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The Introspection and Interposition Virtual Machine Memory and Disk States

Student : Chun-Chi Huang Advisor : Dr. Yu-Sung Wu

Institutes of Computer Science and Engineering National Chiao Tung University

ABSTRACT

End-point security monitoring is typically integrated with the operating system kernel
layer for checking the kernel states and preventing malicious program from gaining kernel
privilege. Anti-virus software is one of the classical examples, but in a cloud computing
environment, there may be hundreds or thousands of virtual machines. It is impossible to
install and maintain end-point security software such_as the anti-virus software for every
virtual machine. Also, traditional-end-point security. software may be bypassed by rootkits,
which have the same system privilege level as the operating system kernel. As a result, there
is a clear need for the ability for security software to introspect and interpose the system states
from outside the virtual machines.

In this paper, we propose a virtual machine introspection and interposition system based
on Xen Hypervisor. With our system, security applications can introspect and interpose in the
memory and disk states of virtual machines from domain 0. We also built prototype IDS/IPS
applications to demonstrate the feasibility of the proposed system. However, for Windows
x86_64 edition operating systems, memory interposition in kernel pages will be blocked due
to kernel patching protection. Also, there is a cache coherence problem when a security
application gets the disk states of a virtual machine. In order to introspect and interpose in the
virtual machine states accurately, we provide a solution to evade kernel patching protection
and maintain consistency disk states, and the result shows our solution works well.

Key Word: Cloud Computing, Virtual Machine, Introspection, Intrusive Detection, Intrusive Prevention
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Chapter 1. Introduction

System state monitoring technology has been widely used in many end-point security
applications, like antivirus application needs system information to ensure system integrity.
This kind of applications usually resides in kernel space of operating systems and gathers
information by its kernel privilege. Although it seems that getting accurate system
information would not be a problem, there is another technology called Rootkit [1].

Rootkit is a set of tools that hides in operating systems. It modifies system critical
structures to keep itself invisible from end-point security applications. Due to rootkits,
security applications may get incorrect system information. However, rootkits are difficult to
be detected because rootkits have the same privilege as the kernel. There is no bullet-proof
approach to fight against rootkits within an operating system.

Virtualization [2] technology-provides a-new architecture for hosting operating systems.
With the help of virtualization, multiple operating systems can share the hardware resource of
a physical machine. Virtualization technology not only provides a new architecture for
running multiple operating systems on a single physical machine but also provides a new way
for system state introspection. In the architecture of virtualization, security applications can
introspect the system state from the external, which solves the problem of rootkits.

In this paper, we propose the VMMD system for the introspection and interposition of
virtual machine memory and disk states. VMMD is developed based on the Xen Hypervisor.
With VMMD, third party security applications can not only monitor the states of guest VMs
but also manipulate them. In Chapter 2, we will mention about the background of
virtualization technology. In Chapter 3, we will talk about the design of VMMD. In 0, we will
talk about the implementation of VMMD. The evaluation of the VMMD system is given in
Chapter 5. We will discuss related work in Chapter 6 and potential future work in Chapter 7.

The conclusion is given in Chapter 8.



Chapter 2. Background

Since virtualization technology and hardware support have been developed, cloud
computing [3] became more popular. Cloud computing consists of three kinds of architecture,
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service
(laaS). SaaS is a model that hosts software and associated data on the cloud. Users can access
software via a web browser, like Gmail and Youtube. PaaS provides a computing platform.
Users can develop applications by using tools and libraries from PaaS provider, like Google
App Engine. laaS offers computers for those who need machines to develop on. Users then
install operating system image on the machines as well as their application software. In laaS
model, users have to maintain operating system and patch software on their own. Amazon
EC2 is an example of laaS.

laaS depends on a resource-manager, -called Virtual Machine Manager (VMM) or
Hypervisor [4], to schedule physical resources to each VM. For virtual machines, they are not
aware of the existence of VMM, and are running as if they control the whole resources on the
physical machine. In nowadays, laaS is constructed on two mainly Hypervisor, Xen [5] and
KVM [6]. Xen Hypervisor provides a security VM as an interface for virtual machine
management, usually known as domain 0. To communicate with Xen, the kernel of domain 0
has to be patched and has to be tie-in with the kernel of Xen. Unmatched kernel version will
lead to kernel panic and crash the entire system. Xen runs guest operating systems as
independent virtual machines. Each of them cannot affect the system states of others. On the
other hand, KVM provides a different architecture for virtual machine virtualization. KVM is
part of Linux operating system. It has no need to match up the operating system kernel
version while being installed. KVM runs virtual machines as regular Linux processes in the
security VM. Each virtual machine is scheduled by the standard Linux scheduler as other

processes.



System introspection outside the virtual machine has been popular since virtualization
technology showed up. For a cloud center, it is costly to maintain traditional in-VM security
monitor in each virtual machine. To provide a better security solution for cloud center, lots of
tools are developed on Xen, KVM platform. The detailed will be discussed in Chapter 6. In
short, most of the tools are still stay in the steps of system introspection. None of them can
manipulate the states of virtual machine straightly, not to say malware prevention.

Protecting guest operating system outside the guest VMs has some challenges like how to
conquer the semantic gap [7] problem, how to manipulate the states without crashing the
whole system, and how to provide a general solution across different operating systems. We

will introduce our system design and point out the challenges we faced in the next chapter.



Chapter 3. System Design

VMMD system allows third party security applications in the domain 0 to introspect and

interpose in the memory and disk states of a guest virtual machine (guest VM) on Xen

Hypervisor. For memory and disk introspection, third party security applications can read

virtual machine memory pages and disk blocks through Xen Hypervisor. For memory and

disk interposition, third party security applications can write data to arbitrary memory pages,

or disk blocks of a guest VM, and are able to control the memory and disk access of virtual

machines.
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Figure 1. VMMD System Architecture

The architecture of VMMD system is shown as Figure 1. It provides an interface called

LibVMMD in domain 0, a memory module in Xen Hypervisor, and a disk module in QEMU



[8]. Monitor applications introspect or interpose between the memory subsystems of guest
VMs through LibVMMD. To manipulate the guest memory pages, LibVMMD makes use of
Xen Control Library (libxc). After monitor applications call LibVMMD, the libxc module will
find the mappings in Extended Page Table (EPT [9]), and get the target memory pages on
physical memory. On the other side, VMMD system adds a memory module in Xen
Hypervisor. Monitor applications can control the guest access of virtual machine memory
subsystems through the memory module. For that, LibVMMD transfers the requests of
monitor applications to the memory module, and changes the access control bits in EPT. The
corresponding guest physical memory pages of the changed access bits are restrained by
monitor applications, and the memory pages cannot be accessed by guest operating systems.

Also, LibVMMD allows monitor applications to introspect, interpose, and control the
virtual machine disk subsystems. In the-architecture of Xen Hypervisor, QEMU handles the
I/0 requests, like network card -and disk, of virtual machines. In order to introspect and
interpose between virtual machine  disk® subsystems, VMMD system has to work with
QEMU-dm. In the system architecture, VMMD adds a disk module in QEMU-dm. After
receiving notifications from LibVMMD, the disk module will parse the disk structures to get
the target disk blocks for introspection and interposition. However, the disk introspection may
meet disk cache coherence problem. The latest file contents may be stored in data cache by
guest operating system to enhance system performance. To make the disk introspection work
properly, we design “Write Buffer” to capture the disk cache data. Thus, LibVMMD will
return the latest data to monitor applications with the help of write buffer. Due to the role of
QEMU-dm, the disk access control is built in it as well. Monitor applications can quarantine
specified files or disk blocks by calling LibVMMD, and the virtual disk requests from guest
operating systems will be blocked by the disk module.

Xen supports two types of virtual machines, para-virtualization based virtual machine



(PV) [10] and hardware based virtual machine (HVM) [11]. The proposed system supports
HVM primarily. PV reduces the time of guest’s operation execution, but it requires the guest
operating systems to be ported for para-API. On the other hand, HVM supports unmodified
guest operating systems and provides better performance than full virtualization. HVM is
more appealing because many popular operating systems nowadays are still closed-sources
including Windows and Mac OS. In order to provide a general solution for virtual machine
memory and disk introspection and interposition, this system is designed with the following
goals:

1. Allow security application in domain 0 to introspect a guest VM’s memory and disk.

2. Allow security application in domain 0 to interpose in a guest VM’s memory and disk.

3. Require no modification of guest. OS kernel.

4. Do not depend on pre-installed drivers in the guest VM.

5. Guest VMs cannot circumvent and interfere with this system.

3.1 Memory Introspection and. Interposition

Memory contains programs (sequence -of instructions) or data (e.g. program state
information) for operating systems. When an operating system is running, CPU fetches
instructions and data from specified memory pages. After finishing the fetched instructions,
CPU will fetch instructions from another specified memory page. In other words, memory is

like a paper which records the next step of an operating system.
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Figure 2. Flow Chart of Memory Introspection and Interposition

Memory introspection allows monitor-applications to get the memory contents outside the
virtual machines, and memory interposition allows monitor applications to overwrite the
memory contents outside the virtual ;machine. ‘Because of the isolation between virtual
machines, guest VMs are unable to notice whether they are being “monitored”. Also, rootkits
have no ability to interfere with the control flow of memory introspection and interposition.
Figure 2 shows the control flow of memory introspection and interposition.

The monitor application calls LibVMMD to do the memory introspection or interposition.
It can assign the process id, the virtual address with cr3, or the guest frame number (GFN) to
LibVMMD at step 1. The VMMD Library then gets the memory contents of the argument
issued by the monitor application from step 2 to step 6, and returns the contents for
introspection, or overwrites the contents for interposition at step 7 and step 8. The step from 2
to 6 is the flow of using Xen Control Library. When the Xen Control Library is called at step
2, the libxc module will map the target guest physical memory page into the address space of

LibVMMD at step 3 and step 4. The mapped memory address will return to the LibVMMD at



step 5 and step 6. At this moment, LibVMMD can introspect or interpose the guest physical
memory page for the monitor application.

3.2 Memory Access Control
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Figure 3. x64 hardware page table entry
Memory access control prevents memory pages from unauthorized access. In the guest
page tables, each memory page -has three types of access control bits : Read, Write and
Execute. Figure 3 presents the fields of an x64 page table entry. By setting these access
control bits, any illegal memory manipulation will be caught by the guest OS to ensure its
system integrities. However, these bits can be changed by a malicious kernel module. The
malicious kernel module can modify the access control bits as it is at the same privilege level

as the kernel, and makes memory access control from the guest page tables unreliable.
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Figure 4. Flow Chart of Memory Access Control

Access control from the guest page tables is not reliable because of the same system
privilege between malicious kernel module and the kernel. What happens if memory access
control possesses higher privilege than the kernel?2-With this idea, memory access control is
built in EPT. Xen Hypervisor deploys EPT for virtual machine page table virtualization. With
the help of EPT, Xen can reduce the overhead by avoiding the VM exits associated with page
table virtualization. Figure 4 explains the control flow of memory access control.

When a monitor application needs to control the access of virtual machine memory pages,
it uses the control functions of LibVMMD (step 1). LibVMMD will request the memory
module to find and to change the control types of the corresponding EPT entries (step 2 ~ step
4). EPT provides access control bits as the guest page table does. When the guest operating
system accesses the protected page (step 5), it will trigger an EPT violation due to
unauthorized memory manipulation. The violation will be caught by the memory module

(step 6), and the memory module will return the control back to the next instruction to skip



the unauthorized instruction (step 7). Due to the location of EPT, it is more difficult to alter
EPT access bits from guest VMs unless Xen has been compromised. After the control types of
virtual machine memory blocks have been set, any unauthorized memory manipulation will
be rejected by EPT.

3.3 Evading Kernel Patching Protection

In order to improve OS kernel security, Microsoft has planted a kernel patching protection
mechanism [12], informally known as PatchGuard, on recent x64 Windows editions.
PatchGuard verifies kernel critical structures periodically to prevent unauthorized kernel
patching. When a program (e.g. a malware) attempts to patch the kernel, PatchGuard will
trigger a blue screen error and force a reboot of the system.

Because of the kernel patching protection,-memory interposition is mostly useless in the
kernel address space. Monitor applications-cannot patch kernel to set break-points or hook the
system APIs through kernel patching techniques such as modification of IDT/SSDT tables or
the system call dispatching function. This greatly limits the security monitor applications as
much of the operations in the guest kernel cannot be hooked and monitored. We thus need to
evade the kernel patch protection mechanism.

PatchGuard protects kernel structures like System Service Descriptor Table (SSDT),
Global Descriptor Table (GDT), Interrupt Descriptor Table (IDT), System images (e.g.
ntoskrnl.exe, ndis.sys, hal.dll), and Processor MSRs (system call). As a high level application,
PatchGuard is implemented to cache the original copies and/or checksums of the kernel
structures, and compare with the recent structures in a time interval. If PatchGuard found any
difference between recent structures and original copies, it will invoke a blue screen error to

reboot the entire system.
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Figure 5. Flow Chart of Evading Kernel-Patch Protection

LibVMMD bypasses PatchGuard by preventing it from verifying the contents of patched
memory pages. For the reason, it emulates the PatchGuard instructions in Xen Hypervisor.
Figure 5 shows the process of evading kernel patching protection. At the beginning, the
monitor application patches the guest kernel memory page through LibVMMD interface. To
circumvent the PatchGuard verification routine, the read privilege of the patched memory
page has to be canceled. Unfortunately, the privilege of write and execute exist
simultaneously leads EPT misconfiguration fault, so the memory module changes the access
control type to be execute-only (step 1 & step 2). Meanwhile, PatchGuard is invoked to verify
the integrity of guest operating system (step 3). When it reads the patched page, it causes an
EPT violation fault and transfers the control to the memory module (step 4). The memory
module will emulate the offending instruction in Xen Hypervisor, and return the control back

to the next PatchGuard instruction until the verification is finished (step 5).
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3.4 Disk Introspection and Interposition

Disk introspection and interposition allow monitor applications to read or overwrite disk
contents outside the virtual machines. Like memory introspection and interposition, rootkits
are unable to interfere with the flow of disk introspection and interposition. Disk introspection
and interposition are implemented by modifying the virtual disk emulation codes of QEMU in
Xen Hypervisor. LibVMMD plays the role of an interface for the disk module in QEMU. The

disk module will wait for monitor applications’ requests, and finish them in QEMU.

Disk Interpo%’\

C:\\Users\Administrator\Desktop\Virus.exe

000000 00 4d 529000

00 00 00 00 03 0000 04 Domain 0 Guest VM

00 00 00 00 00 ff ff00 00

00 00 00 00 B8 00 00 00 -

00 00 00 00 00 00 00 00 | Monitor App | | User Process |
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VMMD Library

C:\\Users\Administrator\Desktop\Virus.exe

(a) Disk 1/O Operation
4d 5a 90 00
03 0000 04
00 fFff00 00 | ntfs-3g Library |
B8 00 00 00
00 0000 00 Disk Module
40 00 00 00

Disk Introspection
Guest Virtual Disk

Figure 6. Flow Chart of Disk Introspection and Interposition
First of all, the monitor application passes requests to the disk module through LibVMMD.
According to the requests, the disk module will find the target blocks in the virtual disk of
specified virtual machine. It will return the block contents to monitor applications for disk
introspection, or overwrite the block contents for disk interposition. The disk introspection
and interposition can be divided into block level and filesystem level. The difference is

explained below.
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3.4.1. Block-level Introspection and Interposition

QEMU emulates the virtual disk as an IDE device. To handle the I/O operations from
guest VMs, the IDS device driver uses its 1/0O operation functions at block level. At block
level, the data are stored in sectors as basic unit. The disk module uses the driver operation
functions to manipulate the virtual disk at block level. For introspection, it uses the read
function of the driver as if the target sector is read by the driver. For interposition, it uses the
write function of the driver as if the target sector is overwritten by the driver.

3.4.2. Filesystem-level Introspection and Interposition

Introspecting data at filesystem level is more complicated. The flow is shown in Figure 6.
When the monitor application makes the call for disk introspection or interposition through
LibVMMD, the request is sent to the disk-module (step a). To get the file contents, the disk
module has to find the corresponding sector numbers. of the file. In the NTFS filesystem, the
files are saved as attributes in the Master File Table [13]. To find the corresponding sector
numbers, the disk module has to parse the MFT. After parsing the MFT, the disk module can
find the sector numbers of the file for disk introspection and interposition as 3.4.1. Therefore,
the disk module can return the file contents for introspection, and modifies the file contents
for interposition (step b & step c).

3.5 Write Buffer for Disk Cache Coherence

Although the file contents can be dumped by disk introspection, there is another problem
called disk cache coherence. For the reason of improving the speed of fetching data, operating
systems provide data cache to store frequently used or the latest updated data. These kinds of
data will be stored in data cache for a while, and then they will be written to disk storage.
However, filesystem introspection gets the file contents from the virtual disk. It cannot get the
contents which do not exist on virtual disk storage. This embarrassing situation often happens

right after the guest system updates a file’s content. When a file is being updated, the contents
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may be stored in data cache. At this moment, filesystem introspection is unable to get the

latest file contents until they are written to the disk storage.
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Figure 7. Flow Chart of Disk Introspection with Write Buffer

To solve this problem, we developed the technique called Write Buffer. Write Buffer
stores the latest contents when the guest VM maodifies its disk files. The contents are captured
and stored in Write Buffer by the control center, which intercepts the system calls [14]. Figure
7 shows the newer disk introspection steps and Write Buffer mechanism. For Write Buffer,
there is a control center which intercepts the system calls in domain 0. The intercepted system
calls are “NtCreateFile”, “NtOpenFile”, “NtWriteFile”, and “NtClose”. When these system
calls are invoked by guest user processes at step A, they will be captured by the interception
module at step B, and will be sent to the control center at step C. The control center will parse

the system call arguments to maintain Write Buffer at step D, and return the control back to
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the original system call flow of the guest operating system. Write Buffer adds one more step
in newer disk introspection. After the disk module gets the contents from virtual disks as usual
(step 1 ~ step 3), it checks whether Write Buffer keeps the latest contents (step 4). If yes, the
disk module will merge the contents into Write Buffer (step 5) and return back to the monitor
applications (step 6). With the help of Write Buffer, the monitor applications can get the latest

file contents with disk introspection even they are not written into the guest virtual disk.

Guest

User Process false
- | Check if Write Buffer exists I—
NtCreateFile T

System Call|Interception Hl Create File Entry |

K false
r NtOpenFile Create Write Buffer |

Control N
Center 1

- trué
Hl NtCloseFile H Close File Entry |

Figure 8. Write Buffer Maintenance

NtWriteFile H Check if Write Buffer exists

Synchronize Write Buffer |

Write Buffer is maintained by the control center and the disk module. The control center
handles the Write buffer creation and.synchronization. Figure 8 explains the steps of Write
Buffer maintenance. When the guest user process invokes a system call, the control center
intercepts it and checks its type. If the system call is NtCreateFile or NtOpenFile, the control
center will create a file entry to save the mapping between the file path and the file handle,
and check if the Write Buffer exists. If the Write Buffer does not exist, the control center
creates a Write Buffer and copies the file contents through disk introspection into it. If the
system call is NtWriteFile, the control center will use the file handle arguments to find the file
path from file entries to see if the Write Buffer exists. If the Write Buffer exists, the control
center will copy the contents from system call arguments into the Write Buffer. Otherwise, the
control center will create the Write Buffer with its file path and save the contents. The file
entries are stored in the memory space of the control center. To avoid running out the memory

space, the control center frees the file entry according to the NtClose system call argument.
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Monitor App Return Write Buffer Contents

LibvMMD

true

Check If Write Buffer Exists

false

Save File Contents into Write
Buffer through Disk Introspection

Figure 9. Write Buffer Usage
Figure 9 shows the usage of Write Buffer. When the monitor application calls
LibVMMD to do the disk introspection with Write Buffer, VMMD system checks if the file
contents are stored in Write Buffer. If yes, VMMD return the Write Buffer contents to the
monitor application. If not, VMMD saves the file:.contents into a Write Buffer through disk
introspection and return it to the ‘monitor application. Therefore, subsequent file access will

not need to do disk introspection again and can be served by the Write Buffer mechanism.

Control Center

fail

Get Write Buffer Entry

Disk Introspection

Get File Contents

false

Compare with Write Buffer

true

Free Write Buffer

Figure 10. Write Buffer Garbage Collection

However, keeping Write Buffer can enhance the speed of repeating file access, but it also
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consumes the disk space of Domain 0. To maintain the balance between speed and disk space,
VMMD provides garbage collection mechanism for Write Buffer. Garbage collection is a
mechanism for cleaning outdated Write Buffer. The cleaning procedure is shown in Figure 10.
The cleaning procedure is started by the control center. In the procedure, the control center
checks the existing Write Buffer and gets the file contents through disk introspection. After
getting the file contents, the control center compares them with the Write Buffer. If the result
shows the contents are the same as the Write Buffer, it means the guest operating system has
written the cache data into its virtual disk. Then the control center is able to free the space of
the Write Buffer. The frequency of garbage collection can be regulated, and the overhead of
different frequency will be discussed in Section 5.6.

3.6 Disk Access Controls

Domain 0 Guest VM

Monitor App | User Process |

XenCtrl. Library

) . VMMD Library
Guest Virtual Disk

(1) Disk Access Control Disk I/O Operation

IDE Devices

Block Driver &

./'/(3)

Access Control " ntfs-3g Library

"®

Refuse Unauthorized
Disk Access

Disk Module

QEMU-dm

Figure 11. Flow Chart of Disk Access Control
Disk access control prevents unauthorized disk manipulations from guest VMs. The file
control type can be read-only or read-write. The operating system manages the file access
control through the control attribute, but the file control attribute can be changed with proper

system privilege. The antivirus software has another file access control mechanism. When
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malicious files are found in the operating system, it quarantines the malicious files to avoid
them being accessed by another process. However, the quarantine process may be attacked by
malwares; so that the quarantined files will get released.

In VMMD system, we implement a disk access control mechanism within the virtual disk
subsystems (i.e. QEMU-dm). The mechanism locates outside the guest virtual machine so it is
much more difficult for a malware within the guest VM to attack or bypass the disk access
control mechanism. The mechanism can be used by a security monitor to implement more
effective quarantine for malicious files on the disk. Figure 11 presents the architecture of disk
access control.

3.6.1. Block-level Access Control

To block disk access from guest VVMs at block level, the disk module contains a blacklist.
The blacklist is maintained by the monitor application and the monitor application can add
new blacklist entries through LibVMMD. Each blacklist entry records a virtual disk sector
number of a guest VM. When the.guest VM tries to access the sectors in blacklist, the disk
module will block the requests and return error messages to guest VMs as failed disk access.
3.6.2. Filesystem-level Access Control

To block disk access of the guest VMs at filesystem-level, monitor applications can
assign the file path to the disk module through LibVMMD. The disk module will parse the
MFT records to find the corresponding sector numbers on the guest virtual disks and add the
number to the blacklist. After the corresponding sector numbers are added to the blacklist, the

guest VMs cannot access the files as Chapter 0 explains.
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Chapter 4. Implementation

LibVMMD is implemented in C and C++ as a shared library. It makes use of libxc, ntfs-3g,
and QEMU-dm architecture. The current version is built to monitor HVM version of
Windows7 x86 64 and Windows Server 2008 x86 64 running on Xen 4.0.1. The
implementation details are discussed in the section as below.

4.1 Translation of Memory Address

LibVMMD makes use of Xen Control Library for memory introspection and interposition,
but libxc manipulates memory pages with GFN. However, modern operating systems use
virtual address mechanism for flexible memory management. To make memory introspection
friendlier, LibVMMD provides three different solutions to access guest VMs’ memory
subsystems.

4.1.1. Memory Introspection and Interposition with Guest Physical Address

For memory introspection and interposition with’ guest physical address, the system
depends on the Xen Control Jlibrary (libxc).” Libxc provides a function called
xc_map_foreign_range() to map guest VMSs’ physical memory pages into domain 0 memory
address space with GFN. After mapping the target memory pages into domain 0, third party
applications can read or overwrite the memory contents as their own memory pages.

4.1.2.  Memory Introspection and Interposition at a Given Guest Virtual
Address

Comparing to physical address, modern operating systems use virtual memory address as
primary. Memory introspection with guest virtual address can avoid Semantic Gap problem.
Getting memory contents with guest virtual address is more meaningful than only with guest

physical address as well.
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Figure 12. Memory Address Translation
To find the corresponding guest physical address, a series of memory address conversion
is required. Figure 12 shows the memory address translation from guest virtual address to
guest physical address. Memory address conversion starts at PML4 table. The bits of the
virtual memory address represent the offset at the next table. After walking through the guest
page table, the guest virtual address is converted into the guest physical address. The
remaining steps are the same as Chapter 4.1.1.

4.1.3. Locating Memory Pages for a Guest User Process

Finding the physical memory pages with guest process id is more advanced than only with
the guest virtual address. The virtual addresses which are being used have to be found in the

OS kernel structures, converted to the guest physical addresses, and be mapped into domain 0.
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1255 4E6 00071830 PsGetProcesswin32windowstation
1256 4E7 0004C290 PsGetProcesswowb4Process

1257 4E8 000CEA80 PsGetThreadFreezeCount

1258 4E9 001052C0 psGetThreadHarderrorsAreDisabled
1259 4EA 0004BADO PsGetThreadid

1260 4eEB 00071840 pPsGetThreadProcess

1261 4EC 0004B89C PsGetThreadProcessIid

1262 4ED 003220B8 PsGetThreadsessionId

1263 4EE 00058B34 PsGetThreadTeb

1264 4eF 00071820 pPsGetThreadwin32Thread

1265 4F0 00105250 PsGetversion

1266  4F1 003493F0 PsImpersonateClient
|1267 4F2 00281030 PsIn1t1a!sttemProcesﬂ
siscurrentrthreadpPretretching

1269 4F4 003eEB410 PsIsProcessBeingDebugged
1270 4F5 0004BB38 PsIsProtectedProcess

1271 4F6 000744AC PsIsSystemProcess

1272 4F7 0004DFFO PsISSKstemThread

1273 4F8 0031AA44 PsIsThreadImpersonating
1274 4F9 0004BAEO PsIsThreadTerminating

1275 4FA 00281288 PsJobType

1276 4FB O00BAFFO PsLeavePriorityRegion

1277 4FC 003531FC PsLookupProcessByProcessId
1278 4FD 00371270 PsLookupProcessThreadByCid
1279 4FE 003713F0 PsLookupThreadByThreadId

Figure 13.. Windows System Map File

To find the kernel structure of specified guest process id, the system uses system map file
to locate the physical memory .address of the kernel structure of the initial process. In
Windows 7 x64 and Windows Server 2008 x64 editions, the system locates the EPROCESS
kernel structure from PslInitialSystemProcess entry in the system map file (Figure 13). Each
EPROCESS structure is linked by a double linked list, and the system can find the target
EPROCESS structure by walking through the EPROCESS list with specified guest process id.
The virtual address area information is stored as an AVL tree in EPROCESS. After obtaining
the virtual address area and the CR3 information, the remaining steps are the same as Chapter

4.1.2.
4.2 Extended Page Table

Xen Hypervisor plays the role of resource manager to distribute the hardware resource to
each guest virtual machine. In the previous version, Xen deploys shadow page table
mechanism to distribute the physical memory resource. Shadow page table records the

mapping between guest virtual address and host physical address. To be precisely, Xen
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maintains the shadow page table when the guest operating system tries to modify its guest
page tables. Each guest page table modification will cause a VMEXIT exception to let Xen
synchronize the shadow page table, and invoke a VMENTER instruction after the
synchronization is completed to resume the guest VM execution. According to the shadow
page table, guest CPU can find the requested contents on correct physical memory pages.
However, switching the control between guest VM and Xen Hypervisor is costly (about
thousands of CPU cycles); frequent switching will slow down the performance of running

guest VMs.

Virtual Machine #1 Virtual Machine #2

Process 1 Process 2 ( Process 1 Process 2

I ‘ ] ] | ‘ ] ] ‘ | ‘ | ‘ | | } logical pages o
CT T 1711 I e } guest page hardware
_I_J ——J_I tables handles all

S SN . UAS ) y J three

- ' , translations
Y Y Y Y ¥ ¥ ¥ Y ¥ ¥ machine page
l ‘ | tables

Figure 14. Intel EPT

To enhance the performance, recent version of Xen deploys the Extended Page Table to
manage the physical memory resource. Extended Page Table is a hardware feature for page
table virtualization. It is provided by processors which support Intel Virtualization Technology.
Like Figure 14, EPT provides memory translation from guest physical address to host
physical address. Unlike shadow page table, guest operating system is allowed to modify its
page tables and handles the page faults directly. The maintenance of EPT will be carried out
by the CPU hardware. Xen only needs to allocate the machine page table for each guest VM
when they are created. With EPT, Xen saves the CPU cycles and improves the performance

due to less control switching.
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Figure 15. EPT Address Translation
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Memory access control allows third party applications to change the access control type of
any guest physical memory page in EPT. Figure 15 explains the address translation of EPT. At
the last step of EPT translation, it gets the EPT entry which points to the beginning of the
target machine physical page. The EPT entry has three types of access control bit (Read, Write,
and Execute). These bits represent the control type by different combinations. In other words,
memory page is the basic unit of the memory access control. When a monitor application
needs to change the control type of a guest memory page, it uses the interface of LibVMMD.
LibVMMD communicates with the memory module via hypercall interface. The memory
module controls the guest memory pages by assigning GFNs and new control types to
p2m_change_type() function. The p2m_change_type() function will walk the EPT and change
the access bits of the EPT entries.

4.3 Emulating Offending Instruction

Chapter 3.3 introduces the design for evading kernel patching protection. In fact,
PatchGuard may not be the only process which accesses the patched kernel memory page.
The kernel may access its page as well. For the memory module, it has no need to distinguish
which process cause the EPT violation. It emulates all of the offending instructions in Xen
Hypervisor.

The memory module hardcodes the offending instructions rather than disassembles them

dynamically. When an EPT violation is caused by accessing the patched memory page, the
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memory module checks the offending instruction with its record. If the offending instruction
exists in the record, the memory module will emulate it by corresponding actions. Otherwise,
we have to add it and the corresponding behaviors in the record manually.

Table 1. Offending Instructions

eax, byte[r8]

eax, byte[r9]

eax, byte[r11]

eax, byte[rdx+0x01]
eax, byte[rdx+0x02]
eax, byte [rdx]

ecx, byte [rdx]

ecx, byte[r13]

ecx, byte[r13+0x1]
ecx, byte[r13+0x2]
al, [rex]

al, [rbp]

al, [rbp+0x1]

dl, [rex]

byte [rbp], 0x48
byte [rdx+0x1], Oxff
byte[r13+0x1], Ox8d
rdx, [r8]

rdx, [r9]

rdx, [r11]

The offending instructions can be divided into 4 different operators: movzx, cmp, xor, and
mov. The complete instructions are shown in Table 1. The memory module emulates almost
every instruction in a normal way except for xor rdx, [r9]. In our verification, xor is the

instruction of PatchGuard to calculate the checksum of the kernel memory pages. The r9
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register stores the virtual address of the kernel memory page which waits for PatchGuard to
verify it. When the r9 register points to the patched kernel memory page and causes the EPT
violation, the memory module will check the fault memory address. If the fault happens at the
patched memory address, the memory module will xor the “original instruction” into rdx
register. Otherwise, the memory module will get the memory contents of [r9] and xor it into
rdx register.

4.4 QEMU Virtual Disk Subsystem

- Disk 1/0O requests -
QEMU-dm Main Loop A Domain U
(B)
IDE Device
y : L
qcow raw vvfat
Block Driver Block Driver Block Driver
bdrv_aio_read() bdrv_aio_read() bdrv_read()
bdrv_aio_write() bdrv_aio_write() bdrv_write()
(D)
qcow img raw img vvfat img

Figure 16. Handling Steps by Qemu Device Manager

In the architecture of Xen, QEMU device model is realized for 1/0 emulation of the HVM
guest. The corresponding process in domain 0 is QEMU device manager (QEMU-dm).
QEMU-dm models the virtual disk as an IDE device, and the IDE device corresponds to a
block driver for 1/O operations. Figure 16 shows the handling steps of guest virtual disk
requests. At step A, QEMU-dm prepares a main loop which listens to the 1/0 requests from
domain U, and it transfers the virtual disk requests to virtual disk IDE device at step B. The
IDE device will handle the requests by passing the requests to registered block driver to

perform the 1/0O operations at step C and step D.
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In the process of HVM creation, QEMU-dm finishes the initial steps and enters into the
main loop to wait for the guest requests. At this moment, QEMU-dm creates another thread
for disk module initialization. The disk module allocates shared memory to communicate with
LibVMMD. On the other side, it uses ntfs_device_alloc() to initialize a ntfs structure for the
virtual disk and mounts it by ntfs_volume_startup(). After the initialization has completed, the
disk module is allowed to access the virtual disk through ntfs-3g library and listen to

LibVMMD for further request.

ntfs_pathname_to_inode()

Monitor
APP
——>{ Read disk block || bdrv_pread()
%l Write disk block H bdrv_pwrite()
disk Read file ntfs_attr_pread() |—
module

ntfs_attr_pwrite()

F

Delete file

ntfs_delete()

|_

Find Add sector
corresponding numbers into

sector numbers blacklist

Figure 17. Architecture of Disk Module Functionalities

The disk module handles the request of disk introspection, disk interposition, and disk
access control. For disk introspection, the module returns the disk contents at block level and
filesystem level. The monitor application can get the disk contents of specified disk block or
disk file. For disk interpostion, the module controls the disk access at block level and
filesystem level for the monitor application. The monitor application can quarantine disk files
without altering the guest operating system states. Furthermore, the monitor application can
delete disk files through the disk module. The flow of disk module functionalities is shown in

Figure 17. It will be introduced by the following sections.
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4.4.1. Block-level Introspection and Interposition

Under QEMU, the virtual disk is emulated as an IDE device. The IDE device has its
block device driver and operation functions. When the disk module receives the requests of
block level introspection, it uses the virtual disk operation function, bdrv_pread(), to read the
virtual disk contents. If the requests are made for block level interposition, the disk module
uses bdrv_pwrite() to overwrite the virtual disk contents.

4.4.2. Parsing NTFS file system

When monitor applications need to introspect the virtual disk at filesystem level, the disk
module use ntfs_pathname_to_inode() to parse the MFT records. In NTFS filesystem, each
file is recorded as file attributes in the MFT. The ntfs_pathname_to_inode() function
translates the file path into file attributes from the MFT. After the translation, the disk module
uses ntfs_attr_pread() to get the file contents with the file attributes for introspection, and uses
ntfs_attr_pwrite() to overwrite the file contents for interposition. The disk module also uses
ntfs_delete() for deleting a file from the virtual disk:

4.4.3. Read/ Write Control

Disk 1/O requests

QEMU-dm Main Loop A Domain U
(8))
IDE Device
v : y
gcow raw vvfat
Block Driver Block Driver Block Driver
bdrv_aio_read() bdrv_aio_read() bdrv_read()
bdrv_aio_write() bdrv_aio_write() bdrv_write()
Access Control (D)
qcow img raw img vvfat img

Figure 18. Disk Access Control in QEMU-dm
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QEMU supports different image file formats as the virtual disks of guest VMs, including
raw file, vvfat, gcow, qcow2, vmdk, cloop, dmg, vpc, bochs, and parallels. Each file format
corresponds to a block driver of the virtual disk ide device. Figure 16 explains the process
flow of handling guest virtual disk requests. To control the disk access from guest VMs, the
disk module manages disk requests in QEMU-dm. Figure 18 shows the architecture after the
disk access control is added into QEMU-dm. The disk module manages a blacklist for the
guest VM disk access control. When the guest VM sends 1/O operation requests to QEMU-dm,
the disk module will compare the requested disk sector numbers with the blacklist to confirm
if they can be accessed.

drives_table

|

struct Drivelnfo j struct BlockDriverState struct BlockDriver
BlockDriverState *bdrv int read_only .
bdrv_open()
. bdrv_read()
int drive_opt idx . bdrv_write()
BlockDriver *drv bdrv_close()

xList *blacklist

Figure 19. QEMU Virtual Disk Structure

The black list locates in the BlockDriverState (bdrv) structure. In QEMU, the virtual

devices (Drivelnfo) are stored in drives_table as Figure 19 shows. The state of a virtual device

is saved in BlockDriverState, like whether the device is read only. When the virtual device

performs its 1/0 operation, it uses the 1/0O operation functions in BlockDriver structure.

Meanwhile, the disk module checks the black list to decide whether the operation should be
blocked.

Sector is the basic unit of the virtual disk. Each sector contains 512 bytes. To quarantine

the virtual disk at block level, monitor applications have to assign sector numbers to
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LibVMMD. LibVMMD will request the disk module to add the sector numbers into the
blacklist. When the disk module finds the matches between requested sector numbers and
blacklist sector numbers, it will return error messages for failed disk manipulations.

To block the virtual disk access at filesystem level, the disk module has to find the
corresponding sector numbers of the file. In NTFS filesystem, the file information is stored in
MFT, so the disk module has to parse the MFT record. The MFT stores the file information in
two types, resident attribute and non-resident attribute. When the file size is bigger than the
MFT entry size, the file data is saved as non-resident attribute. The data attribute of the MFT
entry will store the locations of the file data. Otherwise, the file data is stored in MFT entry.

To find the corresponding sector numbers, we modified the ntfs_pathname_to_inode()
and the ntfs_attr_pread() function in ntfs-3g library. The original ntfs_pathname_to_inode()
function gets the attributes of the file path from the MFT records. The file contents can be
achieved by giving the attributes-to the original ntfs_attr_pread() function. If the file size is
too large to be stored in the MFT entry, the original ntfs attr_pread() function will find the
file contents in the corresponding sector numbers with the data attribute. The modified
ntfs_pathname_to_inode() function returns one more argument, the sector number of the MFT
entry. And the modified ntfs_attr_pread() function returns the sector numbers rather than the
file contents. As a result, through the modified ntfs-3g library, the sector numbers can be

found with the file paths and can be added to the blacklist for filesystem level access control.
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Chapter 5. Evaluation and Prototype Applications

In this Chapter, we evaluate the overhead of write buffer and PatchGuard evasion. We also
combine our design as different types of security prototype applications. The function of

prototype applications will be explained below.

5.1 Prototype Application : Real-time Virus Scanning

Real-time Virus Scanning (RVS) is a prototype security application to protect guest
operating system online. It combines memory introspection, disk introspection, disk
interposition, system call interception, write buffer technique and PatchGuard evasion. To
protect guest VM online, RVS intercepts system calls to understand which file is accessed by
the guest operating system. Then RVS scans the file with ClamAV scan engine in domain 0 to
decide whether the file should be quarantined. RVS guarantee the file access of the guest VMs.

The complete process flow is explained below.

1.[Guest]

Invoke File Open/Create Syscall 8.[Rvs] i 9.[RVS] 10.[Guest]
Allocate Write |3 . o -
Update Write Buffer Invoke File Close Syscall
Buffer
4 11.[RVS]
2.[RVS] 7'_[Gues':] Intercept
) Write to the A
Intercept File Open/Create Syscall ) File Close
opened file
- Syscall
12.[RVS] 14.[Guest]
. Malware not found_
3.[RVS] 6.[Guest] Notify ClamAV —————>| Complete
Malware not found . )
Notify ClamAV > Complete to scan the file file close
to scan the file file open
Malware found
Malware found
13.[RVS]
4.[RVS] 5.[Guest] Quarantine
Quarantine > File Open the file
the file Failed

Figure 20. Online Malware Detection Process Flow
RVS intercepts “NtOpenFile” and “NtCreateFile” system calls to know when the guest
operating system accesses or creates a file. It also intercepts “NtWriteFile” to update the write

buffer and intercepts “NtCloseFile” to know when the file modification is finished. Figure 20
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presents the malware detection process flow of RVS. When the guest operating system
invokes “NtCreateFile” or “NtOpenFile” system call at step 1, it will be intercepted by RVS at
step 2. RVS judges the guest operating system is reading or writing a file by checking the
system call arguments. If the system call is invoked to read a file, RVS gets the file by disk
introspection and scans it with ClamAV scan engine at step3. Once the file is accused of
malware, it will be quarantined by RVS at step 4, and the system call will be failed at step 5.
Otherwise, the guest operating system reads the file successfully. If the system call is invoked
for writing a file, RVS allocates a write buffer at step 7. After the guest operating system
modifies the file at step 8, RVS updates the write buffer at step 9. The guest operating system
invokes “NtClose” system call at step 10 if it finishes the writing. At step 11, the NtClose
System call is intercepted by RVS and the file is scanned with ClamAV scan engine at step 12.
Like step 3, RVS decides whether it should quarantine the file based on the scanning result. If
the file is found as a malware, RVSS quarantines it to protect the guest operating system.

5.1.1. RVS Evaluation: PassMark Benchmark
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Figure 21. PassMark Benchmark
To understand the overhead of RVS, we use PassMark [15] to evaluate the baseline
system and the RVS system. The host machine is equipped with two Intel Xeon 2.27/Ghz

processors (16 logical cores in total) and 16 GB memory. The storage consists of 2 SATA
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HDDs configured JBOD mode. The guest operating system running on the guest VMs is
Windows Server 2008 x86_64 and the memory size of the guest VM is 3GB with 4 virtual
CPUs.

Figure 21 shows the overhead of CPU and disk rate. PassMark evaluates the CPU rates by
calculating integer math (left graph). The average CPU rate of the baseline system is 796
Mops/s, and the average CPU rate of RVS is 746 Mops/s. The overhead of RVS is about 6%.
In the disk evaluation, PassMark measures the disk rate by performing sequence read,
sequence write and random seek read/write. In the right graph, the overhead of sequence read
is about 35%, the overhead of sequence write is about 90% and the overhead of random seek
read/write is about 87%. Comparing to the overhead of CPU rate, RVS is much more like an
I/0 intensive system. Although PassMark provides friendly interface as a system benchmark,
we do not know the detail information of the testing data, like how much data are written by
PassMark. This makes us find the reason of the overhead more difficult. To have the ability to
control the testing data, we also evaluate RVS with other benchmark to verify and explain the
result of PassMark evaluation.

5.1.2. RVS Application Evaluation: x264 encoding
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Figure 22. RVS x264 Encoding Overhead

To verify the CPU overhead, we choose x264 encoder as our benchmark. The x264
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encoder has two threads and the testing file is an .rmvb file and the file size is 508 MB. In the
encoding process, x264 encoder consumes thousands of CPU cycles to transform a file to be
a .264 file. Although the x264 encoder performs series of NtWriteFile system call to save the
transformed contents into a .264 file, the performance of x264 transformation is still decided
by the CPU computation. Figure 22 presents the overhead of RVS while the guest operating
system performs x264 encoding. To evaluate the CPU overhead accurately, we filter out the
write buffer maintenance of the .264 file. RVS intercepts the system calls as usual but it does
not update the write buffer while the .264 file is encoded. The overhead in Figure 22 is caused
by system call interception write buffer usage and scan with ClamAV engine. When the x264
encoder encodes the .264 file, the other processes may access system files in background.
This causes the overhead of write buffer. usage and ClamAV scanning. However, the overhead
is relatively small. It proves that RV'S is not:a CPU intensive system.

5.1.3. RVS Disk Application Evaluation: 7-zip Compression

To understand the overhead of sequential read in Figure 21, we choose 7-zip to perform
file compression as our benchmark. The 7-zip software performs lots of NtOpenFile and
NtCreateFile system call while compressing files. Each file opening will cause RVS to dump
the file and scan it with ClamAV scan engine. In short, the file compression can be recognized
as a sequential read process with less writing, so we can easily understand the overhead of
RVS, especially in write buffer usage. The files which are used to be compressed come from
C:\\Windows\Microsoft. NET,  C:\\Windows\System32 and  C:\\Windows\SysWOW&64
directory of a newly installed Windows Server 2008 x86_64, and the total size is 2.5GB. The

compression tool is 7-zip which compresses files into .7z file format with 4 threads.
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Figure 23. RVS File Compression Overhead
Figure 23 shows the compression time of RVS. The compression time of RVS is about 3
times of the baseline system. Apparently, the performance decreases a lot after adding the
function of write buffer usage. In the file compression experiment, RVS has to dump the
whole 2.5GB file contents from the guest VM for later scanning in domain 0. The testing files
are stored in the guest virtual disk, and there are no-modifications on these files. As a result,
the overhead of write buffer usage is completely from disk introspection.

5.1.4. RVS Disk Application Evaluation: 7-zip Decompression

To understand the overhead of sequential write in Figure 21, we choose 7-zip to perform
file decompression as our benchmark. The compressed file comes from compression
experiment. By contrast to compress files, the 7-zip software performs lots of NtCreateFile
and NtWriteFile system call while decompressing files. Each NtWriteFile system call causes
RVS to update its write buffer for the latest file contents. For 7-zip, it creates totally 2.5GB
file contents from the compressed file. The file contents will be captured by write buffer for
later scanning. Thus, the file decompression can be recognized as a sequential write process.

The overhead of RVS, especially in write buffer maintenance can be easily understood from
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Figure 24. RVS File Decompression Overhead

Figure 24 presents the decompression time of RVS..As we can see, the total overhead of
RVS is about 7 times of the baseline system. Excluding the overhead of ClamAV scanning,
the remaining overhead is still 3 times of the baseline system. In decompression experiment,
the totally 2.5GB file contents are captured by write-buffer. From the overhead of write buffer
maintenance, we can get the average rate of write buffer is about 22MB per second. Although
the overhead is a little heavy, what happened in the overhead of write buffer usage? Haven’t
we explained decompression experiment does not need to do disk introspection? In fact, the
guest operating system dose not only runs the 7-zip benchmark. There are different processes
running in the background of the guest operating system. They may access some files and
cause RVS to scan them. That’s why there is still some overhead of write buffer usage in
decompression experiment.

5.1.5. RVS Disk Evaluation: Build ClamAV

To find out the reason of the overhead in random seek read write experiment in Figure 21,

we choose build ClamAV as our benchmark. When the guest operating system is building
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ClamAYV, it compiles lots of .c files and creates lots of object files. For RVS, the building
process uses NtOpenFile system call to open the files which need to be compiled, and uses
NtCreateFile and NtWriteFile to create the object files. Then the object files are linked to
generate dll or exe files by the building process. With the used system calls, the building

ClamAV process can be recognized as a random read write benchmark.
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Figure 25 RVS Build-ClamAYV Overhead
Figure 25 explains the overhead of RVS while the guest operating system is building
ClamAV. From Figure 25, the primaries overhead locate in system call interception. For the
overhead of write buffer maintenance and write buffer usage, building ClamAV creates lots of
new files and repeating access particular files. However, RVS can find the repeating access
file contents in write buffer, so that it is no need to copy the data from the virtual machine
again, and the overhead is relative small.

5.1.6. RVS Application Evaluation: PatchGuard Evasion

The overhead of PatchGuard evasion is decided by the invoking frequency of PatchGuard.
As Figure 5 explained, PatchGuard invokes EPT violation fault whenever it checks the kernel

integrity under PatchGuard evasion mechanism. The overhead of PatchGuard evasion consists
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of code emulation and control transit between guest operating system and Xen Hypervisor. In
reality, we would like to know the how much overhead is caused by PatchGuard evasion in

CPU and disk processing rate.
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Figure 26. PatchGuard Evasion Overhead in Different Benchmark
Figure 26 shows the overhead of PatchGuard evasion under different benchmarks. The
overhead is mainly decided by the invoking frequency of PatchGuard. For CPU (x264
encoding) and disk benchmark (7za-zip, 7za-unzip, build-ClamAV), the overhead is rarely

small. The frequency of PatchGuard is showed as below.
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Figure 27. Offending Instructions in Different Benchmark

Figure 27 presents the numbers of offending instructions in different benchmarks. As we
can see, the frequency of PatchGuard ‘is not the same in different benchmarks. The detail of
PatchGuard frequency will be discussed in Chapter 5.5. For different benchmark, the total
number of offending instructions is not the same but the overhead is always small. Why the
memory module emulates more instructions but causes the same overhead between 7-zip file
compression and build-ClamAV? It is mainly because the overhead of PatchGuard is not only
influenced by the invoking frequency, but also influenced by the complexity of the benchmark.
When the number of instructions that a benchmark has to execute becomes larger, the
overhead of the same number of offending instructions becomes relative small. It also
explains why the number of offending instructions in build-ClamAV is larger than 7-zip file

compression, but the overhead is small either.
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5.2 Prototype Application : Enhanced Real-time Virus Scanning

To enhance the performance of RVS, we provide an enhanced version of RVS (ERVS).
ERVS supports two new features: a path filter and a guest PV driver. The path filter selects the
intercepted file paths according to the file extensions. The selecting rule is based on
Kaspersky. Kaspersky supports different types of scanning functions for an operating system,
includes scanning every file, scanning files according to the file extensions, and scanning the
files which have been modified. The file extensions are as below.

Table 2. Windows File Extensions

.com drv .exe vxd .SYS pif .prg Ink .bin .reg
.bat .ini .cla vbs Vbe Jjs /.jse | .htm .htt .hta .asp
.chm .pht .php wsh wsf the .cmd .hip .dpl .eml
dll .nws .SCr .msg .cpl .plg .0CX .mbx tsp .doc*
.dot* fpm Jrtf .shs .dwg .msi .otm .pdf swf .emf
.Jpg .Jjpeg .ico .ov? XI* .pp* .md* .sldx .sldm thmx

The guest PV driver supports - multi-thread processing in the control center. In non-PV
version, the execution of guest VM is paused-after a system call is intercepted by the control
center, and it is continued after RVS finishes its processing steps. RVS captures the system
calls in serial, but with the help of the guest PV driver, ERVS handles the system calls in
parallel. The guest PV driver contains busy loops in guest operating system. When a system
call is intercepted, the execution flow is redirected to the busy loop to wait for released after
the processing of ERVS is finished. As a result, the guest VM does not need to be paused and

the system calls can be intercepted continuously.
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Figure 28. ERVS Overhead.in Different Benchmarks

For 7zip file compression and decompression, the total size of the files which have to be
dumped from the guest operating.system decreases from 2.5GB to 2GB. For build ClamAyV,
the total size of the created and accessed.files from-930 MB to 130 MB. Except for the path
filter, ERVS supports multi-thread system call handling and file scanning with the guest PV
driver. Figure 28 shows the improvements of ERVS in different benchmarks. ERVS improves
about 20% performance in 7zip file decompression and build-ClamAV benchmark, and
improves 40% performance in 7zip file compression benchmark.As a result, ERVS is a more

effective mechanism than RVS.
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5.3 Prototype Application : Virus Scan for In Memory Process
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Figure 29. VSMP Flow Chart

RVS protects system security from malicious file access. For those malware which start up
at system booting time, RVS has no.ability to stop them. Virus Scan for in Memory Process
(VSMP) is developed to against malicious process. VSMP uses memory introspection to
dump the memory contents of a process, and scans them with ClamAV antivirus engine. The
execution flow of VSMP is shown in Figure 29. For Windows guest operating systems, the
process information is stored in the EPROCESS structure. VSMP gets the EPROCESS
structure with its system map file. After getting the EPROCESS structure, VSMP dumps the
memory contents of the process and scan them with ClamAV scan engine. If the process is

reported as malicious, VSMP will clean the whole memory contents of the malicious process

to prevent it from continuing executing in the system with memory interposition.
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5.4 Prototype Application : Overwriting, Deletion and Quarantine of

Malware Binaries

When a file is reported as malicious, security applications have three choices, overwrite it,
delete it, or quarantine it. For first choice, security applications overwrite the file contents to
paralyze the malicious behaviors. In NTFS filesystem, each type of file has its file format, like
executive file uses MZ as its header. To paralyze the malicious behaviors, security
applications can replace the file contents with zero value. The file then becomes broken due to
unknown file format for guest operating system. Though overwriting of malwares destroys the
malicious behaviors, it occupies the disk space to store the unnecessary contents. To save the
disk space, security applications can take the second choice, deleting malicious files.

Deleting malicious files needs to.modify the MFT records of a guest operating system. It
saves the disk space and prevents the guest operating system from accessing malicious files.
However, the MFT records are maintained by the guest operating system originally, arbitrary
modification of them may cause ‘inconsistency problem and crash the guest VM. Also,
overwriting or deleting a malicious file cannot be recovered if false positive occurs.

To be recoverable and reliable, quarantine the malicious files become better choice. The
guarantine mechanism prevents the malicious file from accessed by the guest operating
system. It blocks the access requests in QEMU-dm outside the guest VM. Quarantine the
malicious files does not need to modify the state of an operating system, so that there is no
inconsistency problem. If the files are misunderstood as malicious, the quarantine mechanism

also can release them to recover the disk access of the operating system.
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5.5 PatchGuard Triggering Statistics

Table 3. PatchGuard Triggering Statistics in Different Benchmarks

Workload Offending | Intercepted | Duration Average System Average

Instructions System Call frequency Offending Inst.

Calls (syscall/sec) frequency

1079 15735 3600 44 0.3
x264 encoding 5563 159250 3963 40.2 1.4

7-zip File 1643 51542 990 52.1 1.7

Compression

7-zip File 1331 213010 748 284.8 1.8
Decompression

Build-ClamAV 13763 1737570 1226 14173 11.2

To understand the triggering frequency of PatchGuard, we compare the system duration
time and the numbers of intercepted. system calls with the number of offending instructions.
Table 3 presents the PatchGuard triggering statistics in different benchmarks. The intercepted
system calls are “NtCreateFile”, “NtOpenFile™, “NtWriteFile” and “NtClose”. As we can see,
the average system call frequency relates to the average frequency of offending instructions.
When the benchmark invokes more system calls in average, PatchGuard is triggered more
times. However, system calls may not be the only reason for triggering PatchGuard. The
average system call frequency of x264 encoding is smaller than 7-zip file decompression but
the average frequency of offending instructions is much closer. The real reason still needs to
be confirmed by monitoring more states of the virtual machine, like intercepts all the system

calls from the guest operating system.
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5.6 Garbage Collection
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Figure 30. Garbage Collection Overhead

Figure 30 presents the overhead and the result-of the garbage collection mechanism. The
workload is 7zip file compression benchmark and.the monitor application is our ERVS system.
From Figure 30 we can clearly see that the baseline system consumes less time slots but more
disk space. To understand the overhead of garbage collection mechanism, we evaluate two
different frequencies of collection in 7zip file compression work load. As we can see, the used
disk spaces are cleaned up after the file compression is finished. The overhead of garbage
collection is about 15% in 7zip file compression, and there is no overhead while performing

different collection frequencies in 7zip file compression workload.
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Chapter 6. Related Work

XenAccess [16] is a library for virtual memory introspection and virtual disk monitoring
in domain 0. With XenAccess, security application can read memory contents of specified
virtual machine, like process lists and module lists. Security applications can also monitor the
virtual disk through XenAccess. However, XenAccess does not provide functions to
manipulate VM states. Security applications can only monitor the virtual machine states but
cannot modify them. An upgrade version of XenAcces, called LibVMI [17], improves the
ability in manipulating the guest memory states. It provides different functions for security
applications to overwrite the memory contents. With LibVMI, security applications now can
modify the memory states via guest virtual address, guest physical, even a kernel symbol
name. Unfortunately, LibVMI does not handle the problem of kernel patching protection. Also,
the ability to manipulate the guest.disk states is the future work of LibVMI.

To manipulate the guest disk states, libguestfs [18] has been developed for viewing and
editing the files inside a guest VM. It is a powerful tool that it can access nearly any type of
filesystem, includes Linux filesystem (ext2/3/4, XFS and btrfs), Windows filesystem (VFAT
and NTFS), MacOS X, BSD filesystems, raw disks, gcow2, and VMWARE VMDK. It is also
a library that can be linked with C and C++. With libguestfs, security applications are able to
manipulate the disk files in a virtual machine disk image or even manipulate on a live virtual
machine. Nevertheless, libguestfs does not guarantee the safety of using libguestfs in
read/write mode on a live virtual machine. Overwriting disk files through libguestfs on a live
virtual machine may cause disk corruption problem. Though libguestfs is powerful to be used
on different types of filesystem, it cannot get the latest file contents without waiting for the
disk being refreshed. For security applications, the immediateness of monitoring system states
is very important. Losing the immediateness will make malware prevention more difficult.

For this reason, libguestfs becomes an imperfect solution for security applications.
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Virtual machines are used to be the platform for malware analysis. For malware
analyzers, virtual machines are secure and can be recovered easily. In traditional, malwares
are analyzed in sandbox [19]. However, few malwares can detect the operating system
environment. If they are in a sandbox, they will do nothing and pretend to be normal
processes. The environment of virtual machine is much close to a physical machine, and it is
more difficult to be detected. Ether [20] is one of the malware analysis tools on Xen
Hypervisor. It traces the system call executions, monitors the memory writes, and monitors
the instruction executions of a guest VM. Other works like [21], [22], [23], and [24] provide
monitoring functions in different ways, too. None of them provide a solution to interpose in
the system states. VMMD is the first IDS/IPS mechanism based on Xen Hypervisor to protect
virtual machine from outside. It not only:monitors the system states but modifies them. With
VMMD, third party security applications-can scan the process running in the virtual machine

and protect the file access of the virtual machine.
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Chapter 7. Future Work

To be a general solution for cloud center, VMMD system has to cross the gap between
different operating systems. VMMD system now only supports Windows Server 2008 R2
x84 64 and Windows 7 x86_64 operating system running on the guest VM. Other popular
operating systems like Linux operating system have not supported yet. Except for the support
of different operating systems, a disassembler needs to be added in the memory module while
evading PatchGuard protection. In the recent design, the memory module emulates the
PatchGuard instructions by hard codes. When a new instruction of PatchGuard shows up, we
disassemble it and add the corresponded emulation routine manually. However, the
PatchGuard instructions are not unalterable. PatchGuard may check the system integrity with
brand new instructions after the operating system has been updated. For this reason, adding a
disassembler is necessary for being an automatic PatchGuard evasion mechanism. Also, we
have to add a synchronizing mechanism to avoid data corruption while performing disk
interposition. For the recent design," VMMD system maodifies the virtual disk data directly no
matter whether the virtual disk is accessed by the virtual machine. If VMMD system deletes a
file which is accessed by a virtual machine, it will cause data corruption problem on the
virtual disk. To provide a stable and safe mechanism for disk interposition, a synchronizing
mechanism is needed. Finally, we will keep working on the performance and adding different

functionalities of the VMMD system.
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Chapter 8. Conclusion

We proposed the VMMD system for security applications to conduct introspection and
interposition of virtual machine memory and disk states. For memory states, VMMD provides
the abilities to read, write, and manipulate the access control of the guest VM memory pages.
The memory interposition will cause a blue screen error if the guest VM runs Windows
x86_64 edition operating system due to kernel patching protection. In VMMD, we developed
a technique to evade the kernel patching protection. For disk states, VMMD provides the
abilities to read, write, and manipulate the access control of the virtual disk at both the block
level and filesystem level. A challenge in disk introspection is the cache coherence problem,
which can result in outdated data to be returned by the disk introspection. To solve the
problem, VMMD system implements a write buffer- mechanism to capture the latest file
content updates on a virtual disk. VMMD. systemalso -provides an interface for security
applications to easily integrate the introspection and interposition mechanisms. With the
functionalities of VMMD system, we._made two prototype security applications, RVS and
VSMP. RVS monitors the file access in a ‘guest' VM and can quarantine virus-infected files
from outside the virtual machine. VSMP can scan the memory contents of a process from
outside the VM. To evaluate the system performance, we use different benchmarks to
understand the overhead in terms of the CPU and 1/O processing rate of the RVS system. The
result shows that RVS is much like an I/O intensive system, and the overhead is not small.
Although the overhead is still quite heavy, RVS provides a new way to protect file access in
virtual machine from the outside. We also study the activities by PatchGuard. The result
shows the invoking frequency of PatchGuard check is influenced by time and system call
frequency. Our experiment result confirms that the overhead of the PatchGuard evasion

mechanism is negligible.

48



Reference

[1] “Rootkit - Wikipedia, the free encyclopedia.” http://en.wikipedia.org/wiki/Rootkit.

[2] “Virtualization - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Virtualization.

[3] “Cloud computing - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Cloud_computing.

[4] “Hypervisor - Wikipedia, the free encyclopedia.” http://en.wikipedia.org/wiki/Hypervisor.

[5] “Welcome to xen.org, home of the Xen® hypervisor, the powerful open source industry
standard for virtualization.” http://www.xen.org/.

[6] “Main Page - KVM.” http://www.linux-kvm.org/page/Main_Page.

[7] “Semantic gap - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Semantic_gap.

[8] “QEMU.” http://wiki.gemu.org/Main_Page.

[9] “Extended Page Table - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Extended _Page_Table.

[10] “Paravirtualization - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Paravirtualization.

[11] “Hardware-assisted virtualization - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Hardware_virtual_machine.

[12] “Kernel Patch Protection - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Kernel _Patch_Protection.

[13] “NTFS - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/NTFS#Internals.

[14] S. Pei Kun, “Hypervisor-based System Call Interception Mechanism,” National Chiao

Tung University, Master Thesis, 2012.

49



[15] “PassMark Software - PC Benchmark and Test Software.” http://www.passmark.com/.

[16] B. D. Payne, M. D. P. de Carbone, and W. Lee, “Secure and flexible monitoring of
virtual machines,” in Computer Security Applications Conference, 2007. ACSAC 2007.
Twenty-Third Annual, 2007, pp. 385-397.

[17] “vmitools - Virtual machine introspection tools - Google Project Hosting.”
http://code.google.com/p/vmitools/.

[18] “libguestfs, library for accessing and modifying VM disk images.” http://libguestfs.org/.

[19] “Sandbox (computer security) - Wikipedia, the free encyclopedia.”
http://en.wikipedia.org/wiki/Sandbox_(computer_security).

[20] A. Dinaburg, P. Royal, M. Sharif, and W. Lee, “Ether: malware analysis via hardware
virtualization extensions,” in Proceedings of the. 15th ACM conference on Computer and
communications security, 2008; pp. 51=62.

[21] M. 1. Sharif, W. Lee, W. Cui, and A. Lanzi, “Secure -in-vm monitoring using hardware
virtualization,” in Proceedings. of the 16th ACM conference on Computer and
communications security, 2009, pp. 477-487.

[22] B. D. Payne, M. Carbone, M. Sharif, and W. Lee, “Lares: An architecture for secure
active monitoring using virtualization,” in Security and Privacy, 2008. SP 2008. IEEE
Symposium on, 2008, pp. 233-247.

[23] X. Jiang, X. Wang, and D. Xu, “Stealthy malware detection and monitoring through
VMM-based ‘out-of-the-box’ semantic view reconstruction,” ACM Transactions on
Information and System Security (TISSEC), vol. 13, no. 2, p. 12, 2010.

[24] N. A. Quynh and K. Suzaki, “Xenprobes, a lightweight user-space probing framework

for xen virtual machine,” in USENIX Annual Technical Conference Proceedings, 2007.

50



