛼, 𝛽, 𝛾 could be computed independently. For example, the derivatives of M(𝑢, 𝑄) 

with respect to 𝛼 could be written as in Eq. (35). 

∂M(𝑢, 𝑄)

∂𝛼
≈ ∑∑(2𝑟𝑢,𝑞(𝑖) − 1) ∑

−𝜂 exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]

{1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]}
2 ⋅
∂𝐹𝑢,𝑞,𝑖,𝑗(𝛼, 𝛽, 𝛾)

∂𝛼
𝑗∈𝐼𝑢,𝑖≠𝑗𝑖∈𝐼𝑢𝑞∈𝑄

   (35) 

Our objective function is not convex, so that the gradient descent methods may not 
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find the global minimum. We resolve the problem of local minimum by using several 

different start points and then what causes the minimum value of objective function 

would be selected as the optimized parameters.  
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Chapter 4 

Methodology 

 

4.1 Data Preparation 

The dataset we use is from the LibraryThing collected by M. Clements et al. [5, 6]. 

LibraryThing is a social network about books. A user could give all the books ratings 

and tags and then personalized catalogs are created. According to the preference of a 

user, the system would give him a list where users may have similar interests to him 

or recommend books he may like.  

After pruning the books and tags that appear in less than 5 user profiles [5], there 

are 7279 users, 10559 tags and 37232 books. The pruned dataset has 2056487 UIT 

relations. The derived UT, R, IT matrices have a density 5.2 × 10−3, 2.8 × 10−3and 

2.0 × 10−3, respectively. However, many users tag and rate items repeatedly with a 

little difference. We use the rating that the user gives to the item in the last record of 

the UIT relations and accumulate all the tags that the user gives to the item in the 

dataset. Thus, the real density of matrices would be a little less than the one stated 

above. 

In Figure 4-1, we split the data into two parts, namely training set and testing set. 

To split the D matrix into two parts, we choose the UIT relations given by the first 

3000 users as the training set. The others would be taken as the testing set. Thus, in 

training set, there are 3000 users, 8009 tags and 36596 items, while there are 4280 

users, 8071 tags and 37101 items in the testing set. In training phase, we use the 

training set to optimize the parameter vector of our model and we validate the 

performance of the optimized model in the testing phase.  
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Figure 4-1 The data preparation by splitting the D matrix into two parts. 

 

 

4.2 Measures for Evaluation 

4.2.1 The Assumption for Relevance 

The data we use for the training phase are UIT relations which only represent the 

condition of tagging rather than the results of recommendation. Due to the lack of the 

ground truth of recommendation, to determine the items relevant or not, we assume 

that if the user 𝑢 has used the tag 𝑞 to tag the item 𝑖 which has been tagged by u, 

the tag 𝑞 is irrelevant to the item 𝑖 for the user 𝑢. Because of the difference of the 

cognition on the same word between different individuals, in the language system of 

the user 𝑢 , 𝑞  may not refer to 𝑖 , even though 𝑞  is relevant to 𝑖  in common 

conditions. It may cause the difference more obvious when a polysemous word is 

taken as a query.  

If we presumed to take other tags, which are relevant in a common case, relevant, it 

might harm the precision of recommendation. Moreover, to consider other tags which 

have not been used by the target user yet we have to cluster tags before evaluation so 

that the experiment would be more complicated. If we expanded the relevant tags for 

evaluation, we would consequently use another model to cluster tags prior to ours that 

D 
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it would fall into a trap of the circular evaluation. Hence we would use the tags which 

have been tagged by a user rather than expand them for evaluation. 

Besides, is it possible that the user u does not tag the item 𝑖 with the tag 𝑞 which 

really is relevant to 𝑖 for u? Figure 4-2 shows the average distribution of tagging 

frequency per user. There are about 10 tags whose frequencies are more than the 

average frequency. The tags which are familiar to a user are not many. While tagging, 

a user may use a familiar tag on hand rather than an unfamiliar one unless the user 

tags an unfamiliar item. Nevertheless, in both the training phase and the testing phase, 

we only use the query whose tagging frequency is superior to the average for the 

target user.  

 

 

Figure 4-2 The average distribution of tagging frequency per user. 

 

4.2.2 Normalized Discounted Cumulative Gain 

  To evaluate the suitability of the predicted content ranking for each item ranking 

task we use the Normalized Discounted Cumulative Gain (NDCG) proposed by 

Järvelin, K. and Kekäläinen, J. [12]. The basic concept of NDCG is that highly 

relevant items appearing lower in the resulting ranked list ought to be penalized. The 

modified relevance value is reduced logarithmically proportional to the rank position. 

Thus, the summation of the first 𝑝  items’ modified relevance values is called 
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Discounted Cumulative Gain(DCG), which is defined as follows 

DCG(𝑝) = ∑
2𝑟𝑒𝑙(𝑟𝑎𝑛𝑘) − 1

log2(1 + 𝑟𝑎𝑛𝑘)

𝑝

𝑟𝑎𝑛𝑘=1

                                          (36) 

where 𝑟𝑎𝑛𝑘 stands for the rank position, 𝑟𝑒𝑙(𝑟𝑎𝑛𝑘) is the relevance value of an 

item whose rank position is 𝑟𝑎𝑛𝑘. Besides, to compare the performance of retrieval 

of different queries, the normalization across queries is needed. The Ideal Discounted 

Cumulative Gain (IDCG) is introduced to represent the ranked list from a prefect 

ranking algorithm by which the resulting permutation is sorted by the relevance scores 

of items. Practically we sort items by their relevance to obtain the IDCG and thus we 

could compute the NDCG which is defined as follows 

NDCG(𝑝) =
DCG(𝑝)

IDCG(𝑝)
                                                      (37) 

Due to lack of the ground truth of the relevance scores to the query, M. Clements et 

al. [5, 6] create a gain vector 𝐠 with length |𝐼| (i.e., all items) of zeros. To prevent 

from predicting content that has received a low rating, in this gain vector, the 

predicted rank positions of the held-out validation items that correspond to a positive 

opinion 𝐫 ∈ {3, 3.5, 4, 4.5, 5} are assigned a value of respectively g∈ {1, 2, 3, 4, 5}. In 

other words, an item whose rating is small is taken as irrelevant. However the rating 

of an item does not map to its relevance score of it directly because there is no 

relation between quality (i.e., rating) and relevance. Given the condition stated below, 

an item with rating value 2.5 is relevant, and another item with rating value 5 is 

irrelevant. According to the evaluation in [5, 6], the relevant item would be neglected 

because of its small rating value, while the irrelevant one is taken to be contributive to 

the suitability of the predicted content ranking. Hence we rewrite the assumption that 

the rating of an item could map to its relevance score on the premise that the item is 

relevant. 
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We directly use the ratings of items which are relevant to the query as their 

relevance in the NDCG. According to our assumption of relevance stated above, 

relevant items are included by the ones the target user has tagged. Moreover, we 

assume that the rating of an irrelevant item is assigned 0. Only the items tagged by the 

target user 𝑢 could be relevant or not to the query 𝑞 for 𝑢. By considering all items 

in the list (i.e., 𝑝 = |𝐼|), Discounted Cumulative Gain (DCG) now accumulates the 

values of the discounted gain for each item: 

DCG(𝑢, 𝑞) = ∑
2𝑟𝑢,𝑞(𝑖) − 1

log2(1 + 𝜋𝑞(𝑖))𝑖∈𝐼𝑢

                                           (38) 

where 𝐼𝑢  stands for the set of items that the target user 𝑢 has tagged, 𝜋𝑞(𝑖) is the 

rank position of the item 𝑖 from the query 𝑞 and 𝑟𝑢,𝑞(𝑖) is the rating of the item 𝑖 

which is relevant to 𝑞 for 𝑢.  

The DCG value is normalized by dividing by the optimal DCG value, i.e., IDCG, 

which is computed using a static state vector in descending order. The NDCG could 

be written as in Eq. (39). 

NDCG(𝑢, 𝑞) =
1

IDCG
∑

2𝑟𝑢,𝑞(𝑖) − 1

log2(1 + 𝜋𝑞(𝑖))𝑖∈𝐼𝑢

                                      (39) 

In our experiment we use the mean of the NDCG over all validation users. The 

mean of the NDCG over all validation users could be written as in Eq. (40). 

NDCG̅̅ ̅̅ ̅̅ ̅̅ (𝑈) =
1

|𝑈|
∑NDCG̅̅ ̅̅ ̅̅ ̅̅ (𝑢, 𝑄𝑢)

𝑢∈𝑈

=
1

|𝑈|
∑

1

|𝑄𝑢|
∑ NDCG(𝑢, 𝑞)

𝑞∈𝑄𝑢𝑢∈𝑈

           (40) 

where 𝑈 is the set of all validation users and 𝑄𝑢 is the query set for the target user 

𝑢. 

With the increasing of the rank position, the influence of the relevance of an item 

on the NDCG decreases gradually in the form of logarithm. It is possible that the 

ranking results in a large value of the NDCG while the precision and recall are small. 
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The NDCG cannot be used independently while evaluating the performance in 

information retrieval. Hence, we also use precision and recall. 

 

4.2.3 Precision and Recall 

In information retrieval, precision is the fraction of retrieved instances that are 

relevant, while recall is the fraction of relevant instances that are retrieved. Precision 

and recall are defined as follows 

precision =
|{relevant items}  {retrieve  items}|

|{retrieve  items}|
                      (41) 

recall =
|{relevant items}  {retrieve  items}|

|{relevant items}|
                           (42) 

The relation between precision and recall is shown in Figure 4-3. 
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Figure 4-3 Precision and recall are the quotient of the upper left region with orange 

color by respectively the region with red boundary and the one with blue boundary. 

 

A perfect precision score of 1.0 means that all the items retrieved by the search 

engine are relevant and a prefect recall score of 1.0 means that all the relevant items 

are retrieved. Notice that the two statements do not mention how many items are 
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retrieved. If a search engine only retrieves the item which has the highest rank score, 

the item would be relevant almost certainly. On the contrary, if a search engine 

retrieves all items whatever the query is, it always obtains the recall score of 1.0. Thus, 

it does not suggest that only one of the two measures is used and the other is 

neglected.  

 

4.3 Evaluation 

To make the recommendation system more practical, the items not only tagged by 

the user but also those untagged should be retrieved. Therefore we propose a 

pre-evaluation protocol which is modified from [13]. In every experiment we follow 

the pre-evaluation protocol as follows. For each individual user 𝑢 in the dataset we 

randomly select a list of 20% of the items the user 𝑢 has tagged and take them as 

“unseen” items which we refer to as 𝑺𝒖,𝒕. We set zeros to the elements relative to 

these “unseen” tags in 𝐑 and 𝐑𝐓, and subtract one from the elements relative to 

these “unseen” tags in 𝐔𝐓, 𝐓𝐔, 𝐈𝐓 and 𝐓𝐈. 𝑺𝒖,𝒂 is the remaining 80% of items the 

user 𝑢 has tagged and 𝑺𝒖,𝒏 is the set of the items that the user 𝑢 has not tagged yet. 

The protocol stated above is depicted in Figure 4-4.  

 

 

Figure 4-4 For each user, the per user pre-evaluation protocol is followed: 𝑆𝑢,𝑡 is the 
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20% randomly selected set of items that the user 𝑢 has tagged, 𝑆𝑢,𝑎 is the remaining 

80% of items the user 𝑢 has tagged and 𝑆𝑢,𝑛 corresponds to the items that the user 

𝑢 has not tagged yet. 

 

Then we use TD-IDF weighting shown in Eq. (20-25) on each 2-dimension matrix 

with normalization to reduce the influence of frequently occurring elements. After the 

normalization in all 2-dimension matrices, we combine these 2-dimension matrices in 

the transition matrix 𝐀𝒖. We use our PageRank-like model in Eq. (26) to calculate the 

scores of all items iteratively. While the scores of items converge, the static scores are 

obtained. We evaluate the performance of prediction from the static scores of items. 

Notice that before calculating the scores of items, the rating of items which belong to 

𝑺𝒖,𝒕 are set to zero, thus the construction of the transition matrix 𝐀𝒖 is on the 

premise that the user 𝑢 pretends that 𝑢 has not tagged the items which belong to 

𝑺𝒖,𝒕 before.  

Notice that our random walk model in the training phase is the same with that in the 

testing phase. The only difference between the training phase and the testing phase is 

the evaluation protocol. The evaluation protocol in the training phase computes the 

objective function and that in the testing phase evaluates the performance. The series 

of steps of the construction of transition matrix could be taken as the pre-evaluation 

protocol. By this pre-evaluation protocol, we could split the UIT relations into two 

parts. One includes the UIT relations, which does not involve 𝑢 or involves the items 

that belong to 𝑺𝒖,𝒂, while the other is 𝑺𝒖,𝒕. The former is taken as the historical 

information that supports recommendation, while the later could be taken as the 

ground truth. To estimate the suitability of the recommendation of items which a user 

has not seen, we would check the relevant items which are retrieved and belong to 

𝑺𝒖,𝒕. If our recommendation system can find most of the relevant items which belong 
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to 𝑺𝒖,𝒕, the items which the user might like but has not seen yet could be retrieved. 

On the other hand, due to the usage of the recommendation system, we want the 

relevant items seen before are still retrieved as many as possible. In both training 

phase and testing phase, whether the retrieved items belong to 𝑺𝒖,𝒕 or 𝑺𝒖,𝒂, we 

would treat them equally in the evaluation.  

For each individual user 𝑢, we select the tags that 𝑢 has used as the queries 𝑸𝒖. 

If a tag 𝑡 used by 𝑢 infrequently would be taken as a query, the precision of 

recommendation depends mostly on the per user pre-evaluation protocol. Because if 

𝑖𝑡  which is tagged by 𝑢 with 𝑡, is selected as an “unseen” item, the value of 

𝐔𝐓(𝑢, 𝑡)and 𝐓𝐔(𝑡, 𝑢) would be subtracted by one. Due to the infrequent occurrence 

of the relation between 𝑢 and 𝑡, the value of 𝐔𝐓(𝑢, 𝑡)and 𝐓𝐔(𝑡, 𝑢) are small. The 

small value is sensitive to addition and subtraction. 

Each query 𝑞 in the query set 𝑸𝒖 is the input of our model and the permutation 

of items sorted by their scores in the static state vector is the output of our model. The 

objective function is computed from the output of our random walk model. When the 

user 𝑢 has completed the query process, i.e. every query in the query set 𝑸𝒖 is used 

as the input of our training model once, we combine their objective function by 

summation.  

Our objective function is based on the NDCG [12]. If we took the ratings of items 

as their relevance to a query, the result would be interfered with by irrelevant items 

which we do not recognize. Therefore, to consider not only the NDCG but also 

precision of an item, we define what a relevant item is. An item which has been 

tagged by the user with the query is relevant. Now the evaluation that combines the 

NDCG and the precision would be proposed as follows. 

After computing the static scores, we divide all items into two parts, namely 

relevant items and irrelevant items. Notice that the relevant item set and irrelevant one 
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are independent of 𝑺𝒖,𝒂 and 𝑺𝒖,𝒏. Because we do not know whether the user 𝑢 may 

like the items which have not seen by 𝑢 before, 𝑺𝒖,𝒏 is neglected. We focus on the 

items that the user 𝑢  has tagged, i.e. the items which belong to 𝑺𝒖,𝒕  or 𝑺𝒖,𝒂 . 

Moreover, the items which belong to 𝑺𝒖,𝒕 or 𝑺𝒖,𝒂 could be divided into three parts, 

namely 𝑺𝒖,𝒕
𝒒

, 𝑺𝒖,𝒂
𝒒

 and 𝑺𝒖,𝒏
𝒒

, which are defined respectively as follows. 

𝑺𝒖,𝒕
𝒒

: the items which are relevant to the query 𝑞 and 𝑺𝒖,𝒕
𝒒
⊆ 𝑺𝒖,𝒕. 

𝑺𝒖,𝒂
𝒒

: the items which are relevant to the query 𝑞 and 𝑺𝒖,𝒂
𝒒
⊆ 𝑺𝒖,𝒂. 

𝑺𝒖,𝒏
𝒒

: the items which are irrelevant to the query 𝑞 and belong to 𝑺𝒖,𝒏
𝒒

⊆  𝑺𝒖,𝒕 ∪

𝑺𝒖,𝒂. 

Figure 4-5 shows the relation among them.  

 

 

Figure 4-5: The relations between 𝑆𝑢,𝑡, 𝑆𝑢,𝑎, 𝑆𝑢,𝑛, 𝑆𝑢,𝑡
𝑞

, 𝑆𝑢,𝑎
𝑞

and 𝑆𝑢,𝑛
𝑞

. 

In training phase, for each item 𝑖 relevant to 𝑞, we use the Eq. (31) to predict the 

rank position of 𝑖 by comparing the static score of 𝑖 with others. Figure 4-6 shows 

how we compute the objective function. Notice that while computing the objective 

function, the ratings of the items, which belong to 𝑺𝒕, are considered. In other words, 

we use the ratings in 𝐑 which has not been processed by the per user pre-evaluation 

protocol yet. Besides, the items which belong to 𝑺𝒏 are regarded irrelevant, and their 

ratings are set to zero. According to our assumption, items in 𝑺𝒖,𝒏  would be 
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neglected.  

 

 

Figure 4-6: Relevant & irrelevant items in the training phase.  

 

We optimize the parameter vector for each individual user rather than sum up the 

objective function for all users before optimization. In the training phase, each per 

user objective function is not concave; neither does the sum of all the objective 

functions. To analyze the personal behavior and its influence, we optimize the per user 

objective function for each user.  

  From the distribution of the per user optimized parameters, we could find some 

characteristics of the user behavior. For example, the parameter 𝜃  controls the 

proportion of the target user to the tag selected as a query. When the value of 𝜃 is 

large, the user is more influential than the query and vice versa. Considering a user 

who prefers to use ambiguous tags, the initial state may not include the query merely 

without considering the personal information obtained by including the target user. On 

the contrary, if the user prefers to use exact tags to describe items, the personal 

information could almost be neglected (𝜃 = 0). Besides, another condition should be 

considered. If the preference of the target user is ambiguous, it could not be 
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contributive to the precision of our model to consider the personal information (𝜃 >

0).  

  For each element in the per user optimized parameter vector, we compute the mean 

of the elements in all per user optimized parameter vectors as the global optimized 

parameter for the testing phase. We are afraid that the distribution of the per user 

optimized parameter vectors is divergent. If this distribution is divergent, the mean 

vector could not represent all vectors very well. Hence, we could use multiple 

parameter vectors rather than one in the testing phase to have a better result. To obtain 

the multiple optimized parameter vectors which could represent all the per user 

optimized parameter vectors better, we cluster the per user optimized parameter 

vectors by K-Means and DBSCAN, respectively. In our experiments, we would 

compare the performance of the two clustering methods using the same ranking task. 

The procedure in the training phase is shown in Alg. 1. 

 

Training Phase (𝐃𝐭𝐫𝐚𝐢𝐧, 𝐑) 

foreach user u ∊ U do 

 select the 20% of the relevant items as 𝑺𝒖,𝒕, other 80% as 𝑺𝒖,𝒂 and the others as 𝑺𝒖,𝒏  

 𝐃𝒖 = 𝐃𝐭𝐫𝐚𝐢𝐧 − {𝐃𝐭𝐫𝐚𝐢𝐧(𝑢, 𝑖, 𝑡)|∀𝑖 ∈ 𝑺𝒖,𝒕}  

 𝐑𝒖 = 𝐑, where 𝐑(𝑢, 𝑖) = 0, ∀𝑖 ∈ 𝑺𝒖,𝒕 

 compute 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ from (20, 21, 22, 23, 24, 25) by 𝐃𝒖 and 𝐑𝒖 

 build transition matrix 𝐀𝒖 by 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ 

 select tags as queries 𝑸𝒖  

     M(𝑢, 𝑄𝑢) = 0 

 foreach query 𝑞 ∈ 𝑸𝒖 do 

get the static score vector 𝐹𝑢,𝑞  by 𝐀𝒖, where |𝐹𝑢,𝑞| = |𝐼| 
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𝑺𝒕: 𝑺𝒕 ⊆ 𝑺𝒖,𝒕  && 𝑺𝒕 is relevant to 𝑞 for 𝑢. 

𝑺𝒂: 𝑺𝒂 ⊆ 𝑺𝒖,𝒂  && 𝑺𝒂 is relevant to 𝑞 for 𝑢. 

𝑺𝒏: 𝑺𝒏 ⊆ 𝑺𝒖,𝒕⋃𝑺𝒖,𝒂 && 𝑺𝒏 is irrelevant to 𝑞 for 𝑢.  

𝑠𝑢𝑚 = 0   

foreach 𝑖 ∈ 𝑺𝒕 ∪ 𝑺𝒂 do  

     𝑖𝑠𝑢𝑚 = 0 

foreach 𝑗 ∈ 𝑺𝒕 ∪ 𝑺𝒂 ∪ 𝑺𝒏  do  

if (𝑖 ≠  𝑗) then 𝑖𝑠𝑢𝑚 =  𝑖𝑠𝑢𝑚 + 
1

1+exp[𝜂(𝐹𝑢,𝑞(𝑖)– 𝐹𝑢,𝑞(𝑗))]
  

    𝑠𝑢𝑚 =  𝑠𝑢𝑚 + (2𝐑(𝑢,𝑖) −  1)  ∗  𝑖𝑠𝑢𝑚 

  M(𝑢, 𝑄𝑢)  =  M(𝑢, 𝑄𝑢)  +  𝑠𝑢𝑚  

set initial value 𝐰(0) 

t = 1 

while not converge do  

  execute the gradient descent method on M(𝑢, 𝑄𝑢) to get new 𝐰(𝑡) from 𝐰(𝑡−1) 

𝑡 =  𝑡 +  1  

 recover the setting of the per user pre-evaluation protocol. 

return 𝐰 = 𝐰(𝑡)   
 

Algorithm 1 The procedure in the training phase. 

In the testing phase, we rank all the items according to their static scores in 

descending order. The ranked item list is the output of our model. To evaluate the 

performance of the output, we split the items into two parts, namely relevant and 

irrelevant. We only consider the relevant items and count in their ratings when 

computing the NDCG. The irrelevant items would be neglected. The definition of a 

relevant item in the training phase is the same as that in the testing phase.  

  To reinforce the suitability of our model, we compute the static scores according to 
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different optimized parameter vectors, which are obtained from the result of clustering, 

and thus we could get different ranked item list. We select the ranked item list which 

has the highest value of Recall@10 as the output of our model. The procedure in the 

testing phase is shown in Alg. 2. 

 

Testing Phase (𝐃𝐭𝐞𝐬𝐭, 𝐑) 

foreach user u ∊ U do 

 select the 20% of the relevant items as 𝑺𝒖,𝒕, other 80% as 𝑺𝒖,𝒂 and the others as 𝑺𝒖,𝒏  

 𝐃𝒖 = 𝐃𝐭𝐞𝐬𝐭 − {𝐃𝐭𝐞𝐬𝐭(𝑢, 𝑖, 𝑡)|∀𝑖 ∈ 𝑺𝒖,𝒕}  

 𝐑𝒖 = 𝐑, where 𝐑(𝑢, 𝑖) = 0, ∀𝑖 ∈ 𝑺𝒖,𝒕 

 compute 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ from (20, 21, 22, 23, 24, 25) by 𝐃𝒖 and 𝐑𝒖 

 build transition matrix 𝐀𝒖 by 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ 

 select tags as queries 𝑸𝒖  

 foreach query 𝑞 ∈ 𝑸𝒖 do 

get the static score vector 𝐹𝑢,𝑞  by 𝐀𝒖, where |𝐹𝑢,𝑞| = |𝐼| 

sort items according to the 𝐹𝑢,𝑞  in descent order 

𝑺𝒕: 𝑺𝒕 ⊆ 𝑺𝒖,𝒕  && 𝑺𝒕 is relevant to 𝑞 for 𝑢. 

𝑺𝒂: 𝑺𝒂 ⊆ 𝑺𝒖,𝒂  && 𝑺𝒂 is relevant to 𝑞 for 𝑢. 

𝑺𝒏: 𝑺𝒏 ⊆ 𝑺𝒖,𝒕⋃𝑺𝒖,𝒂 && 𝑺𝒏 is irrelevant to 𝑞 for 𝑢.  

𝑁𝐷𝐶𝐺, 𝑅𝑒𝑐𝑎𝑙𝑙@10, 𝑅𝑒𝑐𝑎𝑙𝑙@20, 𝑅𝑒𝑐𝑎𝑙𝑙@30, 𝑅𝑒𝑐𝑎𝑙𝑙@40, 𝑅𝑒𝑐𝑎𝑙𝑙@50 = 0,   

foreach 𝑖 ∈ 𝑺𝒕 ∪ 𝑺𝒂 do  

    𝑁𝐷𝐶𝐺 =  𝑁𝐷𝐶𝐺 + 
2𝑟𝑢,𝑞

(𝑖)−1

log2(1+𝜋
𝑞(𝑖))

  

   If (𝜋𝑞(𝑖) ≤ 10) then 𝑅𝑒𝑐𝑎𝑙𝑙@10++ 

If (𝜋𝑞(𝑖) ≤ 20) then 𝑅𝑒𝑐𝑎𝑙𝑙@20++ 

If (𝜋𝑞(𝑖) ≤ 30) then 𝑅𝑒𝑐𝑎𝑙𝑙@30++ 
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If (𝜋𝑞(𝑖) ≤ 40) then 𝑅𝑒𝑐𝑎𝑙𝑙@40++ 

If (𝜋𝑞(𝑖) ≤ 50) then 𝑅𝑒𝑐𝑎𝑙𝑙@50++ 

 recover the setting of the per user pre-evaluation protocol. 

return 𝐰 = 𝐰(𝑡)   
 

Algorithm 2 The procedure in the testing phase. 

 

In order to consider the rank positions of the relevant items in the result list of all 

items, the rank position of an item is considered according to the ranked list in which 

all items are sorted by their static scores. Figure 4-7 shows how we obtain the ranked 

result of items and evaluate the NDCG value according to the static state vector 

including both relevant and irrelevant items. While computing the NDCG, we sort all 

items by their rating to obtain the perfect ranked list as IDCG. However the items that 

the target user has not tagged before (i.e., belong to 𝑺𝒖,𝒏) are not irrelevant certainly, 

the DCG would be underestimated a little and so as to the IDCG. Because of the 

logarithmic descent of the DCG value proportional to the position of the result, the 

underestimation of the IDCG value would be more than that of the DCG values. 
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Figure 4-7 Relevant & irrelevant items in the testing phase. 
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Chapter 5 

Experiments 

 

In this chapter we discuss the results we got from all the experiments performed. 

We examine the performance of the parameter estimation and then compare 

Supervised FolkRank with other methods.  

 

5.1 Distribution of optimized parameter vectors 

  Figure 5-1 shows the distribution of the 2-tuple (𝜃 , 𝛼 ) per user optimized 

parameter vectors, where 𝜃 stands for the ratio of the target user to the tag selected 

as a query and 𝛼 stands for the restart probability. Most of the optimized parameter 

vectors prefer small value of 𝜃. We could explain that most of users prefer to use 

more explicit tags to describe items. When the query is polysemic, we may concern 

the behavior of the user to find what the query means for the user. Thus, if a user 

usually uses ambiguous tags for tagging, the random walk-based recommendation 

system may not get sufficient information by almost only concerning about the query 

(i.e., 𝜃 is small). However, a user usually has different interests, and may tag what he 

or she doesn’t like, and therefore user behaviors are divergent. 
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Figure 5-1 The distribution of the 2-tuple per user optimized parameter vector. 

 

Notice that the distribution of these per user optimized parameter vectors do not 

concentrate tightly. It is impossible to find a parameter vector to fit all users. 

Therefore, to obtain more suitable recommendation, we would not only use a single 

optimized parameter vector but also multiple parameter vectors. We divide the 

optimized parameter vectors by clustering and then select the representative vector for 

each cluster. Each cluster could represent a sort of user behavior. In our experiments, 

there are two clustering methods to cluster these per user optimized parameter vectors. 

For each cluster, we compute the mean vector where each element is the mean of the 

elements in all optimized parameter vectors in the cluster. Figure 5-2 and 5-3 shows 

the clustering result by K-Means and DBSCAN, respectively. 
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Figure 5-2 The clustering result by K-Means. The per user optimized parameter 

vector is 2-tuple (𝜃, 𝛼). 

 

 
Figure 5-3 The clustering result by DBSCAN. The per user optimized parameter 

vector is 2-tuple (𝜃, 𝛼). 

 

For K-Means, the distribution of the 2-dimension relation graph can be clustered 

into two sets, and then we could give the initial set of K-Means where the values of 𝜃 

are separated. On the other hand, for DBSCAN, either the initial means of clusters or 

the number of clusters we don’t need to give. DBSCAN requires two parameters: the 
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search radius (eps) and the minimum number of points required to form a cluster 

(minPts). Both of the parameters are easier to be tuned. From our experiments, the 

result by these two clustering methods are similar. One cluster locates at the area 

where the ratio of user (i.e., 𝜃) is quite small (i.e., 0 ~ 0.2), and the other could be 

taken as the outliers. Because the outliers are too many to be neglected, the mean 

vector of all outliers is still used as a parameter vector for recommendation. Thus, our 

random walk model using this parameter vector would fit the users who are taken as 

outliers because of their linking behaviors.  

Figure 5-4 shows the distribution of the 3-tuple (𝜃, 𝛼, 𝛾) per user optimized 

parameter vectors, where the three parameters stand for the ratio of user to query, the 

restart probability and the self-transition probability, respectively. Like the 

distribution of the 2-tuple vectors, most of the optimized parameter vectors prefer 

small 𝜃. We still explain that most of users prefer to use more explicit tags to describe 

items. Moreover, from the projection of 𝛼-𝛾 plane, there are three clusters: one 

locates along the line 𝛼+𝛾=0.8, another locates near the y-axis (i.e., 𝛼 ≈ 0) and the 

other locates on the x-axis (i.e., 𝛾 ≈ 0). The first cluster infers that, the walk goes 

forward with the probability of 0.2 whatever the ratio between 𝛼 and 𝛾 is. Most of 

vectors are located in this cluster. The second cluster shows that the Supervised 

FolkRank (SFR) could be reduced to the self-transition model that M. Clements et al. 

propose [5]. As shown in Figure 5-5, the distribution of PageRank-based model 

always assign the highest value to the nodes closest to the starting position, while in 

the lazy random walk model the distant nodes are more relevant [6]. 
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Figure 5-4 The distribution of the 3-tuple (𝜃, 𝛼, 𝛾) per user optimized parameter 

vector. (a) The projection of 𝜃 − 𝛼 plane. (b) The projection of 𝛾 − 𝛼 plane. (c) The 

projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and 𝛾. 

 

 

Figure 5-5 The Probability mass function (PMF) of the walk distance after a fixed 

number of steps through the social graph, for restart probability and self-transition 

probability are both 0.8. 
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Unlike the distribution of the 2-dimension relation graph, the distribution of 

3-dimension graph cannot be figured out easily. Moreover, the initial set of K-Means 

would affect the clustering. Figure 5-6 and Figure 5-7 show that the result of 

clustering by K-Means and DBSCAN. Among a multi-dimension relation graph, it 

needs other algorithm to find an initial set of K-Means. Without further information 

about the data distribution, the number of clusters is unknown. Moreover, the 

K-Means divides nodes into clusters according to distance and we know that the 

distance-based clustering methods do not adapt to certain data sets, whose clusters are 

not circle-like, very well. From Figure 5-4, the distribution could not be divided into 

circle-like clusters. For DBSCAN, three clusters are obtained without assigning the 

number of clusters. The clustering result is similar to our discussion stated above. If 

we use the centers of clusters obtained by DBSCAN as the initial set of K-Means, the 

result by K-Means is similar. Again, the mean vector of all outliers is used. The search 

radius (eps) and the minimum number of points required to form a cluster (minPts) 

could be predicted according to the range of each dimension. 
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Figure 5-6 The clustering result by K-Means. The per user optimized parameter 

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The projection 

of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and 

𝛾. 
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Figure 5-7 The clustering result by DBSCAN. The per user optimized parameter 

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The projection 

of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and 

𝛾. 

  

5.2 Comparison with other methods 

We compare the predictive performance of Supervised FolkRank with other 

methods including supervised and unsupervised methods. Table 5-1 shows the result 

for the LibraryThing dataset in terms of NDCG. SFR_2 represents Supervised 

FolkRank in 2-dimension. SFR_2_Merge represents SFR_2 with multiple optimal 

parameters. SFR_3 represents Supervised FolkRank in 3-dimension. SFR_3_Merge 

represents SFR_3 with multiple optimal parameters. SRW represents Supervised 

Random Walk. LRW represents Lazy Random Walk. uLRW represents Lazy Random 

Walk using the asymmetric transition matrix. RWR represents Random Walk with 
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Restart. BM25_CF represents Collaborative Filtering with BM25 model. 

The first seven methods are supervised. The seventh method, called Supervised 

Random Walk (SRW), proposed by L. Backstrom et al. [2] bias the random walk by 

assigning the transition probability of each edge. In SRW, there are several attributes 

to describe edges. The weights of attributes can be annotated as the edge feature 

vector, where the length equals to the number of attributes. By tuning the weights in 

the edge feature vector, the random walk would visit the relevant items more likely. In 

our case, edges have only one value i.e., the length of the edge feature vector is 1. 

Therefore, we modify the problem formulation of SRW. The parameters we tune are 

the same as our model rather than the weights of elements in the edge feature vector. 

Nevertheless, we still use their method for optimization.  

 

  NDCG 

SFR_2 0.703407 

SFR_2 _DBSCAN 0.711197 

SFR_2 _KMeans 0.7095989 

SFR_3 0.7044617 

SFR_3_DBSCAN 0.712282 

SFR_3_KMeans 0.7081372 

SRW 0.6983309 

RWR 0.6896602 

URW 0.6552698 

LRW 0.5976361 

uLRW 0.3833435 

BM25_CF 0.6619233 

Table 5-1 Results of NDCG for the LibraryThing dataset. 
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  The last five methods are unsupervised. Lazy Random Walk proposed by M. 

Clements et al. [5] walks in an undirected graph. Due to wondering the difference of 

predictive performance between directed graph and undirected one, we use this 

method in the directed graph, annotated as LRW. uLRW is the origin method in [5]. 

RWR (heuristic) is the random walk with restart model where the parameters is tuned 

heuristically while all the parameters in RWR (unweighted) is set to 0.5. The last 

method annotated as BM25 – CF is the collaborative filtering with the BM25 model. 

  First, comparing the result of NDCG, our models (SFR_2, SFR_2_KMeans, SFR_3, 

SFR_3_DBSCAN) achieve a significant improvement over other methods while 

SFR_3_DBSCAN performs the best. In terms of NDCG, SFR_3_DBSCAN gets 8.7% 

relative improvement to the unweighted random walk model and 3.2% relative 

improvement to the random walk model where the parameter vector is tuned 

heuristically. Except for our models, only two methods, namely SWR and BM25 - CF, 

could get the NDCG values over 0.7, while the worst method is LRW using an 

asymmetric transition matrix. The unsupervised random walk model, whose 

parameter vectors are unweighted or tuned heuristically, gets the NDCG value over 

0.65. We explain that the random walk-based models perform well, and can be 

reinforced through optimizing the parameter vectors by machine learning. Besides, 

BM25 - CF performs better than the unsupervised random walk models.  

  However, due to the logarithmic decent of the NDCG value proportional to the rank 

position, the result of recommendation may get a high NDCG value by giving a 

relevant item at the top rank while other relevant items get low rank positions. Hence, 

we would compare precision and recall respectively. 

  Table 5-2 and Figure 5-8 show the result of precision, where P@𝑛 stands for the 

precision at top 𝑛. For P@10, BM25_CF performs the best and the second is 
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FR_3_DBSCAN. However for P@20, the best and the second are FR_3_DBSCAN 

and FR_3_DBSCAN. In terms of NDCG and P@10, though the relevant items 

retrieved by BM25_CF are more, the rank positions of the relevant items retrieved by 

FR_3_DBSCAN precede the rank positions of the relevant items by BM25_CF. 

Notice that in terms of P@20 and P@30, the result of BM25_CF outperforms SFR_2 

and SFR_3. Hence, by using only one parameter vector, the adaption may not cover 

the linking behaviors of all users. Comparing with all PageRank-based models, 

SFR_3_DBSCAN gets 21.1% improvement relative to the modified Supervised 

Random Walk model and 42% relative improvement to the random walk model where 

the parameter vector is tuned heuristically. 

 

  P@10 P@20 P@30 P@40 P@50 

SFR_2 0.4575253 0.318664 0.241182 0.192541 0.15967 

SFR_2_DBSCAN 0.4764794 0.3264877 0.24471 0.1943747 0.160565 

SFR_2_KMeans 0.4725113 0.3251586 0.244013 0.19375 0.160328 

SFR_3 0.4597796 0.3200149 0.241895 0.192908 0.159917 

SFR_3_DBSCAN 0.4883557 0.3320404 0.24529 0.194049 0.160116 

SFR_3_KMeans 0.4739067 0.3253684 0.24247 0.19257 0.159522 

SRW 0.4031109 0.286734 0.224481 0.184143 0.155311 

RWR 0.3439359 0.243693 0.19375 0.162473 0.13926 

URW 0.3238302 0.236082 0.190182 0.159995 0.137823 

LRW 0.355818 0.26024 0.205359 0.169973 0.144820 

uLRW 0.1484502 0.140693 0.129866 0.117421 0.106468 

BM25_CF 0.488969 0.325332 0.242129 0.192276 0.159488 

Table 5-2 Results of the precision for the LibraryThing dataset at the rank position 10, 

precision 
model 
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20, 30, 40 and 50, respectively. 

 

 
Figure 5-8 Performance of Supervised FolkRank and other methods in terms of 

precision. Notice that SFR and BM25-based Collaborative Filtering perform similarly. 

 

  Table 5-3 and Figure 5-9 show the result of recall, where R@𝑛 stands for the recall 

at top 𝑛. In terms of recall at top 10 and 20, SFR_2_DBSCAN and SFR_3_DBSCAN 

are the best two methods, while at top 40 and 50, SFR_2_DBSCAN and 

SFR_2_KMeans performs the best. In terms of R@10, SFR_3_DBSCAN gets 20% 

relative improvement to the modified Supervised Random Walk model and 44.9% 

relative improvement to the random walk model where the parameter vector is tuned 

heuristically. Though BM25_CF performs well in terms of precision, 

SFR_2_DBSCAN and SFR_3_DBSCAN both outperform BM25_CF in terms of 

recall.  

 

  R@10 R@20 R@30 R@40 R@50 

SFR_2 0.6202254 0.7760892 0.8463632 0.8846496 0.9081167 
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SFR_2_DBSCAN 0.64548 0.792365 0.855814 0.890612 0.911547 

SFR_2_KMeans 0.6441519 0.7936372 0.8578678 0.8918045 0.9115475 

SFR_3 0.6234566 0.7791072 0.8482266 0.8858644 0.9090599 

SFR_3_DBSCAN 0.660385 0.803793 0.857673 0.889815 0.909688 

SFR_3_KMeans 0.6419471 0.7904646 0.8498648 0.8845853 0.9070997 

SRW 0.550053 0.7065371 0.7985334 0.8562116 0.8907223 

RWR 0.4558299 0.6017594 0.7011443 0.7721735 0.8175204 

URW 0.4348568 0.587865 0.6923667 0.7642607 0.8119878 

LRW 0.4851459 0.6560767 0.749214 0.8089915 0.8482832 

uLRW 0.1913874 0.3544839 0.4873156 0.5817193 0.6520374 

BM25_CF 0.630947 0.7623796 0.8306035 0.871583 0.8982363 

 

Table 5-3 Results of the recall for the LibraryThing dataset at the rank position 10, 20, 

30, 40 and 50, respectively. 

 

 

Figure 5-9 Performance of Supervised FolkRank and other methods in terms of recall. 

SFR outperforms other methods. 

 

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

R
e

ca
ll 

Top n (@) 

SFR_3_DBSCAN

SRW

RWR

LRW

BM25_CF



52 
 

 

5.3 The influence of transition matrix 

  The relation in folksonomies could be basically regularized as a ternary relation 

between users, tags, and items. All co-occurrences of users and items, items and tags, 

users and tags are projected from the ternary relation to undirected and weighted 

edges in a social graph.  

To reduce the influence of frequent occurring elements in a 2-dimension matrix, 

IDF-TF weighting is used on each matrix. [5] normalize the matrices, namely 𝐔𝐓, 

𝐈𝐓 and 𝐑, and then combine these sub-matrices and their transposes in the transition 

matrix 𝐀. In our model, we compute 𝐓𝐔, 𝐓𝐈 and 𝐑𝐓 respectively rather than the 

transpose matrices. Notice that by our definition, 𝐑𝐓 is not the transpose of 𝐑.  

  We compare the results of SFR_3_DBSCAN that uses asymmetric transition matrix 

and symmetric one, denoted as ASYM and SYM as shown in Table 5-4 and Figure 

5-10. ASYM gets 31.4% improvement in terms of NDCG. In terms of precision, 

ASYM gets 52.76% improvement, while SYM also gets 35.67% improvement in 

terms of recall. Because of our definition of relevance, the tags relevant to an item for 

the target user are fewer so that the difference of the results between SYM and ASYM 

diminishes with the growing of the reference items in Figure 5-10.  

 

 

ASYM SYM 

NDCG 0.72029 0.54814 

P@10 0.49273 0.26204 

P@20 0.33497 0.21104 

P@30 0.24714 0.17799 

P@40 0.19511 0.15288 
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P@50 0.16084 0.13268 

R@10 0.66977 0.34355 

R@20 0.81274 0.53298 

R@30 0.86606 0.65824 

R@40 0.8961 0.73974 

R@50 0.91486 0.79141 

 

Table 5-4 Results of ASYM and SYM in terms of NDCG, precision and recall. The 

model that uses the transition matrix that we modify outperforms the other. 

 

 

Figure 5-10 Results of ASYM and SYM in terms of precision and recall. ASYM 

outperforms SYM. 

 

By the definition of normalization, the value of an element in the matrix is different 

from that in its transpose. The influence of a frequent occurring element could be 

reduced logarithmically proportional to the sparsity of the elements located in the 

same column. Thus, the normalization that we modify can represent the local linking 

relation around the elements more precisely. 
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Chapter 6  

Conclusions and Future Work 

 

We have proposed a novel learning model, the Supervised FolkRank (SFR), for link 

recommendation in social tagging networks. By approximating the NDCG to be the 

objective function, we consider the rank position of each item rather than split items 

into two sets. Moreover, to make our model reliable, we define the relevance of an 

item so that items that a target user has never tagged before would be pruned. Both 

the search space of relevant and irrelevant items would be reduced to the items that 

the target user has tagged before.  

The transition matrix in our model is similar to most of random walk-based 

methods in the social tagging networks [5, 6, 11, 13]. However, our transition matrix 

is not symmetric. We argue that the asymmetric transition matrix would adapt to the 

real condition though edges in the social graph are undirected. The Supervised 

FolkRank provides two types. We use the random walk with restart model as our basic 

type, and we introduce the probability of self-transition to our model to combine the 

PageRank-like model and the Lazy Random Walk model. While computing the 

objective function in the training phase, by our definition of relevance, we compute 

the NDCG-based objective function where the rating of a relevant item is taken as the 

relevance score. Thus, the irrelevant items would not be counted in to affect the 

predictive result.  

By optimizing the parameters of our model, we analyze the linking behavior of a 

user that would affect the result much. Due to the divergence of users’ linking 

behaviors, we argue that the prediction by PageRank-based model with only one 

parameter vector may not adapt to the real datasets. Thus, by clustering, we could find 

the representatives for each cluster by computing the mean of each cluster. Each 
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cluster represents a sort of user behavior. While recommending, we use the parameter 

vector, which belongs to the cluster that is similar to the target user. Thus, the 

prediction could be enhanced. 

Experiments on LibraryThing demonstrate good performance of the Supervised 

FolkRank. Comparing with supervised (e.g., modified Supervised Random Walks) 

and unsupervised methods, Supervised FolkRank (SFR) outperforms other methods. 

The list-wise learning method we utilize could obtain more precise distribution than 

the pair-wise one such as Supervised Random Walks. Besides, due to the learning 

techniques, SFR could make reliable prediction without the requirement of network 

features discovery and extraction.  

Supervised FolkRank is a robust model that can be applied to the problems which 

require ranking nodes in a social tagging graph, such as keyword search and 

recommendation.  
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