
i

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

於社群標記網路上的監督式推薦系統

Supervised FolkRank:

A recommender system in the social tagging networks

研 究 生：郭立言

指導教授：李素瑛 教授

中 華 民 國 １０１ 年 ６ 月

i

於社群標記網路上的監督式推薦系統

研究生: 郭立言 指導教授: 李素瑛

國立交通大學資訊科學與工程研究所

摘要

 群眾分類法揭示著一種分散式、去中心化且協同的標記系統，不僅可降低文件

認知的花成本，亦可快速適應常用字彙的變化。社群標記系統中的連結關係包含

使用者產生的內容、對於文件的評比、以及對於文件的標記。一般傳統利用二分

圖來描述使用者與文件之間的評比關係，加入標籤之後，可被視為在使用者與文

件之間一種重要的介面，而這種介面以語義的方式描述文件。縱使社群標記網路

上的推薦系統已被廣泛地探討，然而個人化行為對於推薦結果的影響仍尚待研究。

 我們提出了一個推薦系統 Supervised FolkRank，以重啟式隨機漫步(Random

Walk with Restart)為基礎，對於重啟的機率、停滯的機率以及使用者與關鍵字的

權重進行最佳化。本推薦系統關注所有文件的相關性而非僅止於二元地將文件分

為相關與否，如此一來便可掌握整個文件集合就相關性的排序情況，以求得到最

佳化效果。除此之外，透過分析每個使用者的最佳化參數向量而獲得這些向量的

分佈。透過這些分佈，我們發現肇因於使用者行為的不同，而使得最佳化參數向

量存在相當的分歧。從實驗中，比較其他監督式與非監督式的方法，我們所提出

的推薦系統表現出較佳的正確率與取回率。

檢索詞: 社群網路、推薦、隨機漫步、最佳化

ii

Supervised FolkRank: A recommender System in the social

tagging networks

Student: Li-Yen Kuo Advisor: Suh-Yin Lee

Institute of Computer Science and Information Engineering

National Chiao-Tung University

ABSTRACT

 Folksonomy represents a distributed, decentralized, collaborative tagging system,

which lowers the cognition cost and has a quick adaption to changes in vocabulary.

Social tagging systems contain huge linking relations including user-generated

content, ratings and annotations. Beyond the bipartite graphs that describe the ratings

of items for users, annotation by tagging could be taken as an important interface to

describe content semantically. Although the recommendation in social tagging

networks has been studied extensively, the influence of personal behaviors on

recommending results is still unexplored.

 We propose a recommendation model, Supervised FolkRank, which uses a list-wise

approach to formulate the objective function so that the ranking of all items could be

considered. By analyzing the relation among restart probability, self-transition

probability and the ratio of the target user to the selected query, we discover the

divergence of the distribution of parameter vectors with the difference of users’

behaviors. To find the representatives to describe the distribution, clustering is used

for analysis.

 From our experiments on the LibraryThing social tagging graph, we show that our

approach outperforms other recommendation systems including supervised and

iii

unsupervised ones. Finally, by showing that the results by the same model vary with

different parameter vectors, we demonstrate the influence of the parameter vectors.

Index terms: Social networks, recommendation, random walk, optimization

iv

ACKNOWLEDGEMENT

I greatly appreciate the kind guidance of my advisor, Prof. Suh-Yin Lee. She not

only helps with my research but also takes care of me. Her graceful suggestion and

encouragement help me forward to complete this thesis.

 Besides, I want to give my thanks to all members in the Information System

Laboratory for their suggestion and instruction, especially Mr. Yi-Cheng Chen, Mr.

Wei-Zen Wang, and Mr. Fan-Chung Lin.

 I would express my thanks to the nicest and most beautiful lady Ms. Naomi Chung

who accompanies me and always give me a happy smile.

Finally I would like to express my deepest appreciation to my parents. This thesis is

dedicated to them.

v

Table of Contents

Abstract (Chinese) .. i

Abstract (English) .. ii

Acknowledgement .. ii

Table of Contents ... v

List of Figures ... ii

Chapter 1 Introduction .. 1

Chapter 2 Related Work ... 4

2.1 Recommendation Systems in Folksonomies………………………………....4

2.1.1 Collaborative Filtering…....…………………...……………..…………….4

2.2.2 Random Walk Model………………....………………..………...………...7

2.2 Machine Learning...10

2.2.1 The Pairwise Approach……………………………..………......…...10

2.2.2 The Listwise Approach……………….……….....….........................12

Chapter 3 Supervised FolkRank .. 14

3.1 Random Walk Model…………………………………………..……..….....14

3.2 The Optimization Problem……………………………………...……..……17

Chapter 4 Methodology ... 23

4.1 Data Preparation………………………………………………………...…..23

4.2 Measures……………………………………………………………….....…24

4.2.1 The Assumption for Relevance………………………………......….24

4.2.2 Normalized Discounted Cumulative……………………………...…25

4.2.3 Precision and Recall….……………………………………………...28

4.3 Evaluation……………………………………………………………….…..29

Chapter 5 Experiments.. 39

5.1 Distribution of optimized parameter vector………………………………...39

5.2 Comparison with other methods…………………………………………....46

5.3 The influence of transition matrix…………………………………………..52

Chapter 6 Conclusions and Future Work…………………………………………54

Bibliography………………………………………………………………………...56

vi

List of Figures

Figure 1-1 An example of folksonomy.……………………………...………………1

Figure 3-1 (a) The transition matrix A. (b) The initial state vector v0. (c) The

stationary state vector v𝑛.……..…………………………………….….16

Figure 3-2 The relation between η and the precipitation of the logistic

function ………………………………..……………………….…….....19

Figure 3-3 The NDCG measures may be affected by the rank position of items in the

form of logarithm. On the other hand, if we approximate it by Taylor

expansion, it may be affected linearly..…………………………..……...21

Figure 4-1 The data preparation by splitting the D matrix into two parts...………....24

Figure 4-2 The average distribution of tagging frequency per user…………….…..25

Figure 4-3 Precision and recall are the quotient of the upper left region with orange

color by respectively the region with red boundary and the one with blue

boundary.....………………….. …………..…………..…………..……..28

Figure 4-4 For each user, the per user pre-evaluation protocol is followed: 𝑆𝑢,𝑡 is the

20% randomly selected set of items that the user 𝑢 has tagged, 𝑆𝑢,𝑎 is

the remaining 80% of items the user 𝑢 has tagged and 𝑆𝑢,𝑛 corresponds

to the items that the user 𝑢 has not tagged yet.....……..…………….....29

Figure 4-5 The relations between 𝑆𝑢,𝑡, 𝑆𝑢,𝑎, 𝑆𝑢,𝑛, 𝑆𝑡, 𝑆𝑎 and 𝑆𝑛.…………...32

Figure 4-6 Relevant & irrelevant items in the training phase.....………….……….. 33

Figure 4-7 Relevant & irrelevant items in the testing phase..……….………......…..38

Figure 5-1 The distribution of the 2-tuple per user optimized parameter vector........40

Figure 5-2 The clustering result by K-Means. The per user optimized parameter

vector is 2-tuple (𝜃, 𝛼)......………...…………..………….. …………...41

Figure 5-3 The clustering result by DBSCAN. The per user optimized parameter

vii

vector is 2-tuple (𝜃, 𝛼).......……….…………..…………..…..…….…..41

Figure 5-4 The distribution of the 3-tuple (𝜃, 𝛼, 𝛾) per user optimized parameter

vector. (a) The projection of 𝜃 − 𝛼 plane. (b) The projection of 𝛾 − 𝛼

plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼

and 𝛾.…………………………………………………………………....44

Figure 5-5 The Probability mass function (PMF) of the walk distance after a fixed

number of steps through the social graph, for restart probability and

self-transition probability are both 0.8………………..……………..…..44

Figure 5-6 The clustering result by K-Means. The per user optimized parameter

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The

projection of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The

distribution of 𝜃, 𝛼 and 𝛾.………………..…………..…………….....45

Figure 5-7 The clustering result by DBSCAN. The per user optimized parameter

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The

projection of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The

distribution of 𝜃, 𝛼 and 𝛾..….…………..……………... ………….....46

Figure 5-8 Performance of Supervised FolkRank and other methods in terms of

precision. Notice that SFR and BM25-based Collaborative Filtering

perform similarly……………..…………..…………..………………....50

Figure 5-9 Performance of Supervised FolkRank and other methods in terms of recall.

SFR outperforms other methods.……………..……………….………...51

Figure 5-10 Results of ASYM and SYM in terms of precision and recall. ASYM

outperforms SYM……………..…………..…………..………………...53

viii

List of Tables

Table 5-1 Results of NDCG for the LibraryThing dataset….…………………..…...47

Table 5-2 Results of the precision for the LibraryThing dataset at the rank position 10,

20, 30, 40 and 50, respectively…………………………….…………..….49

Table 5-3 Results of the recall for the LibraryThing dataset at the rank position 10, 20,

30, 40 and 50, respectively………………………………………………..50

Table 5-4 Results of ASYM and SYM. The model that uses the transition matrix that

we modify outperforms the other…………………………………………52

1

Chapter 1

Introduction

In recent years, social tagging has transformed the behavior of users from passive

information receiving to active producing. The influence of authoritative pre-defined

taxonomy is decreasing, and on the other hand a new type of tagging so-called

folksonomy has become the most popular way to describe, categorize, and navigate

content within the Web 2.0 websites.

Folksonomy is formed by three types of nodes, namely users, items and tags. Users

use tags to describe items so that items could be categorized by these tagging

behaviors. Figure 1-1 shows the tagging relation and categorism of each user. A user

uses his familiar words as tags to describe items. Thus, each user has his own

categorism.

Figure 1-1 An example of folksonomy.

With the tremendously increasing of information on Internet, taxonomy, which

constructs a hierarchical categorism by a single authority, would be out of date.

apple fruit

iPhone 3C

iPhone

apple red

apple phone

Users Tags Items

2

Unlike taxonomy, folksonomy represents a distributed, decentralized, collaborative

tagging system, which lowers the cognition cost and has a quick adaption to changes

in vocabulary [1, 26]. The main difference is that folksonomy respects to the largest

possible extent the request of non-expert users not to be bothered with any formal

modeling overhead [11].

Nevertheless, this is a benefit as well as a drawback to the tagging approach. Due to

lacking of unique authoritative annotations, ambiguous and polysemous tags treated

as different meanings may decline the accuracy of information retrieval, and

synonyms would cause the redundancy of information. Moreover, because of

unawareness of the implicit centralized controlling vocabulary, tagging of a user may

contravene the mainstream categorical scheme. To reduce the influence of noise,

personalized recommendation is proposed to make these ‘abnormal’ tags more

reasonable.

A. Hotho et al. [11] propose a PageRank-like algorithm, called FolkRank, to

retrieve information in folksonomies. FolkRank considers the relationship among

users, tags and resources and converts the relationship formed by triadic hyper-edges

into an undirected tripartite graph. Thereafter, many random walk-based

recommendation systems are proposed and the parameters are tuned heuristically. The

parameters could be taken as a three-tuple vector, which includes restart probability,

self-transition probability and the ratio of the target user to the selected query. We are

interested in the relation between the performance of recommendation and the

distribution of per user optimized parameter vectors. If the distribution is centralized,

we may use only one parameter vector certainly. However, if the distribution is not

centralized, is that still meaningful to tune only one parameter vector heuristically?

In this thesis, we will propose a novel supervised recommendation system, called

Supervised FolkRank (SFR), to enable collaborative tagging to annotate the available

3

content. Our model uses a list-wise learning approach to focus on the ranking of all

items rather than pair-wise ones that split them into two sets. Due to lack of ground

truth data of recommendation, we use tagging records to simulate the

recommendation results. To make our model reliable, we define the relevant and

irrelevant item. The items that are neither relevant nor irrelevant would be pruned. We

analyze the distribution of the optimized parameter vector of each user. It proves our

assumption that the distribution may not be centralized. To reduce the influence of the

divergence of distribution, we find the representatives by clustering. Besides, we also

discuss the influence of the transition matrices constructed by different protocols that

reduce the influence of frequent occurring elements in the transition matrix. Though

the social tagging graph is undirected, the asymmetric transition matrix would

outperform the symmetric one. The weights of different directions of an edge are

quite different. Hence, before normalizing each row to sum to one, the transition

matrix should be built asymmetrically.

4

Chapter 2

Related Work

2.1 Recommendation Systems in Folksonomies

The relation in folksonomies could be basically regularized as a ternary relation

among users, tags, and items [5, 11, 13], where each entry indicates a user tagging an

item with a tag. Due to the impracticality of using of the ternary relation directly, all

co-occurrences of users and items, items and tags, users and tags are projected from

the ternary relation to undirected and weighted edges.

2.1.1 Collaborative Filtering

Lately, many researches have been revolving around recommendation systems in

social networks. Collaborative filtering (CF) [10] is one of the most used and

successfully applied methods for a personalized recommendation system. By and

large, CF makes a recommendation from the similarity of linking behaviors. Thus, the

definition of similarity becomes a critical factor. In the past the traditional CF uses a

bipartite graph which means that users give preference judgments for items as ratings.

There are two sorts of nodes, i.e. users and items, and weighted edges. Due to the

bipartite graph, the traditional CF could be divided into two categories, i.e. user based

and item based.

A user-based CF algorithm makes a prediction by first finding users who are

similar to the target user, and then taking a weighted combination of the deviation

from their mean ratings. The predicted rating could be written as in Eq. (1).

𝑝𝑟𝑒𝑑(𝑢, 𝑖) = 𝑟̅𝑢 +
∑ (𝑟𝑢′,𝑖 − 𝑟̅𝑢′) 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′)𝑢′∈𝑈

∑ 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′)𝑢′∈𝑈
 (1)

where 𝑢 is the target user, 𝑖 is the target item, 𝑈 is the finite set of users, 𝑟𝑢′,𝑖 is

5

the rating of user 𝑢′ for item 𝑖, 𝑟̅𝑢 and 𝑟̅𝑢′ are the mean ratings of users 𝑢 and

𝑢′respectively, and 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) stands for the similarity between users 𝑢 and

𝑢′.

In an item based CF algorithm, a prediction is made by finding items which are

similar to the target item which is predicted now, and then taking a weighted

combination of the deviation from their mean ratings. The predicted rating could be

written as in Eq. (2).

𝑝𝑟𝑒𝑑(𝑢, 𝑖) = 𝑟̅𝑖 +
∑ (𝑟𝑢,𝑘 − 𝑟̅𝑘) 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘)𝑖∈𝐼

∑ 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘)𝑘∈𝐼
 (2)

where 𝐼 is finite set of items, 𝑟𝑢,𝑘 is the rating of user 𝑢 for item 𝑘, 𝑟̅𝑖 is the mean

rating of item 𝑖, and 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑖, 𝑘) stands for the similarity between items 𝑖 and

𝑘.

For calculating the similarity between users or items, several measures of similarity

can be used. The most used is the Pearson correlation score defined in Eq. (3).

𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) =
∑ (𝑟𝑢,𝑖 − 𝑟̅𝑢)(𝑟𝑢′,𝑖 − 𝑟̅𝑢′)𝑢′∈𝑈

𝜎𝑢𝜎𝑢′
 (3)

where 𝜎𝑢 is the standard deviation of the ratings of user 𝑢. Moreover, I. Konstas et

al. [13] combines several different similaritys based on the relation in the data. The

datasets used is from Last.fm
1
, which is an online radio website. They use three

similaritys based on the user’s playcount, users tags and users friendship, and then

their weighted sum is used to obtain the compound similarity which can be written as

in Eq. (4).

𝑆𝑖𝑚(𝑢, 𝑢′) = 𝛼 ∙ 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑢, 𝑢′) + 𝛽 ∙ 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) + 𝛾 ∙ 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) (4)

where 𝛼 + 𝛽 + 𝛾 = 1 and 𝑖𝑡𝑒𝑚𝑆𝑖𝑚(𝑢, 𝑢′) , 𝑢𝑠𝑒𝑟𝑆𝑖𝑚(𝑢, 𝑢′) , 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) are

the similarity obtained from the user tracks, user friendships and user tags.

Even though the compound similarity is used, from the result in [13], we know that

the traditional CF does not perform well without using information about tags directly.

1
 http://www.last.fm

6

In the CF model in [13], 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) is the only term concerned with tags in Eq.

(4). Could it elaborate the ternary relation among users, tags and items by using

𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) merely? From the definition of 𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) , we know that

𝑡𝑎𝑔𝑆𝑖𝑚(𝑢, 𝑢′) evaluates the similarity in view of macrocosm, neglecting the

variation among users. For a polysemous word such as apple, people concerned with

agriculture may use this tag to refer to a kind of fruit, while others concerned with 3C

products always use this tag to represent the Apple Inc. Hence, in a personalized

social recommendation system, the variation among users plays an important role, and

then the information about the topological structure in a social graph is concerned.

To consider the influence of tags, D. Parra-Santander et al. [18] introduce the

BM25-based similarity into the classic CF model [19]. BM25 is a non-binary

probabilistic model used in information retrieval to rank matching documents

according to their relevance to a given search query. Given a search query, it

calculates the relevance of each document in a collection. They compare the tags

taken as a query with other tags used by the target user. Besides, they also compare

the set of tags of items. Thus, the neighbor-weighted collaborative filtering (NwCF)

which combines the BM25 model and the classic CF is proposed. The new predicted

score can be written as in Eq. (5).

𝑝𝑟𝑒𝑑′(𝑢, 𝑖) = log(1 + 𝑛𝑏𝑟(𝑖)) ⋅ 𝑝𝑟𝑒𝑑(𝑢, 𝑖) (5)

where 𝑛𝑏𝑟(𝑖) represents the similarity between the target user 𝑢 and a neighbor

(i.e., an item 𝑖), while 𝑝𝑟𝑒𝑑(𝑢, 𝑖) is the classic CF. 𝑛𝑏𝑟(𝑖) is taken from the

calculation of the Retrieval Status Value of an item 𝑖 given a query 𝑞 as in Eq. (6).

𝑛𝑏𝑟(𝑖) =∑IDF ⋅
(𝑘1 + 1) 𝑡𝑓𝑡𝑖

𝑘1[(1 − 𝑏) + 𝑏(𝐿𝑑 𝐿𝑎𝑣𝑒⁄)] + 𝑡𝑓𝑡𝑖
𝑡∈𝑞

⋅
(𝑘3 + 1) 𝑡𝑓𝑡𝑞

𝑘3 + 𝑡𝑓𝑡𝑞
 (6)

where 𝐿𝑑 is the item length (i.e. the sum of the frequencies of each tag of the item

 𝑖), 𝐿𝑎𝑣𝑒 is the average of the 𝐿𝑑 of every item, 𝑡𝑓𝑡𝑖 is the frequency of the tag 𝑡

7

in the set of tags of the item 𝑖 and 𝑡𝑓𝑡𝑞 stands for the frequency of the tag in the

query. Besides, 𝑘1 , 𝑘3 and 𝑏 are parameters that are set to 1.2, 1.2 and 0.8,

respectively, according to the results in [18].

2.1.2 Random Walk Model

PageRank [3] proposed by S. Brin and L. Page makes use of the link structure of

the web to calculate a quality ranking for each web page. They use the random walk

model with the probability to restart to simulate the behavior of user’ surfing on the

Internet. It exploits the topological structure of a social graph through the stochastic

process. Moreover, the probability of restart determines the static score of each node

according to the distance from the start node. Without restart, the static score

distribution is not affected by the initial state and could only represent the macro

characteristic of the social graph. From the viewpoint of macrocosm, a social graph

represents the general behavior of people. To make the recommendation system

personalized, the influence of starting nodes must be emphasized by introducing the

probability of restart.

FolkRank algorithm proposed by A. Hotho et al. [11] is the first approach to apply

the random walk models to folksonomies. They propose a formal model for

folksonomies which is a tuple 𝔽 ≔ (𝑈, 𝑇, 𝑅, 𝑌, ≺) where 𝑈, 𝑇 and 𝑅 are finite sets

whose elements are called users, tags and resources respectively, 𝑌 is a ternary

relation among them, i.e. 𝑌 ⊆ 𝑈 × 𝑇 × 𝑅 , and ≺ is a user-specific

subtag/supertag-relation, i.e. ≺ ⊆ 𝑈 × 𝑇 × 𝑇. A folksonomy induces a topological

structure which would be exploited by the ranking algorithm.

Their ranking algorithm called Adapted PageRank combines random walk with

restart and lazy random walk models to provide a topic-specific ranking in a

folksonomy. The vector of each step could be written as in Eq. (7).

8

𝐰𝐧+𝟏 ← 𝛼𝐰𝐧 + 𝛽𝐀𝐰𝐧 + 𝛾𝐩 (7)

where 𝐀 is the row-stochastic version of the adjacent matrix of the graph constructed,

𝐩 is a preference vector, i.e. initial vector, 𝛼, 𝛽, 𝛾 ∈ [0, 1] are constants with

𝛼 + 𝛽 + 𝛾 = 1 . The constant 𝛼 regulates the speed of convergence, while 𝛾

controls the influence of the preference vector.

Notice that the graph constructed is an undirected graph so that the

undirectedness of the graph makes it very difficult for other nodes than those with

high edge degree to become highly ranked, no matter what the initial vector is [16].

To solve this problem, a differential approach called FolkRank based on Adapted

PageRank is proposed. The FolkRank algorithm computes a topic-specific ranking as

follows [11, 16]:

1. Let 𝐰(𝟎) be the fixed point from (7) with 𝐩 = 𝟏.

2. Let 𝐰(𝟏) be the fixed point from (7) with 𝐩 = 𝟏, but 𝐩[𝑢] = 1 + |𝑈| and

𝐩[𝑖] = 1 + |𝐼|.

3. 𝐰 ≔ 𝐰(𝟏) −𝐰(𝟎) is the final weight vector.

 Eliminating the influence of the initial vector, the resulting score distribution 𝐰(𝟎)

represents the macro behavior of all users. This resulting score distribution could be

taken as the neutral preference of the graph without being affected by the initial vector.

For an instance, in [11], the tags “software” or “java” are frequently used, so that the

result of topic-specific ranking would be interfered by these tags. Hence, the neutral

preference of the graph could be taken as the “background noise”. From their result of

experiments, it shows that the FolkRank algorithm could cause better ranking by

diminishing the influence of the background noise 𝐰(𝟎).

M. Clements et al. [5] use the lazy random walk model which integrates the user’s

preference and semantically related query terms. To reduce the influence of frequently

occurring elements, they use TF-IDF weighting on the input matrices. Unlike the

9

differential approach in FolkRank, it does not calculate 𝐰(𝟎)or 𝐰, which costs more

time and memory. By modifying the transition matrix before computing random

walks, this approach is more practical in learning phase. They heuristically tune the

ratio of the weight of a user to a query as an initial state vector in the lazy random

walk model. Moreover, they assume that a tag assigned to an item by the user is the

same as they would use as a query to retrieve the item. Thus, they only focus on the

known data, neglecting what is unknown.

To evaluate the predicted content ranking, they use the Normalized Discount

Cumulative Gain (NDCG) proposed by Järvelin and Kekäläinen [12]. Due to lack of

relevance measures, they assume that the ratings could be taken as the relevance while

predicting the content ranking. We argue that the assumption is true on the premise

that the item is relevant in the topic-specific ranking. On the other hand, A.

Al-Maskari et.al [1] NDCG has its limitation and could not be taken as the only one

measure for evaluation.

From their result, with increasing of query length, the influence of personalization

would decrease gradually. If a user puts more effort in indicating his information need

by giving more query terms to the system, the influence of personalization and

smoothing diminishes. These results show that the optimal model whose parameters

are tuned heuristically converges to the frequency based model, i.e. non-personalized

model, when the user issues longer queries.

The construction of transition matrix seems to be a standard basis in social tagging

networks. So does what I. Konstas et al. [13] propose. They develop a track

recommendation system integrating the traditional ternary relation and the

relationship between users (i.e., the user-user relation). However, from their results,

the direct relation between users might disturb the performance while considering less

10

social knowledge. When the main social knowledge (e.g., the user-item, user-tag,

item-tag relations) is taken into account, the user-user relation might give the

performance a little help [21]. Besides, comparing the results of the graph model with

the ones of the standard collaborative filtering model, it shows that the former

outperforms the latter. We argue that it is unfair to compare the graph model of the

ternary relation with the collaborative filtering model of the binary relation.

Due to their empirical view to evaluate the proposed algorithm, the parameters are

tuned heuristically without discussing the relation between parameters and results

further. Besides, it is still obscure that how the variation of behavior between users

affects the performance and the optimal parameters of the model. Therefore, in our

model, we obtain the optimal parameters for each user by machine learning, and then

from the distribution of these parameter sets, we discuss the relation among user’s

behavior, ranking and parameters.

2.2 Machine Learning

2.2.1 The Pairwise Approach

The learning approaches take the entire set of documents associated with a query in

the training data as an input and predict their ground truth labels. The pair-wise

approaches calculate the loss function to divide the training data into two

sub-categories, namely relevant and irrelevant. The supervised random walks (SRW)

[2] proposed by L. Backstrom et al. is an instance of pair-wise approaches.

For each edge (𝑢, 𝑣) in the graph 𝐺, they compute the strength 𝑎𝑢𝑣 = 𝑓𝑤(𝜓𝑢𝑣),

where 𝑓𝑤 parameterized by 𝑤 takes the edge feature vector 𝜓𝑢𝑣 as input. Thus, the

strength function 𝑓𝑤(𝜓) is what they want to optimize in the training phase. Because

of avoidance from the occurrence with underflow and overflow of double precision

floating point numbers, the logistic edge function is suggested.

11

The restart probability controls the expected distance surfing from the start node

before it restarts. High values of the restart probability give local random walks, while

low values may diminish the influence of initial state. Notice that in SRW, the restart

parameter is set heuristically rather than optimized in the training phase because from

their experiments the restart probability does not affect the result much. On the

contrary, in our model, the restart probability is in the parameter vector for

optimization.

Similarly to formulations of Support Vector Machine, SRW introduces a loss

function to “soften” the constraints. According to the loss function calculated from the

stationary distribution of random walk with restart, it penalizes violated constraints.

Thus, the optimal condition could be found by minimizing the loss function. There are

three choices of loss function:

1. Squared loss with margin 𝑏:

ℎ(𝑥) = max{𝑥 + 𝑏, 0}2 (8)

2. Huber loss with margin 𝑏 and window z > 𝑏:

ℎ(𝑥) = {

0 if 𝑥 ≤ −𝑏,

 (𝑥 + 𝑏)2 2𝑧⁄ if − 𝑏 < 𝑥 ≤ 𝑧 − 𝑏,
(𝑥 + 𝑏) − 𝑧 2⁄ if 𝑥 > 𝑧 − 𝑏

 (9)

3. Wilcoxon-Mann-Whitney (WMW) loss with width (Proposed to be used when

one aims to maximize AUC [27]):

ℎ(𝑥) =
1

1 + exp(−𝑥/𝑏)
 (10)

The WMW loss is suggested because the model trained with the other two loss

functions does not perform better than the baseline obtained through unweighted

PageRank. Compared with other learning methods such as decision tree and logistic

regression, SRW algorithm obtains the highest AUC (Area Under Curve) and P@20

(Precision at top 20).

12

2.2.2 The Listwise Approach

Unlike pair-wise approaches, the list-wise approach assumes that the ground truth

labels are given in terms of permutations, while the judgments might be in other

forms [15]. Evaluation measures such as the mean average precision (MAP) and the

normalized discounted cumulative gain (NDCG) can also be rewritten in the form of

the permutation set. Hence, how to obtain the approximate permutation sorted by their

relevance scores, which has not been known yet, becomes an important issue.

In Softrank [24], it introduces a random process in which each random variable is

governed by Gaussian distribution to describe the score distribution of all items.

Given the item set 𝑥 = {𝑥𝑗}𝑗=1
𝑚

 associated with a training query 𝑞, the score 𝑠𝑗 of

item 𝑥𝑗 is treated as no longer a deterministic value but a random variable. The

random variable could be written as in Eq. (11).

𝑝(𝑠𝑗) = 𝑁(𝑠𝑗|𝑓(𝑥𝑗), 𝜎𝑠
2) (11)

where 𝜎𝑠 is the variance of the Gaussian distribution, 𝑓(𝑥𝑗) which is the original

score output by the scoring function is the mean.

Due to the randomness in the scores, each item has the probability of being ranked

at any position in the ranking. Thus, the probability of an item 𝑥𝑢 being ranked

before another item 𝑥𝑣 can be written as in Eq. (12).

𝑝𝑢,𝑣 = ∫ 𝑁(𝑠|𝑓(𝑥𝑢) − 𝑓(𝑥𝑣), 2𝜎𝑠
2)𝑑𝑠

∞

0

 (12)

Suppose that there is an item 𝑥𝑗 already in the ranked list, while adding another

one 𝑥𝑢, if 𝑥𝑢 can beat 𝑥𝑗 the rank of 𝑥𝑗 would be increased by one. Otherwise, the

rank position of 𝑥𝑗 is unchanged. Hence, the probability of an item 𝑥𝑗 being ranked

at position 𝑟 can be deduced iteratively

𝑃𝑗
(𝑢)(𝑟) = 𝑝𝑗

(𝑢−1)(𝑟 − 1)𝑃𝑢,𝑗 + 𝑝𝑗
(𝑢−1)(𝑟)(1 − 𝑃𝑢,𝑗) (13)

where 𝑢 is the iteration index, and then the expected position of an item 𝑥𝑢 could

13

be written as follows

𝜋𝑞(𝑥𝑢) =∑𝑃𝑗
(𝑢)(𝑟)

1

log(1 + 𝑟)

𝑚

𝑟=1

 (14)

So far, we can use the expected rank position of each item to approximate the

evaluation measures such as NDCG or MAP which is taken as the basis of the

objective function.

Besides Softrank stated above, there are some approaches that perform

approximation to the rank positions using smooth functions of the ranking scores,

such that the approximate evaluation measures can consequently become

differentiable and easier to optimize. Qin et al. [20] approximate the rank positions by

a sigmoid function. The rank position can be written as

𝜋𝑞(𝑥𝑗) ≈ 1 + ∑
exp [−𝛼 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

1 + exp [−𝛼 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

𝑚

𝑢=1,𝑗≠𝑖

 (15)

where 𝛼 > 0 is a scaling constant.

H. Valizadegan et al. [25] use a simple logistic model as a smooth function to

approximate the rank positions. The rank position can be written as

𝜋𝑞(𝑥𝑗) ≈ 1 + ∑
1

1 + exp [2 (𝑓(𝑥𝑗) − 𝑓(𝑥𝑢))]

𝑚

𝑢=1,𝑗≠𝑖

 (16)

Notice that there is no scaling constant in it. Practically, the ranked list predicted by

the logistic-based smooth function is not precise enough so that it may interfere with

the optimization. In our model, we would discuss the problem and introduce a scaling

constant to reinforce the precision of the predicted ranked list. Moreover, the

influence of scaling constant upon precision and practicability would be also

discussed in the next chapter.

14

Chapter 3

Supervised FolkRank

3.1 Random Walk Model

A graph is an intuitive representation of data with some topological relations. Thus,

we use a random walk model over the graph to rank the relevance of items on the

selected tags as a query. From [11] a folksonomy is a ternary relation 𝒀 = 𝑈 × 𝐼 ×

𝑇 = {(𝑢, 𝑖, 𝑡)|𝑢 ∈ 𝑈, 𝑖 ∈ 𝐼, 𝑡 ∈ 𝑇}, where each element indicates that a user u tagged

an item i with a tag t and U, I, T are finite sets, whose elements are called users, tags,

items respectively. Using the concept in [5], we can build a matrix D, where

𝐃(𝑢, 𝑖, 𝑡) = 1 if (𝑢, 𝑖, 𝑡) ∈ 𝒀. Thus, this 3-dimension matrix D can be projected to

three 2-dimension matrices:

𝐔𝐓(𝑢, 𝑡) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑖∈𝐼

 (17)

𝐔𝐈(𝑢, 𝑖) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑡∈𝑇

 (18)

𝐈𝐓(𝑖, 𝑡) =∑ 𝐃(𝑢, 𝑖, 𝑡)
𝑢∈𝑈

 (19)

Semantically speaking, each position in UI matrix indicates how many tags that a

user assigned to an item. This relation is not useful because the familiarity between a

user and an item does not rely on how many tags used. An ambiguous item to a user

semantically may be described by less tags, but it doesn’t mean that the user dislikes

the item. Hence, due to lack of clear indication of UI, we replace 𝐔𝐈(𝑢, 𝑖) with the

rating matrix 𝐑(𝑢, 𝑖) where each position indicates that the rating that a user u

assigned to an item i.

To reduce the influence of frequent occurring elements in a 2-dimension matrix, we

use TD-IDF weighting on each 2-dimension matrix [5, 22] with normalization. The

15

definitions of weightings of elements in the sub-matrices are shown below,

respectively:

𝐔𝐓′(𝑢, 𝑡) =
1

𝑁UT
∗ 𝐔𝐓(𝑢, 𝑡) ∗ log (

|𝑈|

∑ sgn(𝐔𝐓(𝑢′, 𝑡))𝑢′∈𝑈

) (20)

𝐓𝐔′(𝑡, 𝑢) =
1

𝑁UT
∗ 𝐔𝐓(𝑢, 𝑡) ∗ log (

|𝑇|

∑ sgn(𝐔𝐓(𝑢, 𝑡′))𝑡′∈𝑇

) (21)

𝐈𝐓′(𝑖, 𝑡) =
1

𝑁IT
∗ 𝐈𝐓(𝑖, 𝑡) ∗ log (

|𝐼|

∑ sgn(𝐈𝐓(𝑖′, 𝑡))𝑖′∈𝐼

) (22)

𝐓𝐈′(𝑡, 𝑖) =
1

𝑁TI
∗ 𝐈𝐓(𝑖, 𝑡) ∗ log (

|𝑇|

∑ sgn(𝐈𝐓(𝑖, 𝑡′))𝑡′∈𝑇

) (23)

𝐑′(𝑢, 𝑖) =
1

𝑁R
∗ 𝐑(𝑢, 𝑖) ∗ log (

|𝑈|

∑ sgn(𝐑(𝑢′, 𝑖))𝑢′∈𝑈

) (24)

𝐑T′(𝑖, 𝑢) =
1

𝑁RT
∗ 𝐑(𝑢, 𝑖) ∗ log (

|𝐼|

∑ sgn(𝐑(𝑢, 𝑖′))𝑖′∈𝐼

) (25)

where N is the normalization. For example, the normalization of the 𝐔𝐓′ matrix is

computed by:

𝑁UT = ∑ 𝐔𝐓(𝑢, 𝑡′) ∗ log (
|𝑈|

∑ sgn(𝐔𝐓(𝑢′, 𝑡′))𝑢′∈𝑈

)
𝑡′∈𝑇

We then modify the transition matrix proposed and combine these six normalized

matrices to build the random walk stochastic transition matrix 𝐀 depicted in Figure

3-1. In Figure 3-1 (a), the transition matrix A combined by the sub-matrices. There is

no edges to link two nodes with the same type so that UU, II, TT are zero matrices. In

Figure 3-1 (b), the user and the query are assigned with weights 𝜃 and (1 − 𝜃)

respectively. In Figure 3-1 (c), all items ranked according to their scores in v𝑛 would

be taken as an output. Notice that 𝐀 is not a diagonal matrix, and the tripartite graph

formed by 𝐀 is directed. We argue that in a social tagging graph, the edge direction

may affect the probability of surfing to a specific adjacent node. Hence, while

reducing the influence of frequent occurring elements, the edge direction would also

affect the results of reduction. For an instance, if a user u only used a tag t while t is

used popularly, the value of 𝐔𝐓′(𝑢, 𝑡) is less because there are many competitive

16

users for t. On the other hand, because the lack of competitive tags for u, the value of

𝐓𝐔′(𝑡, 𝑢) is quite large.

U I T

 U 0 0.5 *R’ 0.5 * UT

(a) I
0.5 *

RT
0 0.5 * IT

 T
0.5 *

TU
0.5 *TI 0

𝜽

𝟏 − 𝜽

(b) 𝐯𝟎

𝒖

𝒒

(c) 𝐯𝒏

Figure 3-1 (a) The transition matrix A. (b) The initial state vector v0. (c) The

stationary state vector v𝑛.

Due to the normalization of the sub-matrices in Eq. (20-25), each row of each

sub-matrix sums to 1. We multiply each sub-matrix in 𝐀 by 0.5 to make each row of

𝐀 sums also to 1. Thus, each position in 𝐀 could be used as the transition probability.

In the initial state vector v0 we use θ to adjust the proportion of the target user to

the query: 𝐯0(𝑢) = 𝜃 and 𝐯0(𝑞) = 1 − 𝜃, where u is the target user and q is the

query. The more θ is, the more influence of the target user is, and vice versa.

The model we used is FolkRank in [11]. FolkRank combines two models:

17

PageRank [3] and Lazy Random Walk. The relation between two adjacent iterations

could be stated in Eq. (26).

𝐯𝑛+1 = 𝛼𝐯0 + 𝛽𝐀𝐯𝑛 + 𝛾𝐯𝑛 (26)

where 𝑛 is the iteration index, α is the probability of restart, β is the probability of

forward-transition, and γ is the probability of self-transition, 𝛼, 𝛽, 𝛾 ∈ [0, 1] are

constrained by the linear relation: 𝛼 + 𝛽 + 𝛾 = 1. The constant 𝛾 controls the speed

of convergence, while 𝛼 controls the locality. In the training phase, the speed of

convergence determines the iterations of transition which affect the cost of time and

memory usage

3.2 The Optimization Problem

The training data contains the ternary relation among users, tags and items. Thus

we could determine whether an item is relevant or not. According to the definition of

NDCG, items are ranked by its relevance. Due to the lack of the measure of relevance,

we take the ratings as relevance. However, the relevance of an item to the query is not

related to its rating directly. The only thing we know is that the ratings could be taken

as a measure of quality while the items are all relevant. To avoid disturbing the

precision, we set the rating of an irrelevant item to 0.

We modify the objective function proposed by H. Valizadegan et al. [25] to

approximate NDCG in Eq. (27).

ℒ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑ 〈

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 𝜋𝑞(𝑖))
〉𝐹

𝑖∈𝐼𝑢𝑞∈𝑄

=
1

|𝑄|
∑

1

|𝐼𝑢|
∑ ∑ Pr(𝜋𝑞|𝐹, 𝑞)

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 𝜋𝑞(𝑖))
𝜋𝑞∈𝑆𝐼𝑢𝑖∈𝐼𝑢𝑞∈𝑄

 (27)

where the notation 〈 〉𝐹 is the expectation over all the possible rankings induced by

the ranking function 𝐹, Q is a query set which we use to train for u, 𝐼𝑢 is the item set

18

in which each item is relevant to u, 𝑆𝐼𝑢 stands for the set of permutations of 𝐼𝑢, and

𝜋𝑞 is an instance of permutation. Notation 𝜋𝑞(𝑖) stands for the rank position of the

item 𝑖 by 𝜋𝑞, and 𝑟𝑢,𝑞(𝑖) stands for the conditional rating defined as follows.

𝑟𝑢,𝑞(𝑖) = {
𝐑(𝑢, 𝑖), if 𝑖 is relevent to 𝑢 selecting 𝑞 as a query.
0, if 𝑖 is irrelevent to 𝑢 selecting 𝑞 as a query.

 ℒ̅(𝑢, 𝑄, 𝐹) can be simplified to ℋ̅(𝑢, 𝑄, 𝐹) in Eq. (28).

ℋ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑

2𝑟𝑢,𝑞(𝑖) − 1

log(1 + 〈𝜋𝑞(𝑖)〉𝐹)
𝑖∈𝐼𝑢𝑞∈𝑄

 (28)

Because 1/𝑥 is a convex function while 𝑥 > 0 , therefore 〈1/log(1 + 𝑥)〉 ≥

1/〈log(1 + 𝑥)〉. On the other hand, because 1/log(1 + 𝑥) is a concave function,

therefore 〈log(1 + 𝑥)〉 ≤ 1/log(1 + 〈𝑥〉). From the two inequality stated above, we

could get ℒ̅(𝑢, 𝑄, 𝐹) ≥ ℋ̅(𝑢, 𝑄, 𝐹).

By introducing the difference of the output scores of every two items to the logistic

function, the rank position could be approximated in Eq. (29).

〈𝜋𝑞(𝑖)〉 = 1 + ∑ 〈𝜋𝑞(𝑖, 𝑗)〉

𝑗∈𝐼𝑢,𝑖≠𝑗

≈ 1 + ∑
1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗

 (29)

where 〈𝜋𝑞(𝑖, 𝑗)〉 is the result of the competition between item 𝑖 and item 𝑗, 𝐹𝑢,𝑞(𝑖)

is the output score given by the ranking function 𝐹𝑢,𝑞 which takes the target user u

and the selected query q as input. Here, we use FolkRank model proposed above as

the ranking function.

 In the real condition, the result of a competition is that the position of a winner who

has a larger score would add 0, while the position of the loser who has a smaller score

would be added by one. We could translate the competition into a non-differentiable

function written as:

〈𝜋𝑞(𝑖, 𝑗)〉 = {
0, if 𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗) > 0

1, if 𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗) < 0

For an instance, the item which has the largest score would never get one in each

19

competition such that from Eq. (29), its rank position is 1. Thus, our goal is to make

the gap between the approximation and the real condition as close as possible. Due to

the definition of the logistic function used to simulate the rank positions, while η is set

to a larger number, the results of competitions of two items are close to the real

condition. The relation is depicted in Figure 3-2. The larger η is, the more precise the

approximation is. With the increasing of η, it loses its differentiability gradually.

However, due to the non-differentiability of 〈𝜋𝑞(𝑖, 𝑗)〉, if η is set too large, though the

approximation is precise, the derivatives of the objective function might be too large

to process for the computer because of the occurrence of overflow of double precision

floating point numbers.

Figure 3-2 The relation between η and the precipitation of the logistic function.

Using the above approximation for 〈𝜋𝑞(𝑖)〉, ℋ̅(𝑢, 𝑄, 𝐹) could be written as

ℋ̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑

2𝑟𝑢,𝑞(𝑖) − 1

log(2 + 𝐴𝑖
𝑞)

𝑖∈𝐼𝑢𝑞∈𝑄

 (30)

where

𝐴𝑖
𝑞 = ∑

1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗

 (31)

By the Taylor expansion around 𝑥 = 0 while 〈𝜋𝑞(𝑖)〉 > 0 , we could get the

h



h

η = 2

η = 10

η = 50

𝑭𝒖,𝒒(𝒊) − 𝑭𝒖,𝒒(𝒋)

〈𝝅𝒒(𝒊, 𝒋)〉

20

inequation in Eq. (32).

1

log(2 + 𝐴𝑖
𝑞)
≥

1

log(2)
−

𝐴𝑖
𝑞

2[log(2)]2
 (32)

, 𝒯̅(𝑢, 𝑄, 𝐹) can be obtained by simplifying ℋ̅. Hence 𝒯̅ can be written as in Eq.

(33).

𝒯̅(𝑢, 𝑄, 𝐹) =
1

|𝑄|
∑

1

|𝐼𝑢|
∑(2𝑟𝑢,𝑞(𝑖) − 1) {

1

log(2)
−

𝐴𝑖
𝑞

2[log(2)]2
}

𝑖∈𝐼𝑢𝑞∈𝑄

 (33)

 ℋ̅, a logarithmic function which is hard to get its differential function in the

optimization phase, has been approximated as a polynomial function 𝒯̅. However,

there is a conspicuous difference between ℋ̅ and 𝒯̅ depicted in Figure 3-3. The

NDCG measures may be affected by the rank position of items in the form of

logarithm. On the other hand, if we approximate it by Taylor expansion, it may be

affected linearly. From the definition of the NDCG function, we know that the

relevance of the item in the first rank has the most influence to the NDCG measures.

With the increasing of the rank position, the influence of the relevance of an item

decreases gradually in the form of logarithm. Thus, if we use the objective function

without approximation by the Taylor expansion, in the optimization phase, the

optimized model may prefer to push a relevant item to the first rank while others may

be left far behind. Nevertheless, through the approximation by the Taylor expansion,

the optimization by the objective function may push each item forward equally.

21

Figure 3-3 The NDCG measures may be affected by the rank position of items in the

form of logarithm. On the other hand, if we approximate it by Taylor expansion, it

may be affected linearly.

To simplify 𝒯̅, we neglect the constant terms, and then we could obtain the

objective function in Eq. (34).

M(𝑢, 𝑄) ≈ ∑∑(2𝑟𝑢,𝑞(𝑖) − 1) ∑
1

1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]𝑗∈𝐼𝑢,𝑖≠𝑗𝑖∈𝐼𝑢𝑞∈𝑄

 (34)

Because we want to maximize the NDCG, in the training phase, the objective

function would be minimized. In our implementation, we use the BFGS algorithm [4,

7, 8, 9, 23] to find the optimization result. There are only 3 parameters that we have to

train, and then we calculate the inverse Hessian matrix directly rather than

approximate iteratively like the L-BFGS [14] algorithm does. Because 𝐹𝑢,𝑞(𝑖) is

polynomial, we could rewrite (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗)) as 𝐹𝑢,𝑞,𝑖,𝑗(𝛼, 𝛽, 𝛾) where 𝛼, 𝛽, 𝛾

are our parameters to be optimized. Thus the derivatives of M(𝑢, 𝑄) with respect to

𝛼, 𝛽, 𝛾 could be computed independently. For example, the derivatives of M(𝑢, 𝑄)

with respect to 𝛼 could be written as in Eq. (35).

∂M(𝑢, 𝑄)

∂𝛼
≈ ∑∑(2𝑟𝑢,𝑞(𝑖) − 1) ∑

−𝜂 exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]

{1 + exp [𝜂 (𝐹𝑢,𝑞(𝑖) − 𝐹𝑢,𝑞(𝑗))]}
2 ⋅
∂𝐹𝑢,𝑞,𝑖,𝑗(𝛼, 𝛽, 𝛾)

∂𝛼
𝑗∈𝐼𝑢,𝑖≠𝑗𝑖∈𝐼𝑢𝑞∈𝑄

 (35)

Our objective function is not convex, so that the gradient descent methods may not

-4

-3

-2

-1

0

1

2

0 2 4 6 8 10 𝑓(𝑞) =
1

log(2 + 𝐴𝑖
𝑞
)

𝑓(𝑞) =
1

log(2)
−

𝐴𝑖
𝑞

2[log(2)]2

𝑓(𝑞)

𝑞

22

find the global minimum. We resolve the problem of local minimum by using several

different start points and then what causes the minimum value of objective function

would be selected as the optimized parameters.

23

Chapter 4

Methodology

4.1 Data Preparation

The dataset we use is from the LibraryThing collected by M. Clements et al. [5, 6].

LibraryThing is a social network about books. A user could give all the books ratings

and tags and then personalized catalogs are created. According to the preference of a

user, the system would give him a list where users may have similar interests to him

or recommend books he may like.

After pruning the books and tags that appear in less than 5 user profiles [5], there

are 7279 users, 10559 tags and 37232 books. The pruned dataset has 2056487 UIT

relations. The derived UT, R, IT matrices have a density 5.2 × 10−3, 2.8 × 10−3and

2.0 × 10−3, respectively. However, many users tag and rate items repeatedly with a

little difference. We use the rating that the user gives to the item in the last record of

the UIT relations and accumulate all the tags that the user gives to the item in the

dataset. Thus, the real density of matrices would be a little less than the one stated

above.

In Figure 4-1, we split the data into two parts, namely training set and testing set.

To split the D matrix into two parts, we choose the UIT relations given by the first

3000 users as the training set. The others would be taken as the testing set. Thus, in

training set, there are 3000 users, 8009 tags and 36596 items, while there are 4280

users, 8071 tags and 37101 items in the testing set. In training phase, we use the

training set to optimize the parameter vector of our model and we validate the

performance of the optimized model in the testing phase.

24

Figure 4-1 The data preparation by splitting the D matrix into two parts.

4.2 Measures for Evaluation

4.2.1 The Assumption for Relevance

The data we use for the training phase are UIT relations which only represent the

condition of tagging rather than the results of recommendation. Due to the lack of the

ground truth of recommendation, to determine the items relevant or not, we assume

that if the user 𝑢 has used the tag 𝑞 to tag the item 𝑖 which has been tagged by u,

the tag 𝑞 is irrelevant to the item 𝑖 for the user 𝑢. Because of the difference of the

cognition on the same word between different individuals, in the language system of

the user 𝑢 , 𝑞 may not refer to 𝑖 , even though 𝑞 is relevant to 𝑖 in common

conditions. It may cause the difference more obvious when a polysemous word is

taken as a query.

If we presumed to take other tags, which are relevant in a common case, relevant, it

might harm the precision of recommendation. Moreover, to consider other tags which

have not been used by the target user yet we have to cluster tags before evaluation so

that the experiment would be more complicated. If we expanded the relevant tags for

evaluation, we would consequently use another model to cluster tags prior to ours that

D

25

it would fall into a trap of the circular evaluation. Hence we would use the tags which

have been tagged by a user rather than expand them for evaluation.

Besides, is it possible that the user u does not tag the item 𝑖 with the tag 𝑞 which

really is relevant to 𝑖 for u? Figure 4-2 shows the average distribution of tagging

frequency per user. There are about 10 tags whose frequencies are more than the

average frequency. The tags which are familiar to a user are not many. While tagging,

a user may use a familiar tag on hand rather than an unfamiliar one unless the user

tags an unfamiliar item. Nevertheless, in both the training phase and the testing phase,

we only use the query whose tagging frequency is superior to the average for the

target user.

Figure 4-2 The average distribution of tagging frequency per user.

4.2.2 Normalized Discounted Cumulative Gain

 To evaluate the suitability of the predicted content ranking for each item ranking

task we use the Normalized Discounted Cumulative Gain (NDCG) proposed by

Järvelin, K. and Kekäläinen, J. [12]. The basic concept of NDCG is that highly

relevant items appearing lower in the resulting ranked list ought to be penalized. The

modified relevance value is reduced logarithmically proportional to the rank position.

Thus, the summation of the first 𝑝 items’ modified relevance values is called

1

10

100

0 50 100

Fr
e

q
.

Rank position of tags sorted by tagging freq.

Tagging Freq.

Avg. Frq.

26

Discounted Cumulative Gain(DCG), which is defined as follows

DCG(𝑝) = ∑
2𝑟𝑒𝑙(𝑟𝑎𝑛𝑘) − 1

log2(1 + 𝑟𝑎𝑛𝑘)

𝑝

𝑟𝑎𝑛𝑘=1

 (36)

where 𝑟𝑎𝑛𝑘 stands for the rank position, 𝑟𝑒𝑙(𝑟𝑎𝑛𝑘) is the relevance value of an

item whose rank position is 𝑟𝑎𝑛𝑘. Besides, to compare the performance of retrieval

of different queries, the normalization across queries is needed. The Ideal Discounted

Cumulative Gain (IDCG) is introduced to represent the ranked list from a prefect

ranking algorithm by which the resulting permutation is sorted by the relevance scores

of items. Practically we sort items by their relevance to obtain the IDCG and thus we

could compute the NDCG which is defined as follows

NDCG(𝑝) =
DCG(𝑝)

IDCG(𝑝)
 (37)

Due to lack of the ground truth of the relevance scores to the query, M. Clements et

al. [5, 6] create a gain vector 𝐠 with length |𝐼| (i.e., all items) of zeros. To prevent

from predicting content that has received a low rating, in this gain vector, the

predicted rank positions of the held-out validation items that correspond to a positive

opinion 𝐫 ∈ {3, 3.5, 4, 4.5, 5} are assigned a value of respectively g∈ {1, 2, 3, 4, 5}. In

other words, an item whose rating is small is taken as irrelevant. However the rating

of an item does not map to its relevance score of it directly because there is no

relation between quality (i.e., rating) and relevance. Given the condition stated below,

an item with rating value 2.5 is relevant, and another item with rating value 5 is

irrelevant. According to the evaluation in [5, 6], the relevant item would be neglected

because of its small rating value, while the irrelevant one is taken to be contributive to

the suitability of the predicted content ranking. Hence we rewrite the assumption that

the rating of an item could map to its relevance score on the premise that the item is

relevant.

27

We directly use the ratings of items which are relevant to the query as their

relevance in the NDCG. According to our assumption of relevance stated above,

relevant items are included by the ones the target user has tagged. Moreover, we

assume that the rating of an irrelevant item is assigned 0. Only the items tagged by the

target user 𝑢 could be relevant or not to the query 𝑞 for 𝑢. By considering all items

in the list (i.e., 𝑝 = |𝐼|), Discounted Cumulative Gain (DCG) now accumulates the

values of the discounted gain for each item:

DCG(𝑢, 𝑞) = ∑
2𝑟𝑢,𝑞(𝑖) − 1

log2(1 + 𝜋𝑞(𝑖))𝑖∈𝐼𝑢

 (38)

where 𝐼𝑢 stands for the set of items that the target user 𝑢 has tagged, 𝜋𝑞(𝑖) is the

rank position of the item 𝑖 from the query 𝑞 and 𝑟𝑢,𝑞(𝑖) is the rating of the item 𝑖

which is relevant to 𝑞 for 𝑢.

The DCG value is normalized by dividing by the optimal DCG value, i.e., IDCG,

which is computed using a static state vector in descending order. The NDCG could

be written as in Eq. (39).

NDCG(𝑢, 𝑞) =
1

IDCG
∑

2𝑟𝑢,𝑞(𝑖) − 1

log2(1 + 𝜋𝑞(𝑖))𝑖∈𝐼𝑢

 (39)

In our experiment we use the mean of the NDCG over all validation users. The

mean of the NDCG over all validation users could be written as in Eq. (40).

NDCG̅̅ ̅̅ ̅̅ ̅̅ (𝑈) =
1

|𝑈|
∑NDCG̅̅ ̅̅ ̅̅ ̅̅ (𝑢, 𝑄𝑢)

𝑢∈𝑈

=
1

|𝑈|
∑

1

|𝑄𝑢|
∑ NDCG(𝑢, 𝑞)

𝑞∈𝑄𝑢𝑢∈𝑈

 (40)

where 𝑈 is the set of all validation users and 𝑄𝑢 is the query set for the target user

𝑢.

With the increasing of the rank position, the influence of the relevance of an item

on the NDCG decreases gradually in the form of logarithm. It is possible that the

ranking results in a large value of the NDCG while the precision and recall are small.

28

The NDCG cannot be used independently while evaluating the performance in

information retrieval. Hence, we also use precision and recall.

4.2.3 Precision and Recall

In information retrieval, precision is the fraction of retrieved instances that are

relevant, while recall is the fraction of relevant instances that are retrieved. Precision

and recall are defined as follows

precision =
|{relevant items} {retrieve items}|

|{retrieve items}|
 (41)

recall =
|{relevant items} {retrieve items}|

|{relevant items}|
 (42)

The relation between precision and recall is shown in Figure 4-3.

 Relevant Irrelevant

R
et

ri
ev

ed

N
o

t
R

et
ri

e
ve

d

Figure 4-3 Precision and recall are the quotient of the upper left region with orange

color by respectively the region with red boundary and the one with blue boundary.

A perfect precision score of 1.0 means that all the items retrieved by the search

engine are relevant and a prefect recall score of 1.0 means that all the relevant items

are retrieved. Notice that the two statements do not mention how many items are

Retrieved
relevant

items

29

retrieved. If a search engine only retrieves the item which has the highest rank score,

the item would be relevant almost certainly. On the contrary, if a search engine

retrieves all items whatever the query is, it always obtains the recall score of 1.0. Thus,

it does not suggest that only one of the two measures is used and the other is

neglected.

4.3 Evaluation

To make the recommendation system more practical, the items not only tagged by

the user but also those untagged should be retrieved. Therefore we propose a

pre-evaluation protocol which is modified from [13]. In every experiment we follow

the pre-evaluation protocol as follows. For each individual user 𝑢 in the dataset we

randomly select a list of 20% of the items the user 𝑢 has tagged and take them as

“unseen” items which we refer to as 𝑺𝒖,𝒕. We set zeros to the elements relative to

these “unseen” tags in 𝐑 and 𝐑𝐓, and subtract one from the elements relative to

these “unseen” tags in 𝐔𝐓, 𝐓𝐔, 𝐈𝐓 and 𝐓𝐈. 𝑺𝒖,𝒂 is the remaining 80% of items the

user 𝑢 has tagged and 𝑺𝒖,𝒏 is the set of the items that the user 𝑢 has not tagged yet.

The protocol stated above is depicted in Figure 4-4.

Figure 4-4 For each user, the per user pre-evaluation protocol is followed: 𝑆𝑢,𝑡 is the

30

20% randomly selected set of items that the user 𝑢 has tagged, 𝑆𝑢,𝑎 is the remaining

80% of items the user 𝑢 has tagged and 𝑆𝑢,𝑛 corresponds to the items that the user

𝑢 has not tagged yet.

Then we use TD-IDF weighting shown in Eq. (20-25) on each 2-dimension matrix

with normalization to reduce the influence of frequently occurring elements. After the

normalization in all 2-dimension matrices, we combine these 2-dimension matrices in

the transition matrix 𝐀𝒖. We use our PageRank-like model in Eq. (26) to calculate the

scores of all items iteratively. While the scores of items converge, the static scores are

obtained. We evaluate the performance of prediction from the static scores of items.

Notice that before calculating the scores of items, the rating of items which belong to

𝑺𝒖,𝒕 are set to zero, thus the construction of the transition matrix 𝐀𝒖 is on the

premise that the user 𝑢 pretends that 𝑢 has not tagged the items which belong to

𝑺𝒖,𝒕 before.

Notice that our random walk model in the training phase is the same with that in the

testing phase. The only difference between the training phase and the testing phase is

the evaluation protocol. The evaluation protocol in the training phase computes the

objective function and that in the testing phase evaluates the performance. The series

of steps of the construction of transition matrix could be taken as the pre-evaluation

protocol. By this pre-evaluation protocol, we could split the UIT relations into two

parts. One includes the UIT relations, which does not involve 𝑢 or involves the items

that belong to 𝑺𝒖,𝒂, while the other is 𝑺𝒖,𝒕. The former is taken as the historical

information that supports recommendation, while the later could be taken as the

ground truth. To estimate the suitability of the recommendation of items which a user

has not seen, we would check the relevant items which are retrieved and belong to

𝑺𝒖,𝒕. If our recommendation system can find most of the relevant items which belong

31

to 𝑺𝒖,𝒕, the items which the user might like but has not seen yet could be retrieved.

On the other hand, due to the usage of the recommendation system, we want the

relevant items seen before are still retrieved as many as possible. In both training

phase and testing phase, whether the retrieved items belong to 𝑺𝒖,𝒕 or 𝑺𝒖,𝒂, we

would treat them equally in the evaluation.

For each individual user 𝑢, we select the tags that 𝑢 has used as the queries 𝑸𝒖.

If a tag 𝑡 used by 𝑢 infrequently would be taken as a query, the precision of

recommendation depends mostly on the per user pre-evaluation protocol. Because if

𝑖𝑡 which is tagged by 𝑢 with 𝑡, is selected as an “unseen” item, the value of

𝐔𝐓(𝑢, 𝑡)and 𝐓𝐔(𝑡, 𝑢) would be subtracted by one. Due to the infrequent occurrence

of the relation between 𝑢 and 𝑡, the value of 𝐔𝐓(𝑢, 𝑡)and 𝐓𝐔(𝑡, 𝑢) are small. The

small value is sensitive to addition and subtraction.

Each query 𝑞 in the query set 𝑸𝒖 is the input of our model and the permutation

of items sorted by their scores in the static state vector is the output of our model. The

objective function is computed from the output of our random walk model. When the

user 𝑢 has completed the query process, i.e. every query in the query set 𝑸𝒖 is used

as the input of our training model once, we combine their objective function by

summation.

Our objective function is based on the NDCG [12]. If we took the ratings of items

as their relevance to a query, the result would be interfered with by irrelevant items

which we do not recognize. Therefore, to consider not only the NDCG but also

precision of an item, we define what a relevant item is. An item which has been

tagged by the user with the query is relevant. Now the evaluation that combines the

NDCG and the precision would be proposed as follows.

After computing the static scores, we divide all items into two parts, namely

relevant items and irrelevant items. Notice that the relevant item set and irrelevant one

32

are independent of 𝑺𝒖,𝒂 and 𝑺𝒖,𝒏. Because we do not know whether the user 𝑢 may

like the items which have not seen by 𝑢 before, 𝑺𝒖,𝒏 is neglected. We focus on the

items that the user 𝑢 has tagged, i.e. the items which belong to 𝑺𝒖,𝒕 or 𝑺𝒖,𝒂 .

Moreover, the items which belong to 𝑺𝒖,𝒕 or 𝑺𝒖,𝒂 could be divided into three parts,

namely 𝑺𝒖,𝒕
𝒒

, 𝑺𝒖,𝒂
𝒒

 and 𝑺𝒖,𝒏
𝒒

, which are defined respectively as follows.

𝑺𝒖,𝒕
𝒒

: the items which are relevant to the query 𝑞 and 𝑺𝒖,𝒕
𝒒
⊆ 𝑺𝒖,𝒕.

𝑺𝒖,𝒂
𝒒

: the items which are relevant to the query 𝑞 and 𝑺𝒖,𝒂
𝒒
⊆ 𝑺𝒖,𝒂.

𝑺𝒖,𝒏
𝒒

: the items which are irrelevant to the query 𝑞 and belong to 𝑺𝒖,𝒏
𝒒

⊆ 𝑺𝒖,𝒕 ∪

𝑺𝒖,𝒂.

Figure 4-5 shows the relation among them.

Figure 4-5: The relations between 𝑆𝑢,𝑡, 𝑆𝑢,𝑎, 𝑆𝑢,𝑛, 𝑆𝑢,𝑡
𝑞

, 𝑆𝑢,𝑎
𝑞

and 𝑆𝑢,𝑛
𝑞

.

In training phase, for each item 𝑖 relevant to 𝑞, we use the Eq. (31) to predict the

rank position of 𝑖 by comparing the static score of 𝑖 with others. Figure 4-6 shows

how we compute the objective function. Notice that while computing the objective

function, the ratings of the items, which belong to 𝑺𝒕, are considered. In other words,

we use the ratings in 𝐑 which has not been processed by the per user pre-evaluation

protocol yet. Besides, the items which belong to 𝑺𝒏 are regarded irrelevant, and their

ratings are set to zero. According to our assumption, items in 𝑺𝒖,𝒏 would be

 relevant to the

query q for the user

irrelevant to the

query q for the user u

S
u,n

 S
u,t

 S
u,a

𝑺𝒖,𝒕
𝒒

 𝑺𝒖,𝒂
𝒒

𝑺𝒖,𝒏
𝒒

 𝑺𝒖,𝒏
𝒒

relevant to the query q

for the user u

irrelevant to the query

q for the user u

33

neglected.

Figure 4-6: Relevant & irrelevant items in the training phase.

We optimize the parameter vector for each individual user rather than sum up the

objective function for all users before optimization. In the training phase, each per

user objective function is not concave; neither does the sum of all the objective

functions. To analyze the personal behavior and its influence, we optimize the per user

objective function for each user.

 From the distribution of the per user optimized parameters, we could find some

characteristics of the user behavior. For example, the parameter 𝜃 controls the

proportion of the target user to the tag selected as a query. When the value of 𝜃 is

large, the user is more influential than the query and vice versa. Considering a user

who prefers to use ambiguous tags, the initial state may not include the query merely

without considering the personal information obtained by including the target user. On

the contrary, if the user prefers to use exact tags to describe items, the personal

information could almost be neglected (𝜃 = 0). Besides, another condition should be

considered. If the preference of the target user is ambiguous, it could not be

𝑺𝒖,𝒂
𝒒

 𝑺𝒖,𝒕
𝒒

 𝑺𝒖,𝒏
𝒒

𝑺𝒖,𝒂 𝑺𝒖,𝒕 𝑺𝒖,𝒏

34

contributive to the precision of our model to consider the personal information (𝜃 >

0).

 For each element in the per user optimized parameter vector, we compute the mean

of the elements in all per user optimized parameter vectors as the global optimized

parameter for the testing phase. We are afraid that the distribution of the per user

optimized parameter vectors is divergent. If this distribution is divergent, the mean

vector could not represent all vectors very well. Hence, we could use multiple

parameter vectors rather than one in the testing phase to have a better result. To obtain

the multiple optimized parameter vectors which could represent all the per user

optimized parameter vectors better, we cluster the per user optimized parameter

vectors by K-Means and DBSCAN, respectively. In our experiments, we would

compare the performance of the two clustering methods using the same ranking task.

The procedure in the training phase is shown in Alg. 1.

Training Phase (𝐃𝐭𝐫𝐚𝐢𝐧, 𝐑)

foreach user u ∊ U do

 select the 20% of the relevant items as 𝑺𝒖,𝒕, other 80% as 𝑺𝒖,𝒂 and the others as 𝑺𝒖,𝒏

 𝐃𝒖 = 𝐃𝐭𝐫𝐚𝐢𝐧 − {𝐃𝐭𝐫𝐚𝐢𝐧(𝑢, 𝑖, 𝑡)|∀𝑖 ∈ 𝑺𝒖,𝒕}

 𝐑𝒖 = 𝐑, where 𝐑(𝑢, 𝑖) = 0, ∀𝑖 ∈ 𝑺𝒖,𝒕

 compute 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ from (20, 21, 22, 23, 24, 25) by 𝐃𝒖 and 𝐑𝒖

 build transition matrix 𝐀𝒖 by 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′

 select tags as queries 𝑸𝒖

 M(𝑢, 𝑄𝑢) = 0

 foreach query 𝑞 ∈ 𝑸𝒖 do

get the static score vector 𝐹𝑢,𝑞 by 𝐀𝒖, where |𝐹𝑢,𝑞| = |𝐼|

35

𝑺𝒕: 𝑺𝒕 ⊆ 𝑺𝒖,𝒕 && 𝑺𝒕 is relevant to 𝑞 for 𝑢.

𝑺𝒂: 𝑺𝒂 ⊆ 𝑺𝒖,𝒂 && 𝑺𝒂 is relevant to 𝑞 for 𝑢.

𝑺𝒏: 𝑺𝒏 ⊆ 𝑺𝒖,𝒕⋃𝑺𝒖,𝒂 && 𝑺𝒏 is irrelevant to 𝑞 for 𝑢.

𝑠𝑢𝑚 = 0

foreach 𝑖 ∈ 𝑺𝒕 ∪ 𝑺𝒂 do

 𝑖𝑠𝑢𝑚 = 0

foreach 𝑗 ∈ 𝑺𝒕 ∪ 𝑺𝒂 ∪ 𝑺𝒏 do

if (𝑖 ≠ 𝑗) then 𝑖𝑠𝑢𝑚 = 𝑖𝑠𝑢𝑚 +
1

1+exp[𝜂(𝐹𝑢,𝑞(𝑖)– 𝐹𝑢,𝑞(𝑗))]

 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (2𝐑(𝑢,𝑖) − 1) ∗ 𝑖𝑠𝑢𝑚

 M(𝑢, 𝑄𝑢) = M(𝑢, 𝑄𝑢) + 𝑠𝑢𝑚

set initial value 𝐰(0)

t = 1

while not converge do

 execute the gradient descent method on M(𝑢, 𝑄𝑢) to get new 𝐰(𝑡) from 𝐰(𝑡−1)

𝑡 = 𝑡 + 1

 recover the setting of the per user pre-evaluation protocol.

return 𝐰 = 𝐰(𝑡)

Algorithm 1 The procedure in the training phase.

In the testing phase, we rank all the items according to their static scores in

descending order. The ranked item list is the output of our model. To evaluate the

performance of the output, we split the items into two parts, namely relevant and

irrelevant. We only consider the relevant items and count in their ratings when

computing the NDCG. The irrelevant items would be neglected. The definition of a

relevant item in the training phase is the same as that in the testing phase.

 To reinforce the suitability of our model, we compute the static scores according to

36

different optimized parameter vectors, which are obtained from the result of clustering,

and thus we could get different ranked item list. We select the ranked item list which

has the highest value of Recall@10 as the output of our model. The procedure in the

testing phase is shown in Alg. 2.

Testing Phase (𝐃𝐭𝐞𝐬𝐭, 𝐑)

foreach user u ∊ U do

 select the 20% of the relevant items as 𝑺𝒖,𝒕, other 80% as 𝑺𝒖,𝒂 and the others as 𝑺𝒖,𝒏

 𝐃𝒖 = 𝐃𝐭𝐞𝐬𝐭 − {𝐃𝐭𝐞𝐬𝐭(𝑢, 𝑖, 𝑡)|∀𝑖 ∈ 𝑺𝒖,𝒕}

 𝐑𝒖 = 𝐑, where 𝐑(𝑢, 𝑖) = 0, ∀𝑖 ∈ 𝑺𝒖,𝒕

 compute 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′ from (20, 21, 22, 23, 24, 25) by 𝐃𝒖 and 𝐑𝒖

 build transition matrix 𝐀𝒖 by 𝐔𝐓′, 𝐓𝐔′, 𝐈𝐓′, 𝐓𝐈′, 𝐑′and 𝐑𝐓
′

 select tags as queries 𝑸𝒖

 foreach query 𝑞 ∈ 𝑸𝒖 do

get the static score vector 𝐹𝑢,𝑞 by 𝐀𝒖, where |𝐹𝑢,𝑞| = |𝐼|

sort items according to the 𝐹𝑢,𝑞 in descent order

𝑺𝒕: 𝑺𝒕 ⊆ 𝑺𝒖,𝒕 && 𝑺𝒕 is relevant to 𝑞 for 𝑢.

𝑺𝒂: 𝑺𝒂 ⊆ 𝑺𝒖,𝒂 && 𝑺𝒂 is relevant to 𝑞 for 𝑢.

𝑺𝒏: 𝑺𝒏 ⊆ 𝑺𝒖,𝒕⋃𝑺𝒖,𝒂 && 𝑺𝒏 is irrelevant to 𝑞 for 𝑢.

𝑁𝐷𝐶𝐺, 𝑅𝑒𝑐𝑎𝑙𝑙@10, 𝑅𝑒𝑐𝑎𝑙𝑙@20, 𝑅𝑒𝑐𝑎𝑙𝑙@30, 𝑅𝑒𝑐𝑎𝑙𝑙@40, 𝑅𝑒𝑐𝑎𝑙𝑙@50 = 0,

foreach 𝑖 ∈ 𝑺𝒕 ∪ 𝑺𝒂 do

 𝑁𝐷𝐶𝐺 = 𝑁𝐷𝐶𝐺 +
2𝑟𝑢,𝑞

(𝑖)−1

log2(1+𝜋
𝑞(𝑖))

 If (𝜋𝑞(𝑖) ≤ 10) then 𝑅𝑒𝑐𝑎𝑙𝑙@10++

If (𝜋𝑞(𝑖) ≤ 20) then 𝑅𝑒𝑐𝑎𝑙𝑙@20++

If (𝜋𝑞(𝑖) ≤ 30) then 𝑅𝑒𝑐𝑎𝑙𝑙@30++

37

If (𝜋𝑞(𝑖) ≤ 40) then 𝑅𝑒𝑐𝑎𝑙𝑙@40++

If (𝜋𝑞(𝑖) ≤ 50) then 𝑅𝑒𝑐𝑎𝑙𝑙@50++

 recover the setting of the per user pre-evaluation protocol.

return 𝐰 = 𝐰(𝑡)

Algorithm 2 The procedure in the testing phase.

In order to consider the rank positions of the relevant items in the result list of all

items, the rank position of an item is considered according to the ranked list in which

all items are sorted by their static scores. Figure 4-7 shows how we obtain the ranked

result of items and evaluate the NDCG value according to the static state vector

including both relevant and irrelevant items. While computing the NDCG, we sort all

items by their rating to obtain the perfect ranked list as IDCG. However the items that

the target user has not tagged before (i.e., belong to 𝑺𝒖,𝒏) are not irrelevant certainly,

the DCG would be underestimated a little and so as to the IDCG. Because of the

logarithmic descent of the DCG value proportional to the position of the result, the

underestimation of the IDCG value would be more than that of the DCG values.

38

Figure 4-7 Relevant & irrelevant items in the testing phase.

𝑺𝒖,𝒂
𝒒

 𝑺𝒖,𝒕
𝒒

 𝑺𝒖,𝒏
𝒒

𝑺𝒖,𝒂 𝑺𝒖,𝒕 𝑺𝒖,𝒏

39

Chapter 5

Experiments

In this chapter we discuss the results we got from all the experiments performed.

We examine the performance of the parameter estimation and then compare

Supervised FolkRank with other methods.

5.1 Distribution of optimized parameter vectors

 Figure 5-1 shows the distribution of the 2-tuple (𝜃 , 𝛼) per user optimized

parameter vectors, where 𝜃 stands for the ratio of the target user to the tag selected

as a query and 𝛼 stands for the restart probability. Most of the optimized parameter

vectors prefer small value of 𝜃. We could explain that most of users prefer to use

more explicit tags to describe items. When the query is polysemic, we may concern

the behavior of the user to find what the query means for the user. Thus, if a user

usually uses ambiguous tags for tagging, the random walk-based recommendation

system may not get sufficient information by almost only concerning about the query

(i.e., 𝜃 is small). However, a user usually has different interests, and may tag what he

or she doesn’t like, and therefore user behaviors are divergent.

40

Figure 5-1 The distribution of the 2-tuple per user optimized parameter vector.

Notice that the distribution of these per user optimized parameter vectors do not

concentrate tightly. It is impossible to find a parameter vector to fit all users.

Therefore, to obtain more suitable recommendation, we would not only use a single

optimized parameter vector but also multiple parameter vectors. We divide the

optimized parameter vectors by clustering and then select the representative vector for

each cluster. Each cluster could represent a sort of user behavior. In our experiments,

there are two clustering methods to cluster these per user optimized parameter vectors.

For each cluster, we compute the mean vector where each element is the mean of the

elements in all optimized parameter vectors in the cluster. Figure 5-2 and 5-3 shows

the clustering result by K-Means and DBSCAN, respectively.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
at

io
 o

f
U

se
r

to
 Q

u
e

ry
 (
θ

)

Restart Probability (α)

Distribution

41

Figure 5-2 The clustering result by K-Means. The per user optimized parameter

vector is 2-tuple (𝜃, 𝛼).

Figure 5-3 The clustering result by DBSCAN. The per user optimized parameter

vector is 2-tuple (𝜃, 𝛼).

For K-Means, the distribution of the 2-dimension relation graph can be clustered

into two sets, and then we could give the initial set of K-Means where the values of 𝜃

are separated. On the other hand, for DBSCAN, either the initial means of clusters or

the number of clusters we don’t need to give. DBSCAN requires two parameters: the

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
at

io
 o

f
U

se
r

to
 Q

u
e

ry
 (
θ

)

Restart Probability (α)

Cluster 1

Cluster 2

CC1

CC2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

R
at

io
 o

f
U

se
r

to
 Q

u
e

ry
 (
θ

)

Restart Probability (α)

Cluster 1

Cluster 2

CC1

CC2

42

search radius (eps) and the minimum number of points required to form a cluster

(minPts). Both of the parameters are easier to be tuned. From our experiments, the

result by these two clustering methods are similar. One cluster locates at the area

where the ratio of user (i.e., 𝜃) is quite small (i.e., 0 ~ 0.2), and the other could be

taken as the outliers. Because the outliers are too many to be neglected, the mean

vector of all outliers is still used as a parameter vector for recommendation. Thus, our

random walk model using this parameter vector would fit the users who are taken as

outliers because of their linking behaviors.

Figure 5-4 shows the distribution of the 3-tuple (𝜃, 𝛼, 𝛾) per user optimized

parameter vectors, where the three parameters stand for the ratio of user to query, the

restart probability and the self-transition probability, respectively. Like the

distribution of the 2-tuple vectors, most of the optimized parameter vectors prefer

small 𝜃. We still explain that most of users prefer to use more explicit tags to describe

items. Moreover, from the projection of 𝛼-𝛾 plane, there are three clusters: one

locates along the line 𝛼+𝛾=0.8, another locates near the y-axis (i.e., 𝛼 ≈ 0) and the

other locates on the x-axis (i.e., 𝛾 ≈ 0). The first cluster infers that, the walk goes

forward with the probability of 0.2 whatever the ratio between 𝛼 and 𝛾 is. Most of

vectors are located in this cluster. The second cluster shows that the Supervised

FolkRank (SFR) could be reduced to the self-transition model that M. Clements et al.

propose [5]. As shown in Figure 5-5, the distribution of PageRank-based model

always assign the highest value to the nodes closest to the starting position, while in

the lazy random walk model the distant nodes are more relevant [6].

43

Figure 5-4 The distribution of the 3-tuple (𝜃, 𝛼, 𝛾) per user optimized parameter

vector. (a) The projection of 𝜃 − 𝛼 plane. (b) The projection of 𝛾 − 𝛼 plane. (c) The

projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and 𝛾.

Figure 5-5 The Probability mass function (PMF) of the walk distance after a fixed

number of steps through the social graph, for restart probability and self-transition

probability are both 0.8.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6 7 8 9 10 11 12 13

P
Q

(q
)

Walk distance (q)

PageRank Model

Lazy Random Walk Model

44

Unlike the distribution of the 2-dimension relation graph, the distribution of

3-dimension graph cannot be figured out easily. Moreover, the initial set of K-Means

would affect the clustering. Figure 5-6 and Figure 5-7 show that the result of

clustering by K-Means and DBSCAN. Among a multi-dimension relation graph, it

needs other algorithm to find an initial set of K-Means. Without further information

about the data distribution, the number of clusters is unknown. Moreover, the

K-Means divides nodes into clusters according to distance and we know that the

distance-based clustering methods do not adapt to certain data sets, whose clusters are

not circle-like, very well. From Figure 5-4, the distribution could not be divided into

circle-like clusters. For DBSCAN, three clusters are obtained without assigning the

number of clusters. The clustering result is similar to our discussion stated above. If

we use the centers of clusters obtained by DBSCAN as the initial set of K-Means, the

result by K-Means is similar. Again, the mean vector of all outliers is used. The search

radius (eps) and the minimum number of points required to form a cluster (minPts)

could be predicted according to the range of each dimension.

45

Figure 5-6 The clustering result by K-Means. The per user optimized parameter

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The projection

of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and

𝛾.

46

Figure 5-7 The clustering result by DBSCAN. The per user optimized parameter

vectors are 3-tuple (𝜃, 𝛼, 𝛾). (a) The projection of 𝜃 − 𝛼 plane. (b) The projection

of 𝛾 − 𝛼 plane. (c) The projection of 𝛾 − 𝜃 plane. (d) The distribution of 𝜃, 𝛼 and

𝛾.

5.2 Comparison with other methods

We compare the predictive performance of Supervised FolkRank with other

methods including supervised and unsupervised methods. Table 5-1 shows the result

for the LibraryThing dataset in terms of NDCG. SFR_2 represents Supervised

FolkRank in 2-dimension. SFR_2_Merge represents SFR_2 with multiple optimal

parameters. SFR_3 represents Supervised FolkRank in 3-dimension. SFR_3_Merge

represents SFR_3 with multiple optimal parameters. SRW represents Supervised

Random Walk. LRW represents Lazy Random Walk. uLRW represents Lazy Random

Walk using the asymmetric transition matrix. RWR represents Random Walk with

47

Restart. BM25_CF represents Collaborative Filtering with BM25 model.

The first seven methods are supervised. The seventh method, called Supervised

Random Walk (SRW), proposed by L. Backstrom et al. [2] bias the random walk by

assigning the transition probability of each edge. In SRW, there are several attributes

to describe edges. The weights of attributes can be annotated as the edge feature

vector, where the length equals to the number of attributes. By tuning the weights in

the edge feature vector, the random walk would visit the relevant items more likely. In

our case, edges have only one value i.e., the length of the edge feature vector is 1.

Therefore, we modify the problem formulation of SRW. The parameters we tune are

the same as our model rather than the weights of elements in the edge feature vector.

Nevertheless, we still use their method for optimization.

 NDCG

SFR_2 0.703407

SFR_2 _DBSCAN 0.711197

SFR_2 _KMeans 0.7095989

SFR_3 0.7044617

SFR_3_DBSCAN 0.712282

SFR_3_KMeans 0.7081372

SRW 0.6983309

RWR 0.6896602

URW 0.6552698

LRW 0.5976361

uLRW 0.3833435

BM25_CF 0.6619233

Table 5-1 Results of NDCG for the LibraryThing dataset.

48

 The last five methods are unsupervised. Lazy Random Walk proposed by M.

Clements et al. [5] walks in an undirected graph. Due to wondering the difference of

predictive performance between directed graph and undirected one, we use this

method in the directed graph, annotated as LRW. uLRW is the origin method in [5].

RWR (heuristic) is the random walk with restart model where the parameters is tuned

heuristically while all the parameters in RWR (unweighted) is set to 0.5. The last

method annotated as BM25 – CF is the collaborative filtering with the BM25 model.

 First, comparing the result of NDCG, our models (SFR_2, SFR_2_KMeans, SFR_3,

SFR_3_DBSCAN) achieve a significant improvement over other methods while

SFR_3_DBSCAN performs the best. In terms of NDCG, SFR_3_DBSCAN gets 8.7%

relative improvement to the unweighted random walk model and 3.2% relative

improvement to the random walk model where the parameter vector is tuned

heuristically. Except for our models, only two methods, namely SWR and BM25 - CF,

could get the NDCG values over 0.7, while the worst method is LRW using an

asymmetric transition matrix. The unsupervised random walk model, whose

parameter vectors are unweighted or tuned heuristically, gets the NDCG value over

0.65. We explain that the random walk-based models perform well, and can be

reinforced through optimizing the parameter vectors by machine learning. Besides,

BM25 - CF performs better than the unsupervised random walk models.

 However, due to the logarithmic decent of the NDCG value proportional to the rank

position, the result of recommendation may get a high NDCG value by giving a

relevant item at the top rank while other relevant items get low rank positions. Hence,

we would compare precision and recall respectively.

 Table 5-2 and Figure 5-8 show the result of precision, where P@𝑛 stands for the

precision at top 𝑛. For P@10, BM25_CF performs the best and the second is

49

FR_3_DBSCAN. However for P@20, the best and the second are FR_3_DBSCAN

and FR_3_DBSCAN. In terms of NDCG and P@10, though the relevant items

retrieved by BM25_CF are more, the rank positions of the relevant items retrieved by

FR_3_DBSCAN precede the rank positions of the relevant items by BM25_CF.

Notice that in terms of P@20 and P@30, the result of BM25_CF outperforms SFR_2

and SFR_3. Hence, by using only one parameter vector, the adaption may not cover

the linking behaviors of all users. Comparing with all PageRank-based models,

SFR_3_DBSCAN gets 21.1% improvement relative to the modified Supervised

Random Walk model and 42% relative improvement to the random walk model where

the parameter vector is tuned heuristically.

 P@10 P@20 P@30 P@40 P@50

SFR_2 0.4575253 0.318664 0.241182 0.192541 0.15967

SFR_2_DBSCAN 0.4764794 0.3264877 0.24471 0.1943747 0.160565

SFR_2_KMeans 0.4725113 0.3251586 0.244013 0.19375 0.160328

SFR_3 0.4597796 0.3200149 0.241895 0.192908 0.159917

SFR_3_DBSCAN 0.4883557 0.3320404 0.24529 0.194049 0.160116

SFR_3_KMeans 0.4739067 0.3253684 0.24247 0.19257 0.159522

SRW 0.4031109 0.286734 0.224481 0.184143 0.155311

RWR 0.3439359 0.243693 0.19375 0.162473 0.13926

URW 0.3238302 0.236082 0.190182 0.159995 0.137823

LRW 0.355818 0.26024 0.205359 0.169973 0.144820

uLRW 0.1484502 0.140693 0.129866 0.117421 0.106468

BM25_CF 0.488969 0.325332 0.242129 0.192276 0.159488

Table 5-2 Results of the precision for the LibraryThing dataset at the rank position 10,

precision
model

50

20, 30, 40 and 50, respectively.

Figure 5-8 Performance of Supervised FolkRank and other methods in terms of

precision. Notice that SFR and BM25-based Collaborative Filtering perform similarly.

 Table 5-3 and Figure 5-9 show the result of recall, where R@𝑛 stands for the recall

at top 𝑛. In terms of recall at top 10 and 20, SFR_2_DBSCAN and SFR_3_DBSCAN

are the best two methods, while at top 40 and 50, SFR_2_DBSCAN and

SFR_2_KMeans performs the best. In terms of R@10, SFR_3_DBSCAN gets 20%

relative improvement to the modified Supervised Random Walk model and 44.9%

relative improvement to the random walk model where the parameter vector is tuned

heuristically. Though BM25_CF performs well in terms of precision,

SFR_2_DBSCAN and SFR_3_DBSCAN both outperform BM25_CF in terms of

recall.

 R@10 R@20 R@30 R@40 R@50

SFR_2 0.6202254 0.7760892 0.8463632 0.8846496 0.9081167

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

10 20 30 40 50

P
re

ci
si

o
n

Top n (@)

SFR_3_DBSCAN

SRW

RWR

LRW

BM25_CF

recall
model

51

SFR_2_DBSCAN 0.64548 0.792365 0.855814 0.890612 0.911547

SFR_2_KMeans 0.6441519 0.7936372 0.8578678 0.8918045 0.9115475

SFR_3 0.6234566 0.7791072 0.8482266 0.8858644 0.9090599

SFR_3_DBSCAN 0.660385 0.803793 0.857673 0.889815 0.909688

SFR_3_KMeans 0.6419471 0.7904646 0.8498648 0.8845853 0.9070997

SRW 0.550053 0.7065371 0.7985334 0.8562116 0.8907223

RWR 0.4558299 0.6017594 0.7011443 0.7721735 0.8175204

URW 0.4348568 0.587865 0.6923667 0.7642607 0.8119878

LRW 0.4851459 0.6560767 0.749214 0.8089915 0.8482832

uLRW 0.1913874 0.3544839 0.4873156 0.5817193 0.6520374

BM25_CF 0.630947 0.7623796 0.8306035 0.871583 0.8982363

Table 5-3 Results of the recall for the LibraryThing dataset at the rank position 10, 20,

30, 40 and 50, respectively.

Figure 5-9 Performance of Supervised FolkRank and other methods in terms of recall.

SFR outperforms other methods.

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

R
e

ca
ll

Top n (@)

SFR_3_DBSCAN

SRW

RWR

LRW

BM25_CF

52

5.3 The influence of transition matrix

 The relation in folksonomies could be basically regularized as a ternary relation

between users, tags, and items. All co-occurrences of users and items, items and tags,

users and tags are projected from the ternary relation to undirected and weighted

edges in a social graph.

To reduce the influence of frequent occurring elements in a 2-dimension matrix,

IDF-TF weighting is used on each matrix. [5] normalize the matrices, namely 𝐔𝐓,

𝐈𝐓 and 𝐑, and then combine these sub-matrices and their transposes in the transition

matrix 𝐀. In our model, we compute 𝐓𝐔, 𝐓𝐈 and 𝐑𝐓 respectively rather than the

transpose matrices. Notice that by our definition, 𝐑𝐓 is not the transpose of 𝐑.

 We compare the results of SFR_3_DBSCAN that uses asymmetric transition matrix

and symmetric one, denoted as ASYM and SYM as shown in Table 5-4 and Figure

5-10. ASYM gets 31.4% improvement in terms of NDCG. In terms of precision,

ASYM gets 52.76% improvement, while SYM also gets 35.67% improvement in

terms of recall. Because of our definition of relevance, the tags relevant to an item for

the target user are fewer so that the difference of the results between SYM and ASYM

diminishes with the growing of the reference items in Figure 5-10.

ASYM SYM

NDCG 0.72029 0.54814

P@10 0.49273 0.26204

P@20 0.33497 0.21104

P@30 0.24714 0.17799

P@40 0.19511 0.15288

53

P@50 0.16084 0.13268

R@10 0.66977 0.34355

R@20 0.81274 0.53298

R@30 0.86606 0.65824

R@40 0.8961 0.73974

R@50 0.91486 0.79141

Table 5-4 Results of ASYM and SYM in terms of NDCG, precision and recall. The

model that uses the transition matrix that we modify outperforms the other.

Figure 5-10 Results of ASYM and SYM in terms of precision and recall. ASYM

outperforms SYM.

By the definition of normalization, the value of an element in the matrix is different

from that in its transpose. The influence of a frequent occurring element could be

reduced logarithmically proportional to the sparsity of the elements located in the

same column. Thus, the normalization that we modify can represent the local linking

relation around the elements more precisely.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50

P
re

ci
si

o
n

 /
 R

e
ca

ll

Top n (@)

ASYM (Precision)

SYM (Precision)

ASYM (Recall)

SYM (Recall)

54

Chapter 6

Conclusions and Future Work

We have proposed a novel learning model, the Supervised FolkRank (SFR), for link

recommendation in social tagging networks. By approximating the NDCG to be the

objective function, we consider the rank position of each item rather than split items

into two sets. Moreover, to make our model reliable, we define the relevance of an

item so that items that a target user has never tagged before would be pruned. Both

the search space of relevant and irrelevant items would be reduced to the items that

the target user has tagged before.

The transition matrix in our model is similar to most of random walk-based

methods in the social tagging networks [5, 6, 11, 13]. However, our transition matrix

is not symmetric. We argue that the asymmetric transition matrix would adapt to the

real condition though edges in the social graph are undirected. The Supervised

FolkRank provides two types. We use the random walk with restart model as our basic

type, and we introduce the probability of self-transition to our model to combine the

PageRank-like model and the Lazy Random Walk model. While computing the

objective function in the training phase, by our definition of relevance, we compute

the NDCG-based objective function where the rating of a relevant item is taken as the

relevance score. Thus, the irrelevant items would not be counted in to affect the

predictive result.

By optimizing the parameters of our model, we analyze the linking behavior of a

user that would affect the result much. Due to the divergence of users’ linking

behaviors, we argue that the prediction by PageRank-based model with only one

parameter vector may not adapt to the real datasets. Thus, by clustering, we could find

the representatives for each cluster by computing the mean of each cluster. Each

55

cluster represents a sort of user behavior. While recommending, we use the parameter

vector, which belongs to the cluster that is similar to the target user. Thus, the

prediction could be enhanced.

Experiments on LibraryThing demonstrate good performance of the Supervised

FolkRank. Comparing with supervised (e.g., modified Supervised Random Walks)

and unsupervised methods, Supervised FolkRank (SFR) outperforms other methods.

The list-wise learning method we utilize could obtain more precise distribution than

the pair-wise one such as Supervised Random Walks. Besides, due to the learning

techniques, SFR could make reliable prediction without the requirement of network

features discovery and extraction.

Supervised FolkRank is a robust model that can be applied to the problems which

require ranking nodes in a social tagging graph, such as keyword search and

recommendation.

56

Bibliography

[1] Al-Maskari, A., Sanderson, M. and Clough P. The Relationship between IR

effectiveness measures and user satisfaction. In SIGIR ’07: Proceedings of the

30th annual international ACM SIGIR conference on Research and

development in information retrieval, p.p. 23-27, 2007.

[2] Backstrom, L. and Leskovec, J. Supervised Random Walks: Predicting and

recommending links in social networks. In WSDM ’11: Proceedings of the 4th

International Conference on Web Search and Web Data Mining, p.p. 635-644,

2011.

[3] Brin, S. and Page, L. The anatomy of a large-scale hypertextual web search

engine. In Computer Networks and ISDN Systems, 30(1-7):107-117, April

1998.

[4] Broyden, C. G. The convergence of a class of double-rank minimization

algorithms. In Journal of the institute of Mathematics and Its Applications 6,

p.p. 76-90.

[5] Clements, M., Vries, A. P., and Reinders, M. I. J. The influence of

personalization on tag query length in social media search. In Information

Processing and Management, p.p. 403-412, 2010.

[6] Clements, M., Vries, A. P., and Reinders, M. I. J. The Task-Dependent Effect

of Tags and Ratings on Social Media Access. In ACM Transactions on

Information Systems, Vol. 28, No. 4, Article 21, Nov. 2010.

[7] Fletcher, R. A New Approach to variable metric algorithms. In Computer

Journal 13(3), p.p. 317-322.

[8] Fletcher, Roger. Practical methods of optimization (2
nd

 ed.), New York: John

Wiley & Sons.

[9] Goldfarb, D. A family of variable metric updates derived by variational means.

In Mathematics of Computation 24 (109), p.p. 23-26.

[10] Herlocker, J. L., Konstan, J. A., Borchers, A., and Riedl, J. An algorithmic

framework for performing collaborative filtering. In SIGIR ’99: Proceedings

of the 22nd annual international ACM SIGIR conference o Research and

development in information retrieval, p.p. 230-247, 1999.

[11] Hotho, A., Jäschke, R., Schmitz, C. and Stumme, G. Information retrieval in

folksonomies: search and ranking. In ESWC ’06: Proceedings of the 3rd

57

European conference on The Semantic Web: research and applications, p.p.

411-426, 2006.

[12] Järvelin, K. and Kekäläinen, J. Cumulative gain-based evaluation of IR

techniques. In ACM Transactions on Information Systems 20, p.p. 422-446,

2002.

[13] Konstas, I., Stathopoulos, V. and Jose, J. M. On social networks and

collaborative recommendation. In SIGIR ’09: Proceedings of the 32th annual

international ACM SIGIR conference on Research and development in

information retrieval, p.p. 19-23, 2009.

[14] Liu, D. and Nocedal, J. On the limited memory bfgs method for large scale

optimization. In Mathematical Programming, pp. 45:503-528, 1989.

[15] Liu, T.Y. Learning to Rank for Information Retrieval. Springer-Verlag Berlin

Heidelberg.

[16] Marinho, L. B., Nanopoulos, A., Schmidt-Thieme, L., Jäschke, R., Hotho, A.,

Stumme, G. and Symeonidis, P. Social tagging recommendation systems. In

Recommender System Handbook, p.p. 615-632, 2011

[17] .Milicevic, A. K., Nanopoulos, A. and Ivanovic, M. Social tagging in

recommender systems: A survey of the state-of-art and possible extensions. In

Artificial Intelligence Review, Volume 33 Issue 3, March 2010, p.p. 187-209,

2010.

[18] Parra, D. and Brusilovsky, P. Collaborative filtering for social tagging systems:

An experiment with CiteULike. In RecSys ’09: Proceedings of the 2009 ACM

conference on Recommender Systems, p.p. 237-240, 2009.

[19] Parra-Santander, D. and Brusilovsky, R. Improving collaborative filtering in

social tagging systems for the recommendation of scientific articles. In

IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent

Agent Technology, vol. 1, pp.136-142, 2010.

[20] Qin T., Liu, T.Y., Li, H. A general approximation framework for direct

optimization of information retrieval measures. In Information Retrieval 13(4),

p.p. 375-397, 2009.

[21] Rae, A., Sigurbjörnsson, B. and Zwol, R. Improving Tag Recommendation

Using Social Networks. In RIAO’ 10: 9th Recherche d'Information Assistée

par Ordinateur Conference Adaptivity, Personalization and Fusion of

Heterogeneous Information, 2010.

[22] Salton, G. and Buckley, C. Term-weighting approaches in automatic text

58

retrieval. In Information Processing and Management, 24(5), p.p. 513-523,

2010.

[23] Shanno, David F. Conditioning of quasi-Newton methods for function

minimization. In Math. Comput. 24(111), p.p. 647-656.

[24] Taylor, M., Guiver, J., et al. Softrank: optimising non-smooth rank metrics. In

WSDM ’08: Proceedings of the 1st International Conference on Web Search

and Web Data Mining, p.p. 77-86, 2008.

[25] Valizadegan, H., Jin, R., Zhang, R. and Mao J. Learning to rank by optimizing

NDCG measure. In Neural Information Processing Systems, 2010.

[26] Wu, X., Zhang, L. and Yu, Y. Exploring social annotations for the semantic

web. In WWW ’06: Proceedings of the 15th international conference on World

Wide Web, p.p. 417-426, 2006.

[27] Yan, L., Dodier, R., Mozer, M. and Wolniexicz, R. Optimizing classifier

performance via an approximation to the Wilcoxon-Mann-Whitney statistic. In

ICML ’03: The 20th International Conference on Machine Learning, p.p.

848-855, 2003.

