P o 5V s e B R

Two-Phase Online Memory Leak Detection

S RESEy > =
hERE - 2 g
Fig g

e

|

B

7N

iR



O FE B A SRR R R
Two-Phase Online Memory Leak Detection

=N I ¥ Student : Jui-Shan Liang
EFRE - T L Advisors : Yi-Bing Lin
Rie £4 Meng-Hsun Tsali

Bz i g
B §r ARG AT
e

A Thesis
Submitted to Institute of Network Engineering
College of Computer-Science
National Chiao Tung University
in partial Fulfillment of the'Requirements
for the Degree of
Master
in

Computer Science
June 2012

Hsinchu, Taiwan, Republic of China

PEAR-O- #20



FEEL AR P 2B R0 s R 1R

%
|
¥
S
3

L i
g T

i &

zﬁﬁﬁﬁﬁﬂ%ﬁ%ﬁ%ﬁﬁim@%i’g%ﬁ%%%?%ﬁﬂ%’%ﬂﬂi
FiEaveiy T ERER AT e BB AEDRIEALLT » AR FHE: T
AR 0 FIP R R BIREG Pl o

\\&

P

=

A2 A PR SN BB Java A2V 2 e B ARS A o By - IR (A
)R FREATE BRI - BEE 0 X ROV e 2 I 4 SR
Wy (heap) o 42 3% d FAEAG L BABE R ¥ & TR a7 = % gk (total
occupied bytes) » 14 if & * 122317; Ll E R T RN BN o A
FoRBE (RIEF) FIRCRSEFRHEI A OERFE 2T AN TE
fr K OrE s g 0 A LT R g e A g
FHRERUR G ERE Y (¢ 7 RGBMENE 5 AR § 54 3 igx

TR



Two-Phase Online Memory Leak Detection

Student: Jui-Shan Liang Advisors: Prof. Yi-Bing Lin

Prof. Meng-Hsun Tsai

Institute of Network Engineering

National Chiao Tung University

ABSTRACT

Memory leaks generated by a running program may exhaust memory resources and
degrade system performance. In worst case memory leaks eventually crash the whole
system. They threaten long-running systems such as customer service systems in telecom
operations. It is hard.to reproduce these kinds of leaks, let/alone to identify and fix them

early in the development phase. Thus online memory leak detection is required.

In this paper we propose a two-phase approach to the online memory leak detection
problem for Java programs. In phase one (offline analysis), the user executes the investi-
gated program for a while and analyzes its heap with the proposed agent. The agent then
summarizes the total occupied bytes of data structures in the heap offline, and the user is
then able to select classes whose object instances seem to be potential leaks by examining
the total occupied bytes summary. In phase two (online monitoring), to reduce the space
and time overhead at runtime, the agent monitors online the objects of selected classes
instead of monitoring all objects in the heap. The approach reports the last accessed time
and location (including the source file name and the line number) of each leak candidate,

with which the user can identify and fix leaks in the program.

IT



Acknowledgements

I would like to express my sincere thanks to my advisors Prof. Yi-Bing Lin and Prof.
Meng-Hsun Tsai for their supervision and perspicacious advices. I could not complete
this thesis without their guidance. I would also like to thank my committee members,

Prof. Ai-Chun Pang and Dr. Ying-Rong Sung, for.their comments and encouragements.

Many thanks to my two teammates Hung-Wei Kao and Kuan-Hsien Li in Intelligent
Mobile Service Laboratory, National Cheng Kung University. I will always treasure the

days that we worked remotely and realized ourideas together.

My colleagues of Liaboratory 117 have enriched my graduate student life. Thank them
for all the happy memories they have brought me. Thanks also to my love Chih-Ta Lin

for his warm support and inspiring discussions.

Last but not least, I would like to express my sincere thanks to my parents and my
elder brother. Without their patience and selfless support through all these years, I would

not have become who I am today. I feel truly grateful growing up in this family.

Jui-Shan Liang
July 2012

I1I



Contents

F & I
Abstract 11
Acknowledgements I11
Contents v
List of Figures VII
List of Tables VIII
1 Introduction 1
2 Related Work 3
3 Concept of Referencing Among Objects 5

3.1 Total Occupied Bytes . . . . . . . . . . . ... )

3.2 Reference Paths and Reference Rules . . . . . .. .. ... ... ... ... 8

4 Design and Implementation of Two-Phase Online Memory Leak Detec-

1A%



tion 12
4.1 OVerview . . . . .. 12
4.1.1  Structure Diagram . . . . . . . .. ... o 13
4.1.2  Phase One: Offline Analysis . . . . . . . .. ... ... ... ... . 13
4.1.3 Phase Two: Online Monitoring . . . . . .. ... ... ... .... 14

4.2  User Interface Module . . . . . .. .. ... oo 15
4.2.1 Phase One Dialog Component . . . . . . ... .. ... ... .... 15
4.2.2 Phase Two Dialog Components /.. . . . .. ... ... ... ... 18

4.3 Core Module o o 70 o o L o e 20
4.3.1 Heap Snapshot - Component . . . . oo . . oo . ... 20
4.3.2 Doeminator Tree Component .. . . . . .. . 2w . . ... ... ... 21
4.3.3 Object Monitor Component ......... . . &40 . ... ... ... 21
4.3.4 Record Component . . . . . . . . . .44 ... 22
4.3.5 Reporter Component s wooon ™ .0 0L L L 23

5 Performance Evaluation 24
5.1 Locating Memory Leak in Eclipse 3.1.2 . . . . . . .. ... ... ... ... 24
5.2 Space Overhead Analysis . . . . . . . . . .. ... ... ... ... ... . 25
5.2.1 Phase One (Offline Analysis) . . . ... ... ... ... ... ... 25
5.2.2  Phase Two (Online Monitoring) . . . . . . . . ... ... ... ... 27

5.3 Time Overhead Analysis . . . . . . . . . .. ... ... ... 28



6 Conclusions

Bibliography

A The MyProgram Program

B The RuntimeExp Program

VI

31

32

34

44



List of Figures

3.1

3.2

3.3

3.4

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

Heap snapshot of our sample program MyProgram . . . . . . . . . ... .. 6
An illustration of total occupied bytes of dominator tree nodes . . . . . . . 8
A sample heap snapshot"". . . . . o e Lo 9
[Mustrationsof referencerules . . . . . . .. . oo ... 10

The proposed agent communicates with-a JVM via the JVM Tool Interface 13
Structure diagram of the propoesed two-phase memory leak detection agent 14
Dialog of phase one (offline analysis) ot 4400 Lo oo 15
Heap snapshot of our sample program-MyProgram . . . . . . . . .. .. .. 16

The dominator tree converted from the heap snapshot shown in Figure 4.4 17

Home dialog of phase two (online monitoring) . . . . . .. ... ... ... 18
Report dialog of phase two (online monitoring) . . . ... ... ... ... 19
Time overhead measurement of RuntimeExp . . . . . . ... .. ... ... 30

VII



List of Tables

4.1

5.1

5.2

5.3

5.4

9.5

The record of the setting object of our sample program MyProgram

Online monitoring report generated after comparing 12MB jar files for five

Space required by the Record Component to store information of each

object: 244+ ebytes « . . Lo

Space required by the Reporter Component to store information of each

object: 284 f bybes v, . . Lo L

Result of the time overhead experiment . . . . . . . .. .. ... ... ...

VIII

22



Chapter 1

Introduction

Memory leaks occur<in a software program whieh fails to reclaim memory storages
that are no longer in use. Such-leaks may gradually exhaust available memory resources,
degrade system performance and eventually erash the whole system. These are threats to
long-running systems like those providing customer services in telecom operations. System
performance degradation caused by memory leaks is typically observed after execution for
hours, days or even weeks. These leaks may not be easily reproduced, and are thus difficult
to be identified and fixed during development phase. Memory leaks are caused by the

following two software defects:

1. Lost references: Programs neglect to free allocated memory storages before making

them unreachable through any reference.

2. Useless references: Programs keep references to memory storages that will never be

used again.

Leaks caused by lost references can be automatically detected and fixed by garbage col-
lectors [1]. This paper will focus on the useless reference issue. For the demonstration
purpose, we assume that the programs are written in the Java language, where the unit

for leak detection is an object created in the programs.



In recent years, memory leaks due to useless references have been intensively discussed
in the literature, and existing detection approaches can be categorized into either online
or offline. Offline tools detect leaks with heap snapshots by analyzing types, counts and
sizes of objects and the references among them [2, 3]. Online detection tools monitor heap

states and analyze changes over time to find leak candidates [4, 5, 6].

This paper proposes a two-phase approach to detect memory leaks. During phase one,
a heap dump of the investigated program is analyzed offline to decide a list of potential
leak candidates. In phase two, the investigated program is executed along with an agent
we develop. This agent tracks memory usage status of the leak candidates obtained from
phase one at runtime. The time and location where each of these monitored objects is last
accessed are reported to the users. This two-phase approach intends to reduce runtime

overhead of online analysis and provide a more precise result.

The paper is organized as follows. Chapter 2 describes the related work regarding
memory leak detection. Chapter 3 discussed two methods the proposed approach uses to
inspect a heap. Chapter 4 proposes the algorithm and implementation of our approach.
Chapter 5 evaluates our approach’s effectiveness and overheads. The conclusions are given

in Chapter 6.



Chapter 2

Related Work

This chapter introduces offline and online memory:leakdetection techniques previously

proposed.

Offline memory leak detection approaches find memory leak candidates without ad-
ditional runtime overhead to the programs being investigated. A graph mining approach
was proposed by Maxwell et al [2];where a heap snapshot is first converted to a directed
graph by transforming object instances to vertex and references between objects to di-
rected edges. The directed graph is then converted toa dominator tree to reduce edges
and optimize graph mining. Lieak candidatesare determined by mining the frequent sub-
graphs in the dominator tree. This graph mining approach provides users with insights
to potential leaking data structures, and could be helpful when users do not possess a
priori knowledge about the internal structure of the investigated program. The approach
may report false positives (frequently occurring object instances that are not leaks) due
to the lack of object instances’ last accessed time information. False negatives (object
instances which take up much space but do not occur frequently) may also happen since

object instances’ occupied space information is not taken into consideration.

Online memory leak detection approaches find memory leak candidates at runtime

with additional time and/or space overheads when executing the investigated programs.



Sleigh [4] maintains per-object staleness information (time since the object is last used)
during program execution and used an encoding technique to record locations of code
that last accessed the object. Sleigh produces no false positives. False negative may
occur since this approach could recover only code locations that generate numerous stale
objects. Locations that generate few stale objects are not recoverable due to the lossy
nature of its encoding technique. Cork [5] and JRockit Mission Control [6] reduce time
complexity of leak detection by modifying Java Virtual Machine (JVM)’s core functions.
These tools detect the classes whose object instances grow over time, and mark them as
leak candidates. False negatives (classes object instances do not grow but contain stale
object instances) and false positives (classes with growing object instances which never
become stale) may occur sinee they do not capture object staleness information. The
online approaches mentioned above incur low runtime overhead with the aid of special
mechanisms in specific JVMs. Implementations of Sleigh and Cork’s approaches required
modifications to Jikes Research-Virtual Machine [7]. On the other hand, JRockit Mission

Control must be used in conjunction with JRockit JVM [8].



Chapter 3

Concept of Referencing Among

Objects

Memory leak detection is achieved by identifying the useless references in the inves-
tigated programs. Useless references occur when programs keep references to memory
storages that will never be used again, so that the referenced object instances cannot be
freed by memory-managed languages such as Java-or C#: Toridentify useless references,
inspection of references among objects in the heap is required. This chapter discusses two

methods the proposed approach uses-to. inspect a heap.

3.1 Total Occupied Bytes

One goal of the proposed approach is to provide users with memory space usage
information of the investigated program in the offline phase, so that users can decide

which object instances are to be monitored in the online phase.

It is trivial to measure occupied bytes of each object instance. However, people are
more interested in the total occupied bytes of a specific set of object instances that are

connected by references. For example, when considering the occupied bytes of a list, most



dbl_linked_list: MyDblLinkedList || display: MyDisplay

3 bytes 8 bytes

setting: MySetting

8 bytes
item1: MyListItem valueT: String
4 bytes 36 bytes
item2: MyListItem value2: String
4 bytes 110 bytes
item3: MyListItem value3: String
4 bytes 28 bytes

Figure 3.1:“Heap snapshot of our sample program MyProgram

people are interested in the total occupied bytes of the object instances that compose of
the list (i.e., all the list items) rather than just the occupied bytes of the list head. An
intuitive solution to this problem is to sum up the occupied hytes of all reachable object

instances from the list head. This intuitive solution may encounter two problems:

1. Sum to infinity: if there are circular references among a set of objects instances

(e.g., doubly linked list); the sum adds up infinitely.

2. Duplicate sums: if multiple object instances reference the same object instance (e.g.,
an object storing the global setting of a program), the occupied bytes of this object

are added to those of each object referencing it.

Figure 3.1 is an object diagram of the generated heap snapshot of our sample program
MyProgram (whose source code can be found in Appendix A), described by the Unified
Modeling Language (UML). In addition to the ordinary UML object diagram representa-
tion, a string is attached to the bottom left of each object instance to indicate the bytes
occupied by this instance. An object instance setting (of class MySetting) stores global

settings of MyProgram and is referenced by two other object instances display (of class



MyDisplay) and dbl_linked_list (of class MyDblLinkedList). Object display prints messages
to STDOUT. dbl_linked_list is a doubly linked list which references its head list item
iteml. Each list item (i.e., item1, item2 or item3) is an object instance of class MyListltem
which references to its predecessor list item, its successor list item, and an object instance

(i.e., valuel, value2 or value3) that stores its value (of class String).

To use the above mentioned intuitive solution to calculate the total occupied bytes
of all object instances composing of dbl_linked_list in Figure 3.1, the sum to infinity
problem occurs due to the bi-directional references between neighboring MyListltem object
instances. Also the duplicated sums problem occurs because both dbl_linked_list and

display maintain references to setting:

To solve these problems; the proposed approach computes the dominator tree from
the heap snapshot. The heap snapshot is first converted toa directed graph before the
dominator tree computation, where-each object instance is converted to a vertex and each
reference is converted to a directed edge. In a directed graph, node x dominates node
y if all paths from a root to y go through x. This property can be used to represent a
relationship between object instances in a heap. The relationship expresses which object
instances are kept alive by a specific object instance. Inaddition, since the heap snapshot
is converted to a tree structure, boeth sum to infinitiy and duplicated sums problems do

not occur.

The proposed approach then adopts the aforementioned intuitive solution and use
this dominator tree to calculate the total occupied bytes of each dominator tree node.
The total occupied bytes of a dominator tree node is defined as “the bytes occupied by
its corresponding object instance” plus “the total bytes occupied by its subtree nodes’

corresponding object instances”.

Figure 3.2 is the dominator tree computed from Figure 3.1, where each dominator
tree node is labelled with its corresponding object instance’s occupied bytes and its total
occupied bytes. FEach rectangle in the graph represents a node in the dominator tree.

The first line in the rectangle describes the corresponding object instance’s name and



Tree Root

dbl_linked_list: MyDblLinkedList

(3,189)

setting: MySetting
(8, 8)

(4, 186)

item1: MyListltem

display: MyDisplay
(8, 8)

item2

: MyListltem value1: String
(4, 146)

(36, 36)

item3: MyListItem
(4,32)

value2: String
(110, 110)

value3: String
(28, 28)

Figure 3.2: Anillustration-of total oceupied bytes of dominator tree nodes

class. The second line in the rectangle is an ordered 2-tuple which lists the bytes occupied
by the corresponding object instance and the total occupied bytes of this node. Take
the item1l:MyListltem node as an example. Its 2-tuple (4, 186) indicates that the bytes
occupied by this MyListltem object instance are 4 bytes and the total occupied bytes of
this node are 186 bytes. ‘The -number of the total occupied bytes, 186, is obtained by
summing the storage in bytes occupied by this node’s object instance (which are 4 bytes)

and the total bytes occupied by the node’s subtree nodes’ corresponding object instances

(listed in breadth-first order): 4 + (4 4+ 36 + 4 + 110 + 28) = 186.

3.2 Reference Paths and Reference Rules

One feature of the proposed approach is to specify object instances to be monitored
in the online phase. It is trivial to specify all object instances of a specific class. However,
in real applications users are usually more concerned about a certain subset of instances

of the specific class. Take the usage of the String class’s object instances for example. It




str1:String

obj_b: Class_B

/ |

obj_c1: Class_C str2:String

obj_a: Class_A

2/
N

obj_d: Class_D obj_c2: Class_C str3:String

Figure 3.3: A sample heap snapshot

is common to see classes with member fields of type String (e.g., fields containing textual
attributes of the object instance). Instead of monitoring all String object instances in the
heap, users may prefer to focus on a subset of these instances, such as the String instances

referenced by object instances of some other specific class (e.g., a List class).

The proposed approach. selects’object instances te be monitored online by examining
each object instance’s ‘reference path. A reference path of an object instance obj, is an
ordered sequence of object instances (objy, 0bja, ..., 003, ). such that there is a reference from
object instance obj; to object instance 0bj; i, where 1 <i < n—1. Figure 3.3 is a sample
heap snapshot represented as an object-diagram in the UML. ‘The set of reference paths
of object str2 is {(obj_a, obj_b; obj_cl, str2), (obj_a, obj_d, obj_b, obj_cl, str2), (obj_d,
obj_b, obj_cl, str2),«(obj_b, objocl, str2), (obj_cl; str2), (str2)}. With the reference
paths of each object instance calculated, we can specify to monitor those instances with
certain reference relationships among other instances, e.g. to monitor only String objects

that are reachable from Class_C objects.

A reference rule is a rule we use to match the reference paths and in turn to specify
the object instances to be monitored in the online phase. A reference rule is repre-
sented as an ordered sequence of class names (clsy,clss, ..., clsy,) such that from each
of its class name cls;, there exists at least one path from object instances of class cls;
to object instances of class cls;jyi, where 1 < j < m — 1. Let getClassName(object)
be a function that returns the class name of the specified object. A reference path
p = (obj1, 0bja, ..., 0bj,) matches a reference rule r = (clsq,clss,...,clsy,) if v is a sub-

sequence of p' = (getClassName(objy), getClassName(objs), ..., getClassName(objy,))



a/ str1 :String

obj b:Class B
' * A Nobj c1: Class C% str2:String

: obj_d: Class_D E-->(--->r0bj c2: Class_ C ><> str3: Strlng-

str2:String

X

........................... E PR
1% ¢ SN obj c1: Class_C

obj_a: Class_A '

obj_d: Class_D [¢—=» obj_c2: Class_C |>¢—>tstr3:String

(b) Referencerule ro = (Class; D, Class_C, String)

Figure 3.4: Illustrations of reference rules
and getClassName(objn) = clS,-

Figure 3.4 illustrates to reference rules r{ and 75 with the sample heap snapshot in
Figure 3.3, where rule = (Class_B,String) and rule 75 = (Class_D, Class_C, String).
Each solid-lined instances in Figure 3.4 corresponds to one class name in the reference
rules. Solid-lined instances with bold text and thick border are object instances to be
monitored in the online phase (notice that they correspond to the last class names in the
reference rules). The solid-lined arrows show the reachability among object instances of
those class names in the rules. Further descriptions of these reference rule illustrations

are stated below.

Figure 3.4(a) (r; = (Class_B, String)): The object instances specified to be monitored
by r, are String objects strl and str2. The reference paths of object strl that match
r are (obj_a, obj_b, strl), (obj_a, obj_d, obj_b, strl) and (obj_d, obj_b, strl). The
reference paths of object str2 that match r; are (obj_a, obj_b, obj_cl, str2), (obj_a,

obj_d, obj_b, obj_cl1, str2), (obj_d, obj_b, obj_c1, str2) and (obj_b, obj_cl1, str2).

Figure 3.4(b) (ry = (Class_D, Class_C, String)): The object instances specified to be

monitored by 7 are String objects str2 and str3. The reference paths of object str2

10



that match ry are (obj_a, obj_d, obj_b, obj_cl, str2) and (obj_d, obj_b, obj_cl1,
str2). The reference paths of object str3 that match ry are (obj_a, obj_d, obj_c2,
str3) and (obj_d, obj_c2, str3).

v

\ 1596,




Chapter 4

Design and Implementation of
Two-Phase Online Memory Leak

Detection

Our two-phase monitoring approach is a combination of botheffline and online memory
leak detection. We aim to reduce runtime overhead of online analysis and obtain a more
precise result. The propoesed.approach uses an agent-to communicate with the JVM in
which the investigated program runs-te.perform-offline analysis and online monitoring.

This chapter describes the design and implementation of the proposed agent.

4.1 Overview

The proposed agent investigates a Java program by communicating with the JVM in
which the investigated program runs. In our implementation, the agent communicates
with a Java SE HotSpot JVM Version 20.0 [9] via the JVM Tool Interface (JVMTI)
Version 1.2 [10] provided by the JVM to obtain the investigated program’s memory usage
information, as shown in Figure 4.1. This section presents a structural overview of the

proposed agent.

12



Two-Phase Java Virtual Machine

Online .
Investigated Program
Memory Leak 5 &
Detection L 7
Agent JVM Tool Interface

Figure 4.1: The proposed agent communicates with a JVM via the JVM Tool Interface

4.1.1 Structure Diagram

Figure 4.2 is the structure diagram of our agent. The agent consists of two parts: the
Phase One Part for offline analysis.and the Phase Two Part for online monitoring. Each
part consists of two modules: the User Interface. Module and the Core Module. Users
operate the agent through the User Interface Module, which communicates with the Core

Module to perform the two-phase memory leak detection.

Details of the Phase One Part and the Phase Two Part are described in the following

two subsections.

4.1.2 Phase One: Offline Analysis

During phase one, the user executes the Phase One Part of the proposed agent, and
uses the Phase One Dialog Component to select a program to investigate. The agent then
generates a heap snapshot of the investigated program, and analyzes the snapshot offline
by converting the heap snapshot to a dominator tree. This dominator tree information
is displayed as a tree-style checklist by the Phase One Dialog Component, enabling the
user to choose classes of object instances for online monitoring. The selected classes are

outputted to a text file which will be imported in phase two for online monitoring.

Heap snapshot generation and analysis may incur runtime overhead. Therefore it is
suggested to execute the Phase One Part right before shutting down the investigated

program.

13



4 N\ [ )

Phase One Part Phase Two Part
User Phase Onew J Phase Two Phase Two
Interface Dialog Home Dialog > Report Dialog
Module ComponentJ ’L Component Component
[ H | |[ object )
cap J?C Reporter
Snapshot Monitor Component
Component Component P
Core > / > /
Module - N > S
Dominator
— Tree Record Component
Component
L / \ W,
\_ /0 J

Figure 4.2: Structure diagram of the proposed two-phase memory leak detection agent

4.1.3 Phase Two: Online Monitoring

During phase two, the user executes the Phase Two Part of the proposed agent, and
uses the Phase Two Home Dialog Component-t6_import the text file outputted by the
Phase One Part. This imported file determines the object instances to be monitored.
Then the user selects a program and starts monitoring it. The Object Monitor Component
tracks memory usage status of the selected object instances, and records it via the Record
Component. The user can choose to generate a report at any time using the Phase Two
Report Dialog Component. Reports are provided by the Reporter Component, which
communicates with the Record Component to obtain the current memory usage status
and generates reports. To help the user to identify the potential leak in the source code,
each report shows the object instance count, last accessed time, last accessed location of

each selected object instance.

14



Phase 1: Offline Analysis

(D[ Getallvms D |

2 ) Select a JVM whose heap snapshot is to be analyzed:

2464 AgentGUI
2089 Server
2031 MyProgram

(3) 4
Selected JVM:T 2031 pAnaIyze Selected JVM’s Heap Snapshot ]

@ (progress bar)

Cﬁ) Select Object Instances to Monitor:

Root (Total 198 bytes)
- [ ] MyDisplay - 8 bytes(8 bytes, 4%)
-[ ] MySetting - 8 bytes (8 bytes, 4%)
- [ ] MyDblLinkedList - 3 bytes (189 bytes, 92%)
- Il MyListitem -4 bytes (total 186 bytes, 100%)
- M String - 36 bytes (total 36 bytes, 20%)
+ [ MyListitem -4 bytes (total 146 bytes, 80%)

(79[ 1 Output Selected Object Instances ]

Figure 4.3: Dialog of phase one (offline analysis)

4.2 User Interface Module

The User Interface Module renders a graphical user interface (GUI) that contains one
dialog component for phase one (offline analysis) and two dialog components for phase two
(online monitoring). The following subsections describe these dialogs and demonstrate

how to use the agent to investigate our sample program MyProgram via these dialogs.

4.2.1 Phase One Dialog Component

Figure 4.3 shows the dialog of phase one (offline analysis). During phase one, the
agent generates and analyzes the heap snapshot of the investigated program. In our case,

a JVM process, in which a Java program runs, is investigated.

15



dbl_linked_list: MyDblLinkedList display: MyDisplay

setting: MySetting

item1: MyListItem value1: String
item2: MyListItem value2: String
item3: MyListItem value3: String

Figure 4.4: Heap snapshot. of our sample. program MyProgram

Since there may be numerous JVM processes executing concurrently, the user has to
select a JVM process to monitor.-When the user clicks the “Get All JVMs’ PID” button
(Figure 4.3 (1), a_list' of currently running JVMs, including their process IDs (PIDs)
and names, is then.shown in Figure 4.3 (2): The user may select a specific JVM (e.g.,
MyProgram) and its-PID will be 'shown in the “Selected [JVM” textbox (PID 2031 in

Figure 4.3 (3)).

When the user clicks the“Analyze Selected JVM’s Heap Snapshot” button (Figure 4.3
(4), the agent starts to generate a heap snapshot for the selected program and analyzes
it. Heap snapshot generation and analysis can take quite a while, and the overall progress
will be reported by the progress bar below (Figure 4.3 @) Details of heap snapshot

generation and analysis will be given in Subsection 4.3.1 and Subsection 4.3.2.

Figure 4.4 is an object diagram of the generated heap snapshot of our sample program
MyProgram, described by the UML. Its content is the same as Figure 3.1 described in
Section 3.1. The agent then analyzes this heap snapshot and converts it to a dominator
tree, whose structure is shown in Figure 4.5. This dominator tree information is displayed
by the GUI in a tree-style checklist (Figure 4.3 (6)), from which the user can select the

object instances to be monitored in phase two. To help users in choosing object instances

16



Tree Root

dbl_linked_list: MyDblLinkedList

setting:MySetting item1: MyListItem display: MyDisplay
item2: MyListItem value1: String
item3: MyListItem value2: String

value3:'String

Figure 4.5: The dominator tree converted from the heap snapshot shown in Figure 4.4

to monitor, the agent calculates the total occupied bytes of each dominator tree node,
and illustrates it in'Figure 4.3 (6). In the checklist, each entry represents a dominator tree
node, displaying the class name of its object instance, the total occupied bytes, and the
percentage of its total occupied bytes versus the sum of all nodes’ total occupied bytes on
the same level in the same subtree. At first onlymiodes on the first tree level are shown.
The minus symbol (-) in front of a checklist entry indicates that the entry is a leaf node
and is not expandable. By clicking the plus symbol (4) in front of a checklist entry, the

user can expand and examine the entry’s subtree.

With the occupied bytes information, the user can determine object instances that are
potential leaks. In our sample, MyDblLinkedList takes up 92% of the heap space, which
seems suspicious. Therefore the user selects its child node MyListltem and its grandchild
node String, and clicks the “Output Selected Object Instances” button (Figure 4.3 D).
The agent then converts the hierarchical information of selected entries to reference rules
(definition of reference rule is described in Section 3.2), and outputs them to a text file.

This output file will be used in phase two.

17



Phase 2: Online Monitoring

Import list of classes to monitor:
/home/jenny/input.txt [ Browse... ]

[ Import ]

o Object Instances to Monitor:

MyDblLinkedList > MyListltem
MyDblLinkedList > MyListltem > String

(4)| GetAllvms’ PID |
B Select a JVM to Monitor:

2222 AgentGUI
7012%erver o L a
4045 MyProgram .,

- 6 7 — — — -
Selected Jvmgl;ms Qi Start Monitoring Selected JVM ]

Figure 4.6: Home dialog of phase two (online monitoring)

4.2.2 Phase Two Dialog Components

Figure 4.6 shows the home dialog of phase two (online monitoring). Through this
dialog, the user specifies the ebject instances he.or she wants to monitor by importing

the output file of Phase One Dialog, and selects'a JVM to start online monitoring.

The user first locates the output file of Phase One Dialog (Figure 4.6 (1)), and clicks
the “Import” button (Figure 4.6 (2)). The content of the file is listed in the “Object

Instances to Monitor:” textbox below (Figure 4.6 (3)).

To select a specific running JVM, the user clicks the “Get All JVMs’ PID” button
(Figure 4.6 (4)). A list of currently running JVMs, including their PIDs and names, is
then shown below, which can be selected by the user (Figure 4.6 (5)). The PID of the
selected entry is shown in the “Selected JVM” textbox (Figure 4.6 (6)). In our example,

program MyProgram with PID 4045 is selected.

18



Phase 2: Online Monitoring

o (progress bar)

4 )Jthe following is a summary report for instances not being accessed after 2012/1/9 13:02:07.

D [0 ©

Last Last Last .
Last Accessed Location
Instance Accessed Accessed Accessed ; _
Reference Path ) ) ) of instance with the
Count Time Time Time longest last accessed time
(longest) (median) | (most recent) 8

2012/1/10 | 2012/1/17 | 2012/1/18

) . )
MyDblLinkedList > MyListltem 3025 23:19:05 00:27:29 17:35:16

MyProgram.java:24

. . . . 2012/1/10 | 2012/1/17 2012/1/18 . e
MyDblLinkedList > MyListltem > String 3025 51:00:18 08:12:00 17:35:16 MyDblLinkedList.java:24

Click “Show Current Monitoring Report” again to refresh this'report:

\ A

Figure 4.7: Report dialog of phase two.(online monitoring)

When the user clicks the “Start Monitoring Selected JVM” button (Figure 4.6 (7)),
the home dialog is closed and the second dialog (Figure 4.7) pops out, indicating that the

agent starts online-monitoring the chosen JVM process.

The user can click the “Show<Current Monitoring Réport” button (Figure 4.7 (1)
at any time to examine the current monitoring report: ‘At the same time, the user can
request the agent to report only those.object instances not being accessed within a specific
day range (Figure 4.7 (2)). After the user clicks the “Show Current Monitoring Report”
button, a report is generated by the Reporter Component as shown below in Figure 4.7

(4). This process might take a while and the progress is reported by the progress bar

(Figure 4.7 (3)).

Figure 4.7 (4) displays a summary table for the status of the reported object instances.

The columns of this table are explained below.

Reference Path: the reference path of the monitored object instances. (Figure 4.7 @)

Instance Count: the number of monitored object instances with the same reference

path. (Figure 4.7 (b))

19



Last Accessed Time: the last accessed times (i.e., longest, median and most recent)
of monitored object instances with the same reference path (Figure 4.7 ©). The
object instance corresponding with the maximum (longest) time value is intuitively
considered the most potential to be a leak. In addition, median and minimum (most

recent) time values are also listed for user reference.

Last Accessed Location: the last accessed location (including the file name and the
line number) of the object instance with the maximum (longest) last accessed time
(Figure 4.7 @) This column helps the user identify the potential leak in the source

code.

The user can click the “Show Current Monitoring Report” button (Figure 4.7 (1) at

any time to refresh the'report.

4.3 Core Module

The Core Module communicates with the JVM in which. the investigated program
runs via the JVMTI to perform offline analysis and online monitoring. The following

subsections describe components of the Core Module.

4.3.1 Heap Snapshot Component

The Heap Snapshot Component belongs to the Phase One Part of the proposed agent.
It creates a heap snapshot of the JVM process selected by the user. The Heap Snap-
shot Component obtains the JVM’s heap information by invoking the FollowReferences
function provided by the JVMTI.

A heap snapshot generated by the Heap Snapshot Component is essentially a directed
graph. Object instances are vertex and references between objects are directed edges

in the generated directed graph. This generated directed graph is then passed to the

20



Dominator Tree Component for further processing, which will be described in the next

subsection.

4.3.2 Dominator Tree Component

The Dominator Tree Component belongs to the Phase One Part of the proposed agent.
It receives the directed graph generated by the Heap Snapshot Component, and converts
it to a dominator tree. The dominance algorithm proposed by Cooper et al. [11] is

adopted for conversion from a directed graph to a dominator tree.

The dominator tree structure.isiused to 'calculate the total occupied bytes of each
object. Details of total occupied bytes calculationaredescribed in Section 3.1. This total
occupied bytes information is then passed to the Phase One Dialog Component, which

helps the user determine object instances that are potential leaks.

4.3.3 Object Monitor Component

The Object Monitor Component belongs to the Phase Two Part of the proposed agent.

It monitors the selected object instances at runtime.

The user selects object instances to be monitored via the Phase One Dialog Component
(see Subsection 4.2.1), which are then stored as a list of reference rules. These reference
rules are imported via the Phase Two Home Dialog Component (see Subsection 4.2.2)
and passed to the Object Monitor Component. The component then traverses all object
instances in the heap and calculates reference paths of each object instance. For each
object instance, if there is at least one reference path matching any of the reference rules
specified by the user, then the component monitors the usage status of this object at

runtime. Details of reference paths and reference rules can be found in Section 3.2.

The Object Monitor Component monitors the usage status of a specified object in-

stance by invoking the SetFieldAccessWatch and SetFieldModification Watch functions

21



Table 4.1: The record of the setting object of our sample program MyProgram
’ Object Instance ‘ Reference Path(s) ‘ Last Accessed Time ‘ Last Accessed Location

dbl_linked__list > setting
display > setting

setting

2012-01-10 21:00:18 MyProgram.java:30

provided by the JVMTI. JVMTI in turn generates FieldAccess events or FieldModifi-
cation events when object instances are used. For each monitored object instance, there is
a corresponding record in the Record Component which records the object instance’s last
accessed time and location. When the monitored object instance is accessed, the Object
Monitor Component informs the Record Component to update the object’s last accessed
time and location. When the monitored object is freed, an ObjectFree event is generated
and the Object Monitor Componentrinforms the Record Component to remove the freed

object’s record.

4.3.4 Record Component

The Record Component belongs to the Phase Two Part of the proposed agent. It stores
records of monitored-object instances at runtime. The records.are created, updated and
deleted by the Object Monitor Component, and read by the Reporter Component to

generate monitoring reports to the user.

Table 4.1 illustrates how the Record Component stores the record of the setting object
of our sample program MyProgram (whose heap snapshot is shown in Figure 4.4). For

each monitored object instance, the Record Component stores the following information:

Object Instance: the ID of the object instance.

Reference Paths: the reference paths of the monitored object instance. All reference

paths matching the specified reference rules are stored.
Last Accessed Time: the last accessed time of the monitored object instance.

Last Accessed Location: the last accessed location (including the file name and the

line number) of the monitored object instance.

22



4.3.5 Reporter Component

The Reporter Component belongs to the Phase Two Part of the proposed agent. When
the user clicks the “Show Current Monitoring Report” button of the Phase Two Report
Dialog Component (see Subsection 4.2.2), the Reporter Component retrieves records from
the Record Component and generates a report of current status of the monitored object
instances. The Reporter Component then passes the generated report to the Phase Two

Report Dialog Component for display.

The Reporter Component aggregates records by reference paths. For each reference
path there is a row in the report. Each row includes the same columns as those displayed
by the Phase Two Report Dialog Component as shown.in Figure 4.7 (4), and descriptions

of these columns can befound in Subsection 4.2.2.

23



Chapter 5

Performance Evaluation

This chapter evaluates the proposed approach’s effectiveness and overheads. To test
the feasibility of the proposed-agent, we conduct experiments on Eclipse 3.1.2, which
is reported to have a memory leak bug. And then we conduct experiments on a tiny
program RuntimeExp, which we design for more accurate time overhead evaluation. All
our experiments are-conducted on a-3.07GHz Intel(R) Core(TM) i7 CPU and 12GB of
main memory, running Linux 2.6.32. The investigated programs run in Java SE HotSpot

JVMs (Version 20).

5.1 Locating Memory Leak in Eclipse 3.1.2

In this section, we use Eclipse 3.1.2 to test the feasibility of the proposed agent. Eclipse
3.1.2 is reported to have a memory leak bug [12]. Memory leaks are observed when a user
repeatedly conducts file comparisons. The leak occurs in Eclipse’s NavigationHistory com-
ponent, which keeps a list of NavigationHistoryEntry objects. Each NavigationHistoryEntry
object points to a NavigationHistoryEditorInfo object, which in turn keeps reference to a
data structure that holds the results of the comparison. In some cases the NavigationHis-
tory component fails to remove the NavigationHistoryEditorInfo objects after the window is

closed, and thus keeps alive all the other connected objects.

24



Table 5.1: Online monitoring report generated after comparing 12MB jar files for five

times
Reference Path Count

Last Accessed Time
longest | median | most recent
2012-06-21 | 2012-06-21 | 2012-06-21 | org.eclipse.ui.internal
14:50:51 15:52:36 16:51:13 NavigationHistoryEntry.java:163
ROOT > org.eclipse.ui.internal.NavigationHistoryEntry . 2012-06-21 | 2012-06-21 | 2012-06-21 | org.eclipse.ui.internal
> org.eclipse.ui.internal.NavigationHistoryEditorInfo ° 14:50:51 15:52:36 16:51:13 .NavigationHistoryEntry.java:163

Last Accessed Location

ROOT > org.eclipse.ui.internal.NavigationHistoryEntry 5

We reproduce this leak by consecutively comparing two jar files of size 12MB for five
times, and monitor it with the Phase Two Part of our agent. The chosen reference rules

are:
1. (org.eclipse.ui.internal.NavigationHistoryEntry)
2. (org.eclipse.ui.internal.NavigationHistoryEntry,

org.eclipse.ui.internal.NavigationHistoryEditorInfo)

The generated report is shown-in-Table 5.1. It can be seen in the report that there
are NavigationHistoryEntry and NavigationHistoryEditorlnfo objects not being used for two
hours. The last aceessed locations of these objects are ‘also reported. Thus we believe

that the proposed agent is able to provide helpful clues for developers in fixing leaks.

5.2 Space Overhead Analysis

The proposed agent incurs space overhead during both phase one and phase two.

Details are described below.

5.2.1 Phase One (Offline Analysis)

Space overhead occurs in phase one due to the Heap Snapshot Component and the

Dominator Tree Component.

For each object instance in the heap snapshot, a corresponding graph node is created

and appended to an array in the Heap Snapshot Component. Each graph node stores

25



Table 5.2: Space required to store information of each object: 21 4+ a 4 4(b+ ¢+ d) bytes

’ \ Type Bytes ‘
Node ID String a
To Nodes int array 4b
From Nodes int array 4c
Discovering Status char 1
Post-Order int 4
Reverse Post-Order int 4
Child Nodes int array 4d
Immediate Dominator int 4
Object Occupied Bytes int 4
Total Occupied Bytes int 4

| Total \ 21+a+4(b+c+d) |

its ID as a string and uses two integer arraysto maintain indices of nodes connected by
directed edges to and from the node respectively. (corresponding to the references in the

heap snapshot).

The directed graph ‘is converted to _a dominator<tree by the Dominator Tree Com-
ponent. Each graph node uses 1 byte (char) to store the discovering status (i.e., not
discovered, being explored, or explored) for-graph traversal, 8 bytes (int) to store its post-
order and reverse post-order respectively, and an integer array to maintain indices of its
children. After visitingall the graph nodes, each graph/mode is converted to a tree node.
Each tree node uses 4 bytes (int,) to.store the index of its immediate dominator node. To
calculate the total occupied bytes of each tree node as described in Section 3.1, each tree
node uses 4 bytes (int) to store the number of occupied bytes of its corresponding object

instance and 4 bytes (int) to store its total occupied bytes.

Table 5.2 is a summary of the space required to store the information of each object.
To sum up, 21 +a+4(b+ ¢+ d) bytes are required for each object, where a is the number
of characters of the node’s ID, b and ¢ are the node’s indegree and outdegree respectively,

and d is the number of the node’s children in dominator tree.

26



Table 5.3: Space required by the Record Component to store information of each object:
24 + e bytes

| | Type Bytes |
Node ID jlong 8
Last Accessed Time time ¢t 4
Last Accessed Location J?;EEZE?HD ;l
Reference Paths String array e

’ Total \ 24 +e

5.2.2 Phase Two (Online Monitoring)

Space overhead occurs in phase two due to the Record Component and the Reporter

Component.

For each monitored object instance, a corresponding record is created in the Record
Component, as shown in Table-4.1. Each record uses 8 bytes (jlong) to store the ID for
the monitored object instance, 4 -bytes (time  t) to store the last accessed time and 12
bytes (jmethodID and jlocation) to store the last accessed location of the monitored object
instance. In addition to these 24 bytes, each record stores reference paths matching the
given reference rules-as strings. Records in the-Record Component are deallocated only
when the corresponding object instances are freed. Table 5.3 is a summary of the space
required by the Record Component to. store the information of each object. To sum up,
24 4 e bytes are required for each object, where ¢ is the number of characters required to

represent all reference paths of the node.

At runtime, records in Record Component change over time. To avoid corrupting
these records, when a monitoring report is requested, the Reporter Component clones
the records in the Record Component and thus incurs additional space overhead. The
Reporter Component aggregates these cloned records by reference paths. For each refer-
ence path, a corresponding row is shown in the report as in Figure 4.7 (4). Each row uses
a string to store the object reference path, 4 bytes (int) to store object instance count,
12 bytes to store 3 last accessed times (time_t) and 12 bytes (jmethodID and jlocation)

to store the last accessed location. Table 5.4 is a summary of the space required by the

27



Table 5.4: Space required by the Reporter Component to store information of each object:
28 + f bytes

’ \ Type Bytes ‘

Reference Path String f
Object Instance Count int 4
longest time t 4
Last Accessed Time median time t 4
most recent time t 4
Last Accessed Location Jr.netho'dID 4
jlocation 8

| Total ‘ 28+ f |

Reporter Component to store the information of each object. To sum up, 28+ f bytes are
required for each object, where f is the number of characters of the node’s reference path.
Memory spaces allocated by the Reporter.Component. do not last long because they are

freed right after outputting the generated report to file.

For real-world applications, a user is supposed.to. watch a very tiny portion of all
the objects during the online monitoring phase. Since the agent only keeps records for

monitored objects, the space overhead incurred shall not _be expensive in most cases.

5.3 Time Overhead Analysis

The time overhead is of crucial concern to an online monitoring technique because
high time overhead may degrade the performance of the investigated program, making

the technique an impractical solution for real-world applications.

To accurately evaluate the time overhead of the proposed agent, we develop a simple
program RuntimeExp. The source code of RuntimeExp can be found in Appendix B. During
each execution of RuntimeExp, the program first allocates a total of 100 objects in heap,
part of which are RuntimeExpMonitored objects and the rest are RuntimeExpNotMonitored
objects. The number of RuntimeExpMonitored objects are determined according to user
input. The program then executes a loop for 1000 iterations. In each iteration, each object

is accessed twice (read and written, respectively). We then measure the total execution

28



Table 5.5: Result of the time overhead experiment

Monitored Object | Total Number of Accesses | Execution Time Overhead
Count | of all Monitored Objects (ms)

0 0 71 3%

1 2,000 913 1,219%

2 4,000 945 1,265%

10 20,000 1,024 1,379%

20 40,000 1,126 1,526%

30 60,000 1,254 1,711%

40 80,000 1,368 1,876%

50 100,000 1,462 2,012%

60 120,000 1,601 2,213%

70 140,000 1,706 2,364%

80 160,000 1,792 2,488%

90 180,000 1,912 2,662%

100 200,000 2,098 2,930%

time of these 1000 iterations of the RuntimeExp program with and without the Phase Two
Part of our agent attached. When the agent is attached, all the RuntimeExpMonitored

objects are monitored.

Table 5.5 shows the result of the time overhead experiment. For the RuntimeExp
program executing without our ‘agent-attached, the average execution time of all 1000
iterations is 70ms; when the RuntimeExp program is executed with the proposed agent
attached but monitors nothing in heap, the average execution time of all 1000 iterations
is 71ms, which is very close to that-without agent attached. This is because the Object
Monitor Component does not have to handle any FieldAccess nor FieldModification events

and thus no additional code is executed and no extra time overhead is incurred.

To better examine the relationship between total number of object accesses and exe-
cution time, we plot the data in Table 5.5 as Figure 5.1. It can be observed from the plot
that the time overhead is linearly proportional to the number of accesses during program
execution. In worst case where all objects are monitored, the total execution time may
grow to nearly 30 times, which is not tolerable in real-world applications. However, with
the help of the offline analysis phase of the proposed agent, the user is able to effectively
select a small portion of the objects. Moreover, the leaked objects basically are objects

not frequently used during the long-term execution of programs. Thus online monitoring

29



Execution Time (ms)
[E=y
ul
(ew]
(@]

500 /
0

0 2 4 20 40 60 80 100 120 140 160 180 200
Total Number of Accesses of all Monitored Objects (thousand)

Figure 5.1: Time overhead measurement of RuntimeExp

these infrequently used objects-of small amount with the proposed agent incurs very little
time overhead to the execution of the investigated program-in most cases, and is therefore

suitable for real-world application.

30



Chapter 6

Conclusions

We propose a two-phase approach to detect memory leaks due to useless references,
adopting both offline analysis and-online monitoring techniques. The Phase One Part
(offline analysis) helps the user determine a set-of classes whose objects are leak candidates.
These leak candidates are then monitored in the Phase Two Part (online monitoring),
where the incurred time overhead can be significantly reduced at runtime with the benefit

of partial monitoring:

For the demonstration purpose, we assume that thedinvestigated programs are written
in the Java language. The proposed approach uses an agent to communicate with the
JVM. We test the proposed agent on Eclipse 3.1.2 and show that the report generated
by the online monitoring phase of the agent is useful for locating the memory leak. Little
per-object space overhead and nearly no time overhead are incurred during the execution
of the investigated program due to partial monitoring, making it suitable for real-world

applications.

As a final remark, the implementation of the proposed agent does not modify the

JVM. Specifically, the proposed agent can be used in most JVMs that support JVMTI.

31



Bibliography

[1]

R. Jones and R. Lins, Garbage collection: algorithms for automatic dynamic memory

management. Wiley, 1996.

E. K. Maxwell, G. Back, and N.-Ramakrishnan, “Diagnosing memory leaks using
graph mining on heap dumps,” in Proceedings-of the 16th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, ser. KDD '10. New

York, NY, USA=ACM, 2010;pp. 115-124.
Jprobe. Quest Software. [Online|. Available: http://www.quest.com/jprobe/

M. D. Bond and K. S. McKinley, “Bell: bit=encoding online memory leak detection,”
SIGPLAN Not., vol. 41, 'pp«61-72, October 2006.

M. Jump and K. S. McKinley, “Detecting memory leaks in managed languages with
cork,” Software: Practice and Experience, vol. 40, no. 1, pp. 1-22, 2010. [Online].
Available: http://dx.doi.org/10.1002/spe.945

Jrockit mission control. Oracle. [Online]. Available:  http://www.oracle.com/

technetwork /middleware/jrockit /overview/index-090630.html
Jikes rvi. The Jikes RVM Project. [Online|. Available: http://jikesrvm.org/

Oracle jrockit jvm. Oracle Corporation. [Online]. Available: http://www.oracle.

com/technetwork/middleware/jrockit /overview/index.html

Java se hotspot. Oracle Corporation. [Online|. Available: http://www.oracle.com/

technetwork/java/javase/tech/hotspot-138757.html

32


http://www.quest.com/jprobe/
http://dx.doi.org/10.1002/spe.945
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index-090630.html
http://jikesrvm.org/
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/middleware/jrockit/overview/index.html
http://www.oracle.com/technetwork/java/javase/tech/hotspot-138757.html
http://www.oracle.com/technetwork/java/javase/tech/hotspot-138757.html

[10] Jvm tool interface version 1.2. Oracle. [Online]. Available: http://docs.oracle.com/

javase/7/docs/platform /jvmti/jvmti.html

[11] K. D. Cooper, T. J. Harvey, and K. Kennedy, “A simple, fast dominance algorithm,”

2001. [Online]. Available: http://www.hipersoft.rice.edu/grads/publications/dom14.
pdf

[12] Eclipse bug 115789 - memory leak. The Eclipse Foundation. [Online]. Available:
https://bugs.eclipse.org/bugs/show__bug.cgi?id=115789

33


http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://docs.oracle.com/javase/7/docs/platform/jvmti/jvmti.html
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
http://www.hipersoft.rice.edu/grads/publications/dom14.pdf
https://bugs.eclipse.org/bugs/show_bug.cgi?id=115789

Appendix A

The MyProgram Program

We design a sample Java program MyProgram to demonstrate the usage of the pro-
posed agent. MyProgram consists-of five files: MyProgram.java, test/MyDblLinkedList.java,

test/MyListltem java, test/MyDisplay.java-and. test/MySetting.java, whose source codes are

10
11
12

13

listed below.

Source code of MyProgram.java:

import
import
import
import
import

import

public

test . *;
java.io.*;
java.util.Date;
java.util.TimeZone;

java.text .DateFormat;

java.text.SimpleDateFormat ;

class MyProgram {

private static void PrintMyDblLinkedList (MyDblLinkedList

dbllinkedlist) {

System.out.print ("MyListItems:

(from head to tail)\n");

MyListItem current = dbllinkedlist.getHead();

while (current != null) {

34




14
15
16
17

18
19
20
21

22
23
24
25

26

27
28

29

30
31
32
33
34
35
36
37
38
39
40

}

System.out.print (" " + current.getValue() + "\t");

MyListItem prev = current.getPrev();

if (prev != null) System.out.print (" Prev: " 4 prev.
getValue () + "\t");

else System.out.print (" Prev: null\t\t");

MyListItem next = current.getNext();
if (next != null) System.out.print(" Next: " + next.
getValue () + "\n");

else System.out: pring (" Next: null\n");

current. = next;

System .‘out’. print ("dbllinkedlist contains " + dbllinkedlist.

private

getCount () + " MyListItems now. \n");

static veid DoLoopContent(MySetting setting ,

MyDblLinkedList dbllinkedlist )~ {

if (dbllinkedlist.getCount() > 0) {

for

dbllinkedlist .removeHead () ;
MyListItem currentHead = dbllinkedlist.getHead () ;

currentHead . setValue (currentHead . getValue () + "MOD");

(int i = 0; i < 3; i++) {
setting .addSerialNo () ;

dbllinkedlist .add("Item " + setting.getSerialNo());

35




41
42
43
44

45

46
47
48

49
20

o1

52
53
o4
95

56
o7
o8
99
60
61
62
63
64
65
66
67

public static void main(String[] args) {

MySetting setting = new MySetting () ;
System.out . print ("Generated MySetting object instance:

setting\n");

MyDisplay display = new MyDisplay(setting);
System.out . print ("Generated MyDisplay object instance:

display\n");

MyDblLinkedList -dbllinkedlist = new MyDblLinkedList(setting);
System .outuprint ("Generated MyDblLinkedList object instance:

dbllinkedlist\n");

BufferedReader in =
new BufferedReader (new InputStreamReader (System.in));
System.out.print ("\n** Press Enter key to continue experiment
, Ctrl+Z to.stop.\n");
try { in.readLine() s}
catch (Exception e) {

System.out.println ("Caught an exception!");

// for experiment

int experiment_type = Integer.parselnt(args[0]);

if (experiment_type =— 1) { // with agent v.s. without agent
long elapsed = 0;
for (int j = 0; j < args.length — 1; j++) {

// loop count

36




68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

90

91

92
93
94
95
96

int loop_count = Integer.parselnt (args[j + 1]);
if (j > 0)

loop__count —= Integer.parselnt (args[j]);

// record start time for experiment

long startTime = System.nanoTime/() ;

// call DoLoopContent() for loop count times
for (int i = 0; i < loop_count; i++) {
DoLoopContent (setting , dbllinkedlist);

//System Tout. printin (i) ;

L) calculate current elapsed time
long currentTime = System.nanoTime() ;

elapsed 4= currentTime — startTime;

// output éxperiment 1 resultl tovfile
try {
if (j.>"0)
loop__count += Integer.parselnt (args[j]);
FileWriter fstream = new FileWriter ("expl_data.
txt", true); // append
BufferedWriter out = new BufferedWriter (fstream):;
out.write (loop_count + "\t" 4+ dbllinkedlist .
getCount () + "\t" + elapsed + "\n");
out.close () ;
} catch (Exception e) {

System.out.println (e);

37




97
98

99

100

101
102
103
104
105
106
107
108
109
110
111
112
113

114

115
116
117

118

119
120

121

}

else if (experiment type = 2) { // monitor all v.s. monitor
partial
// experiment duration (note that input is min and is
converted to msec here)
double experiment_duration__msec = Double.parseDouble (args

[1]) * 60 * 1000;

while (true) {
// record start time for experiment

long startTime = System.currentTimeMillis();

while (true) {

DoLoopContent (setting , dbllinkedlist ) ;

// ‘ealculate <current elapsed time
long currentTime = System.currentTimeMillis () ;
SimpleDateFormat dateFormat =

new SimpleDateFormat("HH:mm:ss");

dateFormat.setTimeZone (TimeZone . getTimeZone ("GMT"
));

long elapsed = currentTime — startTime;

// output message for experiment reference
System.out.println("[ Elapsed Time: " +
dateFormat . format (new Date(elapsed)) + " ( " +

elapsed + " ms) 1");

if (elapsed > experiment_duration_ msec) break;

else {

38




122

123
124
125
126
127
128
129
130
131

132

133

134
135
136
137
138
139
140
141
142
143

144

145

146

147

//thread to sleep for the specified number of
milliseconds

try {
Thread . sleep (60000) ;

} catch (Exception e) {

System.out.println (e);

BufferedReader in2 =
new BufferedReader(new InputStreamReader (System.
in));
System . out.print("\n** Press Enter key to continue
experiment, Ctrl+Z to stop.\n");
try { in2.readLine(); }
catch (Exceptione) {

System .‘out . println ("Caught 'an exception!");

} else { // step by step wver

while (true) {

DoLoopContent (setting , dbllinkedlist);

BufferedReader in2 =
new BufferedReader (new InputStreamReader (System.

in));

System.out.print ("\n** Press Enter key to continue
experiment, Ctrl+Z to stop.\n");

try { in2.readLine(); }

catch(Exception e) {

39




148
149
150
151
152

153

10
11
12
13
14
15
16
17
18
19
20
21
22

23

System.out.println ("Caught an exception!");

Source code of test/MyDblLinkedList.java:

package test;

public class MyDblLinkedList {
protected MyListItem head = null;
protected int. count = 0;

private MySetting setting =.null;

public MyDblLinkedList (MySetting set) {
// add ‘reference to MySetting

setting = set;

public void add(String value’) {
MyListItem new_item = new MyListItem (value):;

if (head = null) {

head = new_ item;
count = 1;
} else {

new_item.setNext (head) ;
head . setPrev (new__item) ;
this.setHead (new_item) ;

count 4= 1;

40




24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

public void removeHead () {

{

if (count > 0)
count —= 1;
MyListItem new_head = head.getNext () ;
new__head.setPrev (null);

this.setHead (new__head) ;

public void setHead(MylistItem item.) {

head = item;

public MylListltem getHead () {

return thead ;

public int getCount () {

return count;

Source code of test/MyListltem.java:

package test;

public class MyListItem {
protected String value;
protected MyListIltem next;

protected MyListltem prev;

41




10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

public MyListItem (String val) {

value = val;
next = null;
prev = null;

public void setNext(MyListItem item) {

next = item;

return ne

public voic

prev =

public MyListlte

return prev;

public void setValue(String val) {

value = val;

public String getValue() {

return value;

42




S~ W

co N O Ot

10

o N O

10
11
12

13

Source code of test/MyDisplay.java:

package test;

public class MyDisplay {

private MySetting setting = null;

public MyDisplay (MySetting set) {
// add reference to MySetting

setting = set;

> .
Source code of test

=][3N A3

_serial_no++;

public int getSerialNo () {

return _ serial_ no;

43




10

11

12

13

Appendix B

The RuntimeExp Program

We design a tiny Java program RuntimeExp to evaluate the runtime overhead of the

proposed agent. RuntimeExp consists of three files:. RuntimeExp.java, RuntimeExpMoni-

tored.java and RuntimeExpNotMonitored:java; whose source codes are listed below.

Source code of RuntimeExp.java:

import java.io.*;

import java.util . ArrayList;
import java.util.Date;
import java.util.TimeZone;
import java.text.DateFormat;

import java.text.SimpleDateFormat ;

public class RuntimeExp {
public static ArrayList<RuntimeExpMonitored> monitored = new

ArrayList <RuntimeExpMonitored > () ;

public static ArrayList<RuntimeExpNotMonitored> not_monitored =

new ArrayList<RuntimeExpNotMonitored >();

public static void main(String[] args) {
try {
int percentage = Integer.parselnt (args[0]);

44




14

15

16
17

18

19
20
21
22
23
24
25

26

27
28
29
30

31

32
33
34
35
36
37
38
39
40

if (percentage < 0 || percentage > 100) {
System.out.println ("Please pass in an integer between
0 and 100.");
return;
}
System.out.println ("Percentage of monitored objects: " +

percentage + "%");

int remaining = 100—percentage;

for (int i = 03 i < percentage; i++)

monitored .add (new RuntimeExpMonitored ("A" + i));

for (int i =0;-i <'remaining;, i++)
not vmonitored . add (new RuntimeExpNotMonitored ("B" + 1)

) ;

BufferedReader ‘in =
new BufferedReader (new InputStreamReader (System.in));
System .out. println ("\n**.Press Ctrl + \\ first.");
System.out.println ("** And then press Enter key to
continue experiment or Ctrl+Z to stop.");
try { in.readLine(); }
catch (Exception e) {

System.out.println ("Caught an exception!");

System.out.println ("\n** This might take a while...");

// record start time for experiment

long startTime = System.currentTimeMillis () ;

45




41
42
43
44
45
46
47
48
49
50
o1
92
53
54
95
56
o7
o8
29
60
61
62
63
64

65
66
67
68
69

// START LOOPING
for (int j = 0; j < 1000; j++) {
for (int i = 0; i < percentage; i++) {
monitored.get (i).set ("A" + i);

monitored.get (i).get();

for (int i = 0; i < remaining; i++) {
not__monitored.get (i).set("B" + i);

not__monitored . get (i) .get () ;

}

System. out . println ("loop end");

// fealculate current elapsed. time

long currentTime = System.currentTimeMillis () ;
SimpleDateFormat dateFormat =

new SimpleDateFormat ("HH:mm:ss!);

dateFormat . setTimeZone (TimeZone . getTimeZone ("GMT") ) ;

long elapsed ="currentTime — startTime;

// output message for experiment reference
System.out.println ("\n[ Elapsed Time: " + dateFormat.

format (new Date(elapsed)) + " ( " + elapsed + " ms) 1"

);

System.out.println ("\n** Press Ctrl + \\ again.");
System.out.println ("**Press Enter key to exit.");
try { in.readLine(); }

catch(Exception e) {

46




70
71
72
73
74
75
76
77
78
79
80
81

82

10
11
12
13
14

15

System.out.println ("Caught an exception!");

}

catch (NumberFormatException e) {
System.out.println ("ERROR: " + e.getMessage());
System.out.println ("Please enter an integer!");

}

catch (Exception e) {

System.out.println (e.getMessage());

Source code of RuntimeExpMonitored.java:

public class RuntimeExpMonitored {

private String value;

public String get ()]

return this.value;

public void set(String str) {

this.value = str;

RuntimeExpMonitored (String str) {

this.set (str);

47




S~ W

co N O Ot

10
11
12
13
14
15

Source code of RuntimeExpNotMonitored.java:

public class RuntimeExpNotMonitored {

private String value;

public String get () {

return this.value;

public void set(String str) {

this.value = str;

48





