
國 立 交 通 大 學

網路工程研究所

碩 士 論 文

兩 階 段 式 線 上 記 憶 體 洩 漏 偵 測

Two-Phase Online Memory Leak Detection

研 究 生：梁睿珊

指導教授：林一平 教授

 蔡孟勳 教授

中 華 民 國 一 ○ 一 年 六 月

兩階段式線上記憶體洩漏偵測

Two-Phase Online Memory Leak Detection

研 究 生：梁睿珊 Student：Jui-Shan Liang

指導教授：林一平 博士 Advisors：Yi-Bing Lin

 蔡孟勳 博士 Advisors：Meng-Hsun Tsai

國 立 交 通 大 學

網 路 工 程 研 究 所

碩 士 論 文

A Thesis

Submitted to Institute of Network Engineering

College of Computer Science

National Chiao Tung University

in partial Fulfillment of the Requirements

for the Degree of

Master

in

Computer Science

June 2012

Hsinchu, Taiwan, Republic of China

中華民國一○一年六月

兩階段式線上記憶體洩漏偵測

學生：梁睿珊 指導教授：林一平教授

蔡孟勳教授

國立交通大學網路工程研究所碩士班

摘 要

程式執行過程中若有記憶體洩漏之現象發生，會導致記憶體資源的浪費，降低系統

運行的效能，甚至導致整個系統當機。記憶體洩漏的問題往往不易在開發階段立即發

現並修復，因此需要線上記憶體洩漏偵測之技術。

本論文提出以兩階段的方式線上偵測 Java程式之記憶體洩漏。在第一階段（離線分

析），使用者執行所要監控之程式一段時間，並使用我們所提出之代理程式分析其記憶

體堆疊 (heap)。代理程式接著離線計算記憶體堆疊中各資料結構的總佔用位元數 (total

occupied bytes)，以便使用者依據此計算結果選擇可能造成記憶體洩漏之物件類別。在

第二階段（線上監看），為了減少程式運行時額外增加的時間與空間，代理程式僅監看

使用者所選擇的類別之物件，而非監看記憶體堆疊中的所有物件。本方法會回報被監

看物件最後被存取之時間與位置（包含原始碼檔名以及行號），以利使用者參考並修改

程式。

I

Two-Phase Online Memory Leak Detection

Student: Jui-Shan Liang Advisors: Prof. Yi-Bing Lin

Prof. Meng-Hsun Tsai

Institute of Network Engineering

National Chiao Tung University

ABSTRACT

Memory leaks generated by a running program may exhaust memory resources and

degrade system performance. In worst case memory leaks eventually crash the whole

system. They threaten long-running systems such as customer service systems in telecom

operations. It is hard to reproduce these kinds of leaks, let alone to identify and fix them

early in the development phase. Thus online memory leak detection is required.

In this paper we propose a two-phase approach to the online memory leak detection

problem for Java programs. In phase one (offline analysis), the user executes the investi-

gated program for a while and analyzes its heap with the proposed agent. The agent then

summarizes the total occupied bytes of data structures in the heap offline, and the user is

then able to select classes whose object instances seem to be potential leaks by examining

the total occupied bytes summary. In phase two (online monitoring), to reduce the space

and time overhead at runtime, the agent monitors online the objects of selected classes

instead of monitoring all objects in the heap. The approach reports the last accessed time

and location (including the source file name and the line number) of each leak candidate,

with which the user can identify and fix leaks in the program.

II

Acknowledgements

I would like to express my sincere thanks to my advisors Prof. Yi-Bing Lin and Prof.

Meng-Hsun Tsai for their supervision and perspicacious advices. I could not complete

this thesis without their guidance. I would also like to thank my committee members,

Prof. Ai-Chun Pang and Dr. Ying-Rong Sung, for their comments and encouragements.

Many thanks to my two teammates Hung-Wei Kao and Kuan-Hsien Li in Intelligent

Mobile Service Laboratory, National Cheng Kung University. I will always treasure the

days that we worked remotely and realized our ideas together.

My colleagues of Laboratory 117 have enriched my graduate student life. Thank them

for all the happy memories they have brought me. Thanks also to my love Chih-Ta Lin

for his warm support and inspiring discussions.

Last but not least, I would like to express my sincere thanks to my parents and my

elder brother. Without their patience and selfless support through all these years, I would

not have become who I am today. I feel truly grateful growing up in this family.

Jui-Shan Liang

July 2012

III

Contents

摘要 I

Abstract II

Acknowledgements III

Contents IV

List of Figures VII

List of Tables VIII

1 Introduction 1

2 Related Work 3

3 Concept of Referencing Among Objects 5

3.1 Total Occupied Bytes . 5

3.2 Reference Paths and Reference Rules . 8

4 Design and Implementation of Two-Phase Online Memory Leak Detec-

IV

tion 12

4.1 Overview . 12

4.1.1 Structure Diagram . 13

4.1.2 Phase One: Offline Analysis . 13

4.1.3 Phase Two: Online Monitoring . 14

4.2 User Interface Module . 15

4.2.1 Phase One Dialog Component . 15

4.2.2 Phase Two Dialog Components . 18

4.3 Core Module . 20

4.3.1 Heap Snapshot Component . 20

4.3.2 Dominator Tree Component . 21

4.3.3 Object Monitor Component . 21

4.3.4 Record Component . 22

4.3.5 Reporter Component . 23

5 Performance Evaluation 24

5.1 Locating Memory Leak in Eclipse 3.1.2 . 24

5.2 Space Overhead Analysis . 25

5.2.1 Phase One (Offline Analysis) . 25

5.2.2 Phase Two (Online Monitoring) . 27

5.3 Time Overhead Analysis . 28

V

6 Conclusions 31

Bibliography 32

A The MyProgram Program 34

B The RuntimeExp Program 44

VI

List of Figures

3.1 Heap snapshot of our sample program MyProgram 6

3.2 An illustration of total occupied bytes of dominator tree nodes 8

3.3 A sample heap snapshot . 9

3.4 Illustrations of reference rules . 10

4.1 The proposed agent communicates with a JVM via the JVM Tool Interface 13

4.2 Structure diagram of the proposed two-phase memory leak detection agent 14

4.3 Dialog of phase one (offline analysis) . 15

4.4 Heap snapshot of our sample program MyProgram 16

4.5 The dominator tree converted from the heap snapshot shown in Figure 4.4 17

4.6 Home dialog of phase two (online monitoring) 18

4.7 Report dialog of phase two (online monitoring) 19

5.1 Time overhead measurement of RuntimeExp 30

VII

List of Tables

4.1 The record of the setting object of our sample program MyProgram 22

5.1 Online monitoring report generated after comparing 12MB jar files for five

times . 25

5.2 Space required to store information of each object: 21 + a + 4(b + c + d)

bytes . 26

5.3 Space required by the Record Component to store information of each

object: 24 + e bytes . 27

5.4 Space required by the Reporter Component to store information of each

object: 28 + f bytes . 28

5.5 Result of the time overhead experiment . 29

VIII

Chapter 1

Introduction

Memory leaks occur in a software program which fails to reclaim memory storages

that are no longer in use. Such leaks may gradually exhaust available memory resources,

degrade system performance and eventually crash the whole system. These are threats to

long-running systems like those providing customer services in telecom operations. System

performance degradation caused by memory leaks is typically observed after execution for

hours, days or even weeks. These leaks may not be easily reproduced, and are thus difficult

to be identified and fixed during development phase. Memory leaks are caused by the

following two software defects:

1. Lost references: Programs neglect to free allocated memory storages before making

them unreachable through any reference.

2. Useless references: Programs keep references to memory storages that will never be

used again.

Leaks caused by lost references can be automatically detected and fixed by garbage col-

lectors [1]. This paper will focus on the useless reference issue. For the demonstration

purpose, we assume that the programs are written in the Java language, where the unit

for leak detection is an object created in the programs.

1

In recent years, memory leaks due to useless references have been intensively discussed

in the literature, and existing detection approaches can be categorized into either online

or offline. Offline tools detect leaks with heap snapshots by analyzing types, counts and

sizes of objects and the references among them [2, 3]. Online detection tools monitor heap

states and analyze changes over time to find leak candidates [4, 5, 6].

This paper proposes a two-phase approach to detect memory leaks. During phase one,

a heap dump of the investigated program is analyzed offline to decide a list of potential

leak candidates. In phase two, the investigated program is executed along with an agent

we develop. This agent tracks memory usage status of the leak candidates obtained from

phase one at runtime. The time and location where each of these monitored objects is last

accessed are reported to the users. This two-phase approach intends to reduce runtime

overhead of online analysis and provide a more precise result.

The paper is organized as follows. Chapter 2 describes the related work regarding

memory leak detection. Chapter 3 discussed two methods the proposed approach uses to

inspect a heap. Chapter 4 proposes the algorithm and implementation of our approach.

Chapter 5 evaluates our approach’s effectiveness and overheads. The conclusions are given

in Chapter 6.

2

Chapter 2

Related Work

This chapter introduces offline and online memory leak detection techniques previously

proposed.

Offline memory leak detection approaches find memory leak candidates without ad-

ditional runtime overhead to the programs being investigated. A graph mining approach

was proposed by Maxwell et al [2], where a heap snapshot is first converted to a directed

graph by transforming object instances to vertex and references between objects to di-

rected edges. The directed graph is then converted to a dominator tree to reduce edges

and optimize graph mining. Leak candidates are determined by mining the frequent sub-

graphs in the dominator tree. This graph mining approach provides users with insights

to potential leaking data structures, and could be helpful when users do not possess a

priori knowledge about the internal structure of the investigated program. The approach

may report false positives (frequently occurring object instances that are not leaks) due

to the lack of object instances’ last accessed time information. False negatives (object

instances which take up much space but do not occur frequently) may also happen since

object instances’ occupied space information is not taken into consideration.

Online memory leak detection approaches find memory leak candidates at runtime

with additional time and/or space overheads when executing the investigated programs.

3

Sleigh [4] maintains per-object staleness information (time since the object is last used)

during program execution and used an encoding technique to record locations of code

that last accessed the object. Sleigh produces no false positives. False negative may

occur since this approach could recover only code locations that generate numerous stale

objects. Locations that generate few stale objects are not recoverable due to the lossy

nature of its encoding technique. Cork [5] and JRockit Mission Control [6] reduce time

complexity of leak detection by modifying Java Virtual Machine (JVM)’s core functions.

These tools detect the classes whose object instances grow over time, and mark them as

leak candidates. False negatives (classes object instances do not grow but contain stale

object instances) and false positives (classes with growing object instances which never

become stale) may occur since they do not capture object staleness information. The

online approaches mentioned above incur low runtime overhead with the aid of special

mechanisms in specific JVMs. Implementations of Sleigh and Cork’s approaches required

modifications to Jikes Research Virtual Machine [7]. On the other hand, JRockit Mission

Control must be used in conjunction with JRockit JVM [8].

4

Chapter 3

Concept of Referencing Among

Objects

Memory leak detection is achieved by identifying the useless references in the inves-

tigated programs. Useless references occur when programs keep references to memory

storages that will never be used again, so that the referenced object instances cannot be

freed by memory-managed languages such as Java or C#. To identify useless references,

inspection of references among objects in the heap is required. This chapter discusses two

methods the proposed approach uses to inspect a heap.

3.1 Total Occupied Bytes

One goal of the proposed approach is to provide users with memory space usage

information of the investigated program in the offline phase, so that users can decide

which object instances are to be monitored in the online phase.

It is trivial to measure occupied bytes of each object instance. However, people are

more interested in the total occupied bytes of a specific set of object instances that are

connected by references. For example, when considering the occupied bytes of a list, most

5

Figure 3.1: Heap snapshot of our sample program MyProgram

people are interested in the total occupied bytes of the object instances that compose of

the list (i.e., all the list items) rather than just the occupied bytes of the list head. An

intuitive solution to this problem is to sum up the occupied bytes of all reachable object

instances from the list head. This intuitive solution may encounter two problems:

1. Sum to infinity: if there are circular references among a set of objects instances

(e.g., doubly linked list), the sum adds up infinitely.

2. Duplicate sums: if multiple object instances reference the same object instance (e.g.,

an object storing the global setting of a program), the occupied bytes of this object

are added to those of each object referencing it.

Figure 3.1 is an object diagram of the generated heap snapshot of our sample program

MyProgram (whose source code can be found in Appendix A), described by the Unified

Modeling Language (UML). In addition to the ordinary UML object diagram representa-

tion, a string is attached to the bottom left of each object instance to indicate the bytes

occupied by this instance. An object instance setting (of class MySetting) stores global

settings of MyProgram and is referenced by two other object instances display (of class

6

MyDisplay) and dbl_linked_list (of class MyDblLinkedList). Object display prints messages

to STDOUT. dbl_linked_list is a doubly linked list which references its head list item

item1. Each list item (i.e., item1, item2 or item3) is an object instance of class MyListItem

which references to its predecessor list item, its successor list item, and an object instance

(i.e., value1, value2 or value3) that stores its value (of class String).

To use the above mentioned intuitive solution to calculate the total occupied bytes

of all object instances composing of dbl_linked_list in Figure 3.1, the sum to infinity

problem occurs due to the bi-directional references between neighboring MyListItem object

instances. Also the duplicated sums problem occurs because both dbl_linked_list and

display maintain references to setting.

To solve these problems, the proposed approach computes the dominator tree from

the heap snapshot. The heap snapshot is first converted to a directed graph before the

dominator tree computation, where each object instance is converted to a vertex and each

reference is converted to a directed edge. In a directed graph, node x dominates node

y if all paths from a root to y go through x. This property can be used to represent a

relationship between object instances in a heap. The relationship expresses which object

instances are kept alive by a specific object instance. In addition, since the heap snapshot

is converted to a tree structure, both sum to infinitiy and duplicated sums problems do

not occur.

The proposed approach then adopts the aforementioned intuitive solution and use

this dominator tree to calculate the total occupied bytes of each dominator tree node.

The total occupied bytes of a dominator tree node is defined as “the bytes occupied by

its corresponding object instance” plus “the total bytes occupied by its subtree nodes’

corresponding object instances”.

Figure 3.2 is the dominator tree computed from Figure 3.1, where each dominator

tree node is labelled with its corresponding object instance’s occupied bytes and its total

occupied bytes. Each rectangle in the graph represents a node in the dominator tree.

The first line in the rectangle describes the corresponding object instance’s name and

7

Figure 3.2: An illustration of total occupied bytes of dominator tree nodes

class. The second line in the rectangle is an ordered 2-tuple which lists the bytes occupied

by the corresponding object instance and the total occupied bytes of this node. Take

the item1:MyListItem node as an example. Its 2-tuple (4, 186) indicates that the bytes

occupied by this MyListItem object instance are 4 bytes and the total occupied bytes of

this node are 186 bytes. The number of the total occupied bytes, 186, is obtained by

summing the storage in bytes occupied by this node’s object instance (which are 4 bytes)

and the total bytes occupied by the node’s subtree nodes’ corresponding object instances

(listed in breadth-first order): 4 + (4 + 36 + 4 + 110 + 28) = 186.

3.2 Reference Paths and Reference Rules

One feature of the proposed approach is to specify object instances to be monitored

in the online phase. It is trivial to specify all object instances of a specific class. However,

in real applications users are usually more concerned about a certain subset of instances

of the specific class. Take the usage of the String class’s object instances for example. It

8

Figure 3.3: A sample heap snapshot

is common to see classes with member fields of type String (e.g., fields containing textual

attributes of the object instance). Instead of monitoring all String object instances in the

heap, users may prefer to focus on a subset of these instances, such as the String instances

referenced by object instances of some other specific class (e.g., a List class).

The proposed approach selects object instances to be monitored online by examining

each object instance’s reference path. A reference path of an object instance objn is an

ordered sequence of object instances (obj1, obj2, ..., objn) such that there is a reference from

object instance obji to object instance obji+1, where 1 ≤ i ≤ n− 1. Figure 3.3 is a sample

heap snapshot represented as an object diagram in the UML. The set of reference paths

of object str2 is {(obj_a, obj_b, obj_c1, str2), (obj_a, obj_d, obj_b, obj_c1, str2), (obj_d,

obj_b, obj_c1, str2), (obj_b, obj_c1, str2), (obj_c1, str2), (str2)}. With the reference

paths of each object instance calculated, we can specify to monitor those instances with

certain reference relationships among other instances, e.g. to monitor only String objects

that are reachable from Class_C objects.

A reference rule is a rule we use to match the reference paths and in turn to specify

the object instances to be monitored in the online phase. A reference rule is repre-

sented as an ordered sequence of class names (cls1, cls2, ..., clsm) such that from each

of its class name clsj, there exists at least one path from object instances of class clsj

to object instances of class clsj+1, where 1 ≤ j ≤ m − 1. Let getClassName(object)

be a function that returns the class name of the specified object. A reference path

p = (obj1, obj2, ..., objn) matches a reference rule r = (cls1, cls2, ..., clsm) if r is a sub-

sequence of p′ = (getClassName(obj1), getClassName(obj2), ..., getClassName(objn))

9

(a) Reference rule r1 = (Class_B, String)

(b) Reference rule r2 = (Class_D,Class_C,String)

Figure 3.4: Illustrations of reference rules

and getClassName(objn) = clsm.

Figure 3.4 illustrates to reference rules r1 and r2 with the sample heap snapshot in

Figure 3.3, where rule r1 = (Class_B, String) and rule r2 = (Class_D,Class_C, String).

Each solid-lined instances in Figure 3.4 corresponds to one class name in the reference

rules. Solid-lined instances with bold text and thick border are object instances to be

monitored in the online phase (notice that they correspond to the last class names in the

reference rules). The solid-lined arrows show the reachability among object instances of

those class names in the rules. Further descriptions of these reference rule illustrations

are stated below.

Figure 3.4(a) (r1 = (Class_B,String)): The object instances specified to be monitored

by r1 are String objects str1 and str2. The reference paths of object str1 that match

r1 are (obj_a, obj_b, str1), (obj_a, obj_d, obj_b, str1) and (obj_d, obj_b, str1). The

reference paths of object str2 that match r1 are (obj_a, obj_b, obj_c1, str2), (obj_a,

obj_d, obj_b, obj_c1, str2), (obj_d, obj_b, obj_c1, str2) and (obj_b, obj_c1, str2).

Figure 3.4(b) (r2 = (Class_D,Class_C,String)): The object instances specified to be

monitored by r2 are String objects str2 and str3. The reference paths of object str2

10

that match r2 are (obj_a, obj_d, obj_b, obj_c1, str2) and (obj_d, obj_b, obj_c1,

str2). The reference paths of object str3 that match r2 are (obj_a, obj_d, obj_c2,

str3) and (obj_d, obj_c2, str3).

11

Chapter 4

Design and Implementation of

Two-Phase Online Memory Leak

Detection

Our two-phase monitoring approach is a combination of both offline and online memory

leak detection. We aim to reduce runtime overhead of online analysis and obtain a more

precise result. The proposed approach uses an agent to communicate with the JVM in

which the investigated program runs to perform offline analysis and online monitoring.

This chapter describes the design and implementation of the proposed agent.

4.1 Overview

The proposed agent investigates a Java program by communicating with the JVM in

which the investigated program runs. In our implementation, the agent communicates

with a Java SE HotSpot JVM Version 20.0 [9] via the JVM Tool Interface (JVMTI)

Version 1.2 [10] provided by the JVM to obtain the investigated program’s memory usage

information, as shown in Figure 4.1. This section presents a structural overview of the

proposed agent.

12

Figure 4.1: The proposed agent communicates with a JVM via the JVM Tool Interface

4.1.1 Structure Diagram

Figure 4.2 is the structure diagram of our agent. The agent consists of two parts: the

Phase One Part for offline analysis and the Phase Two Part for online monitoring. Each

part consists of two modules: the User Interface Module and the Core Module. Users

operate the agent through the User Interface Module, which communicates with the Core

Module to perform the two-phase memory leak detection.

Details of the Phase One Part and the Phase Two Part are described in the following

two subsections.

4.1.2 Phase One: Offline Analysis

During phase one, the user executes the Phase One Part of the proposed agent, and

uses the Phase One Dialog Component to select a program to investigate. The agent then

generates a heap snapshot of the investigated program, and analyzes the snapshot offline

by converting the heap snapshot to a dominator tree. This dominator tree information

is displayed as a tree-style checklist by the Phase One Dialog Component, enabling the

user to choose classes of object instances for online monitoring. The selected classes are

outputted to a text file which will be imported in phase two for online monitoring.

Heap snapshot generation and analysis may incur runtime overhead. Therefore it is

suggested to execute the Phase One Part right before shutting down the investigated

program.

13

Figure 4.2: Structure diagram of the proposed two-phase memory leak detection agent

4.1.3 Phase Two: Online Monitoring

During phase two, the user executes the Phase Two Part of the proposed agent, and

uses the Phase Two Home Dialog Component to import the text file outputted by the

Phase One Part. This imported file determines the object instances to be monitored.

Then the user selects a program and starts monitoring it. The Object Monitor Component

tracks memory usage status of the selected object instances, and records it via the Record

Component. The user can choose to generate a report at any time using the Phase Two

Report Dialog Component. Reports are provided by the Reporter Component, which

communicates with the Record Component to obtain the current memory usage status

and generates reports. To help the user to identify the potential leak in the source code,

each report shows the object instance count, last accessed time, last accessed location of

each selected object instance.

14

Figure 4.3: Dialog of phase one (offline analysis)

4.2 User Interface Module

The User Interface Module renders a graphical user interface (GUI) that contains one

dialog component for phase one (offline analysis) and two dialog components for phase two

(online monitoring). The following subsections describe these dialogs and demonstrate

how to use the agent to investigate our sample program MyProgram via these dialogs.

4.2.1 Phase One Dialog Component

Figure 4.3 shows the dialog of phase one (offline analysis). During phase one, the

agent generates and analyzes the heap snapshot of the investigated program. In our case,

a JVM process, in which a Java program runs, is investigated.

15

Figure 4.4: Heap snapshot of our sample program MyProgram

Since there may be numerous JVM processes executing concurrently, the user has to

select a JVM process to monitor. When the user clicks the “Get All JVMs’ PID” button

(Figure 4.3 ..1), a list of currently running JVMs, including their process IDs (PIDs)

and names, is then shown in Figure 4.3 ..2 . The user may select a specific JVM (e.g.,

MyProgram) and its PID will be shown in the “Selected JVM” textbox (PID 2031 in

Figure 4.3 ..3).

When the user clicks the “Analyze Selected JVM’s Heap Snapshot” button (Figure 4.3
..4), the agent starts to generate a heap snapshot for the selected program and analyzes

it. Heap snapshot generation and analysis can take quite a while, and the overall progress

will be reported by the progress bar below (Figure 4.3 ..5). Details of heap snapshot

generation and analysis will be given in Subsection 4.3.1 and Subsection 4.3.2.

Figure 4.4 is an object diagram of the generated heap snapshot of our sample program

MyProgram, described by the UML. Its content is the same as Figure 3.1 described in

Section 3.1. The agent then analyzes this heap snapshot and converts it to a dominator

tree, whose structure is shown in Figure 4.5. This dominator tree information is displayed

by the GUI in a tree-style checklist (Figure 4.3 ..6), from which the user can select the

object instances to be monitored in phase two. To help users in choosing object instances

16

Figure 4.5: The dominator tree converted from the heap snapshot shown in Figure 4.4

to monitor, the agent calculates the total occupied bytes of each dominator tree node,

and illustrates it in Figure 4.3 ..6 . In the checklist, each entry represents a dominator tree

node, displaying the class name of its object instance, the total occupied bytes, and the

percentage of its total occupied bytes versus the sum of all nodes’ total occupied bytes on

the same level in the same subtree. At first only nodes on the first tree level are shown.

The minus symbol (-) in front of a checklist entry indicates that the entry is a leaf node

and is not expandable. By clicking the plus symbol (+) in front of a checklist entry, the

user can expand and examine the entry’s subtree.

With the occupied bytes information, the user can determine object instances that are

potential leaks. In our sample, MyDblLinkedList takes up 92% of the heap space, which

seems suspicious. Therefore the user selects its child node MyListItem and its grandchild

node String, and clicks the “Output Selected Object Instances” button (Figure 4.3 ..7).

The agent then converts the hierarchical information of selected entries to reference rules

(definition of reference rule is described in Section 3.2), and outputs them to a text file.

This output file will be used in phase two.

17

Figure 4.6: Home dialog of phase two (online monitoring)

4.2.2 Phase Two Dialog Components

Figure 4.6 shows the home dialog of phase two (online monitoring). Through this

dialog, the user specifies the object instances he or she wants to monitor by importing

the output file of Phase One Dialog, and selects a JVM to start online monitoring.

The user first locates the output file of Phase One Dialog (Figure 4.6 ..1), and clicks

the “Import” button (Figure 4.6 ..2). The content of the file is listed in the “Object

Instances to Monitor:” textbox below (Figure 4.6 ..3).

To select a specific running JVM, the user clicks the “Get All JVMs’ PID” button

(Figure 4.6 ..4). A list of currently running JVMs, including their PIDs and names, is

then shown below, which can be selected by the user (Figure 4.6 ..5). The PID of the

selected entry is shown in the “Selected JVM” textbox (Figure 4.6 ..6). In our example,

program MyProgram with PID 4045 is selected.

18

Figure 4.7: Report dialog of phase two (online monitoring)

When the user clicks the “Start Monitoring Selected JVM” button (Figure 4.6 ..7),

the home dialog is closed and the second dialog (Figure 4.7) pops out, indicating that the

agent starts online monitoring the chosen JVM process.

The user can click the “Show Current Monitoring Report” button (Figure 4.7 ..1)

at any time to examine the current monitoring report. At the same time, the user can

request the agent to report only those object instances not being accessed within a specific

day range (Figure 4.7 ..2). After the user clicks the “Show Current Monitoring Report”

button, a report is generated by the Reporter Component as shown below in Figure 4.7
..4 . This process might take a while and the progress is reported by the progress bar

(Figure 4.7 ..3).

Figure 4.7 ..4 displays a summary table for the status of the reported object instances.

The columns of this table are explained below.

Reference Path: the reference path of the monitored object instances. (Figure 4.7 ..a)

Instance Count: the number of monitored object instances with the same reference

path. (Figure 4.7 ..b)

19

Last Accessed Time: the last accessed times (i.e., longest, median and most recent)

of monitored object instances with the same reference path (Figure 4.7 ..c). The

object instance corresponding with the maximum (longest) time value is intuitively

considered the most potential to be a leak. In addition, median and minimum (most

recent) time values are also listed for user reference.

Last Accessed Location: the last accessed location (including the file name and the

line number) of the object instance with the maximum (longest) last accessed time

(Figure 4.7 ..d). This column helps the user identify the potential leak in the source

code.

The user can click the “Show Current Monitoring Report” button (Figure 4.7 ..1) at

any time to refresh the report.

4.3 Core Module

The Core Module communicates with the JVM in which the investigated program

runs via the JVMTI to perform offline analysis and online monitoring. The following

subsections describe components of the Core Module.

4.3.1 Heap Snapshot Component

The Heap Snapshot Component belongs to the Phase One Part of the proposed agent.

It creates a heap snapshot of the JVM process selected by the user. The Heap Snap-

shot Component obtains the JVM’s heap information by invoking the FollowReferences

function provided by the JVMTI.

A heap snapshot generated by the Heap Snapshot Component is essentially a directed

graph. Object instances are vertex and references between objects are directed edges

in the generated directed graph. This generated directed graph is then passed to the

20

Dominator Tree Component for further processing, which will be described in the next

subsection.

4.3.2 Dominator Tree Component

The Dominator Tree Component belongs to the Phase One Part of the proposed agent.

It receives the directed graph generated by the Heap Snapshot Component, and converts

it to a dominator tree. The dominance algorithm proposed by Cooper et al. [11] is

adopted for conversion from a directed graph to a dominator tree.

The dominator tree structure is used to calculate the total occupied bytes of each

object. Details of total occupied bytes calculation are described in Section 3.1. This total

occupied bytes information is then passed to the Phase One Dialog Component, which

helps the user determine object instances that are potential leaks.

4.3.3 Object Monitor Component

The Object Monitor Component belongs to the Phase Two Part of the proposed agent.

It monitors the selected object instances at runtime.

The user selects object instances to be monitored via the Phase One Dialog Component

(see Subsection 4.2.1), which are then stored as a list of reference rules. These reference

rules are imported via the Phase Two Home Dialog Component (see Subsection 4.2.2)

and passed to the Object Monitor Component. The component then traverses all object

instances in the heap and calculates reference paths of each object instance. For each

object instance, if there is at least one reference path matching any of the reference rules

specified by the user, then the component monitors the usage status of this object at

runtime. Details of reference paths and reference rules can be found in Section 3.2.

The Object Monitor Component monitors the usage status of a specified object in-

stance by invoking the SetFieldAccessWatch and SetFieldModificationWatch functions

21

Table 4.1: The record of the setting object of our sample program MyProgram
Object Instance Reference Path(s) Last Accessed Time Last Accessed Location

setting dbl_linked_list > setting 2012-01-10 21:00:18 MyProgram.java:30display > setting

provided by the JVMTI. JVMTI in turn generates FieldAccess events or FieldModifi-

cation events when object instances are used. For each monitored object instance, there is

a corresponding record in the Record Component which records the object instance’s last

accessed time and location. When the monitored object instance is accessed, the Object

Monitor Component informs the Record Component to update the object’s last accessed

time and location. When the monitored object is freed, an ObjectFree event is generated

and the Object Monitor Component informs the Record Component to remove the freed

object’s record.

4.3.4 Record Component

The Record Component belongs to the Phase Two Part of the proposed agent. It stores

records of monitored object instances at runtime. The records are created, updated and

deleted by the Object Monitor Component, and read by the Reporter Component to

generate monitoring reports to the user.

Table 4.1 illustrates how the Record Component stores the record of the setting object

of our sample program MyProgram (whose heap snapshot is shown in Figure 4.4). For

each monitored object instance, the Record Component stores the following information:

Object Instance: the ID of the object instance.

Reference Paths: the reference paths of the monitored object instance. All reference

paths matching the specified reference rules are stored.

Last Accessed Time: the last accessed time of the monitored object instance.

Last Accessed Location: the last accessed location (including the file name and the

line number) of the monitored object instance.

22

4.3.5 Reporter Component

The Reporter Component belongs to the Phase Two Part of the proposed agent. When

the user clicks the “Show Current Monitoring Report” button of the Phase Two Report

Dialog Component (see Subsection 4.2.2), the Reporter Component retrieves records from

the Record Component and generates a report of current status of the monitored object

instances. The Reporter Component then passes the generated report to the Phase Two

Report Dialog Component for display.

The Reporter Component aggregates records by reference paths. For each reference

path there is a row in the report. Each row includes the same columns as those displayed

by the Phase Two Report Dialog Component as shown in Figure 4.7 ..4 , and descriptions

of these columns can be found in Subsection 4.2.2.

23

Chapter 5

Performance Evaluation

This chapter evaluates the proposed approach’s effectiveness and overheads. To test

the feasibility of the proposed agent, we conduct experiments on Eclipse 3.1.2, which

is reported to have a memory leak bug. And then we conduct experiments on a tiny

program RuntimeExp, which we design for more accurate time overhead evaluation. All

our experiments are conducted on a 3.07GHz Intel(R) Core(TM) i7 CPU and 12GB of

main memory, running Linux 2.6.32. The investigated programs run in Java SE HotSpot

JVMs (Version 20).

5.1 Locating Memory Leak in Eclipse 3.1.2

In this section, we use Eclipse 3.1.2 to test the feasibility of the proposed agent. Eclipse

3.1.2 is reported to have a memory leak bug [12]. Memory leaks are observed when a user

repeatedly conducts file comparisons. The leak occurs in Eclipse’s NavigationHistory com-

ponent, which keeps a list of NavigationHistoryEntry objects. Each NavigationHistoryEntry

object points to a NavigationHistoryEditorInfo object, which in turn keeps reference to a

data structure that holds the results of the comparison. In some cases the NavigationHis-

tory component fails to remove the NavigationHistoryEditorInfo objects after the window is

closed, and thus keeps alive all the other connected objects.

24

Table 5.1: Online monitoring report generated after comparing 12MB jar files for five
times

Reference Path Count Last Accessed Time Last Accessed Locationlongest median most recent

ROOT > org.eclipse.ui.internal.NavigationHistoryEntry 5 2012-06-21 2012-06-21 2012-06-21 org.eclipse.ui.internal
14:50:51 15:52:36 16:51:13 .NavigationHistoryEntry.java:163

ROOT > org.eclipse.ui.internal.NavigationHistoryEntry 5 2012-06-21 2012-06-21 2012-06-21 org.eclipse.ui.internal
> org.eclipse.ui.internal.NavigationHistoryEditorInfo 14:50:51 15:52:36 16:51:13 .NavigationHistoryEntry.java:163

We reproduce this leak by consecutively comparing two jar files of size 12MB for five

times, and monitor it with the Phase Two Part of our agent. The chosen reference rules

are:

1. (org.eclipse.ui.internal.NavigationHistoryEntry)

2. (org.eclipse.ui.internal.NavigationHistoryEntry,

org.eclipse.ui.internal.NavigationHistoryEditorInfo)

The generated report is shown in Table 5.1. It can be seen in the report that there

are NavigationHistoryEntry and NavigationHistoryEditorInfo objects not being used for two

hours. The last accessed locations of these objects are also reported. Thus we believe

that the proposed agent is able to provide helpful clues for developers in fixing leaks.

5.2 Space Overhead Analysis

The proposed agent incurs space overhead during both phase one and phase two.

Details are described below.

5.2.1 Phase One (Offline Analysis)

Space overhead occurs in phase one due to the Heap Snapshot Component and the

Dominator Tree Component.

For each object instance in the heap snapshot, a corresponding graph node is created

and appended to an array in the Heap Snapshot Component. Each graph node stores

25

Table 5.2: Space required to store information of each object: 21 + a+ 4(b+ c+ d) bytes
Type Bytes

Node ID String a
To Nodes int array 4b
From Nodes int array 4c
Discovering Status char 1
Post-Order int 4
Reverse Post-Order int 4
Child Nodes int array 4d
Immediate Dominator int 4
Object Occupied Bytes int 4
Total Occupied Bytes int 4
Total 21 + a+ 4(b+ c+ d)

its ID as a string and uses two integer arrays to maintain indices of nodes connected by

directed edges to and from the node respectively (corresponding to the references in the

heap snapshot).

The directed graph is converted to a dominator tree by the Dominator Tree Com-

ponent. Each graph node uses 1 byte (char) to store the discovering status (i.e., not

discovered, being explored, or explored) for graph traversal, 8 bytes (int) to store its post-

order and reverse post-order respectively, and an integer array to maintain indices of its

children. After visiting all the graph nodes, each graph node is converted to a tree node.

Each tree node uses 4 bytes (int) to store the index of its immediate dominator node. To

calculate the total occupied bytes of each tree node as described in Section 3.1, each tree

node uses 4 bytes (int) to store the number of occupied bytes of its corresponding object

instance and 4 bytes (int) to store its total occupied bytes.

Table 5.2 is a summary of the space required to store the information of each object.

To sum up, 21+a+4(b+ c+ d) bytes are required for each object, where a is the number

of characters of the node’s ID, b and c are the node’s indegree and outdegree respectively,

and d is the number of the node’s children in dominator tree.

26

Table 5.3: Space required by the Record Component to store information of each object:
24 + e bytes

Type Bytes
Node ID jlong 8
Last Accessed Time time_t 4

Last Accessed Location jmethodID 4
jlocation 8

Reference Paths String array e

Total 24 + e

5.2.2 Phase Two (Online Monitoring)

Space overhead occurs in phase two due to the Record Component and the Reporter

Component.

For each monitored object instance, a corresponding record is created in the Record

Component, as shown in Table 4.1. Each record uses 8 bytes (jlong) to store the ID for

the monitored object instance, 4 bytes (time_t) to store the last accessed time and 12

bytes (jmethodID and jlocation) to store the last accessed location of the monitored object

instance. In addition to these 24 bytes, each record stores reference paths matching the

given reference rules as strings. Records in the Record Component are deallocated only

when the corresponding object instances are freed. Table 5.3 is a summary of the space

required by the Record Component to store the information of each object. To sum up,

24 + e bytes are required for each object, where e is the number of characters required to

represent all reference paths of the node.

At runtime, records in Record Component change over time. To avoid corrupting

these records, when a monitoring report is requested, the Reporter Component clones

the records in the Record Component and thus incurs additional space overhead. The

Reporter Component aggregates these cloned records by reference paths. For each refer-

ence path, a corresponding row is shown in the report as in Figure 4.7 ..4 . Each row uses

a string to store the object reference path, 4 bytes (int) to store object instance count,

12 bytes to store 3 last accessed times (time_t) and 12 bytes (jmethodID and jlocation)

to store the last accessed location. Table 5.4 is a summary of the space required by the

27

Table 5.4: Space required by the Reporter Component to store information of each object:
28 + f bytes

Type Bytes
Reference Path String f
Object Instance Count int 4

Last Accessed Time
longest time_t 4
median time_t 4

most recent time_t 4

Last Accessed Location jmethodID 4
jlocation 8

Total 28 + f

Reporter Component to store the information of each object. To sum up, 28+f bytes are

required for each object, where f is the number of characters of the node’s reference path.

Memory spaces allocated by the Reporter Component do not last long because they are

freed right after outputting the generated report to file.

For real-world applications, a user is supposed to watch a very tiny portion of all

the objects during the online monitoring phase. Since the agent only keeps records for

monitored objects, the space overhead incurred shall not be expensive in most cases.

5.3 Time Overhead Analysis

The time overhead is of crucial concern to an online monitoring technique because

high time overhead may degrade the performance of the investigated program, making

the technique an impractical solution for real-world applications.

To accurately evaluate the time overhead of the proposed agent, we develop a simple

program RuntimeExp. The source code of RuntimeExp can be found in Appendix B. During

each execution of RuntimeExp, the program first allocates a total of 100 objects in heap,

part of which are RuntimeExpMonitored objects and the rest are RuntimeExpNotMonitored

objects. The number of RuntimeExpMonitored objects are determined according to user

input. The program then executes a loop for 1000 iterations. In each iteration, each object

is accessed twice (read and written, respectively). We then measure the total execution

28

Table 5.5: Result of the time overhead experiment
Monitored Object Total Number of Accesses Execution Time OverheadCount of all Monitored Objects (ms)

0 0 71 3%
1 2,000 913 1,219%
2 4,000 945 1,265%

10 20,000 1,024 1,379%
20 40,000 1,126 1,526%
30 60,000 1,254 1,711%
40 80,000 1,368 1,876%
50 100,000 1,462 2,012%
60 120,000 1,601 2,213%
70 140,000 1,706 2,364%
80 160,000 1,792 2,488%
90 180,000 1,912 2,662%

100 200,000 2,098 2,930%

time of these 1000 iterations of the RuntimeExp program with and without the Phase Two

Part of our agent attached. When the agent is attached, all the RuntimeExpMonitored

objects are monitored.

Table 5.5 shows the result of the time overhead experiment. For the RuntimeExp

program executing without our agent attached, the average execution time of all 1000

iterations is 70ms; when the RuntimeExp program is executed with the proposed agent

attached but monitors nothing in heap, the average execution time of all 1000 iterations

is 71ms, which is very close to that without agent attached. This is because the Object

Monitor Component does not have to handle any FieldAccess nor FieldModification events

and thus no additional code is executed and no extra time overhead is incurred.

To better examine the relationship between total number of object accesses and exe-

cution time, we plot the data in Table 5.5 as Figure 5.1. It can be observed from the plot

that the time overhead is linearly proportional to the number of accesses during program

execution. In worst case where all objects are monitored, the total execution time may

grow to nearly 30 times, which is not tolerable in real-world applications. However, with

the help of the offline analysis phase of the proposed agent, the user is able to effectively

select a small portion of the objects. Moreover, the leaked objects basically are objects

not frequently used during the long-term execution of programs. Thus online monitoring

29

Figure 5.1: Time overhead measurement of RuntimeExp

these infrequently used objects of small amount with the proposed agent incurs very little

time overhead to the execution of the investigated program in most cases, and is therefore

suitable for real-world application.

30

Chapter 6

Conclusions

We propose a two-phase approach to detect memory leaks due to useless references,

adopting both offline analysis and online monitoring techniques. The Phase One Part

(offline analysis) helps the user determine a set of classes whose objects are leak candidates.

These leak candidates are then monitored in the Phase Two Part (online monitoring),

where the incurred time overhead can be significantly reduced at runtime with the benefit

of partial monitoring.

For the demonstration purpose, we assume that the investigated programs are written

in the Java language. The proposed approach uses an agent to communicate with the

JVM. We test the proposed agent on Eclipse 3.1.2 and show that the report generated

by the online monitoring phase of the agent is useful for locating the memory leak. Little

per-object space overhead and nearly no time overhead are incurred during the execution

of the investigated program due to partial monitoring, making it suitable for real-world

applications.

As a final remark, the implementation of the proposed agent does not modify the

JVM. Specifically, the proposed agent can be used in most JVMs that support JVMTI.

31

Bibliography

[1] R. Jones and R. Lins, Garbage collection: algorithms for automatic dynamic memory

management. Wiley, 1996.

[2] E. K. Maxwell, G. Back, and N. Ramakrishnan, “Diagnosing memory leaks using

graph mining on heap dumps,” in Proceedings of the 16th ACM SIGKDD interna-

tional conference on Knowledge discovery and data mining, ser. KDD ’10. New

York, NY, USA: ACM, 2010, pp. 115–124.

[3] Jprobe. Quest Software. [Online]. Available: http://www.quest.com/jprobe/

[4] M. D. Bond and K. S. McKinley, “Bell: bit-encoding online memory leak detection,”

SIGPLAN Not., vol. 41, pp. 61–72, October 2006.

[5] M. Jump and K. S. McKinley, “Detecting memory leaks in managed languages with

cork,” Software: Practice and Experience, vol. 40, no. 1, pp. 1–22, 2010. [Online].

Available: http://dx.doi.org/10.1002/spe.945

[6] Jrockit mission control. Oracle. [Online]. Available: http://www.oracle.com/

technetwork/middleware/jrockit/overview/index-090630.html

[7] Jikes rvm. The Jikes RVM Project. [Online]. Available: http://jikesrvm.org/

[8] Oracle jrockit jvm. Oracle Corporation. [Online]. Available: http://www.oracle.

com/technetwork/middleware/jrockit/overview/index.html

[9] Java se hotspot. Oracle Corporation. [Online]. Available: http://www.oracle.com/

technetwork/java/javase/tech/hotspot-138757.html

32

http://www.quest.com/jprobe/
http://dx.doi.org/10.1002/spe.945
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://jikesrvm.org/
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/java/javase/tech/hotspot-138757.html
http://www.oracle.com/technetwork/java/javase/tech/hotspot-138757.html

[10] Jvm tool interface version 1.2. Oracle. [Online]. Available: http://docs.oracle.com/

javase/7/docs/platform/jvmti/jvmti.html

[11] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast dominance algorithm,”

2001. [Online]. Available: http://www.hipersoft.rice.edu/grads/publications/dom14.

pdf

[12] Eclipse bug 115789 - memory leak. The Eclipse Foundation. [Online]. Available:

https://bugs.eclipse.org/bugs/show_bug.cgi?id=115789

33

http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
https://bugs.eclipse.org/bugs/show_bug.cgi?id=115789

Appendix A

The MyProgram Program

We design a sample Java program MyProgram to demonstrate the usage of the pro-

posed agent. MyProgram consists of five files: MyProgram.java, test/MyDblLinkedList.java,

test/MyListItem.java, test/MyDisplay.java and test/MySetting.java, whose source codes are

listed below.

Source code of MyProgram.java:

1 import t e s t . * ;

2 import java . i o . * ;

3 import java . u t i l . Date ;

4 import java . u t i l . TimeZone ;

5 import java . t ex t . DateFormat ;

6 import java . t ex t . SimpleDateFormat ;

7

8 public class MyProgram {

9 private stat ic void PrintMyDblLinkedList (MyDblLinkedList

d b l l i n k e d l i s t) {

10 System . out . p r i n t ("MyListItems: (from head to tail)\n") ;

11 MyListItem current = d b l l i n k e d l i s t . getHead () ;

12

13 while (cur r ent != null) {

34

14 System . out . p r i n t (" " + current . getValue () + "\t") ;

15 MyListItem prev = current . getPrev () ;

16

17 i f (prev != null) System . out . p r i n t (" Prev: " + prev .

getValue () + "\t") ;

18 else System . out . p r i n t (" Prev: null\t\t") ;

19

20 MyListItem next = cur rent . getNext () ;

21 i f (next != null) System . out . p r i n t (" Next: " + next .

getValue () + "\n") ;

22 else System . out . p r i n t (" Next: null\n") ;

23

24 cur rent = next ;

25 }

26 System . out . p r i n t ("dbllinkedlist contains " + db l l i n k e d l i s t .

getCount () + " MyListItems now. \n") ;

27 }

28

29 private stat ic void DoLoopContent (MySetting s e t t i ng ,

MyDblLinkedList d b l l i n k e d l i s t) {

30 i f (d b l l i n k e d l i s t . getCount () > 0) {

31 d b l l i n k e d l i s t . removeHead () ;

32

33 MyListItem currentHead = db l l i n k e d l i s t . getHead () ;

34 currentHead . setValue (currentHead . getValue () + "MOD") ;

35 }

36

37 for (int i = 0 ; i < 3 ; i++) {

38 s e t t i n g . addSeria lNo () ;

39 d b l l i n k e d l i s t . add ("Item " + s e t t i n g . ge tSe r i a lNo ()) ;

40 }

35

41 }

42

43 public stat ic void main (St r ing [] a rgs) {

44 MySetting s e t t i n g = new MySetting () ;

45 System . out . p r i n t ("Generated MySetting object instance:

setting\n") ;

46

47 MyDisplay d i sp l ay = new MyDisplay (s e t t i n g) ;

48 System . out . p r i n t ("Generated MyDisplay object instance:

display\n") ;

49

50 MyDblLinkedList d b l l i n k e d l i s t = new MyDblLinkedList (s e t t i n g) ;

51 System . out . p r i n t ("Generated MyDblLinkedList object instance:

dbllinkedlist\n") ;

52

53 BufferedReader in =

54 new BufferedReader (new InputStreamReader (System . in)) ;

55 System . out . p r i n t ("\n** Press Enter key to continue experiment

, Ctrl+Z to stop.\n") ;

56 try { in . readLine () ; }

57 catch (Exception e) {

58 System . out . p r i n t l n ("Caught an exception!") ;

59 }

60

61 // f o r experiment

62 int experiment_type = In t eg e r . pa r s e In t (args [0]) ;

63

64 i f (experiment_type == 1) { // wi th agent v . s . w i thou t agent

65 long e lapsed = 0 ;

66 for (int j = 0 ; j < args . l ength − 1 ; j++) {

67 // loop count

36

68 int loop_count = In t eg e r . pa r s e In t (args [j + 1]) ;

69 i f (j > 0)

70 loop_count −= Int eg e r . pa r s e In t (args [j]) ;

71

72 // record s t a r t time f o r experiment

73 long startTime = System . nanoTime () ;

74

75 // c a l l DoLoopContent () f o r loop_count t imes

76 for (int i = 0 ; i < loop_count ; i++) {

77 DoLoopContent (s e t t i ng , d b l l i n k e d l i s t) ;

78 //System . out . p r i n t l n (i) ;

79 }

80

81 // c a l c u l a t e curren t e l ap s ed time

82 long currentTime = System . nanoTime () ;

83 e lapsed += currentTime − startTime ;

84

85 // output experiment 1 r e s u l t to f i l e

86 try {

87 i f (j > 0)

88 loop_count += Int eg e r . pa r s e In t (args [j]) ;

89 F i l eWr i t e r f s t ream = new Fi l eWr i t e r ("exp1_data.

txt" , true) ; // append

90 Buf feredWriter out = new Buf feredWriter (f s t ream) ;

91 out . wr i t e (loop_count + "\t" + db l l i n k e d l i s t .

getCount () + "\t" + elapsed + "\n") ;

92 out . c l o s e () ;

93 } catch (Exception e) {

94 System . out . p r i n t l n (e) ;

95 }

96 }

37

97 }

98 else i f (experiment_type == 2) { // monitor a l l v . s . monitor

p a r t i a l

99 // experiment dura t ion (note t h a t input i s min and i s

conver ted to msec here)

100 double experiment_duration_msec = Double . parseDouble (args

[1]) * 60 * 1000 ;

101

102 while (true) {

103 // record s t a r t time f o r experiment

104 long startTime = System . cur rentT imeMi l l i s () ;

105

106 while (true) {

107 DoLoopContent (s e t t i ng , d b l l i n k e d l i s t) ;

108

109 // c a l c u l a t e current e l ap s ed time

110 long currentTime = System . cur rentT imeMi l l i s () ;

111 SimpleDateFormat dateFormat =

112 new SimpleDateFormat ("HH:mm:ss") ;

113

114 dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT"

)) ;

115 long e lapsed = currentTime − startTime ;

116

117 // output message f o r experiment r e f e r ence

118 System . out . p r i n t l n ("[Elapsed Time: " +

dateFormat . format (new Date (e lapsed)) + " (" +

elapsed + " ms)]") ;

119

120 i f (e l apsed > experiment_duration_msec) break ;

121 else {

38

122 // thread to s l e e p f o r the s p e c i f i e d number o f

m i l l i s e c o n d s

123 try {

124 Thread . s l e e p (60000) ;

125 } catch (Exception e) {

126 System . out . p r i n t l n (e) ;

127 }

128 }

129 }

130

131 BufferedReader in2 =

132 new BufferedReader (new InputStreamReader (System .

in)) ;

133 System . out . p r i n t ("\n** Press Enter key to continue

experiment , Ctrl+Z to stop.\n") ;

134 try { in2 . readLine () ; }

135 catch (Exception e) {

136 System . out . p r i n t l n ("Caught an exception!") ;

137 }

138 }

139

140 } else { // s t ep by s t ep ver

141 while (true) {

142 DoLoopContent (s e t t i ng , d b l l i n k e d l i s t) ;

143 BufferedReader in2 =

144 new BufferedReader (new InputStreamReader (System .

in)) ;

145 System . out . p r i n t ("\n** Press Enter key to continue

experiment , Ctrl+Z to stop.\n") ;

146 try { in2 . readLine () ; }

147 catch (Exception e) {

39

148 System . out . p r i n t l n ("Caught an exception!") ;

149 }

150 }

151 }

152 }

153 }

Source code of test/MyDblLinkedList.java:

1 package t e s t ;

2

3 public class MyDblLinkedList {

4 protected MyListItem head = null ;

5 protected int count = 0 ;

6 private MySetting s e t t i n g = null ;

7

8 public MyDblLinkedList (MySetting s e t) {

9 // add r e f e r ence to MySetting

10 s e t t i n g = s e t ;

11 }

12

13 public void add (St r ing value) {

14 MyListItem new_item = new MyListItem (value) ;

15 i f (head == null) {

16 head = new_item ;

17 count = 1 ;

18 } else {

19 new_item . setNext (head) ;

20 head . setPrev (new_item) ;

21 this . setHead (new_item) ;

22 count += 1 ;

23 }

40

24 }

25

26 public void removeHead () {

27 i f (count > 0) {

28 count −= 1 ;

29 MyListItem new_head = head . getNext () ;

30 new_head . setPrev (null) ;

31 this . setHead (new_head) ;

32 }

33 }

34

35 public void setHead (MyListItem item) {

36 head = item ;

37 }

38

39 public MyListItem getHead () {

40 return head ;

41 }

42

43 public int getCount () {

44 return count ;

45 }

46 }

Source code of test/MyListItem.java:

1 package t e s t ;

2

3 public class MyListItem {

4 protected St r ing value ;

5 protected MyListItem next ;

6 protected MyListItem prev ;

41

7

8 public MyListItem (St r ing va l) {

9 value = va l ;

10 next = null ;

11 prev = null ;

12 }

13

14 public void setNext (MyListItem item) {

15 next = item ;

16 }

17

18 public MyListItem getNext () {

19 return next ;

20 }

21

22 public void setPrev (MyListItem item) {

23 prev = item ;

24 }

25

26 public MyListItem getPrev () {

27 return prev ;

28 }

29

30 public void setValue (St r ing va l) {

31 value = va l ;

32 }

33

34 public St r ing getValue () {

35 return value ;

36 }

37 }

42

Source code of test/MyDisplay.java:

1 package t e s t ;

2

3 public class MyDisplay {

4 private MySetting s e t t i n g = null ;

5

6 public MyDisplay (MySetting s e t) {

7 // add r e f e r ence to MySetting

8 s e t t i n g = s e t ;

9 }

10 }

Source code of test/MySetting.java:

1 package t e s t ;

2

3 public class MySetting {

4 private int _serial_no = 0 ;

5

6 public void addSeria lNo () {

7 _serial_no++;

8 }

9

10 public int ge tSe r i a lNo () {

11 return _serial_no ;

12 }

13 }

43

Appendix B

The RuntimeExp Program

We design a tiny Java program RuntimeExp to evaluate the runtime overhead of the

proposed agent. RuntimeExp consists of three files: RuntimeExp.java, RuntimeExpMoni-

tored.java and RuntimeExpNotMonitored.java, whose source codes are listed below.

Source code of RuntimeExp.java:

1 import java . i o . * ;

2 import java . u t i l . ArrayList ;

3 import java . u t i l . Date ;

4 import java . u t i l . TimeZone ;

5 import java . t ex t . DateFormat ;

6 import java . t ex t . SimpleDateFormat ;

7

8 public class RuntimeExp {

9 public stat ic ArrayList<RuntimeExpMonitored> monitored = new

ArrayList<RuntimeExpMonitored>() ;

10 public stat ic ArrayList<RuntimeExpNotMonitored> not_monitored =

new ArrayList<RuntimeExpNotMonitored>() ;

11 public stat ic void main (St r ing [] a rgs) {

12 try {

13 int percentage = In t eg e r . pa r s e In t (args [0]) ;

44

14 i f (percentage < 0 | | percentage > 100) {

15 System . out . p r i n t l n ("Please pass in an integer between

0 and 100.") ;

16 return ;

17 }

18 System . out . p r i n t l n ("Percentage of monitored objects: " +

percentage + "%") ;

19

20 int remaining = 100−percentage ;

21

22 for (int i = 0 ; i < percentage ; i++)

23 monitored . add (new RuntimeExpMonitored ("A" + i)) ;

24

25 for (int i = 0 ; i < remaining ; i++)

26 not_monitored . add (new RuntimeExpNotMonitored ("B" + i)

) ;

27

28 BufferedReader in =

29 new BufferedReader (new InputStreamReader (System . in)) ;

30 System . out . p r i n t l n ("\n** Press Ctrl + \\ first.") ;

31 System . out . p r i n t l n ("** And then press Enter key to

continue experiment or Ctrl+Z to stop.") ;

32 try { in . readLine () ; }

33 catch (Exception e) {

34 System . out . p r i n t l n ("Caught an exception!") ;

35 }

36

37 System . out . p r i n t l n ("\n** This might take a while...") ;

38

39 // record s t a r t time f o r experiment

40 long startTime = System . cur rentT imeMi l l i s () ;

45

41

42 // START LOOPING

43 for (int j = 0 ; j < 1000 ; j++) {

44 for (int i = 0 ; i < percentage ; i++) {

45 monitored . get (i) . s e t ("A" + i) ;

46 monitored . get (i) . get () ;

47 }

48

49 for (int i = 0 ; i < remaining ; i++) {

50 not_monitored . get (i) . s e t ("B" + i) ;

51 not_monitored . get (i) . get () ;

52 }

53 }

54 System . out . p r i n t l n ("loop end") ;

55 // c a l c u l a t e curren t e l ap s ed time

56 long currentTime = System . cur rentT imeMi l l i s () ;

57 SimpleDateFormat dateFormat =

58 new SimpleDateFormat ("HH:mm:ss") ;

59

60 dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT")) ;

61 long e lapsed = currentTime − startTime ;

62

63 // output message f o r experiment r e f e r ence

64 System . out . p r i n t l n ("\n[Elapsed Time: " + dateFormat .

format (new Date (e l apsed)) + " (" + elapsed + " ms)]"

) ;

65

66 System . out . p r i n t l n ("\n** Press Ctrl + \\ again.") ;

67 System . out . p r i n t l n ("**Press Enter key to exit.") ;

68 try { in . readLine () ; }

69 catch (Exception e) {

46

70 System . out . p r i n t l n ("Caught an exception!") ;

71 }

72

73 }

74 catch (NumberFormatException e) {

75 System . out . p r i n t l n ("ERROR: " + e . getMessage ()) ;

76 System . out . p r i n t l n ("Please enter an integer!") ;

77 }

78 catch (Exception e) {

79 System . out . p r i n t l n (e . getMessage ()) ;

80 }

81 }

82 }

Source code of RuntimeExpMonitored.java:

1 public class RuntimeExpMonitored {

2 private St r ing value ;

3

4 public St r ing get () {

5 return this . va lue ;

6 }

7

8 public void s e t (S t r ing s t r) {

9 this . va lue = s t r ;

10 }

11

12 RuntimeExpMonitored (St r ing s t r) {

13 this . s e t (s t r) ;

14 }

15 }

47

Source code of RuntimeExpNotMonitored.java:

1 public class RuntimeExpNotMonitored {

2 private St r ing value ;

3

4 public St r ing get () {

5 return this . va lue ;

6 }

7

8 public void s e t (S t r ing s t r) {

9 this . va lue = s t r ;

10 }

11

12 RuntimeExpNotMonitored (St r ing s t r) {

13 this . s e t (s t r) ;

14 }

15 }

48

