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Feynman's path-integral formalism of the polaron problem is generalized, by which it is easy and natural
to get the second-order perturbation result in the weak-coupling case and the Pekar result in the strong-
coupling case, even in the crudest ground-state, approximation. With the harmonic approximation, the
polaron energy for the whole range of the coupling constant is obtained, but it is found there is a transition
at coupling constant 5.8. This generalized formalism is translationally invariant. The best self-consistent
variational potential can be determined by a numerical method. Also, in this model it is particularly easy to
estimate the second-order semi-invariant correction to the Jensen inequality. This second-order semi-
invariant correction explicitly is calculated. It generates the perturbation expansion to fourth order in the
weak-coupling case, and it improves Feynman's result by 0.5% for strong coupling. Discussion and
suggestions for further study are included.

I. INTRODUCTION

The problem of finding the ground-state energy
of the Frohlich polaron Hamiltonian has a fairly
substantial literature. It is well known that among
all the methods, Feynman's path-integral theory
gives the best ground-state energy in the overall
range of the coupling strength. ' It is our purpose
to generalize the Feynman formalism, and we find
that in the generalized theory it is much easier
to estimate the second-order semi-invariant cor-
rection in the harmonic approximation case. In
Secs. II and III, we present the generalized for-
malism of the path-integral theory of the polaron
problem.

In Sec. IV, we apply this theory to the ground-
state energy in the ground-state approximation
and harmonic approximation. In Sec. V, we esti-
mate the energy correction due to the second-or-
der semi-invariant term. Both numerical results
and analytic results in the extreme cases are giv-
en. In Sec. VI, we summarize the results and
some suggestions for further study are made.

II. PATH-INTEGRAL METHOD APPLIED TO THE POLARON
PROBLEM

p&, q& are the momentum and coordinate operators
of phonons of mode j, and the interaction terms
w&(x)q& are (8&2vn/V)'~'[u& &(x)/k, ]q&, whe. re
u~ ~(x} is given as follows:

u, ,(x}= cosk x, u»(x) = sink x.

The two real waves uz, (x}, P= 1, 2, constitute a
complete set when the nonzero values of k are re-
stricted to run only over a half-space, that is, a
space in which, if a vector k occurs, -k does not
occur.

The partition function of the polaron may be
written as

z e-~F Tr(e '")

when P -~, the leading term is e Eo. Therefore

lim [ (1/P) lnz]=E-o,

where E, is the ground-state energy of the polar-
on. Thus we may calculate the partition function
to evaluate E,. In particular, we would like to
know the partition function for large P.

Using the path-integral representation, the par-
tition function is written as

The Hamiltonian of the idealized electron-pho-
non system by Frohlich is given by

~2
H= —+Q-,'(p,'. + q,')+ Qw, .(x)q, ,

J J

where we use the units 8= m= co=1. p, x are the
momentum and coordinate operators of electron,

e ~~= Tr(e ~ )= exp — H(t)dt
(path) 0

Here, let us define our notation clearly as follows:
We divided the time axis from 0 to P into N+1
subintervals, each of length 7, i.e. , g= (N+ 1)r,
a.nd the superscript denotes the time sequence in-
dices.
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z= dx"' dq~"' — —— exp — II t dh
0

A A B B

x6&2&'''g N &exp — 7' zq& +w& x q

where the end point coincides with the initial point

X(N+1) = X(0) (N+1) — (0)

where

We define

[dx] =—dx ~~dx~ ~
with

~ &~-&'~ I(—
+ I) + e+ I l&-\&'I—

A A A A n = I/(ee —1}.

dq~ dq,
"' dq~" dq,

' '

B B B B

(dx)-=dx"'[dx],

similarly for the definition of (dq&) and (Dq&), and

/ = (2pg} & H =—(2pg} ~

p„=( )„,exp[-(x"' —x"')'/2~],

1d'„, -=, „„expf-(q,"' —q,'")'/k. ],. . .(2Ff)

Now let us define Z' by

Z Tr(e»)
Z,„Tr(e-» h}

'

where

H~„= ,g(P,'+ q,'-) -.

If we integrate out the phonon coordinates (elim-
inate the phonon oscillators), then we obtain Feyn-
man's result.

gdxppQ ~ /pe(x)~ ~ A& ~ ~ ~ ~ x Igr xXO M) M)

For P -~, then I- 0, hence we have

-I l~-l'~ IM, l, -e
The physical motivation of our variational meth-

od comes from a intuitive belief that in some
sense the reaction of the lattice (phonon) system
to the motions of an electron might be represented
approximately by the reactions of a small number
(hopefully, one) of particles coupled in some sim-
ple way to the electron and to one another. In the
most simple case, we choose the variational Ham-
iltonian as

H„=—+ + v(x —R),

where P, R, and M are the momentum, coordi-
nate, and mass of the fictitious particle. We as-
sume the electron couples with the particle by a
central force potential v(x- R).

Let us carry out the variational method as fol-
lows: by adding and subtracting the term

feov(x(t} —R(t})df to the exponent of (1), path inte-
grating over the coordinate R, and dividing by the
partition function of a free particle. Also by
multiplying and dividing this expression by the
path-integral expression of the partition function
of a system with Hamiltonian H„, therefore, we
have

Z'= DK e~

f (DX)(DR) exp(W+ f v(X -OR)df —f (x -ovR)df) f (Dx)(DR) exp( f',„(x R)df)

f (Dx) (DR) exp(- fN v(x -R)df) f(DR)

(e v+ Iv)g
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where
f{Dx}{DR}exp(-f eov(x —R)dt)

f{DR}

as

1 v' 1 v'
ff = -- " --—'+ v(t'),

2 (M+1) 2 p

f{DR}is the path-integral form of the partition
function of the free fictitious particle,

where p is the reduced mass, 1/p = 1+ 1/M.
Therefore, the Schrodinger equation of this sys-
tem can be separated as follows:

V=— v xt -Bt)dt,
0

and the average ( &„ is defined by

(A)„=
f{Dx}{DR}Aexp(- f eov(x —R)dt)

f{Dx}{DR}exp(-f tv(x —R)dt)

By Jensen's inequality, we have

zt = (evvv& z ~ e«v&&vz
V

(3)

2V„((,:-„) (
(,.t.-,

)
V-' ll( )(&(( &,

c', ,((l

and the total energy E(&t, ») is given by

((t, n& &t n 2(M + I) tt'

(4)

The lower bound for Z' is given by the right-
hand side of (3), therefore an upper bound for
the polaron energy is

E inZ (V&„(IV&„' '=p p"- p'

This variational formulation is different from
that of Feynman's' which has used a specific form
of interaction —"harmonic interaction" —between
the electron and the fictitious particle. By that
special choice, the form of interaction is given
explicity, and fortunately, the exact integration
over the R variable can be carried out, therefore,
in the Feynman's formulation; what remains is
the integration over the electron's coordinate x.
In the generalized formulation, we do not specify
the form of the interaction which can be varied to
make the inequality (3}as strong as possible.
The disadvantage of this formulation [as can be
seen in (3}] is our use of Jensen's inequality
twice, once for the path-integral average over
the electron's coordinate x, and the other for the
variable R. Therefore the lower bound of (3) may
be weaker than that of Feynman's method if we
also assume the interaction is harmonic. %e will
show this fact by explicit calculations in a later
section. In general, our method can be better,
because we can adjust the interaction form self-
consistently, as an example, we can obtain the
Pekar result (which is better than Feynman's re-
sult in the strong coupling limit) very naturally
even in the crudest approximation.

III. THE PARTITION FUNCTION OF POLARON FOR AN

UNSPECIFIED GENERAL FORM OF VARIATIONAL
POTENTIAL

In this section, we formulate the upper bound
of the polaron energy for the general form of
variational potential v(x —R). If the relative coor-
dinate $ and coordinate of the center of mass g
are used, then the Hamiltonian can be expressed

Now, let us calculate Z, (V&„, and (W& „separate-
ly in order to obtain Z'.

First, Z is defined as

f{Dx}{DR}exp(-feov(x- R)dt)
Z=

f{DR}

Tr(e N&iv}

Tr(e e~'~ ~)

The denominator is the partition function of a free
particle with mass M; this is well known as

M
Tr(e ~ ' '"}= {DR}=e «"= V

2mP

The partition function of the system H„can be ex-
pressed in ($, &}) representation as (as P-~)

v'(t '""l= J d( f dtt ((tt It '"
l
(V&, ,

(M ()"*

Therefore we have

Z= (I/p" ')e "o.
Secondly, let us evaluate the (V&„ term. There
are many ways to do this; the following one is a
very simple one:

(vl„=(J( (x —R}dt)

= ——ln Dx DR

xexp -A. vx —Rdt
0 }isl

dx'"d R'"

x ——[lnG (x"' R(" x'" R'"
(&(.v)]ex

(5)
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G,(X(",R"'x"',R"' ~Xv) = (X"',R'" ~e "» ~X'",R"')
is the Green's function of the Hamiltonian
(p'/2) + (P'/2M) + Xv(x —R) beginning at (x'", R"')
and ending at the same position (x&'&, R&o&). For
P very large,

G (x«» R«» x«» R&(» l&&v) ly (x&o& R&o&} loe oeo&»&

Therefore the integrand in Eq. (5) can be calcu-
lated by using perturbation theory (X= l+ e, e -0),
that is,

(V)„=P dx&o&d R&o&

=P dx'"dR"'v x'" —R'" tt) x'"pR'"

written as
2 E

(W)„=—g g M» (.u,(( x(») u,&(x &&
&)) .

r, r'=0

Setting t=(l —f')~& 0, we can write this as follows:

(W) Tr(e»o)

d P - t e' Tr e '~ "~~ e '~~zg
0

As P-~, we only take the ground state of the dis-
crete level &„, and sum over the continuous quan-
tum number y in the e ' " ~ term in calculating
the trace. If we also use the fact that

Q~, (&), $ )~,(&)', t') =
jg-g'+ &

—&'I

=P d'$v $ u, ( (6)
g(n, =T-I'; k, h'), (8)

Last, we evaluate (W)„. From Eq. (2), (W)„ is the right-hand side of Eq. (7) is given as

M+
df B o &&u+&&('o&&(o o & Qu+($'}u ($ )u+($ )u„($'}e '"

2 2 0 pt v) n

the g and q' integration can be done explicitly,

t3/' cia- g'I
e-r. (&+&)/2t)(n-0') (/~2' erf

M+1 p]g $ j

where

and, because

M

[2(M+ i)]"' '

(M+()"* "

Therefore we have the expression for (W)„:

(w) = ' Q ((& ((') dt f )o yg

where

+&n= &n - &O ~

Now the t integration can be done by partial integration, and using the definition of erf function we have

(W)„=
&rp uo*(g')u, ($ }u*„($)u„(t') 1 —e '«o' "&

v 2p neo &q„+ 1

If we make use of the Fourier transform

dk 4m
e jlr. r

Ir I (2&&)' (b'+ k'}

(9)

then ( W)„can also be expressed as
OO ] 2 oo

n

(9')
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where we define

b „2=—C(h e „+1}'~

Therefore, it is clear that every G„ term is positive. If we just take any kind of partial sum or a single
term, the variational bound still holds true, but makes the inequality weaker.

Let us now summarize the results as follows:

Eo ~ E„=e, —(V)„/p —(W)„/p

u($') u(o$) „*u($) „u($') 1 —exp[-2C(1+4&„)' 'I ) —$'I]
v 2 p. ~~o n

where we combine the first two terms on the right-hand side as

(lo)

d$v $ Qp) Qp P 2P Qp

and it is noted ( W)„can also be expressed as (9').

2

Ep- E„= Qp g —Qp ( d(

a lup g up g I

Since E'„ is a functional of Qp alone and the only
constraint is that Qp is normalized, the station-
ary condition for the best choice of v, 5E'„/bv(g)
= 0, is equivalent to

& E„-A up g' 'd$' u,(6)= o.

This gives at once

= e.u.(( ) (11)

From the above equation, we see the best self-
consistent potential is a Hartree-type potential.

For the strong coupling case, we assume C
—~,' Eq. (11)will just reduce to the semiclassical
theory of Pekar. ' According to the work of Pekar
in strong coupling case, the polaron is localized
in a Hartree-type potential well, and the polaron
energy is then calculated by a variational method.
Pekar took the trial function as

u,(r) = N [1+br+ a(br)'] e ~",

IV. GROUND-STATE APPROXIMATION AND HARMONIC
APPROXIMATION FOR THE POLARON ENERGY

From (10) in the last section, it is obvious that
if we take only the ground-state term (n = 0) in
the summation of (W)„, then the right-hand side
of (10) is still an upper bound of the polaron en-
ergy. Therefore we can write

then obtained the energy

E'„= -0.1088m'.

Recently, Miyake' recalculated the Pekar energy
by both exact numerical integration and Pekar's
variational method. It was found that the varia-
tional energy is -0.108504m' which is a little
higher than the exact numerical quadrature value
(-0.108513n') as it should be. Therefore, the
often quoted result -0.1088m' of Pekar's varia-
tional calculation is not quite accurate. But from
Miyake's work, it is found that Pekar's variation-
al calculation gives an excellent approximation;
the energy differs by less than 0.01%& and the error
in the wave function is less than 1% where the val-
ue of the wave function is appreciable.

For very small coupling, n-0, assume C-O,
then by expanding (11), we obtain an equation
which describes an electron moving in a constant
potential of magnitude -o., and from (11},we can
easily see in this limit (n-0} the polaron energy
is -n, which agrees with that of the second-order
perturbation calculation. By this variational meth-
od, without any specific form of v(x —R), we can
now obtain the correct energy values in both weak
and strong limiting cases. In order to find the
effects of the inclusion of all the excited states,
we take a specific example of interaction poten-
tial —harmonic interaction. By this harmonic-
interaction approximation, we can get the explicit
results which are fairly good for all values cou-
pling constant.

As a matter of fact for this particular choice of
interaction,

v(x —R) = —,'Z(x —R)', (12)

the (W}„/P in our method can be easily shown to
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= p-'~'~Q ~'~+ Q' —~'
0

x(1 —e ~)) ' 'e d7, (13)

be exactly equal to the A which appears in Eqs.
(21) and (31) in Feynman's original paper, ' where

A=2' 'a S,e ' "ds1

Ix(t) -x(s) I

~'= K/M, O'= K/p, .
We can also obtain this result by summing up the
expression (9') by taking u„($ ) as the wave func-
tions of harmonic oscillator as an alternative way
to obtain the (W)„; we include this calculation in
the Appendix. For the harmonic approximation,

z.- &~ l~(& ) l~ )= &~. lp'/2t l~ )
is given by 4Q. Therefore the upper bound of the
polaron energy is given by

1 t
E0& E„=~Q —&Q dt.

Wz ( 't+ [(Il' —~')/11](1 —e "'))"' (14)

BE„/B~= 0, BE„/Bn = 0. (15)

But from (14), we can see that only the integral
A contains e, and A is an even function of ~, so
the derivative of A with respect to ~ is always
zero at ~= 0, and we can see from following this
that ~= 0 is a point which makes A maximum.

If we set cu=yQ and Qt=y,

From this expression, it is easy to see that y= 0
will make A maximum, therefore, the best value
of &u is zero. Hence the energy expression (14)
can be reduced to

Unfortunately, the integral in (14) cannot be eval-
uated in closed form, so that a complete determi-
nation of the polaron energy requires numerical
integration.

Equation (14) has two parameters which we
varied to give the lowest energy; there we have

This means that when n- 5.8, the best value of Q
-0. This can also be seen by plotting Eq. (16) di-
rectly as a function of Q for various values of a.
It is found that when ca& 5.8, there is no minimum
for E„but the end point E„(A=O) corresponding to
the least energy; for a&5.8, there is a minimum
for E„with nonzero 0 (& 0). Plotting these E„as
a function of n, we find a transition at n = 5.8,
that is, dE (a)/do, is not continuous at n = 5.8.

And for large n we can have large Q; then

Q ' '1r-,' r1 Q Q ' '
1

2ln2+C

C is the Euler number here. With this expression
of A, we can determine the best choice of Q as

0 = 4 n'/9w —4 ln2 —2C,

and hence the polaron energy

r(1/fl)
I'(-,' + I/O)

(16) G 11E„=———2(21n2+ C)+0
3m Q j' (19)

The condition (15), BE /BA= 0, yields

3 1 r(-'. +z)
[q(1+z) —g(2 + z) ]4 z' I'(1+z) vj z

where z= 1/Il, and g(z) = Idldz) lnI'(z) when z- ~
(i.e. , Q-O); the condition (1V) determining n
yields a-5.8, where we have used the asymptotic
relation

I'(1+ z) 1=vz 1+—+, z-~,
I'(-," + z) 8z

1 1
y(1+z) —q(-,'+z) =—— +.

8z2

for a large coupling constant.
For a that are small, 0=0, then (16) becomes

E„=-a. In Table I, a comparison of various pre-
vious results about polaron energy in the range of
intermediate coupling constant a is given. Here,
both Luttinger-Lu and Feynman's results are in
the harmonic approximation. From this table, it
is found that our result is inferior to that of Feyn-
man' s, as it should be, because we have Jensen's
inequality one more time than Feynman. But it is
known for very strong coupling that Pekar's energy
will be lowest, and we have seen that even our re-
sult of the ground-state approximation for a gen-
eral form of potential will approach that of Pekar's
result. From this result, we know that in the
strong-coupling case, the electron is trapped in



GENERALIZED PATH-INTEGRAL FORMALISM OF THE. . ~ 4257

For strong coupling, it reduces to

E„-—(1/Sv) a'- -0.106a'. (21)

Comparing (21) with (19), we can see that the ex-
cited states contribute only to the "fluctuation en-
ergy" (of order a ). Therefore if we include all
the excited states in the calculation of a general
potential, the constant "fluctuation-energy" term
must come out as it does in the harmonic approx-
imation.

V. ESTIMATION OF THE ENERGY CORRECTION DUE
TO THE SECOND-ORDER SEMI-INVARIANT

When we use the path-integral variational meth-
od to evaluate the ground-state energy of the po-
laron, we have assumed the Jensen inequality

&eA& ) e(A) (22)

where A= W+ t/'. However, Jensen's inequality is
actually the first term of the exact semi-invari-
ant or cumulant expansion

a potential which is not like the harmonic poten-
tial and the contribution from the states other than
ground state is not significant. Those excited
states only contribute to the constant term instead
of the a' term. This can be seen clearly in the
following example of harmonic interaction but ex-
cluding excited states.

If we take only the ground-state harmonic wave
function in the expression (9), instead of taking
all the excited states into account, it is trivial to
calculate the upper bound of the polaron energy
[this result, of course, is worse than (16)], and
it is

n n li nE ~ E'„= -', fl —a—exp —,
I
erfc —,—~]

(20)

(22)

and 4E, is given by

nE, = -(1/p)(&wv)„- &w)„&v&„) .
To evaluate (24), we replace V by i(V in (W)„,

then

(24)

( ")= p(&A& —,(&A*) —&A)*) —,

[(A') —3(A)((A') —(A)') —.(A& ['").
Therefore, if the approximation

&eA& e(A)

is very good, we expect that the fluctuation

(1/2 })((A'& —&A)')

should be a small correction to the inequality (22}.
With this second cumulant term, we no longer
have the Jensen inequality, that is,
exp[(A)+-,'((A') —(A)'}] may not be a lower bound
for (e").

The second-order semi-invariant is

F'"= [&(w+ v)'&-(w+ v)']

= [&w') —&w&'+ 2(&wv) —(w&&v))+ (v') —&v&'] .
The second-order semi-invariant correction to
the ground-state polaron energy is

n.E= -(1/2P)F'"
= -(1/2P) [((W')„—(W)'„) + 2((WV)„—(W)„(V)„)

(&v'&„- &v&„')]

= b, E~+ AE2+ EE3.

Therefore, for harmonic interaction, we calcu-
late 4E, first,

r E,= —» ((v')„- &v&'„)
1

TABLE I. Polaron energy from previous work.

Coupling constant
5 7

Frohlich eg ~l. (Ref. 19)
Gurari (Bef. 20)
Lee, Low, and Pines (Ref. 21)
Lee and Pines (Ref. 7)
Gross (Ref. 22)
Feynman (Refs. 1 and 2)
Luttinger and Lu (Ref. 23)
Pekar (Ref. 24)
Hohler (Bef. 25)

-1.00
-1.00
-1.00
-1.00
-1.01
-1.01
-1.00

-3.00
-3.00
-3.00
-3.00
-3.09
-3.13
-3.00

-5.00
-5.00
-5.00
-5.30
-5.24

5 44
-5.00

-7.00
-7.55
-7.43
-8.11
-7.36
-6.83
-6.70

-9.95
-9.65

-11.49
-10.72
-10.31
-10.10

-12.41
-11.88
-15.71
-15.00
-14.66
-14.33
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&E,= --—(W)
1 8

P ~P ~v

= t (&()) '~'Is(s -)~ B((~ —,——)
1+—

or

4 ~ r1 u+-,'

where B(x,y) is the beta function defined as

B( ) = t '-'(1 —)' 'dt =-

and P is defined by

(25)

Now let us concentrate on the expression (W')„
—(W)'„. From the definition of (W')„, it can be ex-
pressed as

a'
(W ) = ' ' ' dt ds dt ds e-(tt st-l-its ss(-

v 2 2 1 . 1
0

(26)
lr, -r, I lr, -r, l

Here, we may express 1/Ir, —r,
I

by a Fourier
1 1transform:

1 dk
, , exp[ik (r, —r, }),~

~

1 1

=B(x, 1 —x) [He(x)&0].
and similarly for 1/

I
r, —r, I. For this reason

we need to study

f—:(exp[ik (r, -r, )+ik'(r, —r, )])„

dr e 0exp jk r, -r, +ik' r, -r, dre o,

where

$0= ——' —dt — dtdg r, —r
0

The path integral in the numerator is of the form

N= dr exp S0+ f t rtdt (28}

where specifically

f(t) = ik[5(t —t, ) —&(t —s,)] + ik'[&(t —t,) —5(t —s,)] .

Following Feynman's trick, ' the exponent of I is obtained by

J= -(k'A+ k "B+k' k'D},

where

2 Q2 2

0 M

2 /72
(e Alto- tl+ e-01st ttl s-Alt-2 ttl e-ols-s-stl)

203

hence we can write (W')„as
B 1 dk dk'

(W') =— ' ' dt ds dt ds e "t '& ed'(k, k')
v 2 2 1 1 4' y2 y I2

0
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After k and k' integration, we have

Q 2
(W') =— dt ds dt ds e "1 st~ "2 '2' ——tan '

V
0

(3o)

Recall that best value of (d for minimum energy is always 0, so in our theory the expression for A. , B,D
is particularly simple,

t1(
~

t S ~) (1 e-Ql tt st I-)
1

2n

g( ~t S ~) (l e-Al tt stl )-
1

/e-Ql tt 321 +-e- lQt 2 sl t-e Qltt t21 -e-Qlst-ssl )
2g

and also, (W)„ is given, by the same trick, as

B B

(W)„= dt, ds, e "1 '1',
7T o 0 k~gj

This is the expression which appeared in the Eq. (31) of Feynman's paper' with (d= 0.
If we define 8 by

sin28 = D22/4n, n2,

then we have
a' -I t -syl-It -s I

8

0 1 2

In order to evaluate this expression, we need a theorem on multiple integration; the theorem is:

(31)

(32)

dx„dx x dx 2'' ~j, &x &2 ~ ~ ~ + +' ~ d+ 1 ~-2 ~1Fs (33)

where F, is the symmetrized F, which is defined by

F, = x„x„.. . nf,
P

the Q~ means to sum over all the possible permutations of the arguments of the function F, that is,

1
Fs ( IF(«lt «2t «3t ' ' ') F(«2t«tt«3t ' ' ' )+F(«3t «2t «it ' ' ' ) ]

Pl s

For our case, from Eq. (26), it can be easily found that (W')„ is symmetric under these interchanges: s,—t„s,—t„and (s„ t, ) (s„ t,) simultaneously. Therefore we have only three independent expres-
sions in F„. they are

F(s,t,s,t,), F(s,s,t, t,), and F(s,t,s,t,).
Hence we can write (W')„—(W)'„as

~2 t2 S2 tg
(W')„—(W)'„=—4i dt, ds, dt, ds, 3[F(s t,stt ) 2F2(+s, s,t, t,)+ F(s,t,s,t,)],m'

0 0 0 0

where we assume t, & s, & t, & s, . If we define

(34)

S2 —t~ —t, tg —~g-t j

we can have b E,"' equal to the first term of (-1/2P)((W'), —(W)'„):

2 ~ t (O e t

(l eAt)/ 3(1 eAt)/ sin8,

where sin8, = —,'(1 —e "')' '(1 —e "')' '. /2E,'" equals the second term of (-1/2p)((W') —(W)2):

2

(l e A(r+t))1/2(1 -e A(t+tt)3/2-

(35)

(36)
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nE(3) equals the third term of (-1/2p)((W')„—(W)'„):

(8,/sin8, —1)dte dte dte
p p p [(I e-G(t+t+t)}(I e ot-)]l/2

Now, we arrive at the final result for second-order semi-invariant correction; the correction is

t).E= (tlE '+rtE ' + t)E,")+ttE2+ dE3.

(3'I }

(38)

Recalling that for o(& ()tc = 58, 0= 0 is the best choice. In this case (0= 0), we have t) El(t) = t) E2= nE3= 0,
and b.E,'" and b.E,"' reduce to

AEf dt e dt e dt e
~/

(2 t t 2( (82/si118 1)
p p p [(t+ t)(t+7)]"'

bE, = —— dte dte dte ,—, (83/sin8' —1)
2 2 2 [t(t+t+t)]' '

(39)

(40)

where

t

((t+ t )(t+ t )]"'

(t )1/ 2

sine,' =
(t+ t+ t)

SU16),'=—

Therefore, for a~ 5.8, we have

~E= b.E&"+ b.E,"&= -a'g,
where g is a pure number. We can evaluate this
pure number by numerical integration, and it is
equal to 0.0157. Therefore,

bE= -0.015Va .

By this value of 0, we can obtain the approximate
energy corrections: From (35), (36), a,nd (3't),
we can have

nE(1) 1 ~2/v t) E(2) 1 ~2/v t) E(3) 1 ~2/v

This result is superior to both that of Haga and
Lee and Pine', Haga's result does not reduce to
perturbation theory to order (22 (when a is small).
Feynman's result will reduce to that of Haga in
the weak-coupling limit. Hohler' has done the
straightforward fourth-order perturbation calcu-
lation, and our result agrees with that of Hohler.
Hence in this limit the cumulant series generates
the perturbation expansion.

Also for large o(, from (16) we know the best
choice of 0 is

n- (4/9)/) a'.

TABLE II. Polaron energy.

For small n:

-~ -0.0123~2
-o —0.0126~
-~ —0.0140~'-~ —0.0157~'
—~ —0.0157~
-G. —0.0159~'

For large o.'

Lee and Pines; Gurari
Frohlich, Pelzer,
and Zierau

Feynman
Haga
Lee et al, .
Hohler
Luttinger and Lu
Marshall and Mills

l

This means the coefficient of n' is corrected to

E+ ttE= -(a'/St()(1+ —) —-0.1066(2 .
The coefficient of n' is 0.4-0.5% lower than that
of our previous result. (That is, -I/St/: This is
also Feynman's result. ) The ratio of our cor-
rected coefficient to that of Pekar's is 0.980.
Comparing with 0.9'?4 which is the ratio of Feyn-
man's to Pekar's, there is a small improvement.

A summary of results of our work and that of
other authors is given in Table II (in both the
weak- and strong-coupling limits). In Table III,
a comparison between our results, with the sec-
ond order semi-invariant term added, and Feyn-
man's is given. The second-order energy cor-
rection was also carried out by Marshall and
Mills' in Feynman's harmonic model; their sec-

respectively.
Also, from (23) and (25), one can easily obtain

ttE2- ct'/6)/, tlE3- —
—,
' (2 /)t.

Therefore, in the strong-coupling limit, the en-
ergy correction is given by

tlE= (tt E"'+n.E)2'+ rtE,"') +rtE, + tlE3
' (2'/)t.

720

-0.1085~2
-0.1085&

-Q.lQ85+ —2
3

0.1061~2 -', (2 ln2+C) —4
-0.1066n —3/2(2 In2 + C)

-0.106A2 3/2
-0.1078&2

Pekar
Luttinger and Lu
(ground-state approx. )

Pekar, Bogolubov,
and Tyablikov

Feynman
Luttinger and Lu

(harmonic inter. approx. )
Hohler
Marshall and Mills
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TABLE III. Plaron energy: Comparison between Feynman's result and Luttinger and Lu's
model with second-order semi-invariant term.

Ey -1.012

3.44
2.55

-3.13

4.02
2.13

-5.44

5.81
1.60

-8.11

9.85
1.28

-11.48

15.50
1.15

-15.71

0
+LL
&ELL
E L L++E LL

0.0
-1.00
-0.016
-1.016

0.0
-3.00
-0.14
-3.14

0.0
-5.00
-0.40
-5.40

3.95
-7.36
-0.65
-8.01

8.45
-10.72
-0.84

-11.56

14.30
-15.00
-1.305

-16.31

ond-order correction is larger than our model of
harmonic approximation, as it should be.

VI. DISCUSSION AND SUMMARY

The problem of polaron has received consider-
able attention in the past years, many authors
conjectured that there might be a critical coupling
constant n, (Refs. 10 and ll}; when n exceeds
this critical value (n, - 5.8), the wave function
abruptly shrinks (self-traps), and the slope of
E(n} changes discontinuously, although E is still
a. continuous function of the coupling constant n.
By the path-integral representation of partition
function, the problem of an electron moving in a
random system is very similar to the polaron
problem. By this close similarity and some other
arguments, there is a long-standing conjecture
about the possibility of a "phase transition" be-
tween localized states and extended states. Our
model is very similar to the path-integral method
of Feynman which gives nondiscontinuous curve of
E'(n}, but our method indeed has the discontinuity
phenomenon at n- 5.8. Gross" has suggested that
the transition between the localized and extended
function is abrupt. This abrupt change seems to
be a common feature of several approaches. But,
because Feynman's treatment is the most success-
ful overall theory of polaron, therefore, it is still
an unanswered theoretical question —whether this
feature is a property of the general type or if it
just comes from approximation.

Our theory is a variational method; hence any
choice of trial potential or wave function wiQ give
an upper bound of the exact answer. According to
the previous work of many other authors and our
experience, the harmonic interaction potential
seems to be the most reasonable, exactly soluble
potential form. Frohlich" has used the wave func-
tion appropriate to the lowest-energy state of an
electron in a Coulomb potential in Pekar's approx-
imation; the wave function has the form:

(P'/8w)'~'exp(=, 'P ~x ~).

It is found the best value is when P = 5n/8 and the
corresponding value for energy is

S= -0.0977 n'.
In addition, Allcock' has shown in ground-state

approximation (Pekar's theory), "harmonic oscil-
lator's wave function" or "improved Gaussian
wave function" gives a better result than that of
the Coulomb potential wave function. Also, Mat-
suura" formulates the problem by path-integral
representation with an effective local Hamiltonian
(Feynman's model and our model have a two-time-
difference retarded effective Hamiltonian) which
is not translationally invariant. This effective po-
tential method gives the same result as that ob-
tained from second-order perturbation theory. "
Matsuura takes his choice of effective potential
as Coulomb potential, the results show that the
Coulomb potential is inferior to that of harmonic
potential. Clearly the calculation based on a har-
monic potential will be reasonably satisfactory if
the exact potential and harmonic potential agree
wherever the electron's wave function is large,
and it is indeed so as shown by Allcock.

According to our model, the most general ex-
pression of the polaron energy is given by:

E,-(, ip'/2 i,& —(W&„/P,

[p'/2p+ v($)]u„(]}=eQ„(]),

where (W&„ is given by Eq. (9) or Eq. (9'). Our
formalism is translationally invariant. By ignor-
ing this translational invariance, our formalism
can be reduced to the same equation and energy
results as that of the Green's-function equation of
motion analysis bg Matz et al."and the effective
local Hamiltonian theory of Haken" and
Matsurra 's

Although it is too complicated to get the expres-
sion of the self-consistent potential in a closed
form, we suggest some iterative procedure,
which might be very tedious, but can be done in
principle. This work is underway at present; the
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result will be reported elsewhere.
By the experience from the harmonic interaction

potential approximation, it is noticed that the high-
er excited states contribute only to the constant
term (n', the fluctuation energy term); it should
be a good start by first taking the ground-state
approximation. From this approximation, we have
the self-consistent potential as the following:

(f)
—aP2 fdpi, (,4')~I'

(y

Using this numerical self-consistent potential
as the starting potential, we may calculate the ex-
cited wave functions u„($) from the Schrodinger
equation. By these higher excited states, we can
estimate an improved value for (W)„by every giv-
en p. %e guess the self-consistent potential ap-
propriate to the polaron problem must be like a
Coulomb potential at large distances and like the
harmonic potential in the region where the elec-
tron wave function is large.

Using our model, it is easy to connect Pekar's
result to our theory, which is difficult to see in
Feynman's formulation. And it is shown clearly
and explicitly that the higher excited states will
contribute to the fluctuation energy. This model
is not restricted to the harmonic approximation,
although it is a pretty good one; in principle, any
kind of trial potential is possible, and the best one
certainly will be the self-consistent one. In order
to see the order of magnitude of the errors which
might occur due to the Jensen's inequality, this
model is particularly easy to evalute the second-
order semi-invariant correction explicitly.

Because we are dealing with a three-dimensional
case, the quantum number n actually is a triplet
(n„n„n~}—= (o ), and let us define n, + n, + n, = p7.

Hence

where we define

In In
fy

(A1)

and

+00

cos(yx) e "H, (x}dx= 7r' 'y'"e "'~',
~00

r
+DO

»n(yx)e "H (x)dx = (-x ~ )y
~ e "~

w OQ

2~ ~

~ I
i~I I~I I~

t I2&n, t

I„= Jt u„($,)u, ($. ,)e'~~'~d(„ i =1, 2, 3. (A2)

If u(x —R)= zK(X —R)', then

u(() =

.~ =(""}"'(.',";:";:")
x e '"' "H„(v'pQ), )H„(l pQ), )H„(v' pe), ),

where

&v= 4K/M, and 0=v'K/p, .
By the Fourier cosine and sine transform identity,
we have

APPENDIX: EVALUATION OF (W)„BY SUMMING OVER
COMPLETE STATES OF HARMONIC OSCILLATOR

From Eq. (9'), we write

Therefore

(W)„= Q G„.
V 2p n=o

for n, even or odd. We have defined y,. -=k,./
v' p.Q. So

4C
dk y

n, !n, !n, ! 2v' k'(k'+ b )
(A3)

(W)„= Q G,
v2p g

(yP 8C 2 N ~
2dke~ ~2 dt y gy n2y n3e ~ ~fy+"t

~2p, &, „„„n,ln, in, I

Since b,' is proportional to N, which is the sum of pfy &f2 ($3 we try to make it as a product of +] +g &3,
so we use the identity

2, 2
dte
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to separate n» n» n„by writing

b,' = 4C'(dg, + 1)= 4C AN+ 4C',

(t) = ' "*
u tan-"'*--"*&» & "&"""-"*"""~"'1

wv 2p 0 0
Jt.J.

Qp 8+2 ttO tto
3

dke" ~' ' ' "@[exp(-y e t «~'}]
V2p. ~ o o j=1

oP 8C' 1 ewe «
e 'dt dk exp —

~

t+ k'
v 2p. ~ o o 2ttA

oP, 2p.a, "' eWC
4C2 dt

(1+ 2 tt At —e~e «)' » '

(A4)

Therefore,

(~)"-
A

' e t"= nQ dt
(&o't+ [(A' —td')IA](1 —e «))' '

=A(A, ~). (A5)
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