5 17 A2 38 N2

EAREETIENIEA

H M X

Z gy g M 2 RER 24 T RS

Key Formulation Schemes for Spatial Index.in Cloud Data
Managements

7 ;Ln 4o 2F e

—_—

S AL

FERE 101 & 7 A

2By 2 RS2 TR
Key Formulation Schemes for Spatial Index in Cloud Data Managements

oyod TR Student : Ya-Ting Hsu
hERRIEYR Advisor : Wen-Chih Peng
B Zeraes g
FTGUA & & 1 fg 5007
Frd @ ¥
A Thesis

Submitted to Institute of Computer Science and Engineering
College of Computer Science
National Chiao Tung University
in partial Fulfillment of the Requirements
for the Degree of
Master

in
Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

P EX 101 & 77

F2 e e B A

Pz 2 ad ~ B PR e g

2
o

FENZHEL DG ARETRBEL R LI BES R EF =
‘wmﬁ%ﬁ%%o*— Esﬂ*—-}%%ﬁﬁg '%ﬁ@?ﬂﬁﬁ#ﬁﬂ(%
: HBase ¥ Cassandra) e ﬁ”’%@v}f;gfﬂ Ae R R BT 4E—E S
ﬁ (Key-Value Pair) kg5 5% » % B a2 gl rL% Los Bjp it enig
%7 Cassandra #5#% - d4g 4 (de & Get Set 22 .Scan) 114% @ # ;F!T -
HEAAST B AP R G o T N Bl F T K UE Bk 2 HE n
(b4 3 REBE ST) IR P EZ E Y g 0 2oy §
JoAR R A ke R TR (Web Data) ﬁaj@fﬁ%l?ﬁﬂi o A o
"TFAE A S 8 (Smart Phone) % F 3t 1= % PR 7% (Location-Based Services)
iz § 7 Bren @ 0 @ (7 3 B304 Bedk (SpatialInformation) & @pFR P & £ b
%%oﬂ“’%ﬁﬂimﬁ%éwﬁﬁﬁﬂ%iﬁmi&%ﬁﬁﬁ{f%ﬁm%
Ao A ai\.;}?ﬁ:}ft*-— B A2 apicyg g 1L A Rtree st w4 (@
ﬁé\Kqumx) iihﬁ**?”WJLuﬁj?ﬂﬁ#JLﬁA““%wﬁﬂ%?ﬁL
AR e mn%ﬁ"* Cage iy %.uﬁw‘% o 24 i 4 KR™ index # 213 B # 4% T
ke F’*ﬁ@ (Spatial Index) i & i# - #1433 (Range Query) * k B#iTH 4
79 (k-NNQuery) o gt eb > A vy I ang & 512 g4 2450 (KR -index)
% Cassandra + i ¥~ X i 5 A2 L ficdp ik 51 2 £ & 439 > range query £
k-NN query - &% %% % ¢ &n 2 3k I en KR ™ index B3t 8 # 3 ey B % 31
2 4] T ;82 MD-HBase » # 5| % 7 B Lficdp 4 # 250 2 oA T o

P ek AR -

Key Formulation Schemes for Spatial Index in Cloud Data Managements

Student : Ya-Ting Hsu Advisors : Dr. Wen-Chih Peng

Institute of Computer Science
National Chiao Tung University

ABSTRACT

Due to the flexibility: and scalability in_cloud «computing, cloud computing
nowadays plays an important role to handle a large-scale data analysis. For data
processing operations, several cloud data managements (CDMs), such as HBase and
Cassandra, are developed. Such CDMs usually provide key-value storages, where
each key is used to access its corresponding value. Both HBase and Cassandra provide
some basic operations (e.g., Get, Set, Scan) to retrieve the values via keys specified by
users. The exiting CDMs fully inherit the characteristics of cloud computing (i.e., high
scalability and availability). With .the-aforementioned characteristics of cloud
computing, CDMs are widely employed for Web data, especially for search engines.
However, with the proliferation of smart phones and location-based services, data
with spatial information, referring as spatial data, are dramatically increasing.
Consequently, how to formulate keys for spatial data in the existing CDMs is a
challenge issue. In this paper, we develop several key formulation schemes. In
particular, we propose a novel Key formulation scheme based on R*-tree (abbreviated
as KR™-index). With our design for keys of spatial data, the existing CDMs are able
to efficiently retrieve spatial data. In light of KR™-index, two spatial queries, k-NN
query and range query, are designed. Moreover, we implement the proposed key
formulation schemes on Cassandra, and import synthetic spatial data for spatial
queries. The experimental results demonstrate that KR'-index outperforms other
existing key formulations and MD-HBase.

3t
A - R R F A
M By B R
3 i

2

e

L
b B

GREI

TRT PRHEE @R
PR o

E:

BN B3

fpﬁmﬁﬁid ’ %—/’%EH; r{xg\;; 5@5}3‘%
4 S
e

3 4 F‘K;{L%i;g; ;—}?l ﬁiﬁ—ﬂ” ’"LT*L

o

e W
RPN
E: %
¥

3
E Rt J_R,g;g;ggouftw b BRI A

B EE R
A
SR
RENFORES
KPP AR Faigpize RH0l £ EF 72 REE f"ipﬂ A
FepEE A AR ©E e SR 7Y
J -

FHREYREFT ST

Pt 3 ;}E‘E‘f}j\l 3*»@7)y (% 1F

o

B A AT 0 fp B

A
4=3f costco ~ 733 Ik

3 Kerker F & P enfips o B &

Tk ehpE sk

4 hFTy
23 ~Oshin £ & ~Barry £ & ~Dimension ¥ & -~ ~ &£ £ ~Luc ¥ £ -
F g
fooActhas o 4 B PHE

thl—] ES
l’mﬁ,—j{ ’ﬁnﬁb L—/ ﬂ/+
EEA S)

';}Evl °
N p g

¥

3t Young
AR iwEE L
Vil S E VA A = »kw;;;@q EI?’T;}F]*F‘ fo B g 3 gzt

FAT E and PR s R Rgh e et b R atWallman ~ 2

R

w5k

R P B g~ B g~ Tom B GO T gL A g aiag o - 4o
VR fF S e (5L EEOR R T AR S % 2

S B G\ iR R T gade £ 2 pEs gl o
BRREHA N EE G F R i LAl AR kR R HT
fnehe F s RMmERE, P AN inamEiEsS s £l F o

Bois o B PEM o A RIS B AN AT gt et

T3)

T B

FoEAe AR

i E T A

rend BT AL - BUE o BB RN R R BPnd
ﬁ‘y
Lk g

FeE

Tk e 2

Contents

Chinese Abstract i
Abstract ii
Acknowledgements iii
Contents iv
List of Figures vi
List of Tables vii
1 Introduction 1

2 Background 7
2.1 Multi-attribute Aceess .. .0 . . Lo LA 7
2.1.1 Range Query © & e ... ol 7

212 E-NNQuery oo 8

2.2 Multi-dimensional Index Techniques 8
2.2.1 Tree Structures 8

2.2.2 Linearizationo 10

3 Multi-dimensional Index Structure 12
3.1 KRT-index 12
3.2 Imsertion and Deletion oo 15
3.3 Space Split 15
3.4 Range Query 16

v

3.5 kNN Query o e

4 Experiment

4.1 Insert and Delete Throughput
4.2 Range QUery
4.3 E-NN Query

5 Related Work

5.1 HBase and Cassandra
5.1.1 DataModel
5.1.2 Basis Operations

5.2 Multi-dimensional Indexo

6 Conclusion

20
21
21
26

30
30
30
32
33

35

List of Figures

1.1 A Hilbert curve on grids of map. 4
1.2 Quad-tree with M =3. 4
1.3 An key formulation in MD-HBase., 4
2.1 The examples of multi-attribute access. 7
2.2 The examples of R-trees and/R*-trees. ...« 8
3.1 The overview of KR™imdex. o L0 13
3.2 Anexample of KR¥sindex. .0 o L L 14
4.1 Distribution of syntheticdata: ~ .. . oo o0 a0 oL 21
4.2 The sparse and dense regions of syntheticdata. 21
4.3 The insert and delete throughput. 0w o000 22
4.4 The range query performance of the Hilbert-method. ./ v 22
4.5 The range query performance of the KR™-index. .« <. v 24
4.6 The range query performance of the advanced KR =index 25
4.7 The range query performance of the Hilbert method. 26

4.8 The range query response time comparison of Hilbert, advanced KR* and MD. 27

4.9 The k-NN query performance of the Hilbert method. 28
4.10 The k-NN query performance of the advanced KR*-index 28
4.11 The k-NN query performance of the Hilbert method. 28

4.12 The k-NN query response time comparison of Hilbert, advanced KR* and MD. 29

vi

List of Tables

1.1
1.2
1.3
14

3.1

5.1

An example of check-in records. L. 2
Data in Cassandra. 3
Secondary index. 3
A key mapping for restaurants. 5
The relationships between sponse time and the parameters

of the KR*-index. . . ©. o0 P L 14
A table of HBase. . : : Y N - e 30

vil

Chapter 1

Introduction

In recent years, mobile devices, such as smart phones and tablet computers, become pop-
ular in our daily life. Simultaneously, with the inereasing prevalence of Global Positioning
System (GPS), a large number oflocation=based applications, such as Foursquare and Flickr,
have been developed. People are able to share their real-time events with friends anytime and
anywhere if the Internet is available. For example, people can check in to a specific location
and can note their activities; and they can see their friends’ shared real-time information by
the Foursquare application. Those location-based applications induce that a huge amount of
multi-attribute data, which at least consist oflocations and time-stamps, are dramatically
increasing. In order to retrieve and manage the huge amount of multi-attribute data well,
different database management systems (DBMSs) have been developed. For traditional rela-
tional database management systems.(RDBMSs), there.are several index structures, such as
k-dimensional (k-d) trees [3], quad‘trees [T}y and Retrees [9]. However, RDBMSs is unable to
deal with thousands of millions of queries efficiently. On the other hand, distributed relational
database management systems (DRDBMSs) are developed and are able to deal with multi-
attribute accesses. However, DRDBMSs are unable to maintain and retrieve data among
servers efficiently, because DRDBMSs take much time to make data should be consistent by
appropriately locking and updating data.

To deal with a huge amount of data efficiently and flexibly, cloud computing nowadays plays
an important role and new cloud data managements (CDMs), which are NoSQL databases
[19], have been developed. The most prevalent NoSQL CDMs, such as HBase [11], Cassandra
[12] and Amazon Simple Storage [20], are developed based on a BigTable [6] management

system. Compared with DRDBMSs, these management systems have the characteristics of
high scalability, high availability and fault-tolerance because they can effectively and effi-
ciently handle a large number of data updates even if failure events occur. In addition, a
BigTable management system stores data as (key, value) pairs, and thus these BigTable-like
management systems can retrieve data efficiently by the following characteristics: 1) each
(key, value) pair is stored on multiple servers; 2) each key owns multiple versions of a value.
In other words, the first characteristic benefits the efficiency of retrieving data, and the second
characteristic eliminates the waiting time of making data be consistent. Due to the inherent
restriction of a BigTable data structure, these management systems only support some basic
operations, such as Get, Set and Scan. A Get operation retrieves values mapped by a key;
a Set operation inserts/modifies values according to a corresponding key; a Scan operation
returns all values mapped by a range of keys.. However, these basic operations do not directly

support multi-attribute accesses.

Table 1:1: An example of check-in records.
cid | rid | . rest.name | rest.lat | rest.ng | uid time
D1 Friday 24.805 |120.995"} w; | 2011/05/08
D1 Friday 24:805 | 120:995 | w9 2011/08/08
p2 | McDonald’s | 24.794 |121:002 | wuy | 2011/08/30
po f-McDonald’s | 24.794 {<121.002 | uz | 2011/10/10
D3 KFC 24.794 | 121.005 | wuy |/2017/11/07

QY | W N~

Multi-attribute accesses are commeon and required for location-based services. We illustrate
multi-attribute access queries using an example. To illustrate the query example of query,
we use the data of check-in records dn Table 1.1 and Cassandra to be a CDM. Note that,
for the first check-in record in Table 1.1, a user whose ID is w; checked in Friday at the
geographic coordinate (24.805,120.995) on May 8th, 2011. Based on Cassandra, the data
in 1.1 are then stored as two column families in Table 1.2(a) and Table 1.2(b). Given the
check-in records and a range query as “searching checked-in restaurants whose longitudes are
within [120.990, 121.004] and whose latitudes are within [25.769, 24.800]”, a simple method
of fetching multi-dimensional data from CDMs is scanning the whole data in database and
then pruning unqualified data, but this method is time-consuming and resource-intensive. To
improve the efficiency of multi-attribute accesses is to pre-establish a secondary indexe for the

attribute longitude and the attribute latitude as Table 1.3(a) and Table 1.3(b), respectively.

2

Table 1.2: Data in Cassandra.

(a) A column family for the simpli- (b) A column family for restaurants’
fied check-in information. information.
Keys columns Keys columns
name value name value
rid D1 name Friday
1 uid Uy D1 lat 24.805
time | 2011/05/08 Ing 120.995
rid D1 name | McDonald’s
2 uid Us Do lat 24.794
time | 2011/08/08 Ing 121.002
rid D2 name KFC
3 uid Us D3 lat 24.794
time | 2011/08/30 Ing 121.005
rid Do
4 uid U3
time | 2011/10/10
rid D3
5 uid U
time | 2011/11/07

Table-1-3: Secondary index:

(a) Restaurants’longitudes. (b) Restaurants’ latitudes.
Keys columns Keys columns
name | value name | value
120.995 | py null Do null
4.794
121.002| = po null 24,1 D3 null
121.0054" pg | null 24.805 | p null

With the two secondary indices, for the aforementioned example of a range query, we can get
which restaurants are locate in the range. Specifically, we perform an operation of Scan on
the longitudes’ secondary index to derive a set of restaurant IDs in which each corresponding
restaurant’s longitude is within [120.990, 121.004] (e.g., {p1,p2}), and we similarly perform an
operation of Scan on the latitudes’ secondary index to derive a set of restaurant IDs in which
each corresponding restaurant’s latitude is within [23.769, 24.800] (e.g., {p2,ps}). We then
intersect the two sets to derive a set of qualified restaurants (e.g., {p2} restaurant). However,
this index method is space-consuming for constructing a secondary index for each attribute
of data, and it is time-consuming for updating secondary index structures while data were

updated. To overcome the former disadvantage, a better index method is using space-filling

curves [4], such as Z-ordering [14] and Hilbert curve [5]. This kind of index methods transform
multi-dimensional data into a one-dimensional space. The map was divided into 2" - 2" grids
that are assigned values as keys by space-filling curves. Data in the same grid are mapped
to the same key, as shown in Figure 1.1 and Table 1.4. However, the response time of a
Get operation increases exponentially as the volume of data mapped by a key increases. In
addition, the user-generated data usually have a skewed distribution, e.g., most people likely
checked in at popular attractions. Therefore, this kind of index methods are inefficient when
a distribution of data is extremely skewed. Furthermore, to support efficient multi-attributes
accesses for the CDM, the studies in [15] and [24] developed traditional index methods, such
as k-d trees, RT-trees and quad trees, on CDMs. MD-HBase proposed in [15] combines a
k-d tree/quad tree with Z-ordering on HBase. Specifically, the approach first divides a map
into grids uniformly, and gives each grid one key by Z-ordering. Grids are indexed by k-d
tree or Quad tree, and then using the prefix of the grid keys to access data. Unfortunately,
MD-HBase is inefficient whilethe data distribution is extremely skewing result in filtering out

too many redundant data.

3 ‘e 3 :
‘ ; 000011 d Sl e
. 0001*0014*
: 000010 ;
b & (000010 (N o S 1 n*
LSS 000001 < i
0 3 o 000000 4—o | C

Figure 1.1: A Hilbert curve Figure 1.2:-Quad-tree with Figure 1.3: An key formula-
on grids of map. M =3. tion in MD-HBase.

In this paper, to support efficient multi-attribute accesses of skewed data on CDMs, we
proposed a novel multi-dimensional index, called KR*-index, on CDMs by designing Key
names for leaves of RT-tree. A challenge issue is to filter out data after querying result from
large difference of volume of data between grids. In order to describe conveniently, we called
the size of a gird as the volume of data in the grid. However, dividing a map more meticulously
could reduce the differences of the grid sizes but it also reduces the efficiency of accessing data.
For example, for a range query, we need to retrieve more grids for the same spatial range.

According to the aforementioned observations, we expect the differences of the grid sizes could

4

Table 1.4: A key mapping for restaurants.
super columns

keys , columns
super columns’ name

name value
name Friday
1 D1 lat 24.805

Ing 120.995
name | McDonald’s

D2 lat 24.794

; Ing 121.002
name KFC

D3 lat 24.794

Ing 121.005

be smaller and the time of grid accesses could be less at the same time. Consequently, how
to divide a map into grids to reach a balance between the two points plays an important role
for CDMs. In this paper, we first use R*-tree [18] to.divide data, and the rectangles in the
leave nodes of the tree index are treated as dynamic grids.. The reasons of using R*-tree are
describes as follows. First; we could-get-a balance between the grids sizes and the times of
grid accesses by adjusting two parameters, M and m, of the R*-tree. Second, compared with
other variants of the R-tree, the leaf nodes of R <tree do not overlap with each other, and
thus it is benefit for nowedundant retrieving the same data from different keys and easy to
define different keys for each rectangle of a leaf node. Moreover, the second challenge is how to
design key names of these grids to suppert efficient queries on BigTable management systems.
We observed the characteristies of €CDMs as follows: a CDM has a fast key-value search and
to Scan keys which are ordered by/a dietionary order is fast. Based on these characteristics,
we propose an approach to define the key name of a grid to support efficient queries. In the
experiment, we implement the proposed index on two well-known CDM systems, HBase and
Cassandra, and we compare the performance of the proposed index with the existing index
methods. The experimental results demonstrate that our proposed index outperforms the
existing index methods via skewed data.

We summarize the contributions of this paper as follows:

e We propose an efficient multi-dimensional index structure, KR*-index, on CDMs to

support efficient multi-attribute accesses of skewed data.

e Based on KR*-index, we define new efficient spatial query algorithms, range query and

k-NN query.
e The KR*-index uses the characteristics of CDMs effectively.

e The experimental results show that the proposed KR*-index outperforms than other

competitors.

The remainder of the paper is organized as follows. First, we illustrate the background of
multi-attribute access, multi-dimensional index and Hilbert curve Section 2. We next propose
the KR*-index in Section 3. In Section 4, we evaluate the performance of the proposed
KR*-index for multi-attribute accesses on CDMs. Finally, we conclude the paper and give a

discussion of the future work in Section 6.

Chapter 2

Background

2.1 Multi-attribute Access

For multi-dimensional data search, multi-attribute access. is used to restrict multiple at-
tributes at the same time. For instance, Range Queryand k-NN Query are common queries

of multi-attribute access and are widely-used in location-based services.

‘ - ”::‘“:Z
91096 e - \ @gﬁ

o'\ @P4 E%\\ ; i) 2O (™ B ‘o P‘z.@ Y

APENG A Velsdaly p
(a) ' Range query. (b) k-NN-query.

Figure 2.1: The examples of multi-attribute access.

2.1.1 Range Query

Given a set of data points P and a spatial range R, a range query can be formulated as
“searching the data points in P that locate in the spatial range R”. Note that, in this paper,
each data point has location information, e.g., a longitude and a latitude. Without loss of
generality, in this paper, a spatial range is represented by a rectangular range.

For instance, in Figure 2.1(a), given 15 restaurants, marked by gray points, and a red query

range R, the range query is to search which restaurants locate in the range R. As shown in

7

Figure 2.1(a), the result of the range query is {p1, p2, ps, P4, P5}-

2.1.2 k-NN Query

Given a set of data points P, a query location p = (p,, p,) and a constant k, a k-NN query
can be formulated as “searching the data points in P that are the k nearest data points of p”.
For example, in Figure 2.1(b), given 15 restaurants, a user-specified location p marked by
the red color and £ = 5, a 5-NN query here is to search five nearest restaurants of p. Thus,

the search result of this query is {p4, ps, ps, 7, ps} shown in Figure 2.1(b).

2.2 Multi-dimensional Index Techniques

4

e |_lc ~ _ %{i

(a) An example of (b) R-tree with M = 3 (c) R*-treeswith M = 3
skewed data. and m = 1. and'm =1z

[C1]Ca]Cal] Cc]CsfCs]

[Ri|Re|R|

20 5 | 5 S | 7 I

(d) The index' structures for
R-tree in Figure 2.2(b) and
RT-tree in Figure 2.2(c).

Figure 2.2: The examples of R-trees and R*-trees.

2.2.1 Tree Structures

R-tree, developed for indexing multi-dimensional data, are widely used in multi-attribute
accesses. For instance, given fifteen checked-in restaurants in Figure 2.2(a), a R-tree index

structure with two parameters M = 3 and m = 1 can be stored as shown in Figure 2.2(b) and

the top figure in Figure 2.2(d). Note that M and m are used to restrict that the number of
elements of a node in a tree is in [m, M]. Because R-tree is a balance search tree by dynamically
splitting and merging nodes and R-tree can restrict the number of elements in each node by
controlling the M and m, R-tree benefits for searching skewed data. Moreover, to efficiently
index different multi-dimensional data, different variations of R-trees have been developed,
such as R*-tree [18], R*-tree [2] and the Hilbert R-tree [10]. The R*-tree developed a new
rule of splitting and merging nodes to speed up the multi-attribute accesses. For instance,
given a set of data points in Figure 2.2(a), Figure 2.2(c¢) shows an example of R*-tree with
M = 3 and m = 1, and the corresponding index structure is illustrated in the bottom figure
in Figure2.2(d). As shown in Figure 2.2(c), the rectangles do not overlap with each other,
and it benefits to reduce searching time. The reason is that, compared with R-trees, we do
not search duplicated results using R*-trees.

R-tree, developed for indexing multi-dimensional data, are widely used in multi-attribute
accesses. For instance, given<fifteen checked-in restaurants in‘Figure 2.2(a), a R-tree index
structure with two parameters 4/ =3-and m = 1 can be stored as shown in Figure 2.2(b) and
the top figure in Figure 2.2(d). Note-that M and m are used to restrict that the number of
elements of a node in a treeis in [m, M]. Because R-treeis a balance search tree by dynamically
splitting and merging nedes and R-tree can restrict the number of elements in each node by
controlling the M and myR-tree benefits for searching skewed datas Moreover, to efficiently
index different multi-dimensional data, different variations of R-trees have been developed,
such as Rt-tree [18], R*-tree[2] and the Hilbert R-tree [10}. The R*-tree developed a new
rule of splitting and merging nodes to speed up the multi-attribute accesses. For instance,
given a set of data points in Figure 2.2(a), Figure 2.2(c) shows an example of R*-tree with
M = 3 and m = 1, and the corresponding index structure is illustrated in the bottom figure
in Figure2.2(d). As shown in Figure 2.2(c), the rectangles do not overlap with each other,
and it benefits to reduce searching time. The reason is that, compared with R-trees, we do
not search duplicated results using R*-trees.

Quad-trees [7] are another common tree structures for indexing multi-dimensional data. In
quad-trees, each internal node has exactly four children. However, quad-trees are not balance
trees because a region is split into four sub-regions until the number of data points in the

region is less than or equal to a given parameter M. For instance, given the data in Figure

2.2(a), Figure 1.2 shows an quad-tree with M = 3. However, quad-trees do not benefit for
skewed data. For example, given a query range marked by the green color in Figure 1.2, for
the range query, the searching time of using quad-trees is greater than the searching time of
using R*-tree, because the depth of the quad-tree structure is higher than the depth of the
R*-tree structure.

Quad-trees [7] are another common tree structures for indexing multi-dimensional data. In
quad-trees, each internal node has exactly four children. However, quad-trees are not balance
trees because a region is split into four sub-regions until the number of data points in the
region is less than or equal to a given parameter M. For instance, given the data in Figure
2.2(a), Figure 1.2 shows an quad-tree with M = 3. However, quad-trees do not benefit for
skewed data. For example, given a query range marked by the green color in Figure 1.2, for
the range query, the searching time of using quad-trees is greater than the searching time of
using R*-tree, because the depth. of the quad-tree structure is higher than the depth of the

RT-tree structure.

2.2.2 Linearization

Linearization is a well-known technique for indexing multi-dimensional data by transform-
ing multi-dimensional data into one-dimensional data. One of the most popular method of
linearization is using space-filling curves; such as Hilbert curve and Z-ordering. Given a two-
dimensional data, this method first divides the map into 2™ 2" non-overlapping grids, where n
is a parameter, and assign a number for.each grid according to the order of traversing all grids.
Note that the number of each grid is'regarded as a key. Figure 1.1 illustrates an example of
linearization using Hilbert curve with 2! - 2! grids. In Figure 1.1, the map is divided into
four grids, and the keys of these grids are represented by 0, 1, 2 and 3 according to Hilbert
curve. However, using space-filling curves to index data may be not efficient. Take check-in
records indexing for an example. If a value of n is set to be lower, it induces a larger size of a
grid, and a grid would possibly cover more check-in records distributed in the area of the grid.
Given a range query, all check-in records locating in the grids overlapping the range would
be retrieved, and then these records are further verified whether they are indeed in the query
range. Therefore, it would result in that more unqualified check-in records, said false-positive,

should be pruned, and it takes more time to derive the query result. On the other hand, if n

10

is set to be larger, it would increase the times to retrieve more grids. Thus, for this indexing
technique, it is a trade-off to set a proper value of n for efficiency.

Linearization is a well-known technique for indexing multi-dimensional data by transform-
ing multi-dimensional data into one-dimensional data. One of the most popular method of
linearization is using space-filling curves, such as Hilbert curve and Z-ordering. Given a two-
dimensional data, this method first divides the map into 2" -2" non-overlapping grids, where n
is a parameter, and assign a number for each grid according to the order of traversing all grids.
Note that the number of each grid is regarded as a key. Figure 1.1 illustrates an example of
linearization using Hilbert curve with 2! - 2! grids. In Figure 1.1, the map is divided into
four grids, and the keys of these grids are represented by 0, 1, 2 and 3 according to Hilbert
curve. However, using space-filling curves to index data may be not efficient. Take check-in
records indexing for an example. If a value of n is set to be lower, it induces a larger size of a
grid, and a grid would possibly cover more check-in records distributed in the area of the grid.
Given a range query, all check-in records locating in the grids overlapping the range would
be retrieved, and then these records-are-further verified whether they are indeed in the query
range. Therefore, it would result in that-more unqualified check-in records, said false-positive,
should be pruned, and it'takes more time to derive the query result:"On the other hand, if n
is set to be larger, it would increase the times to retrieve more grids: ' Thus, for this indexing

technique, it is a trade-off to set a proper value of n for efficiency.

11

Chapter 3

Multi-dimensional Index Structure

The CDMs provide key-value search, which retrieving a value by given a key, based on the
data model of CDMs. The CDMs support basicoperations to access data, but these operations
do not directly support multi-attribute access.” To-deal.with the problem of multi-attribute
access, we develop a multi-dimensional index structure for CDMs.. Furthermore, in this paper,

we apply our developed index structure for range query and £-NN query on CDMs.

3.1 KR'-index

Our design of multi-dimensional index is based on the observation of CDMs. We observe
three characteristics of CDMs: 1) the time of retrieving a key that has n data is far less than
the time of retrieving n keys that each has one data; 2) the time of retrieving a key has n data
increases more than twice as n is large. 3).the operation Sean is more efficient than multiple
Get that both retrieving the same keys. Considering the aforementioned characteristics, for
a query should make the number of false-positive to be smaller from the characteristic 2 and
let the number of sub-queries to be smaller from the characteristic 1. R*-tree is balance tree
that has M and m to control the size of each dynamic rectangle, we could use the M and m
to meet the trade-off between false-positive and sub-queries. Considering the characteristic 3,
we use the Hilbert curve to let the queried key to be as continuous as possible and then the
rate of Scan is increased.

Figure 3.1 is the framework of KR"-index. First, the data is constructed by the R*-tree

with given M, m and the restaurant records for each rectangle, { Ry, R, R3}, are maintained.

12

2 Gs

G
1 KeyTable

i
& ; [Grid key [Rectangle key |
%/ == Gy R —h
[H Ry,R;
R, f KeyTable G, Ry

Ry S

%- T A key mapping for restaurant records
7 R'-tree [Rectangle key [points]

R3 ' Ry

L R,

L R;

Figure 3.1: The overview of KR™-index.

In order to retrieve the restaurant records efficiently, we proposed a mapping method for
retrieving the queried rectangle keys. Second, the map is divided into 2" x 2™ non-overlap
grids, {G1, G, G5, G4}, uniformly. Then, for each grid maintains a list of rectangles that
overlap with this grid. For instance, the grid G5 overlaps with rectangles {R;, Rs} that
the KeyTable store a record (Ga, {Ry, £5})..Thus, a query could convenient transform into
which grids need to be queried andthen through the KeyTable could easily get the required
rectangles.

For these key-value storages, it is-crucial to define the key, because we use the key to
access corresponding data. We construct R*-tree to_discover non-overlap minimum bound-
ing rectangles. Considering the characteristic 3, we use Hilbert-curve to define the keys,
since Hilbert-curve manifests superior data clustering compared with.other multi-dimensional
linearization technique. For each leaf rectangle, we use the Hilbert-value of the geographic
coordinate of the centroid of xectangle be the key. Theny we split the space to non-overlap
2™ x 2™ grids uniformly and each grid has a ‘Hilbert-value which is transformed by Hilbert-
curve. Take the Figure 3.2(a), for example, each rectangle is given a Hilbert value. Each
grid also given a Hilbert value, the grid 1 in Figure 3.2(b) overlaps with the rectangles {0,
14} that (1, {0, 14}) is stored in KeyTable as showed in Figure 3.2(c). We could get the
rectangle information though the KeyTable and the multi-attribute access can retrieve the
data efficiently.

The decision of (M, m) and order will affect the efficiency of range query. Thus, we decided
to dynamically generate the values of (M, m) and order. We knew that (M,m) influence
the size of rectangles and the order decided the grid size. We observed the relationship

between the response times and the parameters, (M, m) and o. As showed in Table 3.1, this

13

O
&8

21|22|25{26 37| 38|43
P1o*—p é
ol A 20| 23|24 | 27|36 | 39 | 4
11 T Pol- 191829 | 28] 35 |34 | 45| 44 : - >.-
16| 1730 | 31 | 32 | 33|46 | 47 2 o ; T T
T pg* 15] 1271110 53| 52| 51 s
08‘ _lss 140131{ 9 |54/ 555049
IEvdh —
Lof ° 11207 |6 [57)56 1|62
(7] 5 =
[] L] £
ﬁ ®°3 | 4| 5° 58|59 6063

(a) A key definition for (b) A key definition for (c¢) A KeyTable for rectangles.
rectangles. grids.

Figure 3.2: An example of KR"-index.

is the average length and width of rectangles of ten million data size and the length of grids
with different order; the average length and width of (M, m) = (250,125) is closed to the
grid length of order 7, and the range query.response times of KR*-index, showed in Figure
4.5(b), expressed the range query with fixed (M;m) = (250, 125) had better response time
as order o = 7. We found that the closer the rectangle size and the grid size, the better
the response time of range query. Thus we proposed a new method, called advanced KR™-
index, a KR*-index of automatically determines the size of the parameters. It first decides a
small value of (M, m), and evaluates the average size of the size of rectangles, then calculates
the closest grid size generated by order. The objective function of o can be expressed as
o = min,(|len(o) — avgLen(M)|+ |len(0) —avgWid(M)|). Thus, it/ determines the (M, m) and

order automatically.

Table 3.1: The relationships between the.range query response time and the parameters of

the KR™-index.
(b) The length and

(a) Average length and width of rectangles width of grids with dif-
of KR*-index. ferent order.
M | m | avg. len. | avg. wid. order len.
50 | 25 | 1128.4283 | 2656.2368 6 15625
100 | 50 | 4928.2417 | 4671.1948 7 7812.5
250 | 125 | 6941.6216 | 6280.1025 8 3906.25

14

3.2 Insertion and Deletion

The algorithm to insert a new data point as showed in Algorithm 2. It first loops up, using
Algorithm 1, the key of node corresponding to the node to which the point belongs, and then
inserts the data point into node. Since there is a upper bound to the number of points in the
node, the insertion algorithm checks the current size of node to determine if a split is needed.
The deletion algorithm showed in Algorithm 3 is similar to the insertion. It first loops up the
key of node corresponding to the node to which the point belongs, and then deletes the data

point from node.

Algorithm 1 Subspace Lookup

: /* p=(x,y) is a data point. */;
: /* o is the Hilbert order. */;

3: i<—x mod o;

4: j<y mod o;

5: return Hilbert(i,j);

N

Algorithm 2 Insert a new data point

/* p is a new data point. */;

key<« Subspace Lookup(p);

Insert ToOKRPlust (key,p);

if Size(key)>MaxNodeSize then
SplitSpace(key);

end if

Algorithm 3 Delete a data point
1: /* pis a new data point. */;
2: key<+— Subspace Lookup(p);
3: DeleteFromKRPlust(key,p);

3.3 Space Split

R*-tree limits the number of points contained in each node; a node is split when the
number of points in a node exceeds this limit. We set the maximum number of points in a
node with 50, 100 and 250, and the maximum number of points of insertion performance is
set by 50 in the experiments. A split in the R*-tree relies on the key definition of each node,

named with the Hilbert value. A node split in R*-tree will insert two new sub-node and delete

15

the old node that the points in the old node will be allocated into one of the new sub-node.
The number of new nodes created depends on the index structure used: a R*-tree split a node
in one dimension, the opposite is to let the data points determine of the hyperplane, as the
k-d trees [3] or k-d-b trees [17] do. For every dimension split, the name of the new sub-node
is created by the Hilbert code of the center points of the new sub-node. Algorithm 4 shows

the pseudocode for sub-node name generation following a split.

Algorithm 4 Split node

/* ns is a node of R*-tree */;
/* na, nb are two new node split from node ns by R*-tree */;
keyOfNa<—Hilbert(center points of na);
keyOfNb<Hilbert(center points of nb);
for each point p in ns do
if p in na then
pointsOfNa.add(p);
else
pointsOfNb.add(p);
end if
: end for
: Insert(keyOfNa, pointsOfNa);
: Insert(keyOfNb, pointsOfNb);
: Delete(keyOfNs);

— o s e e
T R)

3.4 Range Query

The multi-dimensional range query is commonly used in location based applications. Al-
gorithm 5 is the pseudo code for range query-inHBase and Cassandra. (p;,py) is the range
for the query, p; is the lower bound and pj, is the upper bound. Hilbert curve splits the space
into grids, and each grid has one grid key. The algorithm first compute the coordinate of grids
overlap with the range query. The GridKeys is the set of grid keys contained in the query
range. For each coordinate of grid ¢, the function ComputeContainGridKeys() computes the
corresponding grid keys via Hilbert curve and add to the list, GridKeys. Then, according to
the key table we could find the rectangle keys in the query range. Line 5-8 find the queried
key and line 9-10 fetch the points in the corresponding key. The function GetContainPoint()
returns the queried data by first retrieving points from Cassandra and HBase with key k£ and

then filtering out some points that is not in the query range.

16

Algorithm 5 Range Query
Input: p;, py: the range for the query;
Output: points contained in the range;

Coordinate < ComputeCoordinateO fGrid(p;, p);
Keys + ¢;
RectKeys < ¢;
Result + ¢;
for each Coordinate ¢ €Coordinate do
GridKeys < GridKeys UComputeContainGridKeys(c));
end for
RectKeys«+ GetRectK eys(GridKeys);
for each Key k €RectKeys do
Result < Result UGetContainPoints(k));
: end for
: return Result;

—_ =

Algorithm 6 GetRect K eys(GridKeys)
Input: GridKeys: the grid keys overlap with query range;
Output: the rectangle keys overlap with query range;
1: RectKeys < ¢;
2: for each grid key gk €GridKeys do
3: RectKeys < RectKeys U KeyTable(gk));
4
5

: end for
: return RectKeys;

As shown in Figure 3.2, take the green block asrange query that we will show an example
how range query works:Using the query range to get the geographic coordinates of the
overlapped grids, {(0,0),«0,1), (0,2), (1,0), (1,1). (1,2), (2,0); (2;1), (2,2)}, then get the
Hilbert values of each geographie. coordinate, {0, 3, 4, 1, 2, 7, 14, 13, 8}. Second, getting
keys of rectangles through the ‘KeyTable that grid O-maps to rectangle {0}, grid 1 maps to
rectangles {0, 14}, grid 1 maps to rectangles {0, 8, 14}, etc. Thus, we can get the queried
rectangle keys, {0, 8, 14}, by union the rectangle sets got from the former steps. Finally, using
the rectangle keys to retrieve data in the CDMs and then pruning the unqualified data to get
the query result.

3.5 k-NN Query

The k-NN query is also commonly used in location based applications. Algorithm 7 shows

the k-NN query algorithm in HBase and Cassnadra, K stores the result k£ nearest neighbors,

17

QueryRect stores the rectangles could be scanned, dist is the range for rectangle search,
Rectseanned stores the rectangles had been scanned, and the data structure of QueryRect is
a queue. The k-NN query has two mainly parts: 1) set a range dist to search for rectangles
overlap with a square range with centroid p and edge length 2-dist; 2) pick the nearest rectangle
of p that is not scanned and add the nearest points in this rectangle into K. The algorithm
keep repeat step 1, 2 until the distance of k-th nearest point and p is less than or equal to
dist. The part 1) in Algorithm 7 is in line 6-11, where RectInRegion() is used to find the
rectangles in square range and line 9 push the rectangles have not be scanned into QueryRect;
2) is in line 12-18, where line 12 pop the nearest rectangle, line 14 will add the points of R
into K. The function RectInRegion(c, dist) in Algorithm 8 finds the rectangles overlap with
the input square. It is designed by our methods for defining key in rectangles. Line 6-8 find
the grids keys which overlap with the square and line 10 returns the rectangles overlap with

grids through checking the KeyTable.

Algorithm 7 £-NN Query
Input: Fk: k nearest neighbors; p = (z,%): query point;
Output: k& nearest neighbors of (z, y);

1: K« ¢;
2: QueryRect < ¢;
3: dist « 0;
4: Rectscanned < ¢
5: loop
6: if QueryRect== ¢ then
7 Rectpeqt<— RectInRegion (p,dist)—Rect scanned;
8: for each Rectangle' ReRect e do
9: Push(R, MinDist(ps R); QueryRect);
10: end for
11: end if
12: R «Pop(QueryRect);
13: for each Point ¢t €R do
14: K < K U it, Dist(p, t);, and sort K by dist;
15: end for
16: if dist(k-th point in K, p) < dist then
17: break;
18: end if
19: Rectscanned < Rectscanned UR7
20: dist«Max(dist, MaxDist(p, R));
21: end loop
22: return K;

As showed in Figure 3.2, take p as the query point, & = 3 and given a initial dist=0.

18

Algorithm 8 RectInRegion(p,dist)

Input: p = (z,y): query point; dist: means a square with edge length 2-dist and with p as its
centroid o = order: the order of Hilbert;

Output: the keys of rectangles overlap with the input rectangle

RectKeys < ¢;
xl «—(x-dist) mod o;
xh < (x+dist) mod o;
yl +(y-dist) mod o;
yh < (y+dist) mod o;
for i=xl — xh do
for j=yl — yh do
GridKeys « GridKeys U Hilbert(i, j);
end for
end for
: return RectKeys«KeyTable(GridKeys);

—_ =
— O

First, we will get a rectangle 36 through KeyTable with a square range of length 2-dist and
then insert the location points {pes pro. pirf of rectangle 36 into K, in that location points
are ordered by the distance from p.”Second, resizing the dist . to the minimum distance of
k-th /—K—th location points in K from p, the dist=dist(3-th location point in K, p) in this
example. The algorithm. continues the-first and.second 'steps, it will add the rectangle 55
into Rect,.,; and add the location points in rectangle 55 into K. The algorithm is stoped by
dist(3-th location point in K, p) < dist, and we get the fist three location points {p19, po, ps}

in K as the query result.

19

Chapter 4

Experiment

In this section, we will show the experiments about the time of range query and k-NN query
on Cassandra with the different implementations; a-base implementation using Hilbert curve
for linearization(Hilbert) without any specialized index and KR *-index(KR) as described in
Section 3, and compare our methods with MD-HBase(IMD). Our experiments were performed
on a ring of Cassandra with version 1.0.10 of ten nodes that each of the two nodes on a physical
machine. Each physical machine consists of two wvirtual machines, 2GB memory and 500GB
HDD and 64bit Ubuntu 8.04.4. Our evaluation uses synthetically generated data sets primar-
ily due to the need for huge data sets(gigabytes) and the need to control different aspects,
such as skew and distribution, to better understand the behavior of the system. Evaluation
using real data is left for future work. The synthetic data generator proposed by Yaling and
Osmar|[16] has two kinds of distribution, normal and uniform.. The multivariate uniform dis-
tribution data is simply generated with each ene-dimensional uniform distribution separately,
since the joint distribution of two or more independent one-dimensional uniform distributions
is also uniform. The multivariate normal distribution data is generated by first producing two-
dimensional uniform distribution then using the Box-Muller transformation[22][1] to transform
the two-dimensional uniform distribution to a two-dimensional bivariate normal distribution

2 = 1. We generated synthetic data of uniform and nor-

with mean ¢ = 0 and variance o
mal distribution of one cluster with data size equals to two hundred thousand, five hundred
thousand and one million on a square map of one million units of length, as showed in Figure

4.1(a) 4.1(b).

20

(10°, 10°)

110° 1010°]
Sparse region
8010 810°
o]

2 enod | g o (6x10°, 6x10°)
= = Dense
f 410° § 410° ¢t region

o008 F oo | (4x10°, 4x10°)

omeP Eue e 0r10°

or0® 2010° 4r10° 6010° 810° 1010° or0® 2010° 4m0° 6010° 810° 1010°
Longitude Longitude 0, 0)
(a) Uniform distribution. (b) Normal distribution.
Figure 4.1: Distribution of synthetic data. Figure 4.2: The sparse

and dense regions of
synthetic data.

4.1 Insert and Delete Throughput

Supporting high insert throughput of data updates is critical to sustain the large numbers
of location based services. We evaluated the insert performance on a Cassandra cluster with
ten commodity nodes. Figuré 4.3(a) plots the insert throughput as a function of the load
on the system. We varied the number of load generators with 200, 500 and 1000; each
generator created a load 0f 1000 inserts-per second. We use the synthetic data using a Normal
distribution with mean p= 0 and variance 0> = 1. Using synthetic'data allow as to control
the skew of large data sets. All of the methods showed good'scalability; the throughput is
at least 150k location data points per-second. The lower throughput of KR™ and MD is the
cost of associated with the'splitting nodes on Rf-tree and guad tree. On the other hand,
the Hilbert does not need splitting modes. On the average, the KR' needs about 25 seconds
to split a node and the MD needs about. 40 seconds: The dataset and the number of load
generators used in deletion is the same as insertion. The delete throughput, as showed in
Figure 3 is higher than insert throughput, but the performance comparison seems similar
between Hilbert, KR™ and MD. The KR™ and MD have lower throughput since more cost of

merging nodes on R*-tree and quad tree.

4.2 Range Query

We now evaluate range query performance using the different implementations of the in-

dex structures, a base implementation using Hilbert curve for linearization(Hilbert) without

21

5.6 MD

42
28 /

14

Throughput(100k* inserts/sec)
N w
Throughput(100k* inserts/sec)

200 500 1000 200 500 1000
Number of Load Generators Number of Load Generators

(a) The insert throughput as a (b) The delete throughput as a
function of the load on the system. function of the load on the system.

Figure 4.3: The insert and delete throughput.

any specialized index and KR -index(KR) as described in Section 3, and compare our meth-
ods with MD-HBase(MD). We generated six datasets using model of normal and uniform
distribution that for each distribution generate sizes of two hundred thousand, five hundred
thousand and one million points. We executed the range queries on a ten-node Cassandra
cluster in five machines. The response time of each range query with same set of parameter
values were performed one hundred times random queries on normal distribution of dense
region(Normal-dense), normal distribution of sparse region(INermal-sparse) and uniform
distribution(Uniform). The dense region is located in the map cenfer with ten hundred thou-
sand unit of length and'the sparse region is others, as showed in Figure 4. We evaluate the
range query with a square size equals to ten theusand units of length, five thousand units of

length and one million units of length:

10 20 10
Uniform —— Uniform —— Uniform ——
Normal-sparse —— Normal-sparse —— Normal-sparse ——
8 Normal-dense 16 Normal-dense] 8 Normal-dense

6

Time(s)
N
\

Time(s)

@
T
£ =
k4 8 o E 4

2 4 \.—/_' 2

— et \.—/" I
0 0 0
10000 50000 100000 5 6 7 8 200000 500000 1e+006
Query length(units of length) Order Data size(# of points)

(a) The range query response (b) The range query response (¢) Therange query response times
times for Hilbert of varying query times for Hilbert of varying order. for Hilbert of varying data size.
size.

Figure 4.4: The range query performance of the Hilbert method.

The Hilbert method has a parameter order o, which is used to decide how many grids
were divided from map as mentioned in Section 2. The order we evaluated in range query of

Hilbert are o = {5,6,7,8}. Figure 4.7 plots the range query response times for the Hilbert

22

method of varying query size, order and data size respectively. Figure 4.4(a) plots the range
query response times of varying query size with fixed data size ds = 1000000 and order o = 7.
Figure 4.4(b) plots the range query response times of varying order with fixed query square
size of length ¢s = 100000 and data size ds = 1000000. Figure 4.4(c) plots the range query
response times of varying data size with fixed query square size of length ¢gs = 100000 and
order o = 7. The plots with other arguments, such as the response times of different arguments
combination of ds = {200000, 500000} and o = {5,6,8} are extremely similar to Figure 4.7,
so those are not displayed to save the space. As showed in Figure 4.4(a), the larger the query
size, the larger the response time, since the number of fetched points increased. As is evident
from Figure 4.4(b), there is a lower bound as o = 7, the response time is increased as the
order increased larger than 7 and the order decreased lower than 7. This is reasoned by the
trade-off between the false-positive ratio and the number of sub-queries. This means that
the number of sub-queries increased as the order increased more than 7 and the false-positive
ratio increased as the order decreased less than 7, thus both ledto response time increased. In
Figure 4.4(c), the response ‘time increased as the data size increased. In three plots of Hilbert,
the response times of normal-dense region are very poor compared with the other region and
distribution.

The KR*-index method has three parameéter; the lower bound and upper bound of rect-
angles (M, m) and the order 0. The lower bound and upper bound of rectangles we evaluated
in range query of the KR*=index are (M, m) = {(50;25), (100,50), (250, 125)}, and the or-
der are o = {6,7,8}. Figure 4.5 plots the range query response times for the KR*-index of
varying query size, order, data size/and (M, m). Figure 4.5(a) plots the range query response
times of varying query size with fixed data size ds = 1000000, (M, m) = (250, 125) and order
o = 8. Figure 4.5(b) plots the range query response times of varying order with fixed data
size ds = 1000000, query square size of length ¢s = 100000 and (M, m) = (250,125). Figure
4.5(c) plots the range query response times of varying data size with fixed query square size
of length ¢s = 100000, (M, m) = (250,125) and order o = 8. Figure 4.5(d) plots the range
query response times of varying (M, m) with fixed query square size of length gs = 100000,
data size ds = 1000000 and order o = 8. The plots with other arguments, such as the re-
sponse times of different arguments combination of ds = {200000, 500000}, o = {6, 8} and
(M,m) = {(100,50), (50,25)} are extremely similar to Figure 4.7, so those are not displayed

23

3 3

Uniform —— Uniform ——
Normal-sparse —— Normal-sparse ——
24 Normal-dense 24 Normal-dense
@ 18 @ 18
ko T
£ £
12 =12
06 / 0.6 Q//
0 0
10000 50000 100000 6 7 8
Query length(units of length) Order

(a) The range query response (b) The range query response
times for KR*-index of varying times for KR-index of varying or-

query size. der.
s Uniform —— 8 Uniform ——
Normal-sparse —— Normal-sparse —«—
24 Normal-dense 24 Normal-dense
@ 18 @ 18
T T
£ £
= 12 = 12
o % T
0 0
200000 500000 1e+006 50 100 250
Data size(# of points) M

(¢) The range query response times (d) The range query response
for KR -index of varying data size. times for KR*t-index of varying
(M, m).

Figure 4.54The range-query performance of the KR *-index.

to save the space. In Figure 4.5(a), the larger the query size, the larger the response time,
since the number of fetched points increased; the same as the range query response times of
varying data size, as showed in Figure 4.5(¢). As showed in Figure 4.5(b), there is a trade-off
between the false-positive ratio and the number of sub-queries as varying order. The response
time increased as the order larger.than 7, owing to spend a lof of time in fetching sub-queries;
the response time increased as‘the.order less than 7,.since spending much time in pruning
points do not in query range. It is‘the same as the range query response time of varying
(M, m).

The decision of (M, m) and order will affect the efficiency of range query. Thus, we de-
cided to dynamically generate the values of (M, m) and order. We observed the relationship
between the response times and the parameters, (M, m) and o. We knew that (M, m) in-
fluence the size of rectangles and the order decided the grid size. We found that the closer
the rectangle size and the grid size, the better the response time of range query, as men-
tioned in Section 3. About the setting of (M, m), we evaluate the range query of varying

(M,m) = (50,25), (100, 50), (250, 125), (1250, 625), (2500, 1250), (2500, 5000). As the discus-

24

sion in Section 3, the (M, m) has a lower bound at (100,50), the response times of range
query was very worse as (M, m) = (1250, 625), (2500, 1250), (2500, 5000), but the response
time has a little increased as (M, m) = (50,25). Thus we proposed a new method, called
advanced KR*-index, a KR"-index of automatically determines the size of the parameters. It
first decides a small value of (M, m), and evaluates the average size of the size of rectangles,
then calculates the closest grid size generated by order. Thus, it determines the (M, m) and

order automatically.

15

2

Uniform Uniform
Normal-sparse —— Normal-sparse —=—
16 Normal-dense 12 Normal-dense
@ 12 @ 09
T T
E £
= 08 = 06 e,
0 0
10000 50000 100000 200000 500000 1e+006
Query length(units of length) Data size(# of points)

(a) The range query = response«(b). The' range query response
times for advanced KR*<index of times for ‘advanced KR™-index of
varying query. size: varying data size.

Figure 4.6: The range query performance of the advanced KR*-index

The advanced KR'-index automatically determines the lower bound and upper bound of
rectangles (M, m) and the order o. Figure 4.6 plots the range query response times for the
advanced KR'-index of varying query size and data size. Figure 4.6(a) plots the range query
response times of varying query size with fixed data size ds = 1000000. Figure 4.6(b) plots
the range query response times of warying data size with fixed query square size of length
gs = 100000. Comparing the advanced KR*-index and the KR"-index, Figure 4.6(a) versus
Figure 4.5(a) and Figure 4.6(b) versus Figure 4.5(c), the response time is more efficiency;
since the advanced KR*-index will pick the most suitable order of the second index layer by
given a pair of small (M, m).

The MD-HBase, proposed by Shoji et al., has a parameter M, used to decide the upper
bound of grids. The upper bound M we evaluated in range query of the MD-HBase are
M = 1250, 2500, 5000. Figure 4.7(a) plots the range query response times for the MD-HBase
of varying query size, M and data size. Figure 4.7(a) plots the range query response times
of varying query size with fixed data size ds = 1000000 and M = 2500. Figure 4.7(b) plots

the range query response times of varying M with fixed data size ds = 1000000 and query

25

3 5 3

Uniform —— Uniform —— Uniform ——
Normal-sparse —— Normal-sparse —— Normal-sparse ——
24 Normal-dense 4 Normal-dense] 24 Normal-dense
@ 18 @ 3 1 @® 18
T T T
£ £ £
= 12 / [\/ = 12
06 /_/— 1 \/ 0.6 4
0 0 0
10000 50000 100000 1250 2500 5000 200000 500000 1e+006
Query length(units of length) M Data size(# of points)

(a) The range query response (b) The range query response (¢) Therange query response times
times for MD of varying query size. times for MD of varying M. for MD of varying data size.

Figure 4.7: The range query performance of the Hilbert method.

square size of length gs = 100000. Figure 4.7(c) plots the range query response times of
varying data size with fixed query square size of length gs = 100000 and M = 2500. In Figure
4.7(a) or 4.7(c), the response time increased as the query size or data size increased because
of the fetched points increased. As in evident from Figure 4.7(b), the MD-HBase also has the
trade-off problem like Hilbert and KR "=index.-However, our.advanced KR*-index reduced the
impact of the trade-off problem, it did not need to consider. which parameter is more suitable
for data.

We compare the response time of Hilbert, advanced KR -index and MD-HBase of varying
data distribution, data 'size and query size. Figure 4.8(a) plots the range query response
times of varying data distribution, uniforms; normal-sparse and normal-dense; the advanced
KR*-index outperformed:the others, especially on the normal:dense region. This validate
our observation of the R™ tree, Hilbert-curve and the charactéristies of the CDMs; advanced
KR*-index is more suitable for the.characteristics of existing CDMs. Figure 4.8(b) 4.8(d)
4.8(f) plot the range query response times of varying query size with normal-dense region,
normal-sparse region and uniform distribution, respectively. Figure 4.8(c) 4.8(e) 4.8(g) plot
the range query response times of varying data size with normal-dense region, normal-sparse
region and uniform distribution, respectively. The difference of our advanced KR*-index and

the others will be greater and greater as the query size or data size increased.

4.3 k-NN Query

We now evaluate k-NN query performance using the different implementations of the index

structures, a base implementation using Hilbert curve for linearization(Hilbert) without any

26

10

time(s)

Datadistribution

Query size(unit of Iengthz)

10 Hilbert —— Hilbert ——
KR® —— KRY ——
8 MD 8 MD
@ 6 @D 6
E z
= 4 £,
2
! 2
o I
10000 50000 100000 0

200000 500000 1e+006
Data size(# of points)

(a) The range query response time (b) The range query response time (¢) The range query response time
comparison of the varying density. comparison of the varying query comparison of the varying data size

1

0.8

0.6

time(s)

0.4

0.2

0 .
10000 50000 100000

size on normal-dense region. on normal-dense region.
. 1 .
Hilbert —— Hilbert ——
Mo —— 08 o ——

—

Query size(unit of length?)

0.6

time(s)

04
02 /’—

0
200000 500000 1e+006
Data size(# of points)

(d) The range query response time (e) The range query response time
comparison of the_varying query-comparison of the varying data size

size on

15
12

0.9

time(s)

0.6

0.3

0

10000 50000 100000

normal-sparse region.

Hilbert ——
i3

KR™ ——
—_

_—

"y) —

Query size(unit of Iengthz)

on normal=sparse region.

15

12

0.9

time(s)

0.6

0.3

0 .
200000 500000 1e+006

Data size(# of paints)

(f) The range query response time (g) The range query response time
comparison «of the varying query comparison of the varying data size
size with uniform distribution.

with uniform distribution.

Figure 4.8: The range query response. time.comparison-of Hilbert, advanced KR* and MD.

specialized index and KRT-index(KR) as described in Section 3, and compare our methods

with MD-HBase(MD). The datasets and the environments used the same as in range query.

The response time of each k-NN query with same set of parameter values were performed

one hundred times random queries on normal distribution of dense region(Normal-dense),

normal distribution of sparse region(Normal-sparse) and uniform distribution(Uniform).

We evaluate the k-NN query with a k& equals to 100, 500 and 1000.

As shown in Figure 4.11 4.10 and 4.11, the k-NN query evaluation of Hilbert, advanced

KR*-index and the MD-HBase were extremely similar with the range query evaluation expect

the response times were a little larger than range query. The Figure 4.3 showed the response

27

10 20 10

Uniform Uniform Uniform
Normal-sparse —— Normal-sparse —— Normal-sparse ——
8 Normal-dense 16 Normal-dense] 8 Normal-dense
@ 6 ® 12 @ 6
T T T
E £ £
= 4 = 8 = 4
2 4 \/" 2
— —
0 0 0
100 500 1000 5 6 7 8 200000 500000 1e+006
k Order Data size(# of points)

(a) The k-NN query response (b) The k-NN query response (¢) The k-NN query response times
times for Hilbert of varying query times for Hilbert of varying order. for Hilbert of varying data size.
size.

Figure 4.9: The k-NN query performance of the Hilbert method.

2 2

Uniform Uniform
Normal-sparse —— Normal-sparse ——
16 Normal-dense 16 Normal-dense
w12 @ 12
T T
£ E
£ 08 // £ o8
0.4 0.4
0 0
100 500 1000 200000 500000 1e+006
k Datasize(# of points)

(a) The Ek-NN. query response (b) The k-NN query response
times for advanced KR*-index of times fot advanced KR*-index of
varying query size. varying data size.

Figure 4.10: The k-NN query performance of the advanced KR*-index

5 Uniform 3 Uniform —— 1 Uniform
Normal-sparse —— Normal-sparse —— Normal-sparse ——
4 Normal-dense 4 \Qormal-dense —] 4 Normal-dense

3 o’
2___\%

/ ! | /

1/___, 1 1//

0 - 0 - 0 -
100 500 1000 1250 2500 5000 200000 500000 1e+006

k M Data size(# of points)

Time(s)
Time(s)
Time(s)

(a) The k-NN query response (b)“The k-NN. query response (c) The k-NN query response times
times for MD of varying query size. times for MD of varying M. for MD of varying data size.

Figure 4.11: The k-NN query performance of the Hilbert method.

time of KR+-index on k-NN query is better than the others, especially on the dense region.

28

Figure 4.12: The k-NN que advanced KR™ and MD.

29

Chapter 5

Related Work

In this section, we first introduce the data model and the basic operations of HBase
and Cassandra. We then present the traditionalmulti-dimensional indexing techniques, lin-
earization and index trees. In addition, weillustrate the existing multi-dimensional indexing

techniques, RT-CAN and MD-HBase, developed for CDMs.

Table 5.1: A table of HBase.

keys | timestamp column-family: column family: column family:
rest.name rest.lan | rest.Ing uid
2011/05/08 Friday 24:805 | 120.995 Uy
b 2011/08/08 Friday 24.805 | 120.995 Us
2011/08/30 McDonald’s 24.794 | 121.002 Us
P2 79011,/10/10 McDonald’s 24.794-] 121,002 us
ps | 2011/11/07 | * KFC 24.7941121.005 Uy

5.1 HBase and Cassandra

5.1.1 Data Model

HBase and Cassandra adopt BigTable-like data model, which is a column-oriented data
model. The data model of BigTable constitutes of columns, where each column is expressed as
(name, value, timestamp), where a timestamp is a updated time of a column. For HBase, the
data is structured in tables, row keys, column families, and columns. Specifically, each table
comprises row keys and column families; each column family contains one or more columns;

each row consists of a key and columns mapped by the key. Given the data in Table 1.1,

30

HBase stores the data as Table 5.1. For example, for key p;, the corresponding data include
three column families, and the second column family comprises two columns whose names are
rest.name and rest.Ing. In addition, for each key in HBase, the corresponding data can own
multiple versions, identified by different timestamps. For instance, restaurant p; was checked
by user u; and user us on May 8th, 2011 and on Aug. 8th, 2011, respectively. In addition, in
HBase, the keys and columns’ names are stored in a lexicographical order.

Compared with HBase, the data stored in Cassandra are structured in two ways, column
family or super column family. In Cassandra, a column family consists of keys and columns
mapped by the keys, and a super column family consists of keys and the corresponding super
columns, in which each super column is expressed by (super column name, columns). For
instance, given Table 1.1, the data in Cassandra can be stored as Table 1.2(a) and Table
1.2(b), which are column families. In addition, an example of a super column family is
illustrated in Table 1.4. Similarly, in Cassandra; the keys, columns’ names, and super column
families’ names are stored in @ lexicographical order. In addition, for HBase and Cassandra,
the data of columns are distributed on-servers. The difference between Cassandra and HBase
is that Cassandra allows'a column or-a-super column can be added arbitrary, but a column
family in HBase cannot ‘be added arbitrary after atable was created:

The data model of RDBMSs are different to the data model of ‘HBase/Cassandra. The
data stored in RDBMSs are structured in tables, fields and records: Specifically, each table
consists of records and each record consists of one or more fields.'Because RDBMSs guarantee
the ACID properties, i.e., atomicity, consistency, isolation; and durability, RDBMSs are not
scalable to support large data. For/instance, if there-are multiple records to be updated in a
single transaction, multiple tables will be locked for modification. If those tables are spread
across multiple servers, it will take more time to lock tables, update data and release locks.
However, for CDMs, making data be consistency is more easier due to the data are stored
on multiple servers. In addition, CDMs should ensure the CAP[8] theorem, stating that
a distributed system satisfies at least two of the three guarantees: Consistency, Availability
and Partition tolerance, at the same time. HBase and Cassandra guarantee CP and AP,

respectively. Compared with RDMBSs, CDMs could handel a scalable data well.

31

5.1.2 Basis Operations

Based on the BigTable-like’s data model, HBase and Cassandra develop new basic op-
erations for reading, writing, updating and deleting data. Different from the language used
in RDBMSs', i.e., structured query language (SQL), HBase and Cassandra provide key-value
based queries that retrieve a record by specifying keys. The basic operations in HBase/Cassandra
are detailed described as follows. Note that these operations are performed by given keys,
columns’ names or super columns’ names.

In HBase, there are four primary basis operations as follows: get: returns attributes for a
specified row. set: either adds new rows to a table (if the key is new) or updates existing rows
(if the key already exists). scan: allow iteration over multiple rows for specified attributes.
delete: remove a row from a table.

In Cassandra, the basic operations are as follows: get: gets the column or super column
at the given column’s name or super column’s name'in a column family. get_slice: gets the
group of columns contained by a ¢olumn family name or a column family /super column name
pair specified by the given columns™name or a range of columns’ name. multiget_slice:
retrieves a list of map (key, columns) or (key, super ecolumns) for specific columns’ name or
super columns’ name in a.column family on each of the given keys. get_range_slices: returns
a list of map (key, columus) or (key, super columns) within the range of keys in a column
family. insert: inserts a column in a column family or a super column family. batch_mutate:
inserts or removes the rows, the super«columns or the columns from the row specified by keys.
remove: removes data from the row specified by a key.in a column family or a super column
family. The data could be an entire row, a super column or a column.

However, these operations could not support the operation of retrieving rows with given
two or more restrictions. For instance, in Table 5.1, we could not retrieve the result that satis-

)

fies “satisfyrest.name=Friday” and “uid=w,” using only one operation from basic operations
provided by HBase or Cassandra. Although we could retrieve rows by scanning all rows and

post-filter unqualified data to get the result, it is time-consuming.

32

5.2 Multi-dimensional Index

Due to the high scalability of cloud data managements, there are more and more works
for constructing indexes on cloud data managements recently. B-tree is a commonly used
index structure. The work in [23] presented a scalable B-tree based indexing scheme which
build a local B-tree for the dataset stored in each compute node and build a Cloud Global
index, called the CG-index, to index each compute node. However, the B-tree index can not
support multi-dimensional queries effectively. Besides, much works on R-tree index structure
for multi-dimensional data had been done, such as [21, 24, 13]. [21] presents RT-CAN, a
multi-dimensional indexing scheme. RT-CAN is built on top of local R-tree indexes and it
dynamically selects a portion of local R-tree nodes to publish onto the global index. Although
it used R-tree indexing, it built the R-tree on their own distributed system epiC. [24] combined
R-tree and k-d tree to be the index structure and the.work in [13] presented an approach
to construct a block-based hierarchical R-tree index structures. These works all build an
index structure on Hadoop distributed file system or Google’s file system to support multi-
dimensional queries.

MD-HBase is a data management system, based on HBase, using Quad tree and k-d tree
coupling with Z-ordering to index multi-dimensional data for LBSs. The keys of MD-HBase
are the Z-values of the dimensions being indexed. It uses the trie-based approach for splitting
equal-sized space and built Quad tree and k-d tree index structures on the key-value data
model. Moreover, MD-HBase proposed a novel naming scheme, called longest common prefix
naming, to efficient index maintenance.and query processing. Although the experiment of
MD-HBase shows that the proposed indexing method is efficient for multi-dimensional data,
the MD-HBase has some constraints. Before describing the constraints of MD-HBase, we have
discovered a characteristic of cloud managements for data accesses through experiment. A
trade-off exists between the number of points for getting one key and the number of keys for
scanning; a reduction in the number of points for getting one key results in an increase in the
number of keys for scanning and vice versa. The way of splitting space of Quad tree and k-d
tree is fixed which may make some nodes store zero point. In addition, the Quad tree and the
k-d tree can’t balance the number of stored points for each node, because they don’t restrict

the minimum number of points in one space. Therefore, if we regard one node as one key, it

33

will make the keys store unbalanced data points, especially as the data is not uniform. Figure
1.3 is a Quad tree example of space splitting for MD-HBase. According to the data points in
map, the Quad tree will split the whole space triple. The red line shows splitting results, and
each black grid have its Z-ordering value. For instance, the Z-ordering value of (0,0) is 000000
and (1,0) is 000010. Then, the key of each region split by read line is the prefix of Z-ordering
value of its sub-regions. Consequently, there are 10 keys, 000000, 000001, 000010, 000011,
0001*, 0010*, 0011*, 01*, 10* and 11*. But, there may be no data points in some region. As
we mentioned above, the Quad tree and k-d tree can’t deal with multiform distribution data

efficiently.

34

Chapter 6

Conclusion

We proposed a scalable multi-dimensional index, KR "-index, based on now existing CDMs,
such as HBase and Cassandra. It suppeorts refficient multi-dimensional range queries and
nearest neighbor queries. We used R* to construct. index structure and designed the key
for efficient accessing data. In addition, we redefined spatial.query algorithm, including range
query and k-NN query for our KRT. KR™* took the characteristics of these CDMs into account
so that KR™ shows much more efficient-than other index methods in experimentation. Our
evaluation using a cluster of 8 nodes handled the range queries and £-NN queries efficiently,
and we also compared with related work, MD<HBase and the result showed that KR has

better performance than MD-HBase, especially for skewing data.

35

Bibliography

1]
2]

[10]

http://en.wikipedia.org/wiki/box

N. Beckmann, H.P. Kriegel, R. Schneider, and B. Seeger. The R*-tree: an efficient and

robust access method for points and rectangles, volume 19. ACM, 1990.

J.L. Bentley. Multidimensional binary search trees used for associative searching. Com-

munications of the ACM, 18(9):509-517,1975.

T. Bially. Space-filling eurves: Their generation and their application to bandwidth
reduction. Information Theory, TEEE Transactions on, 15(6):658-664, 1969.

A.R. Butz. Convergence with hilbert’s space filling curve®. Journal of Computer and

System Sciences, 3(2):128-146, 1969.

F. Chang, J. Dean, S:Ghemawat, W.C. Hsieh, D.A.-Wallach, M. Burrows, T. Chandra,
A. Fikes, and R.E. Gruber. Bigtable: A distributed storage system for structured data.
ACM Transactions on Computer Systems (TOCS), 26(2):1-26, 2008.

R.A. Finkel and J.L. Bentley. Quad trees a data structure for retrieval on composite

keys. Acta informatica, 4(1):1-9, 1974.

J. Gray et al. The transaction concept: Virtues and limitations. In Proceedings of the

Very Large Database Conference, pages 144-154. Citeseer, 1981.

A. Guttman. R-trees: a dynamic index structure for spatial searching, volume 14. ACM,

1984.

I. Kamel and C. Faloutsos. Hilbert r-tree: An improved r-tree using fractals. 1993.

36

[11]

[12]

[13]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

A. Khetrapal and V. Ganesh. Hbase and hypertable for large scale distributed storage

systems. Dept. of Computer Science, Purdue University.

A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system. ACM
SIGOPS Operating Systems Review, 44(2):35-40, 2010.

H. Liao, J. Han, and J. Fang. Multi-dimensional index on hadoop distributed file sys-
tem. In Networking, Architecture and Storage (NAS), 2010 IEEE Fifth International
Conference on, pages 240-249. IEEE, 2010.

G.M. Morton. A computer oriented geodetic data base and a new technique in file

sequencing. IBM, Ottawa, Canada, 1966.

S. Nishimura, S. Das, D. Agrawal, and A. El Abbadi. Mad-hbase: A scalable multi-

dimensional data infrastructure for location aware/services.

Y. Pei and O. Zalane. . A synthetic data generator for ¢lustering and outlier analysis.
Computing Science Department University of Alberta, Edmonton, Canada T6G 2FES,
2006.

J.T. Robinson. The kdb-tree: a search structure for large multidimensional dynamic
indexes. In Proceedings of the 1981 ACM SIGMOD international conference on Manage-
ment of data, pages 10-18. ACM, 1981.

T. Sellis, N. Roussopoules, and.C. Faloutsos. The r4-tree:” A dynamic index for multi-
dimensional objects. In Proceedings of the 13th-International Conference on Very Large

Data Bases, pages 507-518. Citeseer, 1987.

M. Stonebraker. Sql databases v. nosql databases. Communications of the ACM,
53(4):10-11, 2010.

J. Varia. Cloud architectures. White Paper of Amazon, jineshvaria. s3. amazonaws.

com/public/cloudarchitectures-varia. pdf, 2008.

J. Wang, S. Wu, H. Gao, J. Li, and B.C. Ooi. Indexing multi-dimensional data in a
cloud system. In Proceedings of the 2010 international conference on Management of

data, pages 591-602. ACM, 2010.

37

[22] E.W. Weisstein. Box-muller transformation. MathWorld, Wolfram Research Inc, 1999.

[23] S. Wu, D. Jiang, B.C. Ooi, and K.L. Wu. Efficient b-tree based indexing for cloud data
processing. Proceedings of the VLDB Endowment, 3(1-2):1207-1218, 2010.

[24] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng. An efficient multi-dimensional index for
cloud data management. In Proceeding of the first international workshop on Cloud data

management, pages 17-24. ACM, 2009.

38

