

國 立 交 通 大 學

資訊科學與工程研究所

碩 士 論 文

嵌入式系統異質雙核心 Java 處理器設計

Design of Dual-Core Java Application Processor for

Embedded Systems

研 究 生：郭子敬

指導教授：蔡淳仁 教授

中 華 民 國 １０１ 年 7 月

嵌入式系統異質雙核心 Java 處理器設計

Design of Dual-Core Java Application Processor for Embedded Systems

研 究 生：郭子敬 Student：Zi-Jing Guo

指導教授：蔡淳仁 Advisor：Chun-Jen Tsai

國 立 交 通 大 學

資 訊 科 學 與 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Computer Science and Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

July 2012

Hsinchu, Taiwan, Republic of China

中華民國 101 年 7 月

 摘要

本論文為 Java 處理器提出了一個異常處理的設計。雖然目前有許多關於

Java 處理器設計的相關研究，但是大部分的研究簡單地忽略了異常處理，而有

些聲稱，符合Java語言的異常處理機制牽涉到複雜的行為而難以實作在硬體上。

在這篇論文中，我們檢視了異質雙核心 Java 處理器對於例外處理的機制有優秀

的硬體加速效果，進而提出了一個以硬體設計為主的異常處理機制，除此之外，

為了能夠支援有效率的例外處理機制，我們還改善了此平台上二層級方法區域

的設計，在實作出來的例外處理機制設計中，並不會影響正常程式的執行效能，

而只有當程式真正發生異常時，才會增加異常處理的時間，更重要的是，由於

異常處理的程序主要執行於Java核心，因此大大節省了處理器之間的溝通時間，

我們實作上述完整的 Java 執行環境在 Xilinx ML-507 FPGA 開發板上，在最後

的實驗數據結果顯示，我們提出的硬體異常處理機制非常適合用在 Java 嵌入式

平台的環境並且有非常好的效能。

Abstract

This thesis presents the design of the exception handling architecture of a Java

processor. Although there are many research publications on Java processor designs,

there is no efficient implementation on Java exception handling circuitry. Most Java

processor design papers simply ignore exception handling while some claims that a

hardwired implementation of exception handling conforming to the Java language

specification is quite complex to implement. In this thesis, we have proposed an

efficient design of the Java exception handling mechanism and the associated

two-level method area. We have also integrated the design into a heterogeneous

dual-core Java processor. With the proposed two-level method area, the exception

handling overheads are delayed to the time after an exception actually occurs. More

importantly, the process of exception handling is mostly performed in the Java core

with very little runtime overhead from the RISC core. As a result, the proposed

design reduces the amount of inter-processor communication and circuit design cost

of the Java core while enabling full support of Java exception handling. We have

implemented the design on a Xilinx ML-507 FPGA platform. As the experiments

show, the proposed design is very promising for embedded applications.

Acknowledgement

這篇論文的完成，首先必須要感謝我的指導教授蔡淳仁教授。在研究所的這

兩年期間，老師提供了很多學習的經驗跟機會，在與老師討論的過程中，常常

能了解到自己思考中的盲點與研究過程的缺失，此外，老師也提供參與國際會

議的機會，讓我了解到國際上研究的趨勢，還有不同問題的解決方法，這些在

面對自己的研究問題時都是很寶貴的參考經驗。在解決問題的過程中，學長們

的意見也助益良多，透過跟學長們的討論，可以反覆檢視自己的設計，以及訓

練表達的方法。另外還要感謝實驗室的同學，透過計畫的合作與研討，讓我在

這兩年內認識了不同領域的知識。

Content

Chapter 1. Introduction 1

1.1 Motivation .. 1

1.2 Java Runtime Systems ... 2

1.3 Scope of this Thesis ... 4

Chapter 2. Previous Works 5

2.1 Double-Issue Java Core ... 5

2.2 Dynamic Class Loading Mechanism ... 7

Chapter 3. Dynamic Class Parsing and

Method Loading 8

3.1 Overview of the Dual-Core Java Application Processor 8

3.2 Overview of Dynamic Class Parsing and Method Loading....................... 10

3.3 Dynamic Class Parsing .. 12

3.4 Two-Level Runtime Image Design .. 13

3.5 Dynamic Method Loading ... 18

3.5.1 Class Lookup Table and Method Lookup Table 19

3.5.2 Architecture of the Method Area Manager .. 20

Chapter 4. The Implementation of the

Exception Handling Unit 26

4.1 Overview .. 26

4.2 Exception Handling in the Java Language ... 27

4.3 Exception Handler Design for Dual-Core Java Processor 29

4.3.1 Stage 1 : Extraction of Exception Information 31

4.3.2 Exception Lookup Table .. 33

4.3.3 Stage 2 : Finding The Exception Routine .. 35

4.3.4 Stage 3 : Dynamic Method Loading .. 40

Chapter 5. Experimental Results 41

5.1 Development Platform and Tools .. 41

5.2 Benchmark Analysis .. 42

5.2.1 Scenario One Benchmark Analysis .. 42

5.2.2 Scenario Two Benchmark Analysis ... 46

5.2.3 Scenario Three Benchmark Analysis ... 48

Chapter 6. Conclusions and Future Works52

Appendix: CLDC Exception Library 54

Reference 58

List of Figures

Fig 1. Traditional Java runtime system. ... 2

Fig 2. Four-stage pipelines of bytecode execution engine ... 5

Fig 3. Architecture of the two-level Java stack. ... 6

Fig 4. Control state machine for method invocation resolution in [6]. .. 7

Fig 5. Overall system diagram of the dual-core Java processor. ... 8

Fig 6. Processes of dynamic class parsing and method loading. ... 10

Fig 7. Processes of class parsing. ... 12

Fig 8. Two-Level runtime image. .. 14

Fig 9. Method area format. .. 15

Fig 10.Adjust the stack frame when invoking the method ‘A’ with the method image headers:

parameter_count and max_local. .. 16

Fig 11. The processes of dynamic method loading. ... 18

Fig 12. Class lookup table and method lookup table ... 19

Fig 13. Architecture of the method area manager. ... 21

Fig 14. FSM in the method area controller. ... 23

Fig 15. An example of a Java program that throws an exception. ... 29

Fig 16. Three stages of exception handling process. ... 31

Fig 17. Architecture of exception lookup table.. 34

Fig 18. Architecture of exception handler that cooperates with method area manager. 36

Fig 19. Exception handling steps in the stage two. .. 37

Fig 20. Processes of Java stack unwinding. ... 39

Fig 21. A test program with exception thrown by bytecode “athrow”. ... 43

Fig 22. A test program with exception thrown by JVM... 43

Fig 23. A test program containing five methods and the last method triggers an exception. 46

Fig 24. A test program containing five methods and each method contains an exception routine. 49

List of Tables
Table I. Synthesis information of Java core. .. 41

Table II. Time overheads of exception handling process in Scenario One programs.......................... 44

Table III. Time overheads of adding an exception routine in the same try block. 45

Table IV. Overheads of exception handling process in the benchmark of scenario two. 47

Table V. Overheads when adding an additional searched method. ... 47

Table VI. Time overheads of exception handling process in the benchmark of scenario two. 50

Table VII. Overheads of additional try block in each method. .. 50

Table VIII. The Sun CVM runs on a 300 MHz PowerPC platform and the Java processor in dual-core

Java remains 83.3 MHz. ... 501

1

Chapter 1. Introduction

1.1 Motivation

For the past few years, Java is getting considerable attentions as a programming

language for embedded system application platform because of the strong portability of

applications across different operating systems and processors. Adopting Java as a

standard application langrage also can enjoy the rich API supports. Not to mention the

fact that the Java language is a well-designed object-oriented programming language

and up to 40% more productivity than C++ [1]. As a result, many embedded

multimedia systems are Java-based platforms, such as DVB set-top boxes, Blu-ray

players, and smart mobile phones.

In addition, the Java language provides a comprehensive exception handling

mechanism. Without exception handling, runtime errors can only be checked and

processed by numerous if-then-else statements. Such coding style is both inefficient

and error-prone. For now, there are many techniques to accelerate the executions of

Java programs in different models of Java runtime systems. Many models adopt a

hardware Java processor to accelerate the regular Java programs. However most

researches do not cover the design of exception handling circuitry [2][3][4]. In [5], a

hardware-software co-design of a Java Virtual Machine is proposed with the exception

handling capability. The paper admits the complication of designing special circuitry

for handling Java exceptions due to call stack searching. Thus, it implements exception

handling on the general-purpose processor core. However, such design makes

exception handling very inefficient. This might be fine for non-recoverable exceptions.

However, for exceptions that will not stop the execution of the program, the design

would be unacceptably inefficient.

2

1.2 Java Runtime Systems

A Java runtime system is composed of a Java virtual machine (JVM) [14] and

a set of standard class libraries. Sun Microsystems has defined Java Micro Edition

(Java ME) [6] framework which is designed specifically for embedded systems. Target

devices range from industrial controllers to mobile phones and set-top

boxes. Furthermore, the Java ME has been divided into two base configurations, one to

fit small mobile devices and one to target towards more capable devices like

smart-phones and set top boxes. The configuration for small devices is called

the connected limited device configuration (CLDC) [5] and the more capable

configuration is called the connected device configuration (CDC) [7].

Fig 1. Traditional Java runtime system.

A traditional JRE is shown in Fig 1. The JRE contains software JVM [7] which

relies on a full-blown OS to execute a Java program. In the Java virtual machine

specification, the three major components are the class loader, the runtime data, and the

execution engine [9]. The class loader is a component for loading specific classes or

Class

Loader

Runtime data

Method

Area
Heap

Java

Stack

Program

Counter

Native

Method

Stacks

Execution

Engine

Native Method Interface

Runtime

Constant

Pool

Java Virtual Machine

Host Operating System

Class files

3

interfaces. The runtime data area is the major memory space that the JVM organizes to

execute a program. And the execution engine is the component that is responsible for

executing the instructions contained in the methods of loaded classes

In addition to the traditional JRE, there are many solutions for improving the

performance of JRE for embedded systems. The solutions for improving the time and

space overheads of JRE can be roughly divided into three approaches. The software

Just-in-Time (JIT) compilers, the hardware-based co-processors (e.g. ARM Jazelle),

and stand-alone Java processors (e.g. picoJava) are three common approaches for

embedded environments.

The execution is improved significantly by using JIT compilation techniques

[10][11] to translate Java bytecodes to native codes at runtime. Although, the speedup

by the JIT compiler is high, JIT requires extra memory [11] and imposes extra

compilation overheads for class loading. The compiler itself along with the memory

footprint for the compilation may require a few megabytes of storage [10]. Therefore,

this approach is less suitable for embedded devices, which have strong memory

constraints. An interesting effort is taken on by Google when picking a solution for

their Android application environment. The Dalvik VM [12] is a register-based virtual

machine which is not binary compatible with the JVM. Java application class files

must be converted into Dex file format before execution. It is shown that a

register-based VM can be 32.3% more efficient than a stack-based VM when executing

standard benchmarks by an interpreter, at the expense of 25% larger binary code size of

the benchmark programs [13].

Another approach is to build a purely hardwired Java processor to handle

nontrivial tasks. There are several Java processor solutions such as picoJava [11],

Komodo [15], jHISC [12], and JOP [17]. Because the processor is custom-designed to

4

match the stack machine model of the JVM, it can deliver better bytecode execution

performance than that of a general-purpose processor running a Java interpreter.

However, some operations are inefficient in pure hardware solutions such as class

parsing, memory managing, file accesses …etc .Therefore a hardware software

co-design approach is proposed in [18][19]. The co-design JRE includes a RISC core

and Java core. The Java core is designed to efficiently execute the bytecodes

instructions. And the RISC core handles the complicate services that are better

performed in software solutions.

1.3 Scope of this Thesis

In this thesis, we propose the hardware exception handling architecture for the

dual-core Java processor [18][19]. The exception handling architecture adopts the stack

unwinding approach to find a proper exception routine. The whole process is mainly

performed in the Java processor. Therefore, the overhead of exception handling is

much lower than that of the design in [6]. The proposed design is based on our

previous work of a Java processor [7]. The prototype of the dynamic class loading

mechanism and method area management was previously proposed in [6]. However,

the design in [7] used a class-based method area caching system, which is not very

efficient for exception handling. To reduce the on-chip memory requirement for

various lookup tables for the exception handling support, we have changed the method

area buffering system from a class-based scheme to a method-based scheme.

The organization of this thesis is as follows. Chapter 2 describes the previous

design of the Java embedded platform. Chapter 3 describes the modifications of the

two-level runtimes images designs. Chapter 4 describes the exception handling unit for

the Java processor in detail. And the performance analyses and benchmark results is

discussed in chapter 5. Finally, conclusions and discussions are given in chapter 6.

5

Chapter 2. Previous Works

2.1 Double-Issue Java Core

Fig 2. Four-stage pipelines of bytecode execution engine

Ko et al [18][19]. proposed a design of double-issue Java bytecode execution

engine (BEE) core. The architecture of Java bytecode execution engine is shown in Fig

2. The BEE core adopts four-stage pipeline architecture with translate, fetch, decode,

and execute stages. The Java BEE core is a stand-alone IP not tied to any host

processor architecture. Therefore, it is easy to integrate the BEE core into any

processor that supports interrupt-driven inter-processor communications.

In the translate stage, each byte of incoming two Java bytecodes will be classified

into a simple instruction, a complex instruction or an operand. If the incoming byte is a

simple instruction, the translate stage will translate it to a single microcode instruction

and pass it to the fetch stage. If the incoming byte is a complex instruction, the

translate stage will pass the starting address of the corresponding microcode sequence

to the fetch stage. If the incoming byte is an operand, the operand values will be

extracted directly from the instruction buffer at the decode stage. The rest pipeline will

then try to execute two complete microcode instructions per cycle whenever possible.

Translate Stage

bytecodes/operands

Bytecode
ClasSif ier

Fetch Stage

Fetch Controller-code
info.

Microcode
Sequence ROM

Decode Stage

IPC Request
Controller

Microcode
Decoder

-codes

Execute Stage

Two-level
Java Stack

Double-issue
Datapath

ctrl.
signals,
operand

info

branch f lag

Hazard Detector

48-bit

Instruction

Buffer

Lookup ROM

Dynamic Resolution

Circuitry

operands

branch f lag

IPC request

branch
dest.

en

6

The fetch stage is in charge of sending two microcode instructions per clock cycle

to the decode stage. If a complex instruction address is obtained from the translate

stage, a sequence of paired microcodes deriving from ROM will be sand to the decode

stage. Note that any one sequence of microcodes in ROM is designed to be

double-issued (some paired microcodes may have one NOP). The decode stage will

then decode the microinstructions (up to two instructions per cycle) and setup the data

path accordingly. Finally, the execute stage performs operations on Java stack.

To enable more double-issued instruction, a special two-level Java stack memory

is purposed in [24]. As shown in Fig 3.The first level of Java stack is composed of

three registers that store the top-three elements of the Java stack. The second level of

Java stack is composed of two dual-port on-chip memory blocks organized in an

interleaving structure that implements a contiguous Java stack. With this design,

accesses to the most frequent local variables will not cause structure hazard to the

double-issued datapath. As the result, the execution of Java program can gain more

double-issued rate.

Fig 3. Architecture of the two-level Java stack.

Customized 4-port
memory

LV 1

LV 2

LV 3

LV 4

A

B

C

RD1

RD2

WD1

WD2

RA1

RA2

WA1

WA2

Bank 1

Even

Address

Bank 2

Odd

Address

7

2.2 Dynamic Class Loading Mechanism

Hwang et al. proposed a dynamic class loader [20][21] for the dual-core Java

processor [22][23]. In the previous system [20][21][22][23], the class loader parses all

class files and converts them into runtime information images and reserves all

resolution information in the constant pool of the image. Hwang also designed a

dynamic resolution state machine to handle symbol resolution of constant pool data.

The states of symbols resolutions triggered by method invocation and field data access

are shown in Fig 4.In the design, the class file is firstly parsed by the software parser in

the RISC core before the class is accessed by Java core. Such class parsing process

involves translating each symbol to a reference data and locating them to runtimes

images. The design offers the bytecode execution engine a faster way to result the

operand to its reference data in runtime execution.

Fig 4. Control state machine for method invocation resolution in [3].

8

Chapter 3. Dynamic Class Parsing and

Method Loading

3.1 Overview of the Dual-Core Java Application Processor

In this section, we present the overview of modified dual-core Java application

processor, which is derived from the previous work [20][21][22][23]. To run a Java

program in the proposed system, the instruction bytecodes in the program are fully

executed in a high performance in the accelerator Java core. If some of the executed

bytecodes encounter complicated processes that are not suitable in hardware solutions,

such process will be performed by the software interrupt service routines in the RISC

core. For an example, the Java language behavior of the instruction bytecode “new” is

to instantiate a class object. The process of object instantiation involves heap memory

managing and class files information searching, which are better for software solutions.

Therefore when the Java core executes the bytecode “new”, an interrupt is triggered to

RISC core to execute the specific service routine to accomplish the bytecode “new”.

Fig 5. Overall system diagram of the dual-core Java processor.

RISC Core Java Core

External memory
controller

Mailbox

system bus

I/O
controller

interrupt

Bytecode
Execution Engine

DDR-SDRAM
(Class images pool)

Dynamic
Resolution
Controller

CF card
(application classes)

Method Area Manager

Method Image
CircularBuffer

ClassSymbolTabler
Circular Buffer

Java
Stack

Exception
Handler

Interrupt
Service
Routines

(memory allocations,
file accesses,

IO operations …etc)

Object

Heap Space

Cross
Reference

Table

9

As shown in Fig 5, the RISC core provides interrupt service routines that handle

complicate tasks such as memory allocations, file accesses, IO operations …etc. In the

Java core, each specific interrupt routine is triggered through the mailbox. There are

another five main components in the Java core. The object heap space is the memory

space allocated for class instantiation objects in program runtime execution. The

instruction bytecodes are executed in an instruction-folding approach by a

four-stage-pipeline bytecode execution engine. The bytecode execution engine

contains a Java stack which is a special two-level stack memory proposed in [24]. In

addition, the design of the exception handling architecture proposed in this thesis is

based on the Java stack. The detail architecture of exception handler is discussed in the

Chapter 4.

Another proposed feature, the method area manager, is the key component to

facilitate the exception handling mechanism and to adopt a more efficient approach to

buffer the essential runtime resources. To be memory-efficient in usage of the runtime

resources, the runtime resource is design to a two-level memory hierarchy. The

first-level space is on-chip circular buffers and the second-level space is the class

images pool locating at the external DDR-SDRAM. In more detail, a runtime image in

the first-level space is named as method area composed of class symbol table and

method image. To be efficient retrieve the data in the method area, the class symbol

table and the method image are separately buffered into two circular buffers. In the

method image circular buffer, each method image contains the instruction bytecodes of

the method and eight bytes method headers. The method image circular buffer is

directly accessed by the bytecode execution engine to efficiently retrieve and execute

the instruction bytecodes.

Another essential runtime resource, the class symbol table, contains reference data

10

that may be referenced by some instruction bytecodes. The class symbol table provides

a fast way to resolute class symbols from operand following by a bytecode. Some

complicate class symbols are referenced indirectly and placed at the cross reference

table. In this case, the reference data in the class symbol table is the address of the

cross reference table. The process of symbol resolution is handled by the component

dynamic resolution controller, which is proposed in [20][21]. The following sections

discuss the usage of the two-level runtime images. And the method area manager

dealing with the buffing process is described in section 3.5.

3.2 Overview of Dynamic Class Parsing and Method Loading

Fig 6. Processes of dynamic class parsing and method loading.

In the proposed design, the class file is parsed to a runtime image before the class

can be referenced. In the life-time of a Java program, there are two important events

related to the runtime image. As shown in Fig 6, the first event, dynamic class parsing,

is triggered when a referenced class has not been parsed yet. And the second event,

dynamic method loading, is to ensure the parsed image of the invoked method is

buffered in the circular buffers before the method is executed by the bytecode

execution engine.

JAVA Core

Event 1:Referenced

class is not parsed

RISC Core

Class files

Parser

Class Images Pool (DDR SDRAM)

Event 2 : Invoke

a method

Method Area

Manager

(a)Trigger Dynamic

Method Loading

(b)Load specif ic Method Area

if it is not buf fered

(1)Trigger dynamic

class parsing

(2)Get requested

class f ile

(4) Put pared

class images

(3) Update

Lookup Tables

Circular Buffers

Dual-core Java processor

11

In the first event of dynamic class parsing, the process of parsing a class file

involves retrieving class files, class symbols linking, creations of tables…etc, which

are not suitable for implementation using hardware IP. Therefore, such class parsing

process is performed by the interrupt service routine on the RISC side. After parsing a

class file, the generated class runtime image will be located at the class images pool. In

the framework of runtime images, the class image pool located in the in the DDR

SDRAM is the second-level memory space. And the first-level space contains images

accessed by the Java core, which is the subset containing essential data for executing a

method of the class image in second-level memory space.

The second event, dynamic method loading, is triggered to ensure a specific

method area is buffered in the Java core before a method is executed. If the request

image has been buffered before and the buffer containing the image is not overwritten,

such process is to update a register locating the method area in the buffer. In the other

case, if the runtime image is not buffered, the specific image will be dynamically

loaded into the circular buffers. In the end of dynamic method loading, the essential

data for executing a method are ensured in the circular buffers and waits to be

executed.

The process of the dynamic method loading is handled by the method area

manager. The method area which is a subset of a class image contains only the

essential data to execute a method. In our previous work [20][21][22][23], the whole

runtime image of a class is loaded into on-chip buffers. Note that the class image

contains all methods’ instruction bytecodes, the disadvantage of this approach is

obvious since some method bytecodes that are not used would also be loaded. To

reduce the loading overheads, the class image is divided into two parts: class symbol

table and method images. In the proposed design, the method area containing only the

12

class symbol table and the invoked method image are loaded in dynamic method

loading, which is discussed in section 3.5.

3.3 Dynamic Class Parsing

The dynamic class parsing mechanism is implemented in a hardware-software

co-designed approach. In the Java core, the method invocation bytecode may reference

to an unparsed class. For example, a bytecode “invokstatic” is used to invoke and

execute a specific method of a class object. The invoked method is identified by the

index operand followed by the “invokstatic” instruction. Through dynamic symbol

resolution, the index operand is resolved to an invoked class ID and a method ID. If the

retrieved method ID is equal to zero, it means that the invoked class is not parsed. And

the dynamic resolution controller will trigger an interrupt service to the software parser

in the RISC core. The interrupt is triggered with a class ID argument so that the parser

can parse the specific class file. After accomplishing the parsing process and locating

the runtime image to class images pool, the Java core can reference the requested class

and continues execution.

Fig 7. Processes of class parsing.

Java CoreClass Parser (RISC Core)

1.Loaded request class file

2.Parse class constant pool

4.Parse each method information

and generate Method Images

3.Constructs class symbol table.

Link the reference data in class

symbol table to class symbols in

cross reference table

Update Method Lookup Table &

Exception Routine Lookup Table

Referenced class is not parsed

Continue
5.Generate Class Image &

Locate it to class images pool

Update Cass Lookup Table

interrupt

update

ISR

complete

update

13

The parsing process has series processes of class symbols resulting and is mainly

for constructing the class image and updating the cross reference table, which is shown

in Fig 7. At the beginning of the class parsing, the requested class file is firstly loaded

from the CF cards to the DDR SDAM to speed up the file accesses. In the second step,

the constant pool data are parsed and resulted to different class symbols. In the third

step, a class symbol table is constructed and is linked with the cross reference table.

After accomplishing the step 3, the class symbol table contains the reference data

which locates a class symbol in the cross reference table. In the same time, the on-chip

class lookup table is also updated, which has the location and size information of each

class symbol table. In the next step 4, each method in the class is parsed to the method

images and two on-chip tables, including the method lookup table and the exception

lookup table, are also updated. The method lookup table contains the location and size

information of each method image and the exception lookup table contains the

information of each exception routines. The class lookup table and method lookup

table are two key components in dynamic method loading, which will be discussed in

section 3.5.1. Finally in the last step, the class image is generated by merging the class

symbol table and each method images and is located at the class image pools.

3.4 Two-Level Runtime Image Design

As mentioned before, the runtime information of a method is loaded into the Java

core before the method is executed. The runtime image contains all information for the

Java core to execute a method, which includes the class symbol table and the method

image. In our previous design, the whole class image is loaded as the runtime image to

the Java core. The disadvantage of this approach is obvious since some method

bytecodes that are not used would be loaded. In addition to being memory-inefficient,

such class-based buffering system also makes it more complex to implement exception

14

handling and multi-threading due to lack of some method-based information. For the

exception handling mechanism, the exception routines are a section of Java bytecodes

in a method image. To be efficient to find such exception routine in a method when an

exception happens, the information locating the method’s exception routines is needed.

Fig 8. Two-Level runtime image.

In the current design shown in Fig 8, the class images remain at the second-level

memory space and each class image is divided into two parts: the class symbol table

and the method images. The class symbol table contains reference pointers that are

used in the mechanism of dynamic resolution. And the method images contain

method’s instruction bytecodes and eight-byte headers. To execute a method in a class,

the required data are only a class symbol table and a method image. Therefore, only the

class symbol table and a method image are required to be loaded into the buffers to

execute a method. The essential runtime image is called the method area containing a

class symbol table and a method image, which is a subset of class image. To locate and

identify each class symbol table and each method image in both the RISC side and the

Java core side, a dedicated class ID is related to a class symbol table and a dedicated

Class Images Pool (DDR SDRAM)

Class Image 0

Class Symbol

Table 0

Method

Image 0

Method

Image 1

Method

Image n

…

Class Image 1

Class Symbol

Table 1

Method

Image n+1

Method

Image n+2

Method

Image n+…

…

…..

Class Image …

Class Symbol

Table …

Method

Image …

Method

Image …

Method

Image …

…

JAVA Core

Second-level memory space

Method Area Manager

First-level memory space

Class Symbol Table

Circular Buffer

Method Image

Circular Buffer

…..

on-chipoff-chip

15

method ID is related to a method image. In the process of loading the method area in

the Java core, the class ID and method ID are used as indexes of lookup tables to

retrieve information to locate class symbol table and method image. In addition the IDs

also facilitate the design in exception handing to fast access the specific method or

class information from lookup tables.

Fig 9. Method area format.

The format of the method area is shown in Fig 9. The method image contains

eight bytes headers and the method instruction bytecodes. The header contains the

access_flag, parameter_count, max_stack, and max_local. The access_flag indicates

the method’s declared feature, such as PUBLIC, INTERFACE, ABSTRACT…etc. The

parameter_count indicates the numbers of parameters with the invocation of this

method. The max_stack is the maximum number of stack elements in the method

runtime. And the max_local is the maximum number of local variables in the method

runtime. The other two header items, parameter_count and max_local, are two keys to

adjust the stack frame during method invocation

In the Java language behavior of method invocation, the top operands may be

used as parameters when a method is invoked. And the parameters then become the

Method Area

Class

Symbol

Table

Method

Image 0

reference

data (4)

‧‧‧‧‧‧‧
‧‧

access

flag(2)

parameter

count(2)

max

stack(2)

max

local(2)

Method instruction bytecodes

reference

data (4)

‧‧‧‧‧‧‧‧‧

‧‧‧‧‧‧‧‧‧
reference

data (4)

16

local variables in the invoked method. In the implementation of the Java core, the

process of changing stack frame to the invoked method’s stack frame are achieved by

adjusting the stack pointer (SP) and variable pointer (VP). In the design of the Java

stack, a typical method frame contains local variables, return frames (three stack

elements that contain for return information) and operands. The SP points to the base

address of the current method stack frame and the VP points to the top element in the

current method stack frame.

Fig 10.Adjust the stack frame when invoking the method ‘A’ with the method

image header entries: parameter_count and max_local.

An example of adjusting the stack frame in method invocation is shown in Fig 10.

When a method “A” is invoked, the method image of this method will firstly be loaded

to the buffers in the Java core. Before executing the invoked method, the Java stack is

allocated for the invoked method, which is achieved by adjusting the SP and VP. The

new SP is adjusted to the value that the old VP minus the parameter count. And the

new VP is adjusted to value that the new SP plus max_local and plus three for the

return frames. After the process of adjusting the VP and SP, the parameters are placed

at the local variables in invoked method stack frame, and the left local variables and

take 3 operands as

parameters &

allocate 5 local variables

Java Stack

Local Variable 0

Local Variable 1

Operand 1

Local Variable 2

Operand 2

Operand 3

...

Method Image Header

Method ID : A

parameter count

= 3

max local

= 4

Return

Frames

?????????

?????????

?????????

?????????

Java Stack

Local Variable 0

Local Variable 1

Local Variable 2

Local Variable 3

Return Frames

?????????

SP

VP

new VP

new SP

?????????

Local Variable 0

Local Variable 1

Local Variable 2

...

Return

Frames

Operand 0 Operand 0

After adjusting the stackBefore adjusting the stack

stack frame of

callee method : A

stack frame

of caller method

17

return frame are also allocated. In the end, the new stack frame for the invoked method

is ready for method execution.

The other part of the method area, class symbol table contains reference data, as

shown in Fig 10. For some instruction bytecodes, the operand followed by an operator

bytecode is a constant pool index that references to the class symbol. If the referenced

class symbol is CONSTANT_Fieldref_info type, CONSTANT_Methodref_info type,

or CONSTANT_InterfaceMethodref_info type, the reference data will be a 32-bit table

address indexing the class symbols location in the cross reference table. If the class

symbol is CONSTANT_Class type, CONSTANT_String_info type, or

CONSTANT_Integer_info type, the class symbol data is directly stored at the reference

data.

For example, the bytecode “new” is followed by an index indicating which of the

class should be instantiated. The index operand indexes to the class symbol table to

retrieve the reference data which is the CONSTANT_Class type of class symbol. The

reference data is a class ID that is used as an interrupt service routine argument to the

software instantiate routine. In the instantiation routine, the object space is then

allocated in the heap memory. After allocating the object space, the interrupt service

routine signals the Java core with a data which is an object reference (the heap address

pointer to the object space). Then the Java core pushes the object reference onto the

Java stack accomplishing the bytecode “new”. Such process to result the reference data

to the class symbols is performed by the dynamic resolution controller. The dynamic

symbol resolution provides a faster way to access class symbols for bytecode execution.

The linking process from the class symbol table to the cross reference table is done by

the software class parser. In the next section, the process to buffer the method area

containing class symbol table and method image is discussed.

18

3.5 Dynamic Method Loading

Fig 11. The processes of dynamic method loading.

As mentioned in section 3.4, the runtime adopts a two-level memory space

hierarchy. To be memory-efficient, only the method area containing class symbol table

and method image will be loaded from the second-level class image pool to the

first-level on-chip buffers in the Java core. The loading mechanism is only performed

in the Java core, which is handled by the method area manager module. The method

area manager relies on two lookup tables to determine the class symbol table or

method image is whether buffered in circular buffers. If the request class symbol table

or method image is not in the buffer, then the unloaded data of method area will be

dynamically loaded.

As shown in Fig 11, there are three situations that the Java core will trigger the

dynamic method loading process. These three situations are the method invocation

from a bytecode, the method return and the exception. When these situations happen, a

new method is to be invoked and ready to be executed. Therefore, the method area of

the method must be ensured in the buffers. To load the request method’s method area,

Dynamic Method Loading

Is the CST
in 1st-level

Method Area?

Check method lookup table

yes

Is the method
image in 1st-level

method area?

no

Get base block index of the
class runtime image in MACB

yes

Method invocation /

return /

exception handling

Check class lookup table

done

no

Load the class symbol table
into CSTCB

Load the method image
into MICB

Stall Java execution pipeline

Retrieve invoked class ID
& method ID

Trigger the method area manager
to perform dynamic method loading

19

the class ID and the method ID is given to identify the request class symbol table and

the method image. With the class ID and the method ID, the method area manager

checks the lookup tables to locate the buffered data in the circular buffers. If the class

symbol table or the method image is not buffered, a dynamic loading process will be

performed by the manager to load the un-buffered data. The two key components of

the lookup tables are first introduced in the next section and the detail architecture of

the method area manager is presented in section 3.5.2.

3.5.1 Class Lookup Table and Method Lookup Table

Fig 12. Class lookup table and method lookup table

In the dynamic method loading process, the method area manager relies on two

key on-chip tables. The two tables are the class lookup table and the method lookup

table, which are shown in Fig 12. The class lookup table contains the class-based

information and the method lookup table contains the method-based information. The

information is not only used in the process of dynamic method loading but also the

process of exception handling, which will be discussed in next chapter.

Class Lookup Table

CST 0

mem_addr
CST_size
block ptr

parent CID

CST 1

mem_addr
CST_size
block ptr

parent CID

CST x

mem_addr
CST_size
block ptr

parent CID

…
..

addr mem_addr

CST_size

block ptr

parent CID

Class ID

Method Lookup Table

Method Image 0

mem_addr
MI_size
block ptr

exception info.

…
..

addr mem_addr

MI_size

block ptr

exception

info.

Method ID

Method Image 1

mem_addr
MI_size
block ptr

exception info.

Method Image y

mem_addr
MI_size
block ptr

exception info.

Software

Parser

on chip

off chip

20

As shown in Fig 12, to retrieve the specific class’s information, the class lookup

table (CST) is indexed by the class ID and each parsed class has four items in the table.

The four items include base memory address of the class symbol table (mem_addr),

size of class symbol table (CST_size), block pointer (block_ptr) and the parent class ID

(parent_CID). The first and second items are used in the loading process when the CST

is not buffered. The third item, block_ptr, points to the block in the circular buffer

where the CST is buffered. And the fourth item parent class ID is used in the process of

exception handling.

Another on-chip table, method lookup table, is indexed by the method ID and has

four items for each method in the parsed classes. The four items include the base

memory address of the method image (mem_addr), size of the method image (MI_size),

the block pointer (block_ptr) and the exception information (exception_info). The first

and second items are used in the loading process when the method image is not

buffered. The third item, block_ptr, points to the block in the circular buffers where the

method image is buffered. And the fourth item exception_info is used in the process of

exception handling. In the next section, it shows the detail that how the method area

manager cooperates with two lookup tables in the process of dynamic method loading.

3.5.2 Architecture of the Method Area Manager

In the framework of two-level runtime image design, the first-level memory space

is composed of two circular buffers buffering the method area. To buffer method area,

the class symbol table and the method image are separately buffered into two circular

buffers which have different block sizes. The class symbol table circular buffer

(CSTCB) has 32 blocks and each bock is of 256 bytes. Another circular buffer, the

method image circular buffer (MICB), has 64 blocks and each bock is 256 bytes. The

circular buffers are designed to buffer the data in a FIFO manner. We choose to

21

implement the FIFO policy rather than other sophisticated replacement techniques (e.g.,

LRU) due to its simplicity. Furthermore, some studies show that the method-based

FIFO caching policy has reasonable performance for Java applications [25][26]. Note

that a CST and MI may occupy more than one block in circular buffers. Therefore, a

register, CSTCB_Pointer, is used to point the start block occupied by the specific CST

in the CSTCB. And a register, MICB_Pointer, is used to point the start block occupied

by the specific MI in the MICB. With the CST_Pointer, the specific block in CSTCB

can be selected and accessed by the dynamic resolution controller. With the MI_Pointer,

the specific block in MICB can be selected and accessed by the bytecode execution

engine.

Fig 13. Architecture of the method area manager.

As mentioned before, there are three situations (method invocations, the method

returns and the exceptions) that the Java core may trigger the dynamic method loading.

Method Area

Buffer Controller

enable

Method ID

MICB Tail
Pointer

method info method image data

2nd-level

Class Images Pool

Method Image

Circular Buffer

to Bytecode Execution
Engine

Off-chip

On-chip

Method Lookup Table

method info.

addr

data_in

MICB Allocation Table

Overwrite
Method ID

addr

data_in

MICB
Pointer

class info

…

Class ID

CSTCB Tail
Pointer

class reference data

Class Symbol Table

Circular Buffer

to Dynamic Resolution
Controller

Class Lookup Table

class info.

addr

data_in

CSTCB Allocation Table

Overwrite
Class ID

addr

data_in

CSTCB
Pointer

……

Reqest_
Class_ID

Reqest_
Method_ID

22

In these situations, an enable signal raised by other components in Java core will

trigger the method area manager to perform dynamic method loading. When the enable

signal is raised, two input signals, Request_Method_ID and Request_Class_ID, are

valid in the inputs, which are shown in Fig 13. The register Class_ID indicates which

of the class symbol table should be located and the register Method_ID indicates which

of the method image should be located. After the required method area is ensured in

the circular buffers, the manager raises a loading_done signal to notify the Java

processor the process of dynamic method loading is finished.

To perform the process of dynamic method loading, the method image buffer

manager relies on one controller and two similar sets of tables and registers, which is

shown in Fig 13. One set is for cooperating with the CSTCB and another one is for

cooperating with the MICB. These two sets of tables and registers have similar

functional components and each set have three registers and two tables. In the set

cooperating with CSTCB, three registers are Class_ID, CSTCB_Tail_Pointer and

CSTCB_Pointer. The register Class_ID indicates which of the CST is loaded or ready

to be loaded. The CSTCB_Tail_Pointer points to the last block that is ready to be

allocated. The third register CSTCB_Pointer points to the first block that locates the

request CST. In addition, the set contains two tables CSTCB allocation table and the

class lookup table. The CSTCB allocation table records the class ID of CST that is

allocated in blocks. The input of CSTCB allocation table is block pointer and the

output is a class ID indicating that which of the CST occupies the block. Another table,

the class lookup table, has the information of parsed class information and the start

block pointer of CSTCB, which is discussed in section 3.5.1.

23

Fig 14. FSM in the method area controller.

The finite state machine in the method area controller controls the process of

dynamic method loading, which is shown in Fig 14. In the state (1), the controller

waits for the enable signal to activate the process of dynamic method loading, which is

requested from the bytecode execution engine or the exception handling unit. When the

enable signal is raised, another two signals, Request_Class_ID and

Request_Method_ID, are valid and separately stored to the registers Class_ID and

Method_ID. After the enable signal is raised, the control state moves to the next state,

Get Block Ptrs. In this state, the registers Method_ID and Class_ID are updated to

requested IDs and separately index the class lookup table and method lookup table.

After one cycle delay, the information of block pointers of CSTCB and MICB are valid

(4) Load

CST & Update

Allocation

Table

(7) Load

MI & Update

Allocation

Table

(1) Wait

enable

(2) Get

Block Ptrs
loaded_size >= CST_size

loaded_size >= MI_size

(6) Data

Segment1

(9) Data

Segment2

(5) Wait

Bus Ack

(10) Data

Segment1

(8) Wait

Bus Ack

(11) Done

(3) Check

Block Ptr

CST_block_ptr == 0xFFFF

MI_block_ptr == 0xFFFF

24

at the outputs of the two lookup tables in state (3) Check Block Ptrs. If the value of

block pointer is equal to 0xFFFF, it represents that the requested data are not buffered

and the controller will start to load the requested data from the second-level memory. If

the value of the block pointer is not equal to 0xFFFF, it represents the requested data is

buffered and the value is the base pointer of the requested data in the circular buffers.

According to the outputs of block pointers from the two lookup tables, the state (3)

moves to one of three states (4) Load CST, (8) Load MI and, (13) Done. If the

requested method image and class symbol table are already buffered, the state machine

moves to the state (13) Done. If the class symbol table are not buffered, the state

machine moves to the state (4) Load CST. If the class symbol table are buffered and

the method image is not buffered, the state machine moves to the state (8) Load

method image.

Before moving to the state (4) from state (3), the item block pointer (0xFFFF) in

class lookup table is updated from the CSTCB_Tail_Pointer which points to the blocks

that locates the newly loaded CST. In the same time, the register CSTCB_Pointer is

also updated from the register CSTCB_Tail_Pointer so that it can select the allocated

block which is ready to be loaded in following processes. In the next state (4), (5) and

(6), they are mainly to load each one word data of the requested class symbol table.

The state (5) raises the external memory loading signal and waits for the 32-bits

external loaded data from the bus. After the ACK signal is raised, the external loaded

data is valid and is stored to the pointed circular block in state (6). The states (4) (5)

and (6) continue the loading processes until the whole requested CST data is buffered.

In the states (4) (5) and (6), a requested loaded CST data may occupy more than

one block in the CSTCB. In this case, the register CSTCB_Tail_Pointer will plus one

to point to the allocated block. And if the newly loaded data overwrites the block that

25

contains another CST data in the circular buffer, the item block pointer of the

overwritten CST in the class lookup table must be updated to 0xFFFF. To retrieve the

overwritten Class_ID, it relies on the CSTCB allocation table which records the

occupied class ID of each block in the circular buffer. The CSTCB allocation table is

indexed by the CSTCB_Tail_Pointer so that the class ID indicating the overwrite CST

data can be retrieved from the output signal overwrite_Class_ID. The

overwrite_Class_ID re-index the class lookup table and update the block pointer to

0xFFFF indicating that this CST is not buffered.

After loading the requested CST to the CSTCB, the controller state is changed

back to the state (3) Check Block Ptr. If the requested method image is not buffered, a

series of loading process similar to loading class symbol table will be performed again.

In the end, the request CST and MI are ensure to be buffered in the CSTCB and MICB.

The controller state is changed to state (11) Done and the controller raises the done

signal to notify the Java processor to resume execution.

26

Chapter 4. The Implementation of the

Exception Handling Unit

4.1 Overview

In the Java programming language, exception handling is a crucial component for

general runtime error handlings. Without exception handling, unhandled errors may

cause incorrect results or unpredictable program behaviors. Therefore, a

comprehensive exception handling mechanism is supported in the Java language. The

Java reacts to errors by throwing exception events which may be caught by an

exception handling routine. The exception handling routines are written by the

programmer to deals with the error condition, which is an isolated code segment of a

Java program. The details of exception mechanism in the Java language will be

described in the section 4.2.

Although there are many papers on Java processor designs, most researches do

not cover the design of the exception handling circuitry [1][2][3]. In [4], a

hardware-software co-design approach of a Java virtual machine is proposed with the

exception handling capability. The paper admits it is not easy to design special circuitry

for handling Java exceptions due to the complex exception handling process. The

exception handling process involves the call stack unwinding, exception routines

searching and instantiating/passing the exception object. Thus, it implements full

exception handling on the general-purpose processor core. However, such design

makes exception handling very inefficient. This might be fine for non-recoverable

exceptions. However, for exceptions that will not stop the execution of the program,

the design would be unacceptably inefficient.

27

In this chapter, a hardware-based design of exception handling unit for a dual-core

Java processor is proposed. The proposed design is based on previous work published

in [20][21][22][23] and it is facilitated by the new method area manager design

described in chapter 3. In the proposed design, the exception handling process relies on

two key components, the exception lookup table and the exception handling unit. The

exception routine lookup table is an on-chip block-RAM that stores the information of

each exception routines contained in the parsed class. The other component is the

exception handling unit which performs a sequence of stack frames unwinding and

routines searching to find a suitable exception routine from the exception lookup table.

The whole exception handling mechanism is mainly performed in the Java core to

reduce the handling overheads.

If the exception event is triggered by bytecode “athrow”, there is no

inter-processor communication overhead in such handling process. In this case, the

performance of exception handling has a best performance on the exception handling

process. Moreover, the proposed exception handling architecture only costs 320 LUTs

and its performance can be up to 525 times better than the performance of the Sun

CVM running on a processor at the same clock rate. The experimental results will

show that the exception handling architecture is suitable for hardware solutions for the

dual-core Java processor, which will be discussed in chapter 5.

4.2 Exception Handling in the Java Language

In the Java language, an exception event is activated by throwing an object

instantiated from a subclass of the Throwable class. Programmers can define their own

exceptions and exception handlers by creating subclasses of the Throwable class.

According to two different types of operations that cause an exception, the exception

can be thrown by a bytecode instruction “athrow” or thrown by the Java runtime

28

system due to runtime errors. After an exception throws, a specific exceptions object

which carries the information of exception type will be created and is handed over to

the exception handling mechanism in the Java runtime system. The exception handling

mechanism then triggers the exception handling process to find a suitable exception

handler. Note that the suitable exception handler may be located in one of the callers’

method.

In a Java program with exception routines, a try statement specifies a try block

which is a program region associated with one or more exception handlers. For each

one exception handler, the class name in the catch statement specifies what exception

types it can catch/handle. If the thrown exception object is the instance of sub class or

the class in the catch statement, it represents that this exception can be handled by the

exception routine. If the exception cannot be caught by any exception routine that is

associated with the try block, an outer try block of the current try block will be

examined. The outer try block may exist within the same method or in a caller method.

Such the searching processes continue until an exception routine that can catch the

thrown exception is found.

29

Fig 15. An example of a Java program that throws an exception.

An example of a Java program defined with two exception routines is shown in

Fig 15. In the program, the method method_throw() throws an exception object at line

13. And the exception object is not caught by the exception routines in the

method_throw() because the thrown Example object is not the instance of the class or

sub-class of ArithmeticException or NullPointerException. Next, the exception object

is caught by the exception routine defined in line 5, which is in the caller method

main(). It is because the thrown Example object is the sub class of Throwable. In the

end, the Java program jumps to the exception routine in line 6 and continues executing

the remaining Java program.

4.3 Exception Handler Design for Dual-Core Java Processor

According to the behavior of the Java language, a suitable exception routine must

be located and executed after an exception event occurs. Note that the exception

routine may be resident in one of the callers’ method, which means that if the current

method has no suitable routine, the routines in caller methods should also be checked.

1: public class Example extends Throwable {

2: public static void main(String[] args) {

3: try{

4: method_throw();

5: }catch(Throwable e){

6: //routine codes

7: }

8: //remaining programs

9: }

10: static void method_throw() throws Example {

11: try{

12: Example object = new Example();

13: throw object;

14: }catch(ArithmeticException e){

15: //exception routine codes

16: }catch(NullPointerException e){

17: // exception routine codes

18: }

19: }

20:

21:}

30

To execute a regular program efficiently, one should not incur extra exception handling

overheads until an exception actually happens. Therefore we choose the stack

unwinding approach to search for the suitable exception routine. In addition to the

runtime overheads caused by exception, the performance of dealing with the exception

is also crucial. The process of exception handling involves a series of steps of type

matching, program counter range checking, stack unwinding.

With the stack unwinding approach, the handling process is only performed after

an exception event occurs. This handling process is performed through a sequence of

exception table searches and stack unwinding. In the proposed architecture, the

handling processes are performed by the exception handling unit that residents in the

execute stage module in the bytecode execution engine. The exception handling unit

retrieves exception routine information from an on-chip exception lookup table and

determines a method whether contains a suitable exception routine. If a method does

not contain a suitable exception routine, the exception handling unit will unwind the

Java stack to search the caller method for a suitable exception routine. Such process of

unwinding stack and routine searching are only performed in the Java core so that it

has no inter-processors communication overheads.

31

Fig 16. Three stages of exception handling process.

When an exception event happens during runtime, the Java core should stall the

bytecode execution engine immediately. In the same time, the operation is handed over

to the exception handling unit. Then the exception handling unit starts to perform the

exception handling process, which is shown in Fig 16. The handling process can be

divided into three stages: extracting the exception information, finding the exception

routine, and dynamic method loading. The details of each stage are described in the

following sections.

4.3.1 Stage 1 : Extraction of Exception Information

In the Java language, it acts the exception event by throwing an exception object.

According to the thrower of the exception, there are two types of exception events, the

exception thrown by the JVM and the exception explicitly thrown by the instruction

bytecode “athrow”. In the first type, the exception is thrown due the error in the Java

runtime system. For example, an arithmetic error happens due to that an operand is

divided by zero. In the Java core, the computing unit is performed by the ALU located

in the bytecode execution engine. To detect the arithmetic exception, the operand is

Stage 2

Finding the

Exception Routine

Stage 3

Dynamic Method Loading

Stage 1

Extraction of the

Exception Information

if no one

match

Stall the Bytecode Execution Engine

thrown by ALU thrown by “athrow”

Instantiate exception object and push

the object reference onto Java stack

Retrieve exception class ID through

the exception object reference

Search Exception Lookup Table for a match

exception routine in a method

Update JPC

Dynamic Method Loading

Unwinding Java Stack

Update special registers

from return-frame
if a routine can catch the exception

An exception event occurs

Reactivate Bytecode Execution Engine

32

examined when a division operation is executed.

The second type of exception is thrown by the bytecode “athrow”, which triggers

an exception event directly through the bytecode. To trigger such exception event, the

thrown exception object is instantiated by the bytecode before the “athrow”. Note that

for the first type of exception, the object instantiation operation is performed by the

JVM. Before the process to search for the suitable exception routine, the thrown

exception object is ensured to be instantiated and be pushed onto the Java stack. And

the thrown exception type identified by a class ID is also needed to be prepared for

routine searching process.

For the JVM-type exception, the exception classes defined in CLDC are listed in

appendix 1. An example that triggers an arithmetic exception is discussed as follows.

As mentioned before, the arithmetic exception is triggered and detected by ALU in the

bytecode execution engine. For such the JVM-type exceptions, the exception class is

predefined in the system class library. In the proposed design, the predefined classes

are pre-parsed in Java system booting by default. Therefore when the JVM detects the

arithmetic exception event, the class ID of ArithmeticException is known and saved to

a register named Thrown_EID. The register Thrown_EID is a key comparing feature to

match an exception routine in later stages. Another task in the stage one is to instantiate

a specific exception object and to push it to onto the Java stack. In this task, the

exception handling unit will trigger an interrupt service to instantiate the exception

object. When the triggering the instantiation services, the Thrown_EID is used as the

service argument to instantiate a object of specific exception class. After accomplishing

the service, the exception object reference is sand back to Java core and pushed onto

the Java stack so that the handling process is ready for entering to the stage two.

The other exception type is thrown by bytecode “athrow”. For this type, the steps

33

of instantiating the throwing exception object and pushing the object reference are

already done by the instruction bytecodes before executing the bytecode “athrow”. In

this case, the thrown exception class ID is turned out to be unknown, which is an

important search key in the next exception handling stage. To retrieve the exception

class ID, the exception handling unit requests a heap memory access by the object

reference which is on the top of stack. In the previous work, the object space is

allocated in the heap space and the first item in an object space is the class ID that

instantiates this object space. To accomplish the exception handling process in stage

one, the thrown exception class ID is retrieved from the allocated object space and is

saved to the register Thrown_EID.

In the end of the stage one, the thrown object reference is ensured on the top of

stack and the Thrown_EID is ready for the process of searching a routine to catch this

thrown exception. In the stage two, the exception handling unit performs a sequence of

stack frame unwinding and the table searching to find a suitable exception routine. One

of the key components is the design of exception lookup table, which is an on-chip

block ram that stores the exception routines information. The design of exception

lookup table is firstly described in the next section 4.3.2 and the details of stage two

will be described in the section 4.3.3.

4.3.2 Exception Lookup Table

To find a matching exception routine to catch the thrown exception, the exception

handling unit relies on an on-chip block ram named exception lookup table. The

exception lookup table stores the information that lists all exception routines in parsed

classes, which is shown in Fig 17. Each exception routine in the exception lookup table

has four items including exception routine start offset (ER_start), exception routine end

offset (ER_end), exception routine address (ER_addr), and exception routine class ID

34

(ER_EID). The two items ER_start and ER_end indicate the range in the Java bytecode

offset at which the exception catch area is active. The item of the ER_addr indicates

the start offset of the exception routine in the method image. The last item ER_EID

represents the class type of this exception routine. The three items ER_start, ER_end

and ER_EID are the key features for an exception routine to determine whether it can

catch the thrown exception. And the ER_addr is used to set up the new program

counter locating the exception routine that can catch the thrown exception object.

Fig 17. Architecture of exception lookup table.

Due to the advantage of dynamic class parsing, the exception routines information

of the class is added to the exception lookup table only when the class is really

referenced and parsed. In the process of parsing a class, the exception information in a

class file is arranged to a table that residents behind of each method information. The

table format in the class file is similar to the exception lookup table. The only

difference is in the fourth data item, namely exception type. The exception type in the

table of the class file is a constant pool number indexing to the class information. After

parsing the exception table for a method, each exception type is resulted to a dedicated

Method Lookup Table

Method Image 0

mem_addr
MI_size
block ptr

exception info.

…
..

addr mem_addr

MI_size

block ptr

ER_base_

addr

Method ID

Method Image 1

mem_addr
MI_size
block ptr

exception info.

Method Image …

mem_addr
MI_size
block ptr

exception info.

Software

Parser

Java core

RISC core

Exception Lookup Table

Exception Routine 0

0ER start
ER end
ER addr

ER EID

addr ER_start

ER_end

ER_addr

ER_EID

ER_cnt

+

ER_sel

Exception Routine 1

0ER start
ER end
ER addr

ER EID

Exception Routine …

0ER start
ER end
ER addr

ER EID

…
..

35

class ID. Once a routine is parsed, the four items of a routine are added to the

exception lookup table. After parsing a class, each method’s exception routines

information is compacted and added to the exception lookup table.

In the process of finding a method containing the suitable exception routine, a

sequence of routine searches in each calling method is performed. To reduce the

overheads in such process, the ability to efficiently retrieve the exception routine list

for a method is required. In chapter 3, the method lookup table is designed to have the

capability of recording such information for each parsed method. In the proposed

design, a method item in the method lookup table is used for locating the first

exception routine of a method. Note that a method may have several exception routines.

Therefore, the item is divided into two entry including the exception routine base index

(ER_base_index) and exception routine count (ER_cnt). The ER_base_index is the

table address pointing to method’s first exception routine in the exception lookup table

and the ER_cnt is the numbers of exception routines contained in that method. When

parsing each method of a class, the two items ER_base_index and ER_cnt related to

each method are also updated to the method lookup table, which is also mentioned in

section 3.3.

4.3.3 Stage 2 : Finding The Exception Routine

In the Java language, the exception event can be handled locally or globally,

which means the thrown exception can be caught by the routine located in one of the

caller methods. To find the proper routine in such caller method chains, it needs to

trace through the chains of each called method. The information related to the caller

method is saved as return frame in the Java stack. To try not to incur extra exception

handling overheads in normal Java program until an exception happen, we adopt the

stack unwinding approach to trace the caller methods.

36

To check that a method whether contains a suitable exception routine, the

exception handling unit relies on the exception lookup table and some control logics,

which is shown in Fig 18. In the proposed design, the exception lookup table is

indirectly indexed by method ID so that the information of exception routines

belonging to a specific method can be retrieved efficiently. The method ID firstly

indexes to the method lookup table to retrieve a method’s ER_base_index. Then the

ER_base_index indexes to the first exception routine of the method in the exception

lookup table. To select one of the exception routine information of a method, the

ER_base_index pluses the ER_sel as the input address of the exception lookup table.

The indexed exception routine information will be used in the comparing processes to

check whether it can catch the thrown exception.

Fig 18. Architecture of the exception handling unit that cooperates with method

area manager.

>

JPC

Exception
Lookup Table

ER start

ER end

ER_EID

addr

Exception Handler

of fset match

return-f rame
addr

thrown_EID

=

Java Stack

Method ID

Class ID

frame data

prev. f rame data

Method Area Manager

Method
ID

Method
Lookup Table

ER base index

addr

+

Class
ID

ER_sel

VP

Class
Lookup Table

parent Class ID

addr
compared

EID EID match

ER_addr

37

Fig 19. Exception handling steps in the stage two.

To check whether the selected exception routine can catch the thrown exception

or not, two runtime registers are compared with the related items in the exception

lookup table. These two runtime registers are the thrown_EID and the Java program

counter (JPC). The JPC implies the location of the instruction that throws an exception

or the location of the instruction that invokes one of the callee methods throwing the

exception. If the thrown_EID is the same as the compared_EID and the JPC falls

within the range between ER_start and ER_end, it means the exception routine can

catch the thrown exception. To reduce the hardware cost of comparing logics, the

comparing process for the exception handling unit is conducted sequentially, which is

shown in Fig 19.

Note that if the thrown exception object is the instance of the sub class of an

exception routine, then it can also be caught by the routine. Therefore the relation of

the class inheritances is needed in such comparing process. To efficiently retrieve such

information, the item named parent class ID (parant_CID) is added to the class lookup

table. To retrieve the grand parent’s class ID, the parant_CID can used to re-index the

class lookup table. In such processes of re-indexing from each class’s parant_CID, the

if parent class

is not Object

not

match

1.Index Exception Lookup Table

by ER_base_index and ER_sel

10.Update ER_addr to JPC

8.Unwind the Java Stack

2.Compare JPC with ER_start

3.Compare JPC with ER_end

4.Compare Thrown_EID

with compared_EID

not match

match

match

match

5.Index Class Lookup

Table by compared_EID to

retrieve its parent class ID

not

match
if parent class is Object

7.Index Method Lookup

Table by Method ID

if ER_sel

== ER_cnt

6.ER_sel <= ER_sel + 1

Index the next ER info. in

Exception Lookup Table

Stage One

Stage Three

if ER_sel

!= ER_cnt

9.Update special

registers(Method ID,

Class ID, VP and JPC)

from return-frame

38

relationship of the class inheritance can be easily retrieved from the class lookup table.

As shown in Fig 19, if an exception routine is found that the EID is not matched in step

4, the parent_CID will be retrieved and saved in the register compared_EID in step 5.

In step 5, if the retrieved parent_CID is not the class ID of the Object class, then the

handling process will go back to the step 4 to comparing the EID again. Examining the

parent class ID in step 4 and 5 continues until the Throwable class is examined. The

Throwable class is defined as the top exception class in the inheritance relations and its

parent class is the Object class. Thus in the step 5, when the retrieved parent Class is

the Object class, the exception handling process will go to step 6 to select the next

exception routine information in the exception lookup table. In step 6, it determines

whether the exception routines in a method are all checked. If the method has routines

that have not been checked, the next exception routine information in the method will

be selected and the step 1, 2 and 3 will be performed again to check this exception

routine is match for a suitable exception routine.

Once no routine in a method can catch the exception in step 6, the thrown

exception should be handed over to the caller method. To perform the steps to check

whether the caller method contains a suitable routines or not, three registers including

class ID, method ID, and JPC must be updated. The class ID is used to retrieve the

parent class ID in step 5. The method ID is used to indirectly re-index the exception

lookup table to retrieve the exception routines information. And the JPC is the key

comparator to match the thrown exception in step 2 and 3. In the proposed design, the

registers are saved as the return frame data when a method is invoked. To retrieve the

frame data, a return-like process is performed, which is called stack unwinding. After

the special registers are updated to the data of the caller method, the processes to check

whether the caller method contains a suitable routine can be performed again.

39

Fig 20. Processes of Java stack unwinding.

 To unwind the Java stack, the first step is to locate the return-frame. As shown in

Fig 20, the Java stack contains each stack frame of each invoked method at runtime. In

a typical stack frame of a method, it contains local variables, return-frame and

operands. The local variables are variables declared in the method and the operands are

the intermediate computation data in runtime execution. The return-frame saves the

runtime status of registers of the caller method, which is used to restore

special-purpose registers when returning to the caller method. The return-frame items

include the VP (the Java stack pointer that points to the start address of the caller’s

stack frame), JPC (Java program counter), the method_ID, and the class_ID. To locate

the return-frame, the local variable count is firstly loaded from the method image in the

external class images pool. As shown in Fig 20, the stack address of return-frame is the

VP plus the local variable count. After locating the return-frame, the special registers

are updated from the data in the return-frame. And the exception handling unit is ready

to search the method’s exception routines.

 In the next, the exception lookup table is indirectly re-indexed by the register

method_ID so that the routine information of the method can be located and the JPC is

updated to the invocation instruction location in caller method that passes the thrown

Operands

Java Stack

‧
‧
‧
‧

Method ID Class ID

JPC

VP

Local variables

Operands

Method ID Class ID

JPC

VP

Local variables

Stack f rame of

callee method

‧
‧
‧
‧

Stack f rame of

caller method

Special-Purpose

Registers

Caller Method ID

Caller Class ID

Caller JPC

Caller VP

return-f rame

callee VP

callee SP

1 Locate return-f rame

Address = callee VP +

local variables count

2 Update registers

3
Locate caller SP

(caller SP <= callee VP)

40

exception. The procedure of finding a suitable exception routine for a method is then

performed again. The sequence of table searching and stack unwinding continues until

a matching exception routine is found. Once an exception routine is match to catch the

exception, the ER_addr of the matched routine will update the register JPC to indicate

the location of the exception routine in the method image. Finally in the end of stage 2,

the statuses of updated special registers and stack frame are ready for Java core to

execute the exception routine. To execute the exception routine by Java core, the last

stage is to trigger the dynamic method loading to ensure the method area of the method

containing the match exception routine is in the circular buffers.

4.3.4 Stage 3 : Dynamic Method Loading

As the final stage of exception handling, the method area manager which is

discussed in chapter 3 is triggered to locate the class symbol table and method image of

the method containing the match exception routine. The enable signal of the dynamic

method loading is raised and the registers method_ID and class_ID are also signaled to

method area manager as inputs of request IDs. After the process of dynamic method

loading is finished, the bytecode execution engine is ready to retrieve the instruction

bytecodes form method image circular buffer and the dynamic resolution controller is

ready to result runtime class symbols from class symbol table circular buffer. In the

stage two, the Java stack is also adjusted and ready for accessed by bytecode execution

engine. In the end, the whole exception handling routine is finished and Java core is

re-activated and to execute the remaining Java program.

41

Chapter 5. Experimental Results

5.1 Development Platform and Tools

We have implemented the proposed dual-core Java platform on the FPGA Xilinx

Virtex5 ML507 development board. We use Xilinx Embedded Development Kit

13.1(EDK) as the development tool and Xilinx® Synthesis Technology (XST) as the

FPGA synthesis tool. We use the ISim simulator for verification, which is also

provided in the EDK. We create the implementation platform from Base System

Builder (BSP) wizard of Xilinx Platform Studio. The platform contains a Microblaze

soft-IP core and the Java core IP. And the RTL model of the Java core is written in

VHDL.

The resource utilization of the FPGA device is shown in Table I. Note that the

numbers of Virtex-5 LUTs and BRAMs in Table I only include the logic for the

proposed Java core. In this table, we can see that the proposed exception handling unit

only costs 267 LUTs which occupy 4% of LUTs in the whole Java IP. And an

additional BRAM is added as the exception lookup table for the exception handling

unit, which is mentioned in section 4.3.2.

Table I. Synthesis information of Java core.

Device : vertex-5 5vfx70tf1136-1

Without Exception

Handler Unit

With Exception

Handler Unit

Number of LUTs 6,270 6,537

Number of 2K BRAM 36 37

Maxinum frequency 83.3Mhz

42

5.2 Benchmark Analysis

To evaluate the performance of the proposed exception handling unit, benchmark

programs are also tested in the Sun CVM. The Sun CVM is running under MontaVista

Linux which is ported on the Xilinx ML-405 development board using the PowerPC

core at 83.3 MHz. In following sections, we present three scenarios of benchmarks to

observe the time overheads of exception handling process. The scenario one

benchmark focuses on the time overheads of searching a suitable exception routine

through multiple exception routines that are containing in a same method. The

benchmark of scenario two focuses on the time overheads of searching a suitable

exception routine in multi methods searching, which involves the processes of

unwinding Java stack. And the programs in scenario three have a little difference to the

programs in the scenario two. In the scenario three, each of the middle searched

methods contains an exception routine, which will have additional exception routine

matching process.

5.2.1 Scenario One Benchmark Analysis

The first benchmark focuses on observing the time overheads of exception

handling process that searches the exception routines containing in a same method.

Each program in the scenario one has different numbers of catch statements. A test

program in scenario one benchmark is shown in Fig 21. The program contains five

catch statements resident to a try block that throws an ArithmeticException object by

bytecode “athrow”. The Exception_x classes in the first to fifth catch statements are

child classes of Throwable class. In other words, the thrown exception object cannot be

handled by the first four exception routines. However the thrown object can be caught

in the fifth exception routine in line 13 because the routine is defined to catch the

43

ArithmeticException object. The Java program then jumps to the exception routine five

in line 14 to execute the exception routine. To observe the time overheads due to

numbers of searched exception routine, each test program in scenario one benchmark

has different numbers of searched exception routines.

Fig 21. A test program with exception thrown by bytecode “athrow”.

Fig 22. A test program with exception thrown by JVM.

In addition to the exception events thrown by bytecode “athrow”, the exceptions

thrown by JVM are also tested in the scenario one benchmark. Another test program

1: public class Scenario_one_thrown_by _athrow{

2: public static void main(String args[]){

3: try{

4: throw new ArithmeticException();

5: }catch (Exception_1 e){

6: //exception routine 1

7: }catch (Exception_2 e){

8: //exception routine 2

9: }catch (Exception_3 e){

10: //exception routine 3

11: }catch (Exception_4 e){

12: //exception routine 4

13: }catch (ArithmeticException e){

14: //exception routine 5

15: }

16: }

17: }

1: public class Scenario_one_thrown_by _JVM{

2: public static void main(String args[]){

3: try{

4: int a = 999999/0;

5: }catch (Exception_1 e){

6: //exception routine 1

7: }catch (Exception_2 e){

8: //exception routine 2

9: }catch (Exception_3 e){

10: //exception routine 3

11: }catch (Exception_4 e){

12: //exception routine 4

13: }catch (ArithmeticException e){

14: //exception routine 5

15: }

16: }

17: }

44

with the exception thrown by JVM is shown in Fig 22. The test program triggers the

ArithmeticException type exception implicitly in line 4 due to the wrong arithmetic

operation in Java runtime system. Same as the test programs shown in Fig 21, the

exception event is also caught by the fifth catch statement in line 13.

The results of scenario one benchmark are shown in Table II. The column “# of

searched routines” shows the number of routine comparisons before the suitable

exception handling routine is located. It is obvious from Table II that the exception

handling overheads of the Java core is much smaller than that of a software-based Java

VM. More important, the Sun CVM with the Just-In-Time compilation has even worse

performance than the Sun CVM without JIT which is a common technique to

accelerate execution of regular Java programs. In the table II, it shows that the JIT has

additional overheads when a Java program encounters the exception handling process.

As shown in the row one, the overheads of CVM_JIT are 356 times larger than the

overheads of dual-core Java and the overheads of CVM are 183 times larger than the

overheads of dual-core Java.

Table II. Time overheads of exception handling process in Scenario One programs

searched

routines

Dual-Core Java

exception

handling cycles

Sun CVM

exception

handling cycles

Sun CVM_JIT

exception

handling cycles

Case 1:

Thrown by "athrow"

1 11 2017 3920

5 73 2300 4487

10 158 2773 4818

15 243 3260 5082

Case 2:

Thrown by JVM

1 2979 10433 12021

5 3042 10808 13418

10 3126 11440 13853

15 3208 11727 14544

45

Table III. Time overheads of adding an exception routine in the same try block.

The averaged overheads of exception handling process when adding an additional

searched exception routine are shown in Table III. The table shows that it costs 87

cycles on additional exception routine comparing process in Sun CVM. To the

dual-core Java, such overheads only cost 17 cycles. It is smaller than the overheads

than the software JVM because the comparing process is mainly performed by

sequentially comparing the registers with items in a compact on-chip table, which is

efficient in hardware solution. And such the process is performed entirely in hardware

Java core without external memory or involving interrupt service routines. In the row

two in table II, the test program involves five times of searching process. The

searching process cost 62 cycles which occupy 84% of the exception handling process.

To the CVM, the searching process cost 5*87 = 435 cycles which occupy 19% of the

exception handling process. In tells that the software CVM has extra overheads to be

ready to search for a suitable exception routine. To the hardware Java core, the process

of searching for an exception event in lookup table is performed immediately after it

extracts the thrown exception information which only costs 3 cycles. Therefore the

exception event can be fast handled by the exception handling unit when the Java

program encounters an exception.

In the Table II, we can see that the programs of case two have larger overheads

than the programs with same numbers of searched routines in the case 1. The reason is

simple that for the handling process for the exception event thrown by JVM, it has an

extra step to instantiate the exception object. To Java core, such the process of

instantiation of an object is performed by the interrupt service routine which has large

Dual-Core Java Sun CVM Sun CVM_JIT

Averaged overheads of exception

handling process when adding a

searched exception routine (cycles)

17 87 89

46

overheads due to inter processors communication. However the CVM and the

CVM-JIT also has such larger overheads on object instantiation. In the programs of

case two, the overheads of exception handling process in CVM are at most 4 times

larger than the overheads in the dual-core Java. And the overheads of exception

handling process in CVM-JIT are at most 5 times larger than the overheads in the

dual-core Java. In the next section, a more complicate scenario will be discussed.

5.2.2 Scenario Two Benchmark Analysis

Fig 23. A test program containing five methods and the last method triggers an

exception.

In the benchmark of scenario two, the suitable exception handling routine is

designed to be located in one of the caller methods. A test program that has five called

methods is shown in Fig 23. In the test program, an arithmetic exception is thrown in

the last called method. And to find the suitable exception routine to catch this

exception, the exception is handed over to each caller method. Finally in the main

1: public class Scenario_two_thrown_by _athrow{

2: public static void main(String args[]){

3: try{

4: method1();

5 : }catch (ArithmeticException e){

6: //exception routine 0

7: }

8: }

9:

10: public static void method1(){

11: method2();

12: }

13: public static void method2(){

14: method3();

15: }

16: public static void method3(){

17: method4();

18: }

19: public static void method4(){

20: throw new ArithmeticException ();

21: }

22: }

47

method, an exception routine defined in line 5 can catch the ArithmeticException type

exception event. Next, the program jumps to the line 6 and executes exception routine

0. Other test programs in the scenario two have different numbers of called methods.

The time overheads of exception handling process in each test program are shown

in Table IV. In the Table IV, the column “# stack unwinding” stands for the number of

stack that be unwind to find the suitable routine. A count of ‘0’ means that the search

stops at the current main method where the exception is thrown. Again, the proposed

dual-core Java outperforms the CVM and the CVM_JIT. And the CVM_JIT also has

the worst performance. Comparing to the scenario one, the programs in scenario two

have larger overheads on exception handling process. The reason is simple because

that the exception handling processes in scenario two involve the processes of stack

unwinding. In the row one in table IV, it shows that the overhead of exception handling

process in the dual-core Java is only 11 cycles, which is 356 times smaller than the

overheads in Sun JVM_JIT. Note the program tested in row one only contain a main

method so that the thrown exception is caught in the first try block, which does not

involve the process of stack unwinding.

Table IV. Overheads of exception handling process in the benchmark of scenario

two.

Table V. Overheads when adding an additional searched method.

Thrown Exception

Type

stack

unwinding

Dual-Core Java

exception

handling cycles

Sun CVM

exception

handling cycles

Sun CVM_JIT

exception

handling cycles

Thrown by "athrow"

0 11 2017 3920

4 137 3448 6415

9 286 5418 7473

14 443 7313 9965

Dual-Core Java Sun CVM Sun CVM_JIT

Overheads of exception handling process when

adding a method without a try block (cycles)
36 377 445

48

In other test programs, the overheads start to grow larger due to the processes of

stack unwinding. In the row two of the Table IV, the overheads of exception handling

process in the dual-core Java grows to 137 cycles. Comparing to the row one, the

difference of overheads 137 – 11 = 126 cycles are the overheads that incurs 4 times of

stack unwinding process. The average overheads when adding a searched method are

calculated and shown in Table V. In the Table V, we can see that it costs average 36

cycles for exception handling unit to perform the stack unwinding process in Java core.

In such process, about 80% overheads are for an external memory access which

average costs 27 cycles. As mentioned in chapter 5, the external memory access is to

load the local variables count of a method, which is used to locate the return stack

frame in the stack unwinding process. If the data of local variables count of a method

can recorded in the on-chip table, the overheads for stack unwinding can be reduced to

only 7 cycles. However concerning the precious usage on-chip memory space, we

leave the data of local variables count to be saved in DDR-SDRAM.

5.2.3 Scenario Three Benchmark Analysis

Similar to the programs in scenario two, the test programs in scenario three also

triggers exception event in the last called method. The difference is that the each called

methods contains a try block with an exception routine. A test program that has five

called methods is shown in Fig 24. In the test program, an arithmetic exception is

thrown within a try block in method4. And the resident exception routine cannot

handle the exception because the ArithmeticException class is not the sub class of

Exception_4. Then the exception is handed over to the caller method to find a suitable

exception routine. Again in method3, the exception cannot be handled and is handed

over to the call method. The actions of handing over the exception continue until the

exception is handed over to the main method. The main contains an exception routine

49

which can catch the ArithmeticException type exception. In the end, the program

jumps to the line 6 and executes exception routine 0. Other test programs in scenario

three have different numbers of called methods.

Fig 24. A test program containing five methods and each method contains an

exception routine.

The time overheads of exception handling process in each test program are shown

in Table VI. In the Table VI, the column “# stack unwinding” stands for the number of

stack that be unwind to find the suitable routine. A count of ‘0’ means that the search

stops at the current main method where the exception is thrown. Again, the proposed

dual-core Java outperforms the CVM and the CVM_JIT. And the CVM_JIT has the

worst performance. Comparing to the scenario two, the programs in scenario three

have larger overheads on exception handling process. The reason is simple that the

exception handling processes in scenario three has additional processes of check

exception routine in each called methods.

1: public class Scenario_three_thrown_by _athrow{

2: public static void main(String args[]){

3: try{

4: method1();

5 : }catch (ArithmeticException e){

6: //exception routine 0

7: }

8: }

9:

10: public static void method1(){

11: try{ method2(); }

12: catch (Exception_1 e){ //exception routine 1 }

13: }

14: public static void method2(){

15: try{ method3(); }

16: catch (Exception_2 e){ //exception routine 2 }

17: }

18: public static void method3(){

19: try{ method4(); }

20: catch (Exception_3 e){ //exception routine 3 }

21: }

22: public static void method4(){

23: try{ throw new ArithmeticException (); }

24: catch (Exception_4 e){ //exception routine 4 }

25: }

26: }

50

Table VI. Time overheads of exception handling process in the benchmark of

scenario two.

Table VII. Overheads of additional try block in each method.

The average overheads when adding a called method are shown in Table VII. The

results of scenario two remain in the row one and the results of scenario three are

shown at row two. Comparing to the programs in the scenario two, we can see that the

programs in the scenario three costs additional 19 cycles in dual-core Java. The 16

cycles are used to check an exception routine whether can catch the exception. Such

the process involves class ID comparing or JPC ranges checking, which are efficient in

hardware solution. For Sun CVM-JIT, we can see that such process has large additional

costs if a searched method contain an additional exception routine, which adds

((837-445)/445= 88% overheads.

Considering the fact that the software-based JVM may runs on a general-purpose

RISC processor at a frequency higher than that of the Java processor, we provide

another experimental result that also tests the benchmark of scenario three. We

compare the proposed dual-core Java with Sun CVM that runs on a 300 MHz PowerPC

processor, which is the maximal processor clock rate for the Virtex-4 FPGA. In the

dual-core Java platform, the Java processor remains at 83.3 MHz. The experimental

results are shown in Table VIII. Note that the programs are executed 10000 times and

Thrown Exception

Type

stack

unwinding

Dual-Core Java

exception

handling cycles

Sun CVM

exception

handling cycles

Sun CVM_JIT

exception

handling cycles

Thrown by "athrow"

0 11 2017 3920

4 197 3741 7548

9 435 6224 11837

14 675 8481 15567

Dual-Core Java Sun CVM Sun CVM_JIT

Overheads of exception handling process when

adding a method without a try block (cycles)
36 377 445

Overheads of exception handling process when

adding a method containing a try block (cycles)
55 460 837

51

the results are in milliseconds (ms). In table VIII, we can see that the dual-core Java

processor still outperforms Sun CVM. By comparing the results in Table VI and Table

VIII, we can see the performance of Sun CVM improved by the higher clock rate. In

row one of table VIII, one can see that the exception handling overheads of the

dual-core Java processor is 148 times smaller than that of the CVM-JIT, while the

overhead ratio in Table VI is 356 times. Therefore, although CVM runs at 300/83.3 =

3.6 times higher clock rate, the performance only increases by 356/148 = 2.4 times. In

any cases, the dual-core Java processor is a clear winner in exception handling.

Table VIII. The Sun CVM runs on a 300 MHz PowerPC platform and the Java

processor in dual-core Java remains 83.3 MHz.

Thrown Exception Type # stack unwinding

Dual-Core Java

Exception handling time

(ms)

Sun CVM

Exception handling time

(ms)

Sun CVM_JIT

Exception handling time

(ms)

Thrown by "athrow"

0 13 903 1928

4 236 1706 3412

9 522 2438 4931

14 810 3167 6696

52

Chapter 6. Conclusions and Future Works

In this thesis, we have proposed the design of the architecture to support the

exception handling mechanism for a dual-core Java processor. Two of the key

architecture proposals are the two-level runtime image hierarchy and the method area

manager. The first-level method area offers the Java core a memory-efficiently way to

execute a specific method. And to buffer the specific method routine recourses, the

method area manager is designed to cooperate with two lookup tables. The two on-chip

lookup tables in the method area manager also offer the Java core the capability to

retrieve the class-based information and method-based information. For the dynamic

method loading, the tables are used to locate the runtimes images in second-level

memory space. For the exception handling process, the tables provide the class

inheritance information and method exception routines information.

 With the two tables and an additional exception lookup table, the proposed

architecture can perform exception handling process mainly in Java core. In addition,

we adopt the stack unwinding approach in exception handling processes which is

suitable for hardware solution. By the stack unwinding approach, the exception

overheads can be delayed to the time that the Java program actually throws an

exception event. In the final experimental results, it shows that the proposed dual-core

Java processor only cost 320 LUTs on the exception handling unit. And it also shows

that the dual-core Java processor outperforms the software Sun CVM in exception

handling process. Moreover, the Sun CVM with the support of JIT compilation has

even worse performance on exception handling than the CVM without the JIT. Not to

mention the additional memory overheads on JIT compilation. The dual-core Java may

be better suitable for deeply-embedded smart devices.

53

In the future, the dual-core Java processor will supply more functional features for

the Java language. For now, it is not capable of multi-threading executions. To take

advantages of the hardware Java core, the hardware-based context-switching for

multi-threading is considered to be performed well in Java core. However, the design

may increase the memory space overheads such as the space of Java stack, which is

another important issue in embedded application processer designs. Therefore a

context-switching design without significantly increase the logic size would be

investigated in the future.

54

Appendix: CLDC Exception Library

Class name Description

Exception

The class Exception and its subclasses are a form of

Throwable that indicates conditions that a reasonable

application might want to catch.

ClassNotFoundException

Thrown when an application tries to load in a class through

its string name using: The forName method in class Class.

The findSystemClass method in class ClassLoader . The

loadClass method in class ClassLoader. But no definition

for the class with the specified name could be found.

IllegalAccessException

An IllegalAccessException is thrown when an application

tries to reflectively create an instance (other than an array),

set or get a field, or invoke a method, but the currently

executing method does not have access to the definition of

the specified class, field, method or constructor.

InstantiationException

Thrown when an application tries to create an instance of a

class using the newInstance method in class Class, but the

specified class object cannot be instantiated because it is an

interface or is an abstract class.

InterruptedException

Thrown when a thread is waiting, sleeping, or otherwise

paused for a long time and another thread interrupts it

using the interrupt method in class Thread.

NullPointerException

Thrown when an application attempts to use null in a case

where an object is required. These include: Calling the

instance method of a null object. Accessing or modifying

the field of a null object. Taking the length of null as if it

were an array. Accessing or modifying the slots of null as if

it were an array. Throwing null as if it were a Throwable

value. Applications should throw instances of this class to

indicate other illegal uses of the null object.

RuntimeException

RuntimeException is the superclass of those exceptions

that can be thrown during the normal operation of the Java

Virtual Machine. A method is not required to declare in its

throws clause any subclasses of RuntimeException that

might be thrown during the execution of the method but

not caught.

55

ArithmeticException

Thrown when an exceptional arithmetic condition has

occurred. For example, an integer "divide by zero" throws

an instance of this class.

IndexOutOfBoundsException

Thrown to indicate that an index of some sort (such as to

an array, to a string, or to a vector) is out of range.

Applications can subclass this class to indicate similar

exceptions.

ArrayIndexOutOfBounds

Exception

Extends IndexOutOfBoundsException. Thrown to indicate

that an array has been accessed with an illegal index. The

index is either negative or greater than or equal to the size

of the array.

StringIndexOutOfBounds

Exception

Extends IndexOutOfBoundsException. Thrown by String

methods to indicate that an index is either negative or

greater than the size of the string. For some methods such

as the charAt method, this exception also is thrown when

the index is equal to the size of the string.

ArrayStoreException

Thrown to indicate that an attempt has been made to store

the wrong type of object into an array of objects. For

example, the following code generates such exception:

Object x[] = new String[3]; x[0] = new Integer(0);

ClassCastException

Thrown to indicate that the code has attempted to cast an

object to a subclass of which it is not an instance. For

example, the following code generates such exception:

Object x = new Integer(0); System.out.println((String)x);

IllegalMonitorState

Exception

Thrown to indicate that a thread has attempted to wait on

an object's monitor or to notify other threads waiting on an

object's monitor without owning the specified monitor.

IllegalArgumentException
Thrown to indicate that a method has been passed an

illegal or inappropriate argument.

IllegalThreadState

Exception

Extends IllegalArgumentException. Thrown to indicate

that a thread is not in an appropriate state for the requested

operation. See, for example, the suspend and resume

methods in class Thread.

NumberFormatException

Extends IllegalArgumentException. Thrown to indicate

that the application has attempted to convert a string to one

of the numeric types, but that the string does not have the

appropriate format.

56

NegativeArraySize

Exception

Thrown if an application tries to create an array with

negative size.

SecurityException
Thrown by the security manager to indicate a security

violation.

EmptyStackException
Thrown by methods in the Stack class to indicate that the

stack is empty.

NoSuchElementException

Thrown by the nextElement method of an Enumeration to

indicate that there are no more elements in the

enumeration.

IOException

Signals that an I/O exception of some sort has occurred.

This class is the general class of exceptions produced by

failed or interrupted I/O operations.

EOFException

Extends IOException. Signals that an end of file or end of

stream has been reached unexpectedly during input. This

exception is mainly used by data input streams to signal

end of stream. Note that many other input operations return

a special value on end of stream rather than throwing an

exception.

InterruptedIOException

Extends IOException. Signals that an I/O operation has

been interrupted. An InterruptedIOException is thrown to

indicate that an input or output transfer has been

terminated because the thread performing it was

interrupted. The field bytesTransferred indicates how many

bytes were successfully transferred before the interruption

occurred

UnsupportedEncoding

Exception

Extends IOException. The Character Encoding is not

supported

UTFDataFormatException

Extends IOException. Signals that a malformed string in

modified UTF-8 format has been read in a data input

stream or by any class that implements the data input

interface.

Error

An Error is a subclass of Throwable that indicates serious

problems that a reasonable application should not try to

catch. Most such errors are abnormal conditions. The

ThreadDeath error, though a "normal" condition, is also a

subclass of Error because most applications should not try

to catch it.

57

LinkageError

Subclasses of LinkageError indicate that a class has some

dependency on another class; however, the latter class has

incompatibly changed after the compilation of the former

class.

NoClassDefFoundError

Extends LinkageError. Thrown if the Java Virtual Machine

or a ClassLoader instance tries to load in the definition of a

class (as part of a normal method call or as part of creating

a new instance using the new expression) and no definition

of the class could be found. The searched-for class

definition existed when the currently executing class was

compiled, but the definition can no longer be found.

VirtualMachineError

Thrown to indicate that the Java Virtual Machine is broken

or has run out of resources necessary for it to continue

operating.

OutOfMemoryError

Extends VirtualMachineError. Thrown when the Java

Virtual Machine cannot allocate an object because it is out

of memory, and no more memory could be made available

by the garbage collector.

58

Reference

[1] H. McGhan and M. O’Connor, “PicoJava: A Direct Execution Engine for Java

Bytecode,” Computer, Vol. 31, Issue 10, pp. 22-30, Oct. 1998.H.-J. Ko, A

Double-issue Java Processor Design for Embedded Application, Mater thesis,

NCTU, 2007.

[2] W. Puffitsch and M. Schoeberl, “picoJavaII in an FPGA,” Proc. of the 5th Int.

Workshop on Java Technologies for Real-Time and Embedded Systems (JTRES),

vol. 231. Sep. 2007, pp. 213-221.K.-N. Su, Design of Heterogeneous Dual-Core

Java Application Processor for Embedded Applications, Mater thesis, NCTU,

2009.

[3] M. Schoeberl, “A Java Processor Architecture for Embedded Real-Time Systems,”

The EUROMICRO Journal of System Architecture, 54, 1-2, 2008, pp.

265-286.C.-F. Hwang, Design of Dual-Core Java Processor for Interactive 3-D

GUI Platform, Mater thesis, NCTU, 2010.

[4] L. Yan and Z. Liang, An accelerator design for speedup of Java Execution in

Consumer Mobile Devices,” Journal of Computers and Electrical Engineering, 35

(2009), pp. 904-919.Dan Bornstein, “Dalvik VM Internals,” Googol Developer

Conference (Google I/O 2008), San Francisco, May 2008.

[5] K. B. Kent and M. Serra, “Hard/Software Co-Design of a Java Virtual Machine,”

Proc. of IEEE Int. Workshop on Rapid Systems Prototyping (RSP), June,

2000.Sun Microsystems, Connected, Limited Device Configuration Specification,

ver. 1.0a, Sun Microsystems White Paper, May 2000.

[6] Sun Microsystems, J2ME Technology, Sun Developer Network URL:

http://Java.sun.com/javame/technology/, 1994-2009.

[7] T. Lindholm and F. Yellin, The Java Virtual Machine Specification, 2nd Ed.,

Addison-Wesley, 1999.B. R. Montague, “JN: OS for an Embedded Java Network

Computer,” IEEE Micro, 17, 3, 1997, pp. 54-60.

[8] C. Porthouse, High performance Java on embedded devices, Jazelle DBX

technology: ARM acceleration technology for the Java Platform, White paper of

ARM Ltd., Oct. 2005.C. Porthouse, High performance Java on embedded devices,

Jazelle DBX technology: ARM acceleration technology for the Java Platform,

59

White paper of ARM Ltd., Oct. 2005.

[9] Bill Venners, Inside the Java 2 Virtual Machine, New York: McGraw-Hill, 2001,

ch.5 ch.6 ch.7 ch.8.A. Krall, “Efficient Java Just-in-Time Compilation,” Proc. of

Int. Conf. on Parallel Architectures and Compilation Techniques, pp. 205-212,

Paris, Oct. 1998.

[10] C.-H. Hsieh, J. C. Gyllenhaal, and W. W. Hwu, “Java Bytecode to Native Code

Translation: The Caffeine Prototype and Preliminary Results,” Proc. of 29th

Annual ACM/IEEE Int. Symp. on Microarchitecture (MICRO’29), pp. 90-99,

Paris, Dec. 1996.H. McGhan and M. O’Connor, “PicoJava: A Direct Execution

Engine for Java Bytecode,” Computer, Vol. 31, Issue 10, pp. 22-30, Oct. 1998.

[11] A. Krall, “Efficient Java Just-in-Time Compilation,” Proc. of Int. Conf. on

Parallel Architectures and Compilation Techniques, pp. 205-212, Paris, Oct.

1998.Sun, picoJava-II Microarchitecture Guide, Sun Microsystems, March 1999.

[12] Dan Bornstein, “Dalvik VM Internals,” Googol Developer Conference (Google

I/O 2008), San Francisco, May 2008.Y. Y. Tan, C. H. Yau, K. M. Lo, W. S. Yu, P.

L. Mok, and A. S. Fong, “Design and Implementation of a Java processor,” IEE

Proceedings, Vol. 153, pp. 20-30, 2006.

[13] Y. Shi, D. Gregg, A. Beatty, and M. Anton Ertl, “Virtual Machine Showdown:

Stack versus Registers,” ACM Transactions on Architecture and Code

Optimization (TACO), Vol. 4, Issue 4, pp.153-163, Jan. 2008.Xilinx LogiCore,

LogiCORE IP Multi-Port Memory Controller (MPMC) (v6.03.a), Xilinx

Production Specification DS643, March, 2011.

[14] Sun, picoJava-II Microarchitecture Guide, Sun Microsystems, March 1999.Xilinx

LogiCore, PLB IPIF (v2.02a), Xilinx Production Specification DS448, April,

2005.

[15] U. Brinkschulte, C. Krakowski, J. Kreuzinger, and T. Ungerer, “A Multithreaded

Java Microcontroller for Thread-Oriented Real-Time Event-Handling,” Proc. of

1999 Int. Conf. on Parallel Architectures and Compilation Techniques (PACT’99),

pp. 34-39, Newport Beach, Oct. 1999.

60

[16] Y. Y. Tan, C. H. Yau, K. M. Lo, W. S. Yu, P. L. Mok, and A. S. Fong, “Design and

Implementation of a Java processor,” IEE Proceedings, Vol. 153, pp. 20-30, 2006.

[17] M. Schoebel, “Evalution of a Java Processor,” Tagungsband Austrochip 2005, pp.

127-134, Oct. 2005.

[18] H.-J. Ko and C.-J. Tsai, “A Double-issue Java Processor Design for Embedded

Application,” Proc. of IEEE Int. Symp. on Circuits and Systems(ISCAS’08),

Seattle, May. 2007.

[19] H.-J. Ko, A Double-issue Java Processor Design for Embedded Application,

Mater thesis, NCTU, 2007.

[20] C.-F. Hwang, K.-N. Su and C.-J. Tsai,” Low-Cost Class Caching Mechanism for

Java SoC,” Proc. of IEEE Int. Symp. on Circuits and Systems(ISCAS’10), Paris,

May. 2010.

[21] C.-F. Hwang, Design of Dual-Core Java Processor for Interactive 3-D GUI

Platform, Mater thesis, NCTU, 2010.

[22] K.-N. Su and C.-J. Tsai, “Fast Host Service Interface Design for Embedded Java

Application Processors,” Proc. of IEEE Int. Symp. on Circuits and Systems

(ISCAS’09) ,Taipei, May, 2009.

[23] K.-N. Su, Design of Heterogeneous Dual-Core Java Application Processor for

Embedded Applications, Mater thesis, NCTU, 2009.

[24] H.-W. Kuo, Design of Java Accelerator IP for Embedded Systems, Mater thesis,

NCTU, 2011.

[25] M. Schoeberl, “A Java Processor Architecture for Embedded Real-Time Systems,”

The EUROMICRO Journal of System Architecture, 54, 1-2, 2008, pp. 265-286.

[26] R. Radhakkrishn, N. Vijaykrishnan, L.K. John, A. Sivasubramaniam,

“Architectural Issues in Java Runtime Systems,” Proc. 6th Int. Symp. on

High-Performance Computer Architecture, 387-398, 2000.

