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虛擬機記憶體與磁碟狀態之觀測與操控 

學生：黃俊祺          指導教授：吳育松 博士 

國立交通大學網路工程研究所碩士班 

摘    要 

 在傳統個人電腦的架構下，系統監測與反制工具均安裝於作業系統內部。此類工具

擁有系統權限，能取得系統核心狀態與阻擋系統的特定行為，典型的例子如防毒軟體，

在擁有系統權限的前提下，防毒軟體檢查系統的核心狀態、檔案系統以及存取行為，一

旦發現不符合規則的情況發生，便以對應的動作進行問題排除。但隨著雲端環境的興起，

一台實體機器中可能擁有數台虛擬機器的情況下，過去安裝於系統內部的監測工具顯然

在安裝與維護上會消耗掉不少的時間與人力成本，同時在系統內部去觀測系統狀態會有

rootkit 屏蔽的問題，因此如何在虛擬機器外部進行系統觀測與操控，便成為研究的重點

之一。 

 現今的虛擬化平台製造商也開始釋出相關的系統觀測API給防毒軟體供應商使用，

如 VMWARE提供 VMSAFE API給 Trend Micro開發出的 Deep Security便是一個典型的

例子。但從現實面考量，使用商業軟體進行開發與研究的門檻並不算低，除了軟體本身

所需要的成本不斐以外，虛擬化平台製造商是否願意將內部開發用的 API釋出給一般研

究機關使用也是需要考量的問題，因此大多數人便轉向 Xen及 KVM 兩大開源虛擬化軟

體進行開發與研究。但是目前為止在 Xen和 KVM上的發展仍停滯於系統觀測與分析階

段，尚未有實際的系統能保護虛擬機免於惡意軟體的入侵，因此本篇論文在 Xen的架構

下提出一個能觀測並操控虛擬機記憶體和磁碟狀態的方法，並用此方法實作出 Xen 

Hypervisor上第一個保障虛擬機安全的入侵偵測反制系統。 

 由於在Windows 64位元版本的作業系統中新增了 Kernel Patching Protection的機制，

導致我們在操控虛擬機記憶體時會被此機制所阻擋，同時在讀取虛擬機磁碟狀態時，會

因為作業系統內部 disk cache中的資料尚未寫入磁碟，導致在外部讀取不到最新的磁碟

狀態，針對這兩個問題我們也提出了對應的解決方法。論文的最後針對本系統進行一連

串的實驗與討論，實驗結果顯示本系統能成功繞過 Kernel Patching Protection 機制並正

確地針對虛擬機行為進行監測與反制，目前的系統雖然僅支援Windows 7 64 位元版本和

Windows Server 2008 64 位元版本，未來我們將以效能及更多元的防護為目標，提供一

個更完善的虛擬機防護機制。 

 

關鍵字：雲端運算，虛擬機器，入侵偵測，入侵反制、虛擬機內部狀態監控 
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Student：Chun-Chi Huang      Advisor：Dr. Yu-Sung Wu 

 

Institutes of Computer Science and Engineering National Chiao Tung University 

 

ABSTRACT 

 End-point security monitoring is typically integrated with the operating system kernel 

layer for checking the kernel states and preventing malicious program from gaining kernel 

privilege. Anti-virus software is one of the classical examples, but in a cloud computing 

environment, there may be hundreds or thousands of virtual machines. It is impossible to 

install and maintain end-point security software such as the anti-virus software for every 

virtual machine. Also, traditional end-point security software may be bypassed by rootkits, 

which have the same system privilege level as the operating system kernel. As a result, there 

is a clear need for the ability for security software to introspect and interpose the system states 

from outside the virtual machines.  

In this paper, we propose a virtual machine introspection and interposition system based 

on Xen Hypervisor. With our system, security applications can introspect and interpose in the 

memory and disk states of virtual machines from domain 0. We also built prototype IDS/IPS 

applications to demonstrate the feasibility of the proposed system. However, for Windows 

x86_64 edition operating systems, memory interposition in kernel pages will be blocked due 

to kernel patching protection. Also, there is a cache coherence problem when a security 

application gets the disk states of a virtual machine. In order to introspect and interpose in the 

virtual machine states accurately, we provide a solution to evade kernel patching protection 

and maintain consistency disk states, and the result shows our solution works well. 

Key Word: Cloud Computing, Virtual Machine, Introspection, Intrusive Detection, Intrusive Prevention 
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Chapter 1. Introduction 

System state monitoring technology has been widely used in many end-point security 

applications, like antivirus application needs system information to ensure system integrity. 

This kind of applications usually resides in kernel space of operating systems and gathers 

information by its kernel privilege. Although it seems that getting accurate system 

information would not be a problem, there is another technology called Rootkit [1]. 

 Rootkit is a set of tools that hides in operating systems. It modifies system critical 

structures to keep itself invisible from end-point security applications. Due to rootkits, 

security applications may get incorrect system information. However, rootkits are difficult to 

be detected because rootkits have the same privilege as the kernel. There is no bullet-proof 

approach to fight against rootkits within an operating system. 

 Virtualization [2] technology provides a new architecture for hosting operating systems. 

With the help of virtualization, multiple operating systems can share the hardware resource of 

a physical machine. Virtualization technology not only provides a new architecture for 

running multiple operating systems on a single physical machine but also provides a new way 

for system state introspection. In the architecture of virtualization, security applications can 

introspect the system state from the external, which solves the problem of rootkits. 

 In this paper, we propose the VMMD system for the introspection and interposition of 

virtual machine memory and disk states. VMMD is developed based on the Xen Hypervisor. 

With VMMD, third party security applications can not only monitor the states of guest VMs 

but also manipulate them. In Chapter 2, we will mention about the background of 

virtualization technology. In Chapter 3, we will talk about the design of VMMD. In 0, we will 

talk about the implementation of VMMD. The evaluation of the VMMD system is given in 

Chapter 5. We will discuss related work in Chapter 6 and potential future work in Chapter 7. 

The conclusion is given in Chapter 8. 
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Chapter 2. Background  

Since virtualization technology and hardware support have been developed, cloud 

computing [3] became more popular. Cloud computing consists of three kinds of architecture, 

Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service 

(IaaS). SaaS is a model that hosts software and associated data on the cloud. Users can access 

software via a web browser, like Gmail and Youtube. PaaS provides a computing platform. 

Users can develop applications by using tools and libraries from PaaS provider, like Google 

App Engine. IaaS offers computers for those who need machines to develop on. Users then 

install operating system image on the machines as well as their application software. In IaaS 

model, users have to maintain operating system and patch software on their own. Amazon 

EC2 is an example of IaaS. 

IaaS depends on a resource manager, called Virtual Machine Manager (VMM) or 

Hypervisor [4], to schedule physical resources to each VM. For virtual machines, they are not 

aware of the existence of VMM, and are running as if they control the whole resources on the 

physical machine. In nowadays, IaaS is constructed on two mainly Hypervisor, Xen [5] and 

KVM [6]. Xen Hypervisor provides a security VM as an interface for virtual machine 

management, usually known as domain 0. To communicate with Xen, the kernel of domain 0 

has to be patched and has to be tie-in with the kernel of Xen. Unmatched kernel version will 

lead to kernel panic and crash the entire system. Xen runs guest operating systems as 

independent virtual machines. Each of them cannot affect the system states of others. On the 

other hand, KVM provides a different architecture for virtual machine virtualization. KVM is 

part of Linux operating system. It has no need to match up the operating system kernel 

version while being installed. KVM runs virtual machines as regular Linux processes in the 

security VM. Each virtual machine is scheduled by the standard Linux scheduler as other 

processes.  
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System introspection outside the virtual machine has been popular since virtualization 

technology showed up. For a cloud center, it is costly to maintain traditional in-VM security 

monitor in each virtual machine. To provide a better security solution for cloud center, lots of 

tools are developed on Xen, KVM platform. The detailed will be discussed in Chapter 6. In 

short, most of the tools are still stay in the steps of system introspection. None of them can 

manipulate the states of virtual machine straightly, not to say malware prevention.  

Protecting guest operating system outside the guest VMs has some challenges like how to 

conquer the semantic gap [7] problem, how to manipulate the states without crashing the 

whole system, and how to provide a general solution across different operating systems. We 

will introduce our system design and point out the challenges we faced in the next chapter.  
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Chapter 3. System Design 

VMMD system allows third party security applications in the domain 0 to introspect and 

interpose in the memory and disk states of a guest virtual machine (guest VM) on Xen 

Hypervisor. For memory and disk introspection, third party security applications can read 

virtual machine memory pages and disk blocks through Xen Hypervisor. For memory and 

disk interposition, third party security applications can write data to arbitrary memory pages, 

or disk blocks of a guest VM, and are able to control the memory and disk access of virtual 

machines.  

 

Figure 1. VMMD System Architecture 

The architecture of VMMD system is shown as Figure 1. It provides an interface called 

LibVMMD in domain 0, a memory module in Xen Hypervisor, and a disk module in QEMU 
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[8]. Monitor applications introspect or interpose between the memory subsystems of guest 

VMs through LibVMMD. To manipulate the guest memory pages, LibVMMD makes use of 

Xen Control Library (libxc). After monitor applications call LibVMMD, the libxc module will 

find the mappings in Extended Page Table (EPT [9]), and get the target memory pages on 

physical memory. On the other side, VMMD system adds a memory module in Xen 

Hypervisor. Monitor applications can control the guest access of virtual machine memory 

subsystems through the memory module. For that, LibVMMD transfers the requests of 

monitor applications to the memory module, and changes the access control bits in EPT. The 

corresponding guest physical memory pages of the changed access bits are restrained by 

monitor applications, and the memory pages cannot be accessed by guest operating systems.  

Also, LibVMMD allows monitor applications to introspect, interpose, and control the 

virtual machine disk subsystems. In the architecture of Xen Hypervisor, QEMU handles the 

I/O requests, like network card and disk, of virtual machines. In order to introspect and 

interpose between virtual machine disk subsystems, VMMD system has to work with 

QEMU-dm. In the system architecture, VMMD adds a disk module in QEMU-dm. After 

receiving notifications from LibVMMD, the disk module will parse the disk structures to get 

the target disk blocks for introspection and interposition. However, the disk introspection may 

meet disk cache coherence problem. The latest file contents may be stored in data cache by 

guest operating system to enhance system performance. To make the disk introspection work 

properly, we design “Write Buffer” to capture the disk cache data. Thus, LibVMMD will 

return the latest data to monitor applications with the help of write buffer. Due to the role of 

QEMU-dm, the disk access control is built in it as well. Monitor applications can quarantine 

specified files or disk blocks by calling LibVMMD, and the virtual disk requests from guest 

operating systems will be blocked by the disk module. 

Xen supports two types of virtual machines, para-virtualization based virtual machine 
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(PV) [10] and hardware based virtual machine (HVM) [11]. The proposed system supports 

HVM primarily. PV reduces the time of guest’s operation execution, but it requires the guest 

operating systems to be ported for para-API. On the other hand, HVM supports unmodified 

guest operating systems and provides better performance than full virtualization. HVM is 

more appealing because many popular operating systems nowadays are still closed-sources 

including Windows and Mac OS. In order to provide a general solution for virtual machine 

memory and disk introspection and interposition, this system is designed with the following 

goals: 

1. Allow security application in domain 0 to introspect a guest VM’s memory and disk. 

2. Allow security application in domain 0 to interpose in a guest VM’s memory and disk. 

3. Require no modification of guest OS kernel.  

4. Do not depend on pre-installed drivers in the guest VM. 

5. Guest VMs cannot circumvent and interfere with this system. 

 Memory Introspection and Interposition 3.1

Memory contains programs (sequence of instructions) or data (e.g. program state 

information) for operating systems. When an operating system is running, CPU fetches 

instructions and data from specified memory pages. After finishing the fetched instructions, 

CPU will fetch instructions from another specified memory page. In other words, memory is 

like a paper which records the next step of an operating system.  
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Figure 2. Flow Chart of Memory Introspection and Interposition 

Memory introspection allows monitor applications to get the memory contents outside the 

virtual machines, and memory interposition allows monitor applications to overwrite the 

memory contents outside the virtual machine. Because of the isolation between virtual 

machines, guest VMs are unable to notice whether they are being “monitored”. Also, rootkits 

have no ability to interfere with the control flow of memory introspection and interposition. 

Figure 2 shows the control flow of memory introspection and interposition. 

The monitor application calls LibVMMD to do the memory introspection or interposition. 

It can assign the process id, the virtual address with cr3, or the guest frame number (GFN) to 

LibVMMD at step 1. The VMMD Library then gets the memory contents of the argument 

issued by the monitor application from step 2 to step 6, and returns the contents for 

introspection, or overwrites the contents for interposition at step 7 and step 8. The step from 2 

to 6 is the flow of using Xen Control Library. When the Xen Control Library is called at step 

2, the libxc module will map the target guest physical memory page into the address space of 

LibVMMD at step 3 and step 4. The mapped memory address will return to the LibVMMD at 
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step 5 and step 6. At this moment, LibVMMD can introspect or interpose the guest physical 

memory page for the monitor application. 

 Memory Access Control 3.2

 

Figure 3. x64 hardware page table entry 

Memory access control prevents memory pages from unauthorized access. In the guest 

page tables, each memory page has three types of access control bits： Read, Write and 

Execute. Figure 3 presents the fields of an x64 page table entry. By setting these access 

control bits, any illegal memory manipulation will be caught by the guest OS to ensure its 

system integrities. However, these bits can be changed by a malicious kernel module. The 

malicious kernel module can modify the access control bits as it is at the same privilege level 

as the kernel, and makes memory access control from the guest page tables unreliable.  
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Figure 4. Flow Chart of Memory Access Control 

Access control from the guest page tables is not reliable because of the same system 

privilege between malicious kernel module and the kernel. What happens if memory access 

control possesses higher privilege than the kernel? With this idea, memory access control is 

built in EPT. Xen Hypervisor deploys EPT for virtual machine page table virtualization. With 

the help of EPT, Xen can reduce the overhead by avoiding the VM exits associated with page 

table virtualization. Figure 4 explains the control flow of memory access control.  

When a monitor application needs to control the access of virtual machine memory pages, 

it uses the control functions of LibVMMD (step 1). LibVMMD will request the memory 

module to find and to change the control types of the corresponding EPT entries (step 2 ~ step 

4). EPT provides access control bits as the guest page table does. When the guest operating 

system accesses the protected page (step 5), it will trigger an EPT violation due to 

unauthorized memory manipulation. The violation will be caught by the memory module 

(step 6), and the memory module will return the control back to the next instruction to skip 
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the unauthorized instruction (step 7). Due to the location of EPT, it is more difficult to alter 

EPT access bits from guest VMs unless Xen has been compromised. After the control types of 

virtual machine memory blocks have been set, any unauthorized memory manipulation will 

be rejected by EPT.  

 Evading Kernel Patching Protection 3.3

In order to improve OS kernel security, Microsoft has planted a kernel patching protection 

mechanism [12], informally known as PatchGuard, on recent x64 Windows editions. 

PatchGuard verifies kernel critical structures periodically to prevent unauthorized kernel 

patching. When a program (e.g. a malware) attempts to patch the kernel, PatchGuard will 

trigger a blue screen error and force a reboot of the system. 

Because of the kernel patching protection, memory interposition is mostly useless in the 

kernel address space. Monitor applications cannot patch kernel to set break-points or hook the 

system APIs through kernel patching techniques such as modification of IDT/SSDT tables or 

the system call dispatching function. This greatly limits the security monitor applications as 

much of the operations in the guest kernel cannot be hooked and monitored. We thus need to 

evade the kernel patch protection mechanism. 

PatchGuard protects kernel structures like System Service Descriptor Table (SSDT), 

Global Descriptor Table (GDT), Interrupt Descriptor Table (IDT), System images (e.g. 

ntoskrnl.exe, ndis.sys, hal.dll), and Processor MSRs (system call). As a high level application, 

PatchGuard is implemented to cache the original copies and/or checksums of the kernel 

structures, and compare with the recent structures in a time interval. If PatchGuard found any 

difference between recent structures and original copies, it will invoke a blue screen error to 

reboot the entire system.  
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Figure 5. Flow Chart of Evading Kernel Patch Protection 

LibVMMD bypasses PatchGuard by preventing it from verifying the contents of patched 

memory pages. For the reason, it emulates the PatchGuard instructions in Xen Hypervisor. 

Figure 5 shows the process of evading kernel patching protection. At the beginning, the 

monitor application patches the guest kernel memory page through LibVMMD interface. To 

circumvent the PatchGuard verification routine, the read privilege of the patched memory 

page has to be canceled. Unfortunately, the privilege of write and execute exist 

simultaneously leads EPT misconfiguration fault, so the memory module changes the access 

control type to be execute-only (step 1 & step 2). Meanwhile, PatchGuard is invoked to verify 

the integrity of guest operating system (step 3). When it reads the patched page, it causes an 

EPT violation fault and transfers the control to the memory module (step 4). The memory 

module will emulate the offending instruction in Xen Hypervisor, and return the control back 

to the next PatchGuard instruction until the verification is finished (step 5).  
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 Disk Introspection and Interposition 3.4

Disk introspection and interposition allow monitor applications to read or overwrite disk 

contents outside the virtual machines. Like memory introspection and interposition, rootkits 

are unable to interfere with the flow of disk introspection and interposition. Disk introspection 

and interposition are implemented by modifying the virtual disk emulation codes of QEMU in 

Xen Hypervisor. LibVMMD plays the role of an interface for the disk module in QEMU. The 

disk module will wait for monitor applications’ requests, and finish them in QEMU. 

 

Figure 6. Flow Chart of Disk Introspection and Interposition 

First of all, the monitor application passes requests to the disk module through LibVMMD. 

According to the requests, the disk module will find the target blocks in the virtual disk of 

specified virtual machine. It will return the block contents to monitor applications for disk 

introspection, or overwrite the block contents for disk interposition. The disk introspection 

and interposition can be divided into block level and filesystem level. The difference is 

explained below. 
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3.4.1. Block-level Introspection and Interposition 

 QEMU emulates the virtual disk as an IDE device. To handle the I/O operations from 

guest VMs, the IDS device driver uses its I/O operation functions at block level. At block 

level, the data are stored in sectors as basic unit. The disk module uses the driver operation 

functions to manipulate the virtual disk at block level. For introspection, it uses the read 

function of the driver as if the target sector is read by the driver. For interposition, it uses the 

write function of the driver as if the target sector is overwritten by the driver.   

3.4.2. Filesystem-level Introspection and Interposition 

 Introspecting data at filesystem level is more complicated. The flow is shown in Figure 6. 

When the monitor application makes the call for disk introspection or interposition through 

LibVMMD, the request is sent to the disk module (step a). To get the file contents, the disk 

module has to find the corresponding sector numbers of the file. In the NTFS filesystem, the 

files are saved as attributes in the Master File Table [13]. To find the corresponding sector 

numbers, the disk module has to parse the MFT. After parsing the MFT, the disk module can 

find the sector numbers of the file for disk introspection and interposition as 3.4.1. Therefore, 

the disk module can return the file contents for introspection, and modifies the file contents 

for interposition (step b & step c).  

 Write Buffer for Disk Cache Coherence 3.5

 Although the file contents can be dumped by disk introspection, there is another problem 

called disk cache coherence. For the reason of improving the speed of fetching data, operating 

systems provide data cache to store frequently used or the latest updated data. These kinds of 

data will be stored in data cache for a while, and then they will be written to disk storage. 

However, filesystem introspection gets the file contents from the virtual disk. It cannot get the 

contents which do not exist on virtual disk storage. This embarrassing situation often happens 

right after the guest system updates a file’s content. When a file is being updated, the contents 
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may be stored in data cache. At this moment, filesystem introspection is unable to get the 

latest file contents until they are written to the disk storage. 

 

Figure 7. Flow Chart of Disk Introspection with Write Buffer 

 To solve this problem, we developed the technique called Write Buffer. Write Buffer 

stores the latest contents when the guest VM modifies its disk files. The contents are captured 

and stored in Write Buffer by the control center, which intercepts the system calls [14]. Figure 

7 shows the newer disk introspection steps and Write Buffer mechanism. For Write Buffer, 

there is a control center which intercepts the system calls in domain 0. The intercepted system 

calls are “NtCreateFile”, “NtOpenFile”, “NtWriteFile”, and “NtClose”. When these system 

calls are invoked by guest user processes at step A, they will be captured by the interception 

module at step B, and will be sent to the control center at step C. The control center will parse 

the system call arguments to maintain Write Buffer at step D, and return the control back to 
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the original system call flow of the guest operating system. Write Buffer adds one more step 

in newer disk introspection. After the disk module gets the contents from virtual disks as usual 

(step 1 ~ step 3), it checks whether Write Buffer keeps the latest contents (step 4). If yes, the 

disk module will merge the contents into Write Buffer (step 5) and return back to the monitor 

applications (step 6). With the help of Write Buffer, the monitor applications can get the latest 

file contents with disk introspection even they are not written into the guest virtual disk.  

 

Figure 8. Write Buffer Maintenance 

Write Buffer is maintained by the control center and the disk module. The control center 

handles the Write buffer creation and synchronization. Figure 8 explains the steps of Write 

Buffer maintenance. When the guest user process invokes a system call, the control center 

intercepts it and checks its type. If the system call is NtCreateFile or NtOpenFile, the control 

center will create a file entry to save the mapping between the file path and the file handle, 

and check if the Write Buffer exists. If the Write Buffer does not exist, the control center 

creates a Write Buffer and copies the file contents through disk introspection into it. If the 

system call is NtWriteFile, the control center will use the file handle arguments to find the file 

path from file entries to see if the Write Buffer exists. If the Write Buffer exists, the control 

center will copy the contents from system call arguments into the Write Buffer. Otherwise, the 

control center will create the Write Buffer with its file path and save the contents. The file 

entries are stored in the memory space of the control center. To avoid running out the memory 

space, the control center frees the file entry according to the NtClose system call argument.  



 

16 

 

 

Figure 9. Write Buffer Usage 

Figure 9 shows the usage of Write Buffer. When the monitor application calls 

LibVMMD to do the disk introspection with Write Buffer, VMMD system checks if the file 

contents are stored in Write Buffer. If yes, VMMD return the Write Buffer contents to the 

monitor application. If not, VMMD saves the file contents into a Write Buffer through disk 

introspection and return it to the monitor application. Therefore, subsequent file access will 

not need to do disk introspection again and can be served by the Write Buffer mechanism.  

 

Figure 10. Write Buffer Garbage Collection 

 However, keeping Write Buffer can enhance the speed of repeating file access, but it also 
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consumes the disk space of Domain 0. To maintain the balance between speed and disk space, 

VMMD provides garbage collection mechanism for Write Buffer. Garbage collection is a 

mechanism for cleaning outdated Write Buffer. The cleaning procedure is shown in Figure 10. 

The cleaning procedure is started by the control center. In the procedure, the control center 

checks the existing Write Buffer and gets the file contents through disk introspection. After 

getting the file contents, the control center compares them with the Write Buffer. If the result 

shows the contents are the same as the Write Buffer, it means the guest operating system has 

written the cache data into its virtual disk. Then the control center is able to free the space of 

the Write Buffer. The frequency of garbage collection can be regulated, and the overhead of 

different frequency will be discussed in Section 5.6. 

 Disk Access Controls 3.6

 

Figure 11. Flow Chart of Disk Access Control 

Disk access control prevents unauthorized disk manipulations from guest VMs. The file 

control type can be read-only or read-write. The operating system manages the file access 

control through the control attribute, but the file control attribute can be changed with proper 

system privilege. The antivirus software has another file access control mechanism. When 
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malicious files are found in the operating system, it quarantines the malicious files to avoid 

them being accessed by another process. However, the quarantine process may be attacked by 

malwares; so that the quarantined files will get released.  

In VMMD system, we implement a disk access control mechanism within the virtual disk 

subsystems (i.e. QEMU-dm). The mechanism locates outside the guest virtual machine so it is 

much more difficult for a malware within the guest VM to attack or bypass the disk access 

control mechanism. The mechanism can be used by a security monitor to implement more 

effective quarantine for malicious files on the disk. Figure 11 presents the architecture of disk 

access control. 

3.6.1. Block-level Access Control 

To block disk access from guest VMs at block level, the disk module contains a blacklist. 

The blacklist is maintained by the monitor application and the monitor application can add 

new blacklist entries through LibVMMD. Each blacklist entry records a virtual disk sector 

number of a guest VM. When the guest VM tries to access the sectors in blacklist, the disk 

module will block the requests and return error messages to guest VMs as failed disk access. 

3.6.2. Filesystem-level Access Control 

To block disk access of the guest VMs at filesystem-level, monitor applications can 

assign the file path to the disk module through LibVMMD. The disk module will parse the 

MFT records to find the corresponding sector numbers on the guest virtual disks and add the 

number to the blacklist. After the corresponding sector numbers are added to the blacklist, the 

guest VMs cannot access the files as Chapter 0 explains. 
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Chapter 4. Implementation 

LibVMMD is implemented in C and C++ as a shared library. It makes use of libxc, ntfs-3g, 

and QEMU-dm architecture. The current version is built to monitor HVM version of 

Windows7 x86_64 and Windows Server 2008 x86_64 running on Xen 4.0.1. The 

implementation details are discussed in the section as below.  

 Translation of Memory Address 4.1

LibVMMD makes use of Xen Control Library for memory introspection and interposition, 

but libxc manipulates memory pages with GFN. However, modern operating systems use 

virtual address mechanism for flexible memory management. To make memory introspection 

friendlier, LibVMMD provides three different solutions to access guest VMs’ memory 

subsystems. 

4.1.1. Memory Introspection and Interposition with Guest Physical Address 

For memory introspection and interposition with guest physical address, the system 

depends on the Xen Control library (libxc). Libxc provides a function called 

xc_map_foreign_range() to map guest VMs’ physical memory pages into domain 0 memory 

address space with GFN. After mapping the target memory pages into domain 0, third party 

applications can read or overwrite the memory contents as their own memory pages.  

4.1.2. Memory Introspection and Interposition at a Given Guest Virtual 

Address 

Comparing to physical address, modern operating systems use virtual memory address as 

primary. Memory introspection with guest virtual address can avoid Semantic Gap problem. 

Getting memory contents with guest virtual address is more meaningful than only with guest 

physical address as well.  
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Figure 12. Memory Address Translation  

To find the corresponding guest physical address, a series of memory address conversion 

is required. Figure 12 shows the memory address translation from guest virtual address to 

guest physical address. Memory address conversion starts at PML4 table. The bits of the 

virtual memory address represent the offset at the next table. After walking through the guest 

page table, the guest virtual address is converted into the guest physical address. The 

remaining steps are the same as Chapter 4.1.1. 

4.1.3. Locating Memory Pages for a Guest User Process 

Finding the physical memory pages with guest process id is more advanced than only with 

the guest virtual address. The virtual addresses which are being used have to be found in the 

OS kernel structures, converted to the guest physical addresses, and be mapped into domain 0. 
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Figure 13. Windows System Map File 

To find the kernel structure of specified guest process id, the system uses system map file 

to locate the physical memory address of the kernel structure of the initial process. In 

Windows 7 x64 and Windows Server 2008 x64 editions, the system locates the EPROCESS 

kernel structure from PsInitialSystemProcess entry in the system map file (Figure 13). Each 

EPROCESS structure is linked by a double linked list, and the system can find the target 

EPROCESS structure by walking through the EPROCESS list with specified guest process id. 

The virtual address area information is stored as an AVL tree in EPROCESS. After obtaining 

the virtual address area and the CR3 information, the remaining steps are the same as Chapter 

4.1.2. 

 Extended Page Table 4.2

Xen Hypervisor plays the role of resource manager to distribute the hardware resource to 

each guest virtual machine. In the previous version, Xen deploys shadow page table 

mechanism to distribute the physical memory resource. Shadow page table records the 

mapping between guest virtual address and host physical address. To be precisely, Xen 
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maintains the shadow page table when the guest operating system tries to modify its guest 

page tables. Each guest page table modification will cause a VMEXIT exception to let Xen 

synchronize the shadow page table, and invoke a VMENTER instruction after the 

synchronization is completed to resume the guest VM execution. According to the shadow 

page table, guest CPU can find the requested contents on correct physical memory pages. 

However, switching the control between guest VM and Xen Hypervisor is costly (about 

thousands of CPU cycles); frequent switching will slow down the performance of running 

guest VMs. 

 

Figure 14. Intel EPT 

To enhance the performance, recent version of Xen deploys the Extended Page Table to 

manage the physical memory resource. Extended Page Table is a hardware feature for page 

table virtualization. It is provided by processors which support Intel Virtualization Technology. 

Like Figure 14, EPT provides memory translation from guest physical address to host 

physical address. Unlike shadow page table, guest operating system is allowed to modify its 

page tables and handles the page faults directly. The maintenance of EPT will be carried out 

by the CPU hardware. Xen only needs to allocate the machine page table for each guest VM 

when they are created. With EPT, Xen saves the CPU cycles and improves the performance 

due to less control switching.  
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Figure 15. EPT Address Translation 

Memory access control allows third party applications to change the access control type of 

any guest physical memory page in EPT. Figure 15 explains the address translation of EPT. At 

the last step of EPT translation, it gets the EPT entry which points to the beginning of the 

target machine physical page. The EPT entry has three types of access control bit (Read, Write, 

and Execute). These bits represent the control type by different combinations. In other words, 

memory page is the basic unit of the memory access control. When a monitor application 

needs to change the control type of a guest memory page, it uses the interface of LibVMMD. 

LibVMMD communicates with the memory module via hypercall interface. The memory 

module controls the guest memory pages by assigning GFNs and new control types to 

p2m_change_type() function. The p2m_change_type() function will walk the EPT and change 

the access bits of the EPT entries.  

 Emulating Offending Instruction 4.3

Chapter 3.3 introduces the design for evading kernel patching protection. In fact, 

PatchGuard may not be the only process which accesses the patched kernel memory page. 

The kernel may access its page as well. For the memory module, it has no need to distinguish 

which process cause the EPT violation. It emulates all of the offending instructions in Xen 

Hypervisor. 

The memory module hardcodes the offending instructions rather than disassembles them 

dynamically. When an EPT violation is caused by accessing the patched memory page, the 
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memory module checks the offending instruction with its record. If the offending instruction 

exists in the record, the memory module will emulate it by corresponding actions. Otherwise, 

we have to add it and the corresponding behaviors in the record manually.  

Table 1. Offending Instructions 

 

The offending instructions can be divided into 4 different operators: movzx, cmp, xor, and 

mov. The complete instructions are shown in Table 1. The memory module emulates almost 

every instruction in a normal way except for xor rdx, [r9]. In our verification, xor is the 

instruction of PatchGuard to calculate the checksum of the kernel memory pages. The r9 
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register stores the virtual address of the kernel memory page which waits for PatchGuard to 

verify it. When the r9 register points to the patched kernel memory page and causes the EPT 

violation, the memory module will check the fault memory address. If the fault happens at the 

patched memory address, the memory module will xor the “original instruction” into rdx 

register. Otherwise, the memory module will get the memory contents of [r9] and xor it into 

rdx register.  

 QEMU Virtual Disk Subsystem 4.4

 

Figure 16. Handling Steps by Qemu Device Manager 

In the architecture of Xen, QEMU device model is realized for I/O emulation of the HVM 

guest. The corresponding process in domain 0 is QEMU device manager (QEMU-dm). 

QEMU-dm models the virtual disk as an IDE device, and the IDE device corresponds to a 

block driver for I/O operations. Figure 16 shows the handling steps of guest virtual disk 

requests. At step A, QEMU-dm prepares a main loop which listens to the I/O requests from 

domain U, and it transfers the virtual disk requests to virtual disk IDE device at step B. The 

IDE device will handle the requests by passing the requests to registered block driver to 

perform the I/O operations at step C and step D. 
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In the process of HVM creation, QEMU-dm finishes the initial steps and enters into the 

main loop to wait for the guest requests. At this moment, QEMU-dm creates another thread 

for disk module initialization. The disk module allocates shared memory to communicate with 

LibVMMD. On the other side, it uses ntfs_device_alloc() to initialize a ntfs structure for the 

virtual disk and mounts it by ntfs_volume_startup(). After the initialization has completed, the 

disk module is allowed to access the virtual disk through ntfs-3g library and listen to 

LibVMMD for further request. 

 

Figure 17. Architecture of Disk Module Functionalities 

The disk module handles the request of disk introspection, disk interposition, and disk 

access control. For disk introspection, the module returns the disk contents at block level and 

filesystem level. The monitor application can get the disk contents of specified disk block or 

disk file. For disk interpostion, the module controls the disk access at block level and 

filesystem level for the monitor application. The monitor application can quarantine disk files 

without altering the guest operating system states. Furthermore, the monitor application can 

delete disk files through the disk module. The flow of disk module functionalities is shown in 

Figure 17. It will be introduced by the following sections. 
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4.4.1. Block-level Introspection and Interposition 

Under QEMU, the virtual disk is emulated as an IDE device. The IDE device has its 

block device driver and operation functions. When the disk module receives the requests of 

block level introspection, it uses the virtual disk operation function, bdrv_pread(), to read the 

virtual disk contents. If the requests are made for block level interposition, the disk module 

uses bdrv_pwrite() to overwrite the virtual disk contents.  

4.4.2. Parsing NTFS file system 

When monitor applications need to introspect the virtual disk at filesystem level, the disk 

module use ntfs_pathname_to_inode() to parse the MFT records. In NTFS filesystem, each 

file is recorded as file attributes in the MFT. The ntfs_pathname_to_inode() function 

translates the file path into file attributes from the MFT. After the translation, the disk module 

uses ntfs_attr_pread() to get the file contents with the file attributes for introspection, and uses 

ntfs_attr_pwrite() to overwrite the file contents for interposition. The disk module also uses 

ntfs_delete() for deleting a file from the virtual disk.  

4.4.3. Read / Write Control 

 

Figure 18. Disk Access Control in QEMU-dm 
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QEMU supports different image file formats as the virtual disks of guest VMs, including 

raw file, vvfat, qcow, qcow2, vmdk, cloop, dmg, vpc, bochs, and parallels. Each file format 

corresponds to a block driver of the virtual disk ide device. Figure 16 explains the process 

flow of handling guest virtual disk requests. To control the disk access from guest VMs, the 

disk module manages disk requests in QEMU-dm. Figure 18 shows the architecture after the 

disk access control is added into QEMU-dm. The disk module manages a blacklist for the 

guest VM disk access control. When the guest VM sends I/O operation requests to QEMU-dm, 

the disk module will compare the requested disk sector numbers with the blacklist to confirm 

if they can be accessed. 

 

Figure 19. QEMU Virtual Disk Structure 

The black list locates in the BlockDriverState (bdrv) structure. In QEMU, the virtual 

devices (DriveInfo) are stored in drives_table as Figure 19 shows. The state of a virtual device 

is saved in BlockDriverState, like whether the device is read only. When the virtual device 

performs its I/O operation, it uses the I/O operation functions in BlockDriver structure. 

Meanwhile, the disk module checks the black list to decide whether the operation should be 

blocked.  

Sector is the basic unit of the virtual disk. Each sector contains 512 bytes. To quarantine 

the virtual disk at block level, monitor applications have to assign sector numbers to 
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LibVMMD. LibVMMD will request the disk module to add the sector numbers into the 

blacklist. When the disk module finds the matches between requested sector numbers and 

blacklist sector numbers, it will return error messages for failed disk manipulations.  

To block the virtual disk access at filesystem level, the disk module has to find the 

corresponding sector numbers of the file. In NTFS filesystem, the file information is stored in 

MFT, so the disk module has to parse the MFT record. The MFT stores the file information in 

two types, resident attribute and non-resident attribute. When the file size is bigger than the 

MFT entry size, the file data is saved as non-resident attribute. The data attribute of the MFT 

entry will store the locations of the file data. Otherwise, the file data is stored in MFT entry. 

To find the corresponding sector numbers, we modified the ntfs_pathname_to_inode() 

and the ntfs_attr_pread() function in ntfs-3g library. The original ntfs_pathname_to_inode() 

function gets the attributes of the file path from the MFT records. The file contents can be 

achieved by giving the attributes to the original ntfs_attr_pread() function. If the file size is 

too large to be stored in the MFT entry, the original ntfs_attr_pread() function will find the 

file contents in the corresponding sector numbers with the data attribute. The modified 

ntfs_pathname_to_inode() function returns one more argument, the sector number of the MFT 

entry. And the modified ntfs_attr_pread() function returns the sector numbers rather than the 

file contents. As a result, through the modified ntfs-3g library, the sector numbers can be 

found with the file paths and can be added to the blacklist for filesystem level access control.  
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Chapter 5. Evaluation and Prototype Applications 

In this Chapter, we evaluate the overhead of write buffer and PatchGuard evasion. We also 

combine our design as different types of security prototype applications. The function of 

prototype applications will be explained below. 

 Prototype Application：Real-time Virus Scanning  5.1

Real-time Virus Scanning (RVS) is a prototype security application to protect guest 

operating system online. It combines memory introspection, disk introspection, disk 

interposition, system call interception, write buffer technique and PatchGuard evasion. To 

protect guest VM online, RVS intercepts system calls to understand which file is accessed by 

the guest operating system. Then RVS scans the file with ClamAV scan engine in domain 0 to 

decide whether the file should be quarantined. RVS guarantee the file access of the guest VMs. 

The complete process flow is explained below.  

 

Figure 20. Online Malware Detection Process Flow 

RVS intercepts “NtOpenFile” and “NtCreateFile” system calls to know when the guest 

operating system accesses or creates a file. It also intercepts “NtWriteFile” to update the write 

buffer and intercepts “NtCloseFile” to know when the file modification is finished. Figure 20 
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presents the malware detection process flow of RVS. When the guest operating system 

invokes “NtCreateFile” or “NtOpenFile” system call at step 1, it will be intercepted by RVS at 

step 2. RVS judges the guest operating system is reading or writing a file by checking the 

system call arguments. If the system call is invoked to read a file, RVS gets the file by disk 

introspection and scans it with ClamAV scan engine at step3. Once the file is accused of 

malware, it will be quarantined by RVS at step 4, and the system call will be failed at step 5. 

Otherwise, the guest operating system reads the file successfully. If the system call is invoked 

for writing a file, RVS allocates a write buffer at step 7. After the guest operating system 

modifies the file at step 8, RVS updates the write buffer at step 9. The guest operating system 

invokes “NtClose” system call at step 10 if it finishes the writing. At step 11, the NtClose 

System call is intercepted by RVS and the file is scanned with ClamAV scan engine at step 12. 

Like step 3, RVS decides whether it should quarantine the file based on the scanning result. If 

the file is found as a malware, RVS quarantines it to protect the guest operating system. 

5.1.1. RVS Evaluation: PassMark Benchmark 

 

Figure 21. PassMark Benchmark  

To understand the overhead of RVS, we use PassMark [15] to evaluate the baseline 

system and the RVS system. The host machine is equipped with two Intel Xeon 2.27/Ghz 

processors (16 logical cores in total) and 16 GB memory. The storage consists of 2 SATA 
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HDDs configured JBOD mode. The guest operating system running on the guest VMs is 

Windows Server 2008 x86_64 and the memory size of the guest VM is 3GB with 4 virtual 

CPUs.   

Figure 21 shows the overhead of CPU and disk rate. PassMark evaluates the CPU rates by 

calculating integer math (left graph). The average CPU rate of the baseline system is 796 

Mops/s, and the average CPU rate of RVS is 746 Mops/s. The overhead of RVS is about 6%. 

In the disk evaluation, PassMark measures the disk rate by performing sequence read, 

sequence write and random seek read/write. In the right graph, the overhead of sequence read 

is about 35%, the overhead of sequence write is about 90% and the overhead of random seek 

read/write is about 87%. Comparing to the overhead of CPU rate, RVS is much more like an 

I/O intensive system. Although PassMark provides friendly interface as a system benchmark, 

we do not know the detail information of the testing data, like how much data are written by 

PassMark. This makes us find the reason of the overhead more difficult. To have the ability to 

control the testing data, we also evaluate RVS with other benchmark to verify and explain the 

result of PassMark evaluation.  

5.1.2. RVS Application Evaluation: x264 encoding  

 

Figure 22. RVS x264 Encoding Overhead 

 To verify the CPU overhead, we choose x264 encoder as our benchmark. The x264 
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encoder has two threads and the testing file is an .rmvb file and the file size is 508MB. In the 

encoding process, x264 encoder consumes thousands of CPU cycles to transform a file to be 

a .264 file. Although the x264 encoder performs series of NtWriteFile system call to save the 

transformed contents into a .264 file, the performance of x264 transformation is still decided 

by the CPU computation. Figure 22 presents the overhead of RVS while the guest operating 

system performs x264 encoding. To evaluate the CPU overhead accurately, we filter out the 

write buffer maintenance of the .264 file. RVS intercepts the system calls as usual but it does 

not update the write buffer while the .264 file is encoded. The overhead in Figure 22 is caused 

by system call interception write buffer usage and scan with ClamAV engine. When the x264 

encoder encodes the .264 file, the other processes may access system files in background. 

This causes the overhead of write buffer usage and ClamAV scanning. However, the overhead 

is relatively small. It proves that RVS is not a CPU intensive system. 

5.1.3. RVS Disk Application Evaluation: 7-zip Compression  

To understand the overhead of sequential read in Figure 21, we choose 7-zip to perform 

file compression as our benchmark. The 7-zip software performs lots of NtOpenFile and 

NtCreateFile system call while compressing files. Each file opening will cause RVS to dump 

the file and scan it with ClamAV scan engine. In short, the file compression can be recognized 

as a sequential read process with less writing, so we can easily understand the overhead of 

RVS, especially in write buffer usage. The files which are used to be compressed come from 

C:\\Windows\Microsoft.NET, C:\\Windows\System32 and C:\\Windows\SysWOW64 

directory of a newly installed Windows Server 2008 x86_64, and the total size is 2.5GB. The 

compression tool is 7-zip which compresses files into .7z file format with 4 threads.  
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Figure 23. RVS File Compression Overhead 

 Figure 23 shows the compression time of RVS. The compression time of RVS is about 3 

times of the baseline system. Apparently, the performance decreases a lot after adding the 

function of write buffer usage. In the file compression experiment, RVS has to dump the 

whole 2.5GB file contents from the guest VM for later scanning in domain 0. The testing files 

are stored in the guest virtual disk, and there are no modifications on these files. As a result, 

the overhead of write buffer usage is completely from disk introspection.  

5.1.4. RVS Disk Application Evaluation: 7-zip Decompression  

To understand the overhead of sequential write in Figure 21, we choose 7-zip to perform 

file decompression as our benchmark. The compressed file comes from compression 

experiment. By contrast to compress files, the 7-zip software performs lots of NtCreateFile 

and NtWriteFile system call while decompressing files. Each NtWriteFile system call causes 

RVS to update its write buffer for the latest file contents. For 7-zip, it creates totally 2.5GB 

file contents from the compressed file. The file contents will be captured by write buffer for 

later scanning. Thus, the file decompression can be recognized as a sequential write process. 

The overhead of RVS, especially in write buffer maintenance can be easily understood from 
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this benchmark.   

 

Figure 24. RVS File Decompression Overhead  

 Figure 24 presents the decompression time of RVS. As we can see, the total overhead of 

RVS is about 7 times of the baseline system. Excluding the overhead of ClamAV scanning, 

the remaining overhead is still 3 times of the baseline system. In decompression experiment, 

the totally 2.5GB file contents are captured by write buffer. From the overhead of write buffer 

maintenance, we can get the average rate of write buffer is about 22MB per second. Although 

the overhead is a little heavy, what happened in the overhead of write buffer usage? Haven’t 

we explained decompression experiment does not need to do disk introspection? In fact, the 

guest operating system dose not only runs the 7-zip benchmark. There are different processes 

running in the background of the guest operating system. They may access some files and 

cause RVS to scan them. That’s why there is still some overhead of write buffer usage in 

decompression experiment.  

5.1.5. RVS Disk Evaluation: Build ClamAV   

 To find out the reason of the overhead in random seek read write experiment in Figure 21, 

we choose build ClamAV as our benchmark. When the guest operating system is building 
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ClamAV, it compiles lots of .c files and creates lots of object files. For RVS, the building 

process uses NtOpenFile system call to open the files which need to be compiled, and uses 

NtCreateFile and NtWriteFile to create the object files. Then the object files are linked to 

generate dll or exe files by the building process. With the used system calls, the building 

ClamAV process can be recognized as a random read write benchmark.  

 

Figure 25. RVS Build-ClamAV Overhead  

  Figure 25 explains the overhead of RVS while the guest operating system is building 

ClamAV. From Figure 25, the primaries overhead locate in system call interception. For the 

overhead of write buffer maintenance and write buffer usage, building ClamAV creates lots of 

new files and repeating access particular files. However, RVS can find the repeating access 

file contents in write buffer, so that it is no need to copy the data from the virtual machine 

again, and the overhead is relative small.  

5.1.6. RVS Application Evaluation: PatchGuard Evasion 

The overhead of PatchGuard evasion is decided by the invoking frequency of PatchGuard. 

As Figure 5 explained, PatchGuard invokes EPT violation fault whenever it checks the kernel 

integrity under PatchGuard evasion mechanism. The overhead of PatchGuard evasion consists 
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of code emulation and control transit between guest operating system and Xen Hypervisor. In 

reality, we would like to know the how much overhead is caused by PatchGuard evasion in 

CPU and disk processing rate.  

 

Figure 26. PatchGuard Evasion Overhead in Different Benchmark 

Figure 26 shows the overhead of PatchGuard evasion under different benchmarks. The 

overhead is mainly decided by the invoking frequency of PatchGuard. For CPU (x264 

encoding) and disk benchmark (7za-zip, 7za-unzip, build-ClamAV), the overhead is rarely 

small. The frequency of PatchGuard is showed as below. 
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Figure 27. Offending Instructions in Different Benchmark 

Figure 27 presents the numbers of offending instructions in different benchmarks. As we 

can see, the frequency of PatchGuard is not the same in different benchmarks. The detail of 

PatchGuard frequency will be discussed in Chapter 5.5. For different benchmark, the total 

number of offending instructions is not the same but the overhead is always small. Why the 

memory module emulates more instructions but causes the same overhead between 7-zip file 

compression and build-ClamAV? It is mainly because the overhead of PatchGuard is not only 

influenced by the invoking frequency, but also influenced by the complexity of the benchmark. 

When the number of instructions that a benchmark has to execute becomes larger, the 

overhead of the same number of offending instructions becomes relative small. It also 

explains why the number of offending instructions in build-ClamAV is larger than 7-zip file 

compression, but the overhead is small either. 
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 Prototype Application：Enhanced Real-time Virus Scanning  5.2

 To enhance the performance of RVS, we provide an enhanced version of RVS (ERVS). 

ERVS supports two new features: a path filter and a guest PV driver. The path filter selects the 

intercepted file paths according to the file extensions. The selecting rule is based on 

Kaspersky. Kaspersky supports different types of scanning functions for an operating system, 

includes scanning every file, scanning files according to the file extensions, and scanning the 

files which have been modified. The file extensions are as below. 

Table 2. Windows File Extensions 

  

 The guest PV driver supports multi-thread processing in the control center. In non-PV 

version, the execution of guest VM is paused after a system call is intercepted by the control 

center, and it is continued after RVS finishes its processing steps. RVS captures the system 

calls in serial, but with the help of the guest PV driver, ERVS handles the system calls in 

parallel. The guest PV driver contains busy loops in guest operating system. When a system 

call is intercepted, the execution flow is redirected to the busy loop to wait for released after 

the processing of ERVS is finished. As a result, the guest VM does not need to be paused and 

the system calls can be intercepted continuously.  
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Figure 28. ERVS Overhead in Different Benchmarks 

 For 7zip file compression and decompression, the total size of the files which have to be 

dumped from the guest operating system decreases from 2.5GB to 2GB. For build ClamAV, 

the total size of the created and accessed files from 930 MB to 130 MB. Except for the path 

filter, ERVS supports multi-thread system call handling and file scanning with the guest PV 

driver. Figure 28 shows the improvements of ERVS in different benchmarks. ERVS improves 

about 20% performance in 7zip file decompression and build-ClamAV benchmark, and 

improves 40% performance in 7zip file compression benchmark. As a result, ERVS is a more 

effective mechanism than RVS.  

  



 

41 

 

 Prototype Application：Virus Scan for In Memory Process 5.3

 

Figure 29. VSMP Flow Chart  

RVS protects system security from malicious file access. For those malware which start up 

at system booting time, RVS has no ability to stop them. Virus Scan for in Memory Process 

(VSMP) is developed to against malicious process. VSMP uses memory introspection to 

dump the memory contents of a process, and scans them with ClamAV antivirus engine. The 

execution flow of VSMP is shown in Figure 29. For Windows guest operating systems, the 

process information is stored in the EPROCESS structure. VSMP gets the EPROCESS 

structure with its system map file. After getting the EPROCESS structure, VSMP dumps the 

memory contents of the process and scan them with ClamAV scan engine. If the process is 

reported as malicious, VSMP will clean the whole memory contents of the malicious process 

to prevent it from continuing executing in the system with memory interposition.  
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 Prototype Application：Overwriting, Deletion and Quarantine of 5.4

Malware Binaries 

When a file is reported as malicious, security applications have three choices, overwrite it, 

delete it, or quarantine it. For first choice, security applications overwrite the file contents to 

paralyze the malicious behaviors. In NTFS filesystem, each type of file has its file format, like 

executive file uses MZ as its header. To paralyze the malicious behaviors, security 

applications can replace the file contents with zero value. The file then becomes broken due to 

unknown file format for guest operating system. Though overwriting of malwares destroys the 

malicious behaviors, it occupies the disk space to store the unnecessary contents. To save the 

disk space, security applications can take the second choice, deleting malicious files.  

Deleting malicious files needs to modify the MFT records of a guest operating system. It 

saves the disk space and prevents the guest operating system from accessing malicious files. 

However, the MFT records are maintained by the guest operating system originally, arbitrary 

modification of them may cause inconsistency problem and crash the guest VM. Also, 

overwriting or deleting a malicious file cannot be recovered if false positive occurs. 

To be recoverable and reliable, quarantine the malicious files become better choice. The 

quarantine mechanism prevents the malicious file from accessed by the guest operating 

system. It blocks the access requests in QEMU-dm outside the guest VM. Quarantine the 

malicious files does not need to modify the state of an operating system, so that there is no 

inconsistency problem. If the files are misunderstood as malicious, the quarantine mechanism 

also can release them to recover the disk access of the operating system.  
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 PatchGuard Triggering Statistics 5.5

Table 3. PatchGuard Triggering Statistics in Different Benchmarks 

 

 To understand the triggering frequency of PatchGuard, we compare the system duration 

time and the numbers of intercepted system calls with the number of offending instructions. 

Table 3 presents the PatchGuard triggering statistics in different benchmarks. The intercepted 

system calls are “NtCreateFile”, “NtOpenFile”, “NtWriteFile” and “NtClose”. As we can see, 

the average system call frequency relates to the average frequency of offending instructions. 

When the benchmark invokes more system calls in average, PatchGuard is triggered more 

times. However, system calls may not be the only reason for triggering PatchGuard. The 

average system call frequency of x264 encoding is smaller than 7-zip file decompression but 

the average frequency of offending instructions is much closer. The real reason still needs to 

be confirmed by monitoring more states of the virtual machine, like intercepts all the system 

calls from the guest operating system.  
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 Garbage Collection 5.6

 

Figure 30. Garbage Collection Overhead 

Figure 30 presents the overhead and the result of the garbage collection mechanism. The 

workload is 7zip file compression benchmark and the monitor application is our ERVS system. 

From Figure 30 we can clearly see that the baseline system consumes less time slots but more 

disk space. To understand the overhead of garbage collection mechanism, we evaluate two 

different frequencies of collection in 7zip file compression work load. As we can see, the used 

disk spaces are cleaned up after the file compression is finished. The overhead of garbage 

collection is about 15% in 7zip file compression, and there is no overhead while performing 

different collection frequencies in 7zip file compression workload.  
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Chapter 6. Related Work 

XenAccess [16] is a library for virtual memory introspection and virtual disk monitoring 

in domain 0. With XenAccess, security application can read memory contents of specified 

virtual machine, like process lists and module lists. Security applications can also monitor the 

virtual disk through XenAccess. However, XenAccess does not provide functions to 

manipulate VM states. Security applications can only monitor the virtual machine states but 

cannot modify them. An upgrade version of XenAcces, called LibVMI [17], improves the 

ability in manipulating the guest memory states. It provides different functions for security 

applications to overwrite the memory contents. With LibVMI, security applications now can 

modify the memory states via guest virtual address, guest physical, even a kernel symbol 

name. Unfortunately, LibVMI does not handle the problem of kernel patching protection. Also, 

the ability to manipulate the guest disk states is the future work of LibVMI.  

 To manipulate the guest disk states, libguestfs [18] has been developed for viewing and 

editing the files inside a guest VM. It is a powerful tool that it can access nearly any type of 

filesystem, includes Linux filesystem (ext2/3/4, XFS and btrfs), Windows filesystem (VFAT 

and NTFS), MacOS X, BSD filesystems, raw disks, qcow2, and VMWARE VMDK. It is also 

a library that can be linked with C and C++. With libguestfs, security applications are able to 

manipulate the disk files in a virtual machine disk image or even manipulate on a live virtual 

machine. Nevertheless, libguestfs does not guarantee the safety of using libguestfs in 

read/write mode on a live virtual machine. Overwriting disk files through libguestfs on a live 

virtual machine may cause disk corruption problem. Though libguestfs is powerful to be used 

on different types of filesystem, it cannot get the latest file contents without waiting for the 

disk being refreshed. For security applications, the immediateness of monitoring system states 

is very important. Losing the immediateness will make malware prevention more difficult. 

For this reason, libguestfs becomes an imperfect solution for security applications.  
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Virtual machines are used to be the platform for malware analysis. For malware 

analyzers, virtual machines are secure and can be recovered easily. In traditional, malwares 

are analyzed in sandbox [19]. However, few malwares can detect the operating system 

environment. If they are in a sandbox, they will do nothing and pretend to be normal 

processes. The environment of virtual machine is much close to a physical machine, and it is 

more difficult to be detected. Ether [20] is one of the malware analysis tools on Xen 

Hypervisor. It traces the system call executions, monitors the memory writes, and monitors 

the instruction executions of a guest VM. Other works like [21], [22], [23], and [24] provide 

monitoring functions in different ways, too. None of them provide a solution to interpose in 

the system states. VMMD is the first IDS/IPS mechanism based on Xen Hypervisor to protect 

virtual machine from outside. It not only monitors the system states but modifies them. With 

VMMD, third party security applications can scan the process running in the virtual machine 

and protect the file access of the virtual machine.  
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Chapter 7. Future Work 

To be a general solution for cloud center, VMMD system has to cross the gap between 

different operating systems. VMMD system now only supports Windows Server 2008 R2 

x84_64 and Windows 7 x86_64 operating system running on the guest VM. Other popular 

operating systems like Linux operating system have not supported yet. Except for the support 

of different operating systems, a disassembler needs to be added in the memory module while 

evading PatchGuard protection. In the recent design, the memory module emulates the 

PatchGuard instructions by hard codes. When a new instruction of PatchGuard shows up, we 

disassemble it and add the corresponded emulation routine manually. However, the 

PatchGuard instructions are not unalterable. PatchGuard may check the system integrity with 

brand new instructions after the operating system has been updated. For this reason, adding a 

disassembler is necessary for being an automatic PatchGuard evasion mechanism. Also, we 

have to add a synchronizing mechanism to avoid data corruption while performing disk 

interposition. For the recent design, VMMD system modifies the virtual disk data directly no 

matter whether the virtual disk is accessed by the virtual machine. If VMMD system deletes a 

file which is accessed by a virtual machine, it will cause data corruption problem on the 

virtual disk. To provide a stable and safe mechanism for disk interposition, a synchronizing 

mechanism is needed. Finally, we will keep working on the performance and adding different 

functionalities of the VMMD system.  
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Chapter 8. Conclusion 

We proposed the VMMD system for security applications to conduct introspection and 

interposition of virtual machine memory and disk states. For memory states, VMMD provides 

the abilities to read, write, and manipulate the access control of the guest VM memory pages. 

The memory interposition will cause a blue screen error if the guest VM runs Windows 

x86_64 edition operating system due to kernel patching protection. In VMMD, we developed 

a technique to evade the kernel patching protection. For disk states, VMMD provides the 

abilities to read, write, and manipulate the access control of the virtual disk at both the block 

level and filesystem level. A challenge in disk introspection is the cache coherence problem, 

which can result in outdated data to be returned by the disk introspection. To solve the 

problem, VMMD system implements a write buffer mechanism to capture the latest file 

content updates on a virtual disk. VMMD system also provides an interface for security 

applications to easily integrate the introspection and interposition mechanisms. With the 

functionalities of VMMD system, we made two prototype security applications, RVS and 

VSMP. RVS monitors the file access in a guest VM and can quarantine virus-infected files 

from outside the virtual machine. VSMP can scan the memory contents of a process from 

outside the VM. To evaluate the system performance, we use different benchmarks to 

understand the overhead in terms of the CPU and I/O processing rate of the RVS system. The 

result shows that RVS is much like an I/O intensive system, and the overhead is not small. 

Although the overhead is still quite heavy, RVS provides a new way to protect file access in 

virtual machine from the outside. We also study the activities by PatchGuard. The result 

shows the invoking frequency of PatchGuard check is influenced by time and system call 

frequency. Our experiment result confirms that the overhead of the PatchGuard evasion 

mechanism is negligible.  
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